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Preface

This text is intended to provide the user of instrumentation with an understanding of the factors that influence
instrument selection, instrument application, the interpretation of results, and the subsequent planning of

future operations. In selecting the tools and techniques of measurement, consideration must be given to

factors like their reliability, accuracy, speed, cost, and role in contributing to the ultimate goal of the

measurement operation. Because the relative importance of these factors varies with each application, the

balance among them requires a human judgment. A mathematical formula may be used to describe this
judgment, but only after the judgment has been made.

The text also seeks to provide that intuitive understanding of the capabilities and limitations of measurement

methods that will permit avoidance of an excessive precision and detail beyond that needed by a practical

engineering problem. Such matching of effort to need not only saves time and labor, but also attests to

the soundness and maturity of the judgment that has been exercised.

The chain of variables, components, or steps that comprise a measurement operation can proceed from

the physical variable to be measured, to a sensor and its installation, to transmission of the signal from

the sensor to a signal transducer, conditioner, or modifier, to an indicator or recorder, to data analysis

or manipulation, and to the interpretation and understanding of the data. This text, being directed to the

instrument user rather than to the instrument designer, treats, in categorical terms, only those items in the

chain that principally control the accuracy, reliability, and utility of the information acquired; these items
are the first two or three items of the chain, and the very last item. The quality, sophistication, and pace

of development of modern instruments for data acquisition and manipulation are such that the intermediate

items of the chain rarely limit the ability to acquire and to understand the information that is desired about

the physical variable being studied.

This material is the substance of a set of thirty 2-hour lectures presented to members of the senior engineering

staff of what is currently known as the NASA Lewis Research Center. The subjects selected for treatment

in this text are those which have been found to be most significant in the practical application of instruments

and of measurement techniques by this staff. The more basic principles are presented in the main text of

each chapter; additional details appear as appended notes following each chapter. Illustrative examples are

chosen, as far as possible, to represent practical applications, sometimes in several engineering disciplines.
Many of these examples are in a form that makes them suitable for use as problems in a formal course
of instruction.

An understanding of the language of the differential calculus is necessary; but facility in its operations

usually is not. To facilitate cross reference, and the text's use as a handbook, figures and specialized tables

bear the same number as the section in which they appear.
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CHAPTER 1. DIMENSIONS

1.0. Physical quantities. Symbols. The development of physics has included the identification of measurable
physical quantities representing properties or characteristics of matter, and the establishment of relationships

among these quantities. Each newly identified quantity has been given a name that is usually widely accepted.

[Note N1.0] For convenience, each quantity is also assigned a symbol, although this assignment is arbitrary

and may vary with the discipline in which the quantity is used, may vary from one text to another, and

may even vary among different sections of the same text.

The subject of dimensions deals with the names of these quantities. Each physical quantity, property,

or attribute may be assigned a dimension characterized by its name, which is descriptive of its nature or

behavior. For example, mass, energy, and temperature may be said to have the dimensions of mass, energy,

and temperature, respectively. As a separate matter, the term "unit" characterizes the quantitative magnitude
of some physical quantity, property, or attribute. For example, the gram, slug, and pound are all units

of mass; the joule, erg, and British thermal unit are all units of energy; the kelvin, degree Celsius, and

degree Fahrenheit are all units of temperature.

The ratio between two quantities having the same dimensions is said to have the dimension of unity. The

ratio itself is said to be dimensionless or nondimensional. All numerics (pure numbers like _ or r)

and transcendental functions (like the logarithm or the sine) are dimensionless.

The concept of dimensions was introduced by Fourier in 1822. (Ref. 1-1) It facilitates the qualitative

development and understanding of the laws of physics even before they are converted to quantitative
relationships through choice of the units of measurement.

If each physical quantity is considered to have a dimension, it is found that the dimensions of any physical
quantity can be described as a combination of some or all members of a group of five independent dimensions.

The selection of which five quantities are to be used in the group is arbitrary, subject only to the condition

that each be independent of the others (i.e., that none shall be merely a power or product of the others)

and is generally made on the basis of convenience. The term "independent dimension" is analogous to

the term "independent variable" in mathematics.

In this chapter, square brackets around the symbol for a quantity are used to signify the dimensions of
that quantity. Thus, [A] is read "the dimensions of A." The dimension itself is represented by an unbracketed

symbol for that quantity; in this text, that symbol will always be capitalized. The symbol for the quantity

itself may or may not be capitalized. Thus, if area a and length I are two physical quantities, and A and

L represent the dimensions area and length, respectively,

[a]=A=L2; [I]=A l_=L; [a/l]=L

1.1 Relationships among physical quantities. In most cases, the basic laws of physics are statements

of proportionalities between physical quantities or powers of those quantities. [Note N 1.1] The conversion

of proportionalities into equalities requires the assignment of a factor of proportionality. This factor may
itself have dimensions or, if it is dimensionless, may be a pure number (a numeric) or the ratio of two

physical quantities that have the same dimensions; the factor also depends on the units in which the physical

quantities are measured. The subject of units will be treated in the next chapter.



§1.1

Tables l-1 to 1-51 list some quantities of physics and their dimensional representations in a useful

grouping of independent dimensions. Some tables are arranged to show the parallelism between analogous

quantities. More complete tables are available in handbooks of physics and engineering. In the column which

lists definitions of symbols by a formula, the required proportionality sign has been replaced by a

proportionality factor (often unity) in a manner that provides a fully consistent set of equations for those

systems of units that have had wide acceptance since 1890. The selection of the value of the proportionality

factor will be treated in the next chapter, but it is important to note that the dimensions of a physical quantity
do not depend on its magnitude and are independent of the units in which it is measured.

Example 1.1. Names, symbols, and proportionalities are illustrated by the following relationships
among physical quantities:

(l.l-la) (force F) _ (mass M) x (acceleration a) Newton's law

(1.1-lb) (electrostatic flux _I,) oc (electric charge Q) Gauss's law

(1. l-lc) (magnetic flux q,) oc (magnetic pole strength m*) Gauss's law

(1.1-1d) (magnetomotive force 5:) oc (current I) x (turns n) solenoidal law

(1.1-1e) (force F) m (current I) x (induction B) x (length L)

(1.l-If) (energy change AW) _ (heat capacity C) x (temperature change A0)

All of the above relationships happen to re.quire a dimensionless factor of proportionality. When

such a relationship among physical quantifies is converted into the corresponding relationship among
their dimensions, the proportionality sign becomes an equality sign. Thus,

(I.1-2a) [FI = [M] [a]

(I.l-2b) [_] = [Q]

(I.I-2c) [(1)]= [m*]

(l.l-2d) [5:]= [At][n]= [I]

(l.l-2e) [FI = [I][B] [L]

(l.l-2f) [W] = [C] [0]

The following relationships require a dimensional factor of proportionality. The corresponding
relationship among dimensions may not be written as an equality; it serves merely to define the
dimensions of the factor of proportionality.

(1. l-3g) (radiant flux _e) _ (temperature 0) 4 x (area A) Stefan's law

(1.1-3h) (energy change AW) oc (frequency change Aa,) Planck's law

1For ease of later reference, Tables 1-1 through I-5 appear at the end of this text on pages 208 to 213.



(1.1-3i) (pressure p) oc (density o) × (temperature 0) Gas law

(1.1-3j) (mass electrodeposited m) oc (total charge Q) Faraday's law

Thus, the respective factors of proportionality have the following dimensions:

(1.1-4g) [_,,]/[04A] = W/(L2TO 4) (Stefan-Bohzmann constant, o)

(1.1-4h) [AW]/[A_v] = WT (Planck's constant, h)

(1.1-4i) [/7]/[o0] = W/(MO) (specific gas constant, R)

(1.1-4j) [m]/IQ] = IRT2/L 2 (Faraday constant, F)

1.2. Psychophysical quantities. These are quantities that represent the perception of physical quantities
by a human observer, often called the standard observer.

In illumination engineering, psychophysical quantities are based on the spectral sensitivity of the human

eye. The word "luminous" is prefixed to the the name of the quantity to denote the psychophysical quantity,

in contrast to the prefix "radiant" for the purely physical quantity. (Example: luminous flux versus radiant
flux. A source emitting considerable flux in the deep ultraviolet emits no luminous flux because the radiation
is invisible.)

In audiometry, psychophysical quantities are based on the auditory sensitivity of the human ear or on

human psychological characteristics. (Examples: loudness, noisiness.) The commonly used psychophysical

quantities happen to be dimensionless because they are functions of the ratios of two similar physical quantities,
like pressure or power.

1.3. The Pi theorem. Dimensionless numbers. Ifn independent physical quantities enter into some physical

relation, and the dimensional expressions for these quantities involve a total of k independent fundamental

dimensions (note that k _< 5), the relation among the physical quantities can be expressed as a function of
n-k independent dimensionless products of these n quantities in the form

(1.3-1) f(III, II2, 1/3..... 1/n-k) = 0

where I'li is a dimensionless product of a number of the n physical quantities. The word "product" includes

the operation of raising any one quantity to some power. This is currently called the Pi theorem. 2

The scaling of models involves changing the magnitudes of the quantities that enter into any IIi without

changing the magnitude of II i itself. Similarly, calibration of an instrument needs to be performed only

over a range of values of each II i, rather than over a range of values of each quantity that enters into any
IIg calibration effort is, thereby, reduced.

In any one discipline, certain dimensionless products recur frequently. They are then termed dimensionless

numbers and are often named after a scientist prominent in that discipline. The General Conference on Weights

and Measures (CGPM) recommends that they be written as Nx_, where the subscript identifies the scientist.

Where the meaning is unambiguous, they have also been written as Xx rather than as subscripted numbers.
(Examples: Reynolds number, Ntce or Re; Prandtl number, Nt,r or Pr).

Table 1-6 3 contains a listing of a few dimensionless numbers. More extensive compilations have been
published (Refs. 1-4 and I-5).

§1.1-1.3

2The theorem was stated by Riabouchinsky in 1911 (Ref. 1-2) for the case k = 3, in application to problems in mechanics. It was
recognized independently by Buckingham and stated for the more general case k _>3, in 1914 (Ref. 1-3).

3For ease of later reference, Table I-6 appears at the end of this text on page 214.
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1.4. The P/-zero theorem. The Pi theorem leads to the corollary that a physical quantity y can be expressed

as the product % of other physical quantities (the dimensions of x0 being the same as the dimensions of

y) multiplied by a function of dimensionless products of the quantities entering into the physical relationship.

For example, suppose that y occurs to the mth power in the product HI of Eq. (1.3-1). Then we take

x0 =y HF l/" and rewrite Eq. (1.3-1) in the form

(1.4-1) y = _roF(II2, H3 ..... H,.k)

This relation leads to a fundamental law of measurement: The percentage accuracy of measuring y can be

no better than the percentage accuracy of measuring x0. (See Sec. 3.28.)
A restatement of this law is that to obtain a given accuracy in the measurement of a quantity y, it is necessary

(but not always sufficient) to compare it with another quantity _r0 that is known to at least the same

percentage accuracy, 7r0 being a product of variables such that the dimensions of _r0 are the same as the
dimensions of y.

A particularly simple case, very common in instrument calibration, is n-k = 1, so that there is only one
product H I. Then the unknown quantity y can be expressed as a simple product of powers of the other

variables, and the accuracy of knowledge of the unknown is equal to the accuracy of the product, if the

calibration or comparison procedure itself introduces negligible error.

In the simplest case, x0 may be a single physical quantity having the same dimensions as y.

Example 1.4a. "Potentiometer of the first kind." (Fig. 1.4(a)) To measure an unknown

electromotive force (emf) ex, the current i through a resistor rs is first adjusted until the voltage

drop across rs is equal to a known standard emf e, derived from a standard cell or its equivalent

(e.g., a Zener-diode-hased power supply), as indicated by a null detector. Then e_ is replaced by

e_ and r_ is adjusted until the voltage drop across r_ is equal to e_. Then ex = e_(rJr_). The value

of i need not be known but must have remained constant during the entire operation. Here _r0 = e_.

The percentage accuracy of knowledge of ex is no better than the percentage accuracy of knowledge
of es. The ratio rx/r s must be known with negligible error, but the absolute value of the resistances
need not be known.

Example lab. "Potentiometer of the second kind." (Fig. 1.4(b)) The current i through a fixed

resistor r_ is adjusted until the voltage drop across rs is equal to an unknown emf e_, as indicated

by a null detector. The current i is measured. Here r 0 = irs. The percentage accuracy of knowledge
of e_ is no better than the percentage accuracy of knowledge of the product its.

This arrangement lends itself to the use of a feedback amplifier to replace a manual operator and
to the use of an oscillograph to replace the ammeter, in order to achieve rapid emf measurement

while almost maintaining the null potentiometer feature.

Null {
detector

i

rx r S

,t
) °_

i

(a) (b)

Figure 1.4 - Null-potentiorneter circuits.



Example 1.4c. The value rx of a resistor is measured, using a Wheatstone bridge with ratio arms

ra and re, by comparing it with a standard resistor r,. Here 7r0 = rs. The percentage accuracy of

knowledge of rx can be no better than the percentage accuracy of knowledge of r_ and of the ratio

rA/re.

Example 1.4d. The value r of a resistor is measured by determining the voltage drop e across
the resistor when a measured current i passes through it. Here, 7r0 = e/i. The percentage accuracy

of knowledge of r can be no better than the percentage accuracy of knowledge of the ratio of voltage

drop to current.

Example 1.4e. The period T of oscillation of a pendulum of length L swinging in a plane with

moderate amplitude to a maximum angle a under a gravitational acceleration g is such that

(1.4-2) To: (L/g)l/2[l + (1/4)sin 2 (od2) 1

Here, _ro = (L/g) 1/2. The remainder of the expression is a small correction factor whose application

is usually warranted, although the uncertainty in this factor usually contributes negligibly to the

inaccuracy of measuring T.

Example 1.4f. The power loss P from a section AX of a substantially infinite wire of diameter

d when it is transverse to a gas stream of velocity v, density p, thermal capacity c, and thermal

conductivity k is given by

P e_k* AX* 40 I1 + (27rvocd/k)'/21(1.4-3)

when it is heated so that a temperature difference A0 exists between wire and gas. Here,

_'0 = k • z_x • A0 and II 2 = vocd/k. (II 2 is the Peclet number.) At low velocities, H 2 contributes

moderately to the ratio P� (k • zax • A0), and the uncertainty in knowledge of II 2 contributes
negligibly to the ratio. 4

Example 1.4g. The mass flow rate m of the gas through a restriction of area A is determined by

measuring total temperature T,, static pressure Ps, and the difference Ap between total pressure p,

and static pressure. The applicable relationship is m oc C A b I2p,* Ap/(RT,)I v2 where C, the

dimensionless discharge coefficient, is principally a function of restriction shape (and secondarily

of the Reynolds number), R is the specific gas constant, and b is a dimensionless function (whose

magnitude differs less than 10 percent from unity) of the specific heat ratio of the gas and ofps/pr
Here

(1.4--4) ro = A [2p_* Ap/(RTt)),/2

and 1-I2 = C, 1"13= b. The inaccuracy of measuring rn is determined principally by the inaccuracy

of measuring a"0. A slight contribution to inaccuracy originates from the usual uncertainty in 1I 2,

and a negligible contribution originates from the usual uncertainty in II 3.

An Operational Note. The Pi-zero theorem may impose severe limitations on the ability to measure the
absolute value of a physical quantity. However, it does not inhibit the ability to measure the difference

or the ratio between the unknown quantity y and a reference quantity a"0 which, though not adequately

known in absolute magnitude, is known to be very stable. Thus, the null detectors used in Examples 1.4a

to 1.4c may be able to detect emf or resistance differences smaller than the uncertainty in knowledge of

the absolute value of a"0.

§1.4

41nthe thermal-conductivity-typegas analyzer, the conductivityk is deduced from accurate measurements of P and A0. The velocity
v must be nonzero in order that changes in gas content may be followed.
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Resistance-strain-gagebridges,asusedfor strain,load,or pressuremeasurement,routinelymeasure
fractionalresistancechangesAR/R so small that the uncertainty 6R in knowledge of the absolute value of

R may be 1000 times AR.

1.5. Dimensional analysis. If a physical situation is represented by an equation, and if each quantity

in the equation is replaced by its dimensional equivalent, the resulting dimensional equation must be satisfied.
(In the process of substituting dimensions, a pure numeric is replaced by unity.) In a strict mathematical

sense, this does not imply that each term of a sum must have the same dimensions. (Example: if F = ma

and A = 7rr2, then F + A = ma + 7rr2 and [F] + [A] = [ma] + [_'r2].) However, in all practical situations,

one does seek to sum forces, powers, energies, areas, voltages, etc. In such cases, a check on the dimensions

of each term may be the first step in confirming the correctness of the summation.

If the physical relation is not known, but the identities of the physical quantities involved are believed

to be known, it is sometimes possible to determine how the physical quantities should be multiplied together
in order to describe the physical situation. Suppose that there are n physical quantities Yl, Y2..... Yn that

are known to affect the phenomenon being studied, and that all n quantities can be represented by a total

ofk dimensions (k<5). To find one of the n-k products rl i that enter into Eq. (1.3-1), assign an unknown

exponent a, b .... to each of the respective Yi and seek a product yfy_.., such that, when each Yi is

replaced by its dimensional equivalent, the exponents of each dimension in the product will vanish, since
II, is dimensionless.

Similarly, if a quantity y_ is believed to depend on other quantities Y2, Y3.... one may be led to an

appropriate 7r0 by replacing each Yi with its dimensional equivalent [.vi] and finding the exponents a, b,
c .... that will satisfy the relation

(1.5-I) [Yll= [Y21a [Y3]b •- •

Then

.avb(1.5-2) ao=y2.3...

Operations of the type described in the two preceding paragraphs are termed dimensional analysis.
Dimensional analysis

(a) will not determine the functional relationship between the n-k products of Eqs. (1.3-1) or (1.4-1),

(b) will not establish the value of any numerics that should multiply the respective products or be added
to them, and

(c) will not assure that the products so determined have any real significance in the physical situation
being studied.

On the other hand, the results obtained by dimensional analysis may provide a guide to the conduct of

experiments to verify that the products do have physical significance, thereby to establish numerical constants,

and to establish the functional relationships among the various products. (If no product can be formed, the

indication is that some physical variable has been overlooked.) Consequently, dimensional analysis is a

tool whose effectiveness in solving any problem is determined a priori by the quality of physical intuition

available and a posteriori by the amount of experimental evidence that is available.

Example l.Sa. The impact force F on a plate normal to an airstream is believed to be dependent

on the plate area A, the air density ,o, and the air velocity v. Using the M,L,T system of dimensions,
we have n = 4 and k = 3. The product b_Al'pCv a is converted into the dimensional form

(MLT-2)a(LZ)t' (ML-3)C(LT- l)a. Setting the exponents of M, L, and T equal to zero leads to the

three simultaneous equations a + c = 0, a + 2b-3c+ d = 0, -2a- d = 0. Arbitrarily setting a = 1
yields b = -1, c = -1, d = -2. Hence, f(laAv2/F) = 0, or F = pAv2x (a numeric).

Example 1.5b. The period Tof a pendulum is believed to be dependent on its length I, the mass
m at its free end, and the acceleration of gravity g. Using the M,L,T system of dimensions, we

have n =4, k = 3. The product Talbm_g d is converted into the dimensional form



(T)_(L)b(M)C(LT-2)d. Setting the exponents of M, L, and T equal to zero leads to the three

simultaneous equations a- 2d = 0, b + d = 0, c = 0. Arbitrarily setting a = 2 yields b = - 1 and

d = 1. Hence, f(T2g/L) = 0 or T 2 = (l/g) × (a numeric).

Example 1.5c. The resonant frequency fof an electrical circuit is believed to be dependent on

the lumped values of inductance L, capacitance C, and resistance R of the circuit. All four of these

quantities may be represented in terms of two dimensions: R and T. Thus, n = 4 and k = 2, so
that two dimensionless products are to be sought. Converting ffLbC'R d into its equivalent

dimensional form yields fewer equations than unknowns. However, assuming the expression ffLbC '-

readily yields the dimensionless quantity f2LC, and assuming the expression LaCbR c readily yields

the dimensionless quantity R2C/L. Thus,

F(f2LC, R2C/L) = 0

These two groupings offer several advantages: First, sincefappears in only one of them, an explicit
expression forfwill be possible; second, since R appears in only one of them, the expression containing

R will exclusively represent the effect of energy dissipation. Thus, one may write

f= (LC)-in 4_(R2C/L)

where the function ¢ is a numerical multiplier of (LC) -1/2, which is also the _'0 of Sec. 1.4.

Example 1.5d. The power loss P from an electrically heated length Ax of a very thin, very long
wire of diameter d, when it is transverse to a gas stream of velocity v, density p, specific heat c,

thermal conductivity k, and viscosity rl, and where a temperature difference A0 exists between wire

and gas, is to be examined for a likely functional relationship. In the dimensional system H,L,T,O,

one finds n = 9 and k = 4, so that up to five dimensionless products are possible. It is reasonable

to expect P to be proportional to ,kx and to A0. Since [P/(_x • A0] = HL-IT-IO -l, which is also

[k], we choose P/(k • _ • AO) as Hi. (It is termed the Nusselt number, NNu.) If P, zax, and A0

are eliminated as being unlikely to appear elsewhere, n becomes 6, so that two more dimensionless

products are to be sought. We choose the Reynolds number Nae = dvp/_ as one of these because

it is known to enter commonly into heat transfer phenomena in a flowing gas. For the other product,
we solve

LoacbkCrla] = (ML -3)a(HM - lO -I)b(HL -1T -10 -I) C(ML -IT -l)d = 1

which results in a = 0, b = - 1, c = 1, and d = - 1, so that c_/k is 1-13.(It is termed the Prandtl

number, Net). Hence,

(k 7)0(1.5-3) f •Ax•A0' 17 '

The first product represents the effect of the input electric power, the second represents the effect

of gas stream motion, and the third represents the effect of intrinsic gas properties. Equation (1.5-3),
when rewritten in the form

(1.5-4) P = k• z_tx• AO F(NR,, Net)

may be compared with Eq. (1.4-3) by noting that the Peclet number is Nt,, = NR,.Ner (Footnote 5).

§1.5

5This example is the basis of hot-wire anemometry. In its usual applications, the principal instrumental measurement is that of
the ratio P� (_tx• AO);any deviation of k from its nominal value istreated as a systematic correction. The principal independentvariable
is the Reynolds number; the Prandtl number may usually be assumed to remain constant.
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1.6.Empirical coefficients. The unknown numerics that appear in the equations derived by dimensional

analysis can sometimes be determined by further theoretical analysis; at other times, recourse must be had

to purely empirical determinations; and at still other times, the value predicted by theory must be multiplied

by an empirically determined coefficient as the result of experiment. Much of the work in the "calibration"
of instruments consists of the determination of such empirical coefficients, often termed "calibration factors".

A complete calibration includes the determination of the value of the calibration factor over the full range

of IIi values that will be encountered during the use of the instrument.

Example 1.6a. In Example 1.5a, Bernoulli's principle will indicate that the numeric should be

1/2, but experiment will show that this numeric must be multiplied by an empirical coefficient Co

(the drag coefficient) that is principally a function of the Reynolds number NRe and of the shape

of the frontal surface of the plate.

Example 1.6b. In Example 1.5b, theoretical analysis can usually provide the numerics that will
correct for the fact that any real pendulum is a compound one rather than a simple one. However,

empirical determination is required of the correction for the ambient atmosphere, which contributes
entrained mass and viscous damping. The Stokes number Nsa may be the appropriate independent

variable. A similar empirical correction also applies to tuning forks and to piezoelectric crystals

vibrating in the air.

Example 1.6c. In Example 1.5d, experience shows that the form of F(NRe, Nt,,) is
F = a + bN_eNdr and that only empirical determination of the four constants a,b,c,d in the actual

operating range of NRe and Net can yield the value of F to an acceptable degree of accuracy.

NOTES FOR CHAPTER 1

N1.0 Occasionally, the widely accepted name may not be semantically correct. For example, molecular
weight means relative molar mass or "multiple of unit atomic mass". (Since 1960, by international agreement

among chemists and physicists, unit atomic mass has been 1/12 of the mass of one atom of carbon 12.)

NI.1 For example,
(a) the acceleration of a given mass is proportional to the force acting upon it (Newton's law);

0a) the flux emanating from a point source (of electric charge, magnetic charge, or radiation) is proportional

to the strength of the source (Gauss's law);

(c) the magnetomotive force generated by a current passing through a coil is proportional to the magnitude
of the current and to the number of turns in the coil (solenoidal law);

(d) the force on a current-carrying conductor in a magnetic field is proportional to the magnitude of the

current and to the density of the magnetic field (a consequence of Ampere's law);

(e) the energy required to raise the temperature of a given mass of a passive solid is proportional to the

specific heat capacity of the material and to the magnitude of the temperature change.
(f) the force between two electric charges is inversely proportional to the square of the distance between

them (Coulomb's law).



CHAPTER 2. UNITS

2.0 Terminology. In this text, "In" will represent the Napierian (natural) logarithm, and "log" will
represent the common logarithm.

In this chapter, the following symbols will be used to represent the numerics (nondimensional numbers)

indicated: [Note N2.0]

Ca = 0.980665

Cm = 0.45359237

Co = 2.99792458× 10 I°

Cp = 1.01325

The use of these and of the numeric 0.3048 (= 12 × 0.0254) will permit statement of the exact ratios

between units of the same physical quantity.

2.1 Coherent systems of units. As indicated in Chapter 1, the relations among physical quantities are

usually described by proportionalities. Quantitative measurement of these quantities requires that these

proportionalities be converted into equations. This conversion requires statements of the units in which each

physical quantity must be measured in order to make the equation valid. Modern publications usually make

these statements explicitly. However, earlier publications sometimes tacitly assumed the reader's knowledge

of the system of units used by the author. In order to allow full understanding of such publications, which

are still authoritative and often unique, a brief review will be given of those systems of units that have
had wide acceptance. More complete treatments exist (Refs. 2-1 to 2-3).

The systems of units were constructed by

(a) arbitrarily selecting a unit value for five fundamental physical quantities (four of these have invariably
been mass, length, time, and temperature), and

(b) deciding on the form of the equations to be used to define all the remaining quantities in terms of

the fundamental ones. This second step is tantamount to selecting the constants of proportionality that will

convert relations like (1.1-1) into equations. In fact, the use of the defining equations in Tables 1-1 to 1-5

and the selection of the constant _ that appears in Table 1-3 fulfill the requirements of this step. A system
of units constructed in this manner has been termed "a coherent system of units."

Sections 2.2 to 2.7 provide brief descriptions of the systems of units in common use since the creation
of the International Committee on Weights and Measures (CIPM) in 1889. Table 2-11 lists, for each of

several physical quantities, magnitudes in these systems of units that are equal to each other. Table 2-21

lists some relationships among the units that are useful in converting from one system to another and in

the preparation and use of equations describing physical phenomena.

IFor ease of later reference, Tables 2-1 through 2-3 appear at the end of this text on pages 215 to 219.
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2.2 Traditional systems of mechanical units. Historically, the fundamental mechanical units developed

and used in the late nineteenth century on the European mainland were the centimeter (cm), gram (g), and

second (s). The system of units based on these was termed the cgs system. The units of force and energy

were the dyne and the erg, respectively.
In English-speaking countries, two systems became common. In one, the fundamental units for length,

mass, and time were the foot (fl), pound (lbm), and second (s); the system of units was termed the fps

system, and the unit of force was the poundal (pdl). In the other system, the fundamental units for length,
mass, and time were the foot, slug, and second; the system of units was termed the fps gravitational system

(fpsg system), and the unit of force was the pound force (lbf). Newton's law in the two English systems was

(2.2-1) 1 pdl = 1 Ibm × 1 ft/s 2

(2.2-2) 1 lbf = 1 slug x 1 ft/S 2

The relation among units for the same physical quantity is

(2.2-3)
1 pdl_ 1 Ibm

1 Ibf 1 slug
- 0.03048/% -= 1/32.17405

In emulation of the dual use of the word "pound," a unit of force termed the gram force (gf) also became

common; thereupon, the unit of mass became the gram mass (gm). The relations among the units of mass
and force are

(2.2-4) 1 Ibf = gn x 1 Ibm

(2.2-5) 1 gf= g, x 1 gm

where g_ is the standard acceleration of gravity (980.665 crrds 2 and = 32.17405 ft/s2). In publications where

the unit of force is the pound force (or gram force) and the unit of mass is the pound mass (or gram mass),

the factor gn appears explicit), in some equations, often with just the symbol g.

2.3 Traditional systems of thermal units. The Celsius or centigrade degree (*C) has been associated with

the cgs system of mechanical units. Absolute temperature is then measured in kelvin (K) and energy in

gram-calories (cal or gcal).
[In 1967, the CGPM elected to replace "degree kelvin" with "kelvin" (K)].

The Fahrenheit degree (*F) has been associated with the fps and fpsg systems. Absolute temperature is

then measured in degrees Rankine (°R) and energy in British thermal units (Btu).

The relations among quantities in each system are

(2.3-1) K = *C + O0

(2.3-2) *R = *F + O 0- 32

O0 = temperature (in K or *R) of the triple point of H20

(2.3-3) 1 gcal= energy to raise 1 gm of H20 from 15 to 16 *C

(2.3-4) 1 Btu = energy to raise 1 Ibm of H20 from 39 to 40 °F

2.4 Traditional systems of electric and magnetic units. In the field of electrostatics, the fifth fundamental

unit has often been taken as the permittivity of a vacuum; the other four units are those of the cgs sys:em.

10



The complete system is termed the cgs electrostatic system of units (esu system). Names of electrical quantities

often bear the prefix "stat" (e.g., statampere, statfarad, stathenry, statvolt).

In this system, e0 = 1 statfarad/cm, and #0 = (l/ca) stathenry/cm.

In the field of magnetics, the fifth fundamental unit has often been taken as the permeability of a vacuum;

the other four units are those of the cgs system. The complete system is termed the cgs electromagnetic
system of units (emu system). Names of quantities often bear the prefix "ab" (e.g., abampere, abfarad,

abhenry, abvolt). In this system, _t0 = 1 abhenry/cm and e0 = (1/Co2) abfarad/cm.

Some writers, like Gauss, have used e0 = 1 statfarad/cm when dealing with electrostatic phenomena and

#0 = 1 abhenry/cm when dealing with magnetic phenomena. Consequently, some physical quantities are

measured in esu, others in emu. The system is called the cgs Gaussian system.

2.5 Rationalization. The esu, emu, and Gaussian systems all use /$ = 4_" in the equations listed in Table

1-3. This factor enters principally because the surface of a sphere subtends 4rr steradians at the sphere's

center. Some writers, like Heaviside and Lorentz, have set/$ equal to unity, thereby altering the relative

magnitudes of some electrical and magnetic units, but reducing the frequency of occurrence of the numeric
4_r. The use of fl = 1 was termed "rationalization"; thereby, systems using fl = 47r were termed

"unrationalized". Heaviside and Lorentz also used the definitions of E0 and #0 that Gauss had used; the

resultant system of units is termed the cgs Heaviside-Lorentz (HL) system.

2.6 Later systems of units. The "absolute" system of electric and magnetic units (which includes the

ohm, ampere, volt, coulomb, farad, henry, watt, and joule) consists of simple decimal multiples of the

emu that are of practically useful magnitudes. For about half a century prior to 1948, a set of"International"
electric and magnetic units was in almost universal use. These differed very slightly from the absolute units

because they were based on practically realizable international standards of the ohm and the ampere; units

of other electric and magnetic quantities were defined in terms of these two standards. After 1948,

improvements in technology made possible the practical realization of other absolute-system standards, and

the older set of International units became obsolete. [Note N2.6]

In 1901, Giorgi pointed out that a simplification in the formulas for electromechanical phenomena could

be achieved by a redefinition of the unit of permeability. The resultant unrationalized meter-kilogram-second

system (mks system) uses the meter and kilogram as fundamental units, rather than the centimeter and gram,
and takes _ = 10 -7 henry/meter as a fifth fundamental quantity. The system is, in effect, an mks

electromagnetic system of units. Names of electric and magnetic units are those of the absolute system.
The units of force and energy are the newton and joule, respectively.

The rationalized meter-kilogram-second system (MKS system) is like the mks system except that, since
/$ = 1 instead of 47r in the formulas of Table 1-3, the value of #.o is taken as 4_" x 10-7 henry/meter.

Units of force and energy remain the newton and joule, respectively.

2.7 The S! units. Gradual acceptance of Giorgi's ideas has led to the adoption of the Syst_me International

(S/)--a rationalized system (Ref. 2-4). It is not to be confused with the "International" system discussed

in Sec. 2.6. The current fundamental units are the meter, kilogram, second, kelvin, and ampere (rather

than/.to, as in the MKS system). Additional basic units that have been defined are the mole as the unit of

quantity and a psychophysical unit of luminous intensity, the candela. These are defined in Table 2-1.

Table 2-1 lists some common physical quantities, the names of the SI units in which they are measured,
the abbreviations for these units, and the quantitative equals of these units in other systems of units.
Reference 2-5 describes these units and other less common ones.

Table 2-3 lists the prefix symbols that designate multiples of a unit. (Mass is described as a multiple

of a gram, not of a kilogram.) There is international agreement on the names of the units and on the symbols

for the units, but, as indicated in Sec. 1.1, symbols for the physical quantity itself must be defined in each text.
Some dimensional constants are listed in Ref. 2-6.

2.8 Dimensionless units. Some physical variables are measured in units that are themselves dimensionless,

usually because they represent the ratios between two quantities that have the same dimensions and that

§2.4-2.8
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arebothmeasuredinthesameunits.Alternatively,theunitsmayrepresent some transcendental function

of such a ratio. In particular, the logarithm of the ratio may be used if the range of values that the physical

quantity may acquire in any single application is very large.

Example 2.8a. Plane angle represents the ratio of the length of a circular arc to its radius.

Example 2.8b. Solid angle represents the ratio of the area of a portion of a sphere's surface to

the square of the sphere's radius.

Exam/de 2.8c. Electric phase angle may represent the angle whose tangent is the ratio of the reactive

component of a current to the resistive component of that current.

Example 2.8d. Phase angle between two time-varying sinusoidal signals of the same period may

represent the ratio of the time displacement between the two signals (at some given ordinate, usually
the mean value) to the period.

Example 2.8e. The bel (B) is used in the measurement of power P, but the most common unit

is the decibel (dB). If M is the number of bels and m is the number of decibels,

(2.8-1a) 0.1m = M = log(P/Po)

where P0 is some other value of power. Thus, m and M are measures of the ratio between two
quantities having the dimensions of power.

If dimensional considerations show that P is proportional to the square of the amplitude of some

other physical variable X (like voltage, current, displacement, or pressure), then

(2.8-1b) m = 20 log(X/X0)

where X0 is some other value of X. Note that m remains a measure of power ratio.

Exam/de 2,8f. The neper (Np) is also considered to be a measure of the ratio between two quantities

that each have the dimensions of power P. It actually is a measure of the square root of the power

ratio. If ms is the number of nepers,

(2.8-2a) ms = (1/2) ln(P/Po).

In parallel with Eq. (2.8-1b), one may write

(2.8-2b) mN = in(X/X0)

if P is proportional to X 2. From E,qs. (2.8-1a) and (2.8-2a),

(2.8-3) 20 ms = m In 10

Example 2.8g. If, in Eq. (2.8-1), the quantity P0 (or Xo) is assigned a fixed, standardized value

termed a "reference value," the quantity P (or X) may be described as "m decibels re P0 (or Xo)"

or as being "m decibels above or below P0 (or Xo)", depending on whether P > P0 or P < P0,

respectively. The quantity m, then, is often said to be the "level" of whatever physical variable

is being measured.

In acoustics, where the term "bel" originated, common choices are P0 = 1 picowatt when P

is sound power level, and Xo = 200 picobar when X is sound pressure level. In the field of

electrical transmission, P0 = 1 milliwatt is sometimes used.

12
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Example 2.8h. In psychoacoustics, loudness level, mp, is measured in phons. The loudness level

of a sound, in phons, is numerically equal to the value ofm in Eq. (2.8-1b) when X0 = 200 picobar,
and X is the acoustic pressure of a 1 kHz tone that is judged equally loud by a standard auditor.

Empirical curves exist that indicate the relation among mp, X, and either the frequency f of pure
tones or, alternatively, the center frequencyfof relatively narrow bands of white noise (commonly,

the bandwidth is one third or one ninth of the center frequency). (Ref. 2-7)

Loudness, L, of a complex sound is measured in sones. If m s is the loudness of a sound in sones,
then

(2.8-4) 16 ms = (p/po) I°g 4

where P0 is 200 picobar and p is the acoustic pressure of a 1 kHz tone that is judged equally loud

by a standard auditor. The perceived loudness is approximately proportional to the 0.6 power of
the acoustic pressure.

Note that when rap = 40 phon, we have ms = 1 sone. In general,

(2.8-5) log ms = (0.1 mp - 4)log 2.

Example 2.8i. The noise figure, N, of an electronic device has been represented by

(2.8-6) N (in dB) = 10 log F

where F is the ratio between the actual noise power at the output of the device and the noise power
that would have appeared at the output if the device itself had contributed no noise. (But see, also,
Sec. 5-19.)

Example 2.8j. In audio communication, the volume unit, vu, of a complex audio waveform
is defined as the numerical value ofm in Eq. (2.8-1a) when P is the power developed in a 600-ohm

resistance. Practical VU meters are ac voltmeters that measure the voltage across a 600-ohm load.

The scales of such VU meters that conform to nationally accepted 1984 standards are marked to
correspond to P0 = 2.5 mW in 600 ohms.

Example 2.8k. In electrochemistry, pH is defined as

(2.8-7a) pH = - log art+

(2.8-7b) all+ _ ct¢+

where art+ is hydrogen ion activity and ct.r- is hydrogen ion concentration. When pH is determined
by measuring the emf e generated in an electrochemical cell,

(2.8-7c) pH = 5040(e - eo)T -1 kelvin per volt

where e and e0 are in volts, e0 is an instrumental constant that may be dependent on T, and T is
the temperature of the cell, in kelvin.

Example 2.8l. The bolometric magnitude, mq, of a stellar object is given by

(2.8-8) mq --- -2.5 log (Eq/Eqo)

where Eqo = 2.5 x 10 -s W/m 2 and Eq is the irradiance, in W/m 2, as
bolometer.

measured by a

13
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Theabsolute magnitude, Mq, of a stellar object is defined as

(2.8-9) Mq --- rttq -5 log (l/lo)

where 1o = 10 parsec and I is the object's distance from the Earth, in parsec.

The visual magnitude, m,. of a stellar object is given by

(2.8-10) m, = -2.5 log (E,/E,o)

where E,o = 2.6 x 10 -0 lux and E, is the illuminance, in lux, as measured by a standard

observer.

2.9 Dimensionless numbers. The dimensionless products that are commonly called "dimensionless

numbers" were described in Sec. 1.3 and illustrated in Table 1-6. In algebraic form, they suffice for the

purpose of dimensional analysis, as described in Sec. 1.5. However. before such a dimensional number

can be used quantitatively in a numerical computation, its numerical value must be determined in such manner

as to be independent of the particular unit in which each component physical quantity is measured; only

then can diverse workers agree on a common "correct" value in any particular situation. The procedure

for establishing the correct value of a dimensionless number with the fewest conversions is as follows:
Step 1. Each symbol representing a physical quantity is replaced by both the magnitude and the

name of the unit in which that quantity has been measured.
Step 2. When the dimensionless product is formed, names of units are cancelled or otherwise

treated as though they were algebraic quantities.

Step 3. If some names of units remain in the final product, they are caused to be cancelled by

multiplying the product by unity, where unity is the ratio between appropriately selected equal amounts

of the same physical quantity, chosen from Table 2-1 or Table 2-2.

Example 2.9a. Given N_,r = c_lk, to find Nt,, for air when

c = 0.25 Btu*lbm-J**F -_, 7/= 1.7 x 10-4P (P E poise), k = 0.014 Btu*ft-I*hr-I*OF-J:

Btu fi*hr**F
Step I. Nt, r = 0.25 -- x 1.7 x 10-4p ×

Ibm'*F 0.014 Btu

0.25 x 1.7 x 10 -4 P.ft'hr
Step 2. Nm = x --

0.014 Ibm

1 gm 1 Ibm 30.48 cm 3600 s
Step 3. Multiply by x x -- x •

1P*cm*s 454 gm ft hr

then Ner = 0.73.

Example 2.9b. Given NRe = vd/v, to find NR,, when v = 0.09 cm-'/s, v = 400 fi/s, d = 0.03 in:

sStep 1. NR,, = 4 x 0.03 in x --
s 0.09 cm 2

400 × 0.03 fi*in
>(-

Step 2. NRe 0.09 cm 2

14



12 in (2.54)2 cm 2
-- x

Step 3. Multiply by ft in 2

then, NRe = 1.03 × 104

§2.9-2.10

Example 2.9c. Given NE, = p/(pv2), to find NE, when p = 1 bar, p = 1 g/cm 3. v = 3 m/s: The

combination of steps leads to

cm 3 s 2 105 N 1 kgem 103 g 10 -6 m 3 100
NEu = 1 bar x -- x x -- x -- x -- x -

1 g --_ barom 2 Nes 2 kg cm 39 9

2.10 Coherent equations. The relation among physical quantities is usually written as an equation

representing the relation among algebraic symbols representing those quantities. Such an equation, rather

than a proportionality, is necessary in order to establish the quantitative relation among those quantities.

Such an equation is quantitatively correct if each algebraic symbol is replaced by its value in the same coherent
system of units.

However, the equation remains correct, regardless of the unit in which any quantity is measured, if the

following procedure is used: (1) Each algebraic symbol is replaced by both the magnitude and the name

of the unit in which that quantity has been measured; (2) names of units are cancelled or otherwise treated

as though they were algebraic quantities; (3) if the names of the units remaining are not to one's liking,

the result is multiplied by unity as often as necessary, where unity is the ratio of appropriately selected

equal amounts of the same physical quantity, like those listed in Tables 2-1 and 2-2.

The practice of replacing an algebraic symbol by both the magnitude and the name of the unit of

measurement is a convenient expedient in those disciplines which have traditionally mixed units from several

coherent systems. It also obviates the need for converting each unit of measurement into the unit of a single
coherent system and usually reduces the number of arithmetic operations required. It is also convenient

in using equations that involve a dimensional factor of proportionality, like those resulting from relation
(1.1-3).

Example 2.10a. Use of coherent units. To find the force between two l-coulomb charges one

meter apart in vacuo:

Solution 1: In SI units (a rationalized system), F = Q2/(4_._o/2), where _0 = 1011/(4rc_), Q = 1,
l = 1. Then F = c 2 x 10-ii newton.

Solution 2: In mks units (an unrationalized system), F = Q2/(_ol2), where _0 = 1011/c2, Q = 1,
l = 1. Then F = c 2 x 10 -II newton.

Solution 3: In cgs electrostatic units (an unrationalized system), F = Q2/(_0/2), where _o = 1.

Conversions: Q = 1 C x (Co/10) statcoutomb/C = (Co/10) esu of Q
l= 1 mx 100cm/m= 100esuofl

Then

F- c_/100
1 x 104 dyne = c g x 10 -6 dyne.

Solution 4: In cgs electromagnetic units (an unrationalized

_o= (I/c_).
Conversions:Q = I C x (0.I abcoulomb/C) = O.1 emu of Q

I= I mx lOOcm/m= lOOemuofl

system), F = Q2/(eol2) where
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Then

--

(0.1) 2

(1/c2) × 104 dyne = c 2 x 10 -6 dyne.

Example 2.10b. Use of mixed units. Given F = ma, m = 3 lb, a = 2 ft/s 2, to express F in
newtons:

( 2__ / c m kg 0.3048 m 1Nos 2
F= 31bx x--x x

lb ft 1 kgem
= 6 x 0.3048 x Cm newton

Example 2.10c. Use of mixed units. Given F = ma, m = 3 Ibm, a = 2 ft/s 2, to express Fin lbf:

( 2__) l lbf 6
F = 3 Ibm x x _ =

gn Ibm 32.2
lbf, since gn = 32.1740 ft/s 2

Examples 2.9a, b, and c further illustrate the use of mixed units.

2.11 Numerical equations. The use of coherent equations of the type described in Sec. 2.10 is necessary

in the mathematical analysis of physical situations. Their character has been taken for granted in most texts.

However, where routine repetitive calculations are to be made, it is often more convenient to write an equation

which is correct only when each quantity is measured in specified units. Quite often, in such cases, there

is also the tacit assumption that other quantities remain invariant; the symbols for these other quantities
usually do not even appear in the equation.

Example 2.11a. Equation (2.8-9) is often written as

(2.11-1 a) Mq ---- mq -- 5 Io8 1 + 5

where l must be in parsecs, or as

(2.11-1b) Mq=mq+5 Io8p+5

where p must be the heliocentric parallax in seconds of arc.

Example 2.1lb. If v = speed of sound in air, a commonly used expression is

(2.11-2) v = 49.0 _/T

where air temperature T must be in °R, v must be in ft/s, and the assumptions have been made
that specific-heat ratio 3' is 1.4 and that relative molar mass is 28.96.

Example 2.11c. The saturated vapor pressure of many chemical compounds has been written as

(2. I l-3a) log p = B - 0.05223 A/T

wherep must be in ton', absolute temperature Tmust be in kelvin, and A and B are tabulated constants

for each compound.
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Thecorrespondingcoherentequationis

(2.11-3b) P/PB = exp [-AW/(RoT)]

where PB is a constant for each compound, AW is the compound's molar heat of evaporation, and

R0 is the universal gas constant. Thus,

(2.11-3c) A = (zaW/R0)ln 10; B = log PB.

Equation (2.1 l-3b) is valid for any units of pressure and molar heat, provided the procedure of
Sec. 2.10 is followed.

Example 2.11d. The volumetric rate of flow 12of a gas through a very thin orifice of area A,

caused by a difference ,ap, under molecular-flow conditions (Nxn > > 1, where Nrn = mean free

path/orifice diameter), can be written as

(2.11-4a) f'= 3.64A(Ap/p) x/(T/mw)

where I)"must be in liter/s, A in cm 2, and T in kelvin; rnw is the relative molar mass, and p is the

upstream pressure in the same units as Ap.
The corresponding coherent equation is

(2.11--4b) 17= A(Ap/p) x/[RoT/(2_rmw) ]

where R0 is the universal gas constant.

Example 2.11e. If y is the deflection of the end of a spring under the weight of a mass attached

to the end, if the spring itself is of negligible mass, and iff is the natural frequency of the mass-

spring combination, a useful rule of thumb is

(2.1 i-5a) f2y .,_ 10

iff is in hertz and y is in inches. This equation also applies to a simple pendulum of length y.
The coherent equation that leads to Eq. (2.1 l-5a) is

(2.11-5b) f2y = g/(4r2)

where g is the local acceleration of gravity.

This subject is treated more completely in Sec. 8.4.

2.12 Conversion of numerical equations. A numerical equation that is correct only in one set of units

can be converted to a numerical equation that is correct only in another set of units by the following procedure:

1. Replace each symbol xi by xi/u i, where ui is the name of the unit specified for the

original equation.

2. Multiply each " xi/ui by unity

1 = Aiui/(Bivi)

where v i is the name of the new unit of xi, and A i and B i are numerics obtained from Table 2-1.

3. After appropriate combinations of the numerics, the resultant equation will be correct for the
new units.
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Example: Given Eq. (2.11-2), to express T in kelvin (K) and v in km/hr:

Since step 1 leads to

v(s/fi) = 49.0 (T/*R)i/2,

we have

s 1 hr 1000 ft (T el.8 *R'_ I/2v -e--e = 49.0
ft 3600s 0.3048 km \'_ ---K--]

so that

Hence

if v is in km/hr and T is in kelvin.

v hr/km = 72.1 x/(T/K).

v = 72.1 x/T

N2.0

NOTES FOR CHAPTER 2

c. is the numerical value of the standard acceleration of gravity when it is expressed in
dekameters per (second) 2.

Cm is the number of kilograms (mass) in one pound (mass).

co is the numerical value of the speed of light in vacuo when the speed is expressed in
centimeters per second.

cp is the number of bars in one standard atmosphere.
By international agreement, these numerics are exact.

N2.6. The differences between the International and the absolute units did not exceed 0.05 percent.
For example,

1 International ohm = 1.00049 absolute ohm

l International ampere = 0.99985 absolute ampere
1 International volt = 1.00034 absolute volt

For a few years after 1947, manufacturers of new precision instruments marked them explicitly to indicate
that they were in conformity with the absolute system.

A systematic correction may be required to the marked values of precision resistors or other precision
components manufactured before 1948 (hence, marked in the earlier International units) if they are to be

used or compared with components manufactured after 1947, that are marked in absolute units, and if
discrepancies on the order of 0.01 to 0.05 percent are significant.
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CHAPTER 3. THE ACCURACY OF MEASUREMENTS

3.0 Introduction. Symbols. Among the many considerations that influence the choice of a measurement

device or technique, one that can be described in precise mathematical language is the accuracy of

measurement. Some other considerations that may be more important, yet less precisely definable, will

be treated at the end of this chapter, when their relative weight may be better appreciated.

In making a measurement of a complex physical quantity by use of a number of instruments and operational

steps, it is generally possible to state what inaccuracy was contributed by each instrument and by each

operational step, and how each of these inaccuracies contributed to the inaccuracy of the final result. If

this last value is lower than that required of the final result, the question arises whether appreciable reduction

in time and in complexity of operations, and a concomitant increase in reliability, could have been achieved
by using less accurate instruments and techniques; if the final inaccuracy is higher than that required of

the final result, the problem is to determine at what points it is most feasible to improve accuracy in order

to attain the goal of the measurement.

The ultimate accuracy of the final result is determined not so much by the accuracies of the instruments

used as by the manner in which they are installed, the conditions under which they are used, and the properties

or behavior of the physical variables that one is trying to measure. Each of these items is one of the independent

variables upon which the final result depends. The understanding of the way these variables may behave,

and of how they may contribute to the accuracy of the final measurement, is the principal goal of this chapter.

The symbols that are used frequently in this chapter are listed here. Infrequently used symbols will be

defined as they are introduced.

e error
E fractional error

LE limit of error

n number of measurements

rms root mean square
v residual

w weight

x independent variable

y dependent variable
Ay systematic correction

_Sy random error

Subscripts:

a arithmetic

in indicated

p probable
tr true

o root mean square
0 mean

Second subscripts:

0 of the mean

1 of a single observation

Section 3.19 contains some combination symbols that are used frequently in this text.
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3. I True and indicated values. In most experiments involving measurement of a physical quantity y,

one is interested in the relation between the true value Ytr of the quantity and the measured or indicated
value Yin.

Examples are

(a) The voltage Err of a power supply whose output is indicated to be Ein

(b) The resistance Rtr of a resistor whose marked value is Rin

In some applications, the distinction between Ytr and Yin may be considered negligible. Examples are

(c) In kinematic calculations, the effects of latitude and longitude on the acceleration due to gravity

are often considered negligible, and, for convenience, the standard acceleration g_ (Table 2-1)
is assumed to exist at sea level

(d) For convenience in making the buoyancy correction in weighing, air is often assumed to be at

"standard temperature and pressure" (STP), namely, 0 *C and 1 standard atmosphere

(e) For convenience in optical system design, the speed of light in air is often assumed to be co cm/s
(Sec. 2.0)

(f) For convenience in electromagnetic calculations, the permeability and permittivity of air are often
taken as _, and ¢o, respectively (Table 2-1)

In other applications, the distinction between Ytr and Yin may be one of the principal objects or concerns
of the experiment. Examples are

(g) Determining the static temperature of a flowing gas from a thermometer immersed in the gas
(h) Radiation pyrometry of a warm or incandescent object that is not a black body.

3.2 Sources of measurement error. Some sources of measurement error are of the following types:
A. Variation in the physical quantity being measured

B. Disturbance of the physical variable by the presence of the measuring instrument
C. Errors introduced by the mode of installation of the instrument
D. Deficiencies of the instrument itself

E. Errors contributed by a human observer

Practical experience has shown that, in many applications, the above listing also is a listing in order of

decreasing importance. Source A is often overlooked or neglected because it is not apparent or because
it is difficult to establish quantitatively, especially if repetitive observations cannot be made. Sources B

and C represent interactions between the instrument and the phenomenon being studied. Source D usually

receives the greatest attention because a wealth of sophisticated laboratory equipment and techniques exists
for its study; but this same technological competence also makes it possible for source D to contribute only

slightly to the overall inaccuracy of the measurement. Source E is usually significant only when one approaches
the limits of human perception in the measurement operation.

Examples of operations affected by type A sources are
(a) Measuring the radiance of the Sun, or the radiance or albedo of the Earth

Co) Measuring

(c) Measuring

(d) Measuring

(e) Measuring
(f) Measuring

(g) Measuring
(h) Measuring

(i) Measuring
(j) Measuring

the intensity of radio signals reflected from the ionosphere
weak radioactivity in the presence of cosmic or terrestrial radiation

magnetic properties of iron alloys of uncertain history
a weak electrical signal in the presence of electronic noise

electrical conductivity of a chemically impure electrolyte

strains in the structure of a bridge carrying traffic
sound pressure levels in an outdoor environment

the drag of an airplane in turbulent air

fluid flow rate at the exit of a pump, turbine, or river
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(k) Deducingbulkvelocityof afluidinapipefromalinear-velocitymeasurementalonga single
path,whenthevelocitydistributionacrossthepipeisnotknown

(1) Measuringbulkdensityorbulkvelocityofafluidwhenthereistwo-phaseflowornonisothermal
flowbecauseof thepresenceof localsourcesorsinksof heat

(m)Measuringpressurein ahigh-vacuumchamberinwhichtherearegassourcesor sinks
(n) Measuringlocaldropletsizeinaspray,bylightscattering,whentherearemanydropletsin the

pathof observation
(o)Measuringlocaltemperatureorconcentrationofahotgasbyuseof laserbeams,whenaerosols,

particulates,or severegasdensitygradientsarein theopticalpath
(n) Radiationpyrometryof ahotgasinwhichthereischemicalactivityorchemiluminescence
(q) Radiationpyrometryof aturbinebladeorwheelthatreflectsradiationfromadjacentbladesor

otherhotenginecomponents.
(r) Determiningtherateofheattransferbetweenafluidstreamandanimmersedthermometerbulb,

in thepresenceof streamturbulence.
Examplesof typeB sourcesare

(a)A voltmeterdrawscurrentfromacircuit;anammeterproducesa voltagedropinacircuit.
(b)A straingageonthinsheetmetalchangesthelocalstiffness.
(c) A vibrationpickuponasmallor flexibleobjectchangesthemode,amplitude,or frequencyof

theobject'svibration.
(d) Anionizationgaugeonasmallhigh-vacuumchamberactsasapumporasasourcetochange

thepressurein thechamber.
(e)Ahead-type,vortex-type,or turbine-typefluidflowmeterproducesapressuredropandaflowrate

changein thepipecarryingthefluid.
(f) A pitot-staticprobeoratemperatureprobeorthesupportofeitheraffectsthefluidflowinapipe.
(g) A thermocoupleincontactwithasmallobjectchangestheobject'stemperaturebyconduction

of heatalongthethermocoupleleads.
Examplesof typeC sourcesare

(a)Contactresistancesaffectthetwo-terminalmeasurementof anelectricalresistance.
(b) Capacitanceofthecableconnectingapiezoelectricpressuretransducertoanelectrometeraffects

thechargemeasurement.
(c)Thermoelectric effects affect low-level dc emf measurements in a circuit with conductors of different

materials.

(d) Unclean windows affect radiation pyrometry or optical pyrometry of turbine blades or wheels
in a jet engine (so does vignetting).

(e) Dead time of a Geiger-Mueller tube limits the number of ionizing events that can be counted.
(f) Improperly located current meters produce incorrect averaging of river flow.

(g) Conduction of heat along the sheath affects the indication of a thermocouple probe measuring
the temperature of fluid in a pipe or tank.

(h) Heat loss by radiation and conduction affects the temperature acquired by a thermometer bulb
in a stream of hot gas.

(i) Proximity of the wall, or of adjacent probes, or of the support affects the indication of a static-
pressure probe in a duct or wind tunnel.

(j) The presence of a long connecting tube between pressure source and pressure pickup introduces
errors in dynamic pressure measurement.

Type D sources (the instruments themselves) produce errors that are usually negligible in comparison
with those of the other types. The indication of a sensor used to measure a physical quantity can usually

be obtained with very little error; but the relation between that indication and the physical quantity that
the sensor is intended to measure is affected by sources of types B and C.

§3.2
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Examplesof operations affected by type E sources are
(a) Matching of brightness by eye when using a disappearing-filament type of optical pyrometer or

a line-reversal type of pyrometer

(b) Matching luminous intensity in visual photometry or nephelometry
(c) Establishing coincidence of image positions when using an optical range finder

(d) Perception of indicating-accelerometer pointer position during a controlled acrobatic airplane
maneuver

(e) Matching or detecting sound amplitudes in audiometry.

3.3 Correction and error. The quantity that must be added algebraically to the observed indication Yin
in order to obtain the true value Ytr is termed the correction Ay. The quantity (-Ay) is termed the error.

(3.3-1) Correction = Ay = Ytr -- Yin

(3.3-2) Error = e = -Ay = Yin -- Ytr

3.4 Range and span. For many instruments, the following terms are used partially to define instrument
characteristics.

Range: A statement of the lower limit Ymin and the upper limit Ymax of y that the instrument can
measure

Span: The absolute value _Ymax- Yminl of the algebraic difference between the minimum and

maximum values of the range

Full scale: The value of Ymax- The term is of practical utility only when the lower limit of the range

is zero or when the limits of the range are ±ymx.

3.5 Methods of describing the accuracy of a single measurement. The relation between the true and

the indicated values of a quantity y may be described in several ways. Some of these are

(a) by stating the value of Ay

(b) by stating the fractional value Ay/yin (also called the relative value) or its equivalent percentage

value 100 Ay/yi,. When this choice of designation is made, the fractional error

(3.5-1) E = e/Yin

is used in place of Eq. (3.3-2) to describe the error.

(c) by using a combination of (a) and (b); for example,

(3.5-2) Correction = Ay + m % of y

(d) by stating the correction as a fraction of span

zXy/lym_ - Ymi, I

(e) by stating the correction as a fraction of full scale

Ay lYmI_

(f) by stating the ratio

Ytr/Yi, = 1 + (&Y/Yi,)

The appropriate choice among these ways is usually deemed to be the one which is likely to have the

same value over the entire range of the instrument. The nature of the instrument or of the measured quantity

usually determines this choice.
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3.6Methods of describing the accuracy of an instrument. The accuracy of an instrument often can be

described by providing a table or graph that gives the value of Ay, Ay/Yin , Ay/span, Ay/y_x, or Ytr/Yin

over the entire range of the instrument (unless one of these values happens to be constant over the entire

range). These values describing accuracy may have been obtained by instrument calibration or testing, or

may have been estimated by analysis of the design and construction of the instrument.

However, one may prefer to characterize the instrument's accuracy by using a single compact expression

that states the limit of inaccuracy that has been experienced in past use of the instrument or that can be

expected in future use. Such choice is common among instrument manufacturers in preparing a catalog
description.

The limit of inaccuracy is usually described in terms of the absolute value of Ay, Ay/Yin , Ay/span, or

Ay/yrmx. A common synonym for this (positive) quantity is "limit of error," and hence it will be designated

by the abbreviation "LE." The selection of the form to be taken by the expression for limit of error is

rarely arbitrary; just as indicated in Sec. 3.5, the form is determined by the nature of the physical variable

being measured and by the circumstances under which the instrument is being used. Some simple forms
are listed in the following section.

3.7 la'mit of error. Some commonly used forms for describing the limit of error are

(a) LE = v, where v has the dimensions ofy. This form is equivalent to [Ay[ < v and is often used

to describe the accuracy of a resistor, capacitor, burette, or weight.

(b) LE = Vpercent of reading, where Visa numeric. This form is equivalent to lAy�y] < (V/IO0) and
is often used to describe the accuracy of a power supply, spring, or clock.

(c) LE = V percent of span, where V is a numeric. This form is equivalent to

lay� (Ymax- Y_a)[ < (V/IO0) and is often used to describe the accuracy of a thermocouple-type

pyrometer, a multiple-range signal analyzer, or a sound-pressure meter.

(d) LE = V percent of full scale, where V is a numeric. This form is equivalent to

[AY/Ymax{ < ( V� 100) and is often used to describe the accuracy of an ammeter or of a pressure

gauge.

(e) LE = v + (V% of reading), where v has the dimensions ofy and Visa numeric. It is often written as

LE = v + V%

This form is equivalent to [Ay I < (v + yV/lO0) and is often used to describe the accuracy of a

resistance decade box (where v reflects the resistance of internal connecting wires and switch

contacts), a dc microvoltmeter or potentiometer (where v reflects the presence of thermal emf's),

a dynamometer (where v reflects the presence of friction), or an interval timer (where v represents
starting and stopping errors).

3.8 Nonlinear indications. The discussion of Secs. 3.4 through 3.7 has tacitly assumed that the instrument

indication y is the same as the variable that is being measured, or is proportional to it. If the relation between

the measured variable x and the indication y is nonlinear, the relation between Ax and Ay is obtained by

appropriately differentiating the expression y = y(x). The forms of representation of inaccuracy that were

presented in Secs. 3.5 to 3.7 may still be used, but will prove convenient only in certain cases:
(a) If y _ x', then, since

dy/y = nodx/x

the value of any percentage correction to y is n times the corresponding percentage correction to x.

For example, in the relation between kinetic pressure p, fluid velocity v, and density p

p _ pV 2, (Bernoulli's principle)

a 2-percent correction to a measured value of p implies a 1-percent correction to the deduced
value of v.

§3.6-3.8
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(b) If y _ log x as in Examples 2.8e, 2.8f, and 2.81, then, since

dy = dxlx

a correction in the form of Ay becomes a correction in the form of Ax/x.

For example, if LE of y = 0.03, then LE of x = 3%.

Thus, in this case, the most convenient form of representing the correction to y differs from the most

convenient form of representing the correction to x.

3.9 Accuracy of an indirect measurement. If y is dependent on other variables xl, x2, x3 .... and is

deduced from measurements of the x's, then we may write

(3.9-1) y = F(xl,x2,x3 .... )

and the relation between the correction to y and the corrections to the x's is

OF OF OF
(3.9-2) Ay = --Ax_ + --Ax 2 + --Ax 3 + ...

OX I OX 2 0X 3

In order to determine the derivatives,itisnot necessarythatEq. (3.9-I)be known as an analytic,

differentiableformula.SinceAy ismerely a smallcorrection,aF/axineed be known only approximately.

Thus,

(a) Ifa tabulationofy existsforvariousvaluesof thexi,thevalueof aF/aximay be approximated

by "_yi/Axiinthevicinityofthevaluesofxl,x2,x3....atwhich aF/Oxiisdesired.Ifthetabulation

issufficientlyfine,6y,.and Axi may be takenas thedifferencesbetweenadjacenttabularentries.

Ifthetabulationisnotsufficientlyfine,thevaluesoftheincrementsmay be deduced by quadratic

interpolationamong the tabularentriessurroundingthepointof interest.Sometimes, inspection

of the entrieswillrevealthata retabulationof some function(e.g.,the reciprocal,square,or

logarithm)of the variableswillfacilitateinterpolation.

(b) An experimentmay be performed inwhich xiischanged by an amount Axi,whileallotherx's

are held unchanged, and the correspondingAyiobserved [Note N3.9].

The various sources, A through E, listed in Sec. 3.2, usually represent separate variables. With this

understanding, and if the A's are, for the moment, assumed to represent inaccuracies in knowledge of the

associated variable, then the relative magnitudes of the terms on the right side of Eq. (3.9-2) serve to indicate
where any effort to improve accuracy (if such improvement is necessary) should be directed:

(1) Terms of smaller magnitude represent operations or measurements that are already adequate.
(2) Terms of larger magnitude represent operations or measurements where improved accuracy would

be significant.

The implications of Eq. (3.9-2) are presented more fully in Sec. 3.28 as Eqs. (3.28-3) and (3.28-4).

3.10 Systematic and random errors. Errors of measurement may generally be characterized as either
systematic or random.

Systematic errors are errors whose sign and magnitude are always the same under the same circumstances.

If the sign and magnitude of a systematic error are known, the corresponding correction can be made to
the measurement, so that the error is eliminated. If the nature of a systematic error is understood, but its

magnitude is not known, deliberate steps may be taken to eliminate or to reduce its influence (Sec. 3.11).

At the other extreme, the existence of a systematic error may not be suspected until a comparison with

the results of another laboratory reveals a systematic difference in results, prompting a more intensive search
for the systematic cause of the difference.
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Random errors are errors of unknown sign, whose magnitude may only be estimated. If the random errors

are of accidental origin, their magnitude may be estimated by making repeated observations under apparently
identical circumstances.

The distinction between systematic and random errors is not unequivocal. If one does not choose to correct

for a systematic error, it may in effect become a random one (see examples c through f in Sec. 3.1). If

only the sign and LE of a systematic error are known, one may apply (1/2) LE as a systematic correction

and treat the remaining error as a random one whose limits are 4-(1/2) of the original LE. Conversely,

effective graphical and analytical techniques, like the method of least squares, are available that permit

convenient partition of a measurement error into a systematic component and a random component. These

techniques will be treated later; their selection and use involve a human choice among the convenience,

complexity, and precision of describing the uncertainties. Furthermore, as one's experience and understanding

increase, the sign and magnitude of an originally random error may be learned, so that it becomes a systematic,
correctable one.

3.11 Systematic errors. Although an experiment may be attended by several systematic errors, only those

errors need be considered whose magnitude may be sufficient to affect the result appreciably. Some expedients

for dealing with systematic errors of uncertain but possibly significant magnitude are the following:

A. Appropriate experimental techniques may serve to cancel the error or to reduce it to an acceptably

small magnitude.
B. If an experiment is intended to determine the effect upon y of one particular variable xt, where

x_ is only one of several independent variables, it may be possible to tolerate the existence of large

systematic errors that do not depend on x_ because these errors will remain constant throughout the

experiment and can be canceled out of the final result. The experiment may be arranged deliberately to

permit this situation by calling for the measurement only of dimensionless ratios. A considerable simplification

of apparatus and technique and considerable improvements in speed, cost, and efficiency of operations are

often realized by such a procedure.

Examples of systematic errors will be recognized among the examples listed in Sec. 3.2. Other examples

and techniques for the reduction of errors are listed here:

Example 3. lla. The eccentricity of the divided drum of a micrometer screw produces a periodic,

sinusoidal, error in the reading. As a correction, one may take the mean of the readings of two

indexes 180" apart.

Example 3. llb. The eccentricity of an orifice plate in its holder produces an error in flow rate

indication. However, (a) the same flow rate can be duplicated as often as desired without knowledge

of the absolute value of flow rate, and (b) moderate changes in flow from some reference value
(the set point) can be measured with negligible error. The ability to hold a set point and to correct

for deviations from that set point, with only nominal knowledge of the exact flow rate, is a common

requirement of many industrial processes.

Example 3.11c. Inequality in the length of the lever arms of a chemical balance results in a

proportionate error in weighing. As a correction, the method of substitution eliminates the error.

Example 3.11d. Demagnetization of the permanent magnet in an electrobalance results in a

proportionate error in weighing. As a correction, the method of substitution is applicable here.
Furthermore, if the balance is accurately linear, the use of one accurate substitution weight will

serve to establish the new proportionality constant. If the balance is slightly nonlinear, the use of
two accurate substitution weights (one near full-scale value and the other near half-scale value) will

also serve to establish the nonlinearity.
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Example 3. lle. Self-heating of a resistance-thermometer bulb measuring the temperature of gas
in a tank produces an error in temperature indication. However, repetition of the measurements,

using 1/2 and 1/4 of the electrical power originally used, will permit

(i) extrapolation to the indication that would be obtained if there were zero power dissipation
in the bulb, and

(ii) estimation of the optimum power dissipation that will provide the best compromise between

self-heating error and sensitivity, to yield adequate accuracy with only a single measurement.

Example 3.11f. Background radiation from the walls of the enclosure housing the components

of an infrared spectrometer, and from those components themselves, may cause an error in spectral

amplitude measurement. If a light chopper is used to chop or modulate the beam entering the

spectrometer, at a fixed frequency, and the detector is sensitive only to signals at and near to the

chopping frequency, the effect of the background radiation may be eliminated.

Example 3.1 lg. Thermal expansion of an extensometer relative to the specimen produces a false
indication of strain that is proportional to the temperature change. As a correction, the strain indication

may be compared with that of a second extensometer attached to an unstrained specimen of the same
material at the same temperature. Alternatively, the temperature may be monitored and a correction

computed from the results of a separate experiment performed at zero strain and variable temperature.

3.12 Random errors. Random errors may arise from such sources as

(a) inability to read to better than the least count of a digitized display
(b) parallax in reading pointer position
(c) friction and backlash in a mechanical device

(d) vibration of the instrument support

(e) contact potentials, in measuring small electrical voltages
(f) electronic noise

(g) changes in temperature and pressure when their effects are not understood
(h) uncertainty in the magnitude of systematic corrections

(i) fluctuations in the physical variable being measured, as illustrated by many of the examples of
type A sources listed in Sec. 3.2.

The "limit of error" (LE) is a useful, convenient means of describing the capability of a single instrument.

However, when there are several independent variables in Eq. (3.9-1), the individual LE's may not be
summed, because such summation would lead to an unrealistically pessimistic result whose occurrence has

extremely low probability. A more realistic approach is to ask what is the most likely order of magnitude
of the random error, or, more precisely, what is the probability that an error of given magnitude will not

be exceeded. Answers to these questions use the language of statistics and require a study of repeated

measurements of the physical variable of interest, or else the application of information obtained from

previously performed repetitive measurements. The answers also depend on what intuitive assumptions are
made concerning the nature of the random errors.

It is this statistical approach which is the principal concern of the remainder of this chapter. For a particular

set of assumptions and a particular group of repetitive measurements, it will be possible to establish
(a) the most probable value of the measured quantity,

(b) measures of how well the individual observations already made agree with that most probable
value, and

(c) measures of how well future observations are likely to agree with that most probable value, under

the assumption that future conditions of measurement are the same as those that existed during
the past measurements.

The random error in y will often be written as 6y; the presence of the ± sign in front of _y is implicit
in its definition.
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3.13 Most probable value of a quantity. Means. The median. If repetitive measurements of a quantity
y are made in order to reduce the effect of random errors, one may then ask what is the most probable

value of y that is to be deduced from the measurements. A similar question may be asked if one seeks a

single value which will conveniently represent an average of several values that differ systematically or

randomly. The answer depends on the nature of the quantity y and on the method and purpose of its
measurement.

If )q, Y2..... Yi..... y,, are the n measurements of y and Y0 is the average or "mean" that is sought, some

commonly used definitions of Y0 are the following:

A. The arithmetic mean Yo is defined by

(3.13-1a)
",.z,

heY° = 2._ Yi
1

§3.13

It is used when the individual measurements are considered to be of equal importance (i.e., when, a priori,
the likely absolute error _Yi of a measurement is considered to be the same for all y,).

The corollary weighted arithmetic mean Yo is defined by

(3.13-1b)

n g/

yo.Ew,=
1 I

It is used when the individual measurements are considered to be of unequal importance and their relative

importance is represented by their respective weights wi. Some suggestion of how weights may be assigned
will be given in Sec. 3.21.

B. The geometric mean Yo is defined by

(3.13-2a) Y_ = YlY2...Yi...Yn = fi Yi
1

All the Yi must be positive. This relation is tantamount to taking the arithmetic mean of the logarithm of
the y's.

n

(3.13-2b) nolog Y0 = E log y,
1

The quantity Y0 in this expression has sometimes been called the logarithmic mean. The logarithm may
have any base, including the Napierian and the common.

The geometric mean or the logarithmic mean is most appropriate when, a priori, the likely fractional
error 6yi/y, of a measurement is considered to be the same for all Yi.

C. The ruth root Y0 of the arithmetic average of the mth power of y is defined by

(3.13-3a) noyg =

/I

E y'''
I

A special case is the harmonic mean Yo, defined by
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(3.13-3b) n/Y°= E (l/y,)

Another special case is the root-mean-square (rms) value Y0 defined by

/1

(3.13-3c) n'y°2= E y_
i

D. In some cases, it may be appropriate to compute Y0 from the arithmetic mean of some other

function of y. Thus, the arithmetic mean of the logarithm was taken in B.

E. The median of n measurements of y is that value Y0 such that half of the measurements are less

than Y0 and half are more than Y0 (if n is even, Y0 lies halfway between two measured values). It is useful

when the individual measurements are not considered to be of equal importance, but their relative importance
is not known, a priori.

Just as one may take the arithmetic mean of powers, logarithms, or other functions ofy in order to determine

the most probable value Y0, so may one, alternatively, take the median of powers, logarithms, or other
functions of y.

All of the above formulas would yield the identical value ofyo if all of the Yi were identical. Consequently,

when all of the Yi are almost alike (i.e., when the tSyi or (Syi/yi are very small) one may choose, with

insignificant loss of precision, a mean (or median) which is conveniently calculable or convenient for

mathematical analysis, rather than the mean which is academically more appropriate.
Example 3.13a. Gas flows through a duct; gas pressure and linear velocity are constant across

the cross section, but gas temperature varies with location in the cross section. In order to deduce
mass flow rate from the equation

mass flow rate = area x linear velocity x mean density,

the harmonic mean of the absolute temperature is required.

Example 3.13b. Gas flows through a duct; gas pressure p and temperature T are constant across

the cross section, but gas velocity, as deduced from the pressure differential A_a developed by a
pitot-static tube, varies with location in the cross section. In order to deduce mass flow rate in from

the equation

in = I[2p'Ap/ (gT)] I/2 dA

where R is the specific gas constant and dA is the element of area, an area average of x/(Ap) is

required.

Example 3.13c. To determine the average decibel level over an area, sound pressures are measured

at several appropriate locations. The decibel level is then computed from the geometric mean of

the pressures.

Example 3.13(t. The following mean values exist in a high-vacuum system in which there is free-

molecule flow (a high-vacuum enclosure is defined as one whose dimensions are much smaller than

the mean free path of the gas molecules):

(i) The mean free path of the molecules is the arithmetic mean of the lengths of the paths

of gas molecules between successive collisions with other molecules.

(ii) The arithmetic mean speed of the molecules. It determines the volumetric rate of flow of
gas through a constriction like an orifice.

(iii) The t'ms speed of the molecules. It determines the pressure of the gas at any location; in

particular, it determines the pressure on the walls bounding the system.

[Note N3.131
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3.14Residuals. In any experimental measurement that is not perfectly accurate, the true value Ytr of the

quantity of interest is not known; instead, the most probable value Y0 is deduced as the mean (or median)

of a number of repetitive measurements of y, perhaps by processes like those illustrated in Sec. 3.13.

If a series of measurements Yi lead, by whatever process, to a most probable value Yo, one defines the

residual v i as

(3.14-1) vi = Yi - Yo

The most probable value Y0 and the residual v can be calculated from the measurements y,; the error

e cannot be obtained from Eq. (3.3-2) because Ytr is not known. Worthing (Ref. 3-1) has pointed out that,

in most engineering measurements, the distinction between v and e is academic, because the difference

between useful quantities derived from them is smaller than the uncertainty in knowledge of either quantity.

However, the use of the residual is so firmly entrenched in the literature, that the distinction will be maintained
in this text.

It is also sometimes convenient to deal with the fractional residual

(3.14-2) V = (Yi - Yo)/Yi

3.15 Statistical descriptions of the past and the future. Past events can be described with all desired

accuracy, simply by listing all the data. However, when there are many data, it may be possible to provide

an adequate description by the shorthand of statistical terminology; such condensed description invariably

implies that certain assumptions have been made about the nature of the data. The descriptions and the

assumptions are approximations to the truth, and are justified by the convenience of a concise representation
of the results and the convenience of any subsequent analysis of the results.

Future events cannot be predicted; they can only be estimated. The estimation is made by examining
the statistical description of past events and assuming that the conditions that produced the past events will

remain unchanged in the future, so that future performance can be an extrapolation of past performance.
Two questions of interest to those who use statistical terminology to describe a measurement are

1. How well are past data represented by their shorthand statistical description?

2. How well is the statistical description estimated to represent future results?

Answers to these questions depend on the assumptions made concerning the nature of the errors. These

assumptions will be a priori assumptions because they must precede the data analysis and interpretation.
In this text, only a few of the more common assumptions will be treated.

One of these is the nature of the random-error distribution. (Three common distributions will be described

in Sec. 3.18.) Any assumed type of distribution will then be characterized quantitatively by the dispersion

of the data that have been acquired. The name of the distribution merely identifies its shape; the dispersion
describes numerical magnitudes that characterize that shape. The assumption of a distribution shape precedes

the data analysis; the dispersion is a result of that analysis.

Another assumption, made a priori, is whether all data are likely to have the same uncertainty (error,

_Sy), or to have the same fractional uncertainty (fractional error, _y/y), or whether each error is likely to
have a weight w. The choice among these likelihoods is merely a choice of the form of the error, not of

its numerical magnitude. It is made on the basis of prior experience and understanding of the nature of

the physical quantity being measured and of the apparatus, techniques, and circumstances of the measurement

operation. For example, an assumption that 6y/y is constant will place greatest weight on points near y = 0

and cannot be made if y may pass through zero. If the error is thought likely to be of the form 5y + Ey

(Eq. (3.5-2)), with both _Syand Ey of comparable magnitude, the use of w is required.

If a logarithmic scale of ordinates would be most appropriate to a graphical presentation of the data, then
an a priori assumption that 5y/y = a constant is usually indicated; if a uniformly divided scale of ordinates

would be most appropriate, then an a priori assumption that tSy = a constant is usually indicated.

3.16 The random-error distribution. Given a single instrument indication expected to represent the value

of some physical variable, any one indication, after application of all known systematic corrections, may

not represent the true value of the variable because of the presence of random errors. Because of such random
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errors, it will never be possible to know the true value of the quantity. However, by repeated performance

of the measurement operation, the totality of readings may be analyzed mathematically to establish the most

probable value of the quantity; furthermore, this most probable value may be made to approach the true

value by a sufficient increase in the number of repetitive observations. The extent to which the repetitious

measurements need to be made depends on how accurately the quantity must be known; the extent to which

the analysis can be carried depends on how well the law governing the distribution of errors is known.

A common assumption concerning random errors is that positive and negative errors are equally likely.

This assumption will be made in the following text.

Consider that a very large number n of repeated measurements y_,y2 ..... Y_..... Yn of the same quantity

Ytr possesses random errors whose absolute magnitudes are el,e2 ..... ei ..... e,, respectively. (Symbol e is

thereby a shorthand symbol for lel.) Let the largest possible value of these errors be era. The smallest

possible value is zero. Divide the range of values of error into a number of equal intervals Ae, chosen

to be small and yet to include a reasonably large number of errors in most of the intervals. Plot the number

of errors that lie in each interval versus the value of the error at the midpoint of that interval. Such a plot

is termed an error-frequency distribution.

As n--oo to the extent that the concepts of the differential calculus may be used, a curve f(e) may be

faired through the points. As Ae--0 because n-- oo the probability dP that an error lies in the interval de is

(3.16-1) dP = f(e)*de

The probability that an error lies between the limits eo and e b is

(3.16-2a)
_e 'b

P = f(e)'de

o

In particular, the probability that an error lies between 0 and e,, is a certainty, so that

(3.16-2b)
"f(e).de = 1

The function

(3.16-3) f(e) = dP/de

is termed a probability coefficient or a frequency distribution function or just an error distribution. Note

thatf(e)*de is dimensionless. Note also that, by Eq. (3.16-1), and the principles of the differential calculus,

the probability of occurrence of any one error e is zero; only the occurrence of a band of errors, like

e,, < e < et,, as in Eq. (3.16--2a), has a nonzero probability.

3.17 Concise idealized measures of random-error dispersion. For the most common error distributions,

three measures of dispersion have been widely accepted. These are the probable error, the average deviation,

and the rms error (standard deviation). Since the assumption has been made that positive and negative errors

are equally likely, and with symbol e representing lel, we define, for 0 _ e <em and n -- oo, ,

Ilf an error distribution is not symmetrical about the abscissa e = 0, it is said to be skewed. This asymmetry will be touched on

briefly in the discussion of correlation coefficients (Sec. 4.12) but otherwise will not be treated.
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(3.17-1) A o = f(e)'de

(3.17-2) Al = eef(e)ode

(3.17-3) A2 = e2ef(e)'de

We then have the following mathematical definitions of the three measures of dispersion of any form
of error distribution.

The probable error (ep orp or p.e.) is the abscissa which divides the curvef(e) vs e into two equal areas.

(3.17-4)
f(e)'de = Ao/2

The average deviation (% or a or a.d.) is the abscissa which is the center of moment of area of the curve

f(e) vs e.

(3.17-5) ea = AI/Ao

The rms error (eo or o or standard deviation) is the abscissa which is the center of the second moment

of area of the curvef(e) vs e. It is the positive square root of the variance which is given by

(3.17-6) e] = A2/A 0

When the number of observations is so large that f(e) may be treated as a continuous function for all

practical purposes, alternative phrasings of these definitions are

The probable error ep is such that half of all the errors (in absolute magnitude) are smaller than ep and
half of the errors are larger than ep.

The average deviation ea is the arithmetic mean of the absolute values of all the errors.

The rms error eo is the square root of the arithmetic mean of the squares of all the errors. 2

3.18 Gaussian, uniform, and median error distributions. Some common random-error distributions will

be identified here. It is assumed that all measurements have been corrected for known systematic errors.

L The idealized Gaussian distribution is the result of the following assumptions:
A. Positive and negative errors are equally likely.

B. All magnitudes of error are possible.

C. The frequency of occurrence of an error depends on its magnitude.

D. Large errors are less likely than small ones.
E. The likelihood of very large errors is very small.

F. All measurements have been made with equal care.

G. The number of measurements is large enough to warrant the application of the differential calculus.

§3.17-3.18

2Oneof the uses of these measures of dispersion is to establish whether two valuesof a quantity aresignificantly different, when
each value represents the mean of a number of observations. Each mean has its own measure of dispersion. If the ratio (> 1) between
the two measures is less than 1.5 to 2, it is unlikely that the difference between the two values is significant. This matter is treated
a little more precisely in Sec. 3.22.
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Then if, a priori, each value of y is deemed likely to have the same random error 6y,

(a) the most probable value of y is the arithmetic mean Y0 (Eq. 3.13-1a);

(b) the error distribution f(e) [Eq. 3.16-3] is shown in Fig. 3.18(a) and is given by the equation

(3.18-1) f(e) = (1/a)(l/x/_T) exp [-e2/(2o2)];

(c) the idealized measures of dispersion (Sec. 3.17) are in the ratios

(3.18-2) er." ea: eo = 0.6745: x/(2/_'): 1

and

(3.18-3) e,, = o.

0.8

0.6

a . f (e) 0.4

0.2!

(a)

TABLE 3,18.1 .--RELATIONS AMONG ERRORS

OF THE GAUSSIAN DISTRIBUTION

Value of Y/X

Y X

I?
i a

ego

e95

ep ¢a ¢o ¢90 e93

l 0.845 0.674 0.410 0.344

1.183 1 x/(2/f) 0.485 0.407

1.483 x/Or/2) 1 0.6O8 0.510

2.44 2.06 1.64 l 0.84

2.91 2.46 1.96 I. 19 l

a . t (e)

0.6 --

0.4--

0.2--

(b)

0

IJr
ep eo em Ie I---"-

ea

a . f (e)

1.0

0.8

0.6

0.4

02 i

i

0 ep ea eo lel--

(a) Gaussian.

(b) Uniform.

(c) Median.

Figure 3.18.--Error distributions.
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TABLE 3.18.2.--ERRORS CORRESPONDING TO VARIOUS PROBABILITIES AND ODDS

[Errors are expressed as multiples of probable error p, average deviation a, or rms error o.]

C" P + Gaussian

distribution

e/p e/a e/o

1:1 50. 1 0.67

1:1.4 42. 1

1:2.1 32. 1

1:4 20. 1.28

1:4.6 17.7 2

1:5.7 15. 1.44

t-distribution Uniform Median

distribution distribution

e/o = e/[(Ev2)/n]l/2

e/p e/o e/p e/a e/o

n=16 n=8 n=4 e/a

0.69 0.71 0.77 1 0.87 1 0.69 0.49

1.34 1.42 1.64 1.6 1.39 2.32 1.61 1.14

1.52 1.62 1.92 1,7 1,47 2.74 1.90 1.34

1:8 11.1 2

1:9 10. 1.64

1:19 5. 1.96

1.75 1.90 2.35 1.8 1.56 3.32 2.30 1.63

2.13 2.37 3.18 1.9 1.65 4.32 3.00 2.12

1:21 4.55 2

1:22 4.3 3

1:32 3. 2.17 2.40

1:49 2. 2.33 2.60

1:59 1.67 3

1:370 0.27 3

*Oddsthat a greater error will occur
+Probability of exceedingthe tabulatederror, percent

2.71 3.90 1.94 1.68 5.06 3.51 2.48

3.00 4.54 1.96 1.70 5.64 3.91 2.77

(See Footnote 3.)

The relations among the various errors are indicated in Table 3.18.1, which also includes errors e90 and

e95 that are exceeded only 10 or 5 percent of the time, respectively. Table. 3.18.2 lists the probability P

that an error will exceed a given multiple of the common measures of dispersion. The percentage (100-P)

has been termed a confidence limit, and has been used to indicate the reliability of an estimate of future

results. The information on probabilities is restated in an alternate form, in Table 3.18.2, by giving the

odds C of exceeding a given magnitude of error.

In practical engineering, the Gaussian distribution may be truncated because observations whose deviations
from the mean exceeded some value like 3ea or 3eo were rejected as grossly unreliable. (A common cause

is a typographical error.) Such truncation has negligible effect on most of the ratios shown in Table 3.18.1

and in Eq. (3.18-2), although the magnitudes of the measures of dispersion (as in Eq. 3.18-3) are reduced

by the rejection.
[Note N3.18]

IL The idealized uniform distribution is the result of the following assumptions:

A. Positive and negative errors are equally likely.

B. The absolute magnitude of an error cannot exceed e,..

C. For lel _< e,., the frequency of occurrence of an error is independent of its magnitude.

D. All errors are equally likely, as long as lel-< e,..
E. All measurements have been made with equal care.

F. The number of measurements is large enough to warrant the application of the differential calculus.

3A fourth measure of dispersion, h = l/(a x/2), called the index of dispersion, is used less frequently in present-day engineering

applications of the theory of errors.

§3.18
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Then if, a priori, each value of y is deemed likely to have the same random error 6y,

(a) the most probable value of y is the arithmetic mean Y0 (Eq. 3.13-1a);

(b) the error distributionf(e) [Eq. 3.16-3] is shown in Fig. 3.18('o) and is given by the equation

(3.18-4) f(e) = l/(2em) tel <- era:

(c) the idealized measures of dispersion (Sec. 3.17) are in the ratios

(3.18-5) ep: e_: eo = 1: 1: (2/x/3)

and

(3.18-6) ea =' a = era/2

The probability P and the odds C of exceeding a given error are listed in Table 3.18.2.

IlL The idealized median distribution is the result of the same assumptions as those for the Gaussian

distribution, except that previously stated assumption F is replaced by

F. All measurements were not made with equal care and their relative reliability is not known in
advance.

Then

(a) the most probable value of y is the median (Sec. 3.13.E.)

Co) the error distribution f(e) [Eq. 3.16-3] is shown in Fig. 3.18(c) and is given by the equation

(3.18-7) f(e) = (l/a) exp (-lel/a)

(c) the idealized measures of dispersion (Sec. 3.17) are in the ratios

(3.18-8) ep: e=: eo = In 2:l:x/2

and

(3.18-9) eo = a

IV. In any of these distributions, if, a priori, each measurement of y is not deemed likely to have the

same random error but is deemed likely to have a different random error _Sy_,then y should be replaced
by an appropriate function of y that may be presumed to have constant error. In particular,

(1) Ify is deemed to have constant fractional error 6y/y then y should be replaced by its logarithm;

Y0 becomes the logarithmic mean or median of the data (Sec. 3.13), and e is replaced by E, the
nondimensionai fractional error (Eq. 3.5-1).

(2) If y is deemed to have a weight w, then y should be replaced by wy, the quantity Y0 becomes

the weighted mean (Eq. 3.13-1b) or weighted median, and e is replaced by ex/w. (Weighted
observations will be treated in Secs. 3.19 and 3.21).

3.19 Practical measures of random-error dispersion. The names and definitions of Sec. 3.17 are so

convenient that they are used to describe the dispersion of data even when the number n of measurements

is small andf(e) does not have the analytic character implied in Eqs. (3.17-1 to -3). (Analytic character

means that f(e) is continuous and has a continuous derivative.) The integrals are replaced by summations,

the errors are replaced by residuals, and the formulas are modified to allow for the fact that the most probable
value Y0 derived from repetitive measurements 3'/ (i = 1,2 ..... n) is not the true value Yt_, which is never
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known.TheactualformulaforY0 depends on the assumptions made concerning the nature of the errors,

but the following terms and symbols usually apply.

The measures of error fall into two groups. Terms in one group, whose descriptions contain the words

"of a single observation," pertain to past events. The terms describe how well the individual data already

taken agree with the most probable value Y0 of the measurements. The numerical value of these measures

of dispersion is almost independent of the number n of measurements that have already been made.

Terms in the second group, whose descriptions contain the words "of the mean" or "of the median,"
are useful for future use. The terms describe how well Y0 is likely to represent the true value Ytr of the

measured quantity. This likelihood will increase as the number n of past contributing measurements increases;

the numerical value of these measures of dispersion will usually be found to vary inversely with x/n. The

terms in this second group provide estimates of the likelihood that Y0 will represent Ytr in the future,

assuming that there will be no change in the circumstances governing the measurement.

§3.19

Case A. Equally-weightedmeasurements. Given n observations y_ (i = 1,2 ..... n) such that, a priori,

all Yi are deemed to have equal uncertainty 5y, the following definitions hold as substitutes for the equations
of Sec. 3.17. (All summations are from i = 1 to i = n.)

The most probable value of y is the arithmetic mean

(3.13-1a) Y0 = (EYi)/n.

If the residuals are defined as

(3.14-1) vi = Yi - Yo

then

(3.19-1) eol = (F, tvi[)/[n(n- 1)] t/2

(3.19-2) eao = ea(Yo) = eal/(n

2 = (IZv_)/(n - 1)(3.19-3) eol

(3.19--4) eo0 = eo(y0) = eol/x/n

(3.19-5) epo = ep(yo) = ep_/x/n

where

eal average deviation of a single observation

e_o average deviation of the mean

eol rms deviation of a single observation
eoo rms deviation of the mean

epl probable error of a single observation

epo probable error of the mean

The probable error of a single observation is, in theory, that value, %1, such that half of the residuals

(in absolute magnitude) are less than epz and half are greater. In practice, the value of ep_ is deduced from
e,,l or eo_, by a formula that depends on the assumed distribution of errors. For example, for a Gaussian

distribution, by Eq. (3.18-2),

(3.19-6) ep_ = 0.67eot = 0.85eal
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and,for theuniformdistribution,byEq.(3.18-5),

(3.19-7) epj = e,,I = era/2 -_ 0.87%1

The dimensions of the ex's, the quantities on the left side of Eqs. (3.19-1 to -5), are the same as the
dimensions of Yi.

Differentiation of Ec1. (3.19-3) shows that making I;v_ a minimum leads to the definition of Y0 given by

Eq. (3.13-1a). Conversely, the most probable value Y0 may be deduced by finding the condition that will

minimize I;v 2. This procedure of finding Y0 is thereby termed the method of least squares.

Case B. Measurements with constant fractional error. Given n observations Yi ( i = 1,2 ..... n) such

that, a priori, all Yi are deemed to have equal fractional uncertainty 6y/y, the following definitions hold

as substitutes for the equations of Sec. 3.17. (All summations and continuous products are from i = 1 to i = n. )

The most probable value ofy is the geometric mean Y0, which is also the antilog of the arithmetic mean
of the logarithms of the Yi. If one defines the nondimensional residual

(3.19-8) Vi = vi/y i = (Yi - Yo)/Yi

then the following nondimensional quantities (fractional errors) are useful.

(3.19-9) Eol = (F.lEI)/In(n- 1)1 I/2

(3.19-10) E,_ = E,,(yo)= Eai/_/n

(3.19-11) E_l = (_,V_)l(n- 1)

(3.19-12) E_o = Eo(Yo) = Eollqn

(3.19-13) Epo = Ep(yo) = Ep,/x/n

where

Eai average fractional deviation of a single observation
E,,o average fractional deviation of the mean

E.I rms fractional deviation of a single observation
Eoo rms fractional deviation of the mean

Epl probable fractional deviation of a single observation
E_ probable fractional deviation of the mean

The probable fractional error of a single observation is, in theory, that value, Evl, such that half of the
values of IV/I are less than Et, I and half are greater. In practice, the value of Evt is deduced from computed

values of Eaj or E°I by formulas that depend on the assumed distribution of errors. For example, for the
Gaussian distribution, by Eq. (3.18-2),

(3.19-14) Et, i = 0.67E°1 _ 0.85Eal

and for the uniform distribution, by ECl. (3.18-5),

(3.19-15) Ep_ = Eal = Era�2 = 0.87E°t
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Case C. Unequally-weighted measurements. Given n observations y, (i = 1,2 ..... n) such that, a

priori, each Yi is deemed to have a weight wi, the following definitions hold as substitutes for the equations

of Sec. 3.17. (All summations are from i = 1 to i = n. )

The most probable value of y is the weighted arithmetic mean Y0

(3.13-Ib) Y0 = [F'(wiYi)]/Ewi •

If one defines the residuals

(3.14-I) vi = Yi - Y0

then the following definitions hold.

(3.19-16) eal = [_( Iv,lx/wi)l/In(n - 1)11/2

(3.19-17) e_o = ea(yo) = eal/_/F, wi

(3.19-18)

(3.19-19)

(3.19-20)

: = [E(v_i)l/(n - 1)eol

eoo = ea(yo) = eo_/x/F, wi

epo = ep(yo) = epl/_/r.w,

where

eal average deviation of a single observation of unit weight

eao average deviation of the weighted mean

eol rms deviation of a single observation of unit weight

eo0 rms deviation of the weighted mean

epl probable error of a single observation of unit weight

epo probable error of the weighted mean

The probable error of a single observation of unit weight is, in theory, that value, epl, such that half

of the products Ivil x/w_ are less than epl and half are greater. In practice, evt is deduced from computed
values of e_l or e_l by formulas that depend on the assumed distribution of errors. For example, for the

Gaussian distribution, by Eq. (3.18-2)

(3.19-21) epl = 0.67 eol _ 0.85 eol

and for the uniform distribution, by Eq. (3.18-5),

(3.19-22) epl = eat = era�2 --- 0.87 e°l

The important measures of unequally weighted measurements are eao, eoo, and ep0. The other measures,

e_l, eol, and etn are merely convenient intermediate steps in the computation of eao, e,,o, and %0-
It is noteworthy that assignment of a weight wi = 1/y_ is tantamount to solving the case of measurements

with constant fractional error, so that the simpler treatment of Case B is usable. However, when the estimated

error is of the form of Eq. (3.5-2), the treatment of Case C must be used.

For easier comparison, Table 3.19 lists the principal formulas of this section.

[Note N3.19]

§3.19
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TABLE 3.19.--SUMMARY OF PRACTICAL MEASURES OF DISPERSION

A priori assumptions

Item 6y = constant _Sy/y = constant y, has weight w,

most probable value Yo = (_:yi)/n In Y0 = (_ In yi)/n Yo = I_(wiyi)]/i:w,

residual vi = Yi - Yo V_ = I - (Yo/Yi) vi = Yi -- YO

errors of ept see line 9 or 10 Epl see line 9 or lO ept see line 9 or 10
individual eal = (F.Ivil)/[n(n - 1)] I/z E,n = (F.[Vil)/[n(n - I)] 1/2 ea_ = [F.(lvib/wi)l/[n(n - l)l I/2
observations eXot= (I;v_)/(n - I) E2t = (_V2)/(n - 1) e2oj = lF.(v2_w,)]/(n - 1)

errors of eeo = epi/_]n Ero = Epl/x/n e_ = epl/_/_w i
the eao = eallX/n EaO= Ealtx/n eao eal/X/_.wi
mean e, 0 = eol/x/n E, 0 = Eol/X/n e, 0 = e, ll.,/Ew i

Gaussian distribution epl = 0.67e,1 = 0.8Seal Ep, = 0.67E0_ = 0.85Eal ! ep, = 0.67e,j = 0.85eat
Uniform distribution epl = 0.87e,j = eal = em/2 Epl = 0.87E01 = Eal = E=/2 epi = 0.87eot = eal = em/2

Line

I

2

3

4

5

6
7

8

9

10

Some examples of the practical application of error distributions are

Example 3.19a. The probable error of the values in a five-place table of logarithms is 0.000 0025.

Example 3.19b. Mass production of electrical resistors yields a Gaussian distribution of resistance

values, centered around the nominal or intended value. "Precision resistors" are obtained by selecting

from the lot those resistors whose measured value falls within a limit of error (LE) of 0.1 percent.

The error distribution among this group is substantially uniform, because the distribution represents

the peak of the Gaussian curve. Another group, which has errors less than 1 percent, may be selected

from the remainder, for sale at a lower price. The error distributions of this group will be Ganssian

except for a trough between -0.1 and +0.1 percent. Presumably, for economic reasons, the eo

of this group will be less than 0.5 percent so that there will be few discards. It is noteworthy that,

where such manufacturing procedure is followed, all resistors have comparable stability; only the

value of resistance may be in error (by less than 0.1 percent for the "precision" group; by not less

than 0.1 percent for the remainder).

3.20 Percentiles An informative description of the dispersion of acquired data is the statement of the

error magnitude which was not exceeded by most of the data. No particular error distribution need be implied.

For example, one may give the 90th percentile (ninth decile) eg0 or the 95th percentile (nineteenth vigintile)

egs, or one may simply state that "M percent of the deviations from the mean value Y0 were less than eM."

Fractional errors may be treated similarly.

3.21 Weighting of observations. If a number of observations Yi is made of a quantity y and each

observation has a random error, then, after all systematic corrections have been made, the most probable

value of y is the weighted arithmetic mean of the observations, where the weight w, to be assigned to any

observation Yi is inversely proportional to the square of the random error of that observation. Equation

(3.13-1b) may then be applied.

The assignment of weights requires only an assumption of the relative magnitudes of the random errors

of the individual Yv If there is no previous information available, then a priori assumptions are required,

as indicated in Sec. 3.16. If the y_ represent values determined by previous repetitive measurements, so

that each y; already has an associated probable, average, or rms error, then the individual weight w_ is to

be taken as the reciprocal of the square of that error.
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Example 3.21a. If all measurements have the same uncertainty 6y, then wi may be taken as unity.

Example 3.21b. If all measurements have equal fractional error 6y/y, then 6y = v × a constant

and wi may be taken as l/y_ in order to determine the arithmetic mean of y. However, all

measurements have equal weight in determining the geometric mean or the logarithmic mean of y.

Example 3.21e. If y = au 2 and u has constant uncertainty 6u, then

63' = 2au.6u = 2.6u*x/ (ay) = x/y x a constant

so that wi may be taken as l/y_ in order to determine the arithmetic mean of y.

Example 3.21d. If y = au 2 and u has constant fractional error 6u/u, then

6y/y = 2.6u/u = a constant

so that

(i) wi may be taken as 1/y 2 in determining the arithmetic mean of y

(ii) w_ may be taken as unity in determining the geometric mean or the logarithmic mean ofy.

Example 3.21e. The thermal conductivity/Co, at STP, of H2 gas taken from the same storage

cylinder is determined by three independent laboratories. They respectively report the values

0.0167 ± 0.0003, 0.0169 ± 0.0002, 0.0168 ± 0.0004 W/(meK), where the quantitites after the ±

sign represent probable errors. Then the most probable value of k0 is
0.0001[(167/9) + (169/4) + (168/16)]/[(1/9) + (1/4) + (1/16)] = 0.01683

with a probable error of 0.00006.

(A problem of this type is treated in greater depth in Sec. 3.32.)

3.22 Uncertainty in the practical measures of dispersion. The measures of dispersion listed in Sec. 3.19

are obtained by using a summation of residuals as an approximation to the integration of errors. These

approximations themselves have uncertainties. Consequently, if ex (or Ex) represents any one of the errors
tabulated in Sec. 3.19, the more precise statement of ex or Ex is

(3.22-1) (exorEx)'[1 ±Bl(n- 1) "r]

where _ and 7 are numerics. Their magnitudes depend on the nature of the error distribution. The magnitude
of _ also depends on whether _/(n - 1 )'r is intended to represent the probable, average, or rms fractional

error of e_ or E_; these three magnitudes will be written as Bp, /3,,, and _o, respectively.
Expression (3.22-1) shows that the validity (not the values) of the various e's is diminished as the number

n of observations is diminished. It also serves to establish whether the distinction between probable, average,

or rms errors (ep, ea, or eo) is significant or merely academic, and to define the number of significant figures
that are warranted in the statement of ex or Ex.

For both the Gaussian and the median distributions, the fractional uncertainty in ex or E_ is

(3.22-2) _,,/_/(n- 1)

where

(3.22-3) Op: {3o: Oo = 0.67: x/(2/_'): 1

However, for the Gaussian distribution
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(3.22-4) flo = l/x/2

and for the median distribution

(3.22-5) 13o= 1 •

The ratios in Eq. (3.22-3) are the same as those in Eq. (3.18-2) because the distribution of the "errors
of the errors" is itself Gaussian for both the Gaussian and median error distributions. However, the uncertainty

with which any measure of dispersion is known is larger for the median distribution than it is for the Gaussian
distribution.

Example 3.22. Nine measurements are made of a quantity believed to follow a Gaussian error
distribution.

(i) if eo -- 0. l, the representation of eo by two decimal digits is justified.

(ii) if e, = 0.8, only a one-decimal-digit representation of eo is justified.

3.23 Rejection of observations. When a particular observation deviates from the mean by an amount

that is several times the probable, average, or rms error, the decision on whether to reject it as spurious

is a matter of human judgment. It does not follow from any mathematical laws. However, once the human

judgment is made, it may be expressed in formal mathematical language; such formal expression is often
useful if it is to be incorporated into a computer program or if the data are to be used by others less expert

in understanding of the physical situation.

The opinions of others are useful in formulating a criterion for rejection of observations. Many such opinions

have been published. They usually assume a Gaussian error distribution and usually express the criterion
as a multiple of one of the standard measures of dispersion; often the multiple is itself a function of the

number n of observations. Most choices lie between 3ea and 3eo of the data. Since the criterion is merely

a formal mathematical description of one's intuition, an understanding of the circumstances affecting the

measurement--apparatus, technique, and observer--is just as important as are the numerical data.

After an observation has been rejected, the measures of dispersion must be recomputed. If the criterion

for rejection is based on a measure of dispersion, it may be necessary to repeat the computation to preserve

the formality. However, all such operations should be performed with full appreciation of the uncertainties
indicated in Sec. 3.22.

3.24 Complete statement of the value of° physical quantity. A complete statement of the value of y

requires a statement of the probable value Y0 and of the estimated inaccuracy using any of the forms

indicated in Sec. 3.5. Some common forms of the complete statement are

(a) Y0 ± ex where ex is the error of the mean, in units of Yo;
(b) Yo( 1 ± Ex) where E_ is a numeric representing the fractional error of the mean;

(c) Y0 ± (ex + 100Ex %). Although not mathematically correct, this expression is accepted as a

convenient representation of the more rigorous but more awkward expressions

(Y0 ± ex)( 1 ± Ex), or

Yo (1 a,- E x) ± e x

Traditionally, e_ and E_ represented probable errors in the English-language literature and represented

rms errors on the European mainland. However, the use of rms errors has now become more common

everywhere.
Some writers have preferred to place the limit of error (LE) after the ± sign, usually defining the LE

as the 95th percentile, although limits as high as 99.7 percent have been used. Because of these ambiguities,

it is necessary that each writer explicitly state what type of error is represented by the entry after the ± sign.
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3.25Truncation and rounding. The uniform distribution is significant when one deals with the expression

of a quantity to m decimal places when (a) it is known that a more accurate expression would require more

than m decimal places, and (b) the (m + 1)th decimal is not known. Two types of situation which lead either

to rounding or to truncation are illustrated by the following examples.

Example 3.25a. A four-place table of a transcendental function, like the logarithm, represents

a rounded value. The tabulated value is the most probable value; its limit of error is 0.00005 and

its probable error is 0.000025.

Example 3.25b. The indication of a commercial digital meter usually represents a truncated value.

Assume that the indication is given to three decimal digits. Then the limit of error is almost -0.001

and there is a 50-percent probability that the error is less than -0.0005. However, if the most probable

value is taken to be 0.0005 more than the displayed value, then the assumptions of Sec. 3.18 apply,

the limit of error becomes ±0.0005 and the probable error becomes 0.00025.

Thus, a truncated digital display of a measured quantity does not represent the most probable value
of that quantity, but the most probable value can be obtained by adding a systematic correction equal

to one half of the least significant digit.

3.26 Average rate of random events, by counting. If a number n of discrete events, randomly separated

in time, have all been counted in a time interval T (e.g., with a scaler), the computed frequency of occurrence

3.26-1) ti0 = n/T

is not necessarily the same as the frequency g/tr that would have been computed if the counting time had

been many times larger than T. However, n0 is the most probable value of the frequency, if it is the only

information available. The rms fractional error E_o(ho) in knowledge of/z 0 is

(3.26-2) E_o(ri0) = 5ho/h o = 1/x/n

The expected distribution of readings is known as the Poisson distribution. This distribution is not a continuous

function--it exists only for integer values ofn. However, when n is moderately large, a smooth curve drawn

through the ordinates is adequately approximated by a Gaussian distribution (Fig. 3.18(a) and Eq. (3.18-1)),
in which a is l/x/n o and e is the individual error in n0. (The curve through the ordinates of the Poisson

distribution is slightly asymmetrical about e = 0 and is necessarily truncated on the left, since n > 0. When

n = 10, the average difference between the two curves is less than 1 percent of the maximum amplitude
(at e = 0). )

These idealized conclusions must be modified to correct for the imperfections of the instruments used
in the measurements, limitations of the counting technique, and complications that may characterize the

events being counted (D, C, and A sources of measurement error, respectively, in Sec. 3.2):

(a) Dead-time error. The idealized formula is predicated on the assumption that the counting instrument

is capable of resolving successive events no matter how little separated they are in time. In practice, events

counters have only a limited counting speed, characterized quantitatively by their dead time _,, an interval

so short that two or more events occurring within the interval will be counted as only one event. If h is

small enough so that h0X < < 1, the most probable value of the total counts is no longer n, but rather

(3.26-3) N = n ( 1 + h0)_)

where n0 is still given by Eq. (3.26-1). However, the most probable counting frequency now becomes

(3.26--4) N0 = N/T
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if T has been measured with negligible error. The rms fractional error in /_"0 remains

(3.26-5) E#o(No) = UVo/No = 1/_/n

(b) Background error. The results of this section find frequent application in the counting of radioactive

disintegrations. In such cases, an additional error arises from the presence of spurious counts, due to the

background of cosmic or ambient terrestrial radiation. This background must be measured separately. Every
measurement must be corrected for the dead time of the events counter. If

Ns = corrected number of background events in time T
Nn = NB/T

N r = corrected number of total counts

l_lr = Nr/T

then the most probable frequency of occurrence of the events of interest is

(3.26-6) /¢o = Nr -/_/a

and the rms fractional error in/_/0 is

(3.26-7) Eoo(/Vo) = [_/ (Nr + Na)]/(Nr - Nn)

Equations (3.26-6) and (3.26-7) replace Eqs. (3.26-4) and (3.26-5).

3.27 Average rate of random events, by integration. If the rate of occurrence of randomly occurring
events, as described in Sec. 3.26, has been determined by use of an integrating-type counting-rate meter
(frequency meter, Note N3.27) rather than by use of a counter and timer, and if the ratemeter has a time
constant r, then

(a) if a single, instantaneous observation of the meter yields a frequency ti, the rms fractional error
of ti is

(3.27-1) Eo_(n) = 6pi/ti = 1/_/(2_r)

(b) if the meter is observed continuously over a time interval T and the arithmetic time average of
its indication is _, the rms fractional error of h0 is

(3.27-2) Eol(i_o) = (1 + tiT) -I[[1 + r/(2T)]/(_T)] It2

(c) if m readings are taken of the ratemeter indication, at equally separated time intervals T/m, and

the m readings have an arithmetic average _, the rms fractional error in n0 is

(3.27-3a) Eoo(no) = (AIB)lx/(2fTor)

where

(3.27-3b) A = [1 + (m - 1) ( 1 - r2)] I/2

(3.27-3c) B = 1 + (m- 1)(1 -r)

(3.27-3d) r = exp [-T/(mr)]
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Equations(3.27-2)and(3.27-3)arebasedontheassumptionthattheratemeterhadalreadybeenconnected
fora sufficienttimetoensurethesubsidenceof startingtransients;acriterionfor thisconditionis that

(1) theratemeterindicationnolongershowsanyappreciablesteady,monotonicdrift, or
(2) theratemeterhadbeenconnectedfor atimeatleastasgreatas

(3.27-4a) At = 7"In ",,:(2h_')

or

(3.27-4b) At = 4r,

whichever is smaller.

The corrections for background and for dead time of the counting chamber (like a Geiger-Mueller tube),

given in Sec. 3.26, still apply.

3.28 Combination of errors. Single measurement of a function of several variables. Assume that a quantity

z is computed, or otherwise determined, by measurement of k variables Ul,U2 ..... u)..... ut through the
relationship

(3.28-1) z = z(ul,u 2..... u)..... uk)

where each variable uj has a most probable value Ujo, a systematic error Auj, and a random error 6u:.
Then, prior to application of systematic corrections, the most probable value of z is

(3.28-2) zo = z(ulo,U2o ..... Ujo..... Uko).

The systematic error in z0 is, by Eq. (3.9-2)

(3.28-3) Az0 = _,(Ozlauj)'Auj

(All summations in this section are from j = 1 to j = k.) Because it is systematic, this quantity may be
applied as a correction.

If, a priori, the random deviations from the mean are equally likely to be positive or negative, and if
the variables us are independent of each other, then

(3.28-4) ((_Zo) 2 = _.¢(_z/_uj)2.(c_uj) 2

(Two variables are said to be independent of each other if the value of each does not depend on the value
of the other.)

Equation (3.28-4) differs from Eq. (3.28-3) and its equivalent, Eq. (3.9-2), in two important respects:

(i) In Eqs. (3.28-3) and (3.9-2), the variables, uj, need not be independent; in Eq. (3.28-4) the

variables uj must be independent--no one may depend on another, nor may any two depend on
some common parameter.

(ii) Because of the ambiguity in the sign of random errors, the summation of Eq. (3.28-4) involves
squares of terms; random error terms are always additive--there can be no cancellation of terms.

As indicated in Sec. 3.9, each of the error sources, A through E, listed in Sec. 3.2, usually represents

an independent variable. The relative magnitudes of the terms in the summation of Eq. (3.28-4) indicate

the relative importance of the various error sources in their effect on the accuracy of z.
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In Eq. (3.28-4), the errors may be of any type, provided they are all alike; the equation holds for either

the probable, average, or rms errors of the means. If 6uj represents the probable error of U/o, then _SZo
represents the probable error of Zo.

Sometimes, the fractional error is more convenient and meaningful than the absolute error. The practical

forms which Eqs. (3.28-3) and (3.28-4) take in specific instances are shown by the following examples.

(Subscript zero has been omitted for brevity.)

Example 3.28a. If z = u_ + u, + u3 + .... then

Az =Auj + Au_ + Au 3 +...

(&)2 = (6ut): + (6u:)" + (_5u3) z + ...

Example 3.28b. If z = ulu2u3 .... then

_kZ/Z = (AUl/Ul) q" (Au2/u 2) "4" (Au3/u3) + ...

(SZ/Z) 2 = (_Ul/Ul) 2 + (SU2/U2) 2 + (SU3/U3) 2 + ...

Example 3.28c. If z = u_ug2u_3 .... then

_z/z = a I (.Aul/ut) + a2( Au2/u 2) + a3(_Lu3/a 3) + ...

(6Z/Z) 2 = a2(6ul/uj) 2 + ag(6u2/u2) 2 + a_(Su3/u3) 2 + ...

Example 3.28d. If z = al In ut + a2 In u2 + a3 in u3 + .... then

AZ = al(Aul/ul) + a2(Au2/u2) + a3(Au3/u3) + ...

(6z) 2 = a2(_Ul/Ul) 2 ..I-a2(6u2/u2) 2 + a2(_u3]u3) 2 -4- ...

Example 3.28e. Power P generated in a resistor R is computed from m measurements of current
I. Then the most probable value of P is [(El)/m]2R. It is not [(_12)/m]R.

Example 3.28f. Power P generated in a resistor is determined by first making m measurements

of current I and then making n measurements of voltage drop E. Then the most probable value of
P is [(El) /m]'[(EE) /n].

Example 3.25g. Power P generated in a resistor is determined by making m pairs of simultaneous

measurements of current I and voltage drop E. Then the most probable value of P is [E(El)]/m.

Example 3.28h. The relation between Nusselt, Prandtl, and Reynolds numbers (N, P, and R,

respectively) for heat transfer between the central section of a long cylinder and a fluid flowing

in a direction normal to the cylinder's axis is given by

N = 0.95 pi/3 R_O31 +0.037 ,ogR)

if 0.1 < R < 200 000. (The formula is derived from Fig. 10-7 in Ref. 3-2.) When R = l0 s,

10-percent uncertainties in P and in R yield an 8-percent uncertainty in N.

Example 3.28i. A total radiation pyrometer measures the flux _, emitted from a body, whose

temperature is T and whose total emittance is e, in accordance with the formula

44



¢be = Boe ( T 4 - Tg)

where To is the pyrometer's temperature, o is the Stefan-Boltzmann constant, and B is a calibration

constant characterizing the geometric optics of the instrument and the installation. If To < < T, a

l-percent uncertainty in T is produced by a 4-percent uncertainty in e.
On the other hand, a monochromatic radiation pyrometer, which measures the radiant flux

_e.x.A_, that is emitted from a body in a narrow wavelength interval AX centered around a

wavelength _,, obeys the equation

(I'e,x',_X = Bexh -5 exp [-c2/(kT)]

where c 2 = 0.0144 K.m is Planck's second radiation constant and ex is the monochromatic

emittance of the body. Then, a 1-percent uncertainty in T is produced by

(i) a 5-percent uncertainty in ex when XT = 0.003 K'm (the product of _ and Tthat produces

maximum spectral radiance)

(ii) a 14-percent uncertainty in ex when XT= 0.001 K'm. Thus, operation at a shorter
wavelength is advantageous, if there is still adequate radiometric sensitivity.

Example 3.28.j. In the range 0 < t_<40 *C, the effect of temperature t on the emf E of a saturated

Weston standard cell is given by

E = 1 018 220-zkE-53.97x-0.71x 2 + 0.010x 3

§3.28

where x = t - 28 *C, t is in *C, E and AE are in microvoits, and AE is a systematic correction

furnished by the manufacturer for each cell.

In the same temperature range, the effect of temperature on the emf of an unsaturated Weston
standard cell is given by

E = (1 019 300 + ZkE) (1 - 0.00283y - 0.112y 2 + 10.5y 3)

where y = (t - 20 *C)/1000. (,aE, a systematic correction for the particular cell, is so small that

it may be neglected in computing the temperature correction.)

Then, the emf E will be known to 0.01 percent if (5(AE) < < 100 and if

(i) the saturated cell temperature is known to 2 *C when the cell's temperature is near 28 *C
(the usual operating temperature);

(ii) the unsaturated cell temperature is known to lie between 0 and 40 *C.

Formulas (3.28-3) and (3.28-4) are not complete in a region where z is a maximum or minimum with

respect to one of the variables u,. The formulas fail completely if z is a function of only one variable u
and dz/du = 0 at the point where errors are to be computed. Under such circumstances, the quantity

must be replaced by

(az/auj),zXuj

(aZ" /aU)'( Aui) " /"!

where n is the smallest positive integer for which the corresponding derivative is not zero.
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Example 3.28k. In a particular electrometric titration wherein the potential difference u between

two electrodes is related to the amount z of electrolyte added, the relation between the two variables

in the vicinity of the equivalence point (a,b) is found to be given by

Then, at u = a,

so that

z - b = c(u - a) 3.

dz/du = O; d2z/du 2 = O; d3z/du 3 = 6c

Z_kZ= C(AU)3; (_Z) 2 = C2(_U) 6 .

Example 3.281. The relation between area A of a variable area channel and the Mach number

M at that area, for a gas of constant specific-heat ratio k, is given by

A = (AI/M)[(I + bM2)l(b + 1)] (b+l)/(2b)

where b = (k - 1)/2 and Al is the area at which M = 1. To determine how the Mach number

might change when the downstream channel area expands from Al to A1 + AA, we note that, at
M=l,

so that

OA/OM = 0

02A/OM 2 = (7k -9)/(k 2 - 1) = G

(AM) 2 = (2/G)(AA/A_) .

Example 3.25m. The relative resistivity P/P1 of manganin wire used for precision resistors, in

the range 15 _< t _< 50 °C, is given by

O/al = 1 + 1.335 x 10-4x - 4.245 x 10-Sx 2

where x = t-20 *C, t is temperature in *C, and al is the resistivity at 20 *C (0.00484 9*m).

The relative resistivity of manganin sheet used for ammeter shunts, designed to operate at about
45 *C, is given, for the range 15 _< t _< 80 *C, by

P/P2 = 1 - 3.28 x lO-Sy - 2.048 x lO-Sy 2

where y = t - 45 "C, and 02 is the resistivity at 45 "C (0.00388 9*m). Consequently,

(i) temperature must be known to within 1.5 "C if the value of a precision resistor is to be

known to 0.01 percent;
(ii) temperature must be known to within 7 °C if the value of a shunt is to be known to

0.1 percent.

3.29 The central limit theorem. It has been found that, when errors from various sources compound

as given in Eq. (3.28--4), and each source has a different error distribution (although one that is symmetrical

about e = 0), the error distribution of the result, z, closely resembles the Gaussian. The fact that the

combination of errors from several independent sources tends to have a Gaussian distribution has been termed
the "central limit theorem."
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Figure 3.29.--Sums of uniforrn error distributions, to illustrate tile central limit theorem.

This theorem can be illustrated by the combination of errors from several sources, each of which has

a uniform distribution. Suppose that ut has a uniform error distribution over the range -A _< et - A, where
el - 6ul, and that u2 has a uniform error distribution over the range -B _< e2 < B, where e2 -= 6u2, and

B _> A. These distributions are shown in Fig. 3.29(a) and (b). (The ordinates of all distributions have been

chosen so that they all enclose the same area, corresponding to unit probability.) Then the error distribution

of z = uj + u2 has the form shown in Fig. 3.29(d). If, in addition, u3 has a uniform distribution over the

range -C _< e 3 _< C, (Fig. 3.29(c)) where e 3 = tSu3, then the error distribution of z = ul + u2 + u3 has

the form shown in Fig. 3.29(e)--a form hardly distinguishable from the Gaussian curve with the same average

deviation or rms error, which is shown by the dashed line [Note N3.29].

3.30 Several measurements of a function of one or more variables. If the measurement of z described

in Sec. 3.28 is repeated on several different occasions, leading to mean values Zol,Zo2..... zo, ..... Zo,_, each

with its respective rms, average, or probable error 6Zot,6Zo2..... 6Zoi..... 5Zorn, then the most probable value

of z is its Grand Mean Zoo, which is the weighted average of the individual mean values, the weighting
factor for each being the reciprocal of the square of the respective error (All summations are from i = 1
to i =m)

zoo=
By Eqs. (3.19-18) and (3.19-19), the rms error e,,o(Zo0) of the Grand Mean is given by

(3.30-2) e;o(Zoo) = e2t [l/(6Zoi) 2]

where

2 = [l/(m - l)] _[v2j(fZoi) 2](3.30-3) eot

(3.30-4) Voi = _i - Zoo

and 6Zo, is the rms error of Zoi.

If, instead, 6Zo, is chosen to represent the average deviation eai(z0_) or the probable error epi(Zo_) of Zoo,
then Eqs. (3.19-16) through (3.19-21) provide the means for comparable expressions of e,,0(z00) or

epo(Zoo).
The rms error given by Eq. (3.30-2) is said to represent the external consistency of the measurements.

It should be comparable in magnitude to the rms value

(3.30-5) I)']_[1/(6Z0i)2]1-1/2

if there were no constant or systematic errors in any of the determinations Zoi. The expression (3.30-5)
is said to represent the internal consistency of the measurements.
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If eo0 in Eq. (3.30-2) is many times larger than expression (3.30-5), there is reason to suspect that the
experiments that yielded the z0s differed from each other by the presence of one or more systematic errors

in one or more of the experiments. (This criterion is known as Gauss's criterion.) Another phrasing is to

say that if the differences among the means are much larger than the rms errors of the means, systematic
errors may have gone undetected. Ordinarily, if e_ol as given by Eq. (3.30-3) is greater than about 10,

there is reason to suspect the presence of a systematic error in some of the determinations of Zo.

3.31 Indirect measurements of several quantities. If m quantities xt ,x2 ..... xj ..... xm cannot be measured

directly, but if n functions fi(xl,x: ..... xj ..... xm) yield n measurements si (i = 1,2 ..... n), then the most
probable values of the m quantities can be obtained by minimizing the sum of the appropriately weighted

squares of the differences between each pair off, and si. If the weight of each measurement is ws, it is

required that

(3.31-1a) S =

,rl

E [_(xj,x2 ..... xj ..... xm) - sil2wi = a minimum.
i=!

Then the most probable values of the x's are obtained by solution of the m simultaneous equations

(3.31-1b) _j "_ aS/axj = 0 U = 1,2 ..... m).

This group of equations is termed the '+set of normal equations."

The set of normal equations is generally difficult to solve unless the functions 3'; are linear algebraic

functions of the x's. If they are not, it may be possible to find some function X of each x (like the logarithm,

sine, or square) that does allow expression of the normal equations as a set of linear algebraic equations
in the X's.

If each J_ is a linear function of the x's,

(3.31-2) _ =

m

j=!

one may readily compute not only the most probable value of x/but also the uncertainty e, (xj) in that value,
assuming that the distribution of errors is Gaussian. One arranges the equations ¢_./= 0 in rows representing
increasing values of j, and rearranges the equations so that they assume the form

(3.31-3) allXl + al2x2 + ... + aijxj + ... + almxm = Yl

a21xl + a2:,x2 +... + a2jxj +... + a2_xm = y2

aj_xl + aj2x2 +... + a_xj +... + ajmx_ = y/

amjxl + am2x2 + ... + amjxj + ... + a,n,nXm = Ym

The solution of this set of m simultaneous equations in m unknowns yields the m quantites xj. Denote
the determinant of the coefficients on the left side of Eqs. (3.31-3) as D, where
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(3.31-4) D =

all a12 ... aim

a21 a22 ... a2m

aml am2 "" amm

and denote the cofactor of any diagonal term ajj as D 0. Then the rms error eo of x: is given by

(3.31-5) eo(xj)2 = (D)j/D)'e]l

where

(3.31-6a)

or

(3.3 l-6b)

(n-m)e21 = _ wis_- _ xjy)

i=1 j=l

n

(n -- ra)e]l = ]_ _(Xl,X 2..... x,,) -- sil2wi
i=1

Equations (3.3 l-6a) and (3.3 l-6b) are alternate expressions of the same quantity. The advantage of the
first expression is that the two summations on the right side can be computed at the time that the original

data are entered into any computer program; the disadvantage is that the right side represents a very small
difference between two relatively large quantities so that each of these quantities must be computed with

very high arithmetic accuracy. The advantage of the second expression is that it represents the direct summation

of very small quantities, so that high computational accuracy is not required; the disadvantage is that the

original data must be reentered into a computer program after the simultaneous equations have been solved.

Example 3.31. To calibrate a set of 1-,2-,3-, and 5-gram chemical-balance weights, there are

available a 10-gram standard and a lower-quality weight of nominal 1-gram mass. Denote the masses
of these weights, respectively, as Ml, M2, M3, Ms, M_0, and MI. Calibrations are effected by direct

measurement of the differences between nominally equal combinations of weights. The following
measurements are made:

(3.31-7a) M5 + M3 + M2 - M;0 = $1

(3.31-7b) M5 - (M3 + M2) = s2

(3.31-7c) M3 - (M2 + Mr) = s3

(3.31-7d) Mi - MI = s4

(3.31-7e) M3 - (M2 + MI) = s5

(3.31-7f) M5 - (M3 + Mi) + MI = s6

Let

s_ = S_ + M_0

§3.31
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Each measurement si is, a priori, assumed to have equal uncertainty cSsand hence equal weight w_.
In this example, n = 6 and m = 5 (because MI is included), with xl, x2, x3, x4, xs, corrsponding

to M 5, M 3, M2, MI, M i, respectively.

Application of Eq. (3.31-1) leads to the set of normal equations

3M5 - M3 - Mz - MI = Mio + 51q-$2+$6

-M5 + 5M3 = Mio + Si - s2+sa+ss-s6

(3.31-8) 4M2+ M1 +MI =M_0+SI-s2-s3-ss.

-Ms +M2+3M1 =s4-s3-s6

-Ms +M2 + 3MI = - (s4+ss+s6)

which may be solved for Mi, M2, M3, M5, and, incidentally, for MI.

The value of D is 300. The diagonal terms of D are an = 3, a22 = 5, a33 = 4, a44 = 3, a55 = 3, and

their respective cofactors are Di1 = 150, Dz2 = 66,/933 = 96, D44 = 134, D55 = 134. Consequently,

e2o(Ms)= (I/2)e20,,eZo(M3)= 0.22e20,,e_(M:) = 0.32e_,,e2o(M,)= e2o(Mi)= (134/300)e_o,,

: isgiven by Eq. (3.31-6).where eol

In particular,ifthe valuesof S_ and of s2throughs6 are, respectively,-0.0025, -0.0015,

-0.0075, -0.0035, -0.0115, and -0.0045, thene_1 = 8× 10-s and therespectivevaluesofyi,

Mj, and eo(Mj) are given by the followingtable:

y 9.9915 9.9845 10.0180 0.0085 0.0195

M 4.9980 2.9965 2.0030 1.00116 (1.00485)

eo(M) 0.0020 0.0001 0.0002 0.00019 (0.00019)

where the entries in the last column refer to the weight MI. (An overbar on a digit indicates that
the digit repeats indefinitely.)

3.32 Application to an experimental measurement. The diagram of Fig. 3.32 shows how the results of

this chapter may be applied to the measurement of a single physical variable. The numbers of the equations

pertinent to the various steps are indicated. The words "probable error" may be replaced by "rms error"
or "average error." The steps of the measurement operation are

1. Instruments having known probable errors are used to measure the experimental variables.

2. The measurement of each experimental variable is repeated n times to reduce the probable error by
a factor of _/n.

3. The mean value of each experimental variable, as computed, is inserted in a formula or other known

relation that gives the value of the final physical variable in terms of the measured experimental variables.

4. The probable error of the final physical variable is deduced from the probable errors of the measured
experimental variables.

5. If steps 1 through 4 have also been performed by other laboratories or on other occasions, the means

deduced by each of the laboratories are weighted in accordance with the probable errors of each laboratory's
results and then averaged to produce the Grand Mean.

6. The probable error of the Grand Mean is computed from the results which were used to derive it.

This provides a measure of the external consistency of the data.

7. The probable error of the Grand Mean is computed on the assumption that only random instrument

errors contributed to the Grand Mean. This provides a measure of the internal consistency of the data.
8. The errors obtained in steps 6 and 7 are compared. If the first is much larger the the second, there

is reason to suspect that an unrecognized systematic error entered into the determinations by some of the
laboratories.
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Figure 3.32.--Sequence of experimental measurements.
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3.33 Calibration correction curves. A calibration correction curve is a graphical description of the
systematic corrections to be applied to an instrument's indication. Such a curve for at least the first few

units of a new instrument provides an understanding of the instrument's characteristics that may serve to

determine the extent and nature of calibrations that should be made of subsequent units of the same type
of instrument.

Most commonly, the curve takes the form of a plot of Ay versus Yin, where Ay is the correction to be

added to the indication Yin in order to yield the true value Ytr of the quantity being measured. Only a small

number of the pairs (Yi,, Ay) are usually determined; it is then necessary to decide how these points are

to be joined in order to form a continuous curve. This decision usually cannot be made solely by inspection

of the data; some knowledge of the nature of the instrument and of the calibration technique may also be
required.

(1) If it is known that exactly the same value of Ay will be obtained each time that the instrument

is subjected to the input Ytr, then the calibration curve may be drawn through each point (Yin, Ay). Such
a situation may exist if

(a) the instrument and the determination possess negligible random error, or

(b) Ay represents the mean of so large a number of observations that the rms error of the mean is

negligible.

Example 3.33a. It is known that the manufacturer of a presumably linear 100-division instrument

scale actually calibrates and marks the scale at eleven cardinal points and then machine divides

each interval into ten subdivisions. Then if random errors are negligible, a calibration may be

performed at the cardinal points, and then these points may be joined by straight-line segments.
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Example 3.33b. It is known that the manufacturer of a digital millivoltmeter for a thermocouple-

type pyrometer actually fits the thermocouple's temperature-emf curve with a number of straight-

line segments. If the end points of these segments are known, calibrations at these same end points
may be joined by straight-line segments.

(2) If it is known that the determination of Ay is subject to appreciable random error (due to the

instrument or to the calibration technique), then a smooth curve should be faired through the points O'in, Ay).

Example 3.33c. If, in Example 3.33b, the end points of the segments are not known to the

calibrator, and if the ability to match the temperature-emf curve is considered to be a possible

source of significant error, then a smooth curve should be faired through the points.

Often, a straight-edge or French curve is sufficient to provide the desired calibration curve. If additional

analysis of the curve is desired, the graphical and analytical techniques treated in the next chapter may

be helpful; the analytical techniques are often needed if the data are to be entered into a computer program.

The choice of a suitable technique, however, requires a human interpretation of the appearance of the

calibration curve, based on an understanding of the physical operations involved.

3.34 The designation of procedures in the specification of accuracy. Many legal contracts for materials

or performance presume a measurement accuracy that is higher than is practically achievable. The resulting
difficulties may be minimized by agreement on all details of the apparatus and techniques that will be used
in the measurement, and agreement to accept the resultant indication as "true." Such details would include

the determination of the partial derivatives in Eq. (3.9-2) and the application of the resulting systematic

corrections. The derivatives need be determined only once or only occasionally if similar sets of measurements
will be made repeatedly over a long period of time.

Many "standards" of national and international organizations are concerned with establishing

(1) standardized conditions and procedures for the measurement of a physical variable, and

(2) standardized methods for correcting for deviations from the standardized conditions (e.g., deviations
from standard pressure and temperature).

The resultant measurement represents "the value of the physical variable under the conditions of the
specified standard."

The word "standard" may be replaced by the more precise term "recommended practice". On some

occasions, this substitution has some legal advantage because it avoids the interpretation that the "standard"
is mandatory.

3.35 Relation of accuracy to other factors affecting the selection of an instrument. Measurement accuracy

is only one of many factors that affect the selection of a measurement technique and instrument. Some other

factors are speed, reliability, convenience, and cost. Accuracy often drops when speed of measurement
must be increased. Reliability of an instrument often increases as simplicity of instrument construction

increases, even though such simplicity may involve some reduction in accuracy. Reduction of maintenance

requirements, ease of repair and adjustment, and reduction of skills required for operation all affect reliability
and overall cost; they may be related to the measurement accuracy that is obtainable. In some instances,the

long-term availability of repair parts and services are also important considerations. The compromise among

these factors depends on the weight assigned to each in any particular situation and depends on human
judgment. Any formal mathematical procedures presented in this chapter are merely aids in the formulation

of that judgment. Many of these procedures must be used with an appreciation of their approximate character,
because they are based on mathematical assumptions chosen for their convenience rather than for their
exactness.
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NOTES FOR CHAPTER 3

Ch. 3-Notes

N3.9. An even closer approximation is possible if the experiment is repeated using an additional change
(-z_%); or using a larger change (noz2_xi).

(i) If the points on each side of (xi,y,) are (xi - Ax,, Yi - ,_Yl) and (x, + _tr i, y, + Ay2), then

(OFlOx)_ = (Ayt + Ay2)l(2eAxi)

(ii) If the points on each side of (x,,y,) are (x, - Axe, Yi - AYn) and (x, + no2tx, y, + Ay2), then

(aF/Ox)i = (n2"Ayl + Ay2)/[n(n + 1)o_xi]

(This combination of points is useful at the extreme ends of a tabulation.)

N3.13 The molecular speeds depend only on the relative molar mass M and the gas temperature T. If R0

is the universal gas constant (8314.34 Jekmoi- loK- l) then the arithmetic mean speed v,_and the rms speed
vo are given by

2
v. = 8RoT/(rM); = 3,o,or/M.

N3.18 If the number n of observations is small, so that assumption G for the Gaussian distribution does

not hold, the distribution assumes a form resembling that shown in Fig. 3.18(a) except that the peak amplitude
at e = 0 is reduced, and the amplitudes at values of e/o larger than about 1.6 are increased. This modified
distribution is termed a t-distribution. Its distribution function is

(N3.18-1a)

where

(N3.18-1b)

(N3.18-1c)

f(t) =j%'[l + t2/(n - 1)1 -"/2

t = e/[(_v_) In] i/2

s_ = [(n- 1)r]-l/2F(n/2)/F[(n- 1)/2]

and v is given by Eq. (3.14-1). 4

Equation (3.18-2) is replaced by a proportionality that depends on n:

(N3.18-2) ep: ea: eo = (0.65 to 0.67):(0.93 to 0.80): 1

when n ranges from 4 to 32, respectively, and

2 (2n l)/(2n - 3)(N3.18-3) eo = -

4In terms of factorials, the gamma function is given by

F(n/2) = [(n - 2)!_/r]/[2 "-2 1(n-3)/21! l

l'(n/2) = [(n - 2)/2]!

if n is odd

if n is even
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Table 3.18.2 lists values of t, for several values of n, at which the probability P of exceeding t is 2, 3,

5, 10, 15, or 20 percent. When n > 4 and P _> 5 %, the listed value of e corresponding to a particular

probability does not exceed the value listed for a Gaussian distribution, by more than the uncertainty in

the measure of dispersion, as treated in Sec. 3.22. Hence, for n > 4, P _> 5 %, use of the Gaussian distribution

is adequate for all practical purposes.

N3.19. The distinction between the deviation of a single observation, which serves to describe past events,

and the deviation of the mean, which serves to estimate future events, is illustrated by the following examples,
in which the error distribution is neither Gaussian nor uniform.

(a) Suppose that n observations are made of a quantity y which is likely to have constant error <Sy

and that half of the observations yield a value Y0 + _ and half of the observations yield a value Y0 - +,

these two values occurring randomly. Then, if n is large, one may conclude that

(i) The average value of y is Y0

(ii) The average of the absolute value of the individual deviations is _, and this average deviation
is substantially independent of the number n of observations

(iii) In the future, if there is no change in the circumstances of the experiment, one may expect that

the true value of y will be Y0 with an uncertainty that decreases as n increases. (The
uncertainty will be on the order of _/x/n. )

(b) If the quantity y had been likely to have constant fractional error 6y/y and if the observations

had yielded values of y0(1 + _) and Y0( 1 - _) in equal number, then, in similar manner, one would conclude
that

(i) The average value of y is Y0

(ii) The average fractional deviation of past observations is _, substantially independently of n
(iii) The fractional uncertainty in assuming Y0 to be the value of y in the future is about _/x/n

N3.27 A frequency meter is an instrument whose indication y is almost proportional to the time integral

of its input Y. Its behavior is described by

y = (l/r)f(Y- y)dt

where 7"is the characteristic time constant of the instrument and the integration interval is presumed to be
much longer than r. This instrument is considered in Sec. 6.8.

N3.29 I. When there are two uniform distributions

-A _< eA -< A and -B_< es-< B (B > A > 0)

and

e = lea + eB[; f = dP/de

then

f= 1/(2B) _r 0 _ e _ (B - A)

f= (A + B - e)/(4AB) for (B - A) _ e _< (B + A)
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and

II. Whentherearethreeuniformdistributions

-A < e A < A; -B <_ e B <_ B; -C <_ e c< C;

e = ieA + eB + e,-l: f = dP/de
then

For 0< e_< (B+A-C),

f= 1/(2C) if C > (B + A)

f= [4AB - (A + B - C) " - e2]/(8ABC)

For (B+ A-C) <-e< (C-B+ A),

f= [8AB - (A + B - C + e)21/(16 ABC)

For (C-B+ A) <_e<_ (C + B-A),

f= (B + C - e)/(4BC)

For (C+B-A)_<e___ (C+B+A),

f= (C + B + A - e)2/(16ABC)

if C< (B + A)

(C>_B>_A>O)

III. In the special case when A = B = C for all three uniform distributions,

For 0 _< e _< A, f= (3A 2 - e2)/(8A 3)

For A <_ e <_ 3A, f= (3A - e)2/(16A 3)

and ep = 0.71A, ea = 0.81A, eo = A.

Ch. 3-Notes
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CHAPTER 4. EMPIRICAL GRAPHS AND EQUATIONS
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4.0 Introduction. Symbols. The material in this chapter is relevant principally to the interpretation and

manipulation of experimental data, in order to improve the understanding of what is being studied, to plan

the course of future operations and to monitor their progress, to analyze and to present results, and to present
conclusions.

The following symbols are used frequently in this chapter.

average error or deviation

fractional average error or deviation

rms error (standard deviation)

fractional rms error (fractional standard deviation)
number of independent constants
number of observations

correlation coefficient

sum of squares of residuals
fractional residual
residual

weight of observation or of square of residual

independent variable
dependent variable
index of correlation

Symbols used occasionally will be defined as they are introduced.

4.1 The uses of empirical graphs and equations. The complete understanding of an instrument's

characteristics may require the determination of how the instrument is affected by several variables other

than the principal variable that the instrument is to measure. Similarly, the complete understanding of a
measurement technique may require the determination of the influence of each of several variables that

influence the measurement. Quantitatively, these determinations may involve the determination of the form

and magnitude of the partial derivatives that appeared in Eqs. (3.9-2) and (3.28-3).

Example 4.1a. The natural frequency of a tuning fork or crystal may be affected by its orientation
and by the pressure, temperature, and composition of the medium in which it is immersed.

Example 4.lb. The indication of a thermometer bulb immersed in a flowing fluid is affected by

the Reynolds number of the flow, the Prandtl number of the fluid, and the shape and physical properties
of the bulb's support.

When a new experimental procedure is initiated, or a new type of instrument is tested, initial experiments

seek to determine the systematic effects of one variable at a time. Dimensional analysis is a powerful tool

in minimizing the number of independent variables that need to be identified. Initially, graphical methods

57

PRECEDING PAGE BLANK NOT F,_Lf_,ED A/16£, JNrENr  ALCl



§4.1-4.3

are effective in clarifying the nature of the relationships between dependent and independent variables. Once

this identification has been made, analytical methods of describing the relationships may be used

(i) to implement subsequent mechanized operations, like calibration, or

(ii) to facilitate subsequent routine data analysis, or

(iii) to improve understanding of the instrument and of the measurement technique and, thereby, to

improve the operation to which they are applied.

Graphical methods help to monitor an experiment by identifying anomalies in the data or in the procedures

(or, conversely, by confirming their reliability). Graphs, and equations that represent them, are also compact,

easily comprehended means of presenting results. In this chapter, such empirical graphs and equations will
be considered.

When the relationship between two variables x and y is determined by a few pairs of simultaneous

measurements (xi,y i) over a range xl N x _ xm, and if y(x) is continuous over this range, a graph or an
analytical equation, that represents the most probable relationship between the two variables, offers two

advantages:

(i) It provides greater accuracy than does the mere tabulation of the values themselves, because

all the data jointly contribute to the result.

(ii) It permits interpolation between the pairs of values that represent the actual measurements.

The operation of fairing a smooth curve through a set of discrete points is, thus, analogous to taking

the mean of a set of measurements of a single quantity or, more precisely, to determining the most probable
value of a function of several variables.

4.2 Graphs. There is no mathematical law that will determine what type of curve should be drawn through

a set of plotted points. The decision whether the curve should be a straight line, or a parabola, or whether

it should have inflection points (and, if so, how many) must be made by the analyst on the basis not only
of the appearance of the plotted data, but also of the analyst's understanding of the physical phenomena

represented by the data. The decision becomes less difficult and more obvious as the number of data increases

and as the scatter of data from an assumed curve decreases. Conversely. as the physics of the situation

is better understood, fewer pairs of measurements are needed to establish the faired curve. The criteria

used in fairing are also optional; usual human judgment is to minimize the sum of the absolute value of

the distances of the plotted points from the faired curve. If rectangular Cartesian coordinates are used, these

distances may be measured in a vertical direction, in a horizontal direction, or in a direction normal to
the curve.

Once the form of the curve has been chosen, it may be convenient to represent it by an analytical formula.

However, the criterion used to select the original graph may no longer be convenient for an analytical

treatment; usually, considerations of mathematical convenience dictate that, to deduce an analytic formula,

the least-squares criterion should be used and that it should be applied to only one of the variables. This

subject will be treated more completely in later sections.

4.3 Equations. The operation of finding an analytical expression for the relationship between x and y

is actually the operation of determining the most probable values of the constants of an assumed empirical

equation. There is no mathematical procedure that will tell in advance what form of equation is followed

by a given set of data. [Note N4.3.1] Mathematics can serve only to tell how closely an equation of assumed

form fits the actual data. The selection of the form of the equation to be assumed requires human judgment;

that judgment is made from a mental comparison of the faired curve with the graphs of known analytic

functions, from a physical intuition concerning the relationship between x and y, or by trial and error. The

judgment is also influenced by whether the range of x that is of interest does or does not extend beyond

the range of the data.

Once the form of the equation has been selected, presumably for use with future sets of experimental

data, the criterion for selecting the best fit (i.e., the most probable values of the constants in the equation)

must be specified. The least-squares criterion is the most common choice because of its convenience--one
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minimizesthesumof the squares of the deviations of the measurements from the value predicted by the
equation. Another criterion is the Chebyshev criterion--one minimizes the maximum deviation of the

measurements from the value predicted by the equation. For any criterion, the range of the variables over

which the criterion is to be applied must be specified. An equation which has been computed to provide
the best fit over a specified range may not generally be used to extrapolate beyond that range [Note N4.3.2].

After the best-fit criterion has been chosen, some additional decisions must be made before the formal

equation-fitting operation can be started. These decisions, discussed in Sec. 3.15, require assumptions of

the relative weights to be assigned to the various experimental observations.

The trial selection of the form of equation to be fitted to a set of data is often made by inspection of

the plot ofy(x) and by the pragmatic consideration of expediency of mathematical operations. For example,

1. if y(x) is always positive and symmetrical about the ordinate x = x0, then y(x) should contain
only even powers of (x - x0).

2. ify(x) lies only in the first quadrant, is monotonic, and is concave upward, a formula of the form

(4.3-1) y = _,_aix i (i = 0,1,2 .... )

may be appropriate.

3. ify(x) lies only in the first quadrant, is monotonic, and is concave downward, a formula of the form

(4.3-2) y = _ai(x/x) _ (i = 0,1,2 .... )

also may be appropriate.

4. if y(x) lies in the first and third quadrants, is symmetrical about the origin, and is monotonic,

an expression like Eq. (4.3-1), with only odd values of i, may be appropriate.

5. ify(x) lies in the first quadrant, is monotonic, and appears to approach a horizontal asymptote, then

(4.3-3) y= (_ a/x')/(1 + _ b,x')
0 I

is a general form that may be appropriate.

6. if y(x) has a point of inflection, any assumed polynomial must be at least of the third degree.
7. if y(0) = 0, then a0 should be zero in Eqs. (4.3-1) to (4.3-3).

4.4 The case of both variables subject to error. When both variables, x and y, are subject to error, the
fitting of an appropriate graph poses no serious problem; a convenient criterion is to minimize the sum

of the visually measured distances of the plotted points from the faired curve.

However, when the curve fitting is to be performed analytically, by means of some chosen form of equation,

the required mathematical operations are usually complex and inconvenient, and require an advance estimate

of the rms errors of each of the variables. It is more expedient to assume that only one of the variables
is subject to error and that the measurements of the other variable are exact. This latter variable is chosen

as the one which is believed to have the smaller fractional rms error. In this text, x will designate the variable
which is assumed to be without error.

An important exception occurs when there is a linear relationship between x and y. It then remains convenient

to treat both x and y as being subject to error and to describe mathematically the correlation between the
two variables. Correlation is treated in Sec. 4.12.

4.5 Criteria for best fit of a curve or equation. The fitting of a curve or equation to a set of measured

points (xi,yi) depends on what prior assumption is made concerning the relative reliability, or weight, of
the individual points and, as a practical matter, on whether graphical or analytical methods are chosen.

In fairing a curve through plotted points, one seeks to minimize the sum of the visually measured distances

of the points from the curve, treating all distances as positive. The operation is analogous to taking the

§4.3-4.5
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arithmeticmeanof asetof data. The nature of the coordinate system and the relative fractional accuracy

ofx and y determine whether the distances will be measured in the direction of x, or of y, or of the normal

to the curve at that point. For example, if rectangular Cartesian coordinates are used, then

(a) If the a priori uncertainties in x and y are represented by distances of comparable magnitude,

deviations should be measured along the normals to the curve.

(b) If the a priori uncertainty in y is represented by a much larger distance than is the uncertainty
in x, deviations should be measured in the direction of y.

A graphical construction is particularly advantageous when both x and y may have appreciable errors.

In fitting an equation to a set of points, mathematical convenience requires that x be presumed to be without
error. One then seeks to minimize the sum of the appropriately weighted squares of the differences between

the measured value and the value predicted by the equation. These differences will be termed residuals,

as in Sec. 3.14, so that if the fitted equation is y =f(x), then, for any point (xi,yi),

(4.5-I) vi = f(xi) -- Yi.

Case 1. If each Yi is presumed to have substantially the same absolute uncertainty (6y = constant), then

we seek f such that

(4.5-2) _v/: = a minimum.

(All summations not otherwise identified are over the index i. )

Case 2. If each observation Yi is presumed to have the weight w_, then we seek f such that

(4.5-3) _v2iwi = a minimum.

Case 3. If each observation Yi is presumed to have the same fractional uncertainty (6y/y = constant), then
the weight of each observation is 1/y 2, so that we seek f such that

(4.5-4) _v_ (1/y_) = a minimum.

In an alternate phrasing, we could have defined a relative residual

(4.5-5) V/ = [f(xi) -Yi]/Yi

and sought f such that

(4.5-6) _V 2 = a minimum.

Equations (4.5-1) and (4.5-5) are comparable to Eqs. (3.14-1) and (3.19-8).

If there are n pairs of data (i = 1,2 ..... n) and iff(x) has m constants whose most probable values are

to be determined, then a mathematical measure of how wellf(x) agrees with the measured points is given
by eol or Eol, where

(4.5-7a) (n-m)e_l = _v/2 for Case 1

(4.5-7b) (n-m)e21 = _vi2wi for Case 2

(4.5-7c) (n-m)E2t = _V 2 for Case 3

= _(v_/y_) for Case 3
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Note that the dimensions of eo_ are different in the three cases. In Case 1, Eq. (4.5-7a), the dimensions

of eol are the dimensions ofy ; in Case 2, Eq. (4.5-7b), the dimensions of eoj are the dimensions ofy_w;
in Case 3, Eq, (4.5-7c), Eat is dimensionless.

In the case of graphs, the definition of Eq. (4.5-1) is usable when uniformly spaced rectangular coordinates

are used; then, if all Yi are presumed to have the same absolute uncertainty, the nature of human perception

requires that the criterion (4.5-2) for Case 1 be replaced by

(4.5-8) _]vi[ = a minimum.

When logarithmic coordinates are used, and all Yi are presumed to have the same fractional uncertainty,

the definition of Eq. (4.5-5) is usable and the criterion (4.5-6) for Case 3 must be replaced by

(4.5-9) _tV_I = a minimum.

Criteria (4.5-8) and (4.5-9) for graphs usually do not produce results that are significantly different than

those that would be produced by the criteria (4.5-2 and 4.5-6) that they replace.

Case 2 cannot usually be handled satisfactorily by graphical means if wi is neither constant (so that

uniformly spaced rectangular coordinates may be used) nor proportional to 1/y 2 (so that logarithmic

coordinates may be used), unless special graph paper is employed. An exception is provided by the use
of error bars or rectangles, as described in Sec. 4.7.

Approximate formulas, comparable to Eq. (4.5-7), that provide a measure of how well the graph and

the original data agree with each other, are

(4.5-10a) n*eal = _lviJ

(4.5-10b) neEal = _,_IVi]

where eal and Eat are termed average errors.

There remains the question of how to choose among various forms of the function f, if an equation is

to be fitted, or among various shapes of curves, if a graphical solution is sought. There is no rigorous

mathematical answer to this question; the answer is subjective and depends on the analyst's understanding

of the physics of the phenomenon being studied and of the quality of the experiment. It is commonly felt
that the simplest form of equation or curve should be sought. Gauss's criterion was to choose that form

of f which yielded a minimum value of eol or Eol for a given m. Ordinarily, Col can be made smaller by

making m larger. Obviously, in the extreme condition, Cot can be made zero if m is chosen equal to n;
the curve then passes through each datum, with the implication that each measurement is perfectly accurate.

Some practical rules of thumb that have been used are that a larger value of m should not be chosen unless

eol or Eol is thereby reduced by a factor of at least 1.5, and that m should not exceed n/4 unless previous

experience has demonstrated that f can be reliably defined by fewer than 4m measurements (e.g., iff is
known to be a straight line).

§4.5-4.6

4.6. Accuracy of a curve or equation. The quantities eol or Eol in Eq. (4.5-7) are measures of how

well the curve or equation agrees with the measured data already obtained. They have clear, simple meanings

only when each measurement is deemed to have equal uncertainty (Case 1) or equal fractional uncertainty
(Case 3). Their practical meaning may not be obvious if the measurements have other weights.

However, in future use of the curve or equation to estimate the most probable value of y(x) for any

given x, the uncertainty in y(x) is given by eoo(y) or Eoo(y), where
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(4.6-1a) e_o(y) = e2ol/n for Case 1

(4.6-1b) e_(y) = e_l/_-itt' i for Case 2

(4.6-1c) E_(y) = E2_l/n for Case 3

The dimensions of eoo(y) are always the dimensions of y; Eoo(y) remains dimensionless. The quantity

eoo(Y) has a clear, simple meaning even for weighted observations of any type.

Whereas eol and Eol hardly change when n increases considerably, the measures eoo(y) or Eoo(y)

decrease in proportion to _/n in Cases 1 and 3, or to _/(_wi) in Case 2. Thus, the accuracy of future

estimated values of y(x) increases appreciably with the number of data that were used to determine f(x)

originally.

By similar reasoning, the uncertainty in future estimated values of y by means of a graph is given by

eoo(y) or Eao(Y), where

(4.6-2a) eao(y) = eal/_/n

{4.6-2b) Eao(Y) = Eo_/Vn

and where eaj and Eal are given by Eq. (4.5-10).

4.7 Error bars and rectangles. The graphical construction of a curve through a set of points plotted on

rectangular coordinates may be facilitated by constructing, around each point, a rectangle whose width and
height represent the estimated probable, average, or rms uncertainties in x and y at that point. If only y

has appreciable error, the rectangle is replaced by a vertical bar. The simplest curve that passes through

all the rectangles or bars is likely to provide an adequate representation of the relation between x and y.

The generalization to other coordinate systems, such as the polar, is apparent. The size of the error rectangle

or bar varies inversely with the weight which that point should have in defining the most fitting curve.

An error bar may be used for a different purpose in the graphical presentation of results obtained by

graphical or analytical means. It may be erected at each measurement point, or merely at one point anywhere

along the graph, to represent the value of eol (y) or E,i (y) deduced from the operations treated in Sec.

4.5. In this usage, the bar represents a conclusion rather than an a priori assumption.

Example 4.7. An oscillograph is used to record the decay of voltage E, from an initial value

E 0, when a capacitor C is discharged through a resistor R. The applicable physical law is

E = E o exp I-t/(RC)]. The data are to be replotted by using the dimensionless variables y = E/Eo

and x = t/(RiCl), where Rl and Cl are the nominal values of R and C. The a priori uncertainty
in E is 0.06 E0.

If the a priori uncertainty in x is negligible, and the data are plotted on uniformly spaced rectangular

coordinates, the graph will appear as in Fig. 4.7(a), wherein each point is represented by a vertical

error bar. If there is also an uncertainty in x of magnitude 0.04., the graph will appear as in Fig.

4.7(b), wherein each point is represented by an error rectangle. The advantage of the constructions

of Fig. 4.7(a) and Fig. 4.7(b) is that each point has equal weight because each error bar or error
rectangle is of the same size.

If the uncertainty in x is 0.04, and the data are plotted on semilog paper, the graph will appear

as in Fig. 4.7(c). The advantage of this construction is that it is known in advance that the graph

should be a straight line. However, at small values of y, the vertical height of error bars or rectangles
becomes large and also asymmetrical about the plotted point.
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(a) 6x = O. 6y = constant

(b) /_x = constant. 6y = constant

(c) fix = constant, 6y = constant

Figure 4.7.--Uses of error bars

and rectangles.

4.8 Linearized graphical constructions. It is usually advantageous to deal with a linear relation between

the independent and dependent variables, because then moving a straightedge about on a sheet of graph

paper permits visual estimation of the most fitting straight line. If a linear relation does not exist, then

transformation of variables may serve to produce a linear relationship. Such transformations must always
be used with full consideration of the changes they make in the error rectangles or bars.

To facilitate the use of linear relations between transformed variables, special graph papers are available.

In addition to the common-logarithm scales, there are also papers which provide a scale of reciprocals,

of the logarithm of the logarithm, or of Gaussian probability (If(e)ede, where f(e) is given by
Eq. (3.18-1)). 1

A particular advantage of the use of such a special scale is that it provides a guide to the planning of

experiments: it is desirable that data be taken at values of the independent variable that are equally spaced
on the scale representing that variable. 2

Some examples of the transformation of variables to yield a linear relationship are listed here:

1. If the variables can be arranged or transformed to produce a straight line on uniformly spaced
rectangular coordinate paper, the y-axis intercept b and the slope m define the relation

(4.8-1) y =mx + b.

IFor example, the kinematic viscosity v of lubricating oils as a function of temperature T often forms a straight line on graph paper
whose coordinates are proportional to log T and to log log v.

2Some experimenters prefer to have slightly closer spacing near the ends of the range of measurement.
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2. If the variables can be arranged or transformed to produce a straight line on semilog paper

[Note N4.8] with uniformly spaced x-coordinates, and if

(a) the intercept on the log y axis is log B,
(b) xl and x2 are the abscissa of two points for which y(x2) = 10ey(xl),

then

(4.8-2a) y = B exp (x/M)

where

(4.8-2b) M= (x2 -xl)/ln 10.

For example, in Fig. 4.7(c), B = 1 and M = -1.

3. If the variables can be arranged or transformed to produce a straight line on log paper whose

horizontal and vertical decades are of equal length, and if

(a) the line passes through the point (log xl, log Yl)

(the scale markings for this point are xl and Yt)

(b) the slope M of this line is taken as the ratio between the lengths (in cm or other unit of length)

of the vertical and horizontal legs of a right triangle erected on the line with the line as hypothenuse,
then

(4.8-3) y = (yl/x_)ex u.

4. If the intercept Y0 on the y-axis of rectangular Cartesian coordinates is clearly defined, and there

is also a clearly defined horizontal asymptote y,,,, one of the transformations

(4.8--4a)

or

(4.8--4b)

Y = (Y - Yo)/(Y,, - Yo)

Y= (Y - Ym)/(Yo - Ym)

may lead to a linear relationship between x and Y.

5. If the intercept x 0 on the x-axis is clearly defined, and there is also a clearly defined vertical

asymptote xm, one of the transformations

X= (X- Xo)/(x.,,- Xo)(4.8-5a)

or

(4.8-5b) x = (x- x.,)/(Xo- x.,)

may lead toa linearrelationshipbetween X and y.

6. Ify(x)on uniformlyspacedrectangularcoordinatesismonotonic,hasno inflections,and approaches

a horizontalasymptoteasx decreases,plotY = l/y versusx on uniformlyspacedrectangularcoordinates.

Ifa straightlineof the form

Y=mx+b
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results, then

(4.8-6a) y = ax/(l + cx)

where

(4.8-6b) a = 1/b, c = ma.

7. If y (x) on uniformly spaced rectangular coordinates passes through the origin, is monotonic, has

no inflections, and approaches a horizontal asymptote as x increases, plot Y = 1/y versus X = 1/x on

uniformly spaced rectangular coordinates. If a straight line of the form

Y=mX+b

results, then

(4.8-7) y = x/(bx + m).

8. If a plot on semilog paper (with logarithmic y-scale) shows only a slight curvature, and there are

two points (xl,yl) and (x3,y 3) near the extremities of the curve which have good accuracy,

(a) compute x2 = (xj + x3)/2,

(b) find Y2 = y(X2) on the curve,
(c) compute YO = (YlY3 -- Y_)/(Yl + Y3 -- 2y2).

Then a plot of y - Y0 versus x on semilog paper may yield a straight line. If it does, follow example 2

of this listing.

9. If a plot on log paper shows only a slight curvature and there are two points (xl,yl) and (x3,y 3)
near the extremities of the curve which have good accuracy,

(a) compute Y2 = _(YtY3),

0a) find x 2 = x(y2) on the curve,
(c) compute Xo = (xlx3 - x2)/(Xl + x3 - 2x2).

Then a plot of y versus x - x0 on log paper may yield a straight line; if it does, follow example 3 of this

listing.
Alternatively,

(a) compute x2 = _(xtx3),

(b) find Y2 = y(x2) on the curve,
(c) compute Y0 = (YlY3 - Y2)/(Yl + Y3 - 2y2),

and, if a plot of y - Y0 versus x on log paper yields a straight line, follow example 3 of this listing.

10. Ify(x) plotted on uniformly divided rectangular coordinates passes through the origin and shows

only moderate, monotonic deviation from the tangent at the origin, a plot of Y = y/x versus x may yield

a straight line

Y=Mx+B.

Then

(4.8-8) y = Bx + Mx 2.

4.9 Linear approximations of a quadratic. Measures of nonlinearity. Many nominally linear instruments

(i.e., instruments whose indication is supposed to vary linearly with the quantity being measured) actually

show a slight nonlinearity, so that the relation between the variables is more closely represented by a quadratic
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TABLE 4.9.--PARAMETERS OF SIX METHODS OF DESCRIBING NONLINEARITY

Parameler Method

Zero-based Minimum errorChord

A B C

(min. LE) (rain. eo)

m I 1 + (12--8X/2)A ! +A
b 0 0 0

xl

x 2 1/2 x/2 - 1 3/8

x3 2(x/2 - 1) 3/4

Iv(O)l 0 0 0
Iv(x2) [ A** (12 -- 8_-)A -- 0.69A** 9A/16""
Iv(l)[ 0 (12- 8v_)A, 0.69A o* A

e2 8A2/15 16(78 -- 55V_)A2/15 A2/5
eo -0.73A _0.48A ,,. 0.45A
ea 2A/3 4(37x/2-- 52)A/3 19A/48
ea _0.67A -0.43A ., 0.40A

*" Limit of error (LE)

D E

(rain. eo) (rain. LE)

1 1
2A/3 A/2

(_3- I)/6 (x/2- l)/4

I/2 I/2

(x/3 + 1)/6 (,/2 + 1)/4

24/3" * /,/2" *
4/3 4/2 *"

2A/3*" A/2 °•

8A2/90 7A2/60
--0.30A _- 0.34/_

4_/'3A/27 (2X/2-- I)A/6
-- 0.26A _ 0.304

F

(min. e_)

I
3A/4

1/4

1/2

3/4

3,_/4..

A/4
3A/4* '

23,_2/240
,,,0.31A

4/4
0.254

1! (a) /_//

[ /'-_:///

[
0.5 x

I

Y

0
x2 x3

XI X'_ X3

fa) Chord method
(b) Zero-based
methods

(c)Minimum-error
methods

Figure 4.9.--Methods

of describing
nonlinearity.
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equation. In such cases, the manufacturer or the user may choose, for convenience, to approximate the

relation by a straight line, and to provide some measure of the limit of error (or average error, or rms

error) that may be expected by use of the approximation. The description of the error may be a statement

like "nonlinearity does not exceed p percent of span." Some of the criteria that are commonly used to

select the straight line approximation will be treated here, as well as the measures of nonlinearity that are
associated with them.

It will be assumed that the relation between the variables is represented by a quadratic curve that passes

through the points (Xo, Y0) and (Xm, Ym) at the extremes of the instrument's range. To a user, it is desirable

that X represent instrument indication and Y represent the physical variable that the indication is supposed

to represent. However, a manufacturer may prefer to reverse the roles of X and Y. In any event, X will

be treated here as the independent variable. For convenience of presentation, we introduce the transformations

(4.9-Ia) x = (X- Xo)/tXm - Xo) 0_x_l

(4.9-Ib) Y = (Y- Yo)/(Y,n - Yo) 0_y_l

so that the relation between x and y appears as shown in Fig. 4.9 and
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(4.9-2) y(x) = x + 4x( 1 - x)za

where A is the difference, at abscissa x = 1/2, between y(x) and the chord through the end points; A is
also the maximum difference between the curve and the chord.

The quadratic parabola of Eq. (4.9-2) may be approximated by a straight line whose general equation is

(4.9-3) y =mx + b

where the parameters m and b are chosen in accordance with some criteria selected by the instrument user.

Each straight line leads to a residual

(4.9-4) v(x) = y(x) -- (mx + b)

as the difference between y(x) in Eq. (4.9-2) and the chosen straight-line approximation, Eq. (4.9-3).

Table 4.9, together with Fig. 4.9, shows six different approximations that may be used, the salient features

of each, and the values of the various measures of nonlinearity that describe how well the approximation

resembles the actual quadratic parabola. These measures of nonlinearity usually take one of the following
forms:

(a) A statement of the maximum value of IvI, the limit of error (LE), in the range of the instrument

(b) A statement of the average value e_ of Iv] over the range of the instrument

(c) A statement of the rms value eo of v over the range of the instrument.

As indicated in Sec. 3.5, each of these measures can be expressed in units of y, or as a percentage of

the instruments' span or full-scale value. When the dimensionless representation of Eq. (4.9-1) is used,

all three measures are necessarily dimensionless.

The six approximations treated in Table 4.9 fall into one of three categories:

(I) Approximation A, represented in Fig. 4.9(a), is a chord specified to pass through both end points.

A specification that reads "the deviation of the actual calibration curve from a straight line through

the end points shall not exceed 1 percent of the instrument's span" is more difficult to meet than

if the "1 percent" had been used in any of the other five approximations. Consequently, this
specification leads to a higher instrument cost.

([I) Approximation D, E, or F, represented in Fig. 4.9(c) by a straight line parallel to the chord through

the end points, but offset vertically by an amount that depends on the criterion chosen, places

the fewest demands on the manufacturer, thereby minimizing costs, but requires that the user

incorporate both parameters m and b into his mathematical analysis of the data. The actual curve

and the approximation intersect at abscissae x_ and x 3, where v is zero. Maximum positive and

negative values of the residual occur at x = x2 = 1/2, at x = 0, and at x = 1.
(HI) Approximations B and C, represented in Fig. 4.9(b), are each a straight line through the origin.

They lie between categories I and II in the demands placed upon the manufacturer and the user.

The actual curve and the approximation intersect at abscissa x = x3, where v is zero. Maximum

positive and negative values of the residual occur at x = 1 and at some intermediate abscissa

xmx 2.

4.10 Analytic determination of the constants of an equation. The most probable values of the constants

al,a2 ..... a/ ..... a,, of an assumed equation relating several variables x,y,z .... can be determined by purely
analytic means, if the criterion for defining the most probable values is defined. This criterion is usually

taken as the requirement that the sum of the appropriately weighted squares of the residuals shall be a

minimum; the procedure is then termed "the method of least squares." Some other criteria were illustrated

in Sec. 4.9, in application to an assumed linear relationship. When a nonlinear formula is assumed, application

of these other criteria often becomes awkward, while use of the method of least squares remains mathematically
convenient. This convenience is a reason for the method's popularity. It will be used exclusively in the

applications that will henceforth be treated.

If a measured variable s is dependent on a number of independent variables x,y,z .... and a number of

as yet undetermined constants ay (where j = 1,2 ..... m) so that
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(4.10-1) s = F(x,y,z ..... al,a2 ..... a) ..... am)

and if the weight of each measurement si of s is wi, then the least-squares method is used to determine

the values of the as which make

(4.10-2) S = _(Fi - si)2wi = a minimum.

Here

(4.10-3) Fi _- F(xi,yi,zi ..... at,a2 ..... as ..... a,,)

and the summation is for i = 1, 2 ..... n. It is necessary that

tl_m.

(The equality sign represents the condition S = 0 because the number of undetermined constants equals
the number of measurements and, hence, of equations.)

The general method of solution, which parallels that of Sec. 3.31, is to create and to solve the set of

m simultaneous equations

(4. lO-4a) _,j - OS/$aj = 0 (j = 1,2 ..... m)

which is equivalent to the set

(4.10-4b) _Fi*(OF/Oaj)iw_ = _._si*(OF/Oaj)iwi.

This set is termed the "set of normal equations".

In the following sections, this general method will be applied to some simple situations that permit explicit

computation of the as- and of the associated measures of uncertainty. In particular, for each assumed form
of the function F, three cases will usually be considered:

Case A. The a priori uncertainty _$s in s is a constant. Then w, = 1 for all i, and it is necessary that

(4.10-5) SA = _'_(Fi - si) 2 = a minimum.

Case B.

(4.10-6)

The a priori fractional uncertainty 8s/s in s is a constant. Then the weight of each term in the
summation (4.10-2) is 1/s_ and it is necessary that

SB = _[(Fi/si) z - 1] -- a minimum.

Case C. The weight wi of each measurement si is other than unity or l/s_ Then it is necessary that

(4.10-7) Sc = _ (Fi - si) 2wi = a minimum.

For each form of F, formulas for the following quantities will be given:

1. The most probable value of each independent aj
2. The rms value co0 or E,0 of the uncertainty (absolute, or fractional) that may be expected, in future,

by use of the deduced aj, assuming that the circumstances affecting future measurements are not

different from those that governed the original measurements. The values of e,o and Eo0 will

usually be expressed in terms of an intermediate parameter eo_ or E,1, which happens to be a

measure of the difference between the original data and the value ofs calculated by using the deduced

a/s; it also happens to be Gauss's criterion for the appropriateness of the chosen functional form

of F (a smaller value implies greater suitability). [Notes N4.10.1 and N4.10.2]
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It is important to understand that the method of computation of these formulas is chosen for its mathematical

convenience and is based on the following assumptions:
1. Values of x are without error.

2. The residuals, v (Eq. 4.5-1) or V(Eq. 4.5-5), are so small that they may be treated like differentials

(dy or d(ln y)), and the methods of the differential calculus may be used.
3. The distribution of the errors (6y or 6(ln y)) is Gaussian.

The mathematical exactness of the formulas, therefore, does not necessarily imply a comparable exactness

in the description of a practical engineering situation; ordinarily, the formulas merely provide an adequate

and useful approximate description.

4.11 Examples of least-squares solutions for polynomials. The succession of these examples will represent

situations of increasing complexity. Each solution is derived by following the general procedure indicated
in Sec. 4.10. If

(a) pairs of measurements (xi, si) are taken;

(b) the relationship s = F(x) is assumed; and

(c) measurements of x are assumed to have negligible error;

solutions will be given, usually for all three cases A. B, and C, as described in Sec. 4.10.

Unless otherwise noted, the following symbolism will be used (all summations are for i = 1.2 ..... n):
For Case A (the a priori uncertainty tSs in s is constant)

(4.11-1) b_ = _x_." ck = _x_s;,' d_ = Ex,'s?.' SA = _][F(x,) - s,] 2

For Case B (the a priori fractional uncertainty 6s/s in s is constant),

k _ _(4.11-2) B_ _,(x#s?); Q = _,(x_/s,); Dk _.,x_; Sn _.,[[F(x,)/s,] - It'-

For Case C (each measurement si has weight wi),

(4.11-3) b, = _,,x_wi; c, = _x_siw,; d,. = _x_s_w,," Sc = _[F(xi) - sil2w;

Example 4.11a. If

F(x) = alx

then, in Case A, with symbolism in (4.11-1),

al = Cl/b2; e2(al) = eot2/b2,, ne2(s) = e2ol

where (n - 1)e2,l = do - alcl

=SA

[Note N4.11 ]

In Case B, with symbolism in (4.11-2),

al = C,/B2; e2(al) = E21/B2; nE_ = E21

where (n - 1)E21 = Do - ajCl = n - aiCi

=Sn

[Note N4.11]

69



_4.11

7O

In Case C, with symbolism in (4.1 1-3),

"_ 2 .
al = cl/b2," eO(al) = eol/b2,

where

Example 4.1lb. If

2
bo'e_(s) = eoj

(n - 1)e2ol = dO - alcl

= SC

[Note N4.1 1]

F(x) = ao + alx

then, in Case A, with symbolism in (4.11-1),

ao = (b2co - blcl)/D = (Co - albl)/n; e](ao) = e21"b2/D

al = (ncl - blco)/D = (Co - aon)/bl; e2(al) = e21"n/D

D = nb2 - b2; ne_(s) = e_l

where

(n - 2)ell = do - (aoCo + alcl)

=sA

[Note N4.1 1]

In Case B, with symbolism in (4.1 1-2),

ao = (B2Co - B1CI)/D = (Co - a_Bt)/n; e_(ao) = E_I'B2/O

al = (nCl -- BICo)/D = (Co - aon)/Bff e2o(al) = E_t'n/O

O = BoB2- B_; .E_(_)= E_

where

(n - 2)E201 = n -- (aoCo + aiC1)

=sB

[Note N4.1 1 ]

In Case C, with symbolism in (4.1 1-3),

ao = (b2co - blcl)/D

al = (bocl -- bjco)/D

o = bob2- b_,,

= (Co - atbl)/bo; e2o(ao) = e_l*b2/D

= (Co - aobo)/bl; e2o(al) = e_?'bo/D

e_(s) = e2ol/bo



where

Example 4.11c. If

(n - 2)e]l = d o - (aoco + alcl)

= S c

[Note N4.11 ]

F(x) = alx + a2 x2

then, in Case A, with symbolism in (4.11-1),

al = (b4cl - b3c2)/D = (cl - a2b3)/b2," e2_(al) = e2al°ba/D

a2 = (b2c2 - b3cl)/D = (cl - alb2)/b3; el(a2) = e_l*b2/D

_ 2
D = b2b 4 b_," n'e_o = %1

where

(n - 2)e21 = do - (alcl + a2c2)

=s_

[Note N4.11]

In Case B, with symbolism in (4.11-2),

a| = (B4C l - B3C2)/D = (C 1 - a2B3)/B2; e2o(a|) = E_|eB4/D

a2 = (B2C2 - B3CI)/D = (C| - a|B2)/B3; e2,(a2) = E_lOB2/D

o = s2a, - B_; ,,.E_(s) = E_|

where

(n - 2)E 2] = n - (a|C| + a2C2)

=sB

[Note N4.11]

In Case C, with symbolism in (4.11-3),

al = (b4Cl - b3c2)/D = (cl - a2b3)/b2; e_(at) = e_l'ba/D

a2 = (b2c2- b3cl)/D = (cl - alb2)/b3; e_(a2) = e_l*b2/D

2
D = b2b4 - bZ3; bo'e_(s) = eo|

§4.11
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where

Example 4.lid. If

(n - 2)e_l = do - (alc! + a2c2)

= Sc

[Note N4.11 ]

F(x) = ao + a!x + a2x 2

then, in Case A, ao, al, and a2 are obtained by solution of the three simultaneous equations

aob 0 + a!b! + a2b2 = Co

(4.11--4) aob! + alb2 + a2b3 = c!

aob2 + a_b3 + a2b4 = c2

Also,

where

ne2(s) = e21

(n - 3)e_! = do - (aoco + alci + a2c2)

=SA

[Note N4.1 I]

In Case B, ao, ai, and a2 are obtained by solution of three simultaneous equations like those of

Eq. (4.11--4) except that the lowercase bk's and c_'s are replaced by uppercase Bt's and Ck's, because
the symbolism of (4.11-1) is replaced by the symbolism of (4.11-2). Also,

where

(n - 3)E21 = n - (aoC 0 + alC I + a2C2)

=ss

[Note N4.11]

In Case C, Eq. (4.11-4) holds, except that the bk's and ck's now have the meanings given in

(4.11-3). Also,

boe2(s)=
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where

(n- 3)eo_1= do - (aoco + alct + a2c2)

= SC

[Note N4.11]

Example 4.lie. If n points (x.si), (i = 1,2 ..... n) are given, a cubic representation

F(x) = ao + alx + a2x 2 + a3x3

is assumed, and it is required that the ordinate and slope at x_ be YI and Yi, respectively, then,

under the a priori assumption that all points have equal weight, the value of the coefficients which

satisfy the least-squares conditions, and the associated rms deviations, are given by

a3 = (blc_ -- b2co)/(blb3 - b 2)

a2 = (Co - aab2)/bl

al = Yi - 2a2xl - 3aax2t

ao = YI - Yixl + a2x_ + 2ayr_

(n -- 2)e21 = d O - a2c 0 - a3c 1

e_o(S) = eol/x/n

where the symbolism for this example is

b, = b2= b3= EtCh"Co= = do=

_i l[ (Xi -- Xl)(Xi "at- 2J£1) ; _i l[ Si - YI - Yioti

This example is applicable to the piecewise fitting of contiguous segments in order to simulate

a graphical construction by means of a French curve. In such an application, if the abscissae are

more or less equally spaced, n is usually 4 and the xi of any segment is taken as the x,_ l of the

preceding segment. }'1 and Yi of the segment are taken as the ordinate and slope of the least-squares
cubic at x._ i of the preceding segment.

4.12 Correlation between two variables when each is subject to error. If

(4.12-1) y = ao + alx

and only the measurements Yi are likely to have significant error, the criterion Col (y) is a reliable measure

of how well Eq. (4.12-1) agrees with the measured data. However, if both x i and y, are likely to have
significant error, a criterion that considers both uncertainties is the correlation coefficient r. Its formulation
in terms of the quantities given in (4.1 I-3) is
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(4.12-2) r =
boc I - blc o

[(bodo - Co)2(bob2 - b12)] 1/2

An alternative formulation that clarifies the meaning of r is

(4.12-3) r 2 = alAi

where

al is the slope dy/dx deduced when Eq. (4.12-1) is derived on the assumption that x i is without error

and each measurement Yi has weight wd

A1 is the slope dx/dy deduced when the equation

(4.12--4) x = ,40 + Aly

is derived on the assumption that y_ is without error and each measurement xi has weight wi. The for-

mula for A 1 follows from Example 4.1 lb after symbols x_ and Yi are interchanged.

In Eq. (4.12-3), the positive sign of _/r 2 is taken if al is positive, and the negative sign if al is negative.

Equation (4.12-3) thus represents the ratio of the two values of dy/dx which are obtained when one first

assumes Yi alone to have error and then assumes xi alone to have error. [Note N4.12.1]
A common use of the correlation coefficient is to determine which of several variables is more likely

to serve as a means of estimating the value of a related physical variable. The larger the absolute value

of r, the better the correlation. The maximum possible value of Jr[ is unity, which represents perfect

correlation. However, comparisons among different values of r must always be made with an appreciation

of the fact that a certain uncertainty exists in r, just as an uncertainty exists in a measure of dispersion

like eol (Sex. 3.22). When there are n equally weighted pairs of data, and Irl > 0.8, the rms uncertainty

eo(r) in r is given by

(4.12-5a)

where

(4.12-5b)

eo(r) = 13"(1 - r2)(l - r3)

13= ± l/_/(n - 3).

The positive and negative values of 13 lead to different magnitudes of e° (r). [Note N4.12.2, which refers

to Ref. 4-1]

If the relation between x and y is strongly nonlinear and requires three or more constants for its description,

the correlation coefficient must be replaced by an index of correlation O. This index is treated in Note N4.12.3.

4.13 Weight of transformed variables. If

(4.13-1) y = f(x,a,b .... )

and the most probable values of a,b .... are to be determined from n pairs of measurements (xi,yi),

(i = 1,2 ..... n), a transformation of the dependent variable may be necessary to facilitate the determination,
so that

(4.13-2) s = s(y) = F(X,A,B .... )
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whereX,A,B .... may be the same as x,a,b .... or may be simple functions ofx,a,b .... that involve no additional

unknown parameters. When such a transformation is made, an appropriate change must be made in the
weight assigned to each observation.

The weight of an observation is always inversely proportional to the square of the estimated uncertainty

in the dependent variable. In the method of least squares, one seeks to minimize the sum of the appropriately

weighted squares of the difference between the measurement and the value predicted by an assumed equation.
Thus, for Eq. (4.13-1),

(4.13-3a)

where

(4.13-3b)

_-,[f(xi,a,b .... ) - yi]2w, = a minimum

(4.13--4a)

where

(4.13--4b)

wi - w(yi) = weight of Yi.

(All summations are from i = 1 to i = n.) For the transformation (4.13-2), it is necessary that

_-t[F(Xi,A,B .... ) - si]2Wi = a minimum

(4.13-6a)

or

(4.13-6b)

Wi E W(si) = weight of si

= (weight of yi)/(si') _

and

(4.13-5) si' _- (ds/dy)i.

The value of the minimum is a measure of how well the assumed function fits the data. In the case of

Eq. (4.13-1), the quantities e_t or Eol given by Eq. (4.5-7) provide a measure of the fit. For future use

of Eq. (4.13-1), the rms uncertainty in y is given by e_o(y) or Eoo(y), where

(n - m) (_,wi)e_(y) = _[f(xi,a,b .... ) - yi]2w_

(n - m)E_(y) = _,_[[f(xi,a,b .... ) /Yi] - 1] 2

the latter equation applying to the case of equal a priori fractional uncertainty in the value of Yi.

If the data Yi fitf(xi,a,b .... ) exactly, then Coo(y) = 0 so that any choice of wi will lead to the same value

of the constants a,b ..... The values of e_o(y) and a,b .... become increasingly dependent on the choice
of w_ as the scatter of the data increases.

Example 4.13a. If s = In y

so that

then

(1)

s' = l/y

if, a priori, _Sy= a constant, the weight of si, by Eq. (4.13-4b), may be taken as

Wi= 1/(1/y_) 2=y_;

§4.13
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(2) if, a priori, 6y/y = a constant, then, since

6y = y × (a constant) ;

the weight of Yi is l/y_ and the weight of si is, by Eq. (4.13-4b),

IV, = (llyi)21(llyi)2= 1 ;

(3) if, a priori, Yi has weight wi, then

= w,y .

Example 4.13b. If s = log y

so that s' = (l/y)/ln 10

then, since In 10 is merely a constant, the values of W, in Example 4.13a also may be used for

this example.

Example 4.13e. If y = _2

and the most probable value of a is to be determined from a number of measurements (xi,Yi) on

the a priori assumption that 6y is constant, then Example 4.13a leads to

_(ax 2 - In y)2y2 = a minimum

so that

a = _(x2y2"ln y)/_(x4y 2)

(n - 1)e21 -- _(y*ln y)2 _ a_(x2y2.1n y)

n.e2 (y) = e21

Other examples appear in Sec. 4.14.

4.14 Examples of least-squares solutions using transformed variables. In this section, some examples

will be given of least-squares solutions for functions y -- f(x) where, for each pair of observations (xi,yi),

(i = 1,2 ..... n), the dependent measurement Yi is assumed apriori, to have a weight wi. Two special cases
are readily derived from this more general case:

A. If all measurements of Yi are presumed to have the same uncertainty, then one may set all w i equal
to unity, noting that, thereby, _.wi = n. (All summations are from i --- 1 to i = n.)

B. If all measurements of Yi are presumed to have the same fractional uncertainty, then one sets
wi = 1/y2i, noting that, in this case, I_w/y 2 = n.

Group L Two undetermined constants. Linear relations. In this group of examples, the relation

(4.14-1) y = f(x,a,b)

will be transformed into the linear relation

(4.14-2) s = A + BX

and the residuals
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TABLE 4.14.2.--TERMS IN LEAST-SQUARES SOLUTIONS FOR SOME
FUNCTIONS WITH THREE UNDETERMINED CONSTANTS

Example: (a) (b) rc)
Formula: y = aotbx+ca2 y = aot_/x)+_c/_) v = a/( I +bx +cx 2)

a

b

c

bj(j=Oto4)

c)(j = 0 to 2)
a0

$

X

w

e2o(a)/e2.t(s)

e](b)le2ol (s)

e2(c)/e_l (s)

_A ¢A 1/A

B/ln c_ B/ln ol B/A

C/In c_ C/In el C/A

_wxJsa _._" /xJ F.wxJ>a
F'wxJy2In 3" I:(w?,,21ny)/xJ SwxJy 3

_v.9,2ln2y 5_wy21n2y ]_w?,_

In y In y I/y
x i/x x

a2(b2b4-b_)lD a2(b2b4 -b_)/D (b2b4-b23)/(DA 4)

(bob,-b2_)/(Dln:et) (bob,-b_)/(Dln2et) =,(b4do-_)/(DAa)

(bob2-b_)/(DIn2a) (bob,.-_)/(Dl#a) ==(b2do-_)/(DAa)

Procedure: Given a set of (xi, Yi, wi),

I. calculate the b., 's, c: 's, and do from this table;
2. calculate A, B, C by solving Eqs. (4.14-10);
3. calculate a, b, c from this table.

If desired,

4. calculate eot(s) from Eq. (N4.14-11) in Note N4.14.2;

5. calculate eo(a), e.(b), e.(c) from this table. (D is the 3rd-order determinant of

the coefficients (the bj's) of (4.14-10).)

(4.14-4a)

(4.14--4b)

where

(4.14-5)

and

(4.14-3) Vsi - V(Si) = A + OXi - s i

will be assigned appropriate weights W i in accordance with Sec. 4.13.

The constants A and B are given by

A = (b2co - blcl)/D

B = (boc I - blco)/D

o = bob2-

(4.14-6) bo= _W,.; b,= _W.,Xi; b2 = _-tWiXi2;,Co= _W:i; ct= _-eWiXis;

Explicit formulations of these summations for each example are listed in Table 4.14.1, which also lists
expressions for a and b and, as a matter of incidental interest, the transformed variables s, W, and X. [Note
N4.14.1] For ease of tabulation, the index subscript i has been omitted from x, y, and w in the summations.
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Group II. Three undetermined constants. In these examples, the relation

(4.14-7) y = f(x,a,b,c)

will be transformed into the relation

(4.14-8) s = A + BX + CX 2

and the residuals

(4.14-9) vsi -- v(si) = A + BX i + CX 2 - Si

will be assigned appropriate weights in accordance with Sec. 4.13.

The constants A,B,C are obtained by solution of the simultaneous equations

Abo + Bbl + Cb2 = Co

(4.14-10) Abl + Bb 2 + Cb3 = cl

Ab2 + Bb3 + Cb4 = c2

where the b's and c's are listed in Table 4.14.2 for each example. The transformed variables s, W, and

X are also listed, for incidental interest [Note N4.14.2]. For ease of tabulation, the index subscript i has
been omitted from x, y, and w in the summations.

4.15 Least-squares solution for a general polynomial. If one assumes

(4.15-1) y = ]_a_ k (k = 0,1,2 .... m)

and the most probable values of the coefficients ak are to be determined from n pairs of measurements

(xi,yi), (i = 1,2 ..... n), where n _> m and each measurement has weight w i [Note N4.15.1], then the

coefficients ak may be determined by the following procedures:

With all summations in Eq. (4.15-2) representing summations from i = 1 to i = n, we define

(4.15-2a) by = _wet! (j = O, 1..... 2m)

(4.15-2b) cj = Y]w/x_yi (j = 0,1 ..... m)

(4.15-2c) do = _wy_

and construct the set of (m + 1) equations (the "set of normal equations")

aobo + alb_ + ... + aebk + ... + arab,, = Co

aobl + alb2 + ... + at,bk+t + ... + ambm+l = cl

(4.15-3) aobl, + albk+l + ... + aeb2k + ... + ambra+k = ck

aobra + alb,,,+l + ... + akbra+k + ... + a,nb2,n = ern

§4.14-4.15
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The solution of this set yields the (m+ 1) constants ak

The uncertainty eoo(y) is given by

(4.15-4) e_o(y) 2 . " eol (y)= eal/bo, e,i -

(k = 0,1 ..... m). [Note N4.15.2]

where

(4.15-5a)

(4.15-5b)

m

(n-m-l)eol2=do - _._ akck
0

n

= _--d WiVi2

o

[Note N4.11]

Example 4.15. A quadratic parabola

y = ao + alx + a2x2

is to be fitted to the four points (xi,yi)= (0,1), (1,0.368), (2,0.135), (3,0.050) in the interval
0_<x<3. Then

A. If each measurement y, is presumed to have equal uncertainty, so that wi = 1, the solution is

y = 0.988 - 0.719x + 0. 1368x 2 ± 0.03.

B. If each measurement Yi is presumed to have equal fractional uncertainty, so that w i = 1/y_,
the solution is

y = (0.895 - 0.585x + 0.1013x2) (1 .4- 0.08).

The numbers following the 4- sign represent e,o(y) in case A and E,o(y) in case B.

These two parabolas happen to be approximations to the curve

y = exp (-x)

in the x-interval 0 < x < 3. They are not useful outside that interval.

4.16 Least-squares solution for the general case of linearly related undetermined constants. Assume that

(4.16-1) s(x) =

m

E a_.fk(x)
k=l

where each j_ is a function of x that contains no undetermined constants, that there are n pairs of
measurements (xi,si) (i = 1,2 ..... n), and that the ith measurement has weight wi. (If all measurements are

presumed to have equal uncertainty, set w i = 1 and note that Iiwi = n; if all measurements are presumed
to have equal fractional uncertainty, set wi = 1/s_and note that l:wff/2 = n. ) All summations not otherwise
identified will be from i = 1 to i = n. Let

(4.16-2) f_" " fk(xi)
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and construct the set of m equations

(4.16-3)

atbll + a2b12 + ... + akbl_ + ... + amblm = c l

alb21 + a2b22 + ... + a_bEk + ... + amb2m = c2

albkl + a2bk2 +... + akb_ +... + amb_ = ck

alb,nz + a2bm2 + ... + akbm_ + ... + ambmm = c m

where

(4.16--4a) bjk = _w_d_, _

(4.16--4b) cj = _w_s i

The solution of the m equations (4.16-3) yields the constants a_. The uncertainty e_o(S) to be expected
in future use of Eq. (4.16-1) is given by

(4.16-5) e_(s) _- e21/_'_.wi

where

(4.16-6)

m

2
(n-m) ea! =d0- _ akck

1

= _._wivi 2

[Note N4.11 ]

[Note N4.16]

and

(4.16-7) do = _wis2i

(4.16-8) vi = s(xi) - si

A similar analysis applies when3_ in Eq. (4.16-2) is a function of one or more independent variables

that are themselves assumed to be without error. The procedure is illustrated by the examples that follow;
the indicial nomenclature of Eq. (4.16--4) will be changed to suit the particular example.

Example 4.16a. Suppose that the ._ are the Chebyshev polynomials

J] = To= 1;A = Ti =x, f3 = T 2 --2X 2- 1; A = T3 =4x 3 --3X

and that the relation

§4.16
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S ----a I + a2x + a3T 2 + a4T 3

is used to describe the temperature s measured by a W5Re/W26Re thermocouple, in the temperature
range 1000 _< s < 2200 K, where x is the nondimensional representation

x = (2X- X_ - X2)/(X2 - Xj)

and X = emf, in mV, generated when the hot junction is at s kelvin and the cold junction is at 300
kelvin.

Xi = value of X when s = 1000 K

X 2 = value of X when s = 2200 K.

The calibration data used by the manufacturer in 1974 lead to the five points (xi,si)

(-1,1000); (-0.5,1260); (0,1540); (0.5,1840); (1,2200).

If each of these points has equal weight, the values

al = 1568; a2 = 596; a3 = 32; a4 = 4

will yield future measurements of s with an uncertainty

eoo (s) = 0.7 K

if there is no change in thermocouple characteristics.

Example 4.16b. If there are n sets of observations (xi,yi,si) , where i = 1,2 ..... n, and one assumes
that

(4.16-9) s = ao + alx + a2y

and that each observation si has weight w_, then the constants a0, a_, a2 are obtained by solution
of the simultaneous equations

(4.16-10)

booao + bloal + bola2 = Coo

bloao + b20al + blla2 = c10

bolao + btlal + bo2a 2 = Col

where

(4.16-11) bit = _w'_iy_i; cj_ = _wisixJiyki

and all summations are from i = 1 to i = n. The uncertainty eoo(s) to be expected in future use
of Eq. (4.16-9) is given by

(4.16-12a) e_(s) 2= eot/boo

where
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(4.16-12b)

(4.16-12c)

2
(n - 3) e,i = do - (aocoo + alcto + a2coi)

=

(4.16-12d) do = wis_

(4.16-12e) vi = s(xi,yi) - si

[Note N4.1 1]

If all measurements are presumed to be of equal weight, then w, may be set equal to unity in

(4.16-11), noting that boo = n.

If all measurements are presumed to have the same fractional uncertainty, then (4.16-I1) may

be replaced by

___ j k 2.(4.16-13) bjk _x_i/s_,

and (4.16-12) may be replaced by

(4.16-14a)

(4.16-14b)

(4.16-14c)

(4.16-14d)

E_o(s) = E_I/boo

(n - 3) E_l = n - (aocoo + alclO + a2col)

=

Vi = [s(xi,yi)/si] - 1

[Note N4.11 ]

Example 4.16c. If there are n sets of observations (xi,y,,si), where

i = 1,2 ..... n, and one assumes that

(4.16-15) s = ao + aix + a2y + a3x'y

with each observation si having weight wi, then the constants ao,al,a2,a3 are obtained by solution

of the simultaneous equations

booao + bill + bola2 + bila3 = Coo

(4.16-16) bioao + b20ai + biia2 + b2ia3 = clo

bolao + biial + bo2a2 + bi2a3 = col

bliao + b2iai + bl2a 2 + b22a3 = Cll

where

(4.16-17) bjk = _-_wix_ki; Cjk = _w,s_x_ki

and all summations are from i = I to i = n.

§4.16
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The uncertainty eoo(s) to be expected in future use of Eq. (4.16-15) is given by

(4.16-18a) e_o(S) = e21/boo

where

(4.16-18b)

(4.16-18c)

(4.16-18d)

2
(n -- 4) eal -----d O - (aocoo + alclo + a2col + a3cl; )

= _,,w,v 2

do= Ew,s

[Note N4.11 ]

(4.16-18e) vi = s(xi,yi) - si

If all measurements are presumed to have the same weight, wi may be set equal to unity in
(4.16-17), noting that boo = n.

If all measurements are presumed to have the same fractional uncertainty, then (4.16-17) may
be replaced by

(4.16-19) bjk = _,xJiyki/s2; cjk = _dx_tyki/Si

and (4.16-12) may be replaced by

(4.16-20a)

(4.16-20b)

(4.16-20c) = _V 2

(n -- 4) E2_l = n - (aocoo + alclo + a2c01 + a3cll )

[Note N4.11 ]

(4.16-20d) Vi = [s(xi,yi)/si] - 1

Note: This procedure is often convenient for the determination of the values a, b, c in the expression

(4.16-21) s=a(l + bx)(l +cy)

although these values are not rigorously the most probable values, because the expression (4.16-21)

contains fewer undetermined constants than the expression (4.16-15). The procedure is adequate

if area2� (a3ao) is sufficiently close to unity to be acceptable for the purposes of the approximation.
Then a = ao, b = ai/ao; c = a2/a O.

Equation (4.16-21) is often a convenient form of representing the dependence of s on the variables

x and y, when the dependence is slight, and when s appears to vary linearly with each of the variables

when the other is held constant. For example, s may represent the density of a liquid and x and
y may represent liquid temperature and pressure.

Exam/de 4.16d. If there are n sets of observations (xi,yi,si) , where i = 1,2 ..... n and one assumes
that

(4.16-22) s = ao + alx + azx 2 + aay + a4y 2
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with each observation si having weight w,, then the constants ao,al,a2,a3,a4 are obtained by solution

of the simultaneous equations

(4.16-23)

booao + bloal + b2042 + b01a3 + b02a4 = Coo

bloao + b20al + b30a2 + blla 3 + bl2a 4 = clo

b20ao + b30al + b4042 + b21a3 + b22a4 = c20

bo_ao + blRal + b21a2 + b02a3 + b03a4 = Col

b02ao + b12al + b22a2 + b03a3 + b04a4 = c02

where

(4.16-24) bjk = _'wix_ki; c)k = _wisixJiY_

and all summations are from i = 1 to i = n.

The uncertainty e_o(S) to he expected in future use of Eq. (4.16-22) is given by

e_(s) = e2ol/boo

2
(n -- 5) e.l = do - (aocoo + alclO + a2c20 + a3col + a4¢02)

= Ew,v]

(4.16-25a)

where

(4.16-25b)

(4.16-25c) do = _]wgr_

vi = s(xi,yi) - s i.

[Note N4.11]

(4.16-25d)

If all measurements are presumed to have equal weight, w i may be set equal to unity, noting that

boo _ n,

If all measurements are presumed to have equal fractional uncertainty, then (4.16-24) may be

replaced by

= = ./k(4.16-26) bj, ]_x_/s_; cj, _x'iyi/si

and (4.16-25) may be replaced by

(n - 5) E21 = n -- (aocoo + alclo + a2c20 + a3col + a4c02)

=gv?

[Note N4.11 ]

(4.16-274)

where

(4.16-27b)

(4.16-27c)

§4.16
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(4.16-27d) E = [s(xi,yi)/si] - 1

Example 4.16e. If there are n sets of observations (xi,yi,si),

where i = 1,2 ..... n, and one assumes that

(4.16-28) s = ye(a o + alx + a2x 2 + a3y + a4xy)

with each observation of s having the same weight, then the constants a0 to a4 are obtained by
solution of the five simultaneous equations

(4.16-29)

aob02 + albt2 + a2b22 + a3b03 + a4b13 = Col

aobl2 + alb22 + a2b32 + a3b13 + a4b23 = cll

aob22 + alb32 + a2b42 + a3b23 + a4b33 = c21

aobo3 + alb13 + a2b23 + a3bo4 + a4b14 = Co2

aob13 + alb23 + a2b33 + a3bl4 + a4b24 = c12

where

(4.16-30) bj_ = _x_ik, - cjk = _s_x_

and all summations are from 0 to n.

The uncertainty e,o(s) to be expected in future use of Eq. (4.16-28) is given by

(4.16--31a) e_(s) = e21/n

(4.16-31b) (n - 5)e_1 = do - (aocol + alcll + a2c21 + a3co2 + aac12)

(4.16-3 lc) do = _s 2

Examp/e 4.16f. If there are n observations (xi, Yi, si), where i = 1, 2 ..... n, and one assumes that

(4.16-32) s = x"+b_y c

with each observation of s having a priori, the same fractional error, then the constants a, b, c are

obtained by solution of the three simultaneous equations

aebo2o + bebl2 o + ceboll = Colo

(4.16-33) a'bl2o + beb22o + ceblll = cjlo

aeboll + beblll + ceboo2 = Cool
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where

(4.16-34) bjk; = _x_(ln xi)k(ln yi) !

cjk; = _(ln si)x_(ln xi)k(In yi) t

and all summations are from i = 1 to i = n.

The fractional uncertainty Eoo(s) to be expected in future use of Eq. (4.16-32) is given by

(4.16-35a)

(4.16-35b)

(4.16-35c)

E_o(s) = E2o,/n

(n - 3)Eli = do - (a*co,o + beCllo + CeCool)

do = _(ln si)Z

§4.16-4.17

4.17 Least-squares solution for a first-order differential equation. Many instrument applications require

the determination of the constants Y and r of the differential equation

(4.17-1) r(dy/dx) + y = Y

where y represents instrument indication, and x usually represents time or distance. In such applications,

the values of y and x are usually known accurately, but the relation (4.17-1) may be only approximate,
so that the most probable values of r and Y are of interest; sometimes, only one of these is of interest.

The two constants may be determined conveniently if the following conditions are met:

1. Measurements Yi are available at equal increments ,_x of the independent variable x, so that

(4.17-2) x; = (i- 1)_x (i = 1,2 .... ).

The initial measurement, Yl, will be considered to have been made at x = 0, so that xl = 0 and

(4.17-3) ys " y(x,)

2. Successive increments in y, described for brevity as

(4.17--4) Ai'_Yi+l --Yi (i= 1,2 .... )

are all of the same sign and are sufficiently large and sufficiently accurate so that the sequence of
Ai'S is monotonic; i.e., the absolute magnitude of each successive "i is consistently smaller than or
equal to the absolute magnitude of the preceding ,_i.

3. All measurements are, a priori, deemed to be of equal weight.

Under these conditions, if the last observation is Yn+ i, so that there are n values of Ai,

(4.17-5) Y= (b2co - bjcl)/D

where
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(4.17-6) D = nb2 - b2;

and

(4.17-7a) r/Ax = - l/In [1 -(l/p)]

where

(4.17-7b) p = (blco -- ncl)/D. [Note N4.17]

Here,

(4.17-8)

bl _- _dAi -_ Yn+l -- Yt

b2 = _,A2i = 2 _,(y2- YiYi+,) + y2., _ y_

Co = _,,yi

c, = _'YiAi = _-'(YiYi+, - Yb

and all summations are from i = 1 to i = n.

In an application where many values of (xi,yi) are available but either r or Y is suspected of changing

systematically, though slightly, from the beginning to the end of the sequence of data taking, it is often

helpful to apply Eqs. (4.17-5) to (4.17-8) only to the readings (four or more) in the vicinity of the region
of principal interest. Excessively fine subdivision of this region is often undesirable because it detracts from

the advantage of having larger and, hence, more accurate values of the increments Ai. In the presence of
undesired high-frequency fluctuations in Yi, the use of larger subdivisions is often an effective means of

satisfying the requirement for a monotonic sequence of Ai's.

An estimate of the efficacy with which Eq. (4.17-1) fits the data is given by the quantity e°,

where

(4.17-9a) (n - 2) • 2 = dO - Co]"+ clp

(4.17-9b) do = _y_

However, e° does not represent the rms value of the residual

(4.17-10) vi = [Y+ (Yl - Y)e -°-')ax/r] -Yi.

This rms value is usually smaller than e°, but less convenient to calculate.

If condition 1, that readings be at equal increments, is not fully met, one may choose an increment Ax

that is near the average of the actual increments in the available data and then use interpolation to derive

values of y_ at abscissae (i - 1 )Ax. A quadratic interpolation formula through four or five points closest

to (i - 1 )Ax usually suffices. Such a formula is provided by Example 4.1 ld, Case A, or by Sec. 4.19.

If condition 2, that the sequence of A_'s be monotonic, is not fully met, then smoothing by the method

of Sec. 4.18 may permit meeting the required condition. 3 If the original A_'s had only two signficiant figures

and were of low accuracy, the use of smoothed values to an additional figure usually improves the accuracy
of computation of Y and r.

31nelectrical circuits that will use an analog-to-digitalconverterto producenumericaldata, prior smoothingby use of
a low-pass filter may be more convenient.
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Example 4.17a. An illustration of the effects of compromising between n and Ai is given by
presuming some measured ordinates of the equation

y + dy/dx = 2

(where r= 1, Y=2).

Case 1. If Ax = 0. 1 and Yi = 2.202, 2.183, 2.165, 2.150, 2. 135, 2.122, 2.111, 2.100, then

n = 7, and Y = 2.003; r/Ax = 9.75; eo = 0.007.
Case 2. If Ax = 0.2 and Yi = 2.183, 2.150, 2.122, 2.100, then

n = 3, and Y= 1.999; r/Ax = 5.00; eo = 0.004.

Case 3. If Ax = 0.2 and y; = 2.202, 2.165, 2.135, 2.111, then

n = 3, and Y= 2.011; r/Ax = 4.64; eo = 0.001.

Example 4.17b. An illustration of the effects of rounding is given by assuming some measured
ordinates of the equation

y + dy/dx = 0

(where r = 1, Y= 0).

Case 1. If Ax = 1 and Yi = 0.905, 0.333, 0.122, 0.045, then

n = 3, and Y = -0.0003; r/Ax = 1.0002; eo = 0.001.

Case 2. If Ax = 1 and Yi = 0.90, 0.33, 0.12, 0.05, then

n = 3, and Y = 0.007; r/Ax = 0.981; ea = 0.007.

Example 4.17c. An illustration of the effects of smoothing is provided by assuming that the values

ofyi in Example 4.17a, Case 1 are Yi = 2.203, 2.182, 2.166, 2.149, 2.136, 2.121, 2.112, 2.099.

Then the A;, which range from 0.009 to 0.021, do not form a monotonic sequence. Smoothing by

the methods of Sec. 4.18, and use of an additional figure in the smoothed values yield the sequence
Yi = 2.2027, 2.1828, 2.1651, 2.1499, 2.1348, 2.1225, 2.1106, 2.0995. Then

Y= 2.004; r/Ax = 9.56; eo = 0.006.

4.18 Smoothing of data. For some mathematical operations on empirical data, it is necessary that the
deviations of the data from a smooth curve be small enough so that the equivalent of a first or second derivative

may be obtainable. This result may sometimes be accomplished by fitting an appropriate equation to the

data. This equation may be quite complex and may involve many empirical constants. In such case, better

accuracy and greater convenience may sometimes be attained by piecewise fitting of a simple quadratic
or cubic parabola to small groups of adjacent points, overlapping the groups to maintain continuity of the

derivative. The analytical operation is strictly analogous to progressive use of French curves to draw a smooth
curve through a large sequence of plotted points. 4 In fact, the graphical operation is often more effective

and convenient than the analytical one--given a graph on a scale large enough to reveal the least significant
digit, one may then read the ordinates of the smooth curve at convenient abscissae.

When unfamiliar data are first acquired, a preliminary graphical construction may also help to reveal
potential problems, like anomalous points, and to guide the smoothing operation.

Smoothing becomes particularly convenient when data are obtained at constant increments Ax of the

independent variable. Let the sequence of data be represented by y_ (i = 1,2 ..... k ..... n). Let the smoothed
value of Yi be y_. Then

4The operationresembles the "cubic spline"methodof piee_wiseconstm_on of a complex curve,butdiffersfromit in the following
important respect. The cubic splinemethod creates a curve that treats every point as perfectly accurateand, hence, passes through
each point; the French-curve method or its analytical equivalent (Example 4.1 le) providessmoothing that allows for the imperfect
accuracyof individual points.
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(4.18-1)

(4.18-2)

(4.18-3)

(4.18-4)

(4.18-5)

.vl = (193'1 + 3y2 - 3y3 + y4)/20

._2 = (9y_ + 133'2 + 12y3 + 6)'4 - 53'5)/35

._ = [12(yk _ i + Yk+_) + 17yk - 3(yk-2 + yk+2)]/35

.v,,-t = (9y,, + 13y,_ 1 + 12yn_2 + 6y,,_3 - 53',,_4)/35

_,= (19y, +3y,_l -3y,_2+Y,_3)/20

3_<k< (n-2)

Each of these equations represents the result of fitting a quadratic parabola to the four or five points specified

in that equation.

This smoothing technique is applicable to empirical data presented in tabular form at constant increments

of the independent variable. However, such smoothing may be facilitated by applying it to the tabulation

of some function of y (such as the reciprocal, power, logarithm, or sine) rather than to y itself. 5

4.19 Interpolation of data. If n pairs of data (xi,Yi) (i = 1.2 ..... n) are available and a value of y(x)

is desired, where x is none of the xi, a polynomial of the form

(4.19-1) y = _a_ _ (k = 0,1 ..... n - 1)

may be fitted to the data. The procedure is to form the n equations

(4.19-2)

where

aobo + albl + ... + akbt + ... + an_lb__l = c o

aobl + alb 2 + ... + a_t+t + ... + an_lb. = c I

aob.-i + aibn + ... + aebt+n-i + ... + a.-ib2n-2 = c,-1

6, = cj = Ex ,; tj = o,1,2..... ,,- 1)

and all summations are from i = 1 to i = n. (Note that b0 = n and co = l:yi. ) The equations are then solved

for the ak' s. The procedure is used most often with n _< 5, because it is most effective when a few points

in the vicinity of x are used to find the interpolated value y(x).

An alternative formulation of the above procedure is Lagrange's formula:

(4.19-3a) y(x) = P*_,[yi/ei]

where

(i = 1,2 ..... n)

[j = 1,2 .... (i- 1),(i + 1) ..... n]

(4.19-3b) P = l'l (x - xi)
i

(4.19-3c) P_ = (x - xi)II (xi - xj)
J

5Smoothing, interpolation, and some other operations treated in this chapter are considered thoroughly and authoritatively in Ref. 4-2,
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Equation(4.19-3a)is thesamepolynomialasEq.(4.19-1),butyieldsonlyanumericalresult,notan
algebraicformula.

Example 4.19. Given (xi,yi) = (1,9), (2,18), (3,31) to find y(2.5). Then

bo =3, b I =6, b2 = 14, b3 = 36, b4 =98, co=58, cl = 138, c2 = 360

and the solution of (4.19-2) leads to

4.19-4.20

so that

Eq. (4.19-3) leads to

so that

v=4+3x+2x 2

3' (2.5) = 24.

P= -3/8, Pt = 1.5(-1)(-2) =3

P2 =0.5(1)(-1) = -0.5

P3 = -0.5(2)(1) = -1

y(2.5) = - (3/8) I(9/3) - (18/0.5) - (31/1)] = 24.

4.20 Significant figures in polynomial representations. When an equation of the form

(4.20-1a) y= _a_fk(x) (k = 0,1,2 .... )

is fitted to a set of experimental data, over the range x_ _<x _< x2, a decision is required on the number

of digits that are signficant in representing each ak. From the relation

(4.20-2) (Oy/Oak) = f_(x)

one may deduce that a change in y of magnitude by would be produced by a change in ak of 6y/fk. If 6y

is chosen as eoo(y), a reasonable representation will result if ak is stated so that the least significant decimal

digit represents a quantity on the order of

(4.20-3a) 0.01 eoo(Y)/lfklmax

where tfklmax is the largest absolute value of._ that occurs in the range x 1 _< x _< x2.

The multiplier 0.01 represents a conservative allowance for the accumulation of errors in Eq. (4.20-1)

and in subsequent computations with it. Very often, a trial computation will show that it is excessively
conservative.

In particular, ifA = x _, so that Eq. (4.20-1a) becomes

(4.20-1b) y =_akx k, (k = 0,1,2 .... )

then the expression (4.20-3a) becomes

(4.20-3b) 0.01 eoo(y)/]xklmax .
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Example 4.20. The representation of the emf U of a type E thermocouple in the temperature range

-270 _< t _ 0 °C, relative to a 0 °C cold junction, is given by an equation like Eq. (4.20-1) with

k = l, 2 ..... 13 and with eoo(U) = 0. 1 #V. For as, (4.20-3b) yields

0.01 x 0.1/2708 = 3.5 x 10 -23

so that the least significant decimal bit in as should represent 1 x 10 -23. (The value of as is

approximately -9 x 10 -13, SO that a s should have l 1 digits.) [See Note N4.21, which refers to
Refs. 4-3 and 4--4.]

4.21 Improvement of computational convenience. When the variable x may acquire values very much
larger than unity, a representation like

(4.21-1) y = _a_ k (k = 0,1,2 .... )

has two characteristics that may impede or inconvenience practical computation:

(a) As k becomes larger, the number of significant digits required to represent ak may become very
large; and

(b) If x has dimensions, each a, has different dimensions, and only a0 has the dimensions of y.

If xl -< x < x 2, these deficiencies may be attenuated by transforming the independent variable to

(4.21-2) X= (2x-xl-x2)/(x2-xl)

so that X is a nondimensional quantity and -1 _ X_< 1. Then Eq. (4.21-1) is replaced by

(4.21-3) y = _Aj_X* (k = 0,1,2 .... ).

Each coefficient has the same dimensions as y and, in accordance with Sec. 4.20, the least significant decimal
digit of A, need not be smaller than 0.01 times the expected uncertainty in y. [Note N4.21]

If either Eq. (4.21-1) or Eq. (4.21-3) is deduced from data by the method of least squares, exactly the
same values ofy(xi) and e,o(y) will be obtained, unless the computer used is deficient. The transformation

(4.21-2) serves to improve computational convenience, not accuracy. Accuracy is established by the data,

not by how the data are represented. However, the more convenient procedure does reduce the number

of significant digits required m any computing program that is used.

4.22 Polynomial approximations of intricate functions. Many engineering applications require that a
relatively simple idealized formula be modified to allow for deviations from the idealized condition. The

accurate computation of these modifications may require elaborate operations and the use of a computer;
nevertheless, the final result may often be only a modest modification of the original idealized formula.

In such case, the final result, once it has been accurately computed, may be rephrased as a simple low-

degree polynomial in the variables affecting the deviations from the idealized formula. For example, if these
variables are u,v,w .... and if the idealized formula is

(4.22-1) s = so(x,y,z)

the corrected formula may take the form

(4.22-2a) s = so ( 1 + f)

where
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(4.22-2b) f = f(x,y,z,u,v,w)

and _fl < < 1.

When there are two independent variables, the examples of Sec. 4.16 are applicable to the development

of such correction formulas. It is desirable that the independent variables in Eq. (4.22-2b) be actually measured

or otherwise known variables, or else be deduced from parametric equations containing such variables.

An important conclusion of Eq. (4.22-2a) is that the accuracy of knowledge of s is of the same order

of magnitude as the accuracy of knowledge of So. Thus, in applying Eq. (3.28-3) or (3.28-4), it is only
necessary to deal with the elementary expression So rather than with the more complex expression of s.

If the functionfcan be expressed as a linear combination of a few undetermined constants, these constants

can be determined by a least-squares procedure, like one of those outlined in the preceding sections. An

advantage of such least-squares procedures is that they provide the value of eol as a measure of the
agreement between the exact relation and its approximation.

Example 4.22a. The compressibility factor Z of normal hydrogen gas over the temperature range

300 _< T _< 600 K and pressure range 0 _< p _< 100 atm has been tabulated (Ref. 4-5). The results

may be approximated within O. l percent of Z by the formula

Z= 1 + pt(ao + alT + a2p + a3pT)

where a0 = 8.17 × 10-4; a I = -8.12 x 10-7; a2 = 4.30 X 10-7; a3 = --3.34 x 10 -t°.

Example 4.22b. The compressibility factor Zofair over the temperature range 700 _< T _< 2000 K

and pressure range 0.5 __<p _ 100 atm has been tabulated (Ref. 4-5). The results may be approximated
to within 0.0002 in Z by the formula

Z= 1 + p'(ao + arT+ a2 T2 + a3p + a4pT)

where a0 = 5.650 x 10 -4, at = -2.948 x 10 -7,

a2 =5.52 x 10 -11, a3 =2.35 x 10 -7, a4 = -1.682 x 10 -I°.

Example 4.22c. The viscosity _ of N2, as tabulated in Ref. 4-5, over the ranges

300 _< T _ 1500 K, 1 _<p _< 100 atm, is given with an rms error of 3 percent by

_/*lo = xa+bX ° Y c

where 7o is the viscosity at To = 273.16 K, x = T/To, y = p in atm, and a = 0.715, b = -0.0142,
c = 0.0109.

Example 4.22d. The mass flow rate m of a known gas through a nozzle of diameter d and area

A in a horizontal pipe of diameter D may be deduced from measurements of the upstream pressure

p, upstream temperature T, and pressure drop Z_. across the nozzle. When _hp < < p, elementary
application of Bernoulli's principle yields m = m0 where

(4.22-3a) th 2 = (2po_kp/T) (1/R) (A 2)

and R is the specific gas constant. The first factor in parentheses on the right side of this equation

represents the actual pressure and temperature measurements; the second factor represents gas
properties; the third factor represents geometric features.

§4.22
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Inpractice,especiallywhereAp is an appreciable fraction of p, corrections are required for the

compressibility and other properties of the gas and for geometric features of the installation. The

complete relation is

(4.22-3b) m = moKY/x/Z.

The quantity K is termed theflow coefficient and depends on the design of the nozzle, on the location

of the points between which Ap is measured, and on the Reynolds number

(4.22-3c) Nee = 4m0/(rDr/)

of the flow, where rl is gas viscosity. The quantity Y is a correction for the facts that the flow is

isentropic but not isothermal, and that the gas is compressible; Y depends on the specific-heat ratio

3,, on Ap/p, and on the diameter ratio fl = d/D. The quantity Z is the compressibility factor of the
gas (sometimes called the supercompressibilityfactor) and corrects for the fact that the gas is "real"

rather than "ideal," so that

(4.22-3d) p = oZRT.

Values of K and Y have been tabulated for a variety of standardized nozzle designs (Ref. 4-6).

For any one nozzle design and any one gas, Eq. (4.22-3b) may usually be written as

(4.22-3e) m = vhOr(0( 1 - F)

where K0 is a constant and IFI < < 1. The percentage accuracy of knowledge of vh is of the same

order of magnitude as the percentage accuracy of knowledge of tho. Thus, a 1-percent uncertainty

in measuring p, &p, or Twill result in about 0.5-percent uncertainty in m; a 1-percent uncertainty
in each of the three independent measurements will result in about a 1-percent uncertainty in th.

NOTES FOR CHAPTER 4

N4.3.1 Each of the following curves passes through the points (0,1), (1/'vf2, l/v_), (1,0) with
5y < 0.001:

1. y = cos (xx2/2)

2. y = ax - b sinh x + c -x; a = 8.41, b = 7.47

3. x2+y2= 1

4. 4(a-x)(a-y) = 1; a = (1 + v_)/2

5. y= 1 +x-2x 2
6. y= 1 - c_x2 + (c_ - 1)x4; _=3-2 v_

7. y= 1 + ¢xx+ (or- 1)x3; or=3-2

Furthermore, over the range 0 < x < 1, the average disagreement between the ordinates of the first

two curves is 0.004, and the maximum disagreement is less than 0.014.

N4.3.2 As an example, over the range 0 _< x _< 2, the exponential y = e -_ is approximated by the

quadratic parabola

y(x) = 0.9813 - 0.8155x + 0.2000x 2

so that the difference between the ordinates of the two curves does not exceed 0.02. However, at

x = 2.5, the difference is 0.11 and at x = 3, the difference is 0.28.
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N4.8 The log scale of semilog (or log) paper is ordinarily marked with the values of v (or of)' and

of x). However, when the span of log y (or log x) is a fraction of one decade, it may be more convenient

to plot log y (or log x) on a uniformly spaced scale of cooldinates.

N4.10.1 Occasionally, the rms uncertainty co(a)) will also be stated. However, the criterion for

determining the number of significant figures to be used in representing any aj should be the criterion
described in Sec. 4.20.

Ch. 4-Notes

N4.10.2 A useful property of the least-squares method is that approximations made in the assignment

of weights, for reasons of mathematical convenience, usually cause only small and acceptable increases

in the value of eol or Eol. However, in this text, no such approximations will be made unless they
are explicitly identified.

N4.11 The two equations for e]l or E_I are alternate expressions of the same quantity. The

advantage of the first expression is that the first summation on the right side can be computed at

the time that the original data are entered into any computer program; the disadvantage is that the

right side represents a very small difference between two relatively large quantities, so that each

of these quantities must be computed with very high arithmetic accuracy. The advantage of the second

expression is that it represents the direct summation of very small quantities, so that high arithmetic

accuracy is not required; the disadvantage is that the original data must be reentered into a computer
program after the simultaneous equations have been solved.

N4.12.1 Still another way of defining r is

(N4.12-1a) r 2 = 1 - S2(y)/a2(y) = 1 - S2(x)/a2(x)

where

(N4.12-1b) S2(y) = ]_(a 0 + alx i - yi)2wi = d o - aoc 0 -alc I

(N4.12-1c) S 2 (x) = _ (,40 + Aly i -- xi) 2wi

(N4.12-1d) o2(y) = _a(Yi - y0)2wi = do - C2o/bo

(N4.12-1e) o2(x) = _(xi - Xo)2Wi

(N4.12-1f) Yo = _(wiY,)ll_wi; xo= lS, w,

The bk,ck,dk are given by (4.11-3), and all summations are for i = 1,2 ..... n.

N4.12.2 R.A. Fisher (Ref. 4-1) has pointed out that the distribution of errors in r, especially when

r is close to unity, is not of Gaussian form and is skewed (i.e., it is not symmetrical about the most

probable value). However, the transformation

(N4.12-2) z = (1/2)ln[(l + r)/(1 - r)] = tanh -I r

leads to an approximately Gaussian distribution of z, so that e,,(z), ea(z), and ep(Z) are related
by (3.18-2). The nonlinearity of Eq. (N4.12-2) is so pronounced that a change _tz - e,,(z) produces
a change Ar in r that is radically different from the change --Ar produced by a change -Az. When

Ir} > 0.8 and the n pairs of data are equally weighted, this nonlinearity is adequately accounted for

by Eq. (4.12-5).
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The proportionalities between the uncertainties in z are

eo(Z): e,(z): ep(z) = 1: 0.80:0.67

where, as deduced by Fisher,

eo(Z) ,_ B.

N4.12.3 If

(N4.12-3) y = f(x), x = F(y)

are nonlinear functions of x or y, the correlation coefficient r is no longer useful. However, two

other criteria of correlation may be used. They are the indices of correlation Px and Py defined by

(N4.12-4a) p_ = 1 - S2(y)/a2(y)

(N4.12-4b) o_ = 1 - S2(x)/o2(x)

where

(N4.12-4c) S2(Y) = _*[f(xi) - yil2wi

(N4.12--4d) S2(x) = _[F(y_) - x_12w_

(N4.12--4e) o2(y) = _'(Yi - yo)2Wi

(N4.12--4f) o2(x) = _"_.(xi -- Xo)2Wi

(N4.12--4g) Yo = _'(wiYi)l_'wi; x0=

These equations are parallel in form to Eqs. (N4.12-1). The distinction between the two groups

of equations is that p_ and Oy are usually different; they are equal to each other only whenf(x) has
the linear form of Eq. (4.12-1).

The index of correlation may be used to determine whether a variable x is better correlated with

y than is some other variable/j. The comparison is possible only when the functional formfremains
the same. Thus, if

y = f(x) yields py = 0.9

and

y =f(ld) yields py = 0.95

then the correlation between/_ and y is better than the correlation between x and y.

However, for any set of n points (xi,yi,wi), the value of ay may always be made to be closer to
unity by increasing the number of undetermined constants inf(x); if the number of these constants

is equal to n, then Px and ay are identically equal to unity.

N4.14.1 The uncertainty of principal interest is e,,o(y), or Eoo(y), which represents, respectively,

the rms uncertainty in y or the rms fractional uncertainty in y, which may be expected in future

use of Eq. (4.14-1) in the x-interval (span) of the original data. These uncertainties are most readily
expressed in terms of the quantity, eol (y) or Eoi (y), which represents the rms value of the residuals
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(N4.14-1)

OF

(N4.14-2)

Vyi -- v(yi) = f(xi,a,b) - Yi

Vyi =- V(yi) = [f(xi,a,b)/yi] - 1,

the latter residual being used when, a priori, all y, are deemed to have constant fractional

uncertainty. Then

e_(y) = e2o,/_,wi

(n- 2)e2o, = _v_i;

E_(y) = Eol/n

(N4.14-3a)

where

(N4.14-3b)

or

(N4.14--4a)

where

(N4.14--4b)

eol =- eol (y);

Eol _- Eo1 (y).

A convenient substitute for Eq. (N4.14-3b) or Eq. (N4.14-4b), in certain cases, is obtained by

using the intermediate quantity eol (s), given by

(n - 2)e2ol (s) = do - Aco - Bcl(N4.14-5)

where

(N4.14-6) do = _ (W/s2).

Examples of such cases are the following:

1. When the transformation is such that s = y, then

eol == eol (y) =eol (s).

2. When the transformation is such that s = In y, and all Yi are deemed to have the same

fractional error, then

Eot "= Eol (Y) = eol (s).

3. When the transformation is such that s = 1/y, and all Yi are deemed to have the same

fractional error, then

E,I = Eol (y) = Eol (s) = eot (s).

The relative merits of using Eq. (N4.14-5) in place of Eq. (N4.14-3b) or (N4.14-4b) are discussed
in Note N4.11.

N4.14.2 The uncertainties of principal interest, eoo(Y) and Eoo (Y), which represent the uncertainties

to be expected in future use of Eq. (4.14-13) in the x-interval (span) of the original measurements,
are describable in terms of the residuals

Ch. 4-Notes
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(N4.14-7)

or

(N4.14-8)

Then

(N4.14-9a)

where

(N4.14-9b)

or

v_,i - v(yi) =f(xi,a,b,c) - Yi

V_,iE V(yi) = [f(xi,a,b,c)/yi] - 1.

"/Ee_o(y) = e7,1 w,; eoj - eolO')

= 2(n - 3)e_l _,(VyiWi) ;

(N4.14-10a) E_o(y) = E;_/n;" Eol m Eol(y )

where

(N4.14-10b) (n - 3)E_l = _(V2wi)

A convenient substitute for Eq. (N4.14-9b) or Eq. (N4.14-10b), in certain cases, is obtained by
use of the intermediate quantity eol(S), given by

(N4.14-1 1) (n - 3)e21(s) = do - Aco - Bc I - Cc 2

where

(N4.14-12) do = _ (W/s2).

Three such cases are those described in Note N4.14.1:

1. If s = y, then eaj E eol(y ) = e,_(s).

2. If s = In y, and 6y/y is presumed constant, then Eol - Eo1(y) = eol(S)

3. If s = 1/y, and 6y/y is presumed constant, then Eot " E,z(y) = E°l(s) = eol(S).

The relative merits of using Eq. (N4.14-11) in place of Eq. (N4.14-9b) or (N4.14-10b) are
discussed in Note N4.1 1.

N4.15.1 If each measurement is presumed to have the same uncertainty, then w_ should be set equal
to unity, so that I:w_ = n.

If each measurement is presumed to have the same fractional uncertainty, then wi should be
replaced by l/y_, so that I;w/y_ = n.
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N4.15.2 Each of the coefficients a, has an rms uncertainty eo(ak). A general procedure for finding

these is indicated in Note N4.16. Only a change in the formal symbolism is required.

N4.16 Each of the coefficients ak has an rms uncertainty ea(ak). The procedure for finding these

uncertainties is as follows. Let D represent the determinant of the coefficients on the left side of

the set of equations (4.16-3)

bli . . . bl, .

O _- ........

b,,,i • • • bin,,,

and let Dkk represent the cofactor of the diagonal term b_,k. Then

e](a_) = (Dk,/D)e_l.

This equation is exact if the weights do not depend on the y's, as in Case A, Sec. 4. l l ; it is a close

approximation if the weights do depend on the y's, as in Case B, Sec. 4.11.

For example, in Example 4. lid, Case C,

e_(ao) "= e_l e(b2b4 - b_)/D

"_ 9 Z,

eo(a 0 = eol* (bob4 - b_)/D

e_ta2) = eol'(bob2 - b'O/D

where

ii bl b2I
D =b I b, b 3

b3 b4

N4.17 Either Y or r may be computed without knowledge of the other.

If Y is of principal interest, but r is also of interest, then Y may be computed first by Eq. (4.17-5), and
then Eq. (4.17-7b) may be replaced by

(N4.17-1) p = (Yb I - cl)/b 2

If r is of principal interest, but Y is also of interest, then r may be computed first by Eq. (4.17-7), and

then Eq. (4.17-5) may be replaced by

(N4.17-2) Y = (c o + pbO/n

Use of Eqs. (N4.17-1) and (N4.17-2) involves fewer computational steps than use of the equations they

replace. This fact may be significant when a real-time (on-line) computer program is to be used.

Ch. 4-Notes

99



Ch. 4-Notes

N4.21. A further moderate reduction in the number of significant figures is possible by replacing Eq. (4.21-3)
with

(N4.21-1) y= _cxkT *

where Tk(X) is the Chebyshev polynomial defined by

Tk.2 = 2XT,.I - Tk (k = 0, 1,2 ..... m)

(N4.21-2) Tj = X

T0=l

and X is given by Eq. (4.21-2). The Chebyshev polynomial has the property that

l<Tk<l if -I<X< 1

The advantage of Eq. (N4.21-1) over Eq. (4.21-3) becomes more significant as m becomes larger.

As an example, the emfy, in microvolts, generated by a type E thermocouple, when the reference junction
is at 0 *C and the other junction is at x *C, in the range - 270 ___x _< 0 *C, is given to within 0.01

microvolt by Eqs. (4.21-1), (4.21-3), and (N4.21-1) when the coefficients have the following values:

k ak ,4, otk

0 0 -6713.695 -5830.645

1 58.695 857 799 5278.258 5015.620

2 0.051 667 517 705 1685.958 897.483
3 -4.465 268 3347 x 10 -4 -296.232 -94.451

4 -1.734 627 0905 x 10 -5 131.536 15.190

5 -4.871 936 8427 x 10 -7 -71.680 -3.898

6 -8.889 655 0447 x l0 -9 -279.488 0.563

7 -1.093 076 7375 x l0 -n° 154.880 0.360

8 -9.178 453 5039 x 10 -n3 710.272 -0.265
9 -5.257 515 8521 x 10 -_5 -505.088 0.064

10 -2.016 960 1996 x 10 -n7 -689.664 0.045

11 -4.950 213 8782 x 10 -2° 574.464 -0.128

12 -7.017 798 0633 x 10 -23 237.568 0.116

13 -4.367 180 8488 x 10 -26 -217.088 -0.053

The original data and the coefficients ak are from Ref. 4-3. The coefficients otk are from Ref. 4-4, which
pointed out the usefulness of the Chebyshev polynomials.
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CHAPTER 5. SOME BASIC ELEMENTS OF

STATIC PERFORMANCE

5.0 Terms characterizing instrument performance. Some terms that may be applicable to characterization
of an instrument's performance are listed here.

A. Characteristics expressed in units of the physical variable being measured.

(1) Range: a statement of the limits Yminand Ymax. (Sec. 3.4)

(2) Span: the value of [Ymax-Ymin[. (Sec. 3.4)

(3) Readability: the smallest change in indication that can be detected.

(4) Repeatability: the extent to which the same indication will be obtained when the value of the

physical variable is altered and then restored to its original value. The nature of the alteration must

be stated. Repeatability may be different in the following different circumstances:

(a) the reading is made immediately after restoration.
(b) the reading is made several minutes after restoration.

(c) the reading is made several days after restoration.

(5) Sensibility: the smallest change that can be detected reliably. This value is usually larger than

the readability. It is often synonymous with repeatability. It is a convenient descriptive term, even
though its definition is not precise.

(6) Inaccuracy: the difference between the indication and the true value of the quantity it is intended

to measure, as treated in Chapter 3. It usually represents the random error of measurement and is

stated as the probable, average, or rms error (standard deviation), or as a percentile (Sec. 3.20), or
as a limit of error (Sec. 3.7).

B. Other characteristics.

(7) Sensitivity: the value dy/dx, where x represents the physical variable being measured, and y
represents the indication. This indication may be in any one of various units: scale divisions, counter
readings, voltage, current, pressure, or the same as the units of x. i

(8) Nonlinearity: in instruments whose indication y is intended to be proportional to some function

u of the physical variable x being measured, the extent to which that proportionality is actually achieved.
It is usually described either as

(a) the variation in dy/du over the range of the instrument, or

(b) the maximum difference between the indication and the ordinate of a straight line approximating

y (u), both values taken at the same abscissa. The various ways in which the straight line
may be drawn have been treated in Sec. 4.9. The maximum error may occur at a limit of the

range or at some intermediate point. The nonlinearity is usually expressed as a percent of

span, or, if the lower limit of the range is zero, as a percent of full scale.

qndustrial-process instruments in the U.S.A. are often designed to provide standardized indications like 1-5 V, 4-20 mA, or 3-15

psig, in order to facilitate operation of a variety of control elements of different manufacturers. The lower limit of these indications

corresponds to the value x = 0.
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§5.1-5.3

5.1 Pointer and scale instruments. Such instruments are useful when

(a) the variable being observed fluctuates slightly and randomly with time, and knowledge of the

existence, periodicity, and order of magnitude of the fluctuation is valuable;

(b) a particular value of the indication (the "set point") is desired and it is of value to know not

only whether or not the set point has been reached, but also the degree of deviation from the set

point and, if the deviation is unsteady, how it varies with time. Instead of a set point, there may

be a "working band"--a band of contiguous values.

(c) rapid visual perception of the approximate indication is necessary

(d) there are advantages in cost, reliability, or size over instruments using counters, lights, or flags.

Example 5.1a. When a null galvanometer is used to indicate the balance point of a Wheatstone

bridge, the approach to the balance point may be made smoothly and any drift in indication due

to self-heating may be detected.

Example 5.lb. When a number of 300-degree or 360-degree circular scale instruments is used

on an instrument panel, an appropriate group of instruments may be arranged so that normal (bogey

or nominal) indication is represented by the 3-o'clock position of each pointer. Any deviation from

the bogey conditions is then quickly apparent.

Example 5.1c. In the flight test of an airplane during an acrobatic maneuver, the pilot may be

asked to attain and hold a desired acceleration for a brief period of time. An indicating accelerometer

can provide the required indication of the approach, maintenance, and recovery from this condition.

The accelerometer becomes part of a feedback control system using a human operator. [Note N5.1]

5.2 Scales. When accuracy is important and quick readability is not, the following sources of error may
be present in mass-produced scales. Their relative prominence affects the nature and extent of the instrument
calibration that is required.

(1) Play between pivot and socket, in instruments using this more rugged construction

(2) For elastically supported pointers, the relevant spring errors listed in Sec. 5.6

(3) The fact that the pivot is not at the center of a circular scale, dial, or drum, so that a systematic
error results

(4) Improper location of major scale intervals 2

(5) Improper subdivision of major intervals, involving:

(a) systematic errors caused by an incorrect interpolation process
(b) random errors caused by the marking machinery

(6) Shrinkage and distortion caused by a duplicating process
(7) Parallax in reading:

(a) For scales without mirrors, the error due to parallax that may reasonably be expected is a

distance on the scale equal to one-fifth of the distance between pointer and scale.

(b) For scales with mirrors and knife-edge pointers, the parallax error is negligible in comparison
with the error listed under "inadequate readability."

(8) Inadequate readability. A working rule is that, neglecting parallax, the readability is not better
than the largest of the following three quantities:
(i) a distance of 0.1 mm on the scale

(ii) one-fifth of the thickness of a knife-edge pointer

(iii) one-tenth of the smallest scale interval between adjacent markings

5.3 Force measurements. Physical quantities in mechanics and electricity whose dimensional representation

in the force-length-time system explicitly includes the dimension of force are often measured, directly or

2Usually. a precision instrumentis marked to be correct al major scale intervals, duringthe manufacturer's calibrationor adjustment.
Subdivision between these intervals is then performed by a machine in accordance with a predetermined interpolation rule.

102



indirectly,throughaforcemeasurement.Thismeasurement,in turn,iscommonlymadebyoneof the
followingmethods:

A. Comparisonwiththeforceexertedbygravityonaknownmass0ever-type balance, or pendulum)
B. Measurement of the current through a coil or solenoid in the field of a permanent magnet

(electrobalance)

C. Measurement of the deflection of a spring.

5.4 Errors in dynamometers using gravity. Measurements using method 5.3A are subject to errors caused
by

(a) uncertainty in the knowledge of the value of the local acceleration of gravity [Note N5.4]
(b) incorrect length of lever arms, because of imperfections in manufacture

(c) friction in bearings or knife edges

(d) play in bearings or knife-edge seats

(e) bending of levers under load

(f) systematic change in lever-arm geometry with load

(g) change in lever-arm lengths caused by temperature or by temperature gradients

(h) uncertainty or systematic change in pivot-point location when elastic knife edges (Emory knife
edges) are used

(i) resisting torque or force when elastic knife edges are used

(j) uncertainty in location of the effective line of action when flexible tapes are used in contact with

pulleys or cams, because of flexural resistance of the tape or of presence of dirt between the tape
and the surface of the cam

(k) uncertainty of effect of air buoyancy on the components

(h electrostatic forces on components

5.5 Errors in electrobalances. Electrobalances (method 5.3B) intrinsically depend on the relation between

force and coil current. This current is usually determined by measuring the voltage drop across a stable

precision resistor in series with the coil. The measurements are subject to errors caused by
(a) the systematic effect of temperature on the remanence of the permanent magnet 3

(b) change in coupling between the coil or solenoid and the magnet, due to self-heating or change

in the direction of gravitational acceleration (if the electrobalance is not of the rotary type)
(c) reduction of magnet strength (demagnetization) caused by mechanical impact, excessive vibration,

or an external magnetic field 4

(d) any of the sources of error listed in Sec. 5.4 for method 5.3A, that may be applicable

5.6 Errors in springs. Instruments using method 5.3C are usually designed to have a substantially linear

relation between the scale indication and the quantity being measured. Terms specifying the performance
of instruments in this group are

(a) Nonlinearit3,. See item (8) in Sec. 5.0.

(b) Hysteresis. In its most general sense, the greatest difference between the ordinates, at the same

input, of the two curves of indication versus input, one curve generated by steadily increasing
the input from its lower limit to its upper limit, the other curve generated in the reverse direction
and also over the full span. This general definition includes three effects:

(i) backlash

(ii) dry friction 5

(iii) true elastic hysteresis of the spring material

§5.3-5.6

3Properly prepared Alnico may have a temperature coefficient of remanence smaller than 0.0003f*C.

4Properly prepared Alnico is highly resistant to such influences.

5Although the coefficient of friction may be low when two surfaces are in relative motion, the coefficient may be many times larger

at the instant when the motion is initiated from a position of rest. This phenomenon is evident even in lubricated ball, roller, and

journal bearings.

103



§5.6-5.7

To most users, only the combined result of these three effects is of interest. [Notes N5.6.1 and
N5.6.2]

Hysteresis, like nonlinearity, is usually described as a percent of span.

(c) Zero drift. The difference between the indication immediately after removal of load (generally

full-scale load) and the "final" indication some time later. It is usually expressed as a percent

of span. [Notes N5.6.2 and N5.6.3]

(d) Full-scale drift (creep). The difference between the indication immediately after application of

full-scale input and the "final" indication some time later. It is usually expressed as a percent
of span. [Notes N5.6.2 and N5.6.31

(e) A common, convenient specification is that combined nonlinearity, hysteresis, and drift of an

instrument shall not exceed a stated percent of the span (or of full scale). If the span is much

larger than full scale, it is necessary to specify explicitly whether hysteresis should be based upon

a change equal to full scale or upon a change equal to the span.

Since nonlinearity is a systematic error, it may be corrected for with slight loss of convenience
but with gain in accuracy. However, hysteresis and drift must be considered as random errors,

since their sign and magnitude depend on the prior history of change in the input.

(f) Temperature coefficient of sensitivity. With sensitivity defined as in Sec. 5.0.B.7, this property
may be described in either of the following ways:

(i) the change in sensitivity, per unit change in temperature, at the nominal (bogey) operating
temperature, or

(ii) the change in sensitivity over a stated range of operating temperatures; this is also
expressible as a mean coefficient over the stated range.

For a linear spring, the temperature coefficient of sensitivity is usually the temperature

coefficient of the modulus of elasticity of the spring material plus the temperature coefficient of
linear expansion of the material. [Note N5.6.4]

(g) Temperature effect on zero. The principal component of this effect is usually a systematic variation

with temperature, but there may also be a random component that depends on the prior temperature

history of the spring. The systematic effect may be described in one of the following ways:

(i) the derivative of zero shift with respect to temperature at the nominal (bogey) operating
temperature

(ii) the average change in zero, per unit temperature increment, over a stated temperature
range.

An overall specification that includes both systematic and random effects is the maximum shift of

zero when the temperature is varied over a stated range in any arbitrary manner.

(h) Pressure effects. Ambient pressure may affect both sensitivity and zero. Systematic effects can

be described as a percentage change in sensitivity and an absolute change in zero, per unit change

in pressure; such effects may be corrected for. (Differential-pressure gauges often show such

effects.) Random effects are best described as the maximum change in sensitivity or zero over
a stated range of ambient pressure. 6

(i) Some items listed in See. 5.4 apply also to dynamometers using springs. 7

5.7 External physical variables affecting steady-state indication. The environment in which the instrument

is used may affect its indication or operation. Among such environmental factors are

(1) Temperature and temperature gradients

(2) Ambient or barometric pressure

(3) Steady acceleration (e.g., position or attitude relative to the Earth)
(4) Vibration or acoustic noise

6Mechanical oscillators, like tuning forks, if not hermetically encapsulated, are subject to effects of ambient air pressure, but these

effects are due principally to the change in mass of entrained gas rather than to the change in spring stiffness or in dimensions.

7Tbe terms reproducibility or repeatability, when applied to springs, usually include random effects, but exclude systematic ones
which may be corrected for.
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(5) Heat exchange with surroundings (radiative, conductive, or convective)

(6) Correlated electric or magnetic fields (hum) or currents, such as those due to ac power lines

(7) Uncorrelated electric or magnetic fields (noise), such as those created by adjacent instruments;

radiofrequency interference (RFI) is one appellation for such fields in the radio spectrum
(8) Optical, X-, 3'-, neutron, or cosmic radiation

(9) Ambient-gas composition, including humidity

(10) In electrically powered instruments, deviations in the power supply from the nominal (bogey)
values of voltage, frequency, or wave shape

(11) In pneumatically powered instruments, deviations from the nominal value of gas pressure, or the

presence of particulates (dust) or water in the gas supply.
An instrument user may either

(a) specify the limits of any one of these factors, between which satisfactory operation will be
assured, or

(b) specify limits on the magnitude of any systematic effects of these factors, or

(c) require knowledge of the quantitative magnitude of an effect, so that a systematic correction may
be applied by the user, or

(d) take corrective measures to reduce an effect to an acceptably small magnitude.8

Example 5.7a. A specification for an electrically powered instrument may require that the change

in indication shall not exceed a specified amount when there is any combination of line voltage between
105 and 130 volts, line frequency between 59 and 61 hertz, and harmonic distortion between 0 and
5 percent.

Example 5.7b. A specification for a differential-pressure gauge with a range of I unit of pressure

may require that the effect of ambient temperature shall not exceed 0.0005 unit/*C in the range
10 to 30 *C, that the effect of ambient pressure shall not exceed 0.01 unit/bar in the range 0.5 to

1.5 bar, and that a 30-degree tilt of the gauge in any direction from its normal operating attitude
shall not change the indication by more than 0.001 unit.

Example 5.7c. A specification may require a statement of the mean sensitivity coefficients for
each of the effects listed in Example 5.7b.

Example 5.7d. For a pneumatically powered instrument, the user may provide a pressure regulator,
a filter, and a dryer for the gas supply.

Example 5.7e. For an instrument intended to measure low-level emf's, the manufacturer and the
user may take steps

(i) to reduce the presence and the effects of thermal emf's [Notes N5.7.1 and N5.7.2]

(ii) to reduce the electrically and magnetically induced effects of alternating-current power
lines, particularly if these provide power for the instrument [Note N5.7.3]

5.8. Long-term effects of externalphysical variables. Sometimes, the effect of an external physical variable

may become significant only after a long time of exposure. Such long-term effects cannot usually be included

in an instrument specification, but their presence and magnitude influence instrument selection because they
affect the frequency with which recalibration and routine maintenance will be required.

Example 5.8a. The indication of a thermocouple in an installation where a section AL has been

in a high-temperature gradient AO/AL for a long period of time may change significantly after the
gradient has been removed or after the section AL has been replaced by a new section because the
immersion depth has been changed.

§5.7-5.8

8Approach (c) usually yields reductions in cost and in acquisition time over approaches(a) and (b). but it also involves losses in
convenience and in ease of data analysis and use.
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Example 5.8b. The calibration of a thermocouple which has Rh or Re as a component of one

of its wires may have changed significantly after months or years of exposure to a high thermal
neutron flux.

Example 5.8c. Oxidation of the surface of a radiation shield or of a pyrometer wire may alter

the radiation correction of a pyrometric or radiometric device.

Example 5.8d. Accretion of dirt on the window of an optical pyrometer, nephelometer, or

radiometer may alter the instrument's indication.

Example 5.8e. Accretion of dirt on the surface of a nozzle or of a pipe may alter the calibration

factor of a head-type fluid flowmeter or of a boundary-layer-type calorimetric fluid flowmeter.

5.9. Effects of the spatial profile. If there is a spatial variation of a physical quantity u, the spatial integral

of u (the integral of u over a linear distance, area, or volume) may be of interest in itself or may be used

to provide the average _ of u. Such an integral or average may be obtainable by one or a combination of

the following methods.

(1) A single local measurement of u at a location at which u has the same value as _. This method

is useful when the profile is known.

(2) Use of an instrument that directly provides an indication that represents the correct integral of u.

(3) Measurement of the profile by a continuous traverse with an instrument that provides the local

value of u. This method usually is practical only when the traverse is along just one of the orthogonal
dimensions (e.g., straight line or arc) of the relevant coordinate system and when the local values

of u change negligibly during the time interval consumed by the traverse.
(4) Simultaneous discrete local measurements of u at locations chosen so that the summation of these

measurements, with appropriate weighting, yields the desired integral.

Each of these methods will be treated in the sections that follow. The spatial distribution of u may be
represented

(a) in rectangular Cartesian coordinates, by u(x), u(x,y), or u(x,y,z);

(b) in polar or cylindrical coordinates, by u(r,O), or u(r,O,z).

5.10. Spatial average from a single local measurement. When it is known that a profile u(x) could be

represented by a simple analytical formula involving only one constant or parameter that changes with the

average velocity _, there may be one location x0 at which U(Xo) = _ for all values of _ that may be

experienced. It may be necessary to specify certain physical conditions that will ensure this favorable situation.

If the profile is expected to vary between two limiting forms, it may be possible to find some intermediate

value of x 0 which will yield equal absolute values of the positive and negative errors that occur when the
respective limiting profiles exist.

Exam/de 5.10. To determine the volumetric velocity (bulk velocity) of fluid flowing unidirectionally

in a circular pipe of radius R, if the fluid fills the pipe, and if the flow is axially symmetric, one

may assume that the average linear velocity _ is equal to the local velocity at some radius r0 whose
value depends on the nature of the flow.

(i) If the flow is fully developed and laminar, u (r 0) will be equal to _ (bulk velocity/area)
when

ro/R = l/V_ [Note N5.10.1]

(ii) If the flow is fully developed and turbulent, u(ro) will be equal to _ when

ro/R = 0.758 [Note N5.10.2]
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(iii) Consequently,if theflowisexpectedto rangefromfullydevelopedlaminarto fully
developedturbulent,ameasurementof u at

ro/R = 0.715

will yield a fractional error in mean-velocity measurement, such that

][1 -u(ro)/h]] < 2.3 %

5.11 Spatial integration by physical means. An appropriate geometric configuration may be used to produce
a measurable effect representing the desired integral.

Example 5.11a. The heat of combustion of a chemical mixture of known mass may be measured

by enclosing the mixture in a thermally isolated calorimetric "bomb" of high thermal conductivity,
igniting the mixture by an electric spark, and measuring the resultant temperature rise of the enclosure,

whose thermal capacity is known. Systematic corrections must be made for the spark energy and
for any imperfections in the thermal isolation.

Exampk 5.1lb. The radiant flux from a surface of large area may be measured by optically imaging

that surface upon an energy receiver at the focus of an appropriate optical system. The receiver

may be a bolometer or a photocell so that the measurement actually made is a resistance change

or an emission current. Rather than measuring and correcting for the transmission factor of the optics

and the characteristics of the energy receiver, calibration is usually effected by viewing a black-
body surface of the same area, held at a known temperature.

Example 5.11c. The convective heat flux delivered by an impinging gas stream to a portion of
a surface may be measured by replacing that portion with a sheet of material of known thermal

conductivity and measuring the temperature gradient in the material in a direction normal to the surface.

Example 5.11d. The mass flow rate of a fluid in a pipe is measured by use of a venturi in which

pressure differential Ap and upstream pressure p and temperature Tare measured. The basic product
Ko(p.Ap/T) i/2, where K0 is a calibration factor for certain nominal (bogey) conditions, must be

modified by systematic corrections which were indicated in Example 4.22d.

Example 5.lie. The mass flow rate th of a fluid in a pipe is measured by a Thomas-type of
calorimetric flowmeter. A grid of heating wires uniformly distributed across the cross section of
the pipe delivers heat to the fluid at the rate W; two similar grids upstream and downstream of the

heating grid act as resistance thermometer elements so that the temperature rise ATof the fluid may

be determined. The assembly is thermally isolated so that the process is adiabatic. Ifc is the specific
heat capacity of the fluid,

phc*AT = W

A systematic correction is required for the variation of c with fluid temperature. The grids may

not provide uniform heating or correct averaging of temperature over the cross section of the pipe,

but a systematic correction may be correlated with NRe if an empirical calibration is performed.

Example 5.11f. A liquid flows in a circular pipe of radius R in which there is fully developed
axially symmetric flow. The average axially directed speed _ is to be deduced from an ultrasonic

flowmeter in which a sound pulse is sent between two transducers located at the cylindrical coordinates
(-R, 0, zt) and (R, 7r, zt + L). Ift I is the transit time when the sound travels in the direction of
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the fluid flow, and t2 is the transit time when the sound travels in the opposite direction, the velocity
is to be deduced from the difference

At = t2 -- l I

If fluid density is constant everywhere and fluid velocity is very small compared to the speed of
sound cA in the fluid, then the formula giving the relation between _ and At is of the form

= Kc_oAt/(2L)

where K depends on the velocity profile. For a completely flat profile (fluid velocity the same at

every location), K = 1; for a fully developed laminar profile, K = 0.75; for a fully developed turbulent

profile, K = 0.844. Thus, if the velocity profile is known to be laminar (NRe < 1000) or turbulent

(NRe > 2000), systematic corrections can be applied. However, if the Reynolds number lies in the

transition region or if the velocity profile is not known for any reason, the assumption K = 0. 797

would yield a fractional error not greater than 6 percent. The uncertainty may be larger if the profile
is not fully developed or is distorted because of the piping configuration.

5.12 Profi/e determination by continuous traverse. An empirical determination of the profile by continuous

traverse is usually desirable when a new instrument, measurement technique, or physical situation is first

introduced. Once such a determination is made, subsequent repetitive measurements may be made by the

simpler methods treated in Sees. 5.10 and 5.11, because the required calibration factor or coordinate usually

called for by those methods has been established with greater certainty than is possible by purely theoretical
analysis.

An appropriate procedure is initially to perform continuous traverses over the range of independent

parameters that are, apriori, believed to influence the profile, thereby to establish the appropriate correction

factors for the range of parameters, and then to replace the traversing method with the simpler single-
measurement method. If the independent parameters are nondimensional quantities, the amount of work

is usually minimized, and the utility of the results is augmented.

Because of its mechanical complexity, a continuous traverse is usually convenient only in the direction

of that coordinate in which the measured variable's profile is least predictable. For example, in measuring
the profile of fluid flow in a straight length of pipe, axial symmetry is likely and a radial traverse is more
important than a circular one.

In the time that is taken to complete the traverse, it is necessary that the variable u being measured change

less than the permissible uncertainty Au in that measurement. On the other hand, the traverse may not be

made so speedily that the instrument used in the traverse cannot follow the changes in u with distance x.

If the traversing-instrument system has time constant z (see Chs. 6 and 7) and the gradient of u is du/dx,
then it is necessary that

(5.12-1) dxldt < (Aulr)l(duldx)

If (duldx) varies appreciably over the distance of traverse, it is necessary either that
(i) (du/dx)_x replace (du/dx) in Eq. (5.12-1), if dx/dt is constant, or

(ii) dx/dt be varied so as to satisfy Eq. (5.12-1) over the entire range of traverse.

5.13 Integration or averaging by discrete local measurements. When the spatial variation of a physical

variable u can be described by an analytic formula that contains n independent constants, the average value
may be deduced from local measurements of u at n locations which depend on the form of the formula.

The case n = 1 was treated in Sec. 5.10. When the spatial variation is not predictable, the approximate

value of _ may be estimated from measurements at n discrete locations. If only one space dimension X

is involved, so that u = u (X), this estimation is equivalent to fitting a polynomial of degree n to u (X).

The extent to which any weighted sum of n measurements agrees with the integral of u (X), over any stat*dl
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X-interval, depends on the choice of locations at which measurements of u (X) are made and on the weights
assigned to each measurement.

For any one coordinate X and any one interval

Xa <--X <--Xb,

four methods of selecting the measurement locations and of summing the measurements will be described:

A. Equally weighted measurements at n equally spaced locations. (Centroid-of-equal-areas method). For
any given n, this method is the simplest and least accurate of the four methods.

B. Appropriately weighted measurements at n equally spaced locations. (Newton-Cotes method). This

is the only one of the four methods which requires measurements at the extreme ends of the interval.

C. Equally weighted measurements at n appropriately spaced locations. (Chebyshev method)

D. Appropriately weighted measurements at n appropriately spaced locations. (Gauss method). For any
given n, this method is the most accurate of the four methods.

Table 5-19 lists locations and weights for various values of n and for the following conditions:
(a) In rectangular coordinates, the range

Xa <_X <_Xb

has been normalized to

0_x_l

by the transformation

x = (x - xa)/(x_- x_)

(b) In polar coordinates, the range

O<-R<-Rm

has been normalized to

0_<r< I

by the transformation

r = R/Rm

[Note N5.13.1]

The number n must not be so large that the devices used to make the measurements significantly affect

the distribution u (X) or its spatial integral or its spatial average, unless these devices are a permanent part
of the mechanical installation and exert a permanent influence on the profile of u. [Note N5.13.2].

5.14 Average value of a function of several measured variables. If a quantity z is computed from

measurements of several variables ul, u2 ..... uj ... that vary with some parametric variable x that represents
spatial location or time, so that

9For ease of later reference, Table 5-1 appears at the end of this text on page 220. An earlier version of this table was prepared
by the author for the ASME Power Test Code on Velocity Measurement, and appears also in Ref. 4-6.
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(5.14-1) z = z(ul,u2 ..... u) .... )

(5.14-2) uj = uj(x),

the technique for computing the space-averaged or time-averaged value z0 of z over the interval xa -< x _< xb

depends on whether the space variation or time variation of the measured uj is random or systematic. Here,
z0 may be considered as being given by

S/(5.14-3) (xb - Xa)eZo = z'dx

a

The variable x may represent a space variable like distance, area, or volume or a time variable like time

or phase angle.

A. Random variation. If all of the measured variables vary randomly with respect to x, so that there

is no correlation between the local or simultaneous values of any pair of the uj, then, over the interval

xa _<x _< xb, each uj may be averaged to yield uj0 given by

(5.14-4) (xb - x,)OUyo = uj(x).dx ,

J[a

and the average value of z computed as

(5.14-5) Zo = z(ulo,U2o ..... u._ .... )

This procedure usually is the simplest, because it involves a minimum of instrumentation, computation,

and data processing. Its applicability becomes more likely as the interval (xb - xa) becomes smaller.
B. Systematic variation. If the uj vary systematically with respect to space or time, so that there exist

correlations among the local or instantaneous values of the uj, it is necessary first to compute the local or
instantaneous value of z, as given by Eq. (5.14-1), and then to compute z0 by Eq. (5.14-3). This procedure

is usually complex because it requires a sufficiently large number of computations of z by Eq. (5.14-1)

to permit adequately accurate computation of the integral in Eq. (5.14-3).

C. Combined random and systematic variations. An intermediate level of complexity in instrumentation

is achieved if some of the variables, say ul to uk, are uncorrelated with each other or the other u/, and
only the variables uk+ i,-. are correlated with each other. Then Eq. (5.14-4) is used to find uj0,u20 ..... uk0
and these values are inserted into Eq. (5.14-1) to give

(5.14-6) z = z(ulo, U2o..... uko,uk+ l,uk+2 .... )

This computation may be easier than one in which all uj vary with x, but the integration (5.14-3) must
still be performed.

5.15 Error due to incorrect averaging. Since the averaging operation represented by Eq. (5.14-5) generally

is much less complex than the operation represented by Eq. (5.14-3), the pragmatic question arises of when

the simpler operation is an adequate substitute for the more complex one. If the measured quantities vary

systematically with x, the error Azo that is made by treating them as random is given by

(5.15-1) AZo Z(Uto, U2o.... Uyo..... Uno) 1 I _b= • Z(Ul,U2 ..... uj ..... un) dx
Xb _ Xa Jxa

and the fractional error, if small, is approximately Azo/z(ujo,U2o .... )

The magnitude of the error may be estimated by assuming a simple analytic or graphic approximation

of the functions uj(x), on the basis of some preliminary experiments, previous experience, or other physical

intuition, and then performing, analytically or graphically, the computation represented by Eq. (5.15-1).
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Special case A. In the particular case where the quantity z is the product of two variables, so that

(5.15-2) z = ulu2,

the error AZo is given more readily by the formula

(5.15-3) (xb --x_)'AZo = - (ul - Ulo) (u2 - u20) dx

X a

In any case where the variables ul and u2 vary randomly and there is no correlation between them, the

integral in Eq. (5.15-3) approaches zero as the interval (Xb -- Xa) becomes larger.

Special case B. In the particular case where the quantity z is the product of three variables, so that

(5.15-4) z = UlU2U3

the error AZo defined by Eq. (5.15-1) is given more readily by the formula

god'S0---

where

(5.15-5b) Auk --= uk -- Uko k = 1, 2, 3

and all integrals are from x,_ to xb.

Special case C. In the particular case where the quantity z is given by

(5.15-6) z = ulu2/ws

the error may be estimable by the substitution u3 = l/w3 and the application of Eq. (5.15-5).
This case occurs when the bulk velocity of a fluid in a duct is to be estimated from local measurements

with a traversing pitot-static probe and a traversing temperature probe, or with rakes of such probes.

Example 5.15a. The local linear velocity v and the local density o of a fluid flowing in a circular
pipe of radius R are given by

v = vc(1 - r2/R 2)

p = pc(l + c_r2/R 2)

where r is the radius at which v and p occur.

The true mass flow rate through the pipe is

fa = vp.21rrdr
_o

The area-averaged velocity _ and density _ are given by

7rR2v -- v'21rr'dr

7rR2-p= p'27rr'dr

§5.15
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sothatthefractionalerrorinassuming

tn _- 71"R2x,

is

[Note N5.15.1 ]

_/(6 + 3_)

If this error is to be less than 1, 2, 3, or 5 percent, _ must be smaller than 0.06, 0.12, 0.19, or

0.35, respectively.

The velocity profile postulated in this example is that of fully developed laminar flow.

Example 5.15b. If the velocity and density profiles in Example 5.15a were

v = vc( 1 - x") [Note N5.15.21

p = oc(l + _")

where x _- r2/R 2 and r is the radius at which v and p occur, the fractional error in assuming

/n _ _rR2 v p [Note N5.15.3.]

would be

[n/(2n + 1)][_/(n + 1 + _)1

Example 5.15c. The instantaneous sinusoidai current i through an impedance element and the

instantaneous sinusoidal voltage drop e across the element are given by

i = i,. sin (2xt/T)

e = e,. sin[(2m/T) - ¢]

where Tis the period of the electrical oscillation. Average current, voltage, and power, as measured
by integration over the time interval

O < t < T/2

are

-f= 2i,,,/_

= (2e,./Tr) costa

ei = ( 1/2)i.,em costa

Hence the fractional error in using the product of the averages rather than the average of the products
is

0r2/8) - 1 .= 23 %

The error is independent of the phase angle _aas long as the integration interval is from t = 0 to t = T/2.
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Use of the product of rms averages rather than the product of arithmetic ones would yield the

true average power.

Example 5.15d. If each of three quantities ul, u2, u3 is expressible in terms of a normalized
dimensionless parameter x in the form

uj = aj[l + (bj - 1 )x] (j = 1,2,3)

where

O <_ x <_ l; bj > O;

and if the individual (arithmetic) averages are defined as

Ujo = Suj dx

(all integrals are from x = 0 to x = 1),

then the fractional errors in estimating the functions

f.

fa = 3(1/U3) dx;

by means of the approximations

f_ --- 1/U3o;

r

fb = l(ttl/U3) dx,'

A " Ulo/U3o,"

are given by

where

[Note N5.15.4]

f_ = _(ulu:/u3) dr

f_ _ UloU:o/U3o

Afa/fa = (ot3/2)/(b3- 1)

Afb/fb = ot3(b 3 --bl)/[(b I + 1)(b 3 - 1) 2]

Afc/fc = 2ot3(bl -- b3) (b2 - b3)/[(bl + l)(b2 + 1)(b 3 - 1) 3]

c_ 3 -- (b 3 + 1) In b3 - 2 (b 3 - 1)

Ifx represents the quantity sin (2rt/T), the formulas apply to time integration over a quarter period
(T/4) of a sinusoidal wave. Ifx represents the quantity rZ/R 2, the formulas apply to integration over
the cross section of a circular pipe of radius R.

5.16 Nonlinear averaging. If instrument indication y represents the value x of some physical variable,

and if y(x) is a continuous function, a periodic variation of x about some mean value x0 will produce a
corresponding mean indication Y0. However, Y0 will not correctly represent y(xo) if

(a) the arithmetic mean of x is desired, but y is not a linear function of x;

(b) the rms mean of x is desired, but y is not a linear function of x2;

(c) the geometric mean of x is desired, but In y is not a linear function of In x.

The difference between the indication x(yo) and the true mean x0 will depend on the magnitude and wave

shape of the periodic variation; if the difference is sufficiently small, it may be neglected. A consideration
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(5.16-3)

(b)

(5.16-4)

Thus,

of the magnitude of the difference in certain simple or extreme cases may be sufficient to provide an intuition
of whether some comparable actual situation warrants consideration of nonlinear effects.

Case A. The variable of interest, x, varies sinusoidally with time, so that

(5.16-1) x = x0[l + b sin(2rt/T)]

but the measuring instrument is such that its indication y is given by

(5.16-2) y = ax _

If b < < 1, if averages are taken over an integral multiple of T or over a time interval very much larger
than T, and if Y0 denotes the arithmetic average of y, then,

(a) if x 0 denotes the arithmetic average of x, the fractional error in x0 is

[x(y0) - Xo]/Xo _ (n - 1)b2/4 ;

if x0 denotes the rms average of x, the fractional error in x 2 is

[x2(yo) - X2o]/X_ ,, (n - 2)b2/4

(a) when n = 1, there is negligible error in measuring the arithmetic average;

(b) when n = 2, there is negligible error in measuring the rms average;

(c) for any n, as long as the relation (5.16-2) holds, there is negligible error in measuring the geometric
average.

Case B. If x has a rectangular waveform with period T, so that, if m is an integer,

(5.16-5a) x., x(t) = Xo( 1 + b) for mT <_ t < (m + 1/2)T

(5.16-5b) x-x(t) =xo(l -b) for (m+ 1/2)T<_t< (m+ 1)T

and if the instrument is such that

(5.16-2) y = ax"

then, if Yo denotes the arithmetic average of y over an integral number of cycles (or over a time interval
that includes a very large number of cycles), the value of the fractional error

[X(yo) - Xo]/Xo
is given by

(5.16-6a) 2-°/")[(1 + b)" + (1 - b)"] TM - 1

which may be approximated, for b < 0.8, by

(5.16-6b)

1.43b2/(1 + 1.3b:)

0.50b2/(1 + 0.2b 2)

ifn = 4 -0.25b2(1 + 0.4b 2) ifn = 1/2

if n = 2 -0.37b2(1 + 0.4b 2) if n = 1/4

Example [.16a. In an orifice-type flowmeter, the measured differential pressure varies with the

square of the velocity of flow. If there is a high-frequency fluctuation in this velocity, superposed
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onthemeanflowvelocity, the differential pressure indicated by a manometer too slow to follow
the fluctuation will correspond to a velocity higher than the arithmetic mean flow velocity.

Examp/e 5.16b. A constant-temperature hot-wire anemometer utilizes an electronic circuit to provide

substantially instantaneous adjustment of wire current to maintain constant wire temperature; the
wire current is measured. This instantaneous current is proportional to the fourth root of the

instantaneous fluid velocity. Ifa rapid, periodic fluctuation is superposed on the steady flow velocity,

without any flow reversal, the arithmetic mean of the current will represent a fluid velocity lower
than the arithmetic mean fluid velocity. _0

Example 5.16c. In a viscous fluid stream, in which there exists a constant gradient of velocity

in a direction perpendicular to the flow velocity, velocity is deduced by measuring the force on a

small disk ("impact disk") whose plane is normal to the flow. The force on an element of area

of the disk is proportional to the square of the velocity of the fluid impinging on that element of

area. The measured force will correspond to a velocity higher than that existing at the center of

the disk. However, the measured force will correctly correspond to the local impact force, local

impact pressure, or local rate of momentum change at the center of the disk.

Examp/e 5.16/. A radiation pyrometer is sighted upon an area which is not of uniform temperature.

Since the pyrometer's indication is proportional to the fourth power of the temperature of the surface,

the temperature corresponding to the indication will be higher than the arithmetic mean temperature

of the area. However, the indication will correctly yield the arithmetic mean of the radiated energy.

5.17 Energy orpower transfer in measurements. The use of an instrument to measure a physical variable
usually has one of two goals:

(1) to determine the condition that exists while the instrument is installed, or
(2) to determine the condition that would exist if the instrument were absent.

In either case, one must consider the effect that the presence of the instrument has on the physical variable

being measured. In the first case, the measurement is made because such effect is considered acceptable
or can be made so by adequate and convenient control of the measurement conditions. In the second case,
it is necessary to establish

(a) that the presence of the instrument produces a negligible effect, or

(b) that the quantitative effect of the instrument's presence is known sufficiently well so that a
systematic correction can be applied to the instrument's indication in order to describe conditions

after the instrument has been removed (any uncertainty in the knowledge of this correction
becomes a random error); or

(c) that the measurement conditions can be adjusted, and any auxiliary measurements made, so
that situation (b) can be realized.

The determination of the extent to which the presence of an instrument affects the physical variable being

measured can usually be made by considering the ratio of the energy taken from the source by the instrument

to the energy stored in the source; when the measurement is independent of the time interval during which

the instrument is installed, the word "power" may replace the word "energy".

In practical situations, it is often adequate and more convenient to deal with some physical variable other
than energy or power.

Example 5.17a. An ammeter is installed in an electrical circuit. If the ammeter is later to be

removed, its resistance must be known, because the absence of this resistance may alter the current
in the circuit. [Note N5.17]

]0Manypracticalconstant-temperaturehot-wire anemometers utilizea linearizing circuit thatyields an electricalsignalproportional
to the fourth root of the wire current; this signal, rather than the wire current, is measured. Thereby, the correct average of a fluctuating
signal can be obtained.
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Example 5.17b. A voltmeter is used to measure the voltage across a resistor. If the resistance

of the resistor is not negligible compared to the voltmeter resistance, the voltage across the resistor
will change after the voltmeter is removed.

Example 5.17c. The temperature of an object with low thermal capacitance (mass x specific heat)

cannot be measured correctly with a thermocouple unless the wires leading from the junction lie

along isotherms to prevent conduction of heat along the wires; or unless a systematic correction
is made for such heat conduction.

Example 5.17d. A turbine-type or orifice-type flowmeter in a pipe introduces a flow impedance,

so that the flow rate would be different in the absence of the flowmeter. At any given fluid velocity,

the effect is proportional to the ratio of pressure drop across the flowmeter to the pressure differential

available to produce the pipe flow. (The product of volumetric velocity and pressure represents power.)

However, there is no error in flow measurement, due to this pressure drop, if the flowmeter remains
in the pipe as a permanent part of the installation.

Example 5.17e. The presence of a traversing pitot tube, impact-plate flowmeter, or propeller meter

to determine the distribution of local flow velocity may affect the area or the pressure differential

available for the flow; thereby, the relation between local velocity and bulk velocity may be affected.

_r, ample 5,17f. An ion gauge is attached to an enclosed high-vacuum c|atmber in order to measure

gas density or gas pressure in that chamber. This gauge may act as a source or sink of gas, so that

the gas density when the gauge is on is not the same as the gas density when the gauge is off.

If an ion gauge is used to measure the pressure in a plenum through which there is a continuous
flow of gas from an external source, the error will be small if the volumetric rate of flow of this

gas is high compared to the (positive or negative) volumetric pumping speed of the gauge. (The
product of volumetric flow rate and pressure represents power.) II

Example 5.17g. A strain gauge is attached to the surface of a thin sheet in order to measure the

elongation of the sheet. If the force required to operate the strain gauge in order to produce a given

elongation is not negligible compared to the force required to produce the same elongation in the
sheet alone, there will be an error in the determination of the force-strain relation that would exist

in the absence of the strain gauge. (The product of force and elongation represents energy.)

5.18 Power transfer in nufl measurements. One of the methods of realizing the condition that the presence
of the instrument shall have negligible effect on the physical quantity being measured (condition (a) of

Sec. 5.17) is to use a separate external source to provide most of the power that is required by the instrument

to make the measurement. An effective technique is that of null measurement; it has the following important
features:

(1) It uses a detector that need not be accurate

(2) It permits use of a detector with very high sensitivity--one whose sensibility (item (5) of Sec. 5.0)

is much smaller than the probable error of measurement one is seeking to achieve

(3) It still requires that the source being measured provide a slight amount of power (or else an
off-null condition could not be detected), even though this amount is a small fraction of what
would otherwise be required to effect a measurement.

The null-measurement technique is illustrated by the following case examples:

tiThe effect of pumpingby an ion gauge may be determined(and used as a systematiccorrection if the effect is largeenough)
by having a secondgauge attached to the chamberor plenum, and observingthe change in indicationof this second gaugewhen the
first gauge is turnedon or off.
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Figure 5. I X. I .--Methods of voltage measurement.

Case A. Voltage measurement. In Fig. 5.18.1(a) the emf Ex generated by a source whose internal

resistance is Rx is to be measured with a voltmeter whose resistance is R,.. When the voltmeter is connected,
the voltmeter indication is

E>.= ExRy/(R x + Ry)

rather than Ex. The error may be eliminated if the voltmeter is replaced by the potentiometer shown in

Fig. 5.18.1 (b). A potential difference equal to Ex is created by passing a controlled current Ir through a

resistor R._. The current is derived from an external source. Either I), or Ry is adjusted until I_,R_, = Ex. This

equality is indicated by zero deflection of the null indicator, whose resistance is Ro. Both ly and R), are
known very accurately, or else the product lrR r is measured very accurately by comparison with an
accurately known emf, like that of a standard cell. (See, also, Examples 1.4a and 1.4b). The result does
not depend on Rx or R0 or on the null-detector's calibration. 12

Ix I x Iv

• N,,. _laJJ
indicalor _ _| |

lal (b)

(a) An_meler

(b) Null ammeler

Figure 5.1_.2.--Mel|l(KIs of currenl nleasurenlenl.

Case B. Current measurement. In Fig. 5.18.2(a), the current lx from a source with shunt resistance Rx

is to be measured by inserting an ammeter of resistance Ry between two terminals that would otherwise
be connected to each other (short-circuited). If Ix is the current that existed in this short circuit before the

ammeter was inserted, the current indicated by the ammeter is

XxRx/(Rx+ R.,)

rather than Ix. The error may be eliminated if the ammeter is replaced by the circuit shown in

Fig. 5.18.2Co). A current 1_,derived from an external source is adjusted until the null indicator, whose

resistance is R o, indicates that no current is passing through it. Then lx = ly. The current ly is measured
very accurately. The result does not depend on Rx or R0 or on the null-detector's calibration. _3

§5.18

12The representation of a voltage source as a series combination of an open-circuit emf and a series resistance is Thevenin's theorem.

13The representation of a current source in terms of a current and a shunt resistance is Norton's theorem.
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Figure 5.18.3--Null melhod of pressuremeasuremcm

Case C. Pressure measurement. In Fig. 5.18.3, a flexible metallic diaphragm separates two chambers.

The unknown pressure, applied to one chamber, holds the diaphragm against a mechanical stop in the other

chamber. This stop is electrically insulated from the remainder of the assembly. The pressure in the chamber
containing the stop is increased until electrical contact is broken; the pressure at this instant is measured

accurately and is equal to the unknown pressure. The accuracy does not depend on the elastic qualities of

the diaphragm. [Notes N5.18.1 and N5.18.2]

Case D. Temperature measurement. The correct value of the temperature Tx of a calorimeter is achieved

only if there is no heat exchange between the calorimeter and its surroundings. This condition is achieved

by surrounding the calorimeter with an isothermal enclosure whose temperature is separately controlled

to be equal to that of the calorimeter. The temperature difference may be measured with a differential

thermocouple of fine wires. When this difference is zero, the temperature of the enclosure may be measured

with an accurate thermometer, however bulky. The measurement does not depend on the quality of the
differential thermocouple, or on the emittance of the surfaces involved.

In similar fashion, a bolometer element designed to measure radiant energy may be surrounded by a

separately heated isothermal enclosure whose temperature is kept equal to that of the bolometer.

In all null measurements, the relation between off-null indication y and the physical variable of interest

x can be established only by drawing some power from the source, even though this power is only a small

fraction of the power that would have been drawn in a non-null measurement. The reason for this requirement

is that the knowledge of the existence of a balanced or null condition requires the ability to detect when

an unbalance exists. Thus, if (Ax),,_ represents the limit of error that is acceptable in the measurement

ofx and if (Ay)m/n represents the sensibility of off-null indication (the smallest off-null magnitude that can
be reliably detected), it is necessary that, at and near balance,

(5.18-1) (Ay)min _ (Ax),,_

The derivative dy/dx is the sensitivity of off-null detection. This derivative is a maximum when, at an

unbalance Ax, the power developed in the source is equal to the power developed in the detector. In electrical

circuits, this equality is achieved when certain relations exist between source impedance and null-indicator
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circuit impedance. In mechanical or thermal situations, it may be more difficult to define the requirements

explicitly, but Eq. (5.18-1) remains dominant.

The cases just treated will serve as examples.

Cases A and B. For a given unbalance Ax (in voltage or current to be measured), maximum voltage will

appear at the detector terminals if Ro is as high as possible; maximum current will pass through the detector
if R0 is as low as possible; maximum power will be delivered to the detector if

(i) in a dc circuit, R0 = R_ + R_.

(ii) in an ac circuit, where a resistance R is replaced by an impedance

z=R +jX,

it is necessary that

Ro= R_ + Ry

and that

x0 = - (x_ + x,)

In ac.circuits, the matching of source and detector impedances is facilitated by the use of transformers.

The use of a transformer that provides maximum power transfer will yield the best sensibility of off-null
detection.

It should be noted that, when maximum power transfer is desired, no serious loss of power results when
there is a moderate deviation from unity in the ratio

Ro/(R, + R:,)

For a ratio of 2:1 or 3:1, the power delivered to the detector is only 12 percent or 30 percent less, respectively,
than the maximum possible value. 14

Case C. It is necessary that the diaphragm be so flexible that the pressure differential required to produce

a clear separation between contacts is only a small fraction of the desired sensibility of pressure measurement.

At the same time, the mechanical design must be such that the diaphragm is not damaged when full-scale
pressure acts to hold the diaphragm against the stop.

Case D. Not only must the sensibility of off-null detection be much smaller than the desired sensibility

of temperature measurement, but the uniformity of temperature of the surface of the enclosure must also

be adequate; auxiliary differential-temperature measurements may be used to confirm this adequacy or to
provide a closer estimate of the mean enclosure temperature.

5.19 Ultimate sensibility of measurements. Noise. The smallest change that is reliably detectable in any
observation or measurement can be represented as the rms value of a random error in that measurement.

For psychophysical observations, this value is determined by the abilities of a human observer; quantitative
descriptions, based on statistical analysis of the abilities of a representative sample of persons, can be presented

for an average observer, sometimes designated as the "standard observer", although the sample is often

chosen from a group of physically fit young persons.

For measurements of physical variables, the limit of sensibility is determined by the randomness of the

motion of molecules, atoms, or charged particles or of the randomness of occurrence of events involving

these particles. The magnitude of sensibility can be reduce.d by averaging the observation over a longer

period of time; the magnitude usually is reduced in proportion to the square root of the averaging-time
interval At.

t4This result derives from the properties of the maximum or minimum: a large change in the abscissa produces only a small change

in the ordinate. This effect entered also into the discussions of Sees, 3.28 and 4.10.
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In electrical measurements, it has become customary to consider that the quantity has a frequency spectrum
and that averaging is the process of measurement over a frequency interval Af. This quantity is on the order

of magnitude of l/(2At) but not necessarily equal to it. The advantage of using z_fis that many steady-state

electrical measurements represent the average (usually rms average) value of a signal that is fluctuating

at a frequency near to f," Af is then an interval centered around f. 15

The term noise has been affixed to the rms value of the random fluctuations that ultimately limit the ability

to make a measurement. When a detector is used to measure the output of a source of energy, both source

and detector individually contribute noise. Furthermore, there may be several origins of noise in both source

and detector. Each origin of noise may contribute a separately definable magnitude of noise. The resultant

sensibility, that constitutes the limit of reliable detection, is the square root of the sum of the squares of
all of these magnitudes, provided each of these contributions has the same dimensions.

Some common limits of sensibility are listed below. (When they appear in the formulas given in this
section, T is absolute temperature and k is Boltzmann's constant.) _6

A. Psychophysical optical observations.

(1) The ability to detect the coincidence of two index lines is termed the vernier acuity of the eye.

It is of interest in optical range finding and in dimension measurement by optical projection. It is on the
order of 12 seconds of arc for a person with excellent vision. For the unaided eye at normal viewing distance,

the vernier acuity becomes 0.015 mm; this distance is reduced in proportion to any linear magnification
that is used.

(2) The ability of the eye to detect the separation between two lines is termed the visual acuity of

the eye. It is on the order of 1 minute of arc for a person with excellent vision. For the unaided eye at

normal viewing distance, the visual acuity becomes 0.07 ram; it is reduced in proportion to any linear
magnification that is used.

(3) The ability of the unaided eye to detect the presence of an appropriately illuminated scratch on

a polished surface is due to diffraction by the scratch. A 1 #m scratch, subtending a viewing angle of I second,
is detectable. The observation provides information only on scratch presence--not on scratch width.

(4) The eye can discriminate between two levels of luminance that differ by 2 percent, if the eye
has been fully adapted to the luminance level.

For example, application of this fact to the manually balanced disappearing-filament optical pyrometer
indicates an ability to achieve balance to 1 K at a temperature of 1000 K.

B. Mechanical measurements. The ability to make mechanical measurements of position is limited by

Brownian motion and is rarely of interest in industrial or routine laboratory applications, but does enter
into some highly sensitive measurements in research or standards laboratories.

(1) When particles are suspended in a stagnant liquid, and a particle's position is averaged over a
time interval At, the rms uncertainty & in position x is given by

(5.19-1) (&lc)2 = 2D.At

where D is the diffusion coefficient of the liquid. [Note N5.19.1]

(2) When the linear deflection x of a spring, whose spring constant is Kx (force per unit deflection),

is to be determined, the rms value of the uncertainty 5x is given by

(5.19-2) (_)2 = kT/(2Kx)

(3) When the rotation _oof a torsion pendulum, whose torsional spring constant is K, (torque per
unit angle of twist), is to be determined, the rms value of the uncertainty 6_, is given by

15The precise definition of Afmust be made by the user; a common definition uses the "bandwidth at half maximum" of a bandpass

filter. (See Sec. 7.20.)

16At 300 K, kT - 4 x 10-21J.
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(5.19-3) (6,p) 2 = kT/(2K_)

C. Measurement of radiant energy.

(1) The rms value 6P of the random fluctuations of total radiant power P emitted by a radiator of
area A and total emittance e is given by

(5.19-4) (6P) 2 = 8eAokTS.Af

where o is the Stefan-Boltzmann constant. (Ref. 5-1, p. 59)

(2) The rms value 6Tof the random fluctuations of temperature Tof a body, like a radiation receiver,

whose heat capacity (thermal energy required to produce unit temperature rise of the body) is Cb, is given by

(5.19-5a) (6T)2 = kT2/Cb (Ref. 5-1, p. 354)

The rate at which the body can exchange energy with its surroundings is proportional to its heat transfer

rate Kb (thermal power it exchanges per unit temperature difference). The rms value 8P of the fluctuation
in this power, because of the fluctuation 6T, is given by

(5.19-5b) (6P) 2 = (K0,aT) 2 = 4kKbTZ,af (Ref. 5-I, p. 356)

(3) When the values of 8P for both emitter and receiver are of significant magnitudes, the values
of (6P)2 given by Eqs. (5.19--4) and (5.19-5b) must be summed, after appropriate weighting for the solid
angle subtended by the receiver, to obtain the total noise due to these causes.

(4) For a laser operating as a single-frequency oscillator far above threshold, the rms variation fin

in the number n of quanta emitted in any given time is fn. (Ref 5-2, p. 105)

D. Measurement of electrical quantifies.

(1) Thermal noise (Johnson noise, Nyquist noise) is usually the principal type of noise found in electrical
components. [Note N5.19.2] It appears as an emf across the terminals of a resistive element even when

the element is open-circuited and even when no current is passing through the element. When thermal

equilibrium exists, the rms value 6e of the random fluctuations in the emf e that appears at the open-circuited
terminals of a resistance R is given by

(5.19-6a) (6e) 2 = 4kTR,Af .

(At 300 K, the noise power is 1.7x 10 -2°.Af watt if Afis in hertz.) 17

(a) If the resistor is connected to a capacitance C and if the frequencyfaround which the interval
Af is centered is such that

(5.19-6b) f> > I/(27rRC)

then

(5.19-6c) (6e) 2 = kT/C

(b)

because the capacitor acts as an integrator of the noise. (At 300 K, the noise energy is
2 x 10-2tj.)

If the resistor is connected to a critically damped galvanometer (Sec. 6.3) whose natural
frequency is f,, then the integration of noise is such that

§5.19

17The measurement of noise power in a wire resistor has been proposed as a means of temperature measurement (the noise
thermometer) because the power generated depends only on the temperature and on .',f
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(5.19-6d) (fe)2= zckTRfn/2

(2) Current noise represents a random fluctuation 6i in the current i passing through an electrical

component. The magnitude of the fluctuation is proportional to some power of the current i. There are
several possible sources, distinguished by their nature or their behavior.

(i) Shot noise [Note N5.19.31

(ii) Generation-recombination noise (G-R noise) [Note N5.19.4]

(iii) Flicker noise (l/f noise) is such that noise power varies inversely with frequency. Its cause
is not well understood; its magnitude appears to depend on surface conditions.

(3) When several sources contribute noise, the total noise voltage or current that appears at any pair

of terminals is the square root of the sum of the squares of the individual noise voltages or currents. This

quantity is sometimes described as the root sum square (rss) voltage or current. (The summation may be

made only of quantities having the same dimensions.) The total noise power generated is merely the sum
of the individual noise powers.

Example 5.19. If, in order to achieve maximum power transfer (Sec. 5.18), a load resistor at

temperature T2 is connected to a source resistor of equal value but at temperature TI, then the noise

power in each resistor is k(Tl + T2)e/_f. (If T] = T2 = 300 K, the noise power in each resistor is
0.8 x lO-2°eAf watt)

(4) When a device has more than two terminals or when there is a chain of devices, it is convenient
to state the equivalent input noise--the noise at the input terminals that would create the same noise at a

designated pair of output terminals if all succeeding components of the chain were noise free. This equivalent
input noise may be described in one of several ways:

(i) by stating the equivalent input noise power, as described above

(ii) by stating the equivalent noise resistance R,, the value of a resistor whose thermal noise emf,

at the temperature T of the sources (if all sources are at the same temperature) or at an
arbitrarily specified temperature T, is the same as the total noise emf

(5.19-7) R,, = [total (he)21/(4kTeAf)

(5.19-8)

The power fluctuation cfP associated with a voltage fluctuation hie across a resistor R_ or

with a fluctuation 6i in the current through that resistor is given by

hP = (he)2/R,, = (hi)2eRn

(iii) by stating the value of the equivalent input hie or 6i

(iv) by stating the equivalent noise temperature, Tn, the temperature of a resistor whose thermal

noise power would be equal to the total noise power

(5.19-9) T_ = (total noise power)/(4keAf)

(v) by stating the noise factor, F, the ratio of the noise power that actually appears at the designated

output terminals of the device, to the noise power that would appear at the output if the only
noise source were an ideal (noninductive and noncapacitive) wire resistor whose value was

equal to the resistance of the source that is connected to the input terminals of the device.

Thus, one may speak of the noise factor of a semiconductor, of an amplifier, or of a
semiconductor connected to an amplifier.

(5.19-10) F
actual noise power output

noise power output from ideal source
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Thisratiomaybeexpressedindecibelsas(10logF)dB.

The terms noise factor and noise figure have been used by some writers to denote the power

ratio itself or its value in decibels, but there has been no consistency in the allocation of names.

Current U.S. practice is to use the terms interchangeably, regardless of what (nondimensional)

unit is used. A further standard practice is to specify that, when F is used in a product specifi-

cation to characterize the performance of a device, the temperature of the ideal resistor shall

be presumed to be 290 K, and the bandwidth shall be presumed to be 1 Hz.

Note N5.19.5 gives some empirical information on noise sources and magnitudes.

5.20 Signal-to-noise ratio. The indication of an instrument intended to measure some physical variable

is impaired by the presence of random errors in that indication. The indication that would be obtained in

the absence of such errors may be termed the "signal"; the indication that would be obtained in the presence
of only the random errors may be termed the "noise". An effective way to determine whether noise introduces

a significant uncertainty in the measurement of a signal is to compare the signal power S (the power available,
at the point of measurement, from the source being measured) with the noise power N available at the same

point of measurement. The signal-to-noise power ratio (S/N) is sometimes stated in dB (Eq. 2.8-1a).

The noise power N may be considered to originate from the sources treated in Sec. 5.19, from random

fluctuations in the variable being measured, or from randomly fluctuating external physical variables that

produce corresponding fluctuations in the signal at the point of measurement. On occasion, systematic

fluctuations have been included in the definition of noise as a matter of convenience; for example, power-

line hum when its evaluation, correction, or cancellation is inconvenient. On such occasions, it is necessary
that an author define what is included in N.

There remains the question of how acceptable is a given ratio S/N. The distributions of the numerous

random events that cumulatively contribute to the noise are sufficiently Gaussian, and the central limit theorem

(Sec. 3.29) is sufficiently effective so that the Gaussian distribution (Sec. 3.18) may be considered to apply

to the noise. The total rms noise amplitude (voltage, current, displacement, etc.) then corresponds to the
quantity a in Eq. (3.18-1) and to the abscissa e_ in Fig. 3.18(a).

Loosely speaking, one may say that, for noise with a Gaussian amplitude distribution, if the signal amplitude

is 2 or 3 times the noise amplitude (S/N = 4 or 9, respectively), the odds are about 1:20 or 1:400, respectively,

that the signal will be obscured by the noise (Ref. 5-3, p. 22). 18

5.21 Improvement of signal-to-noise ratio. If N represents only random noise, the value of S/N may

be increased by increasing the time interval z_t in which a reading is averaged or by narrowing the frequency
band Afwithin which a signal is being accepted. Mechanical means of doing this are use of an instrument

with low natural frequency or long time constant (Chapter 6). Electrical means are
(a) use of analog integration

(b) use of an integrating digital meter, such as one that converts voltage or current to pulse frequency,
so that the pulses may be counted over a long period of time

(c) use of synchronous modulation and demodulation (e.g., with electromechanical, photoelectric,

or solid-state-circuit choppers) with a long-time-constant detector; if the original noise lay in a

frequency interval Af and the detector time constant or the integration time is T, the factor by

which the original signal-to-noise ratio is improved is on the order of _ (r*Af)
(d) use of narrow-bandpass filters.

The choice of an averaging-time interval or its equivalent always represents a balance between the amount

of noise reduction and the ability to follow fluctuations in the variable being measured.

Other methods of increasing the signal-to-noise ratio are

(a) reduction of the temperature of the principal sources of noise that are temperature dependent
[Note N5.21],

(b) use of null-potentiometer techniques to reduce current in a source of noise that is current dependent.

IgNore that Ref. 5-3 uses S/N to denote the square root of the power ratio.
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5.22 Instrument standards. In any one laboratory, instruments in daily use are occasionally checked by

comparison with "working standards;" these, in turn, are occasionally checked by comparison with

instruments which are "primary standards" for that laboratory. The primary standards may occasionally

be checked by comparison with standards maintained by a national or regional standards organization, but

such comparison may be rare and is usually inconvenient because great care may be required in transportation

of the laboratory's primary standard to another location, and considerable recovery and stabilization time

may be required after such transportation before a reliable comparison can be made.

The laboratory's own primary standards should be maintained under conditions that ensure virtual certainty

that they have remained unchanged since the comparison with the national or regional standards laboratory.
Some means for such assurance are

(1) The standards are in a room in which temperature and humidity are controlled, in which vibration

and acoustic noise are minimal, and in which temperature and humidity are unlikely to change appreciably
when there is a temporary failure of electric power or other utility service. A windowless basement room,

well away from noisy, vibrating machinery, is often a satisfactory location.

(2) Personnel who use these standards are few in number, permanent, professionally trained, and
temperamentally suited. The professional training must include an understanding of the instruments and

the techniques of using them, the ability to recognize and correct for systematic errors, and the ability to

recognize and estimate random ones. Temperamentally, the personnel must be willing to attend carefully

to all the numerous details usually required, and must have the integrity to admit any inadvertent mistake

that may have compromised the accuracy of a standard; at the same time, they must have been assured,

in advance, that such inadvertence would not be penalized.

(3) The packaging and transportation of the laboratory's primary standard to and from the national
or regional standards laboratory must be performed with sufficient care to ensure that safe limits of

temperature, acceleration, and vibration have not been exceeded.

5.23 Criteria for instrument selection. The selection of an instrument for a particular application requires
a human judgment that is based on the needs of that application and the characteristics of the available

instrumentation. Most of the instrument characteristics can usually be expressed in quantitative form; fewer

of the needs can usually be so expressed. Once the human judgment is made, it may be possible to formulate

the conclusion as the sum of a number of weighted numerical gauges of each item considered. The items

and the weights will vary with each application. Any formula for selection is the result of a human judgment;
it is not a substitute for such judgment.

The magnitude of systematic and random errors of an instrument, as treated in this chapter and further
treated in following chapters, will depend on the range of circumstances under which the instrument will

be expected to operate satisfactorily. The weight (importance) assigned to these errors will depend on the

measurement accuracy required and on other performance factors, like those outlined below. In gauging
the merits of any instrument for any given application, caution must be exercised not to condemn it over

another merely because more is known of its errors than is known of the errors of the other, nor to appraise
one instrument i'_ighly merely because less is known of its errors than is known of the errors of others.

One of the more common compromises required is between speed and accuracy. The subject of dynamic

response will be treated in the chapters that follow, but even when a so-called static measurement is made,

the time required to make the measurement usually must not be excessive, even though random errors are
always reduced when the integration interval is increased.

Some other significant criteria for selection of an instrument or a measurement technique are listed here.

(1) Installation and integration: quality and cost of personnel required to make the initial installation
and to integrate it into the complete system or operation.

(2) Maintenance required: frequency, quality, and cost of the work; quality, permanence, and cost
of the personnel required and of their instruction.

(3) Reliability: probability, severity, and consequences of malfunction.

(4) Serviceability: availability of parts and of repair service over the life of the instrument; quality

and cost of personnel required for such service. (The cost of available parts is usually a trivial fraction
of other costs.)

[Note N5.23]
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NOTES FOR CHAPTER 5

N5.1. In this example, or whenever a pointer-and-scale instrument is used to provide a quick indication

of a momentary condition (like the maximum value of a momentary pulse), it is important that the indication

be quickly perceptible. A broad, spade-type pointer and a coarsely graduated open scale (Fig. 5.1) that

relies on visual interpolation between scale divisions is more useful than a finely divided scale or a knife-

edge pointer.

Figure 5.1.--Pointer and scale
design Ibr quick perception.

N5.4 The deviation of the sea level value from the standard value g, (Table 2-1) is less than 0.3 percent,

as reported in the Smithsonian Physical Tables for over 100 locations, worldwide. The reduction with altitude

is 0.03 percent per kilometer.

N5.6.1 If separation of these effects is of interest, the following procedures may be helpful:
(i) when backlash is negligible, elastic hysteresis in the presence of dry friction can be evaluated

by performing calibrations in the presence of mild vibration. In an electrobalance, dither (a

superposed alternating current of relatively small amplitude) may be used.

(ii) when dry friction is negligible, elastic hysteresis in the presence of backlash can be evaluated

by performing a calibration in one direction without ever overshooting a calibration point and
then performing a calibration in the opposite direction by overshooting each calibration point and

then returning to the desired input. The amount of overshoot should be slightly larger than the
backlash.

(iii) when both backlash and friction are significant, they generally mask the elastic hysteresis.

N5.6.2 The magnitude of the hysteresis and drift is approximately proportional to the magnitude of the

change in spring deflection that produced it. The values of hysteresis and drift will therefore be largest

when the input change represents the full span of the instrument.

N5.6.3 The drift generally occurs exponentially with time, so that the "final" indication is the asymptote
of the curve of indication vs time.

N5.6.4 The temperature coefficient of the modulus of elasticity of NiSpan C, a high-quality spring material,
is about -2 x 10-5/*C (it varies with the heat-treatment temperature); that of ordinary high-quality spring

steel is about -20xl0-5/*C. The coefficient of linear thermal expansion of both materials is about
1× 10-5/*C.

N5.7.1 The net thermal emf to be expected at the terminals of an instrument are

3 to 10 #V in high-quality industrial instruments

1 to 3 #V in high-quality instruments for routine laboratory use

0. l to l /.tV in highest-quality laboratory standard instruments

N5.7.2 In some applications, manipulative techniques may permit reducing the effect of thermal emf's by
a factor of l0 or 100. For example, in using a Wheatstone bridge, reversal of power-supply polarity, leaving

all other wiring untouched, permits averaging of the null-detector indications to yield the correct off-null

reading.
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In otherapplications,one may seek to create an isothermal environment for the low-level circuitry by

(i) mounting positive and negative terminals next to each other on a massive copper block with thin
insulating bushings;

(ii) surrounding the low-level circuitry with an isothermal enclosure;

(iii) minimizing the amount of heat generated in the enclosure;

(iv) using only massive all-copper switches, copper wire and terminals, manganin resistors, and
low thermal emf solder.

N5.7.3 The electric and magnetic effects of power-line hum may be reduced by some of the following
expedients:

(i) use of coaxial or triaxial cables and electrically insulated enclosures, whose shields are all

connected together at one and only one terminal

(ii) connecting this terminal to a point at the same ac potential as the ground or neutral line of the
power supply

(iii) filtering the power-line input to the measurement system to remove significant harmonics

(iv) if hum is of steady amplitude and phase, using a hum-bucking circuit that provides independent
control of amplitude and phase

(v) twisting of wire pairs that carry the same signal in opposite directions

(vi) shielding these pairs with material of high magnetic permeability

(vii) using power supply transformers of balanced construction, with separately shielded primary and
secondary windings (Interwinding capacitance is usually less than 1 pF.)

(viii) physical separation of low-level circuits from the power lines
(ix) use of band-rejection filters, preceding the measuring instrument

(x) measuring the average value of the signal over a sequence of time intervals, each of which is

exactly equal to the period of the hum, or to an integral number of such periods. The effect

of hum is eliminated and higher-frequency noise is attenuated. An average of these averages
will attenuate noise at frequencies below the hum frequency. (The successive intervals need not

be contiguous, so that switching operatioas may be interposed between these intervals.) Integrating
digital voltmeters often use this method of hum rejection.

N5.10.1 A laminar profile is to be expected if the Reynolds number NRe of the flow is less than 1000. The
profile is then given by

u/uc = 1 - r2/R 2

where uc is the velocity at the center of the pipe (r = 0).

If a fiat profile exists at the entrance of a square-ended pipe, the profile can be considered fully developed
at a distance

x =0.2 RN_,

downstream from the entrance of the pipe.

N5.10.2 A turbulent profile is to be expected if the Reynolds number NRe of the flow is greater than 2000.
The profile is then given by

u/uc = ( 1 - r/R) I/7

where uc is the velocity at the center of the pipe (r = 0).

If a fiat profile exists at the entrance of a square-ended pipe, the profile can be considered fully developed
at a distance

126



Ch. 5-Notes

x = 40RNRe

downstream from the entrance of the pipe.

N5.13.1. The tabulation of x-values in Table 5-1 may be used to determine the equivalent values for any

other coordinate system, by the following procedure.

(1) Let the limits of the new coordinate s be sa and sb sO that

Sa <<- S _ S b

(2) Write the element of area dA in the new coordinate system as

dA = Bods

(3) Then the transformation between s and x is given by

f lx = Bods / B°ds

Stl $£1

Example 5.13a. In polar coordinates, if

Ra<_r<_Rb

dA = 2rrodr,

then

2 2
x = (r: - Ra)/(R b - R2a)

Example 5.13b. Fluid flowing in a pipe immediately downstream of an elbow may have a strong
velocity gradient along a diameter lying in the plane of the elbow. To find bulk velocity, it may

be best to take the element of area, as it is shown in Fig. 5.13, at a distance r from the pipe's center,
so that

Pl_tne

_f

clbo_v

Elelllenl o[" ,|tf2a -_,

\

i

/

---R t - r -:

\
t

R

Direction of

tb.

velocity gradien!

Figure 5.13.--Element of area in a circular pipe with diametral velocily

gradient. D_ts show locations for six-point integralion.
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-R<_r<_R

dA = 2dr*x/ ( R 2 - r 2)

Then

x = (1/2)+ (I/Tr)I(r/R)_/[l- (r2/R2)] + sin-'(r/R)l

Here, x=0when r= -Randx= 1 whenr=R

However, if only a single measurement is made for each element of area, with the points of

measurement lying on the pipe diameter, the computed bulk velocity will be too high. A closer
approximation will be obtained if each element of area is assigned the average of two measurements

made at locations which are on each side of the diametral line, by a distance equal to 0.6 x/(R 2 - r 2)

(the 0.2-0.8 rule). These locations are shown by dots in Fig. 5.13 for the case n = 3 and Chebyshev
integration.

N5.13.2 In the most general case where u varies along three orthogonal directions X 1, X2, X3, a different

method of integration and a different number of locations n I, n2, n3, respectively, may be selected for each
of the directions, to suit the circumstances.

Usually, methods using equally weighted measurements are preferred because then the simple sum of
all measurements conveniently provides the desired integral of u.

Example 5.13c. To measure bulk fluid velocity in a circular duct, the centroid-of-equal-areas method

may be used with n_ equal to 2, 3, or 4, for measurements around a circle at any given radius;

and the Chebyshev method may be used with n2 equal to 2, 3, or 4 for measurements along any

given radius. If almost axially symmetric flow is expected, n I = 2 may be sufficient. If fully

developed flow is expected, n2 = 2 may be sufficient. If the flow is expected to be fully developed
and almost axially symmetric, a total of four measurements may be adequate.

Example 5.13d. The average speed _ of a river is measured by four vertical arrays of current

meters. The arrays are in a straight line normal to the direction of flow and, by the Chebyshev method,

are located at 0.1027, 0.4062, 0.5938, and 0.8973 of the river width; each array consists of two
current meters located at a distance below the water surface equal to 0.2113 and 0.7887 of the local

water depth. If this depth, at the four horizontal locations, is 4, 7, 8, and 5 m, respectively, and
if the sum of each pair of current-meter readings is sj, s 2, s3, and s4 respectively, then the velocity

is given by

48_=4sl +7s 2 +8s 3+5s4

N5.15.1 The integrals in Example 5.15a are

rh = xR2vcpc(3 + 00/6

= vc/2

= Pc (2 + c0/2

N5.15.2 The progressive change in velocity profile as n decreases from an initially high value to an ultimate

value of unity qualitatively resembles the development of a laminar-flow velocity profile when a fluid enters
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asquare-endedcircularpipefromasubstantiallyinfiniteplenum.Theprofileis initiallyalmostsquare;
itsfullydevelopedshapeisrepresentedbyn = 1. For further details, see Notes N5.10.1 and N5.10.2.

N5.15.3 The integrals in Example 5.15b are

_n = rR2vco_[n/(n + 1)][1 + c_/(2n + 1)]

O = vcon/ (n + I)

= Pc(n + 1 + c_)/(n + 1)

N5.15.4 A common example in gas dynamics is the measurement of the mass flow rate through a restriction

(such as the nozzle supplying air to a jet engine under test). The square of this flow rate is proportional

to peAp/T, where p is upstream pressure, Ap is the pressure drop across the restriction, and T is upstream

temperature. Then ul = p, u2 = Ap, u3 = T. For practical reasons, one may choose to average separately
the local temperature, or the local density (which is proportional to p/T), or the local mass flow rate.

N5.17 If R s = source resistance
R L = load resistance

RA = ammeter resistance

Ep = acceptable probable fractional error of measurement

then RA should be much smaller than (Rs + RL)/Ep unless a systematic correction is made.

N5.18.1 The method is useful when

(a) the unknown pressure is that of a fluid to which a high-precision pressure gauge may not be safely
connected.

(b) there are many pressures to be measured. Each pressure source is connected to its own respective
chamber-diaphragm assembly, but all chambers containing stops are connected to a common source

and to a single high-precision pressure gauge. As pressure of the common source is increased

at an accurately known linear rate, the time at which any individual contact is broken is a measure

of the respective pressure.

If any individual pressure is fluctuating, it must be connected to the chamber-diaphragm assembly through
a capillary tube or other pneumatic resistance in order to provide appropriate averaging of the pressure

(see Secs. 6.6 and 7.12); otherwise, contact might be broken at a momentary extremum of the fluctuation.

N5.18.2 A comparable mechanical arrangement has been used for acceleration measurement; the end of

an acceleration-sensitive spring-mass combination (Sec. 6.1) is held against a stop by a calibrated spring.

N5.19.1 This relation was deduced by A. Einstein in 1905. The diffusion coefficient is the mass of particles

that diffuse through unit area in unit time per unit concentration gradient. (Concentration represents the

mass of particles in unit volume.)

N5.19.2 Thermal noise represents random fluctuations in the velocity of free electrons in a resistive element

and results principally from collisions between the free electrons and the lattice atoms.

N5.19.3 Shot noise represents fluctuations in the number of free electrons.

N5.19.4 Generation-recombination noise represents fluctutations in the number of charge carriers and is

said to result from the generation and recombination of carriers, like electrons and holes in semiconductors,

although a more precise description is that the noise results from randomly occurring transitions between

energy levels.
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N5.19.5 In the following formulas, e, i, R, g, and ,',fare, respectively, in volts, amperes, ohms, siemens,

and hertz. (Refs. 5-2 and 5-3; also see Footnote 18 on p. 123)

(1) Shot noise in composition resistors (carbon, metallized film, or cermets) can be represented by

a noise voltage die across the resistor given by

(N5.19-1) j6e[ = cl x 10-8e log 2 R

where

0.1 _<cl_< 10.

(2) For a space-charge-limited thermionic diode, the random fluctuation 6i in current is given by

(N5.19-2) (8i)2 = 3(I - _r/4)kTgoAf

where

(N5.19-3) g = ai/ae

(3)
is the transconductance at the operating point.

For a forward-biased semiconductor diode carrying small currents, the random voltage 6e that
appears across the diode is given by

(N5.19--4) (6e) 2 = 2kToAf/g

where g is the operating-point transconductance given by Eq. (N5.19-3).

The noise is less than the thermal noise that might be expected from Eq. (5.19-6a) because a

biased diode is not a system in thermal equilibrium.

(4) For diodes in other than the ordinary operating region (e.g., for diodes in the reverse-bias or
saturated region) the noise is so much greater in magnitude that the device is not used to detect

small electrical signals. In fact, a reverse-biased diode is often used as a random-noise generator.
(5) For a thermionic triode, R,, as defined by Eq. (5.19-7) is given by

(N5.19-5) R,, ,, 2.5/g

where g is the transconductance given by Eq. (NS. 19-3).
Tetrodes and pentodes are about three times noisier than triodes.

(6) For a bipolar transistor, each lead may be considered to have current noise in addition to any

thermal noise developed in resistors that are in those leads. At moderate frequencies, each lead

may be considered to have a random fluctuation 6i due to shot noise and given by

(N5.19-6) (6i)2 = 2q,,i.Af

where i is the current in the lead and q, is the electron's charge (- 1.6 × 10-19C)

There may also be appreciable thermal noise (Eq. 3.19-6a) generated by the base resistance. At

low frequencies, this noise may be augmented by flicker noise, so that the fluctuation Bib in base
current ib is given by

(N5.19-7) (fib) 2 = 2q_/b'Af( 1 +fo/f)

where f0 is usually on the order of 1 kHz.
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(7) For a field-effect transistor (FET), the principal effect of the combination of thermal and flicker

noise can be described by stating that a random voltage fluctuation tSe may be considered to have

been injected into the gate lead, where

(N5.19-8) (6e) 2 = 8kT(1 +fo/f)'Af/(3gm)

The transconductance gm is given by

(N5.19-9) g_ = Oid/Oegs

where id is drain current and eg s is the gate potential relative to the source. The value ofj_ is

usually on the order of 25 kHz but may be 10 or 100 times lower if source impedance is very
high (several megohms).

(8) For a junction field-effect transistor (JFET), there may also be current noise in the gate lead.

The combined effect of current noise in all leads may be represented by an equivalent random

noise current 6ig in the gate lead given by

(N5.19-10) (6ig) 2 = [(r2f2C2/g,,) + 2qeig]'Af

where C is the capacitance between gate and drain when the latter is connected to the source,

qe is the electron's charge, and gm is given by Eq. (N5.19-9).

(9) For an insulated-gate field effect transistor (IGFET), the value off0 in Eq. (N5.19-8) is usually
on the order of 1.5 x 10Sg,,fl-Hz; at low frequencies, the corresponding flicker noise is usually

unacceptably large.

N5.21 Low-level radiation detectors used in astrophysical observations are often cooled to very low

temperatures. The cooling often extends to the first amplifier stage in the chain of signal processing.

N5.23 As an example of the range of considerations that may affect instrument selection, consider a problem

of controlling the mass flow rate/n of fluid in a pipe; the control of h_, part of an industrial process, is

to be made without recourse to auxiliary measurements and computations. At the simplest extreme, if the

composition and density of the fluid will remain substantially constant, if the piping system is fixed, and
if velocity profiles, turbulence, and swirl will remain almost invariant, the control of the pressure differential

,_ between two appropriate locations in the piping system may be sufficient to permit maintenance of a

desired flow rate, once the correlation has been established between z_p and either/n or a final process

variable that is uniquely correlated with/n. At an intermediate level of complexity, if fluid density is always

known, a volume-flow meter may be used that may prove to be less expensive, or easier to install, to maintain,

or to service, than a mass-flow meter. At a higher level of complexity, the density and Prandtl number

of the fluid and the Reynolds number of the flow may be expected to vary widely, the velocity profile may
be changeable because of the unavoidable presence of valves or pumps, or the fluid may sometimes exist

in two phases; thereby, only a few designs of mass-flow meter may prove suitable.
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CHAPTER 6. INTRODUCTION TO DYNAMIC PERFORMANCE.

EXAMPLES OF SOME SIMPLE SYSTEMS

6.0 Introductory remarks, When the physical variable being measured by an instrument varies with time,

one may desire either

(i) a knowledge of the mean value of the variable over a given time interval, as deduced from the
instrument indication, or

(ii) a knowledge of the instantaneous value of the variable, as deduced from the simultaneous instrument
indication.

The first case has been considered in Chapter 5. [Note N6.0] The second case requires more precise
definitions of instantaneity and of simultaneity. Practically, these concepts imply averaging over a time interval

At that is very short compared to the total time of observation. The choice of At is important because it

affects the signal-to-noise ratio (Sec. 5.20) that can be achieved.

The second case will be illustrated in this chapter by some simple, basic systems; their behavior will

then be treated in Chapter 7. The understanding thereby provided often serves to provide an understanding

of the behavior of more complex variants or combinations of these systems, with little additional mathematics.

Simplicity of treatment of the systems is achieved if results are expressed in terms of the time t and of

the dimensionless quantity "fraction of reference indication," which will be denoted by y; it will then be
found that only a few mathematical equations suffice to describe the dynamic performance of a variety of

instruments, systems, or installations. The examples in this chapter illustrate this fact. The examples also

provide an understanding of the instruments, of the factors that influence their dynamic behavior, and of

the methods of analysis that can be applied to other situations.

In what follows, the first or second derivative of any variable with respect to time will be denoted by

one or two dots, respectively, over that variable. Thus,

(6.0-1) _ ----dy/dt: y m d2y/dt 2

Generally, the equation describing the dynamic behavior of an instrument or system includes three terms

or components. The first serves to describe the static behavior and the energy associated with the deviation

of y from its equilibrium or static condition (the potential energy in mechanical systems). The second is
indicative of the dissipation of energy and is usually associated with p. The third is usually associated with

y and, in mechanical systems, with the conservative kinetic energy.

lln electrical systems, the two nondissipative forms of energy are those associated with the energies stored in pure capacitances

and in pure inductances.
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§6.1

6.1 Linear spring-mass system. Seismometer, velocimeter, accelerometer, dynamometer, or pressure

gauge.

In the system shown in Fig. 6.1, the elements are assumed to be

1. a linear spring having a spring constant k (force/distance), negligible mass, and negligible elastic

errors;
2. a mass m;

3. an oil film or equivalent device having negligible mass and producing a viscous force b per unit

velocity in the x-direction;
4. an external force F that acts on mass m;

Fdm 0 _ +x [

Oil F_
Film .... I.... [

(a) lb)

Figure 6. I--Linear spring-mass system.

5. an instrument base with scale that measures the horizontal deflection of mass m under force F.

Figure 6. la shows the system at rest, with F = 0, and the scale adjusted so that pointer deflection x = 0.

Figure 6. lb shows the system when x > 0 under the influence of the external force F = F(t). We apply
Newton's Second Law

(6.1-1 a) m.f = _ forces.

Then

force exerted by oil film = -b.t

force exerted by spring = -k.x

external force = F

so that

(6.1-1b) m.t = F - b.t -/or

Let x,, be the steady deflection under a steady force F,. (conveniently, these may be taken as full-scale
values)

so that

(6.1-1c) F,_ = k._,.; F = (FIF,.)kx,.

and Eq. (6.1-1b) may be rewritten as

(6.1-1d)

Let

(6.1-2a)

(m/k)£ + (b/k)k + x = (F/F,,)xm

x/xm = y; b/k = r; m/k = 1/(4x2f_)
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ThenEq.(6.1-Id)becomes

(6.l-2b) Y/(4a'2f_) + 7"3;'+ y = F/Fm

This system serves as a model of several instruments:

A. When the instrument base oscillates in the x-direction at a frequency f> >f_, the model

represents a linear seismometer. The magnitude of x is substantially the same as the magnitude of base

displacement; force F is substantially zero. [Note N6.1]

B. When the instrument base oscillates in the x-direction at a frequency f-- f_, the model represents

a linear velocimeter. The magnitude of the displacement x is approximately proportional to the velocity
of the base.

C. When the instrument base oscillates in the x-direction at a frequency f < < f_, the model represents
a linear accelerometer. A static calibration (f = 0) is possible, using the acceleration corresponding to the

Earth's gravity, by turning the assembly ±90* from the horizontal position shown in Fig. 6.1. When the

base is so turned, the model also represents a spring balance.

D. A vibration meter may use either a seismometer, veiocimeter, or accelerometer as a pickup unit

and then use electrical networks to produce single or double differentiation or integration to provide
measurements of the other two variables.

E. If F is an external force, the model represents a dynamometer or thrustmeter. It represents a weighing

device if it is turned 90*; m then primarily represents the mass of the object being weighed.

F. If the mass m is in the form of a piston in a cylinder and the force F is the product of piston area

and pressure on the piston face, the model represents a pressure gauge.

§6.1-6.3

6.2 Correction for spring mass in Sec. 6.1. The expression forf_ in Eq. (6.1-2a) was based on the

assumption that the spring had negligible mass. A more realistic expression would include the effect of

the spring's mass ms by adding some fraction of ms to the quantity m in Eq. (6.1-2a). If m_ is uniformly

distributed along the spring's length, as in a helical spring or a long bellows, then the fraction is 1/3. If
the spring is a cantilever of constant cross section, loaded at the free end, the fraction is 33/140. If the

spring is a circular diaphragm, and the supported mass occupies a small central area, the fraction is on

the order of 1/4 if the outer edge is simply supported and is on the order of 1/6 if the outer edge is clamped.
[Notes N6.2.1 and N6.2.2]

6.3 Rotational spring-mass system. Angular vibrometer, torquemeter, or galvanometer. The elements
treated in Sec. 6.1 may be replaced by

1. a torsion spring having a spring constant K (torque per unit angle of twist) and with negligible
mass and negligible elastic errors,

2. a mass with polar moment of inertia I,

3. an oil film or equivalent device (like an eddy-current drag disc) having negligible mass and producing
a resisting torque B per unit angular velocity,

4. an external torque Te acting around the axis of the torsion spring and the center of rotation of the
mass.

These are illustrated in Fig. 6.3.

The equation corresponding to Eq. (6.1-1b), that applies to the rotational system, is

(6.3-1) I_ = T, - B_, - K_o

which can be put in the form

(6.3-2a) y/(47r2f_) + r_ + y = TJT,,,,
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§6.3-6.4

Figure6.3--Rotationalspring-masssystem.

bythesubstitutions

(6.3-2b) _o/_o,,= y; B/K = r; I/K = l/(4r2f_)

where ¢,, is the steady angular deflection under a steady torque T,,,. The quantity T,m may often
conveniently be taken as the full-scale range of the device.

As in Sec. 6.2, if the torsion spring has uniformly distributed polar moment of inertia Is, addition of
Is�3 to I in Eq. (6.3-2b) would yield a more nearly correct value off,.

As in Sec. 6.1, if the base undergoes a periodic oscillation at frequency f, the system is a model of a

vibration meter whose mechanical deflection would be proportional to angular amplitude, angular velocity,

or angular acceleration, depending on whether f > > f,, f = f_, or f < < f,, respectively.

If the mass is subjected to a couple (e.g., if the mass is a motor armature or rotary-dynamometer armature),

so that the twist of the spring is proportional to the magnitude of the couple, we have a model of a torquemeter.

The system is also a model of a d'Arsonval galvanometer, where B is the sum Bi + B2 of two factors,

each of which arises from the facts that the motion of a conductor in a magnetic field generates voltages

proportional to the velocity of relative motion and that these voltages generate currents whose reactions

with the magnetic field produce forces that tend to oppose (damp) the motion. The factor Bm is due to eddy

currents generated in the moving-coil support and is not under the control of the user. The factor B: is
due to the current in the coil, and is inversely proportional to the total resistance of the circuit of which
the coil is a part; thus, 8 2 is under the control of the user.

In the d'Arsonval galvanometer, a current i produces a torque proportional to i. If this torque is opposed

by a mechanical moment FR produced by a force F acting at the end of an arm of radial length R, the

arrangement is a model of an electrobalance, in which current i is adjusted until ,p = 0. Then i is proportional
to F.

6.4 U-tube manometer. In the manometer shown in Fig. 6.4, liquid of density t) and viscosity _ in a

tube of inside radius r is subjected to a pressure difference P. The total length of the liquid column, from

meniscus to meniscus, is 1; the curvature of the U-tube is assumed sufficiently small so that the effect of
accelerations caused by curvilinear motion can be neglected; and Poiseuille's law is assumed to be

applicable. 2 We apply Newton's Second Law to the liquid column when P is changing and one meniscus

is deflected a distance x from the equilibrium position corresponding to P = 0.

mass of liquid column = pTrr21

force exerted by gravity = - 2pgxr2x

2Theassumption is valid only when I/r is very large and when the flow is always laminar.

136



forceexertedbyviscousdrag= -8rr/Lt

force exerted by external pressure = rr2P

Therefore,

(6.4-1a) prr2/y = - 2pgrrr2x - 8r_Lt + 7rr2p

If x,,, is the steady deflection corresponding to a steady pressure difference I'm, so that

(6.4-1b) 2pgx_ =Pm ,

then Eq. (6.4-1a) may be written in the form

(6.4-1c) (l/g)£ + [8vl/(gr2)].t + 2x = 2Xm(P/Pm) ,

where u is the kinematic viscosity of the liquid, or

(6.4-2a) ._/(4r2fn 2) + 7") + y = P/Pm

where

(6.4-2b) y = x/xm; 1"= 4_l/(gr2); 1/(4_r2f 2) = l/(2g)

_ P !-a

" O_

-: I "'_ well. A 2

•_v ........ tube. A 1

Figure 6.4.--U-tube Figure 6.5.--Well-type manometer.
manometer.

6.5 Well-type manometer. In the manometer shown in Fig. 6.5, the ratio AlIA 2 between tube area and
well area is made very small, so that

(i) deflection x for a given pressure differential is almost twice what it would be in Fig. 6.4;
(ii) the requirement in Fig. 6.4 that both legs of the U have exactly the same area or else that the

displacements of both menisci be measured, is avoided.

Equations (6.4-1c) and (6.4-2b) still apply provided that l is replaced by

2(1+x)/(1 + A_/A2) ;

but the equation may be treated as linear (i.e., r andf_ may be treated as constants) only when oscillations
Ax about the average position are very much smaller than (l + x).

The static calibration analogous to Eq. (6.4-1b) is

(6.5-1) pgXm( 1 + A l/A2) =Pm [Footnote 3]

§6.4-6.5

3The scales of industrial well-0,pe manometers are appropriately marked to correct for the area ratio and so directly to indicate

the correct pressure.
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§6.6

6.6 Basic pressure transmission system. In the system shown in Fig. 6.6, the components are assumed to be
1. a chamber containing a volume V of a compressible gas with specific-heat ratio 7, and initial

pressure Po;
2. a long capillary tube, of cross-sectional area A, length 1, filled with an incompressible fluid of

density p, viscosity r/, and kinematic viscosity v;

3. a pressure P = P(t) applied to the open end of the tube.

IlIL[[il[

"-x _ 0 -x _ 0

ca) P=P0- (b) P>P0.

Figure 6.6--Pressure transmission system.

If we assume an adiabatic process within the chamber and Poiseuille's law within the tube, and if the

position of the end of the fluid "piston" in the tube is assigned the coordinate x = 0 when external pressure

is steady and equal to P0, the system becomes similar to the spring-mass system of Sec. 6.1, wherein the
fluid in the tube becomes the mass m and the compressible gas in the chamber becomes a spring such that

a piston displacement x (that produces a volume change Ax) also produces a pressure change -(TPo/V)Ax.

We thus have, if an external pressure P produces a piston displacement x,

mass of piston = Alp

viscous drag force on piston = -8_r_TL¢

pressure in chamber = Po + (Tpo/V) Ax

external pressure = P = P(t)

Application of Newton's Second Law leads to

(6.6-1a)

or

(6.6-1b)

Alp£ = [P -Po - (7po/V)Ax]A - 8r_

lp$ + 8_l.t/A + (Tpo/V)Ax = P - Po

These equations may be converted into a description of the pressurep in the chamber by means of the adiabatic
relation

(6.6-1c) P = Po + AxTpo/V

leading to

(6.6-1d) LolV/(A'ypo)]p + [8_r_lV/(A27po)]p + p = P

If both sides of the equation are divided by a reference pressure Pro, there results

(6.6-2a) y/(47r2f 2) + "r_+ y = P/p.
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where

(6.6-2b) l/(4rzf,_) = oIV/(A3,po); r = 8r_lV/(A2ypo); Y = P/P,n

Equations (6.6-1) and (6.6-2) apply also when the tube contains the same gas as the chamber, if tube

volume is negligible compared to chamber volume. However, it is then usually more convenient and more

meaningful to express the quantitiesf_ and r in terms of the speed of sound a and the kinematic viscosity v:

(6.6-2c) 1/(47r2f_) = IV/ (Aa2); z = 87rvlV/ (A2a 2)

These equations apply even to oval tubes.

As in Sec. 6.5, the quantities f, and r may be treated as constants only when the fluctuations in P are

small compared to P0. [Note N6.6]

6.7 Modifications of the basic pressure transmission system. A number of elaborations of the basic system

treated in Sec. 6.6 lead to several cases of practical interest. Combinations of these cases can also be treated,

often by superposition. In the cases treated below, it will be assumed that the tube contains the same

compressible gas as that in the chamber. The cross-sectional area of the tube will be denoted by A.

A. If the volume of the tube is small, but not negligible compared to the volume of the chamber,

replace V in Eq. (6.6-2) with V + AI/2.

B. If the volume of the tube is comparable to or larger than the volume of the chamber, replace V
in Eq. (6.6-2) with V + 4AI/Tr 2. This substitution extends even to the case when V = 0, in which case

we have a closed-end organ pipe.

C. If I is on the order of magnitude of r, the effective radius (twice the hydraulic radius) of the tube,

and ifAl < < V, replace I with (l + rcr/2) in the expression forf_in Eq. (6.6-2) and assume r = 0. [Note

N6.7] The system is called a bottle resonator or a Helmholtz resonator with short neck.

D. If I < < r, replace 1 with _rr/2 in the expression for f, in Eq. (6.6-2) and assume r = 0. [Note

N6.7] This system is called a Helmholtz resonator.

E. If the chamber wall is flexible, so that, at average pressure Po, a pressure increase _ produces

a chamber-volume increase ot-z_, then replace V with (V + o_ypo) in Eq. (6.6-2). This model serves well

when a pressure gauge is of the bellows or aneroid type.

6.8 Series electrical circuits. In the circuit of Fig. 6.8, containing inductance L, capacitance C, and

resistance R in series with each other and with an externally applied voltage E, Kirchoff's law requires

that the algebraic sum of all voltage drops around the loop be zero. Then, if charge q is circulating through
the system to produce a current i,

voltage across L = eL = L(dildt) = 1_il

voltage across R = eR = Ri = Ri t

voltage across C = ec = q/C

so that

(6.8-1a) I-£t + RO + q/C = E

or, since q = Cec,

(6.8-I b) LC _c + RC dc + ec = E

§6.6-6.8
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§6.8-6.9

(6.8-5a)

where

(6.8-5b)

If we divide through by some constant reference voltage era, we may write

(6.8-2a) y/(4r2f 2) + r9 + y = E/e,_

where

(6.8-2b) 1/(4r2f 2) = LC; r = RC; y = ec/e,_

R-C Circuit

If inductance L is not present in the circuit, then Eqs. (6.8-2a) and (6.8-2b) become

(6.8-3a) rS, + y = E/e,_

where

(6.8-3b) r = RC; y = ec/e,,

R-L Circuit

If capacitance C is not present in the circuit, then Eq. (6.8-1a) can be written as

(6.8-4) (L/R)_R + eR = E

and division of each term by some reference voltage e,. yields

1"9 4- y = E/e,.

r = L/R; y = eR/e,.

L _iL

_E --E

Figure 6.8.--Series Figure 6.9.--Parallel
electrical circuit, electrical circuit.

6.9 Parallel electn'cal circuits. In the circuit of Fig. 6.9, wherein a current I passes through the parallel

combination of inductance L, capacitance C, and resistance R, Kirchoff's law requires that the sum of all

currents at point Pl shall be zero. If the voltage between points Pl and P2 is E, then

(6.9-1a) E = L(diL/dt) = RiR = (1/C)qc = (1/C) t'ic dt

and Kirchoff's law

(6.9-1b) ic + iR + iL = 1

can be written as

(6.9-1c) LC(d2iL/dt 2) + (L/R) (diL/dt) + iL = I
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If wedividethroughby ira, this may be written as

(6.9-2a) ._/(4_'2f_) + _' + y = Him

where

(6.9-2b) 1/(47r2f 2) = LC; r = L/R; y = iL/i m

R-L Circuit

If capacitance C is not present in the circuit, then Eqs. (6.9-2a) and (6.9-2b) can be written as

(6.9-3a) zS' + y = Him

where

(6.9-3b) r = L/R; y = iL/i m

R-C Circuit

If inductance L is not present in the circuit, then Eq. (6.9-1b) can be written as

(6.9-4) RC(diR/dt) + iR = I

and division of each term by some reference current i,,, leads to

(6.9-5a) r3>+ y = Him

where

(6.9-5b) r = RC; y = iR/im .

§6.9-6.10

6.10 Mass moving through a viscous medium. If a force F causes a mass m to move through a viscous

medium that exerts a resisting force bv proportional to the velocity v of motion, application of Newton's
law yields

(6.10- la) m_, = F - by

Under a steady force Fro, the mass would ultimately acquire a constant velocity v,. given by

(6.1 O- 1b) Fm = bv_,

Consequently, Eq. (6.10-1a) may be written as

(6.10-2a) -r,) + y = F/Fm

where

(6.10-2b) r = m/b; y = v/v m .

These relations are applicable to the phenomenon of sedimentation under the action of gravity and to
the falling-ball viscometer.
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6.11 Filling of a gas container. In Fig. 6.11, a chamber of volume V, initially at pressure Po, is filled

through a restriction connecting the chamber to a source of higher pressure P. The following conditions
are assumed to exist:

1. The fluid is a perfect gas.

2. Gas motion is so slow that inertia effects can be neglected.

3. The exchange process is isothermal, at temperature 0.

4. The restriction through which the filling takes place is a linear one, in which mass flow rate in

through the restriction is proportional to pressure difference P - p, where P is upstream pressure

and p is the pressure in the chamber:

(6.11-1) in = Ce(P -p)

where C has the dimensions of (mass flow rate)/(pressure difference). [Note N6.11.1]

Figure 6.1 l.--Filling of a gas container.

Since the rate of accumulation of mass in the chamber is

(6.11-2) in = go b = VpM/(RoO ) ,

where M is relative molar mass and R0 is the universal gas constant, the law of conservation of mass
requires that

(6.11-3a) VpM/(RoO) = Co(p -p); C E din/@

so that

(6.11-3b) [VM/(CRoO)Ip + p = P

Dividing through by some reference pressure Pm leads to

rP + y = P/pm(6.1 l--4a)

where

(6.11--4b) r = VM/( CRoO); y = p/p,,,

These results are applicable to the calibration of standard leaks and flow impedances. [Note N6.11.2]
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Example 6. lla. If the restriction is a capillary tube of cross-sectional area A, and if p0 > 1 mbar,

C = A2/(8at/v)

where the kinematic viscosity v must be chosen as the value at a particular location. [Note N6.11.3[

Then

r = 87rvlVM/(A2Ro 0)

Example 6.1lb. If the restriction is a knife-edged orifice of area A, and if p0 < 1 #bar,

C --- 2A/(_rcA)

where cA is the arithmetic mean speed of the molecules and is given by

c] = 8Ro0/(lrM)

Then

r = 4V/(ACA)

(cA is 468.0 m/s if M = 29.0 and 0 = 300 K.)

6.12 Thermometer bulb. Assume that a thermometer bulb of mass m, specific thermal capacity c (energy

to produce unit temperature rise in unit mass), very high thermal conductivity, and exposed surface area
A is at temperature 0 and receives heat through its exposed surface by conduction along a column of matter

of cross-sectional area A, length l, and thermal conductivity k, whose far end is maintained at temperature O

(Fig. 6.12a). At the interface between the column and the bulb, the rate of heat conduction is equal to the
rate at which heat is stored in the bulb.

Rate of heat conduction through the column = kA (0 - 0)/l

Rate of storage of heat in bulb = mcedO/dt

Consequently,

(6.12-1) mc0 = kA(O - O)/l

If each term is divided by some reference temperature Or,, the relation may be expressed as

(6.12-2a) r_ + y = 0/0,"

where

(6.12-2b) r = mcl/(kA); y = 0/0,. .

If the means of transferring heat to the bulb is by gas convection (Fig. 6.12b) and the convective heat

transfer coefficient is h (power per unit area per unit temperature difference), then the equality of heat transfer

rate and heat storage rate is expressed by

(6.12-3) mcO = hA(O - O)
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la) Conductive heattransfer,
(b) Convectiveheattransfer.
ac)Radiative heat transfer.

Figure 6.12.--Thermometer bulb.

Division of each term by some reference temperature 0, leads to

(6.12-4a)

where

(6.12-4b)

ry + y = OlOm

7"= mcl(hA); y = O/Om

If the surface of the bulb has an emittance ( and if the bulb is surrounded by an enclosure at temperature
O (Fig. 6.12c), the rate of energy exchange by radiation is such that

(6.12-5) mc0 = oeA(O 4 - 04)

where o is the Stefan-Boltzmann constant. If (O - 0)/O < < 1, an approximation is

(6.12-6) mc0 = 40_AO3(O - 0)

Division of each term by some reference temperature 0,, leads to

(6.12-7a) r,) + y = O/Om

where

(6.12-7b) _"= rncl(4oeAO3); y = OlOm
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§6.13-Notes

6.13 Summary. All of the examples of simple dynamical systems in this chapter have led to the expressions

of the form

(6.13-1) _/(4_r2f_) + r3;' + y= Y

or of the form

(6.13-2) r3;'+ y = Y

where y is a dimensionless quantity representing instrument indication and Y is a dimensionless quantity

representing the physical variable being measured. The parameter f, will be termed the "natural

frequency"; the parameter r will be termed the "time constant". These parameters are significant only

when Y is varying with time; if it is not, then we have the static conditions considered in Chapter 5.
The values off. and r for some of the particular systems treated here are summarized in Table 6.13.

TABLE 6.13.--PARAMETERS OF SOME DYNAMICAL SYSTEMS

System Variable "r 1/(4"lr2f 2 )

Linear spring-mass x b/k

Torsional spring-mass _ B/K
Manometer x 4vl / ( gr a )

Pressure transmission P 87rvlV/(A2a 2)

Series L, R, C e c RC

Series R, C e c RC

Series L, R e R L/R

Parallel L, R, C it. L/R

Parallel L, R it. L/R

Parallel R, C iR RC
Mass in viscous medium v m/b

Filling a gas container, continuum p gTcvlV/(A2RoO/M)

Filling a gas container, free-molecule p 4V/(Ac,O

Thermometer bulb, conduction 0 mcl/(kA)

Thermometer bulb, convection 0 mc/(hA)

Thermometer bulb, radiation 0 mc/ ( 4oeAO 3)

ra/k

I/K

l/(2g)

IV� (Aa2)

LC

LC

NOTES FOR CHAPTER 6

N6.0. Considerations of linearity are important. Thus, a correct arithmetic mean will be obtained if the
instrument indication varies linearly with the variable being measured; if it does not, then the desired accuracy

can be achieved only if the variations of the variable are of sufficiently small magnitude.

N6.1. "Seismographs" used to record earth motions that occur in earthquakes may actually be velocimeters
or accelerometers because the amount of earth displacement may be too large to be recordable by any practical

seismometer.

N6.2.1. More precisely, if a = outer edge diameter and b = central area diameter, the fraction is given

in the following table

a/b = 5 10 20

Supported edge 0.31 0.27 0.25

Clamped edge 0.20 0.16 0.14
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Ch. 6-Notes

N6.2.2. When a flush-diaphragm-type pressure gauge is immersed in a liquid, the mass of the liquid next

to the diaphragm becomes an additional part of the distributed mass ms. An approximate estimate of the

effect of this associated liquid mass can be made by assuming that a hemisphere of liquid, erected on the

diaphragm, moves with the diaphragm.

N6.6. It is sometimes helpful to replace Eq. (6.6-1) with an equation for the volumetric displacement

u=Ax

or an equation for the mass displacement

M=pAx .

The respective equations then are

(N6.6-1) (lp/A)ft + (8_r_l/A2)i_ + ('ypo/V)u = P - Po

and

(N6.6-2) (l/A)_;l + (8r_,l/A2)1(t + (a2/V)M = P - Po

Equation (6.6-2) remains unchanged.

N6.7. The effect of energy dissipation because of fluid viscosity is usually negligible. If the resonator opens

into a medium of substantially infinite extent, any acoustic oscillations that exist after removal of the initiating
source of energy will die out principally because of the radiation of energy into this infinite medium.
The effective value of 7 is given by

r = A� (4ral)

for a resonator with short neck, and by

r 2 _. A/(4x3a 2)

for a resonator with neck of negligible length.

N6.11.1. The value of C depends on the geometric form of the restriction and on the intrinsic and extrinsic
properties of the gas.

Typical intrinsic properties are viscosity, relative molar mass (molecular weight), and Prandtl number.

Typical extrinsic properties are density, temperature, pressure, speed of sound, and Reynolds number.

N6.11.2. Thereby, it is not necessary to measure mass flow rate in order to determine the flow resistance C.

It is necessary only that V and t be accurate, that P be constant, and that the pressure gauge be linear. In

some practical applications, it may be necessary to correct for any rate of pressure rise in Vdue to outgassing
from the inner surface of the chamber.

N6.11.3. The location preferred is that at which _, is likely to change least during the course of the filling
operation. Usually, this location is the entrance end of the capillary. Other locations are (a) the exit, or

(b) a point where the pressure is the mean of the entrance and exit pressures.

Appreciable changes in kinematic viscosity during the course of the filling operation make Eq. (6.11-4)
nonlinear; such nonlinearity is discussed in Sec. 10.3.
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CHAPTER 7. DYNAMIC PERFORMANCE OF BASIC SYSTEMS

7.0 Introduction and terminology. A study of the behavior of systems described by Eqs. (6.13-1) and

(6.13-2) is useful because

(a) the behavior is completely characterized by no more than two independent parameters and hence

can be easily understood and remembered;

(b) more complex systems can often be represented as combinations of the systems described by

Eqs. (6.13-1) and (6.13-2) so that an intuitive understanding of the behavior of the more complex

system can be derived from an understanding of the behavior of the simpler component systems;

(c) an understanding of dynamic behavior helps the attainment of several possible goals:

(i) adequately accurate determination of the average value of a quantity that is changing with time,

(ii) adequately accurate determination of the instantaneous value of such a quantity,

(iii) adequate suppression of random or systematic fluctuations (usually categorized as "noise"

or "hum") that tend to prevent such accurate instantaneous measurements.
In practical situations where dynamic measurements are to be made, the balance between "signal" and

"noise" is always necessary, and requires a human judgment that also considers convenience, cost, and

reliability.

The following symbols will be used frequently in this chapter:

f frequency of Y(t)

fc corner frequency

f, natural frequency

fr resonant frequency

I impulse
t time

T period of Y(t)

T_ natural period

Tr resonant period

y dimensionless variable proportional to the instrument indication (instrument response)

Y dimensionless variable proportional to the physical quantity being measured. Y(t) is also

called the forcing function.
411- '21
base of Napierian logarithms

A radius of curvature

r time constant

_" fraction of critical damping

_o angular frequency of Y(t)

_,, natural angular frequency

_, resonant angular frequency

Other symbols used occasionally will be defined as they are introduced. As in Chapter 6, one or two dots

over a variable denotes the first or second derivative with respect to time.
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7.1 Basic equations. The basic first-order system will be defined as one obeying the equation

(7.1-1) rp+y = yE Y(t)

where r is a constant.

The basic second-order system will be defined as one obeying the equation

(7.1-2a) _/,.,2 + r_' + y = Y= Y(t)

This equation can be written in several other forms, three of which are shown here

(7.1-2b) y/(4r2f2.) + rS' + y = Y

(7.1-2c) _/¢0.2 + (2j'/w,,)5' + y = Y

(7.1-2d) yT2/(4r 2) + (_Tn/_r)5' + y = Y

The various constants are related by

(7.1-3) ,% = 2_rf. = 2rlT. ; r = 2_loJ. = _T.I_

The dynamic behavior problem is treated in two steps:
1. Given Y(t), one finds y(t). The difference (y-Y) represents the instantaneous error of measurement.

2. One then determines what values of the parameters in (7.1-3) will render the error acceptably small.

7.2 Parameters affecting response. The response of a first-order system to any Y(t) is determined entirely

by the value of r. The response of a second-order system to any Y(t) is determined entirely by two parameters:

one of these is chosen from the group (f_, 1"., _,); the other is either r or _'. When _"< 1, it is usually

more convenient to use _"in mathematical descriptions of the response and to express time in terms of 7"..

When _"> 1, it is usually more convenient to use r; in fact, when _"> > 1, it is often adequate to treat

the system as a first-order system described by Eq. (7.1-1).

7.3 Influence of prior values ofy and its derivatives. Assume that Y(t) is known for t > to. Let

Yo " y(to), Yo " y(to), Yo " _(t0). If the system is a first-order one, y(t) for t _> to will depend only on

Yo- If the system is a second-order one, y(t) for t > to will depend only on Yo and _9o. If the system is an
nth-order one, y(t) for t _> to will depend on Yo and on the first (n-I) derivatives of y at time to.

An alternative phrasing is to say that y(t) for a first-order system is capable of executing abrupt changes

in direction (i.e., y must be continuous, but p need not be continuous); in a second-order system, abrupt

a,,TU>" ,( b) (c) /"/ \,,

/ / I
s / i

0 r 2r 3r t_

Figure 7.3.--Response to a squarewave of two
systems with the same time constant, r.
(a) first-order system: (b) critically-damped
second-order system; (c) forcing function with
period 2r.
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changesindirectioncannotoccur,althoughabruptchangesinthesecondderivativemayoccur(i.e.,y and

5' must be continuous, but 3; need not be continuous). This behavior is illustrated in Fig. 7.3, which shows

the response y of first-order and second-order systems to abrupt changes in Y. Sharp corners in y,(t) are
possible only for a first-order system; they are not possible in systems of higher order. In an nth-order

system, abrupt changes (sharp corners) are not possible in the first (n-l) derivatives.

7.4 Higher-ordersystems. If the dynamic behavior of a physical system is described by a linear differential
equation of the n th order, that description may be rewritten as a combination of first-order and second-

order equations representing corresponding first-order and second-order subsystems. In one such combination,

the subsystems are in tandem, so that the indication (output) of one subsystem becomes the input of the

next subsystem; the output of the last subsystem is the desired response y of the entire system to the initial

input Y. Such a combination may be termed a "serial combination".

In another combination, appropriate modifications of the input Y are delivered to each subsystem and

the outputs of all subsystems are summed to yield the indication y. Such a combination may be termed
a "parallel combination". [Note N7.4]

7.5 Transient and steady-state responses. For any physical system, the response y(t) to an applied Y(t)

is often conveniently treated as composed of two parts: a transient response whose magnitude and character

depend on the conditions (termed the "initial conditions") existing at time t = to when Y was first applied;
and a steady-state response whose magnitude and character are not influenced by the initial conditions and

depend almost entirely on the current behavior of Y(t). The terms "transient" and "steady state" are used

because, in most cases, the transient response is of greatest magnitude during the time immediately after

to and ultimately dies out (i.e., becomes negligibly small after a sufficiently long time has elapsed), whereas

the steady state remains after the transient has died out and persists as long as Ypersists. In a strict mathematical

sense, the steady-state response is an asymptotic condition approached as t -- _. Practically, it often becomes

indistinguishable from the asymptotic value after a time equal to a few multiples of r.

The applied quantity Y, which is also termed the "forcing function", represents the true value of a quantity

to be measured. The response y represents the indicated value of that quantity. In any relation of the form

(7.5-1a) y = Y- A ,

A represents the correction to be added algebraically to the indication y in order to find the true value Y.
An elaboration of Eq. (7.5-1a) is

(7.5-1b) y = Y - Ass - Ar

where Ass and A-r represent the steady-state and the transient corrections, respectively. Their distinctive
features are summarized here.

Ass:

(I)

(2)

(3)

(4)

A T •

(1)

(2)

(3)

(4)

Mathematically, it is an asymptote approached as t- o0.

Practically, it may be approached to within acceptably small limits of deviation in a time determined

by the values of the parameters listed in Sec. 7.1.

It does not depend on the conditions existing at the initiation of the measurement.

In most practical cases, it is of sufficiently simple form so that the application of corrections
is convenient.

Mathematically, Ar -- 0 as t -- _.

Practically, it reaches any specified small magnitude in a time determined by the values of the
parameters listed in Sec. 7.1.

It depends on the conditions existing at the initiation of the measurement.

When it is of sufficiently simple form, it may be convenient to apply it as a correction to Y in

order to deduce y; at other times, it may be more convenient to wait until it becomes negligible

in comparison with y + As_ before the deduction of Y is attempted.

§7.3-7.5
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If the steady-state response is known for each of several forcing functions, like those treated in the sections

that follow, the steady-state response to the sum of the individual forcing functions is merely the sum of

the individual steady-state responses.

The transient responses may not be treated in this additive manner.

/ / 1Y Y Y

YOIYo-/-._Y0_ YOL.._
t t . t ' t

Step Ramp Quadrattc Impulse

YO ;

Yo
t

Exponential Sinusoid

Figure 7.6.--Some forms of the forcing function.

7.6 Forms of the fomingfunction. In the remainder of this chapter, both transient and steady-state responses

will be indicated for several forms of the forcing function Y. These are illustrated in Fig. 7.6. For ease

and clarity of presentation, the initial time to will always be taken as t = 0.

(a) Step. A sudden change in Y from an initial constant value Y0 to another constant value YI.

(b) Exponential. An approach of Y from an initial constant value Yo to an asymptotic value lit in

an exponential manner.

(c) Ramp. A linear change of Y with time, starting from an initial constant value Yo-

(d) Quadratic parabola. A parabolic change of Y with time, starting from an initial constant value

of Y0.

(e) Impulse. A momentary step change in Y, from an initial value Y0 to a final value YI, that is of

such short duration At that At = O, YI "_ o,, but (YI - Yo)e&t = 1 is finite. The product I is

termed the "impulse".

(f) Sinusoid. A sinusoidal variation in Y with amplitude Yi and average value Yo. This form is

particularly useful because any periodic, continuous physical phenomenon can be represented by

a summation of sinusoidal signals of appropriate phase and amplitude.

---r--_, .Y

Y6
--------_ t

Figure 7.7.--Response of a first-order system
to a step change.

7.7 Response of a first-order system to a step change. (Fig. 7.7) If

(7.7-1) Y = Yi for t > 0

and Y = y = Y o at t = O

then

(7.7-2) Y = }'1 - (YJ - Yo)¢-'/"

is the complete solution.
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The asymptote is Y,.

The initial slope _,(0) is (Yi - Y0)/r-

If the tangent dy/dt is drawn at t = 0, it will intersect the asymptote Y2 at t = 7".
In time r, (y - Y0) will be (1 - l&) ( Yi - Y0) ; in other words, 63.2 percent of the step will have been

completed. In time 2r, 3r, 4r, 5r, approximately 86, 95, 98, 99.3 percent, respectively, of the step

(Y, - Y0) will have been completed. [Note N7.7]

7.8 Response of a first-order system to an exponential change. (Fig. 7.8) If

(7.8-1) Y = Y, - (Yl - Y0) e-t/x for t>0

and Y=v= Y0 at t=0

then

(7.8-2a) Y= Yl - (Yi - Y0)( _,e-t/x - r_-'/')/( h - r) if h _ r

(7.8-2b) Y = Yt - (Y1 - Y0) (1 + tit)e-t�" ifh=r

The response y starts out at zero slope and passes through a point of inflection at ( t,,y2 ). After this point,

y approaches YI asymptotically in a manner resembling an exponential curve with time constant on the order

of (r + k). [Note N7.8]

Y

Y0 _ t

Figure 7.9.--Response of a first-order

system to a ramp.

7.9 Response of a first-order system to a ramp. (Fig. 7.9) If

(7.9-1) Y= Yo+at for t>0

and Y = Y = Yo at t = O

then

--t/r
(7.9-2) Y = Yo + a(t - r) + ar_

The steady state is a ramp parallel to Y but lagging behind it by the constant lag time r. The term containing

the exponential is the transient response; the response y starts out with zero slope at t = 0 and approaches

the steady-state condition.
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At times z, 2r, 3z, 4z, 5z, the respective lag time between y and Y is 63, 86, 95, 98, 99.3 percent of

r. (These percentages are the same as those quoted in Sec. 7.7). The differences between the ordinates

at these same times is ar times the respective percentages. [Note N7.9]

7.10 Response of a first-order system to a quadratic forcing function. (Fig. 7.10) If

(7.10-1) Y = Yo + bt2 for t > 0

and Y = Y = Yo at t = O ,

the forcing function is a quadratic parabola with vertex at (0,Y0). The response is given by

(7.10-2) Y = Yo + br2 + b(t - r) 2 - 2br2¢ -tl"

The steady state is a quadratic parabola of the same shape as the forcing function but with the vertex

shifted to (r, Yo + bz2) • This vertex lies on the original forcing function. The lag between the response and

the forcing function approaches r, regardless of the initial value of y.

The term containing the exponential represents the transient response. At times t = _', 2_', 3r, 4r, 5z,

the respective lag between y and Y is 0.49_', 0.69r, 0.79r, 0.84r, and 0.89r.

Y. with vertex
shifted to

er.Y 0 + br2_

YOy__ t

Figure 7.10.--Response of a

first-order system to a
quadratic forcing f_nction.

T
YO+ l/r "]k

Vo
Figure 7.1 l.--Response of a first-order

system to an impulse.

7.11 Response ofafirst-order system to an impulse. (Fig. 7-11) An impulse is defined as a change in

Y that is of very high amplitude and very short duration (very much less than r), but such that the area

under Y(t) is a finite constant L

A rectangular pulse of very short duration At may be described by the equations

(7.11-1a) Y- Yo = 1�At

(7.11-1b) Y = Y= Yo

Y= Yo

for0<t<At<< r

at t=0

for t > At

The response y will reach a maximum value of Yo + I/r at the end of the interval At; thereafter, it will

decay exponentially to an asymptote Y0, behaving as though it were responding to a step change from an

initial value of Yo + I/r to a final value of Y0, in accordance with Sec. 7.7. [Note N7.11]
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Y0

Figure 7.12.1.--Steady-state response of a first-order

system to a sinusotd.

7.12 Response ofafirst-order system to a sinusoid. (Fig. 7.12.1) For this forcing function, only the

steady-state response will be considered. The transient response is only of academic interest because it depends

on the exact phase of the sinusoid at the instant that it is imposed on the system [Note N7.12.1]. If the

forcing function Y is described by the equation

(7.12-1) Y- Y0 = Yl sin(2rfi) = YI sin(cot),

the steady-state response will be given by

(7.12-2a) Y - Y0 = Yl sin(cot - 0)

= Yl sin[co(t - h)]

where y_lY_ is termed the amplitude ratio

is termed the phase angle

h is termed the time lag
These quantities are given by

(7.12-2b) Yl/Yi = (1 + ¢o2r2) -I/2

(7.12-2c) ¢ = tan-I(cor) = cos-I(1 + co2r2)-I:Z

(7.12-2d) h = (l/co) tan-l(cor)

The dependence of these three quantities on the value of cot is shown in Fig. 7.12.2.

An alternative way of graphing the steady-state response is to make a polar plot of amplitude ratio versus

phase angle. Such a graph is termed a Nyquist diagram. For the first-order system, the diagram is shown

in Fig. 7.12.3. It is a semicircle based on the radius vector Y_/YI = 1 at angle _ = 0, and lies entirely
in the first negative quadrant.

From Eq. (7.12-2) and Figs. 7.12.2 and 7.12.3, some useful conclusions, that depend on the value of
cot, are indicated here:

(1) If cot < < 1, the amplitude ratio is reduced only slightly (often negligibly) and the time lag is
approximately equal to r.

(2) If cot = 1, the amplitude ratio is 1/',,/2, the phase angle is 45*, and the time lag is _'r/4. The

amplitude ratio and the phase angle are independent of r.

(3) Ifcor > > 1, the amplitude ratio is approximately 1/(¢0r), the phase angle is almost 90*, and the

time lag is approximately l/(4J). On the logarithmic graph of Fig. 7.12.2a, the asymptote of the
graph is a line of slope -1; this asymptote intersects the ordinate yl/Y_ = 1 at cot = I. The

frequency f_ at which this intersection occurs, given by

(7.12-3) 2rfcr = 1,

§7.12
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Figure 7.12.2.--Amplitude ratio yl/Yi, time lag h. and phase angle

of a first-order system's response to a sinusoid.

' 6.2 °"
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I _ "

90"

Figure 7.12.31--Amplitude ratio yl/Yl versus phase angle _ of

response to a sinusoid by a first-order system.

is the corner frequency. The asymptote with slope - 1 is said to have "a slope of 6 dB per octave" because,

along this straight line, doubling the frequency would produce a 6-dB reduction in (yl/YO 2, which, in

several of the physical situations treated in Chapter 6, would be proportional to power.

In simplified descriptions of the response of a first-order system to a sinusoid, the graph of Fig. 7.12.2a

is replaced by two straight lines: a line of slope - 1 passing through the point (1,1) for car > 1, and a horizoatal
line through the same point for car _ 1.
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In an electrical circuit involving capacitance C and resistance R, the quantity

(7.12-4) D = _0r = _oRC

may be a distinctive parameter of the circuit. In particular, if R s is the effective series resistance of an
imperfect capacitor of capacitance C, the quantity _oRsC is the dissipation factor of the capacitor.
[Note N7.12.2]

In an electrical circuit involving inductance L and resistance R, the quantity

(7.12-5) Q = _0r = _oL/R

may be a distinctive parameter of the circuit. In particular, if R s is the effective resistance of an imperfect

inductor of inductance L, the quantity _oL/R s is the storage factor of the inductor. [Note N7.12.3] The

dissipation factor of an inductor is the reciprocal of the storage factor.

7.13 Response of a first-order system to any forcing function. Ifa forcing function Y ( t ) can be represented,
over some time interval, by a sum of sinusoids

(7.13-1) Y = 1_ sin(wit - ¢,j)

and if only terms for which _0jr < < 1 have significantly large amplitude Yj, then the record y(t) yielded
by an instrument with time constant r can be used to approximate Y(t) by the formula

(7.13-2) Y(t) _- y(t + r)

This situation is common in instrumentation because an instrument is usually selected, a priori, to provide

good fidelity in measuring Y. Equation (7.13-2) then provides a first-order correction to improve accuracy.
In practice, the validity of the procedure is established as follows:

(1) The record of y(t) is inspected to identify oscillation frequencies that may be apparent.

(2) It is verified that the corresponding apparent amplitudes of these oscillations are significantly

large only for frequencies for which _ojr < < 1.
(3) It is further verified that y(t) shows no sharp corners, representing abrupt changes in direction,

that would imply the existence of transients of appreciable magnitude.

The following alternative procedure is useful when no oscillation frequencies are readily identifiable,
but there remains the question of whether Y(t) is deducible from y(t):

Given the Cartesian graph ofy(t) produced by a system of known time constant r, find the radius Ami n

of the smallest circle of curvature ofy(t), the radius being drawn in the direction of the time axis, so that

A.mi n is expressed in units of time. Let 7/0 be the distance, in units of length on the graph paper,

corresponding to the full-scale value of y; let _0 be the distance, in the same units of length, but in the

time direction, corresponding to the r of the system. Define a normalized radius of curvature

(7.13-3) A_ni, = Ami,_0/_0

Then fidelity of dynamic response is likely if A,_in is large compared to r, and Eq. (7.13-2) may be used.

In the general case, if the response y(t) is known as a continuous, differentiable function of time, the

value of Y(t) that produced the response is obtained by performing the operations indicated in Eq. (7.1-1):

(1) At any point (ti,yi), determine (dy/dt)i.

(2) Multiply (dy/dt)i by r.

(3) Add the product to Yi. This sum is Y(ti).

In particular, wherever dy/dt = 0, the quantities Y and y are equal (but their slopes are not).
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The procedure is applicable even when r varies with t or y, provided that r is known. It is necessary

only to use the appropriate value of r in step 2. [Note N7.13]

The requirement of differentiability implies that the procedure may not be applied at sharp corners in y (t).

7.14 Damping of a second-order system. Second-order systems fall into one of several classes that are

distinguished by the value of g', the fraction of critical damping.

(1) If 0 < _"< 1. the system is termed underdamped and is capable of an oscillatory transient

response. Such a system is noticeably different from a first-order system, which is incapable of an oscillatory
transient response.

(2) If _"= 0, the system is termed undamped. If disturbed, it would enter into an oscillation, at

frequency fn, that would never die out. [Note N7.14]

(3) If _"> 1, the system is termed overdamped and is incapable of an oscillatory transient response.

As _"increases beyond unity, the system more closely begins to resemble a first-order system.
(4) If _"> > 1, the system behaves substantially like a first-order system.

(5) If _"= 1, the system is termed critically damped. The condition represents the transition between

the underdamped and the overdamped states. The transition is quite gradual as far as the system's physical

behavior is concerned, although there may be distinct changes in the mathematical descriptions of that

behavior. The value _"= 1 is the smallest value of _'at which transient oscillatory responses become impossible.

The behavior of an underdamped system is usually best described in terms of the parameters T,, f_, _,,.

The behavior of an overdamped system is usually best described in terms of r. The relationship among
these parameters is given by Eq. (7.1-3).

Y0

_'>>1

'l
YI Yi _g

t

_'=1

3_" -

0< "< I

_t

Figure 7.15.--Response of a second.order system to a step change.

7.15 Response of a second-order system to a step change. (Fig. 7.15) If

(7.15-1a) Y- Y0 = 1"1 for t > 0

(7.15-1b) Y = Y = Yo; _ = 0 fort=0

then

(A) If _"= 0, y will start out at zero slope, approach Yi, overshoot, and then oscillate sinusoidally
about ]'1 with amplitude (Yz - Y0) and frequency f,,.

(B) If 0 < _"< 1, y will start out at zero slope, approach Yl, overshoot, and then oscillate about

Yi with continually decreasing amplitude. [Note N7.15.1]

If the amplitude of the first overshoot beyond Yl is denoted by Air2 (Fig. 7.15) and succeeding overshoots

by An, where n denotes an integral number of complete oscillations if n is an integer, these oscillations
have the following characteristics:
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(1) The period of the oscillations is Tn/_
where

(7.15-2) ,_ = _/11 - _-21

(2) The logarithm of the ratio ( > 1) of the amplitudes of two oscillations m cycles apart is given by

(7.15-3) ln(A,JAn+m) = m'_5

where

(7.15-4) _ = 27r_'/_

(3)

(7.15-5)

is the logarithmic decrement. It is the logarithm of the ratio of the amplitudes of successive cycles.

[Note N7.15.2]

The envelopes of the positive and negative peaks of the oscillations are a pair of symmetrical,

approximately exponential curves having apparent time constants

r/(2_ "2) = TJ(27r_')

(4) If _"< 0.6, the time taken for [y - Yll to become less than 10, 5, or 2 percent of IYo - Y11 is

approximately Tn/(zq'), 1.5 Tn/(lr_, or 2Tn/(r_'), respectively.

(5) Qualitatively, the following characteristics of the oscillations are noteworthy:

(a) The period of the oscillations increases as _"increases.

(b) The decay of the oscillations is more rapid as _"increases.

(c) The time for lY- Ill to become less than a given small percentage of the initial step

IY0 - 1"11becomes shorter as _"increases.

(C) If _"is increased to unity, y will start out at zero slope, pass through a point of inflection (t2,y2),
and thereafter approach Yl in the manner of an exponential curve with time constant slightly higher than

_'. The response is aperiodic, with no overshoot.

The excursion from Y0 to Yl will be almost 99 percent complete after a time interval Tn. [Note N7.15.3]

This time interval is shorter than it would be for any other value of _'.

(D) If _"is increased beyond the value of unity, the response will start out at zero slope, pass through
a point of inflection (t2,Y2), and thereafter approach Yi in the manner of an exponential curve with time

constant slightly higher than r. The value of t2 decreases (from r/2 at _"= 1) as _"increases, and approaches

zero as _"- _. The value of Y2 approaches Yo as _"- _. [Note N7.15.4]

Practically, for _"> 1, the response is a simple exponential function with time constant r, once the inflection

point has been passed. [Note N7.15.5] Consequently, if _"> > 1, the response is substantially that of the

basic, first-order system with time constant r.

7.16 Response of a second-order system to an exponential change. (Fig. 7.16) The response treated

in this section is representative of the behavior of

(i) a galvanometer connected to a thermocouple, or

(ii) a probe microphone wherein a microphone or pressure gauge must be placed at the far end of

a tube because of space limitations or environmental considerations.

If the forcing function is

(7.16-1a) Y= Yi - (YI - Yo) _-t/x for t_ 0
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Figure 7.16.--Response of a second-order syste,u I,_ an exrx)nential lblcing limclion.

and

(7.16-1b) Y=Y=Yo ; p=0 for t = 0

then y will start out at zero slope and approach Y in one of two ways:

A. If _"< 1, the response will be oscillatory; if _";_ 0, the oscillation amplitude will decrease with
time.

B. If _"> 1, the response will be aperiodic and monotonic, and will approximate an exponential
shape after it has passed through a point of inflection.

(i) If (h/r) > > 4_"2, the time required for the transient to die out, for all practical purposes, is

short compared to X. The response y will then approach a steady-state condition in which it
lags Y by a constant time interval given by

(7.16-2) time lag = -h ln[l - (r/X) + r2/(4_X2)]

"- - h ln(l - r/X)

(ii) If (X/r) > > 4( and, in addition, h > > r, this time lag is substantially equal to r and the

later portion of the response is similar to that of a first-order system, as shown in Fig. 7.8.

(iii) If (h/r) < < 4_ and X < < r, the response y will be similar to the response to the step change

treated in See. 7.15 except that the response will be displaced by an additional time lag whose
magnitude is on the order of h. [Note N7.16]

Steady states

< _'< I

>1

YO _¢._1,/ J -- t

Figure 7.17.--Response of a second-order systemto a ramp.
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7.17 Response of a second-order system to a ramp. (Fig. 7.17) If

(7.17-1a) Y= Yo+at for t> 0

(7.17-1b) Y=Y= Yo; _,=0 for t =0

then the response y will start out at zero slope and approach the steady-state condition

(7.17-2) Y= Y0+a(t- r)

Thus, the asymptote is a ramp parallel to the forcing function but lagging behind it by the constant amount r.

The approach to the steady state is through a transient that is oscillatory if _"< 1 and is aperiodic and
monotonic if _">_ 1. The complete response is given by

(7.17-3) y= Yo+a[t- r(l -A)]

where A is a dimensionless function of _"and of t/r (or t/T_) and represents the fractional amount by which
the time lag differs from r.

(i) If0.2 _< _"< 1, the value of A is less than 0.10, 0.05, or 0.02 after a time TJ(2_'), 2T,/(3_'),

or 5TJ (6g'), respectively.

(ii) If _"> 1, the value of A is less than 0.10, 0.05, or 0.02 after a time 2.3r, 3r, or 4r, respectively.
[Note N7.17]

The response treated in this section is representative of the behavior of a pressure gauge or manometer

used to make a steady, continuous traverse of a region in which there is a linear pressure gradient.

§7.17

Example 7.17 Suppose that a pressure gradient is to be surveyed with a critically damped pressure

gauge having a time constant of z seconds, to be moved at a velocity V. The inaccuracy of pressure

indication p due to the method of surveying is not to exceed 0. l percent. The a priori estimate of
the magnitude of the pressure gradient is 1 percent/cm.

Then the value of a in Eq. (7.17-1) is

a = (0.01 p/cm)V .

The steady-state correction is

ar = (0.01 p/cm)Vr

If this correction is to be acceptably small it is necessary that

(0.01 p/cm)Vr < 0.001 p

or

V < (0. l/r) cm/s .

If this traverse velocity is unacceptably low, a higher traverse velocity may be used, provided that
(1) the true pressure at time t is taken as the pressure indicated at time (t + r), and

(2) at least about 3r seconds have elapsed after the initiation of the traverse.

159



§7.18-7.19
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Figure 7.18.--Response of a second-order system to

a quadratic forcing function.

7.18 Response of a second-order system to a quadratic forcing function. (Fig. 7.18) If

(7.18-1a) Y= Yo+bt 2 for t > 0

(7.18-1b) Y=Y=Yo; _=0 for t =0

the response y will start out at zero slope and approach a steady state represented by a parabola having

the same latus rectum as the forcing function but with vertex displaced to the coordinates (r,yb), where

(7.18-2) Yb = b( r2 - 2/_2) = b[r 2 - T_/(21r2)]

The steady-state condition is represented by

(7.18-3) steady-state y = b(t - r) 2 + br2[1 - (2_'2) -I]

This steady-state response resembles that of the first-order system (Sec. 7.10), differing from it only in

the position of the vertex, which no longer lies on the original forcing function but is displaced from it
by a vertical distance br2/(2_).

If _"= 1/_/2, the steady-state y lags behind Y by a constant time interval equal to r.

If _";_ 1/x/2, the time lag approaches r as time increases.

The approach to the steady state is oscillatory if _"< 1 and is aperiodic if _"> 1. [Note N7.18]

If 0.2 < _"< 0.8 , the time when the response will differ from the steady-state value by less than
10, 5, or 2 percent of that value will be on the order of TJ2, 51",/8, or 3TJ4, respectively. If _"> 0.8,

the corresponding time will not exceed 2.2r, 2.5r, or 3.Or, respectively.

The response treated in this section is representative of the behavior of an impact-plate flowmeter (wherein

the dynamic pressure of a fluid is converted into a mechanical force) or of a dynamic pressure transducer

used to make a steady continuous traverse of a region in which there is a linear fluid-velocity gradient.

7.19 Response of a second-order system to an impulse. If a second-order system is subjected to a step

change of very high magnitude and very short duration such that the product of duration and magnitude

is a finite quantity 1, termed the impulse, then the response will reach a maximum value in a time dependent

on the natural period of the system and then drop back to its initial value in a manner identical to the response

to a step change.

The behavior is representative of the ballistic galvanometer, which is usually used in the critically damped

condition, or of the ballistic pendulum. The latter device is convenient for measuring the impulse of an

explosive charge or of a pulsed rocket.
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If
(1) thesystemis initiallysuchthat

(7.19-1) Y= Yo; )' = 0 ,

(2) the pulse duration At is so short that

(7.19-2a) At<< Tn/(2r) if _'< 1

(7.19-2b) At < < _'Tn/(2r) if _'_> 1 ,

(3) the pulse amplitude (YL - Y0) is so large that

(7.19-3) 1 = (Yt - Y0) "At ,

then

(1) the response will reach a maximum value y,, given by

(7.19-4a)

(7.19-4b)

(7.19--4c)

Y,. - Yo = lw.exp[-(_/ot) sin-l°t] if _"< 1

Y,. - Yo = Ito,,e- I if _"= 1

Y,, - Yo = Ico,exp[-(_'/t_) sinh-lt_] if _"> 1

(2) This maximum value will be reached at a time t,, given by

(7.19-5a) t,, = (T,/2r)_ "-I if _'_< 1

(7.19-5b) t,, = (Tn/27r)(sinh-lct)/ct

= (Tn/2_r)_ "-1/2 if _'> 1

(3) Thereafter the step-change response equations of Sec. 7.15 will apply, except that t in those

equations must be replaced by (t - t,,,). Amplitude ratios and oscillation periods, when _"< 1,
remain as in Sec. 7.15. [Note N7.19]

Figure 7.20. l.--Steady-state response of a second-order system to a sinusoid.

7.20 Response of a second-order system to a sinusoid. Only the steady-state response is worthy of

consideration here [Note N7.20.1]. The application of a steady, sinusoidal forcing function

(7.20-1) Y = Yl sin(_0t) = ¥1 sin(2_fi) = Yi sin(2rt/T)

will result in a sinusoidal response of the same frequency but with different amplitude and with lag in time

and phase (Fig. 7.20.1). This response is represented by

§7.19-7.20
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(7.20-2a)

(7.20-2b)

where

(7.20-2c)

(7.20-2d)

(7.20-2e)

(7.20-2t")

y = AYI sin(_t - ¢)

= AY I sin[w(t - X)]

A = [(1 - r2) 2 + 4_'2r2] -If2

= tan-l[2_'r/( 1 - r2)]

X = _o/_ = ¢oT/(27r)

r = o_/_, = f/f, = Tn/T

The quantities of interest are

the frequency ratio r,

the amplitude ratio A,

the phase-angle ,p,

the time lag h.

The quantities A and _, as functions of _"and r, are shown in rectangular coordinates in Fig. 7.20.2,
and in polar coordinates in Fig. 7.20.3.

The following features of the response are distinctive:

A. If _"= 0, the value of ,4 is

(7.20-3) ,4 = ( I -- r 2) - 1

On rectangular coordinates, A (r) resembles a quadratic parabola, when r < < 1. The amplitude ratio becomes
infinite when r = 1. [Note N7.20.2]

B. If0< _'< l/x/2,

(i) the amplitude ratio ,4 has a maximum at a frequency f, termed the resonant frequency and given
by

(7.20-4) f, = f._/(I - 2_"2)

(ii) the magnitude ,4, of the amplitude ratio at the resonant frequency is

(7.20-5) ,4r = (2_'ct) -I

where

(7.20-6) c_ = x/ll - _l

(iii) the locus of these maxima for all values of 0 < _"< 1/x/2 is given by the curve

(7.20-7) Ar = (l - r4) -i/2
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Figure 7.20.2--Amplitude ratio A. time lag X, and phase angle _ of a second-order system's
reponse to a sinusoid.
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(iv) for any one curve for which _"< 0.2, there are two values ofr at which A - 1 = (At - 1 )/2.
The difference Arl: 2 between these two values is termed the "bandwidth at half maximum"

[Note N7.20.3]. Its relation to _"is given by

(7.20-8) _ ,, Arl/21[2x/3)(l -- 0.84Arl/2)] Arl/2 < 0.4

(v) if "fidelity" of response implies that A shall be near to unity, this condition is more likely to
be approached over a very wide range of r when 0.5 _< _"_< 0.6. Thus:

0.85 <A < 1.15 for 0<r< 1.14 when _'=0.5

0.95 < A < 1.05 for 0 < r < 0.85 when _"= 0.6
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Figure7.20.3.--Amplitude ratio A versus phase angle • of response to a
sinusoid by a second-order system.

If _"= 1/_/2, then both dAIdr = 0 and d2AIdr z = 0 at r = 0, implying maximum fidelity of response

when r < < 1. However, there is a 5-percent drop at r = 0.58 and a 15-percent drop at r = 0.79

Thus, for any preassigned limit of error in amplitude response there may be found an optimum value

of _"such that the error remains within the limit over the widest possible range of r. However, the selection

of _"must also be guided by the fact that a random uncertainty in _"also exists, either because of imperfect

knowledge or because of imperfect control. Therefore, in practical situations, any curve in Fig. 7.20.2
must be replaced by a band representing the uncertainty in knowledge or control of _'.

In the extreme case when _"is unknown except for the knowledge that the system is underdamped, then

(7.20-9) (1 + r2) -t < A < (1 - r2)-1

The left-hand limit represents the case of critical damping, _-= 1; the right-hand limit represents the case
of no damping, _"= 0.

C. When _"> 1/_/2, there is no resonant frequency. The response drops monotonically as r increases
but there is an inflection point.

The drop with increasing r is more abrupt as _"increases. As _"-- m, the response approaches that of a
first-order system.

D. For all values of _', the lagging phase angle ¢, changes from 0 at r = 0, to _r/2 at r = 1, and

approaches x as r -- oo. The value of _"affects the manner of transition between these fixed points or limits.

For all values of _', the time lag h changes from 0 at r = 0, to T/4 at r = 1, and approaches T/2 as

r -- oo. The value of _"affects the manner of transition between these fixed points.
For _"= 1/_/2, both phase lag @and the ratio h/Tvary virtually linearly with rover the range 0 < r < 1.

Consequently, there will be little or negligible distortion of a complex wave shape.

tThe inflection point occurs at • = ! when _"= 1/_2, at • = 1/'4"3when _"= 1, and very nearly at • = 1/[2_/(2_"2- 1)] when
_":- 2.

164



§7.20

t0!
L
L
L

// .I

0.0l
0.1 I wr 10 100

Figure 7.20.4.--Amplitude ratio of a second-order system's response to a
sinusoid.

E. The use of a logarithmic plot of A versus wr further clarifies the nature of the response
(Fig. 7.20.4).

(i) For underdamped systems, the line

(7.20-10) A = 1/(tot)

is the locus of the maxima of the response curves. The abscissa of any maximum, from

Eq. (7.20-4), is

(7.20-11) wr = 2_"x/(l - 2_"2)

The ordinate at the maximum is given by Eq. (7.20-5).

(ii) For underdamped systems, as _r becomes much larger than unity, the slope ofA (o_1") approaches

-2 ("12 dB per octave").
(iii) For overdamped systems, if oJr becomes much larger than unity, but remains much larger than

4g"2, then A (_r) becomes approximately equal to 4g'2/(tor) 2 so that the asymptotic slope of

A(o:r) is -2, the same as that of an underdamped system. However, if _'--_ but

4_"2> > wr > > 1, the system begins to resemble a first-order one, with A(o_') --- 1/(a:r).

F. A polar plot with coordinates (A,¢) is shown in Fig. 7.20.3. All points lie in the first two negative

quadrants [Note N7.20.4]. Contour lines of _"= constant and r = constant are shown.

Contours for _"> 3 are almost indistinguishable from the semicircle which represents the polar plot for

a first-order system (Fig. 7.12.3).
Contours of r = constant (r _ 1) are semicircles passing through the origin and having their centers at

A = 0.5/]1 - rZ[ and _, = 0 or a'.

G. The amplitude of p� (w, YI ) is rA. This amplitude has a maximum value of l/(2D; the maximum

occurs at r = 1, regardless of the value of _'.
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7.21 Response of a second-order system to any forcing function. If any arbitrary forcing function can

be approximated as a sum of the forcing functions treated in Sees. 7.15 to 7.20, the steady-state solution

is the sum of the steady-state solutions for the component forcing functions. However, the transient solution

cannot be deduced by any simpler mathematical procedures than by the solution of Eq. 7.1-2.

The converse problem is of more common practical interest: given an instrument indication y (t) of arbitrary

wave shape, to deduce the forcing function Y(t) that produced it. Theoretically, the same technique as

described in Sec. 7.13 should be usable: one adds, to the indication y(t), corrections that are proportional

to the first and second derivatives ofy(t), in accordance with Eq. 7.1-2, thereby deriving the forcing function
Y(t). In practice, this correction procedure has rarely been effective, because of the combined effect of

errors caused by the process of double differentiation, the uncertainty or inconstancy of _', and the presence
of noise.

Under favorable circumstances, in a time interval -4-At surrounding a particular value y(tx), the value

of Y(t_) may be deducible from the information in Secs. 7.15 to 7.20. Such favorable circumstances may be
(1) The instrument is sufficiently damped so that _"exceeds 0.5.

(2) The principal fluctuations occur at frequencies well below fn.

(3) Adequate time has elapsed for decay of the transient that originated when the forcing function
was first applied.

(4) Abrupt changes in the forcing function, as revealed by the recurrence of damped oscillations,
are absent.

Under such circumstances, if the indication in the vicinity of y(tx) is oscillatory, the amplitude and time

lag corrections of Sec. 7.20 may be applied to deduce Y(tx). If the indication in the vicinity described by
At _- 3r appears monotonic, the assumption that there is a time lag of magnitude r, as suggested by
Secs. 7.17 and 7.18, may provide a closer estimate of Y(t_).

In the absence of identifiable oscillations, a test that will indicate whether y (t) is likely to be a reasonably
faithful representation of Y(t) is provided by a procedure similar to that outlined in Sec. 7.13:

The radius Ami n (in units of time) of the smallest radius of curvature of y(t) is determined, and the
normalized radius of curvature

(7.21-1) A_in = Amin_o/_o

is computed, where 70 is as defined in Sec. 7.13 but G0 here represents the distance on the graph paper
corresponding to T.. Then fidelity of response is likely if Amin is large compared to T..

If a dynamic system has little damping (say, _"< 0.2), the natural oscillations (at period close to Tn) that

appear in y(t) may obscure the representation of Y(t) even when Y(t) varies slowly. In such case, a curve

may be drawn through the midpoint of every half cycle of the oscillations in y(t), this median curve may

be treated as an alternative "faired curve," and its A_i. may be determined. If Amin > > Tn, this faired

y(t) is likely to be a reasonably faithful representation of Y(t).

7.22 Characterization of the orderofa system. The basis upon which a system is designated "first order"

or "second order" is purely a pragmatic one. If the behavior of a system is indistinguishable from that

of a first-order system, it may be designated and treated as a first-order system, even though it is known

to contain elements that, in a strict mathematical sense, make it a second-order system.

In many borderline cases, such as overdamped second-order systems, large savings in analytical or

experimental effort may be realized by treating the system as one of the first order, with an acceptably
small loss in accuracy.

Examp/e 7.22a. Any real electrical circuit containing a resistor and a capacitor necessarily contains

some residual inductance in the connecting wires and in the lumped elements. At lower frequencies,

the inductive reactance may be kept negligible and its presence need not prevent consideration of

the circuit as a first-order system. On the other hand, at sufficiently high frequencies, the inductive
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reactance of even a high-quality capacitor may become a significantly large component of the total

reactance, so that the system must be treated as a second-order one.

Example 7.22b. A thermometer bulb with distributed mass and finite thermal conductivity constitutes

a system of higher than first order. In fact, at sufficiently high frequencies of temperature fluctuation,

the system must be described by the partial differential equation (Fourier's equation) of heat conduction.
which represents the limiting condition of a series of first-order systems in tandem, each subjected

to the forcing function generated by its predecessor. Nevertheless, for many designs and applications,

no appreciable error is made by treating the bulb as having lumped mass and infinite thermal

conductivity, and hence as being a first-order system.

7.23 Instrument selection to provide discrimination in frequency response. If an instrument is to be

used to indicate variations in the magnitude of a forcing function Y(t), the indications may be obscured

by the presence of variations in Y(t) that occur at frequencies much higher than the frequencies of the

variations that are of principal interest [Note N7.23]. It is therefore desirable to select an instrument that

(i) will provide reliable indications of the magnitude of low-frequency components of the input signal,
and

(ii) will have minimal response to high-frequency components of the input signal.

Solution of this problem requires the instrument user's intuitive perception, a priori, of

(1) what frequencies might be present in the signal Y(t),

(2) what frequencies are of principal interest in the current application of the instrument, and

(3) what frequencies are not of interest.

If frequencies in category 3 are much higher than those in category 2, it may be possible to select an

instrument whose response at the higher frequencies is much poorer than the response at the lower frequencies.

Generally, the optimum choices are these:

(a) If the measuring instrument is essentially a first-order system, its time constant r should not be
much shorter than the value that would just produce an acceptable measurement error.

(b) If the measuring instrument is a second-order system, its fraction of critical damping _"should

lie in the vicinity of 0.6 to 0.8 and its natural frequencyfn should be not much higher than the

value that would produce an acceptable error at the highest frequencyfthat is of principal interest.

The need for these optimum choices may not be important when

(i) high-frequency components of Y(t) are not so large as to obscure materially the components of

principal interest, or
(ii) appropriate reduction (filtering) of high-frequency indications can be performed during the data-

reduction process.

At the other extreme, the optimum choices indicated above are essential

(i) when an almost undamped mechanical instrument may be subjected to frequencies so near to its

resonant frequency that response amplitudes will be destructively large or so large that the
calibration or elastic properties (Sec. 5.6) of the instrument will be impaired. (Subsequent electrical

filtering cannot prevent such impairment.)
(ii) when an almost undamped electrical circuit may be subjected to frequencies so near to its resonant

frequency that saturation of amplifiers may impair the ability to represent correctly the amplitudes

at the frequencies of principal interest.

Example 7.23a. Structural loads developed in airplane landing gear are often studied by measuring

the acceleration of the airplane, treated as a single lumped mass, by use of an accelerometer mounted

near the center of gravity (c.g.) of the airplane. The c.g. acceleration is usually less than 1 g
(1 g _ 10 m/s 2) and is imposed at an equivalent frequency on the order of 1 Hz. Any accelerometer

attached to the airplane structure may also be subjected to local structural vibrations on the order

of 1 g, but at frequencies of 20 to 1000 Hz. The measurement of interest would therefore be impaired

severely if the accelerometer had high fidelity at all frequencies. However, an accelerometer with

_"= 0.7 + 0.1 andfn _ 5 Hz would provide more than a 10-fold attenuation in indication at high

frequencies and less than l-percent error at 1 Hz.
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Example 7.23b. A 10-Hz signal derived from a 10 000-ohm source is to be observed on a cathode-

ray oscilloscope, when a 60-Hz hum signal of comparable magnitude is superposed on the 10-Hz

signal. A 1-/_F capacitor across the input terminals of the oscilloscope will produce a 15-percent

systematic reduction in the desired signal but will produce a 4-fold attenuation of the hum. Application

of a correction factor of 1.15 to the indicated 10-Hz signal may then result in an acceptably small

uncertainty in the measurement.

7.24 Initial study of a dynamically changing phenomenon. When a new, unfamiliar experiment or test

is undertaken, an appropriate first step is to obtain a continuous oscillographic record of the variation with

time of the principal physical variables that are of concern. High measurement accuracy is not necessary,

but the measurement system should have reasonably good fidelity in the frequency band that is of interest.

(A response like that of a slightly underdamped second-order system would be appropriate.) Visual inspection

of the record will then reveal signal frequencies and rates of change that are present, and their relative

magnitudes. One may then determine whether there are present, in significant magnitudes,
(1) power-line frequencies, or their multiples, that may be attributable to hum;

(2) oscillation frequencies that may be attributable to slightly damped instruments or transmission

systems;

(3) oscillations, at higher frequencies outside of the hand of interest, that are large enough to obscure

important wave patterns at lower frequencies;

(4) spikes or pulses so large that there is danger of damage to instruments or to the validity of acquired
data;

(5) signal frequencies truly representative of the phenomenon to be studied.

An indication of the probable wave shape of the signal will also be obtained. This diagnosis can then

guide the application of appropriate remedial measures that appear desirable (including limitation of the
frequency-response band), and can provide a clearer a priori definition of static and dynamic accuracies

that appear necessary in subsequent experiments or tests.

NOTES FOR CHAPTER 7.

N7.4 The clearest way to describe the technique of conversion of a higher-order differential equation to

a combination of first-order and second-order equations is to assign the symbol p to the operator d/dtand
to treat p as an algebraic quantity, so that

(N7.4-1 ) dny/dt n = pny

Thus, F_,q. (7.1-1) may be written as

(N7.4-2) r*py + y = Y

so that, symbolically, the solution for y may be written as

(N7.4-3) y = Y/(rp + 1)

Similarly, Eq. (7.1-2c) may be written as

(N7.4--4a) [(l/_)p 2 + (2_'/_0_)p + 1]y = Y

Here, there are two cases to consider:

(1) If _'> 1, the equation

(N7.4-5) (1/_o_)p 2 + (2_'/w,)p + 1 = 0
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has_ .),positive,realroots(if _"= 1,thetworootshappentobeequal).If theserootsaredesignated1/rl
andl/r 2,Eq.(N7.4-4a)maybewrittenas

(N7.4--4b) (rip+ 1)(r2p+ 1)y= Y

so that, symbolically, one may write

(r2p + l)y = Y/(rlp + 1)(N7.4-4c)

or

(N7.4-4d)
1 1

y= __e--,y
r2p+ 1 rip+ 1

Consequently, in this case, solution of the second-order Eq. (N7.4--4a) may be obtained by first finding

the response y_ of a first-order system with time constant r t to a forcing function Y and then finding the

response y of a first-order system with time constant z2 to a forcing function Yl- The order in which the

quantities (¢_p + 1) and (rzv + 1) appear is immaterial.

(2) If _"< 1, Eq. (N7.4-5) has two conjugate, complex roots. A formulation in terms of real parameters

like rl and r 2 is not possible, and one can only write

(N7.4-6) y = Y/[(1/o_)p 2 + (2g'/oa,)p + 1]

Turning now to the higher-order differential equation which may be written symbolically as

(N7.4-7) (a,,p" + a,,_lp n-I+. . . + a2p 2+alp+ l)y= Y ,

we note that the equation

(N7.4-8a) aap" + a,,-lp n-I +... + a2p2 + alp + 1 =0

may have k real roots and m pairs of conjugate complex roots, such that

(N7.4-Sb) k + 2m = n

Equation (N7.4-7) may then be factored and written as

(NT.4-9a) rllllzy = Y

where II I is the product of factors F_ of the form

(N7.4-10) Fi = (¢_p + 1) (i = 1,2 ..... k)

and 112 is the product of factors Gj of the form

Gj = p2/_o_j + (2_/_.j)p + 1 (j = 1,2 ..... m)(N7.4-11)

so that

(N7.4-9b)

k m

n,= II v,; n2= II
I 1

Thus, the solution of Eq. (N7.4-7) may be represented symbolically as
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1 1 1 ! 1 1
(N7.4-12) y= --o--o...o--o--o--o...o__o y

Gi G2 Gm Ft F, F_

where the order of terms in the product is immaterial.

operations.

Equation (N7.4-12) may also be written as

This represents a tandem or serial sequence of

(N7.4-13) v = + G-_ + "" + -- + -- + -- + ' + Y" _ Gm FI F2

where the a's are algebraic functions of the r/s, the 3's are algebraic functions of p, the _'s, and the _,j's,
and where the order of terms in the sum is immaterial. This represents a parallel group of operations. Because

of the presence ofp in the 3's, this equation does not lend itself to an intuitive perception of system behavior,

or to easy simulation by analog methods, unless II 2 is unity (i.e., unless all the roots of Eq. (N7.4-8a)
are real).

The use of the operator p, which is treated in most elementary texts on differential equations (where the
preferred symbol is usually D), forms the basis of Heaviside's operational calculus. For easier mathematical

solution of differential equations, the modern approach is the use of the Laplace transform (Ref. 7-1).

However, the Laplace transform does not provide a description of the physical situation that permits easy

interpretation and deduction of the system's response merely by inspection. The differential equation itself,

or the symbolic use of the operator p or D, does provide such understanding more easily. This point has

been made by Trimmer (Ref. 7-2), who also provides a more complete exposition of the subject of dynamic
response.

N7.7 Equation (7.1-1), with right-hand term zero, occurs in the description of radioactivity. When a given

mass of a radioactive nuclide emits particles, the mass becomes depleted. Since the number of particles

emitted per unit time is proportional to the remaining mass, one may write

AN= - (l/r)/_/*At

to indicate that the drop AN in emission rate will be proportional to the elapsed time At. If At is so large
that the random error in measuring A/is acceptably small and if the measurements are recorded over a

sufficiently long total time scale that the concepts of the differential calculus may be applied, it may be
justifiable to write

r" (aN/at) + N = 0

The half-life rl/2 of the particular disintegration is the time interval in which N would become one half

of its value at the beginning of the interval. Its relation to r is

7"1/2 = T In 2

N7.8 As indicated in Sec. 7.4, the response y may be considered either (a) as the response of an instrument

with time constant _"to an exponential forcing function with time constant h or (b) as the response of an
instrument with time constant h to an exponential forcing function with time constant r.

If X is chosen as the larger of the two time constants, and we define

(N7.8-1) m = h/r m >_ 1 ,

the following relations, illustrated in Fig. 7.8, serve as convenient indicators of the nature of the response.
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(1)Thecoordinatesof theinflectionpointaregivenby

(NT.8-2a) t2 = (k In m)/(m-1) _, > r

(N7.8-2b) t2 = X k = r

(N7.8-3a) (Y2 - Yo)/(Yj - Yo) = 1 - (m + 1)m -m/_"-l_ k >_ r

(N7.8-3b) -_ O.26/m I/4

(2) The tangent at the inflection point intersects y = Yo at t l, where

(N7.8--4) tI _ rm/(m + 3) m _- (h/z) >_ 1

(3) Over the range of possible values of k/z, the value of y - Yo at t = k + r will lie between 37

and 41 percent of Y1 - Yo;

(4) At times t = n (k + 7.) the value of y - Yo will be not less than the fraction of Y_ - Y0 tabulated
below:

n = 2 3 4 5

fraction = 0.86 0.95 0.98 0.993

N7.9 If

(N7.9-1a)

(N7.9-1b)

Y= Yi +at for t>0

Y = Yo; Y = Yo at t=0

then the change in Y is a combination of a step change of magnitude (Yl -- Yo) and a ramp Yo + at. The
response is

(N7.9-2) Y = Y1 + a(t - ¢) + (Yo - Yi + at) 6-t/"

and the asymptotic steady state is

(N7.9-3) Yi + a(t - z).

N7.11 A pulse of triangular shape and very short duration At may be defined by the equations

(N7.11-1a) Y- Y0 = 2Yff/At for 0 < t <__At�2

(N7.11-1b) Y- Yo = 21"1(1 - t/At) for (At/2) _< t ___At < < 7"

(N7.11-1c) Y=Y=Yo at t=0

(N7.11-1d) Y = Y0 for t > At

(N7.11-2) (Y_ - Yo)SAt/2 = 1

Ch. 7 Notes

171



Ch. 7 Notes

An approximation of the response is given by

(N7.1 l-3a) 3' - Yo = (1/27")[ 1 - cos(Trt/At) ] for 0 -- t --< At

(N7. l l-3b) 3'- Y0 = (l/r)_-'/" for t > At

The response closely resembles the response to a rectangular pulse with the same value of/--the peak

amplitude reached is Yo + I/r and reversal of direction occurs only when y = Y on the descending leg of

the triangle, at which time t is almost equal to At.

N7.12.1 If the forcing function is a pure sinusoid of amplitude Yl and average value Y0 and the initial value

of y is Y0, the magnitude of the transient will usually have become less than 15, 5, or 2 percent of

IY_ + Y0 - Y0l at a time 2r, 3r, or 4r, respectively, after the imposition of the sinusoid.

N7.12.2 Capacitors considered to be of high quality may have a dissipation factor smaller than 0.001 at 1 kHz.

N7.12.3 Inductors considered to be of high quality may have a storage factor larger than unity at 200 Hz,
where losses are primarily due to wire resistance. At high frequencies, energy dissipation is primarily due

to eddy currents, and there is additional loss due to distributed capacitance. An inductor considered to be

of high quality may have a storage factor larger than unity at 1 MHz.

N7.13 The accuracy achievable by the three-step procedure depends principally on the ability to determine
(dy/dt)i. If y(t) is in the form of a continuous electrical signal, analog differentiation with careful attention

to minimizing the effects of hum and noise usually is most effective. If the derivative is determined by

sampling at discrete intervals and assuming that Ay/At represents dy/dt, then the interval At must be chosen
carefully: choice of too small an interval leads to excessive random errors; choice of too large an interval

leads to excessive errors of nonlinearity.

N7.14 For a completely self-contained system with no external source of power, this condition is impossible

because it implies perpetual motion. However, it is a convenient limit of behavior and often can be approached

so closely that the simplifying assumption _"= 0 can be made with negligible error.

N7.15.1 The equation of the response is

(N7.15-1a) Y = ]'1 + (Y0 - Yi) ¢-Ie-a' sin(oto_,,t + if)

where

(N7.15-1b) c_ = x/ll - _'21; B = _'_0n; ff = cos-I_"

N7.15.2 The ratio between the initial amplitude difference _0 = IYl - Y01 and the first overshoot Ai/2 has

been termed the damping factor and has been used by manufacturers of galvanometer-type instruments to
describe the damping of such meters. This measure of damping is useful because, in a well-damped meter,

the second overshoot, Ai, may be imperceptible.

N7.15.3 The equation of the response is

(N7.15-2) Y = Yl + (Y0- Yi)_-2,/, (1 + 2t/r)

The coordinates of the inflection point are given by

t2 = r12; (Y2 - Yo)l(Yl - Yo) = 1 - 21_
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Theslopeat theinflectionpointis

2(Y1- Y0)/(er)

The tangent at the inflection point intersects Yt at a time 3r/2.

The time for the excursion to be almost complete is given in the following table:

Percent completion 90 95 98 99

Multiple of T, 0.62 0.76 0.93 1.05

Multiple of r 1.9 2.4 2.9 3.3

N7.15.4 The equation of the response is

(N7.15-3a)

where

Y= YI + (Yo- Yi) c_-le-_' sinh(2_ca/r + ¢J)

(NT.15-3b) o_ = x/Ig"2 - 11; fl = 2_'2/r; d/= sinh-'o_

The coordinates of the inflection point (t2,y2) are given by

(N7.15-4a) t2 = [z/(4_'e¢)]. in[(_" + a)/(_"- c_)]

(N7.15-4b) (Y2 - Yo)/(Yl - Y0) = 1 - 2_'[(_'- c_)/(_" + or)] _'/12'_

The slope of the tangent at the inflection point is (YI -y2)/r.

N7.15.5 The difference between y as given by Eq. (N7.15-3) and the y given by

Y_ (YI-Y2) / l-expI(/2-t)/r] 1

is less than 8, 2, or 1 percent when _"= 1, 2, or 3, respectively.

N7.16 If

(N7.16-1a)

(N7.16-1b)

(N7.16-1c)

(N7.16-2a)

z = (Y_ - y)/(Y_ - Yo)

c_ = x/J_"2 - 11; fl = 2_'2/r = _0,_"= 27r_/Tn

m = X/z

A = 1 - 2]'/(¢o,X) + (¢onh)-2

= 1 -m -I + (2_'m)-2

(N7.16-2b) B= (o_/_')(1 - 4_'2m)/(1 +2m- 4_'2m)

then the responses to the exponential forcing function of Eq. (7.16-1) are given by

(N7.16-3) Az = (l/A)e -'/x + (Xton_) -le-_tsin(_o,oa + tan-IB) if ]'< 1

(N7.16--4) A2z = -,ix + (4m 2)-111 _ 4m + (2 - 4rn)(t/r)]_ -2'/r if _'= I, r _ 2X
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(N7.16-5)

(N7.16-6)

z = (1 + 2t/r + 2t2/r2)¢-2t/¢ if _"= 1, r = 2X

Az = (1/A)¢-,/x + (2m_'t_) -1¢-_'sinh(2_'txt/r + tanh-lB) if _"> 1

N7.17 The multiples of r quoted for _"_> 1 are conservative. They are limits as _"-- co. More precisely, if

(N7.17-1)

(N7.17-2)

then

(N7.17-3)

(N7.17--4)

(N7.17-5)

ot = _/j_.2 _ 11; /3 = 2_'2/r = w,f = 27rf/T n

B = 2_'c_/(2f 2 - 1) ;

A = (2_'c_) -le-atsin(otw_ t + tan-IB)

A = ¢-2t/r(1 + t/r)

A = (2_'t_) - 1_-a,sinh(2_t_t/r + tanh -lB)

if_'< 1

if _'= 1

if_'> 1

N7.18 The complete response to a quadratic parabola is given by

(N7.18-1)

where

(N7.18-2)

(N7.18-3)

(N7.18--4)

where

(N7.18-5)

y/b = (t-r) 2 + C

C = r2(I-A) + "r2(A/_)e -atsin(c_cont + tan-IB)

C = r2/2 - (r2/2)_ -2t/r(3 + 2t/r)

C = 7"2( 1 --A) - r2(A/et)e-atsinh(2_ctt/r + tanh-_B)

- _/1_"2- 11;

A = (2_2) -'
B = (a/f)(4_ "2- 1)/(4_ "2-3)

/3 = _w_ = 2_21r = 2r_lT_

if_<l

if_= 1

if_'> 1

N7.19 The exact equations for the response to a pulse of amplitude ( YI - Yo) and duration z_t are

A. For _'< 1,

Ym- Yo = (Yl - Yo)e-c(e 2t'- 2et'cos a + 1) I/2

t,. = (w.,v) -ltan-l[ebsin a /(Et'cos a -- 1)]

B. For _"= 1,

Ym- Yo = (YI - Yo)e-c(e b- 1)

tm= At/ ( l -- e -b)
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C. For _'> 1,

Y,, - Yo = (Yi - Yo)e-c(e2b -- 2ebcosh a + 1)1/2

tm = (_0na) -ltanh-l[ebsinh a/(_bcosh a -- 1)]

where

a = _,_e_t; b = _,At;

and the impulse 1 is given by

c = _'¢,t,,

1 = (Yi - Yo)'At

N7.20.1 The transient response becomes academic because it depends on the phase angle of the forcing

sinusoid at the instant it is imposed on the system. However, an intuition of the time interval required for

the transient response to become small is provided by the information in Sec. 7.15 concerning the response
to a step change.

N7.20.2 Although Eq. (7.20-3) represents a fictitious mathematical limit, its simplicity makes it useful

for describing instruments, like silicon-crystal force or pressure transducers, which have very little damping
and are usually used with r < < 1.

The equation also indicates that, if the condition r = 1 is approached closely enough, destructively large
amplitudes of oscillation may occur.

N7.20.3 The two values of frequency ratio r, at which A - 1 = (At - 1)/2, are given by

r_/2 = 1 - 2_"2 :t: x(3 - 2x +x2)1/2/(1 +x)

where

x_- 2_ot = I/Ar

Equation (7.20-8) yields _"with a limit of error of 0.003 only when _"< 0.2. The difference Arl/2 between

these two values of rl/2 is useful in several scientific fields. It may be used to describe the sharpness of

tuning of an electrical circuit or of a mechanical or electro-optical oscillator. With a different mathematical

definition--the width of the abscissa segment joining two points whose ordinates are one half the height
of the peak--the "bandwidth at half maximum" may also be used to describe the resolving power of a

mass spectrometer or optical spectrometer at some stated value of abscissa.

N7.20.4 In a polar plot of this type (a Nyquist diagram), the number of quadrants occupied by the plot

is equal to the order of the differential equation describing the physical system (Sec. 7.4). The diagram

is particularly valuable in describing such systems because they are capable of self-oscillation if, and only
if, the point (l,r) lies on or inside of the plot.

N7.23 If the amplitude of Y is estimated to be Yl and the maximum rate of change of Y that is of interest
is _',,,, then the highest frequency of interest is

f,. = _',./(2_-Yt)

Input signals at frequency 4fro and amplitude Yj/8 could add 0.5 _',_ to the indicated rate of change if

the fidelity of instrument response y(t) were the same at both f,, and 4f,,,.
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CHAPTER 8. EXPERIMENTAL DETERMINATION OF THE

PARAMETERS OF DYNAMICAL SYSTEMS

8.0 Introduction. If a system is believed to approximate a first- or second-order system, the imposition

of a known forcing function, for which the solution is known, may serve to reveal the characteristic parameters

of the system. Conversely, observation of the nature of the system's response to some simple forcing function

may serve to establish the extent to which a system may be considered to be a first-order or second-order

one. Application of the same test to a more complex system may serve to identify one or more simple systems

contained within the complex one.
The most convenient forms of forcing function for this purpose are the step, impulse, ramp, and sinusoid.

An alternative technique, the unit-deflection method, applicable to mechanical systems using springs, is

a combination of analytical and experimental techniques that permits determination of the natural frequency

without recourse to dynamic tests.
The symbol list of Sec. 7.0 also applies to this chapter.

8.1 Test by imposition of a step or impulse. A step change may be imposed, for example,

(a) on a mechanical spring, by deflecting it a fixed amount and then suddenly releasing it ("plucking");

(b) on a pneumatic system, by pressurizing it to a steady value and then suddenly releasing the pressure

("burst-diaphragm method");
(c) on a pressure gauge, by use of a shock tube (the step is of short duration, that depends on the

length of the tube);

(d) on an electrical system, by connecting or disconnecting a source of steady voltage or current

("keying");

(e) on a thermometer bulb, by sudden immersion in a well-stirred bath of different temperature;

(f) on a radiometer, by turning on or off a source of incident radiation.

An impulse may be imposed, for example,
(a) on a mechanical system, by the single stroke of a hammer, or by the single bounce of a pellet;

(b) on a pneumatic system, by the incidence of a shock or detonation wave;

(c) on an electrical system, by a capacitor discharge with very short time constant (ballistic method);

(d) on a radiometer, by use of a short-duration, high-intensity flash.

A. If the response is clearly oscillatory and its decrement is constant (i.e., the ratio between successive

amplitudes is constant), the system is like the basic second-order system. The value of _"may be determined

from the measured amplitude ratios by use of Eq. (7.15-3) for the logarithmic decrement _5and by

(8. l- 1) _-2= _2/(_2 + 47r 2)

The period of the oscillations may be measured and 7", computed as

(8.1-2) T,, = period × _/(1 - _.2)
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B. If the response is clearly oscillatory, but the ratio of successive amplitudes becomes closer to unity

as the oscillation continues, there is appreciable square law damping. (See Sec. 10.4.) The period of the

oscillations may be measured and assumed equal to Tn. The first overshoot At/2 may be measured and an
equivalent _"computed as

(8.1-3) g'm = (l/Tr)ln(Ao/Ata) if _',, < < 1

where Ao is the magnitude of the initial step. One may conclude that the system will act like a linear system

with _"< _',,,, but additional quantitative deductions are not easily possible.

C. If the response is only slightly oscillatory, or if there is only one noticeable overshoot, the value

of _"may be determined by use of Eq. (8.1-I), where

(8.1--4) 6 = 2 ln(_/Al/2)

However, the determination of T,, by use of Eq. (8. I-2) may be of inadequate accuracy. This accuracy

may be improved if the damping can be temporarily removed or reduced, thereby permitting use of method
A above.

Generally, a system, whose response is so slightly oscillatory that its _"and Tn cannot be measured
accurately, can be treated as a critically damped second-order system, with characteristics as described in
Sec. 7.15 C.

D. If the response is aperiodic, with nonzero initial slope, and the graph of dimensionless amplitude

z = (y- YI)/(Yo- YI) versus time is approximately a straight line on semilog paper, the system is

substantially of the first order and its r may be determined from the average slope of the line in the highest
decade of z. If the exponential character of the response is evident, the plot on semilog paper may be omitted

and r determined immediately as the time when z = 1/e -- 0.368 or as the absolute value of the reciprocal

of the initial slope of z(t) (i.e., the time when the tangent to the response curve at t = 0, z -- 1 intersects
the ordinate z -- 0).

E. If the response to a step is aperiodic, but starts at zero slope, or if the response to an impulse is

aperiodic after an initial peak has been reached, so that there is a point of inflection in the response curve,

the system may be considered to be of the second order and to be overdamped.

Construct the tangent at the point of inflection (the tangent with maximum positive or maximum negative
slope). Let t3 be the time at which this tangent intersects the ordinate z = 0. Let t2 be the abscissa of the
point of inflection. Then

(8.1-5) r = t3 - t2

IL in response to a step, the point of inflection occurs at z > 0.9 (implying that _-_> 3), a simpler procedure
is adequate: Determine the time ttt 2 at which z = 112. Then

(8.1-6) r = tl/2/0.7

This equation is comparable to

(8.1-7) r = tl/211n 2

for a first-order system.

8.2 Test by imposition of a ramp. If a linear change Y = at is applied to the instrument, the time

displacement between the forcing function and the asymptotic steady state of the response represents r.

If the applied ramp change is not accurately linear, such procedure will still yield r if the asymptote is
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drawnasacurveparallelto theforcingfunction,sincethetimelagin responseto aquadraticparabola
alsoapproachesr.

If the approach to the steady state is oscillatory, the difference between the actual indication and the

asymptotic steady state may be replotted or measured directly to provide amplitude ratios and frequencies

in the same manner as was done for the step change.

8.3 Test by imposition of a sinusoid or of white noise. Particularly for electrical systems, the response

of an instrument to an impressed sinusoidal signal is a convenient way to estimate the characteristic parameters

of the instrument. Generally, measurements are made of the amplitude ratio A = Yl/Y1 between response

amplitude Yl and impressed amplitude Yt, and of the phase angle ,p between the two waves. The procedure
is usually effective only when it is possible to vary the forcing frequencyfover a wide range. This variation

may be effected by continuously varying the forcing frequency while maintaining constant amplitude Yl

or else by subjecting the instrument to "white noise," as may be developed by a reverse-biased diode

(Sec. 5.19), wherein all frequencies of interest are generated virtually simultaneously. A spectrum analyzer
or its equivalent is then required. If a white-noise generator is used, there must be careful confirmation

that the signal amplitude it generates is the same at all frequencies.

Usually, for second-order systems, the sweep through the band of frequencies of interest seeks to determine

the frequency f_ at which a maximum value of A is obtained; this value is the amplitude at resonance Ar
(Sec. 7.20).

A. Ifa system is known, in advance, to be of the first order, then the time constant r may be determined
from measurement of either the amplitude ratio A or the phase angle ,p when the steady state has been reached.
Convenient formulas are

(8.3-1) r = x/3/(2xj0 when A = 1/2 or _, = 60*

(8.3-2a) r = 1/(27rf) when A = 1/_/2 or ,p = 45*

where f is the frequency at which the designated value of A or _ occurs. Equation (7.12-2) may be used
for other amplitude ratios and phase angles.

B. If a plot, on log paper, of amplitude ratio A versus frequency fappears to be asymptotic to a line

of slope - 1 asfincreases, the system is very nearly of the first order and Eq. (8.3-2a) may be applicable.
The value of r is deducible from

(8.3-2b) r= l/(2rfc)

where fo the comer frequency, is the frequency at which the asymptotic line of slope - 1 intersects the
ordinate A = 1.

C. A polar plot of amplitude ratio A versus phase angle _, like Fig. 7.20.3, serves to identify both
_"and fn. The extent to which the plot lies in the second negative quadrant is a measure of the relative

importance of the second-order features of the system.

D. The frequency fat which the phase angle _ is 90" is also the natural frequencyfn of a second-order

system. Only when _ = 90* can fn be determined without knowledge of _'. For a first-order system,
_, -- 90" as f-- ao.

E. If appreciable resonance (A, > 1) is detected at some frequency f, then the value of _"is deducible
from Ar by the formula

(8.3-3) (1 -2_2) 2 = 1 - 1/A 2,

and the natural frequency f_ is given by

(8.3-4) f2 = f2,1_/(1 _ 1/A2)

§8.2-8.3
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F. For slightly-damped systems (At > 2), the amplitude ratio A r yields

(8.3-5a) _ ,, l/(2Ar)

and the "bandwidth at half-maximum" yields _"by Eq. (7.20-8), where

(8.3-5b) Ar]/2 _ (f]/2 -- f-t/2)/fr

and fl/2 and f_ I/2 are the values off at which the amplitude is (14 r "4- 1 )/2. Equation (8.3-5a) determines

_"from an amplitude ratio; Eq. (8.3-5b) determines _"from a frequency-difference measurement, which

may require high accuracy when the bandwidth is narrow.

G. If appreciable resonance is detected at several frequencies, then the formulas in E. and F. may be

applied to each of these, so that the behavior of the entire physical system is understood, even though the

actual arrangement of its components may not be.

H. An alternative approach is possible if the derivative p of the instrument indication can be measured,

rather than the indication itself. By Sec. 7.20 G, the forcing frequency at which 2_ is a maximum (while

forcing amplitude I"1 is held constant) is also the natural frequency of the instrument, regardless of the value
of _'. Furthermore, if both YI and _ are measured at the resonant frequency, then _"can also be determined.

This technique is particularly useful when dealing with electrical signals that can be differentiated easily.

8.4 Unit deflection method of determining natural frequency. This method is a combination of analytical

and experimental techniques. It generally involves (a) the analytical calculation of a constant that is

characteristic of a particular instrument design and (b) the experimental measurement of a deflection. However,

the characteristic constant could also be determined empirically.

For a particular design of a simple second-order system there generally exists a relation of the form

(8.4-1) f_8 = a constant

where c5is an experimentally measured deflection and the constant is characteristic of the instrument design.

For any mechanical system where _tis a length, the constant has the dimensions of acceleration. The unit

deflection method becomes particularly convenient when the constant is proportional to the local acceleration

of gravity g. The determination off, then involves no dynamic testing and is not dependent on knowledge
of the damping.

A. Linear spring-mass system.

(i) If a concentrated mass m is supported by a massless spring of spring constant k (Sec. 6.1), the

deflection 6 when gravity acts upon the mass is given by

(8.4-2) _5= mg/k

Consequently, by Eq. (6.1-2a),

(8.4-3) fn2_ -- g/(41 "2)

The deflection 6 is the change in spring deflection after the assembly is turned 90* so that gravity no longer
acts to deflect the spring.

The spring may be of any form: helical, cantilever, diaphragm, etc., provided its mass is negligible, but
6 must represent the deflection of the spring itself (the deflection measured in the determination of k) and

not of any mechanical magnifying device.

Iffn is in hertz and 5 is in inches,

(8.4--4a) f_5 _ 10
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Iffn is inhertzand6 is in centimeters,

(8.4-4b) f_6 _ 25

(ii) If there is no concentrated mass (m = 0) and the deflection caused by gravity is due entirely

to the distributed mass ms of the spring, then

(8.4-5) f_6 = [3g/ (47I"2)

but _3now depends on the form of the spring and usually has a value between 5/4 and 5/3 (Footnote 1).

(iii) If the spring has appreciable mass and there is also a mass concentrated at the end of the spring,

then /3 in Eq. (8.4-5) has a value intermediate between unity and its value in case (ii).

B. Rotational spring-mass system. For the system treated in Sec. 6.3, if 6 is the angular deflection

caused by an angular acceleration of 1 radian per second 2, and f, is in hertz, then

(8.4-6) f_6 = 1/(47r 2)

This relationship is principally of academic interest, because of the practical difficulty of creating unit angular
acceleration.

C. d'Arsonval galvanometer. For a d'Arsonval galvanometer (permanent magnet, moving coil meter),

possessing a coil resistance R and a constant sensitivity S, where

(8.4-7) S = (angular coil rotation)/(coil current)

the comparable relation is

(8.4-8) f_S/_/R = a constant

The constant depends on the size, shape, and material of the coil and on the flux density in the air gap;

it is usually determined empirically. The magnitude of this constant is sometimes taken as afigure of merit

of moving-coil oscillograph design.

§8.4

1For a helical spring or bellows, B = 1.50

For a cantilever of constant cross section, _8 - 1.56

For a circular diaphragm with simply supported edges, _ _ 1.56

For a circular diaphragm with clamped edges, B - 1.67
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CHAPTER 9. ANALYTIC DETERMINATION OF THE

CHARACTERISTICS OF DYNAMICAL SYSTEMS

9.0 Introduction. In Chapter 6, the differential equations describing the behavior of various systems were

derived by use of Newton's law for the balance of forces in mechanical systems or Kirchoffs laws for

the balance of currents and emf's in electrical systems. Other laws, such as those for the balance of power

or energy, can be used. Some will be illustrated here, because, although they may offer little or no advantage
for the treatment of simple first- and second-order systems, they become more useful as systems become
complex.

Once a differential equation has been derived, simple algebraic manipulation, generally involving
transformation of the dependent variable to a dimensionless form, may allow reduction of the entire equation

to a simple canonical form whose behavior is already known. The advantage gained is that inspection of

the equation and identification of its characteristic constants is sufficient for an understanding of the behavior
of the system, without recourse to detailed solution of each particular equation.

The symbol list of Chapter 7 also applies to this chapter.

9.1 Power equation. A balance between power input and power output was used to establish the differential

equation for the thermometer bulb (Sec. 6.12). A similar power balance equation can be used for mechanical
or electrical systems.

Example 9.1a. For the linear mechanical system, See. 6.1, at any displacement x,

work done by external force = fo F*dx = Fx

energy stored in spring = Io kx*d.x = /¢x2/2

rate of dissipation of energy in oil = (b.t)o.t = b.t 2

energy of motion of mass = re.t2/2

The power balance requires that

= at\ 2 / + _\--T-/

so that

F.t = kx/c + b.t2 + m,t£

and dividing through by X yields Eq. (6.1-1b).
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Example 9.lb. For L, C. and R in series, Sec. 6.8,

power delivered by external voltage = Ei = Eft

energy stored in inductance = Li2/2 = 1-212/2

energy stored in capacitance = q2/(2C)

rate of dissipation of energy in resistance = Ri 2 = R_I2

The power balance requires that

at\ 2 / dt\-2-'C; + Ril2 = E?!

so that

I._1_1 + q#/C + Ril 2 = Ei1

and dividing through by //yields Eq. (6.8-1a).

9.2 Rayleigh's method of determining natural frequency. This method is used to compute the natural

frequency.fn of a system in the absence of appreciable damping. It equates the energy of the system at two

instances when the energy is particularly easy to calculate, assuming that at both instances the system is

oscillating at frequency f, [Note N9.2].

For a mechanical system, these instances are

(1) when oscillation amplitude is a maximum and oscillation velocity is zero, so that potential energy
is a maximum;

(2) when oscillation velocity is a maximum and oscillation amplitude is zero, so that kinetic energy
is a maximum.

For an electrical circuit, these instances may be

(1) when oscillation amplitude (of voltage, current, or charge) is a maximum;

(2) when the same oscillation amplitude is zero.

Exam/de 9.2a. If the linear mechanical system, So=. 6.1, is oscillating at its natural frequency so that

x = xm sin(2xf.t) ,

the maximum potential energy occurs when x = xm, ._ = 0, and is then

kx2/2 = (1/2)x_

The maximum kinetic energy occurs when x = 0, .¢ = 2rf.xm, and is then

m2/2 : (1/2)(2.f.)2x2_m

Equating these two energies leads to

(2"xfn) 2 = k/m

in agreement with Eq. (6. l-2a)
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Example 9.2b. If the current in a circuit with inductance L and capacitance C in series is oscillating
at frequency f_ so that

i = im sin(2rf_t)

the energy is stored entirely in the inductor when i is a maximum. The energy is then

(1/2)Li_

The energy is stored entirely in the capacitor when the capacitor's charge (the time integral of i)
is a maximum. The energy is then

(2C) -li2/(2_'f_) 2

Equating these two energies leads to

(2 _rfn) 2= 1/(LC)

in agreement with Eq. (6.8-2b).

9.3 Lagmnge's equation. This equation is usable in the most general case when there is appreciable
dissipation (damping). It is derived from the forces, energies, and rate of energy dissipation that exist at
any instant. Let

U = kinetic energy of the system

V = potential energy of the system

D = rate of dissipation of energy of the system
I;Fj = sum of external forces acting upon the system

xi = independent coordinates on which U, V, and D depend.
Then, for each independent coordinate x i

d (t_ U'_ aU av 1 aD.... o-- = r vj
(9.3-1) dt\&ti/ Oxi + axi + 2 a_i

For mechanical systems, Lagrange's equation is an equation of forces. For other systems, like electrical

circuits, the quantities xi and Fj are generalized coordinates and generalized forces, respectively, chosen
so that they satisfy the condition

(9.3-2) (generalized coordinate) x (generalized force) = energy

Then U is a quadratic function of the generalized velocities (the time rate of change of the generalized

coordinates) and V is a quadratic function of the generalized coordinates. A separate differential equation

(9.3-1) is written for each xi and the simultaneous solution of these equations leads to a description of
system behavior. [Note N9.2]

Example 9.3a. In an electrical circuit containing L, C, and R in series (Fig. 6.8), one may take

F] = E; xl = q

so that

U=Lq2/2; V=q2/(2C); D=q2R

§9.2-9.3
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Equation (6.8-1a) then follows from Eq. (9.3-1).

Example 9.3b. In an electrical circuit containing L, C, and R in parallel (Fig. 6.9), one may take

x I = IE*dt m uFI 1;

so that

U = f_Zc/2; V = u2/(2L); D = i42/R

Equation (6.9-1c) follows from application of Eq. (9.3-1) and the fact that

u = L'iL

//'/,, '////I I I I I.._l I

Figure 9.3.--Dynamic vibration absorber.

Exam/Re 9.3c. The dynamic vibration absorber, Fig. 9.3, uses a smaller damped spring-mass

system (m2, k2, b2), termed the absorber, to reduce the vibration of the almost undamped principal
system (m l, kl, b_ _ 0) when the latter is subjected to a force F varying sinusoidally at a fre-
quency f that is near to the natural frequency f_l of the principal system.

In the absence of damping (b2 = 0), the otherwise high amplitude of oscillation of system 1, that

occurs when f = f_, can be reduced to zero by making the natural frequency f,a of system 2 equal
to fnJ. However, this reduction would be achieved at the expense of two usually unacceptable
consequences:

(i) the amplitude of oscillation of system 2 is very high, and

(ii) system 1 has two other resonance points, one on each side off_l, at which the amplitude
of oscillation of system 1 is very high.

By introducing the appropriate amount of damping into system 2 and by selecting an adequately
large value of m2, a compromise can be achieved in which the amplitudes of oscillation of both

systems can be held within acceptable limits over the entire operating frequency range.

In Fig. 9.3, if xl and x2 are the respective elongations of springs 1 and 2, from their respective
positions when there is no vibration, and the symbolism parallels that of Secs. 6.1 and 7.0,

potential energy of system I

potential energy of system 2

kinetic energy of system 1

kinetic energy of system 2

=(l/2)klx]

= (1/2)k:_

--(1/2)m,_]

=(1/2)m2(_1 +_2) 2

power dissipation in system 1 = bvt_

power dissipation in system 2 = b_l
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Consequently, the dependent variables to be inserted into Eq. (9.3-1) are

V= (l/2)klx _ + (1/2)k2x _

U = (1/2)m12_ + (l/2)m2(.tl + ./:2)2

D = b_.t_+ b2-_

If bl = 0, the following equations result:

(llw_t)'.f'l - (2_alo_,,2)_'2 + 3'1 - a)'2 = (Flkz)/x,,

(1/w_2)Y2 + (2_1wn2)5'2 + Y2 = -- (l/w]Z)jh

where x., is some reference value of displacement and

Yl = Xl/Xm;

oo7,1= kl/rnff

[Notes N9.2 and N9.31

Y2 = x2/x,_; a = k2/k I

_2 = k2/m2; 2_ = w,,2b2/k2

NOTES FOR CHAPTER 9

N9.2. Use offn, as it has been defined in this chapter, implies that the system is oscillating in its fundamental

mode. However, both Rayleigh's and Lagrange's methods are applicable to finding the frequency of higher

modes of oscillation (harmonic modes); it is necessary merely to assume the shape of the oscillation or
vibration mode and to compute the energies associated with that mode.

N9.3. Optimum conditions for suppression of excessive vibration require a choice of/3 = m2/ml and control

of _"to keep maximum vibration-amplitudes sufficiently small. If F =Fm sin(27rfi) and x,_ is chosen as
F,,,/kt, then m2, b2, and k2 should be chosen so that

_,2/_,1 = (1 +/3)-i

_.2= (3/8)/3/(1 +/3)

With these choices, the maximum amplitude xl.,,_x of vibration of system 1 will be given by

(xLmax/x,,,)2= 1 + 2/13

and will occur at frequencies given by

(f/f,,i) 2 = l1 ± 4[/3(2 +/3)1]/(1 +/3)

The maximum deflection X2.max of spring 2 will occur at these same frequencies and will be given by

X2,max/Xm m 1 + (1//3)

An alternate formula for this maximum amplitude, when _'does not have the optimum value but is near to it, is

X2,max/Xm _ (0.78/x/O(l + 1/_) 3/4

The value of ¢3 must be large enough so that the amplitude X2,m_x is acceptably small.
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CHAPTER 10. MORE COMPLEX DYNAMICAL SYSTEMS.

ANALOGIES

10.0 Terminology. The symbols of Chapters 6 and 7 will also be used here. Other symbols are defined

in Table 10.1 or will be defined as they are introduced.

10.1 Analogies between electrical systems and mechanical or thermal systems. Table 10.1 summarizes

results that have been derived in Chapters 6 and 7 concerning typical physical systems obeying the simple

first- and second-order linear differential equations with constant coefficients. Not only do the equations

for different systems become identical when expressed in terms of Y, y, T, r, and _', but also there appear

to exist analogous mathematical relationships for the various dependent physical variables. Thus, any pair

of equations may be selected and an analogy drawn between the variables that appear in similar positions

in the table. For example, (mass, linear displacement, force) and (moment of inertia, angular displacement,

torque) constitute analogous groups of patterns. That these pairings or groupings are not unique is shown
by the fact that each of the above groupings is also a_alogous to both (mass per unit area, particle displacement,

pressure) and (mass/area 2, volume displacement, pressure) for the pneumatic system. Insofar as mechanical

and pneumatic systems are concerned, however, there exists a physical analogy as well as a mathematical

analogy among the various factors, because all the relations are derivable by use of Newton's second law

of motion, and can be converted into each other by simple multiplication by some geometric factor. On

the other hand, the analogy between mechanical and electrical systems is solely a mathematical one, rather

than a physical one (unless one deals exclusively with power or energy). The analogy between thermal

systems and electrical or mechanical systems is also solely of a mathematical nature.

The analogies can be carried over into the treatment of physical systems of greater complexity than those

treated in Chapter 6. The analogies may also be used for static problems, where time is not involved, as
in problems of the potential (e.g., stress- or strain-contour lines in elasticity 1, current- and voltage-contour

lines in an electrically conducting medium, pressure- and velocity-contour lines of hydrodynamic flow, contour

lines of heat-flow rate and of temperature in a thermally conducting medium).

In experimentation on mechanical or thermal systems, it is often found that substantial improvements

can be achieved in accuracy of measurement, simplicity of apparatus, flexibility of adjustment, or convenience

of use, if an analogous electrical system is studied rather than the actual system of interest. This situation

is so common that electrical terminology has been carried into other fields (e.g., "acoustic capacitance,"

"acoustic resistance," "thermal capacitance") and electrical symbols have been used to denote mechanical

quantities (e.g., acoustic inertance La, mechanical compliance Cm, thermal resistance Re). The definitions
of such nonelectrical terms are arbitrary and depend upon the particular pair of analogous equations chosen.

(The acoustic terms defined in Tables 1-1 and 10.1 are those most popular in the U.S.) Once the analogous

pairings have been selected, any type of physical system, however complex, may be represented in analogy.

For dynamical performance studies, it is necessary either that the combinations of physical quantities

that have the dimensions of time have the same numerical magnitude in the actual and in the analogous

system, or else that they be in constant proportion to each other. (For example, if the constants of an actual

second-order system are T and z and the constants of the analogous second-order system are T' and r',

then one may choose T' = nT and r" = nr, in which case the "real" time t and the "analog" time t'

will be related by t' = nt. )

IOrthogonal quantities are tensile stress and shearing stress, or tensile strain and shearing strain.
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In particular, two types of analogies between mechanical and electrical quantities have been used. In one

of these analogies, the mechanical quantities (m, b, k, x, _¢, F) are treated as analogous to the electrical

quantities (L, R, 1/C, q, ;t, E), respectively. This is the more common type of treatment. In another analog

arrangement, which is often easier to employ in treating a complex mechanical arrangement, the quantities

(m, b, k, x, .t, F) are treated as analogous to the quantities (C, G, I/L, !edt, e, 1), respectively. Figure

10.1 lists some typical analogous arrangements.

z;
tad
b-

,.¢
tad

o
C_

Z

o

(J]

C_

Z

.<

t_

©

Z

F-
Z

0

8
..1

Z

<

I

,..1

E

E

E

E

{,t,b

_ _._ ,-- -_ _ _

'F, __ "C w, .%

0 - _ _ .._ _ _,

,5

A

o,

.-

o

a
-_._

19o



§I0.1

I

rrl
,i4

[--

ii

2
E-

o

.E

__ +_ +_

.+

- i = _=

._- _

._=_"

.___"

,4

.m,o

...-_ _
_,_ >

_ _.=
_E " >

" I _ " -- __ _ _ _ I I _ _ _ " I

+_+°+_ ° _ ° _° _ _- • ° _.
_.o ._ _ _ _ _ _ ___,,._ ._ _._ _' _ a _ -

.--_

_ E

E -

191



§10.1

192

E
tJ

w

D

E

,E

&

t#
• _ ._E

_m

c

II

-[
i

m

.F

c
.e

m

.__

.r

P.

|

s_r 1

m -

_ ._ _

• _

='> "_

_-_ _ _--_,_

Z

I

I

>

Z

+

._._._

c

suo!_mu_l

E]

_L

c_

m

7_



§10.1

_5J

Linear mechanical

system

Pneumatic system "Series" electrical

system

E

, "I"

"Parallel" electrical

system

i

E

I

(7)

rhhr

L

._l--
P_ P

"-Ira
r--_ / ,
'= 7" eI I

I

_9)

(10_

(11)

¢12)

tlhl

l

..,,.jm

P

--lm

E

I

J tlht

L

i

i ..._..

-FeI I

I i

i

i

F , T T

Figure I0. I .--Continued.

I03



§10.1

194

113)

{141

1151

116)

(17)

(18)

¢19)

¢20)

(21)

122_

{23)

Pnetlmalic system

_v
___JIIIIL____
P

"'Series'" electrical

system

E i

I

[]

+
I

E (,i

I

p I

P _ P E e
I !

p [] p E e
I I

....--._llfli_pP_

JntJt,,,_JJJJtL
P _ P

Fisure 10. l--Concluded.

"'Parallel" electrical

system

--I ° I_

-'-I e I-'-

I=4)- _ ,,,O_i

I=4_ ..L. =,)-t

T



10.2 Complex systems. The equations of the two simple types of systems treated in detail in Chapter 7

are describable mathematically as first- and second-order linear differential equations with constant

coefficients. From the mathematical viewpoint, more complex systems may involve equations of the same
order, but with variable coefficients or with nonlinear terms, or they may involve equations of higher order.

From the physical viewpoint, these complex systems may involve situations where the parameters T, _',

or r are themselves functions of time (a case of variable coefficients), where the damping is proportional

to a higher power of the generalized velocity (Sec. 9.3) than the first power (a case of nonlinearity), or

where there is more than one simple second-order system and the several systems are linked together (yielding

a higher-order system). An extreme but common example of the last situation is the case where some or

all of the constants are distributed rather than lumped.

In the case of first- or second-order systems with variable coefficients or nonlinear terms, it is sometimes

adequate to treat the variable terms as though they were constant over a limited region of operation or to

replace the nonlinear terms by linear ones over a limited region of operation, and thereby to utilize the

results that have already been obtained in Chapter 7. Such approximations generally represent a considerable

savings in effort over the treatment of the exact equations.
In the case of higher-order systems which are linear, it is possible, as indicated in Sec. 7.4, to represent

these as a tandem combination of component subsystems that are of the first or second order. Separate

differential equations

(10.2-1) f(Y,,_Ci,Yi) = 0

may be written for each of these subsystems. Each of the equations (10.2-1) has its own r or its own r

and Tn, depending on whetherf represents a first- or second-order equation, respectively. Another algebraic

equation or parametric set of equations may be needed to describe the relation among the dependent variables

(10.2-2) F(yl,y 2..... y, .... ) = 0

if such a relation is not already included in Eq. (10.2-1). The simultaneous solution of all of these equations

will lead to an exact description of the entire system.

An example of a system in which this procedure is needed is the dynamic vibration absorber

(Example 9.3c) [Note N10.2]. On the other hand, mere inspection of the individual equations (10.2-1) may

provide an intuitive perception of the system's behavior.
There are also many occasions where an adequate indication of system behavior can be obtained by use

of approximation techniques that treat the complex system as though it were a simple first- or second-order

system. Conditions that are sufficient to permit such approximations and to yield adequately accurate deduction

of the forcing function Y(t) from the response y(t) are

A. in a serial arrangement of subsystems represented by Eq. (10.2-1), the energy used by any subsystem

is only a small fraction of the energy available from the preceding subsystem;

B. sufficient time has elapsed for the decay of the transients that occurred on the initiation of Y(t);
C. the value tOmax of the highest angular frequency in Y(t) that is of interest is small compared to the

values of l/r and _0, of the subsystems. This condition may be excessively conservative (although

sufficient, it may not be necessary), as will be indicated in Example 10.5a.

In this chapter, some examples of approximation techniques will be presented.

§10.1
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10.3 First-order system with variable time constant. If r is not constant, but depends on either t or y so that

(10.3-1) r = r(t) or r = r(y)

then the forcing function Y(t) may be deduced from the response y(t) by piecewise application of the

procedure outlined in Sec. 7.13. Each point (t.y) is replaced by (t,Y), where

(10.3-2) Y = y + r(dy/dt)

and r is given by Eq. (10.3-1). The practical limitation of this procedure is usually determined by the accuracy
of determining dy/dt.

An approximation to this procedure is possible if Amin, as defined in Sec. 7.13, is much larger than the

largest value of r. Then, each point (t,y) may be replaced by (t + r, y). The resultant curve is Y(t).

10.4 Second-order system with square-law damping. In some instruments such as air-damped

accelerometers, iron-vane-type ammeters, and pneumatic systems containing orifices, a considerable part

of the damping force is proportional to the square of the velocity rather than to the first power of the velocity.

For such and similar systems, the equation of dynamic response may be written as

(10.4-I) yl(4r2f 2) + b21_'l_'+ bt_' + y = Y

in place of Eq. (7.1-2a).

The behavior of this system can be understood by writing the response equation as

(10.4-2a) _/(47r2f 2) + r_) + y = Y

where

(10.4-2b) r - b21_l + b, = _/(_¢fn).

The system resembles that of Sec. 7.1, except that the time constant r and the fraction of critical damping

_"vary with the velocity amplitude lYI. At sufficiently large values of ]_'], where _"> > 1, the system may

appear overdamped; at sufficiently small values of i_'I, if bl < < 1/(_'f,), the system may appear to have
negligible damping.

A system with predominantly square-law damping that appears to be well damped for large velocity

amplitudes of the forcing function will appear almost undamped for very small velocity amplitudes of the

forcing function. Only the first-power (linear) damping that invariably remains in any real physical system
then serves to continue to dissipate energy.

The comparative response of a linear system and a square-law system (when b, < < bel_'l) to a step

change that produces the same first overshoot is shown in Fig. 10.4. In response to a step change of magnitude

Damping proportional to Damping proportional to
velocity; _'=0.35 " " . "(velocity)-; b-,,z_Y0 _- 1.5

Ca) (b)

(a) System with lineardamping.
fb) System with square-law damping.

Figure lO._,.--Response to a step change.
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( - Yo), from an initial value of Y0, the approach to the steady-state value of 0 will be through a damped

oscillation. The ratio between successive amplitudes of the oscillation will not be constant, as in the basic

linear system, but will approach unity as the oscillation continues. Thus, the oscillation will be attenuated

less and less as the oscillation continues. The approach to the final value would never become aperiodic,

no matter how great b 2 may be, if b_ were zero. [Note NI0.4]

If the system is overdamped because bl in Eq. (10.4-2b) is appreciable, then the system may be

considered to resemble a first-order system with slightly variable r, and the techniques of Sec. 10.3 may

be applicable.

' RI ; R 2

e0 = Y_2 = ?ltl

O / O-_ ! O

I I I !

Figure 10.5. I--Two first-order systems in tandem.

10.5 Examples of higher-order systems in which superposition is possible.

Example 10.5a. The circuit of Fig. 10.5.1 may represent

(1) an electrical circuit consisting of two first-order systems connected in tandem, under the

restriction that C: < < CI

(2) the analog of a resistance-thermometer winding centered in a protective well that is immersed

in a flowing fluid whose temperature is to be measured. The analogous quantities are

e0 the temperature of the fluid

R1 the thermal resistance of the fluid in contact with the well

C_ the thermal capacitance of the well

e t the temperature of the well

R 2 the thermal resistance of the material separating the resistance-thermometer

winding from its protective well

6"2 the thermal capacitance of the resistance-thermometer winding

e_ the temperature of the winding

These quantities are defined more precisely in Table 10.1 and Sec. 6.12.

If condition A of Sec. 10.2 exists, the output el (t) of the first system may be determined from

the input Y(t), the time constant rl, and the information in Secs. 7.7 to 7.13, neglecting the presence

of the second system. This output may then be treated as the input to the second system alone.

The tandem combination of the two systems acts like an overdamped second-order system with

time constant r_ + 7"2.

Example 10.5b. The circuit of Fig. 10.5.2 may represent

(1) an electrical circuit consisting of a first-order system connected to a second-order system

(Sec. 6.8), under the restriction that C2 < < C_

(2) the analog of a thermocouple measuring fluid temperature, as in Sec. 6.12, generating an

electrical output that is measured by an electromagnetic oscillograph, as in Sec. 6.3. The

' R I

e0 = Yt_2 = ylt)

Figure 10.5.2--A first-order and a second-order system
in tandem.
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analogous quantities are

e0 the temperature of the fluid

RI the thermal resistance of the fluid in contact with the thermocouple

Ct the heat capacity of the thermocouple

et in turn,

(i) the temperature of the thermocouple

(ii) the electric current delivered to the oscillograph because of the emf generated

by the thermocouple

R2 the electromagnetic damping torque of the oscillograph produced by eddy currents
and Lenz law currents

L 2 the rotational inertia of the oscillograph
C2 the spring stiffness of the oscillograph

e2 the actual oscillograph deflection
These quantities are defined more precisely in Table 10.1 and Secs. 6.3 and 6.12.

(3) the analog of a pressure gauge, as in Sec. 6.1, being used to measure the pressure in the
chamber of a pneumatic system, as in Sec. 6.6, whose capillary is so small or so long that the

pneumatic system is overdamped. The analogous quantities are
eo pressure at the entrance of the capillary

R_ the pneumatic resistance of the capillary

Cl the compressibility of the gas in the chamber

e_ the pressure in the chamber

R2 the mechanical damping of the pressure gauge (often negligible)

L 2 the mechanical inertia of the pressure gauge

Cz the spring stiffness of the pressure gauge
e2 the pressure indicated by the gauge

These quantities are defined more precisely in Table 10.1 and Secs. 6.6 and 6.7.

The pressure gauge volume may be included as part of the chamber volume entering
into Cl. If a correction c_3,p0 for the change in volume V (Case E of Sec. 6.7) is needed,
the condition

c_7p0 < < V

should be met.

The output of the first-order system may be determined from the input Y(t), the time constant

r,, and the information in Secs. 7.7 to 7.13, neglecting the presence of the second-order system.

This output may then be treated as the input to the second-order system alone, using the information
in Secs. 7.15 to 7.21.

If r2 < < rl and 7",2 < < rl then e2(t) closely resembles et(t).
If _'2 > > 1, then

e2(t) = Y(t - rl - r2).

Example 10.$c. The diagram of Fig. 10.5.3 may be considered to represent

(1) an electrical circuit consisting of two second-order systems, connected in tandem, with
C2<< C_:

, RI LI _ r R2 L2

e0 _ y(t)

o I / ,
.J L_ .J

Figure 10.5.3--Two second-ordersystems in tandem.
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(2) a pressure gauge, as in Sec. 6.1, connected to the chamber of a pneumatic system, as in

Sees. 6.6 and 6.7. The analogous quantities are the same as in Example 10.5b(3) and, in
addition,

LI the mass of gas in the pneumatic tube.

If C2 < < C1 and if Y(t) contains no sinusoidal component of appreciable amplitude that has a

frequency comparable to f_2, the output of the first system may be determined from Y(r), the

parameters 7"1 and fnl, and the information in Sees. 7.15 to 7.21, neglecting the presence of the

second system. This output may then be treated as the input to the second system alone.

If r2 < < 7"1 and Tn2 < < Tnl, then e2(t ) closely resembles el(t). Fidelity in achieving the
condition

ez(t) _ Y(t)

is always more likely if _'l and _'2 are close to 0.7.

If _'l > > 1, _'2 > > 1, then

e2(t) --- Y(t - rl -r2).

Example 10.Sd. Figure 10.5.4(a) shows a pneumatic system consisting of an arbitrary arrangement

of capillary tubes and volumes. Its approximation depends on whether the imposed pressure changes

are sufficiently slow so that fluid inertia effects can be neglected. For any one of the tubes, a reasonable
criterion is that f shall be less than rv/A, where

f frequency of the imposed pressure fluctuations

v kinematic viscosity of the gas
A cross-sectional area of the tube

± 6 p
(a)

R 1 R3 R4 R6

E ...... =- e

I c c'-Tc3T cffcffcg cg I
(bl

R I R3 L-I L6

E ....... e

I c¢c2Tc3T c4T cgc6-]- cT-l- i
(c)

(a) Pneumatic system.

(b) "'Series" electrical analog when inertial effects
are absent.

(c) "'Series" electrical analog when inertial effects

are present.

Figure 10.5.4--Several systems in tandem.

A. If this criterion is satisfied for every one of the tubes, the system consists solely of acoustic
resistances and capacitances, and is analogous to the circuit of Fig 10.5.4(b). The entire system

can be treated as a first-order one with an equivalent time constant that is a function of the separate
time constants of various portions of the system. The data of Table 10.1 and Sec. 6.7 may be used
to compute these time constants. For the basic combination of a tube and a chamber, the time constant

may be written as

r = BC(V+ AI/2)

where

B = 8P/(Tra2); C = r2l/A 2.

§10.5
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Here B is a property of the gas, C is a property of tube geometry, V is chamber volume, and Al/2

represents one half of the tube volume.

For the specific circuit of Fig. 10.5.4(b), the equivalent time constant of the entire system,

representing the response e to the forcing function E is

/ C'_ 7/ / _ 7/ / _ 7t / _ /
T = el -_- _ C i + g 3 q- _ C i +R 4 -t- E Ci + R6 + C7

2 4 5

Each summation of capacitances in this formula is analogous to the summation of all volumes

downstream of the respective tube.

B. If the criterion (f < _rv/A) is not satisfied for some particular tube, the inertia of the gas

in the tube may become significant. For example, if the criterion is not satisfied for tubes 4 and

6 in Fig. 10.5.4(a), the electrical analogy becomes Fig. 10.5.4(c). Usually, this system may be treated

conveniently as the superposition of one first-order system and two second-order systems only when

criteria A, B, C of Sec. 10.2 are met. If they are not met, and the subsystems are underdamped,

the system's response to a step or impulse may show oscillations at each of the resonant frequencies

of the subsystems and at the sums and differences of those frequencies. Conversely, if the transient

response to a step or impulse does show such oscillations, it is unlikely that superposition techniques

will be useful in estimating the system's behavior. Solution using Eqs. (10.2-1) and (10.2-2) may

be necessary, unless the system is of the types treated in Sec. 10.6 [Note N10.5].

10.6 Systems with uniformly distributed parameters. When parameters like resistance, inductance, and

capacitance, or their analogs, are uniformly distributed along a length l of considerable magnitude, the system's

behavior often resembles that of a first-order or second-order system. Four examples will be given here.

(1) A line of considerable length that behaves predominantly like a first-order system

(2) A line of considerable length that is terminated by a "load" in such manner that the system
behaves like a first-order system

(3) A line of considerable length that behaves in most respects like a second-order system

(4) A line of considerable length that is terminated by a "load" in such manner that the system
behaves like a second-order system

Example 10.6a. The problem of temperature change of one end of a long bar of constant cross

section (Fig. 10.6. l(a)) whose other end is subjected to a fluctuating temperature O, where the bar

has length 1, cross-sectional area A, density p, thermal capacity (specific heat) c, and thermal

conductivity k, may be approached by dividing the length of the bar into elements of length Ax,
each of which is considered as a first-order system similar to that of Sec. 6.12. Each element has

mass oAeAx, thermal capacity c, and thermal resistance Ax/(kA).

The analogous "series" electrical circuit may be represented by two parallel conducting wires,

each of length I and resistance R/2, such that the capacitance between them is C. This system may
be represented by a sequence of first-order systems whose elements are the resistance (R/l)eAx

and the capacitance (C/l)eAx. This system is shown in Fig. 10.6.1(b).

The analogous "parallel" electrical system may be represented by Fig. 10.6. l(c), wherein the
elements are (L/I)oAx and ( G/l)oAx.

An analogous pneumatic system is a section of a long gas-filled tube of uniform cross section.

If inertia forces are negligible compared to viscous forces, any element of length Ax has an acoustic

resistance (8x_7/A 2) eAx and an acoustic capacitance AeAx/('rPo). The equivalent model is shown

in Fig. 10.6.1(d).

The output (temperature in Fig. 10.6.1 (a), open-circuit emf in Fig. 10.6. l(b), short-circuit current

in Fig. 10.6. l(c), and pressure in Fig. 10.6. l(d)), measured at one end of the system, in response
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(b)
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87] aAx orr 2 eAx

(d) P .....

P
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Revised terminations

for Example 10.6.b.
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(a) Thermal system.

(b) "'Series" electrical system.

(c) "'Parallel" electrical system.

(d) Pneumatic system.

Figure 10.6. l--Long, uniform line represented as a first-order

system.

to an input at the other end, resembles that of a first-order system (Secs. 7.7 to 7.13) having a time
constant 7- equal to

12/(2K)

RC/2

(10.6-I) LG/2

41rv12 / ( a2A )

for the thermal system (K = diffusivity)

for the "series" electrical system

for the "parallel" electrical system

for the pneumatic system [Note NI0.6.1]

provided that condition C of Sec. 10.2 is met. If it is not, then the system behaves like an overdamped
second-order system (Sees. 7.15 to 7.21), with ¢ as given by (10.6-1).

Example 10.6b. If Example 10.6a were modified by adding a termination at the output end as
shown at the right-hand side of Fig. 10.6.1 (a larger thermal mass, a larger capacitor, a larger inductor,
or a larger volume), then the systems would behave as though their time constants were

201



§!0.6

(10.6-2)

kA\ 2

81rl, l f AI

for the thermal system

for the "'series" electrical system

for the "parallel" electrical system

for the pneumatic system

The behavior would be similar to that described for Example 10.6 a, except that, as any termination

became a larger fraction of the quantity shown in parentheses, the system's behavior would approach

more nearly that of a basic first-order system.

Example 10.6c. If, in the electrical and pneumatic systems like those of Example 10.6a, the

distributed inertance of the pneumatic system, the distributed inductance of the series electrical system,

and the distributed capacitance of the parallel electrical system cannot be neglected, the models of

these systems must be replaced by those of Fig. 10.6.2. Each of these systems possesses the following

features:

(1) It is capable of oscillation. In particular, it is also capable of oscillation at frequencies that

are harmonics of its fundamental mode.

(a)

R Ax L Ax _ _

/ ;r ±

(b)

(c)

C _=_x L _==_x G .=%=_x

pO,_x
8))')_x 2 2

Revised terminations

for Example 10.6d

(a) "'Series" electrical system.
(b) "'Parallel" electrical system.
(c) Pneumatic system.

Figure 10.6.2.--Long, uniform line represented as a second-
order system.
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§10.6- Notes

(2) In its fundamental mode, it behaves like a second-order system having a natural period T.

and time constant r given in Table 10.6c:

Table 10.6c

System T2n r

Pneumatic tube [Note N10.6.2] 16 IZ/a z 4rv12/(Aa 2)

"Series" electrical line 16 LC RC/2

"Parallel" electrical line 16 LC LG/2

(3) In response to a suddenly applied input, no response will be obtained at the output until

a delay time r 0 _ TJ4 has elapsed. Thereafter, the system's response will resemble that

of the second-order system whose natural period and time constant are listed above.

Example 10.6d. If Example 10.6c were modified by adding a termination at the output end as

shown at the right-hand side of Fig. 10.6.2 (a larger volume, capacitor, or inductor), then the systems

would retain the characteristics listed for Example 10.6c except that

(a) the natural periods and time constants listed in Table 10.6c would be multiplied by the factors
listed in Table 10.6d

(b) the delay time 7"0 would still be approximately equal to TJ4, where T,, is listed in
Table 10.6c.

Table 10.6d.--Multipliers for T:,, and r Listed in Table 10.6c.

System Multiplier Multiplier

for T2,, for 7

Pneumatic [Note N10.6.2] 1 + _rV/(41r 2) I + 2V/(Trr21)

"'Series" electrical 1 + x2Ct/(4C) I + 2CI/C

"'Parallel" electrical 1 + x2Li/(4L) 1 + 2LI/L

NOTES FOR CHAPTER 10

N10.2 The electrical analogues of Fig. 9.3 are shown in Fig. 10.2. A convenient method of obtaining the
steady-state solutions for such circuits is indicated in Note N10.5. The differential equations of Example
9.3c are derivable in such manner.

-_cl_ - L_ R,

(a) tLl fb)

(a) "'Series" circuit analog.

(b) "'Parallel" circuit analog.

Figure 10.2.--Electrical analogs of the dynamic vibration r

absorber (Fig. 9.3).
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where

and

An empirical approximation is

§Ch. I0-Notes

N10.4 In the extreme case where bl is negligible, the system is characterized by two constants, like b2

and f_, and a third constant that has the dimensions of y. Let

[3 = 4rc2f2b2Yo

If Yn is the ordinate of the nth overshoot (n = O,1,2 .... ), and ordinates with n even are of opposite sign

to ordinates with n odd, then the successive ordinates are given by

(1 - 2_zn+l)exp(2flz_+ I) = ( 1 + 2flz.)exp(-2_zn)

zo = b'_l/Yo

z0=l

zn= (I + 1.4nfl)-I

except for the case (n = 1, fl > 1).
For the first overshoot (n = 1),

z_ _ 1 - 4fl(1 - fl)/3

zl " 1/(2fl)

if _/_< 0.3

if fl_>3

The time interval between the initiation of the step and the first crossing of the asymptote is approximately

(I + fl/4)/(4f_) if /3 < 10

0.2132/31.fn if 13 > 10

Succeeding oscillations occur at a frequency approximately equal to fn.

N10.5 A convenient way to determine the steady-state response of any of the electrical analogs shown in

this chapter, to a sinusoidal forcing function of angular frequency _0, is to represent the impedances of
inductances and capacitances as jo_L and 1/(jo_C), respectively (where j = x/(-1)) and then to determine

the ratio (output/input) for the particular circuit. Thereby, the problem becomes an algebraic one, rather
than one of differential equations.

NI0.6.1 This result is valid when Poiseuille-type flow exists; namely, that, if a pressure fluctuation

P =Pm sin (_0t)

occurs at the inlet end of the tube, the condition

Ao_/_, < 2x 2

is then satisfied. Here, A is the cross-sectional area of the capillary tube and v is the kinematic viscosity
of the fluid.
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§Ch.10-Notes

N10.6.2ThepneumatictimeconstantgiveninTable10.6ciscorrectonlywhenthereisPoiseuille-type
flow.ThecriterionforthisconditionisgiveninNoteNI0.6.1.WhenPoiseuille-typeflowdoesnotoccur,
inertialforcesbecomedominantoverviscousforces,thesystemisalmostundamped,andr maybeneglected.

Theresultantnaturalvibrations("organ-pipevibrations")mayobscureameasurement,madeattheoutlet
endofthetube,thatisintendedtomeasuretheinstantaneousvalueofafluctuatinginletpressure.Anexpedient
usedtoprovideareliablemeasurementistomakethetubeofsubstantiallyinfinitelengthandtomeasure
thepressureatsomeconvenientlocationatarelativelyshortdistancex from the inlet end. The installation

of a pressure gauge at this location must be made in such manner that

(a) there is no significant change in the cross-sectional area of the gas flow path;

(b) there are no protrusions in the gas flow path;

(c) any cavity between the gas flow path and the pressure gauge is of negligible acoustic capacitance
or inertance.

If a pressure fluctuation

P = Pm sin (tot)

occurs at the inlet end of a circular tube of radius r, the pressure at a distance x from the inlet end will

be attenuated so that the amplitude is

em _ -otx

where

= 13(ar) -I _/(o_)

provided the tube is of substantially infinite length, so that reflections from the output end will be so weak

that organ-pipe oscillations will not interfere appreciably with the measurement. When Ato is so small that
Poiseuille-type flow exists (Ato < 27r2_,), the proportionality constant/3 is equal to 2. At larger values of

Ato, where inertial forces become prominent, the proportionality constant 13, for air, is near to unity.

"Substantially infinite length" implies a length ! such that e-"t < < 1. For example, if _1 > 3, the
attenuation at the outlet end will be more than 20°fold.

This technique of pressure measurement is termed the "infinite-line technique." In acoustics, it forms

the basis of some designs of probe microphones.

In the analogous electrical or thermal systems, the infinite line technique remains applicable. The electrical

analogies have often been used, in either experimental or mathematical form, to analyze pneumatic situations.
In these analogs, the attenuation constant o_ is given by

ot = _/ (tor/l 2)

where z is given in (10.6-1).
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TABLE I-I.--PHYSICAL QUANTITIES IN MECHANICS

Symbol.

definition

!

m

F

O

A

V

V

Co

rh

g

, gn

G O = Fl:/{mlm2)

1,4= at2

I,,,= mr2

p =mlV

I/p

w = ag,,

rag

Pm =my

M=FI

i=Ft

$= Wt

p = F/A

P= W/t

P/A

Z_ / _f

W=Fl

W� V

_/= F I/F z

_ = IF]/F z

I" = F/I

= FI/(Av)

1/_

v = _/p

D = inl(A oAp/SI)

Name

Length
Time

Mass

Force

Angle

Solid angle

Area

Volume

Velocity, linear

Speed of sound

Velocity, angular

Velocity, volume

Velocity, mass

Acceleration, linear

Acceleration of gravity, local

Acceleration of gravity, standard

Acceleration, angular

Gravitational constant

Moment of area

Moment of inertia

Density

Specific volume

Specific weight

Weight

Momentum, linear

Moment of a force

Moment of momentum

(angular momentum)

Impulse

Action

Pressure

Power (Flux)

Power density (flux density)

Power spectral density

Energy

Energy density

Coefficient of friction, sliding

Coefficient of friction, rolling

Surface tension coefficient

Viscosity

Fluidity

Kinematic viscosity
Diffusion coefficient

System of dimensions

M,L,T F,L,T

L L

T T

M FL-iT2

MLT -2 F

I I

i 1

L2 L2

L 3 L 3

LT- l LT - l

LT- t LT- I

T-i T-i

L3T- i L3T- ]

MT- ] FL- iT

LT-2 LT-2

LT-2 LT-2

LT-2 LT-2

T-2 T-2

M-IL3T-2 F- IL,,T-,t

L 4 L4

ML 2 FLT-2

ML-3 FL-4T2

M-iL 3 F-IL4T-2

ML-2T-2 FL-3

MLT -2 F

MLT -I FT

ML2T -2 FL

ML2T- i FLT

MLT- t FT

M L2T- I FLT

ML-IT-2 FL-2

ML2T-3 FLT-I

ML-3 FL- IT- l

ML2T -2 FL

ML2T -2 FL

ML-IT-2 FL-2

l l

L L

MT -2 FL- I

ML-IT-I FL-2T

M-ILT F-IL2T-I

L2T- t L2T- ]

L2T- I L2T- I
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Symbol,
definition

Alll 2

mlil2

Z = 1A/I

% = Al/l

"y = A*

o n = F/A

r = F/A

= (aviv)IAo

Ii_

E. = o,,/_,,

G = r13,

ca= v_o,,av/Ao
R a = Ap/Al:"

L a = mlA 2

[Aca/Af

Cs = Ap/Av = #ca

TABLE l- 1.--Concluded.

Name

Product of inertia of an area

Product of inertia of a body

Section modulus

Strain, normal (longitudinal)

Strain, shear

Stress, normal

Stress, shear

Compressibility

Bulk modulus

Modulus of tension (modulus of

elasticity, Young's modulus)
Modulus of shear

Acoustic compliance

Acoustic resistance

Acoustic inertance

Acoustic source strength

Acoustic dispersion

Specific acoustic resistance

System of dimensions

M,L,T

L 4

ML 2

L 3

1

1

ML-IT-2

ML-IT-2

M- tLT2

ML-IT-2

ML-IT-2

ML-IT-2

M-IL4T 2

ML-4T- i

ML-4

L3T- i

LZT-

ML-2T-t

F,L,T

L 4

FL-I

L 3

1

1

FL-2

FL-2

F-tL 2

FL-2

FL-2

FL-2

F-_L 5

FL-ST

FL-ST2

L3T- l

L2T-I

FL - 3T

TABLE 1-2.--PHYSICAL QUANTITIES IN HEAT

Symbol,

definition

0

/71

p = m/V

W

P

ce = AW/AO
c = AW/(m" AO)

AW/(V, A0)

AW/Am

'H= W/m

AS = AWIO

AS/m

h = P/(A'AO)

k_ = PI (A • AOIAI)

= kxl(pc)

c_L = Al/(loAO)

av = AVI(V* AO)

k = WIO

Ro = Wl (mO)

Name

Temperature

Mass

Density

Energy
Power

Thermal capacity

Specific heat

Thermal capacity

per unit volume

Latent heat

Enthalpy

Entropy

Specific entropy
Heat transfer coefficient

Thermal conductivity

Thermal diffusivity

Coefficient of expansion,

linear

Coefficient of expansion,

cubical

Boltzmann constant

Universal gas constant

MLTO

O

M

ML-3

ML2T-2

M L2T - 3

ML2T-20-t

L2T - 20 - l

ML-tT-20-t

L2T-2

L2T-2

ML2T-20- i

L2T-20 - I

MT-30- I

MLT-30-

L2T- i

O-I

O-1

M L2T- 20 - i

L2T - 20 - t

Dimensions

WLTO

O

WL-2T2

WL-ST2

W

WT-I

we-1

L2T- 20 - I

WL- 30 - I

L2T-2

L2T-2

WO-t

L2T - 20 - l

WL-2T-I O- ,

WL-tT-IO-t

L2T- I

O-I

e-I

WO- I

L2T-2 O- 1

"Applicable laws: AW = A(ptO = A($$)
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TABLE i-3.--ANALOGOUS QUANTITIES IN ELECTRICITY AND MAGNETISM

Electricity II Magnetism

Symbol,

definition

!

Q= lt

=_Q

Mv = Qt
D = ¢I/A

= eo_ + BP

Pq = Mq/V

= eOXq_

E = AW/Q =/R

= E/I = F/Q

= D/F_

_o

Er = _/_0

Xq.v = (_,- 1)/_

Nanle Dimensions,

RILT system

Current I

Charge IT RIT

Electric flux IT R/r

Electric moment ILT RILT

Electric displaccmem IL-2T RIL-2T

Electric polarization IL-2T RIL-2T

Electromotive force RI I

(electric potential

difference)

Electric field strength RIL- ] IL- I

(electric field intensity,

electric potential

gradient)

Permittivity (absolute R-IL-,T RL-IT

dielectric constant)

Permittivity of a vacuum R-IL-IT RL-IT

Relative permittivity 1 I

(dielectric constant,

specific inductive

capacity)

Electric susceptibility 1 1

per unit volume

Name

Magnetic pole strength

Magnetic flux

Magnetic moment

Magnetic induction

(magnetic flux density)

Magnetic polarization

(magnetization, intensity

of magnetization)

Magnetomotive force

(magnetic potential

difference)

i Magnetic field strength

(magnetic field intensity,

magnetizing force)

Permeability

Permeability of a vacuum

Relative permeability

Magnetic susceptibility

per unit volume

Symbol,
definition

m*

4, = _m*
M,_ = m*t

B = 4,/A

J = M, nlV

= _ox_tl

= AW/m"

H= _/1= F/m*

= B/H

_o

x.,v = (_,-i)/_

F -- _SQIQ21(47eI2 )

= -Md_/dt)/I

Coulomb's law

Faraday's law

Applicable laws

] Coulomb's law F = Bm;m_l(4rM2)

] Faraday's law E = L(dl/dl)
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TABLE 1-4.--ADDITIONAL PHYSICAL QUANTITIES

IN ELECTRICITY AND MAGNETISM

I

l

A

V

m

F

P

IW

_R
gq = 1/R

Symbol, Name Dimensions,

definition RILT system

Time

Length

Area

Volume

Mass

Force

Power

Energy
Resistance

Conductance

T

L

L 2

L 3

RI2L-2T3

RI2L-IT

12R

12RT

R

R-I

pq = RA/I

#q-i = II(AR)

C = Q/E

L

61 = _/_,_

A= 1/(R

Ctq = Mq/teoF, )

_, = Q/F
so = ,:_e/_o

#T = AE/AO

II = PII

RH = AF/(BI/I)

PE= AO/(m/l)
Qu = AF./(B.AO)
SL = (dO/db) / (B * dO/dl)

Resistivity

Conductivity

Capacitance

Inductance

Reluctance

Permeance

Polarizability

Piezoelectric coefficient

Seebeck coefficient

(Thermoelectricpower)
Thomson coefficient

Peltier coefficiem

Hall coefficient

Ettinghausen coefficient
Nernst coefficiem

Righi-Leduc coefficient

RL

R-IL-I

R-IT

RT

R-IT-,

RT

L 3

R-,I-IL-I

RIO

RIO-I

RI

I- IL3T-I

R- 11-2L3T- IO

L2T - 1O- I

R-tl-IL2T-t
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TABLE I-5.--SOME QUANTITIES IN RADIATION AND ILLUMINATION

Radiation

Symbol,

definition

w, = Q, IV

¢, = Q.,

!I,= _,/fl
M, = ¢2A

s

l_'Ip

I1 ---- Cww/C

2(n x --n 2)

(nt+n2-2)

¢I!

a = ¢l(Ip)

Name

Radiant energy

Radiant energy density

Radiant flux

Radiant intensity of source

Radiant exiumce of source

(radiant flux density)

Irr_liance on receiver

Radiance of source or

through cross section of path

Absorption coefficient

Mass absorption coefficient

Refractive index

Dispersive power

Romory power

Specific rotatory power

(Specific rotation)

Dimen-

sions.

PLT

system

PT

PTL-3

P

P

PL -2

pL-2

pL-2

l

1

!

L-I

L4P-IT-3

1

1

L-I

L4P-tT-3

Illumination

Name

Luminous energy

Luminous energy density

Luminous flux

Luminous intensity of source

Luminous exitance of source

(luminous flux density)

Illuminance on receiver

Lunummce of source or

through cross section of path

(was brightness)

Luminous efficacy (luminosity)

Luminous efficiency

(relative luminosity)

Maximum luminous efficacy

Symbol,
definition

wv= Qv/V

!My = Cv/A

K_ = ¢_/,I,,

lCx = K,.x/r_._

l_v,_

Symbol

1

A

V

{2

C

m

P

Common quantities

Definition Dimensions

Length
Area

Volume

Angle

Solid angle

Speed of light

Mass

Density

L

L 2

L 3

i

!

LT- l

pL2T -3

pL-IT-3
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TABLE l-5.--Concluded.

Subscripts:

e

v

v,/'Rio.x

h

Suffixes:

i)

ii)

physical variable, related to radiation (sometimes omitted if illumination is not being considered)

psychophysical variable, related to illumination

the value at peak of standard human visibility curve

(may be a second subscript) the value, at wavelength X, of the derivative of the quantity with respect to h. (The

derivative has different dimensions.)

Terms with the ending "ivity" denote the intrinsic properties of material with a clean, polished surface.

Terms with the ending "ance" denote the extrinsic properties of an actual specimen of a specified shape and
surface condition.

p (reflectance) or

(emittance) or

of (absorptance) or

r (transmittance)

R (reflectance factor)

Some dimensionless quantifies: For any specified type of radiation-

p' (reflectivity) = 4'r/4_ i

_' (emissivity) = ¢_/¢aa

or' (absorptivity) = ¢a/¢_ = e=/_aa

= ¢brl¢_i

= _,14_ o

where

_i = incident flux Ca = absorbed flux _ = transmitted flux

¢, = reflected flux 4,e = emitted flux

esB = flux that would be emitted or absorbed by a blackbody under the same conditions"

¢o = flux that would be reflected by a perfect diffuser under the same conditions"

• "Same conditions" implies same specimen temperature, same radiation wavelengths, and same geometric conditions (such

as specimen area, angles of incidence and view, and solid angles of the incident and reflected beams).

Applicable laws:

.ox+ax+rx= 1

°tx = _x = 1 - Px for an opaque body

Note: For more complete information, see Dictionary of Lighting Terminology, Illuminating Engineering Society (IES)

Lighting Handbook, 1981.
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TABLEI-6.--SOMEDIMENSIONLESS NUMBERS

Name Subscript Definition Name Subscript Definition

of N of N

Biot

Clausius

F_tvOs

Euler

Fanning*

Fourier

Froude h

Graetz

Grashof

Knudsen

Lewis

Bi

CI

Eo

Eu

Fa

Fo

Fr

Gz

Gr

lot

Le

hl/k

v31p/(k s A0)

pl2glF

p� (pv2)

r/(pv2/2)

x/(wl 2)

v2/gl

rhc/ (kl)

g_P • AO/_

_/I

D/x

Mach

Nussclt

Peclet

Poisson

Prandd

Rayleigh

Reynolds

Schmidt

Stanton

Stokes

Strouhal

M

Nu

Pe

Po

Pr

Ra

Re

$c

St

Sr

v/ca

hl/k

vl/x

(EJ2G) - 1

c_/k

g_l 3 ° AO/(w)

vl/u

u/D

hi (pcv)

v_l(gl 2)

_llv

Symbols

c specific heat at constant pressure

c a speed of sound
D diffusion coefficient

E n modulus of tension

G modulus of shear

g local acceleration of gravity

h heat transfer coefficient

I k thermal conductivity

I characteristic length
mass flow rate

p pressure

aFanning factor f = NFa(r_/I). where rA - hydraulic radius. /

bAIlerrmliv¢ly. Ih¢ lqultr¢ roo[ Of the exprestion lined.

v velocity

coefficient of cubical expansion

I' surface tension coefficient

viscosity

A0 tempenuure difference

x thermal diffusivity

X mean free path of molecules

i, kinematic viscosity

p density

7" shear stress

_0 angular frequency

lenl_ over which _ occurs. Ap * T K (I/rk).
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TABLE 2-1.--LIST OF EQUAL AMOUNTS

Noles:

I. The symbol inparenthesesfollowingthe name of the unitistheaccepted

symbol for the unit, if such symbol exists.

2. An equality sign represents an exact relation established by some

international standards orgamzation; an approximation sign ( --- ) indicates that

the equality is correct only to the number of significant figures given.

3. The word "mile" alone denotes a U.S. statute mile. The word "second"

alone denotes an International Atomic Time (TAI) second.

4. Numerics:

c a = 0.980 665

c m = 0.453 592 37

c o = 2.997 924 58 x 10 _0

cp = 1.01325

Area:

1 square meter (m z) = 10 -4 hectare (ha) = 102s barn

1 acre = 4840 square yard

1 circular rail = (7r/4) x 10 -6 in 2

Volume:

1 cubic meter (m 3) = 1000 liter = 109 lambda (X)

= 1 stere (st) _. 264.172 gallon

1 gallon = 231 in 3

1 barrel of oil (bbl) = 42 gallon

Plane angle:

1 radian= (180/_')degree = (200/a') grade (grad)

5. Abbreviations:

esu electrostatic system unit

emu electromagnetic system unit

Gu Gaussian system unit

HLu Heaviside-Lorentz system unit

mksu unrationalized meter-kilogram-second unit

Slu Systeme International unit

6. Abbreviations for units should be written without a period and in the

singular.

7. The American National Standards Institute (ANSI) recommends that a

central dot be used to separal_ the symbols for two units appearing in a product.

Geometric Quantities

Length:

The meter is the distance travelled by an electromagnetic wave in a vacuum

in (100/%) second.

1 meter (m) = 1 x 10 t0 /kngstr6m (._,) = 106 micron (_)

= 1015 fermi = (1/0.0254) inch (in) = (1/0.3048) foot (ft)

= (1/1852) U.S. nautical mile.

[Superseded names: micron = 1 _m; fermi = ! fro]

I X-unit _= 1.002 x 10 -13 m

! foot (ft) = 12 inch (in) = (1/3) yard (yd)

= (1/5280) mile (mi)

I mile = (463/402.336) U.S. nautical mile

-- (33/38) British nautical mile

! astronomical unit (AU) (mean distance between Sun and Earth)

•* 149.6 x l09 m

1 light year - 9.4605 x lO 9 m

1 parsec _* 308.6 x 10 l0 m

,,* 3.26 light year

_, 2.06 x 105 AU

1 kayser = I cm -t = a unit of wave number = (wave length) -t

Solid angle:

1 steradian (sr) = (2/a') spherical right angle

= (180/x) square degree

1 sphere = 4r steradian = 8 spherical right angles

Geometric Quantities and Time

Time and Frequent,:

1 second (s) = I ephemeris second = (1/86400) mean solar day

= 1.002 737 91 sidereal second

1 hertz (Hz) = 1 cycle per second (cps), in reference only to a continuous,

periodic phenomenon

1 baud = 1 pulse per second

1 becquerel (Bq) = 1 Slu of activity = I/second

= I Slu of radioactive source strength = (10-t0/3.7) curie (Ci)

Speed:

1 meter per second = (i/0.3048) foot per second (fps)

= (I/0.44704) mile per hour (mph)

1 knot (kn) = i U.S. nautical mile per hour

,,_ 1.150 779 mile per hour (mph)

1 cubic meter per second = 1000 liter per second

= 2118.88 cubic foot per minute (cfm)

= 127132.8 cubic foot per hour (cfh)

1 U.S. gallon per minute (gpm) = (231/1728) cfm

0.003 785 41 cubic meter per minute

speed of light in vacuo = (co/100) m/s

Acceleration:

1 m/s 2 = 100 Gal = 10 tt F.,6tv6s = I/(10ci) "g" ,,, 3.280 840 ft/s 2

standard acceleration of gravity (gn) = 1 "g" = I '*g unit"

= 10 c, m/s 2 = (10 ca/0.3048) ft/s 2

** 32.174 049 ft/s :z
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Mass, Force, and Related Quantities

Mass:

1 kilogram mass (kgm or kg) = 1 Slu of mass

= 0.001 tonne = 0.001 metric ton = 5000 carat

= 109 gamma (7) -- 1/cm pound mass (Ibm or lb)

= [0.03048/(CaCm) ] slug = (7000/c m) grain

•_ 6.0222 × 1026 atomic mass unit (ainu)

1 slug = 1 geepound

- 32.174 049 pound mass (Ibm or ib)

1 pound mass = 7000 grain

Force:

i newton (N) = I Slu of force = lOS dyne

= 0.001 sthene (sn) = (100/cj) gram force (gf)

= I!/(0.3048 cm)l poundal (pdl)

= 10.1/(C,Cm) ] pound force (Ib0 - 0.224 809 lbf

i pound force (Ibf) = 1000 c m gram force (gO

_, 32.174 049 pdl

Weight:

This term has been used to mean either

"(mass) × (standard acceleration of gravity)," or

"(mass) × (local acceleration of gravity)."

The units of weight are the units of force.

Moment or torque:

The units of moment or torque are the units of energy.

Pressure."

1 pascal (Pa) = 1 SIu of pressure = 1 N'm -2

= 10 -s bar = (lO-5/cp) atmosphere (atm)

= (O.l/ca) kgf-m -2 = 10 dyne.cm -2

= (0.0076/cp) tort - (I/133.322) tort
•, (I/3376.85) inch of Hg at 60 "F and g,

- (I/248.84) inch of H20 at 60 "F and gn

-_ 0.000 145 038 lbf/in 2 (psi)

1 torr = Imm of Hg at 0 "C and g.

= (c_/0.76) millibar (mbar) - 1.33322 mbar

1 atmosphere = I standard atmosphere = 760 mm of Hg

at0 "C and gn = 760 tort = 105 Cp Pa = cp bar

- 14.695 949 psi

- 30.0058 in of Hg at 60 "F and gn

• " 33.9324 ft of H20 at 60 "F and g,

1 in of Hg at 60 "F ,- 13.5702 in of H20 at 60 "F

Viscosity

Viscosity (dynamic viscosity), _:

1 poise (P)= 1 g'cm-I's -I = 0.1 SIu oft

= 0.1 kg'm-I's -1

Kinematic viscosity, v:

1 stoke (St) = 1 cm2.s -1 = 10 -4 Slu of v = 10 -4 m2Os -I
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Temperature

! Celsius (centigrade) degree (°C) = 1.8 Fahrenheit degree (°F)

i degree Rankine ('R) = 1.8 kelvin (K)

(Note: no degree symbol is used with the symbol for kelvin.)

(Temperature in *C) = (Temperature in "F - 32)/1.8

Triple point of water = 273.16 K = 491.688 °R

Energy and Power

Energy:

1 joule (J) = 1 Slu of energy = I watt-second (W.s)

= 1 N.m = I Pa'm 3 = 107 erg

-- (1/4.184) gram calorie (gcal or cad

= (1/4.1868) IT calorie or International Table calorie (calxT)

= !(0.3048): Cm]-t ft.lXii

•- (1/0.042 140 110) ft'lXIl

•- (1/1055.06) British thermal unit (Btu)

-- (!/1.355 817 9) ft.lbf

•_ 4.587 338 x 10 n7 Rydberg

,,. (1019/1.60219) electron volt (eV)

1 Btu ,,, 778.172 fl.lbf

- 25037 flopdl

•, 4414.37 cal

Energy of one quantum at wavelength X cm

,,, (1.986 484 x 10-23/h) J

Power:

1 watt (W) = 1 Slu of power = 1 J/s = 1 N.m/s

= (11746) electrichorsepower (ehp)

i mechanical horsepower (mhp or hp) = 550 fi.lbf/s
•, 745.700 W

- 0.99960 ehp

1 ton of refrigeration (U.S.) ,- 3517 W

- 200 Btu/minute

•, 840 calls

•, 4.7143 ehp

4 frigorie

Launinous power: [Also see units of Illumination.]

1 lumen = (I/683) watt of radiation at 540 x 1012 Hz

(about 555 rim)

Quantity

I mole (mol) = O.OOl kilomole (kmol) = amount that contains as many entities

(molecules, atoms, ions, electrons, or other particles or groups of particles)

as there are atoms in 12 grams of carbon 12.

When the entity is the molecule, unit molecular weight (traditional name) or

relative molar mass (more precise name) = 1 gram per mol (g/mol) = 1

kilogram per kilomole (kg/kmol).

The number of molecules in 1 kilomole is - 6.022 169 x 1026 (Avogadro's

number, N^).
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Radioactivity

Activi D, (source strength):

1 becquerel (Bq) = 1 nuclear disintegration or transformation

per second = 1 s-I

= 1 Slu of activity = 10 -6 rutherford

1 curie (Ci) = 3.7 x 10 l0 Bq

Neutron fluence:

1 nvt = 1 neutron/cm 2 (unless another unit of area is specified)

Neutron flux (neutron flow rate):

1 nv = 1 neutron/(cm2Os) (unless other units of area or time are specified)

Radiation exposure:

1 coulomb per kilogram (C/kg) = 1 SIu of exposure

For X- or 'y-radiation, 1 roentgen (R) produces 2.58 × 10 -4 C/kg.

In air at STP (0 "C, 1 atm), ! roentgen produces

1.610 x 1015 ion pairs per kg, 0.00838 J/kg,

6.76 × 1010 MeV/m 3, 1 esu/cm 3.

Absorbed dose of radiation (kerma, specific energy):

1 gray (Gy) = I J/kg -- I SIu of absorbed dose = 100 tad or rd

Radiation dose equivalent ( equivalent dose of radiation ):

1 sievert (Sv) = 1 J/kg = 1 SIu of dose equivalent = 1130 rein (roentgen

equivalent mammal)

I rep (roentgen equivalent physical) = dosage that produces 0.00838 J/kg
in mammalian tissue

Electrici_ and Magnetism

Current, I:

I ampere (A) = I SIu of 1 = (%/10) slllimpere = 0.1 abampere

1 stalimpere = I Gu of I = x/(4a-) HLu of 1

Charge, Q:

1 coulomb (C) = i SIu of Q = 1 mksu of Q

= (CO/10) statcoulomb = 0.1 abcoulomh ,,_ (!/96487) faraday

1 electron charge (e) = 1.602 1917 x 10 -19 C

Capacitance, C:

1 farad iF) = 1 SIu of C = ! mksu of C

-- c02 x 10 -9 slitfarad = 10 -9 abfarad

1 statfarad = I Gu of C = 4_" HLu of C

Permittivity, _ = _,_o: [_r = relative permittivity (dimensionless)]

Permittivity of a vacuum, _0

= [1011/(4a-c_)] farad per meter iF/m), in SI

= (10tl/c_) F/m, in inks system = 1 slitfarad/cm

= 1 Gu of ¢ = 1 HLu of _ = (1/c20) abfarad/cm

Resistance, R:

1 ohm (fl) = 1 SIuofR = 1 mksuofR

= (109/c 2) slitohm = 109 abohm

1 statohm = I Gu of R = [1/(4_')] HLu of R

Conductance, G:

1 siemens (S) = 1 Slu of G = 1 mksu of G = (ohm)-I

= cO × 10 -9 esu of G = 10 -9 emu of G

= 1 mho {superseded name)

1 esuofG= 1 GuofG=47r HLu of G

Resistivit)', pq:

I ohm-meter (f/'m) = 1 Slu of pq = l0 s microhm cm

= [48 x 108/(2.54x)] ohm per circular mil foot

= (12 × 108/2.54) ohm per square mil foot

Inductance, L:

1 henry (H) = 1 SIu of L = 1 mksu of L = 109 abhenry

= (109/c 2) stathenry

1 stathenli = 1 Gu ofL = ll/(4r)] HLu of L

Electric flux, _1:

I coulomb (C) = 1 Slu of • = 4x mksu of _!'

= 0.4x emu of 'I' = 0.4a- c o esu of 't,

1 esu of _1, = 1 Gu of • = [1/_/(4_-)] HLu of _1,

Electric displacement, D:

1 coulomb per square meter (C/m 2) -- 1 Slu of D

= 4x mksu of D = 4xc 0 × 10 -5 esu of D
-- 4_r × 10 -5 emu of D

1 esu ofD = 1 Gu ofD = [I/_/(4x)] HLu of D

Electric polarization, P:

I coulomb per square meter (C/m:) = i SIu of P

= 1 mksu of P = co x 10 -5 statcoulomb/cm 2
= 10-5 abcoulomb/cm 2

I slitcoulomb/cm 2 = 1 Gu of P = 4(4x) HLu of P

Electric susceptibility per unit volume, X,.v:

1 Slu of X,.,, = [I/(4a,)] esu of X,,.v = I HLu of Xe.v

1 esu of Xe.,, = 1 mksu of X,,,,, = I emu of Xe.v

= 1 Guofxe.v

Electric moment, Mq:

1 coulomb-meter (C.m) = 1 Slu of Mq = 1 mksu of Mq

= lOc oesuofMq= 10emuofMq

I esu of Mq = 1 Ou of Mq = _(4a') HLu of Mq

Electromotiveforce (electricpotentialdifference),E:

I volt(V) = I SIuofE= I mksuofE

= (108/CO) slitvolt = 108 abvolt

! statvolt = ! Gu of E = [1/_/(41)] HLu of E
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Electric field strength. _:

1 volt per meter (V/m) = 1 SIu of _ = 1 mksu of E

= (106/%) statvolt/cm = 106 abvoh/cm

1 statvolt/cm = I Gu of _ = [1/x/(4_r)] HLu of

Permeability. I_ = _,4_o: [_r = relative permeability (dimensionless)]

Permeability of a vacuum. _z0

= 4_- × 10 -7 henry per meter (H/m) in St

= 10 -7 H/m in mks system = 1 abbenry/cm

= (1/%2) stathenry/cm = 1 Gu of _ = I HLu of

Magnetic pole strength, m":

1 weber (Wb) = 1 Slu of m ° = 1 volt-second

= I ampere-henry = (41r)- I mksu of m °

= [10s/(4_rco)] statpole = [1OS/(4_r)] abpole

I abpole = 1 Gu of m ° = x/(4x) HLu of m ° = (I/c 0) statpole

Magnetic flux, 4,:

1 weber (3Vb) = ! SIu of 4, = I volt-second

= 1 ampere-henry = los maxwell (Mx) = 1 mksu of 4,

= (los/cO) esu of 4, ffi l0 s emu of 4,

I emu of 4, = 1 maxwell (Mx) = 1 line = 1 Gu of 4,

= [I/x/(4T)] HLu of 4, ffi (1/c o) esu of 4,

Magnetic induction, B:

1 tesla (T) ffi 1 Wb/m 2 = I SIu of B = 1 mksu of B

= l04 gauss = 104 Mx/cm 2

1 gauss = 1 emu ofB ffi (l/co) esu ofB ffi 1 Gu nfB

= [1/_/(41r)] HLu of B

Magnetic polarization, J:

1 tesla (T) = 1 Wb/m 2 = 1 SIu of J

ffi [I/(4x)] mksu of J ffi [104/(41r)] emu of J = 109 gamma (T)

1 emu of J -- (I/co) esu ofJ = 1 Gu of.I ffi -_/(4T) HLu of J

Magnetic susceptibility per unit volume, _¢m.v:

! Sin of X,n,v ffi ! HLu of Xs,.v = [l/(4r)] emu of xm.v

I emu of Xm.v = I esu of Xm.v = 1 mksu of Xs,.v

= 1 Gu of X,..v

Magnetic moment, Mm:

i weber-meter (Wb-m) = I SIu of M m ffi [l/(4r)] mksu of M m

= [101°/(4x')] emu of M,.

1 emu of Mm -- I Gu of Mm ffi _(41r) HLu of Mm

= (I/co) esu of M,.

Magnetomotive force. _:

1 ampere-turn = IA = 1 SIu of • = 4_r mksu of ff = OAT emu of

1 gilbert = I emu of _: ffi CO esu of ff ffi I Gu of

= [I/ x/(4_r)]HLu of 5:

Magnetic fieldstrength,14."

l ampere per meter (A/m) = I SIu of H ffi41" mksu of H

= 0.0(OT ocrsted (O¢)
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I oersted (1 gauss before 1930) = I emu of H

= 1 Gu ofH = co esu ofH = [l/x/(4x)] HLu of H

Reluctance, (_:

1 ampere-turn per weber = 1 SIu of 51 = 4x mksu of (_

= 47r x i0 -9 emu of (_ = 109/(4T) gilbert per maxwell

1 gilbert per maxwell = 1 emu of (_ = Co2 esn of (_
= 1 Guof_ = 1 HLuof(R

Radiation

Physical quantities in this field are measured in units of the dimensions

indicated in Table 1-5; namely, units of energy, power, area. volume, time.

and solid angle.

Illumination

Luminous intensity, Iv:

1 candela (cd) = I SIu of 1_ = luminous intensity of a source that emits

monochromatic energy of frequency 540 × 1012 Hz (about 555 am

wavelength) and that has a radiant intensity of (1/683) wau per steradian _ I

candle

Luminous flux (luminous power), 4,_;

I lumen (Ira) ffi 1 $1u of 4,v = luminous flux emitted per steradian by a
I-candela source = I ccl.sr

Luminance (of a source). Iv:

I cd/m 2 = 1 SIu of/-.v = 1 nit (nt) ffi 10 -+ stiib (sb)

ffi _r apostilb (ash) = 10-4_r lambert (L)

1 apostilb (ash) = 10 -4 lambert (L) = (0.3048) 2 fooflambert

Luminous flux density (of, through, or on a surface):

1 lumen per square meter (Im/m 2)

ffiI $1u of luminous fluxdensity

Luminous flux density,My, of a surface (luminous exitance,

luminous emittance):

I Im/m 2 = l $1u of M+ = (0.3048)2 Im/h 2

Luminous flux density, E_. on a surface (illuminance, illumination):

i lm/m 2 ffi ! lux = I Slu of E v = 10 -4 phot (ph)

ffi (0.3048) 2 footcandle

1 footcandle ffi 1 lm/fi 2

Luminous energy, Wv:

1 lumen-second (Ira-s) = 1 talbot = 1 $1u of W_

Luminous e_cacy. K_:

1 lumen per watt (Ira/W) = 1 SIu of K v

Maximum luminous efficacy, Kv.m_ ffi (I/683) im/W

5ound

For psychoacoustical units, see Example 2.8h.
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TABLE 2-2.--SOME RELATIONSHIPS AMONG COHERENT UNITS

IN = 1 kgom/s 2 = 1 WboA/m = 1 Wb2/(Hom) = 1 CoV/m = 1 C2/(Fom)

1 dyne = l gem/s 2 = 1 (statcoulomb)2/(cmestathenry) = 1 (abcoulomb)2/(cmoabhenry)

1 pdl = 1 lb°ft/s 2

1 Ibf = I slugofi/s 2 = g.ol Ibm

1 gf = g_ol g

IJ = I Wos = 1 N*m = 1 V*C = I A*Wb= 1 Pa"m 3

1 erg = I dyne'cm = 1 statvoh-statcoulomb = 1 abfarad"abcoulomb

1 second = 1 Fo[_ = 1 statfarad"statohm = 1 abfarad-abohm

= I (HLu of C)*(HLu of R)

= 1 H/f/= 1 stathenry/statohm = 1 abhenry/abohm = I (HLu of L)/(HLu of R)

= 1 W]a/V = 1 C/A

l F = 1 C/V; l statfarad = 1 statcoulomb/statvolt;

l abfarad = I abcoulomb/abvolt; 1 (HLu of C) = l (HLu of Q)/(HLu of E)

1 H = 1 Wb/A; 1 stathenry = 1 (esu of q,)/statampere; 1 abhenry = I (emu of @)/abampere

1 (HLu of L) = c o (HLu of @)/(HLu of I)

Symbols for units used in this table:

A ampere g gram mass lb pound mass pdl poundal

C coulomb gf gram force lbf pound force s second

cm centimeter H henry m meter V volt

F farad J joule N newton W watt

ft foot kg kilogram mass Pa pascal Wb weber
fl ohm

Constants used in this table:

co = 2.99792458 x 10 _0

gn = (10 cj)m/s 2 = (ca/0.03048) ft/s 2 .. 32.1740 ft/s 2

c a = 0.980665

TABLE 2-3.--PREFIXES OF THE

SYSTEME INTERNATIONAL

Power Prefix Symbol [Power Prefix Symbol

of 10 of 10

( 1 deka da) ( - 1 deci d)

(2 hecto h) ( - 2 centi c)

3 kilo k -3 milli m

6 mega M - 6 micro

9 giga G -9 llano n

12 tera T - 12 pico p

15 peta P - 15 femto f

18 exa E - 18 atto a

Note: The prefixes enclosed in parentheses are less

desirable. Powers that are multiples of 3 are preferred.
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Number
of

stations

TABLE5-1.--STATIONLOCATIONSANDWEIGHTSFORAVERAGING

Averaging for linear interval 0 _< x _ 1

Averaging in a circular duct. in interval 0 ..<_<r _ 1

Method

(a_ (a)
Centroid of equal areas Newton-Cotes Chebyshev Gauss

/I X p w X r w x r w x F

(b) (b) (b) (e) (e) (e) (e) (e)

0.2500 0.5000 0 0 0.2113 0.4597 0.2113 0.4597
1/2 1/2 1/2

.7500 .8660 1 1 .7887 .8881 .7887 .8881

_c) (c) (c)

.0.1667 0.4082 0 0 0.1667 0.1464 0.3827 0.1127 0.3357

.5000 .7071 !/3 0.5 0.7071 .6667 .5000 .7071 1/3 .5000 .7071

.8333 .9129 1 I .16457 .8536 .9239 .8873 .9420

(d) (d) (d)

0.1250 0.3536 0 0 0.1250 0.1027 0.3203 0.0694 0.2635

.3750 .6124 0.3333 0.5774 .3750 .4062 .6373 .3300 .5745
I/4 I/4

.6250 .7906 .6667 .8165 .3750 .5938 .7706 .6700 .8185

.8750 .9354 I I .1250 .8973 .9473 .9306 .9647

0.1000 0.3162 0 0 0.0778 0.0838 0.2894 0.0469 0.2166

.3000 .5477 0.25 0.5000 .3556 .3127 .5592 .2308 .4804

.5000 .7071 1/5 .50 .7071 .1333 .5000 .7071 1/5 .5000 .7071

.7000 .8367 .75 .8660 .3556 .6873 .8290 .7692 .8771

.9000 .9487 I 1 .0778 .9162 .9572 .9531 .9763

0.0833 0.2887 0 0 0.0660 0.0669 0.2586 0.0338 O.1838

.2500 .5000 0.2 0.4472 .2604 .2887 .5373 .1694 .4116

.4167 .6455 .4 .6325 .1736 .3667 .6055 .3807 .6170
I/6 I/6

.5833 .7638 .6 .7746 .1736 .6333 .7958 .6193 .7870

.7500 .8660 .8 .8944 .2604 .7113 .8434 .8306 ,9114

.9167 .9574 I I .0660 .9331 .9660 .9662 .9830

W

(e)

I/2

0.2778

.4444

.2778

0.1739

.3261

.3261

.1739

0.1185

.2393

.2844

.2393

.1185

0.0857

.1804

.2340

.2340

.1804

.0857

0.0714 0.2673 0 0 0.0488 0.0581 0.2410 0.0254 0.1595 0.0647

.2143 .4629 0.1667 0.4082 .2571 .2352 .4849 .1292 .3595 .1399

•3571 .5976 .3333 .5774 .0321 .3381 .5814 .2971 .5450 .1909

.5000 .7071 1/7 .5000 .7071 .3238 .5000 .7071 I/7 .5000 .7071 .2090

• 6429 .8018 .6667 .8165 .0321 .6619 .8136 .7029 .8384 .1909

.7857 .8864 .8333 .9129 .2571 .7648 .8745 .8708 .9331 .1399

•9286 .9636 I 1 .0488 .9419 .9705 .9746 .9872 .0647

Centroid of equal areas Newton-Cotes Chebyshev Gauss
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TABLE5-1.--Concluded.

Number
of

stations

Method
lat (a)

Centroid of equal areas Newton-Cotes Chebyshev Gauss

/1 3f F W X • _' X • 14' X F W

(fl (fl (fl
0.0625 0.2500 0 0 0.0435 0.0513 0.2266 0.0199 0.1409 0.0506

.1875 .4330 0.1429 0.3780 .2070 .2031 .4507 .1017 .3189 .1112

.3125 .5590 .2857 .5345 .0766 .2969 .5449 .2372 .4871 .1569

.4375 .6614 .4286 .6547 .1730 .4487 .6698 .4083 .6390 .1813
I/8 1/8

.5625 .7500 .5714 .7559 .1730 .5513 .7425 .5917 .7692 .1813

.6875 .8292 .7143 .8452 .0766 .7031 .8385 .7628 .8734 .1569

.8125 .9014 .8571 .9258 .2070 .7969 .8927 .8983 .9478 .1112

.9375 .9682 I 1 .0435 .9487 .9740 .9801 .9900 .0506

0.0556 0.2357 0 0 0.0349 0.0442 0.2103 0.0159 0.1262 0.0406

.1667 .4082 0.1250 0.3536 .2077 .1995 .4466 .0820 .2863 .0903

.2778 .5270 .2500 .5000 -.0327 .2356 .4854 .1933 .4397 .1303

.3889 .6236 .3750 .6124 .3702 .4160 .6450 .3379 .5813 .1562

.5000 .7071 1/9 .5000 .7071 -.1601 .5000 .7071 1/9 .5000 .7071 .1651

.6111 .7817 .6250 .7906 .3702 .5840 .7642 .6621 .8137 .1562

.7222 .8498 .7500 .8660 -.0327 .7644 .8743 .8067 .8982 .1303

.8333 .9129 .8750 .9354 .2077 .8005 .8947 .9180 .9581 .0903

.9444 .9718 1 I .0349 .9558 .9776 .9841 .9920 .0406

(g) (g) (g)
0.05 0.2236 0 0 0.0319 0.0419 0.2046 0.0130 O. 1142 0.0333

. 15 .3873 O. I 111 0.3333 . 1757 . 1564 .3954 .0674 .2597 .0747

•25 .5000 .2222 .4714 .0121 .2500 .5000 .1603 .4004 .1095

•35 .5916 .3333 .5774 .2159 .3436 .5862 .2833 .5323 .1346

•45 .6708 .4,4.44 .6667 .0645 .4581 .6768 .4256 .6524 . 1478 I
.55 .7416 1/10 .5556 .7454 .0645 .5419 .7361 1/10 .5744 .7579 . 1478 i

.65 .8062 .6667 .8165 .2159 .6564 .8102 .7167 .8466 .1346

.75 .8660 .7778 .8819 .0121 .7500 .8660 .8397 .9164 .1095

.85 .9220 .8889 .9428 .1757 .8436 .9185 .9325 .9657 .0747

.95 .9747 1 1 .0319 .9581 .9788 .9870 .9935 .0333 _

10

/7 X • kid X • W X • W X • W

Centroid of equal areas Newton-Cotes Chebyshev Gauss

(a) All measurements of equal weight

(b) Trapezoidal rule

(c) Parabolic rule (Simpson's rule)

(d) Three-eighths rule

NOTES

(e) 0.2-0.8 rule

(f) Two 4-station intervals

(g) Two 5-station intervals
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Subject Index

References are to the section number except where the prefix E indicates example number. I

absolute magnitude, E2.8l, E2.11a

absolute system of units, 2.6

acceleration due to gravity, 2.1, 5.4
accelerometer, 5.1, 6.1, 6.3

airplane, E7.23a
accuracy, specification of, 3.34

acoustic capacitance, 10.1
inertance, 10.1

resistance, 10.1

units, E2.8e,g,h,j

acuity, vernier, 5.19
visual, 5.19

airplane acceleration measurement, 5.1, E7.23a
albedo measurement, 3.2

Alnico, 5.5
ammeter, E5.17a

amounts, list of equal, 2.1

Ampere's law, 1.1

amplitude ratio, 7.12, 7.20

analytic function, definition of, 3.19
anemometer, hot-wire, E1.5d, E5.16b

ANSI, 2.1

approximation of intricate functions, 4.22
arithmetic mean, 3.13

atomic mass, 1.1

audiometry, errors in, 3.2

audio units, E2.8j

auditor, standard, E2.8h

average deviation, ideal, 3.17

practical, 3.19
See also error.

average deviation of the error, 3.22

average error, 4.5
averaging, nonlinear, 5.16

spatial, 5.10, 5.13

background error, 3.26
backlash, 5.6

balance, weighing, 5.4

balance weights, E3.31

ballistic galvanometer, 7.19
method, 8.1

pendulum, 7.19

band, working, 5.1
bandwidth, definition of, 7.20

bandwidth at half maximum, 5.19, 7.21

bars, error, 4.7

bearing friction, 5.6

1This index does not include physical quantities exclusively listed in
Tables I-1 to 1-5, and Table 2-1.

bel, E2.8e

bellows, 6.2, 8.4

Bernoulli's principle, 3.8

blackbody, E5.1 lb
bolometer, 5.18

bolometric magnitude, E2.8l, E2.1 la
bottle resonator, 6.7

boundary-layer-type flowmeter, E5.8e

bridge, Wheatstone, EI.4c
Brownian motion, 5.19

Buckingham, 1.3

bulk velocity measurement, E5.10a, E5.1 ld-f, E5.15a,b

burst-diaphragm method, 8.1

calibration correction curves, 3.33

factor, 1.6

calorimetric bomb, E5.1 la

calorimetric fiowmeter, E5.8e, E5.1 le

candela, 2.7

cantilever, 6.2, 8.4

capacitance, acoustic, 10.1
thermal, 10.1, 10.5

capacitors, 7.12
central limit theorem, 3.29
CGPM, 1.3

cgs system, 2.2

charge measurement, error in, 3.2

Chebyshev criterion for best fit, 4.3
criterion for linearization, 4.9

integration, 5.13

polynomials, E4.16a, 4.21
chemical balance, E3.11c

chopper, light, E3.11 f
choppers, 5.21

chord-based straight line, 4.9
CIPM, 2.1

coefficient, correlation, 4.12

probability, 3.16

coherent equations, 2.10

coherent system of units, 2.1
combination of errors, 3.28

of steady-state dynamic responses, 7.5

compressibility factor of H 2, E4.22a
of N 2, E4.22b

conductivity of electrolyte, measurement of, 3.2
confidence limit, 3.18

consistency, internal and external, 3.30, 3.32
convective heat transfer, E1.5d, E3.28h, E5.1 lc
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comer frequency, 7.12, 8.3
correction, definition of, 3.3

corrections, summation of, 3.9, 3.28

correlation coefficient, 4.12

index, 4.12

cosmic radiation, 3.2, 3.26

Coulomb's law, 1.1

counting rate, 3.26

creep, 5.6
critical damping, 7.14

crystal, piezoelectric, E1.6b, E4. la

cubic spline, 4.18
current measurement, null method, 5.18

noise, 5.19

curvature, radius of, 7.13, 7.21, 10.3

cylinder, heat transfer to, E3.28h See also hot wire.

D (dissipation factor), 7.12

damping, 7.14

damping factor, 7.15
d'Arsonval galvanometer, 6.3, 8.4
dead-time error, 3.26

decibel, E2.Se

decile, 3.20

decrement, logarithmic, 7.15, 8.1

delay time, El0.6c

density of a liquid, E4.16c

derivative, partial, approximation of, 3.9

deviation, average, 3.19
rms, 3.19

standard, 3.19
See also error.

deviation of the deviation, 3.22

diaphragm, natural frequency of, 8.4
differential equation, least-squares solution for,
diffusion coefficient, 5.19

digits, significant, E3.22a, 4.20

dimensional analysis, 1.5
dimensional constants, 1.1, 2.7

dimensionless numbers, 1.3, 2.9

dimensionless units, 2.8

dimensions of errors, 4.5, 4.6

discrimination, frequency-response, 7.23

dispersion, ideal measures of, 3.17
index of, 3.18

practical measures of, 3.19
uncertainty in, 3.22

dispersion of errors, 3.15, 3.16, 3.17, 3.19

dissipation factor, 7.12
distribution of random errors, 3.16 See also dispersion.

dither, 5.6

drag coefficient, EI.6a
measurement, 3.2

droplet size measurement, 3.2

dry friction, 5.6
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4.17

dynamic vibration absorber, E9.3c, 10.2

dynamometer, 5.3-5.6, 6.1

eccentricity, mechanical, effect of, E3.1 la,b

Einstein, 5.19

elasticity, modulus of, 5.6

elbow, pipe, effect of, 5.13
electrical units, 2.1, 2.4

electricity, physical quantities in, 1.1
electrobalance, 3.11, 5.5, 6.3
emf measurement, errors in, 3.2

empirical coefficients, 1.6

empirical graphs and equations, 4.1

emu system, 2.4

energy transfer, 5.17

equal amounts, list of, 2.1

equations, 4.3
error, definition of, 3.3

fractional, 3.5

limit of, 3.7
measures of, ideal, 3.17

measures of, practical, 3.19
sources of, 3.2

error bars, 4.7
distribution, 3.16

frequency distribution, 3.16
of error, 3.22

of indirectly measured quantities, 3.31

of parameters, 4.16

rectangles, 4.7
errors, combination of, 3.28

esu system, 2.4
events, rate of, 3.26, 3.27

exponential, approximation of, 4.3, 4.17

exponential forcing function, 7.8, 7.16
extensometer, E3.1 If. See also strain gauge.

external consistency, 3.30, 3.32

factor, calibration, 1.6

Faraday constant, El.1

Faraday's law, El.l
FET (field-effect transistor) noise, 5.19

figure of merit of galvanometer, 8.4
first-order differential equation, least-squares

solution, 4.17

Fisher, 4.12

flicker noise, 5.19

flow, two-phase, as source of error, 3.2
flow measurement, errors in, 5.8

of a river, 3.2, 5.13

flowmeter, boundary-layer-type, E5.8e
calorimetric, E5.8e, E5.11e

impact disk, E5.16c

head-type, E1.4g, E5.8e, E5.16a

head-type, exact formula, 4.22d
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Thomas-type, E5.1 le

turbine-type, E5.17d
ultrasonic, E5.1 If

flowmeter nozzle, E5.8e

fluid density measurement, errors in, 3.2

fluid velocity measurement, errors in, 3.2
force measurement, 5.3-5.6

forcing function, definition of, 7.5

some types of, 7.6

Fourier's equation, 7.22

fps and fpsg systems, 2.2
fractional error, 3.5, 3.19

free-molecule regime, E3.13d
French curve, 4.11, 4.18

frequency, corner, 7.12, 8.3
natural, 6.13, 8.4, 9.2

resonant, 7.20

frequency discrimination, 7.23
distribution of errors, 3.16

distributions, some types of, 3.18
meter, 3.27

ratio, 7.20

friction, dry, 5.6

galvanometer, 6.3
gas analyzer, E1.4f

gas constant, El.1

gas flow rate, E2.11d, E3.13a,b, FA.22d

gas law, El.1
Gaussian distribution, 3.18

system of units, 2.4

Gauss's criterion for best fit, 4.3, 4.5, 4.10

criterion for consistency, 3.30

law, El. 1

method of integration, 5.13
Geiger-Mueller tube, 3.2, 3.27

generalized coordinates and forces, 9.3

generation-recombination noise, 5.19

generator, noise, 5.19

geometric mean, 3.13
Giorgi, 2.6, 2.7

gradient, pressure, 7.17

velocity, E5.13d, 7.18

Grand Mean, 3.30, 3.32

graphs, 4.1, 4.2, 4.7
gravity, standard, 3.1, 5.4

half-life, 7.7

harmonic mean, 3.13

heat, physical quantities in, 1.1
units of, 2.1, 2.3

heat flow measurement, 3.2

transfer, E3.28h, 6.12

See also hot wire, calorimetric flowmeter.

Heaviside-Lorentz system, 2.5

Heaviside operator, 7.4

helical spring, 8.4
Helmholtz resonator, 6.7

high-vacuum conditions, E3.13d
hot wire, E1.4f, EI.5d, E1.6c

hot-wire anemometer, E1.5d, E5.16b

hum, 5.7

hysteresis, 5.6

IGFET (insulated-gate field-effect transistor) noise,

illumination, 1.1, 1.2

impact disk, force on, EI.5a
Impact disk flowmeter, E5.16c, 7.18

impact force, EI.5a

impedance, flow-, calibration of, 6.11

impulse, 7.11, 7.19
inaccuracy, descriptions of, 3.6

independent variables, definition of, 3.28
index of correlation, 4.12

of dispersion, 3.18
inductors, 7.12

industrial process instruments, 5.0
infinite line, 10.6

input noise, equivalent, 5.19

installation requirements, consideration of, 5.23

mstantaneity, definition of, 6.0
instrument selection, factors in, 3.35

integration of events, 3.27

integration, spatial, 5.13
interference, radiofrequency, 5.7

internal consistency, 3.30, 3.32
International set of units, 2.6

interpolation of data, 4.19
ion gauge, 3.2, E5.17f

ionosphere, 3.2

JFET (junction field-effect transistor) noise,
Johnson noise, 5.19

journal bearings, 5.6

kelvin, 2.3

keying, 8.1

kinematic viscosity of oils, 4.8

Lagrange's equation, 9.3

interpolation formula, 4.19

laminar profile, 5.10

Laplace transform, 7.4
laser, in measurement, 3.2
laser noise, 5.19

leak, pneumatic, calibration of, 6.11

level, definition of, E2.8g
loudness, E2.Sh

limit of error, 3.6, 3.7

line, long, 10.6

5.19

5.19
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linearapproximations,4.8
linearity,4.9
linearization,4.8
linearizedconstructions,4.8
logarithmicdecrement,7.15,8.1

mean,3.13,E3.21b,c
logloggraphpaper,4.8
Lorentzsystemof units, 2.5
loudness,1.2,E2.8h
loudnesslevel, E2.8h
luminancediscrimination,5.19

magnetic properties, errors in measuring, 3.2
units, 2.1, 2.4

magnetism, physical quantities in, 1.1
magnitudes, stellar, E2.81, E2.1 la

maintenance requirements, consideration of, 5.23

manganin, resistivity of, E3.28m
manometer, 6.4, 6.5

mass correction for springs, 6.2

mean, geometric (logarithmic), E3.21b,c
mean of means, 3.30

means, some types of, 3.13
measures of dispersion, ideal, 3.17

practical, 3.19

mechanics, physical quantities in, 1.1
median, 3.13

median error distribution, 3.18

"method of least squares", 3.19, 4.10

microphone, probe, 10.6

minimum-error-based straight line, 4.9

inks system, 2.6
MKS system, 2.6

modulus of elasticity, 5.6
molar mass, relative, 1.1

mole, 2.7

molecular mass (molecular weight), 1.1, 2.7

molecular speed, E3.13d

most probable value, ideal, 3.18

practical, 3.19

most probable value of a function, 3.28

of frequency of events,

natural frequency, definition of,

neper, E2.8f

nephelometer, E5.8d

nephelometry, errors in, 3.2

neutron flux, effect of, 5.8

Newton-Cotes method, 5.13

Newton's law, El.l, 6.1

NiSpan C, 5.6

noise, 5.7, 5.19-5.21

white, 8.3

noise factor, 5.19

figure, E2.8i, 5.19

6.13
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3.26, 3.27

generator, 5.19

power, E2.8i, 5.19
resistance, 5.19

temperature, 5.19
thermometer, 5.19

noisiness, 1.2

nonlinear averaging, 5.16

indication, 3.8

nonlinearity, 4.9, 5.0

normal equations, 3.31, 4.10, 4.15
Norton's theorem, 5.18

nozzle, sonic, E3.28l

nozzle-type flowmeter, E5.Se
null detector, 1.4

null measurements, 5.18

numerical equations, 2.11, 2.12
Nusselt number, E1.5d

Nyquist diagram, 7.12, 7.20
noise, 5.19

observer, standard, 1.2

odds of occurrence of errors, 3.18

"of a single observation", 3.19
"of the mean (or median)", 3.19

oil, viscosity of, 4.8

operational calculus, 7.4

operator, differential, 7.4

optics, physical quantities in, 1.1
units of, 2.1

organ pipe, 6.7

orifice, flow through, E2.1 ld, E,4.22d

orifice-type flowmeter, E5.16a, E5.17d

overbar, meaning of, E3.31

parabola, quadratic, response to, 7.10, 7.15

parabolic rule, 5.13

parallax, 5.2

parallel combination of subsystems, 7.4

parallel electrical circuit, 6.9

partial derivative, approximation of, 3.9
Peclet number E1.4f, E1.5d

pendulum, E1.4e, E1.5b, E1.6b, E2.11e, 8.4

pentode noise, 5.19

percentage error, 3.5. See also fractional error.

percentiles, 3.20

perception, quick, 5.1

permeability of air, 3.1

permittivity of air, 3.1

pH, definition of, E2.8k
phase angle, 7.12, 7.20

phon, E2.8h

photometry, errors in, 3.2

piecewise curve fit, 4.11, 4.18

piezoelectric crystal, E1.6b, 3.2

Pi theorem, 1.3



pitot-statictube, 3.2,E3.13b
Pi-zerotheorem,1.4
Planck'sconstant,El.1

law, EI.I
pneumaticsystems,6.6,6.7, 10.1,10.5,10.6
pointer-and-scaleinstruments,5.1
Poiseuille'slaw, 6.6, 10.6
Poiseuille-typeflow, 10.6
Poissondistribution,3.26
population,statistical,3.14
potentiometer,E1.4a,b
power,electric,average,E5.15c
powerbalanceequation,9.1

transfer,5.17,5.18
practice,recommended,3.34
Prandtlnumber,E1.5d
prefixes,SI, 2.7
pressuregauge,specificationof, E5.7b,6.1

measurement,nullmethod,5.18
probabilitiesof errors, 3.18
probabilitycoefficient,3.16

graphpaper,4.8
probableerror,ideal, 3.17

practical,3.19
See also error.

probable error of the error, 3.22

probe microphone, 10.6

profile, effect of, 5.9, 5.10

laminar, 5.10

spatial, 5.9, 5.12, 5.13

spatial, development of, 5.10, 5.15
turbulent, 5.10

velocity, E5.15a

profile measurement, 5.12

proportionalities in physics, 1.1

psychophysical quantities, 1.2, E2.gh

pulse, response to, 7.3, 7.11

See also impulse; step change.

triangular, 7.11

pumping, by ion gauge, E5.17f
pyrometer, radiation, 3.2, E5.16d

pyrometry, errors in, 5.8

Q (storage factor), 7.12

quadratic, approximation of, 4.9

quadratic forcing function, 7.10, 7.18

radiation, cosmic, 3.26

measurement of, 3.2

physical quantities in, 1.1
radiation pyrometer, E3.2gi, E5.16d

radioactivity, measurement of, 3.2, 3.26, 7.7

units of, 2.1

radiofrequency interference, 5.7
radius of curvature, minimum, 7.13., 7.21, 10.3

ramp, as forcing function, 7.9, 7.17

response to, 7.9, 7.17

test by, 8.2
random error distributions, 3.16, 3.18

of a function, 3.28

random errors, 3.10, 3.12

random events, counting of, 3.26

integration of, 3.27

range, definition of, 3.4
ratemeter, 3.27

rate of events, measurement of, 3.26, 3.27

rationalized units, 2.5-2.7

Rayleigh's method, 9.2

readability, 5.0, 5.2

recommended practice, 3.34

rectangles, error, 4.7

rejected observations, 3.18, 3.23

rejection of observations, 3.23
relative molar mass, 1.1

reliability, consideration of, 5.23

repeatability, 5.0, 5.2, 5.6

reproducibility, 5.0, 5.2, 5.6

residuals, 3.14, 3.19, 4.5

resistance, acoustic, 10.1

contact, 3.2

measurement of, 3.2

thermal, 10.1, 10.5

resistance strain gauge bridge, 1.3, 1.4

resolution of events, 3.26

resolving power, 7.20

resonant frequency, E1.5c, 7.20
resonator, 6.7

response, frequency, 7.12, 7.20

Reynolds number, E1.5d
Riabouchinsky, 1.3

RFI, 5.7

river flow, 5.13

rms, definition of, 3.0
rms deviation, 3.17, 3.19

rms error, ideal,. 3.17

practical, 3.19
See also error.

rms error of the error, 3.22

rms mean, 3.13

roller bearings, 5.6

root-mean-square. See rms.

rounding, 3.25

rss (root sum square), 5.19

scales, 5.2

sedimentation, 6.10

segmental curve fit, 4.11, 4.18

seismometer, 6.1

selection, instrument, factors in,

self-heating, E3.1 le

3.35, 5.23

227



sensibility, definition of, 5.0
ultimate, 5.19

sensitivity, definition of, 5.0

temperature coefficient of, 5.6
sequence of measurements, 3.32

serial combination of subsystems, 7.4

series electrical circuit, 6.8

series of systems, 10.5

serviceability, consideration of, 5.23

set of normal equations, 3.31, 4.10, 4.15

set point, E3.11b, 5.1

shielding, 5.7
shock tube, 8.1

shot noise, 5.19

signal-to-noise ratio, 5.20, 5.21

significant digits, E3.22a, 4.12, 4.20

Simpson's rule, 5.13
simultaneity, definition of, 6.0

sinusoid, response to, 7.12, 7.20

test by, 8.3
SI units, 2.7

skewed distribution, 3.16

smoothing, 4.18
S/N ratio, 5.20, 5.21

solenoidal law, EI.I
sone, E2.8h

sonic flow, E3.281

sound, speed of, E2.1 lb
units of, E2.8h

sound pressure level, measurement of, 3.2

spacing of observations, 4.8

span, definition of, 3.4

spatial average, 5.10

spatial integration, 5.11, 5.13

specification of accuracy, 3.34
of an electrical instrument,

of a pressure gauge, E5.7b,c

specific gas constant, El. 1

spectrometer, 7.20

spectrum analyzer, 8.3

speed, molecular, E3.13d, F.,6.11b

of light, 2.1, 3.1
of sound, E2. llb

spline, cubic, 4.18
spring-mass system, 6.1-6.3

springs, natural frequency of, 8.4

static characteristics of, 5.6

square-law damping, 10.4

square wave, averaging of, 5.16

response to, 7.3
standard auditor, E2.8h

cell, E3.28j
deviation. See rms error.

observer, 1.2

standards, 3.34, 5.22
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E5.7a, 5.19

standards laboratory, 5.22

stars, magnitudes of, E.2.81, E2.11a

steady-state response, definition of, 7.5
Stefan-Boltzmann constant, E 1.1

Stefan's law, El.l, 6.12

step-change, response to, 7.7, 7.15

test by, 8.1

storage factor, 7.12
STP, 3.1

strain gauge, E5.17g

resistance, 1.4

strain measurement, errors in, 3.2

sum of uniform distributions, 3.29

synchronous detection or modulation, 5.21

systematic errors, 3.10, 3.11, 3.28

detection of existence of, 3.30

t-distribution, 3.18

temperature coefficient of sensitivity, 5.6

measurement, errors in, 3.2, 5.8

measurement, null method, 5.18
tetrode noise, 5.19

thermal capacitance, i0.1, 10.5

conductivity of H2, E3.21e

conductivity type of gas analyzer, E1.4f
emf's, 5.7

noise, 5.19

resistance, 10.1, 10.5
units, 2.3

thermocouple, 3.2, E5.8a,b, E5.17c

typeE, E4.20a, 4.21
W/Re, E4.16a

thermometer, 6.12

thermometer bulb, 3.2, E4. la, 6.12, 10.1

thermometry. See temperature measurement.
Thevenin's theorem, 5.18

Thomas-type flowmeter, E5.1 le

three-eighths rule, 5.13
thrustmeter, 6.1

time constant, definition of, 6.13

of ratemeter, 3.27

time lag, 7.7-7.21

titration, electrometric, E3.28k

torquemeter, 6.3

transform, Laplace, 7.4
transformed variables, 4.13, 4.14

transient response, definition of, 7.5
transistor noise, 5.19

transmission system, electrical, 10.6

pressure, 6.6, 10.5, 10.6
trapezoidal rule, 5.13

traverse, with probe, 5.12, 5.15, 5.17, 7.17, 7.18
Trimmer, 7.4

triode noise, 5.19

truncated distribution, 3.18



truncation,3.25
tuningfork, E1.6b,E4.1a,5.6
turbine-typeflowmeter,E5.17d
turbulentprofile, 5.10

ultrasonicflowmeter,E5.1If
uncertaintyof correlationcoefficient,4.12

of error, 3.22
uniformerrordistribution,3.18,3.19

distributions,sumsof, 3.29
units,listof equal,2.1
unitweight,3.19
unrationalizedunits, 2.5

vacuum,E3.13d,6.11
vacuummeasurement,errorsin, 3.2
vaporpressure,E2.1lc
variance,3.17
velocimeter,6.1,6.3
velocityof fluidinpipe, E5.15a,b
vernieracuity,5.19
vibrationabsorber,dynamic,9.3, 10.2

measurement,3.2
vibrometer,6.1, 6.3

vigintile, 3.20
viscometer,6.10
viscosityof N2, E4.22c

of oil, 4.8
visualacuity,5.19
visualmagnitude,E2.81
voltagemeasurement,nullmethod,
voltmeter,E5.17b
volumeunit(VU), E2.8j

weightedarithmeticmean,3.13
measurements,3.19

weighting,3.21,4.6, 4.13
weights,calibrationof, E3.31
Westoncell, E3.28j
Wheatstonebridge,EI.4c
whitenoise,5.19
wire,hot. See hot wire.

working band, 5.1

Worthing, 3.14

Zener-diode voltage reference,

zero-based straight line, 4.9

zero, changes in, 5.6

1.4, 5.18

El .4a
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Index of Equations for Which Least-Squares Solutions are Given

Equation Example

y = alx 4.11a

y = ea2 4.13c

y = ao + atx 4.11b

y = alx + a2x2 4.11c

y = ax b 4.14.1a

x = ay b 4.14.1b

y = act bx 4.14.1c

X = act by 4.14.1d

y = act b/x 4.14.1e

x = act b/y 4.14. If

y = a/(1 + bx) 4.14.1g

x = a/(1 + by) 4.14.1h

y = ao + alx + a2x 2 4.11d

y = ao + atx + a2x 2 + a3x 3 (segment) 4.11e

s = ao + atx + a2y 4.16b

s = xa+_y c 4.16f

y = act bx+c_ 4.14.2a

y = act (b/x)+ (c/x2_ 4.14.2b

y = a/(l + bx + cx 2) 4.14.2c

s = alTo + a2Tt + a3T2 + a4T3 (T= Chebyshev polynomial) 4.16a

s = ao + a lx + a2y + arty 4.16c

s = ao + alx + a2x 2 + aay + a4y 2 4.16d

s = y*(ao + alx + a2x 2 + a3y + a_ry) 4.16e

Equation Section

y = F,a_x t (k = 0,1,2 ..... m) 4.15

y = F,atoj_(x ) (k = 1,2 ..... m) 4.16

Y = y + r(dy/dt) 4.17

ill
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