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Introduction

Adaptive grid methods have rapidly emerged as
important tools in numerical simulations because of

their potential for improving the accuracy and effi-

ciency of the solution. With adaptive (i.e., dynamic)

grids, each grid point monitors the solution as it de-

velops. The grid point distribution over the solution

domain is correspondingly adjusted dynamically to

concentrate grid points in regions of larger solution

variation. In contrast, when using a traditional static

grid, the investigator must use prior knowledge of the

solution to design a grid which contains good grid res-

olution in all of the regions in which the solution has

large variations.

Many solution adaptive strategies have been pro-

posed in recent years (refs. 1 to 15). The adap-

tive grid solution method developed herein consists

of three distinct parts: a grid movement scheme,

a partial differential equation (PDE) solver, and a

means of coupling the dynamic grid action to the

PDE solver. A key element in this adaptive grid
method is that the adaptive grid is generated sep-

arately from the determination of the solution of the

physical problem, and therefore the grid movement

scheme is only invoked by the temporal coupling rou-
tine as needed. With this approach, grid movement

schemes can be developed that can be interfaced with

a large number of PDE solvers.

The adaptive grid method used herein is a

general-purpose technique that is suitable for

multidimensional field problems. The method is sim-

ple to use and requires few user-specified parame-

ters. The technique continues the adaptive philos-

ophy used in references 1, 2, and 4. Although the

focus is on methods for use on a structured grid with
a well-ordered node connectivity pattern, many of

the described techniques can be modified for use on

an unstructured grid in which there can be arbitrarily

connected grid points.

The adaptive method contains grid controls that

correctly identify the solution behavior requiring ad-

ditional grid resolution and that accurately redis-
tribute the grid points into the targeted regions. The

grid point movement is performed with localized in-

trinsic properties of the solution features being mon-
itored for severe behavior. In the absence of behav-

ior requiring grid point clustering, a uniform grid

is obtained. The grid movement scheme includes a

grid smoothing operation that ensures that the grid

point locations and spacing change smoothly along
the coordinate curves. The smoothing operation is

interwoven with the grid point redistribution to help

alleviate grid skewness.

The grid movement scheme contains several ca-

pabilities not available in other adaptive grid gen-
eration methods. Unlike many adaptive techniques

which can only track one solution feature, the grid

generation method used herein has the capability of
accurately tracking multiple solution features. This

capability is particularly useful in time-dependent

problems in which the solution features monitored

for adaptive purposes merge and then separate. Also

presented is a method to eliminate "noisy" values in
the adaptive data; the occurrence of noisy data can

be quite severe when the adaptive data are formed
from derivatives of the conserved variables in the so-

lution vector. Using the described method allows the

grid to be adapted to solution features that could not

otherwise be used for grid attraction. Altogether the

adaptive grid method used herein is a very robust

scheme which can generate grids with good structure

for a wide range of problems.

The PDE solver used in this study is an "off-the-

shelf" Euler equation solver which employs a finite

volume, shock capturing method to discretize the Eu-

ler equations on a static grid. The static grid feature

of the Euler equation solver is emphasized because

the movement of the grid points during the adap-

tive action introduces a time dependence (i.e., the

grid becomes dynamic). From a strictly mathemati-

cal viewpoint, when computations are performed on

a dynamic grid, additional grid velocity terms must

be included in the governing equations of the physical

problem to account for the moving frame of reference.

As described in reference 4, the manner in which

the temporal coupling of the adaptive grid to the

PDE solver is performed greatly affects the accuracy

of the solution. In steady-state and time-asymptotic
problems the grid velocity can typically be ignored,

or computed with a simple backward difference in

time, and adequate solutions obtained because the

solution and the grid settle into a final configuration;
such solutions are not time accurate because the

solution is computed on a grid which lags the solution
in time. The time accuracy of the grid and solution

can be maintained by directly computing the grid

velocity or determining the new grid as part of the

solution at the forward time step; however, these

methods can lead to folded, or singular, grids if

the grid velocity is not computed accurately. In

this report, a temporal coupling method is presented

which maintains the time accuracy of the solution but

which avoids the need to estimate the grid velocity

terms and correspondingly modify the PDE solver to

include a grid velocity capability.

A "prediction-correction" method is used for

the temporal coupling. The prediction-correction



methodtreats the time integrationas a seriesof
initial-valueproblemsovershort time intervalsin
whichthesolutionis first advancedto createa new
grid andthen recomputedon the newgrid. In ef-
fect, thenewgrid providesa carpetof resolutionin
the regionsoverwhichthesolutionwill evolve,and
therebyensurestheevolvingsolutionis alwayscom-
putedonagridthat haslocallyfinegridresolutionin
theregionswherethesolutionexhibitsseverebehav-
ior. The prediction-correctionmethodusedherein
bearsa philosophicalsimilarity to a schemedevel-
opedby Blom,Sanz-Serna,andVerwer(ref.7) but
is moreflexiblein thetypeof equationsolversthat
canbe usedin the adaptivesolution. Unlikethat
of reference7, the approachdescribedhereinis not
limited to usingonly equationsolverswith a grid
velocitycapability.

Usingthe prediction-correctionmethodfor the
temporal coupling providesseveraladvantages.
First, the methodmaintainsthetemporalaccuracy
of thesolution;thegriddoesnot lagthesolutionin
timebecausethenewgrid isbasedonsolutiondata
forwardin time. Second,the prediction-correction
methoddoesnot requiremodificationof the static
grid Euler equationsolverto includegrid veloc-
ity termsbecausethe predictedand correctedso-
lutionsarecomputedon static (althoughdifferent)
grids;however,if the PDEsolverhada grid veloc-
ity capability,this schemewouldprovidea means
to accuratelycomputethe grid velocity. Last, the
prediction-correctionmethodprovidesalargedegree
of simplicityand flexibility, and thus can reduce
the humaneffort requiredto developtime-accurate
adaptivegrid PDEsolversfor a widerangeof time-
dependentfieldproblems.

After the basicelementsof the adaptivegrid
methodare introduced,the techniquefor tracking
multiplesolutionfeatures,the methodfor eliminat-
ing noisy valuesin the adaptivedata, the Euler
equationsolver,andtheprediction-correctionroutine
usedfor the temporalcouplingarediscussed.The
capabilitiesof theadaptivegrid methodaredemon-
stratedthroughthe determinationof the unsteady
two-dimensionalinviscidflowfieldcreatedbyashock
wavemovingtoward,and eventuallyover,a solid-
corevortex. Theshock-vortexproblemprovidesa
goodtestof the adaptivesolutionmethodbecause
thesolutionandthegrid donot settleintoasteady
state.Toaccuratelycaptureallthecomplexitiesthat
developin theshockfrontandthevortexastheyap-
proacheachother,merge,andcontinuerequiresa
grid with locallyhighresolutionin whichthe loca-
tionof thehigh-resolutionregionchangeswith time.

Adaptive Grid

In this section grid movement concepts and algo-

rithms are discussed. Because many of the techniques
used in multidimensional problems have their roots in

one-dimensional problems, the formulation for a one-

dimensional problem is presented first, after which

the necessary extensions for two-dimensional prob-
lems are described. It is assumed that the reader

understands the distinction between representing a

grid in physical space and in computational space.

Briefly, for a one-dimensional problem the grid in

physical space is a coordinate curve that consists of

n arbitrarily spaced grid points with locations de-

scribed by the grid point position vectors Pi or the

arc length along the curve si. Through application of

a transformation to the points on the curve in phys-
ical space, a new representation of the curve can be

constructed in a computational space in which the

curve consists of n uniformly spaced points _i rang-

ing in value from 0 to n - 1. For further details, see
reference 12.

Monitor Surface

The adaptive grid method used herein utilizes a

monitor surface to identify regions where finer grid

resolution is needed. The monitor surface, or actually
the monitor curve in the one-dimensional context, is

a smooth piecewise linear surface positioned over the

physical domain. The monitor surface ¢(xi) is typi-
cally defined by a simple scalar function (e.g., a linear

combination) of one or more of the variables which

drive the physics of the problem. Hence, regions in

which the solution has a sharp gradient or a sharp

transition between vastly different gradients are rep-
resented in the monitor surface as, respectively, sharp

gradients or sharp bends. An example of a monitor

surface for a one-dimensional problem is illustrated

in figure 1.

The adaptive grid method operates on a surface

grid lying on the monitor surface. The surface grid

is obtained by "lifting" the grid points in the physi-

cal domain up to the monitor surface. The nodes in

the surface grid are subsequently repositioned on the

monitor surface to better resolve its geometric fea-

tures. The repositioning is based on the arc length

of the coordinate curves, which leads to gradient clus-
tering, and the bends of the monitor surface, which

are treated directly with curvature clustering. At the

completion of the node redistribution process, the

surface grid is projected back down to the physical
domain to yield the new grid on which a new solu-

tion can be computed. The assumption implicit to

the entire process is that using a grid which more

accurately represents the physics of the governing

2



problemwill reducetheoverallerrorin thenumerical
solutioncomputedon thegrid.
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Figure 1. One-dimensional monitor surface with grid points

uniformly distributed in physical domain.

Equidistribution Statement

The repositioning of the grid points along the
curve on the monitor surface is achieved by equally

distributing a positive weight function over the curve.

That is, for each interval of the curve, the grid

points are repositioned to satisfy the equidistribution
statement

Wi+l/2 Asi = A A_i = Constant (1)

where Wi+l/2 = ½(wi + Wi+l) is the average of the

weight function over the interval, wi = w(si) is the

weight function evaluated at the ith node in physical

space, Asi = 8i+ 1 -- 8i is the interval arc length along

the given curve on the monitor surface in physical
space where the grid points are unevenly distributed,

A is a constant to be determined, and A_i = 1 is the

uniform spacing in computational space of the grid

points that satisfy the equidistribution condition. As

can be seen from equation (1), the node redistribu-

tion process is driven by the balancing of the weight

function against the interval arc length. Notice that

as the weight function increases or decreases, the as-

sociated interval length on the monitor surface must

correspondingly shrink or expand.

Weight Function

For a one-dimensional problem, the form of the

weight function is

wi = 1 + C I_il (2)

where C is a constant and t_i is the curvature of the
monitor surface at node i. If C = 0 in equation (2),

the weight function reduces to wi = 1, the equidis-

tribution statement becomes Asi = Constant, and

the grid points are redistributed on the monitor sur-

face with a uniform spacing. Figure 2 shows that

when the uniform surface grid is projected down onto

the physical domain, it clusters grid points into the

sharp-gradient regions and provides a uniform grid

spacing in the regions away from the sharp gradients.

Analytically, the constant arc-length increments im-

ply that (1 + _p2)l/2dx is constant. For _ >> 1, the

term (1 +_2)1/2 dx can be approximated by [Z/,x[ and

hence [_;x[ dx is constant, the result being a spacing

of points in the physical domain which is inversely

proportional to the magnitude of the gradient of the
monitor surface. For _P_r<< 1, the uniform arc-length

spacing implies dx is constant, the result being a uni-

form distribution of points in the physical domain.
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Figure 2. One-dimensional monitor surface with grid points

uniformly distributed on monitor surface.

Although a uniform distribution of points on the

monitor surface may provide adequate resolution

in many problems, there are often certain features

which require additional resolution. In particular, a
uniform distribution does not provide adequate res-

olution in the regions containing a sharp "knee" or
bend in the monitor surface. In figure 2, the lack of

resolution at the foot and crest of the steep face in
the monitor surface is evident. A bend in the moni-

tor surface represents a transition between two vastly

different gradients in the solution and hence should
also be refined.

The presence of the sharp bends in the monitor
surface can be identified from the curvature of the

monitor surface _. The curvature is simply the rate

of change of the unit vector tangent to the curve

(i.e., the monitor surface) with respect to the arc
length: _fi = dt/ds = P", where t = P'/I[P'[[ is



the unit vectortangentto thecurve,P" = dP'/ds,

pt = dP/ds, and P is the surface grid point position

vector. Figure 2 shows that the tangent vector is

approximately constant (i.e., _ = 0) everywhere on

the monitor surface except in the two knee regions;

in these regions _ # 0. Thus, the weight function

is greater in magnitude than elsewhere, and this

imbalance forces ds to be smaller by equidistribution

and thereby results in grid points being attracted to

the bend regions of the monitor surface. (See fig. 3.)

' '!I
I I

I
I

I

z z ; •

Figure 3. One-dimensional monitor surface with grid points

distributed with moderate amount of curvature'

attraction.

The leading coefficient C in equation (2) controls

the intensity of the curvature clustering. Hence,

the value of C must be chosen carefully. With a

technique originally developed by Dwyer (ref. 1), the
coefficient C is computed based on the prescribed

percentage of the total number of grid points f that

are to be attributed to curvature clustering:

cI,q d,-
f - f i" w(r) dr (3)

The function for computing C(f) used in this

study includes a "switch function," as described by

Eiseman (ref: 2), which dynamically turns C off and

on based on the ratio of the arc length of the coordi-

nate curve to its shortest possible length; if the ratio

is near one, then curvature clustering is not needed

(i.e., C = 0).

Grid Point Redistribution Algorithm

The equidistribution process starts with a given

grid defined by the position vectors Pi and ends with

a new grid defined by the position vectors Qj for the

grid points which satisfy the equidistribution con-

dition. Assuming that the weight functions wi have

been computed and then using a series of integrations
of the weight function over portions of the curve, we

can derive a piecewise linear approximation which al-

lows the new position vectors to be computed directly

from the old position vectors (refs. 1, 2, and 4). Thus,
the position vectors for the new node locations can

be computed in a component-by-component fashion

with the interpolation formula

Qj =Pm + (_j(Pm+l - Pro) (4)

where
- dSm)

= dSm+l) -- dsm)

and the index m = re(j) is the interval that brack-

ets _j, or _(Sm) _< _j < _(Sm+l). In the above, _j
are the uniformly spaced locations in computational

space of the new grid points that satisfy equidistri-

bution. The term _(Sm) represents the arbitrarily

spaced locations in computational space of the old

grid points. The value of _(si) is obtained by first

integrating (with a trapezoidal rule) the equidistri-
bution statement over the curve to eliminate A in

equation (1) and then integrating only to point i and

inserting boundary values for _ to yield

_(si) = (n - 1) F(si)
F(sn) (5)

where

is i i- 1F(si) = w(r) dr = E Wk+l/2 Ask
1 k=l

To obtain the positions of the new grid in the physical
domain the Cartesian coordinates are extracted from

the new position vectors in equation (4).
With the weight function and node redistribution

algorithm described above, an adaptive grid for a
one-dimensional problem can be generated that auto-

matically resolves the sharp gradient and transition

regions of the solution and that provides a uniform

grid cell spacing in the regions away from the severe
solution behavior.

Two-Dimensional Problems

The previously described grid movement scheme

for one-dimensional problems is extended to two-

dimensional problems by operating on the surface

grid on a curve-by-curve basis (ref. 4). The order in

which the curves are adapted in the curve-by-curve

scheme is based on directional sweeps; that is, with

4



the directionsof the curvilinearcoordinatecurves
of the surfacegrid denotedas_ and r/, the nodes

are redistributed along each curve in the _ direction,

followed by the same process for the curves in the

7/ direction. The mechanics of redistributing the

points along the individual coordinate curves is the
same as that for one-dimensional problems. It should

be noted that, in general, the resulting grid is not
invariant to the order in which the curves are adapted

(i.e., first _ and then r;, or vice versa). Hence,
for problems in which the grid must contain a very

high degree of symmetry, to generate the adaptive

grid with a curve-by-curve scheme might require

special techniques, such as the use of symmetric

operators for all computations, or the modification of

the ordering of the curves in the directional sweeps.
The form of the weight function is the same as

equation (2), except that the curvature is replaced

by _n_, the normal curvature of the monitor surface
at node i, to yield

= 1 + Cl n,I (6)

As discussed in detail by Eiseman (ref. 2), in two-

dimensional problems to correctly identify the seg-
ments of a monitor surface that need resolution re-

quires the use of weight functions based on the basic
curvature properties of the coordinate curves. With

the theory of Cartan Frames (ref. 16), it is possible to

distinguish true changes in the monitor surface along
the coordinate curves from wiggles and bends in the

coordinate curves on the monitor surface.

The Cartan Frames provide a means of split-

ting the curvature of a curve lying on a two-
dimensional surface into two components, the nor-

mal and geodesic curvatures. The normal curvature
nn identifies bends in the monitor surface, which are

where node clustering should occur. The normal cur-

vature is computed by tracking the changes in the

orientation of a plane tangent to the surface as the

point of tangency is moved along a curve in the sur-
face; that is, as an observer moves along the curve,

changes in the tangent plane indicate changes in the
monitor surface and thus the regions requiring ad-

ditional resolution. The geodesic curvature a9 sig-

nifies lateral bending of the curve within the moni-

tor surface. The geodesic curvature is computed by

tracking the changes in orientation of the plane that
is orthogonal to the surface tangent plane and tan-

gent to the curve. Typically, clustering based on the

geodesic curvature is warranted only if the curve lies
on or near a curved boundary that must maintain its

physical shape (ref. 2); applications requiring the use

of geodesic curvature have not been investigated in

this study. In the regions where the normal curvature

is approximately zero, the weight function in equa-

tion (6) yields an equal arc length spacing of points
on the monitor surface and hence continues to pro-

vide a uniform spacing in the physical domain in the

regions away from the severe solution behavior.
The precise mathematical expression for the cur-

vature is (ref. 2)

ufi = P" : agT + e;nl_ (7)

where _ is the curvature of the curve on the monitor

surface and fi, l_l, and T are, respectively, the unit

vector normal to the curve, the surface which defines

the surface tangent plane, and the curve lying in the

surface tangent plane. (See fig. 4.) The unit vectors

l_l and 'r are defined by
A
N

Figure 4. Orientation of vectors used to compute curvature
properties of curve in two-dimensional monitor surface.

= P' x l_ and l_l - B (8)
IlSlt

where
0P 0P

and u and v are coordinate directions corresponding

to the curvilinear coordinate curves on the monitor

surface. The normal and geodesic curvatures can be

computed from

_n = 1_. P" and _9 = _' P'' (9)

because l_l and T are orthogonal by definition. In

most applications, a one-dimensional smoothing op-

eration is applied to ani before the weight function
is assembled to eliminate abrupt jumps that can oc-

cur in the computed values. The leading coefficient

of the curvature term in the weight function is com-

puted in a manner analogous to that described for



a one-dimensional problem. Further details on the

curvature computations are available in reference 8.

Active-Passive Phases

For problems in which the monitor surface con-

tains very sharp gradients or complex geometries, the

basic curve-by-curve scheme can result in a grid with

unsmooth changes in grid positions and skewed co-

ordinate curves. The irregularities in the grid could

create large truncation errors in the numerical ap-

proximations of derivatives on the grid, and thus
yield inaccurate solutions if a numerical simulation

is performed on the grid.

In this study, smooth, nonskewed grids are ob-
tained by splitting the node movement within each

directional sweep into active and passive phases
(ref. 4). The active phase redistributes the nodes

on the monitor surface along each curve in the cur-

rent direction through use of the previously de-
scribed curve-by-curve adaptive scheme. In the pas-

sive phase, the grid is relaxed by application of a

"low-pass" filter to the grid to remove any wiggles

and abrupt changes in spacing created by the active
phase.

The low-pass filter is a grid smoothing opera-
tion designed to remove high-frequency variations in

the grid positions while approximately retaining the
lower frequency variations in node spacing which cor-

respond to the positions determined by the equidis-
tribution statement (ref. 4). The low-pass filter is

derived by applying a Laplacian operator to the cur-

rent position vector and then writing a Gauss-Siedel

relaxation formula to solve for the new grid point lo-
cations. For a two-dimensional grid, the relaxation
formula is

1 p. •
1 Qi-l,j + Qi,j-1 + Pi+I,j + Pi,j+I + 2 ,,.7 (10)Q"J = 2 4

where Q and P are respectively the new and old

position vector values at the grid point. Alterna-

tively, equation (10) could have been obtained by
defining the new position vector as the old value av-

eraged with the average of its four neighbors. To

maintain the shape of the physical domain, along
the boundaries the relaxation formula is based on

the finite-difference template for the interior points
(eq. (10)), but a ghost point is used for the neighbor-

ing node which lies outside of the physical domain.

The ghost point location is computed by extending

the coordinate curve transverse to the boundary be-

yond the boundary, along a trajectory with slope
equal to that of the transverse curve at the boundary,
for a distance that is equal to the distance between

the boundary and the first interior grid point on the

transverse curve (ref. 8).

Vector Monitor Surface

One must be especially careful in defining the

monitor surface for applications in which multiple

solution features are to be used for grid adaptation.
The simplest approach in such cases is to form the

monitor surface as a scalar function defined as the

linear combination of the desired features. However,
with a scalar monitor surface, if the solution features

merge the solution gradients can cancel each other

and thereby destroy the grid resolution in the region
of merger. The gradient cancellation can be seen in

the arc-length computations. For a problem in which

two solution features are being tracked, the arc length
is

ds = (dx. dx + d¢2) 1/2 -- [dx. dx + (d¢l + d¢2) 2 ]1/2

(11)
where x = (x, y, z). Thus, if the solution features

should merge, d¢l and d¢2 can cancel each other.

Illustrated in figure 5 are a scalar monitor surface

and the resulting adaptive grid for the case de-

scribed in equation (11). Here, the physical domain
is two dimensional and the two solution features be-

ing tracked are represented by a hyperbolie tangent
plane with a curved front

¢l=tanh{lO[(x-1)-Y(1 -y 34) sgn y])

and a pillbox function

(12)

¢2 = _(1 + tanh(lO[1 - (x 2 + y2)]}) (13)

The lack of grid resolution can be seen along the
horizontal center of the grid, where the two features

merge.

The poor grid resolution that can occur with
a scalar monitor surface can be overcome with a

monitor surface defined as a vector function in

which each solution feature to be tracked is a com-

ponent of the vector. The vector monitor sur-

face is defined as an N-dimensional vector @ --

(el(X), ¢2(x),..., CN(X)), where Ck is one of the g
features of the solution that is to be tracked or re-

solved. The terms Ck are scalar functions and are

typically formed from a single variable or property
of the solution. The vector monitor surface is posi-

tioned over the physical domain and the location of

each point on the monitor surface is described by the

position vector P = (x, ¢1 (x),..., CN(X)). Thus, to
solve a problem for which N solution features are

being tracked in an M-dimensional physical domain,
the scalar monitor surface is an M-dimensional sur-

face in an (M + 1)-dimensional space, whereas the

6



vector monitor surface is an M-dimensional surface

embedded in an (M + N)-dimensional space.

(a) Projection onto monitor surface.
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ill
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(b) Projection on physical domain.

Figure 5. Scalar monitor surface with surface grid projected
onto monitor surface (without hidden lines removed) and

physical domain.

The advantage of using the vector monitor surface
is that when the solution features merge, the gradi-

ents cannot cancel, and thus good grid resolution is

maintained in the region of merger. Again, this can

be observed from the arc length computations. For

.the example in equation (11), the arc length is com-

puted as

ds = (dx. dx + d¢12 + d_22) 1/2 (14)

from which it can be seen that the contributions

to the arc length of the individual solution features

being tracked (i.e., de 2) cannot cancel. Illustrated

in figure 6 are the vector monitor surface projected
onto the individual components and the resulting

adaptive grid for the example problem in figure 5.

Through comparison of the two figures, the improved

grid resolution in the region of merger is evident.

(a) Projection onto component of monitor surface formed by
hyperbolic tangent plane.

k .......

(b) Projection onto component monitor surface formed by
pillbox function.

(c) Projection onto physical domain.

Figure 6. Vector monitor surface with surface grid projected
onto component of monitor surface formed by hyperbolic
tangent plane, component of monitor surface formed by
pillbox function, and physical domain.

The process for adapting a grid to a vector moni-
tor surface is essentially the same as that for a scalar

monitor surface. The only differences are in the com-

putations for the curvature clustering properties and

having to use a more general form of the weight func-

tion. As described in reference 5, node attraction

7



basedoncurvaturepropertiescanbedifficultto im-
plementwith avectormonitorsurfacebecausevari-
ationsin the surfacenormaldirectionsusedin the
curvaturecomputationsarenotuniquelydefined.We
overcomethisdifficultybyprojectingthesurfacegrid
ontoa componentof the vectormonitorsurfaceCk
to computegeometricalproperties(e.g.,curvatures)
for thecomponent(ref.8). Thus,at eachnodethere
isanormalandageodesiccurvaturevaluecomputed
for eachof theCkcomponentsof thevectormonitor
surface.Thevaluesof thenormalandthegeodesic
curvatureforthe kth component of the monitor sur-

face, _(k) and _(k), respectively, are computed from

equations (7) to (9), where the position vector to be

used is P = (x, _bk(x)) and the associated arc length

is computed along the curve projected onto com-

ponent _k, s = s(P). When computed in this fash-

ion, the resulting geometrical properties are uniquely
defined.

The weight function used in the equidistribution
statement is

N

wi 1 + Z Ck(fk) (k)---- an_ (15)
k=l

where Ck(fk ) is the curvature coefficient for _)k and

_(k) is the normal curvature at node i for the mon-
ni

itor surface projected onto Ck- As was the case for

the scalar monitor surface, the an values are passed

through a one-dimensional smoothing operation be-

fore the weight function is computed. The dynamic

curvature coefficient Ck(.fk) for each component of

is computed in a manner analogous to that for

a scalar monitor surface, where fk is the percentage
of the grid points to be attributed to curvature at-

traction for the kth solution feature. Further details

on the computations for the vector monitor surface

and on the example problems discussed herein are
contained in reference 8.

Smoothing and Clipping the Monitor
Surface

In many applications it is desirable to modify

the monitor surface before commencing the compu-
tations to redistribute the nodes. Otherwise, non-

smoothness induced in the monitor surface by nu-
merical inaccuracies can lead to substantial errors in

the computations for grid attraction properties and

thus results in nodes clustering in the wrong regions

and even possibly singular grids. As an example, in

the shock-vortex problem the vortex component of

the monitor surface can contain large, but unimpor-

tant, data variations which must be eliminated. (See
fig. 7.)

Figure 7. Vortex component of monitor surface before modification.
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Toeliminateunwanteddatavariationswhichhave
alargeamplitudeandhighfrequency,adataclipping
schemeisappliedto themonitorsurfacevaluesbefore
the grid movementis invoked(ref. 8). The data
clippingschemeidentifiesthepointshavingamonitor
surfacevaluethat is notconsistentwithneighboring
valuesandthensets,or clips,the monitorsurface
valueof thetargetedpoint to the averagevalueof
the surroundingpoints. The clippingis performed
by checkingeachmonitorsurfacevalueagainstan
averagevaluecomputedovera three-by-threepatch
of nodescenteredon thenodein question:

7, • 1

tow =g (_b_-l,j-1 + v'_-14 + _i-l,j+l + _')W-1

+ lPi,j+l + _)i+l,j-I + _)i+l,j + t/'i+l,j+l) (16)

If the value of _i,j exceeds the average value _)i,j by

a specified amount, then the value of l_i,j is set to

the average value:

where c_ = 1.15, based on numerical tests. When

the data clipping scheme is applied to a quan-

tity which should be nonnegative, the ¢i,j values

are "preprocessed" by setting all the negative ¢i,j
values to zero. To eliminate any low-amplitude,

high-frequency residual data variations (e.g., Gibbs

phenomena) left over from the data clipping, the

low-pass filter used to smooth the grid positions in

the passive phase is applied to the monitor surface
values after the data clipping routine is performed. In

practice, the typical sequence of events is to apply the

data clipping scheme to the monitor surface data two
times and then to apply two passes of the smooth-

ing operation. After the clipping and smoothing are

completed, the monitor surface values are rescaled

to the prescribed maximum value. In the case of a
vector monitor surface, the components of @(x) are

processed individually. The benefit of using the data

clipping scheme and the smoothing operation can be

seen by comparing figures 7 and 8.

I ¢_i,j (_bi,j < _(bi,j) (17)
_bi'J = 1, ¢i,j (_i,j >- _i,j)

.¢

_ -- _ _ :_...---_<-...,

_. _ __-.-.--_G.-a.'=_ z.z%7<-_,." ._7.

-Te._z= ;:r -

F

_----x

Figure 8. Vortex component of monitor surface after modification.

Summary of Grid Movement Scheme 1. Perform the active phase for each curve in the

f-direction.

The adaptive grid movement scheme is summa-
rized below. Given a smooth monitor surface (i.e.,

after any monitor surface data clipping or smooth-

ing has been performed), the procedure for obtaining

the new grid in a two-dimensional-flow problem is as
follows:

A. Compute the arc lengths and curvatures of
the monitor surface at each node on the

curve in question.

B. Form the weight functions for each node.



C. Redistribute the points on the monitor sur-

face along the current curve to satisfy the

equidistribution statement.

2. Perform the passive phase for the _-direction

by applying the low-pass filter to the grid.

3. Repeat steps 1 and 2 for each curve in the

_-direction.

When a global iteration cycle on steps 1 to 3 is per-

formed, the grid typically settles into a final config-
uration within a few iterations.

The Euler Equation Solver

The adaptive grid movement is coupled to an

Euler equation solver (ref. 8). The solver uses a finite

volume formulation to discretize the Euler equations

in generalized coordinates on a static grid. The
solution method uses a characteristic-based scheme

that captures crisp monotone shock profiles. The flux

terms are computed with Roe flux-difference splitting

(refs. 17 and 18), and the spatial variation of the

fluid is approximated with the Van Leer MUSCL

scheme (ref. 19). The solution is integrated in a time-

accurate manner with an explicit two-stage Runge-

Kutta scheme (ref. 15).

Temporal Coupling

A simple grid prediction-correction technique is

used to incorporate the adaptive grid movement into

the static grid Euler equation solver (ref. 8). The

prediction-correction algorithm can be divided into

six basic steps. Given the grid and solution at some
time level T, to advance the solution in time,

1. Choose a time interval T.

2. Predict the solution over r.

3. Form a monitor surface over T.

4. Adapt the grid.
5. Transfer the solution data.

6. Solve over T, then repeat steps 1 to 6 for the
new time level T + 7.

In the following description, the grid at the initial

time T is denoted by x, and the solution at time T

on the given grid is denoted by q(x, T).

Choosing a Time Interval z

In this study, the time interval T is determined

by integrating forward V time steps. Hence, the

value of _- is T = _k----1 Atk, where At k is the time
step determined by the Euler equation solver (i.e.,

At k = minAtid ) during the forward time integra-
9,3

tion. The value of "7 is predetermined and remains

fixed for all time levels. Based on numerical experi-

ments the value of _/is set at 10; this value of "ypro-

vides a good compromise between the grid resolution

requirements over the time interval T and reduction

of the diffusion of the solution that occurs during the
data transfers.

Predicting the Solution

The solution is predicted up to the forward time

level T + _- by integration of the given solution for-

ward on the given static grid in a time-accurate man-

ner. At each time step of the prediction stage, a mon-

itor surface _i is computed and stored. In the case

of a vector monitor surface, the components of the

vector are computed and stored separately in a disk

file. If needed, clipping and smoothing of the monitor

surface are performed when the individual monitor

surface is computed. In addition to the "7 individ-

ual monitor surfaces computed during the forward

time integration, a monitor surface is also formed

from the initial condition to the prediction stage (i.e.,

q(x, T)) to provide a buffer region of grid resolution
"behind" the evolving solution and thereby help pro-

vide a smooth transition in node spacing between

successive grids.

Forming the Monitor Surface

After the prediction stage is completed, a com-

posite monitor surface is computed by averaging the

intermediate monitor surfaces computed during the
forward integration on the given grid x from T to

T + T. The composite monitor surface is computed

1 _--_7+ 1as _ = _-I i=l _i"

Adapting the Grid

With the composite monitor surface defined, the

grid adaptation module is invoked to obtain a grid for

the time period T to T + T. Before the grid move-
ment is started, the individual components of the

composite monitor surface are smoothed with equa-

tion (10), regardless of how the intermediate monitor

surfaces were computed; this smoothing ensures that

the composite monitor surface produced by the sum
of the discrete monitor surfaces is itself smooth. The

new grid is generated by performing only two cycles

of the curve-by-curve scheme rather than by iterat-

ing until the grid has converged. Numerical tests

have shown that the grid positions are essentially de-
termined within two iterations. It is doubtful the im-

proved grid resolution that would be obtained with a

more precise placement of the grid points would off-

set the additional expense of computing such a node

placement. In addition, the new grid is typically gen-

erated with a relatively low degree of normal curva-
ture clustering because the composite monitor sur-

face represents the grid resolution requirements for

10



severaltimesteps.Forapplicationscontainingprop-
agatingwavefronts,thenormalcurvatureattraction
resultsin a bufferregionof resolutionimmediately
behindandaheadof, respectively,the initial andfi-
nal solutionusedto createthe compositemonitor
surface.

Transferring the Solution Data

After the new grid is computed, the stored numer-
ical solution from time level T on the previous grid,

q(x,T), is transferred to the new grid x* to yield

q(x*,T). The data transfer is performed with lo-
cal bilinear interpolation. The bilinear interpolation
does not create oscillations in the interpolated solu-

tion vector but is dissipative, does not maintain con-
servation of the solution, and uses data from ahead

and behind the shock wave to perform the inter-

polation; it therefore somewhat defeats the purpose
of using an upwind differencing scheme in the POE

solver. Hence, there could be a benefit to using a
conservative data transfer scheme (refs. 20 to 22) or

a nonoscillatory higher order interpolation method

(refs. 23 and 24).

Solving Over r

The last step of the prediction-correction algo-

rithm is to integrate q(x*,T), the solution at time

level T on the new static grid, forward to the time

level T + 7-. To ensure that the solution does not

outrun the grid resolution provided by the new grid,

during the correction stage the solution is integrated

only up to the time level T + T t, where 7-_ ----0.957-.

Thus, the final solution obtained from the prediction-

correction procedure is q(x*, T + 7-1). If additional

temporal accuracy in the solution is desired, the

prediction-correction procedure can be repeated sev-
eral times before the solution is advanced to the next

time level.

Repeating the Process

With the solution and the grid established at the

time level T + 7-_, the entire prediction-correction

procedure is repeated to advance the solution to
another time level. By successive repetition of

the prediction-correction procedure, the solution is
marched forward through time to the desired final

time level T.f.

The Shock-Vortex Problem

To test the adaptive grid solution method, the

unsteady inviscid flow field for a shock wave pass-

ing through a vortex is calculated. The shock-vortex

problem is of interest at the physical level because

it provides an idealized model for studying certain

acoustic problems and problems associated with tur-
bulence amplification from shock waves (refs. 25 to

27). It also provides a model for studying blade-
vortex interaction for helicopter blades operating at

supercritical speeds (ref. 3). From a computational

viewpoint the problem is of interest because the so-
lution exhibits severe solution behavior and the po-

sition of the severe solution gradients changes with

time. Thus, a locally high-resolution grid is required

to capture accurately all the complexities that de-

velop in the shock front and the vortex as they

approach each other, merge, and continue.
The adaptive grid solution method developed

herein has the important capability of readily ex-

tending beyond the given shock-vortex case to ad-

dress patterns with further complexity. This same

extensibility is not as directly accessible with the

shock fitting methods employed in earlier numeri-
cal studies of the shock-vortex problem (refs. 25 and

26). The adaptive grid solution also has the poten-
tial to improve the efficiency compared with solu-

tions computed on very fine stationary grids using

shock-capturing methods (ref. 27). The adaptive grid
method used herein can adapt the grid to both the

shock wave and the vortex and thereby reduce the

number of grid points required to capture the impor-

tant physics of the problem.

Problem Definition

The shock-vortex problem modeled herein con-

sists of an initially planar shock wave marching to-

ward, and eventually over, a solid-core vortex (fig. 9).

y

x =-0.5 _-_

Inlet

"-x

x=l.5

/-- Shock

Vortex

y = -1.0

Ms=3.0

_utlet

Figure 9. Definition of shock-vortex problem.

The shock wave and vortex are assumed to lie within

a channel having solid walls. All lengths are non-

dimensionalized with respect to a reference length

11



(e.g.,thechannelhalf-width)andtheflow-fieldvari-
ableswith respectto referenceconditionsat x -- oo.

The governing equations for the model problem are

the unsteady, two-dimensional, compressible Euler
equations, which are well documented in the litera-

ture (ref. 28) and therefore are not presented herein.

The initial flow field consists of a planar shock

located at x = 0 and a solid-core vortex rotating
counterclockwise located at x = 0.5. To the left

of the shock wave is the uniform supersonic flow

field that would follow behind a shock wave prop-
agating at a relative Mach number Ms of 3.0 if

there were no upstream disturbance. To the right

(i.e., ahead) of the shock the initial flow field is

obtained by assuming a constant density field and

calculating the velocity from the stream function

G(x,y) = -_ log([(x - Xo) 2 + (y - yo) 2 + b211/2},

the pressure field from Bernoulli's equation, and the

total energy from the equation of state. For this

study )_ = 0.40, b = 0.1, and (xo, yo) = (0.5,0). At
the leading edge of the initial shock front (i.e., x = 0),
the supersonic flow field behind the shock and the

subsonic flow field ahead of the shock are smoothly
merged in the space of a few grid cells in order to

eliminate a numerically induced "bump" which oc-

curs in the solution if the two flow fields are merged

abruptly (i.e., within one grid cell). The additional

bump in the solution occurs in the supersonic flow

behind the shock front, has a magnitude which is a
function of the grid cell size, and occurs when there is

a vortex upstream of the shock and when there is no

upstream disturbance. The flow field for the smooth

shock front is obtained from the solution of a planar
shock wave propagating into a region with no up-
stream disturbance. The modification of the initial

flow field only affects the grid points near x = 0; away
from this region the initial flow field is as described

above. Further details are available in reference 8.

On the boundaries of the domain it is assumed

that (1) at the inlet the flow field is that of the initial

uniform supersonic flow, (2) at the outlet the flow

field is that of the initial vortex, and (3) along the

top and bottom of the domain the flow is tangent to
the boundary (i.e., solid walls).

The Fine-Grid Solution

The results for a solution computed on a static

grid with fine grid resolution are presented first to

provide a basis of comparison for the adaptive grid
solutions. Illustrated in figure 10 are contour plots

for the pressure field of the solution computed on a

static grid with 200 uniformly spaced cells in the ax-
ial direction and 50 cells in the transverse direction.

The cells have a uniform size in computational space,

where the transformation from physical to computa-

tional space is given by Y = tanh 2y/tanh 2 and
YE [--1, 1]. The pressure field for the entire com-

putational domain is plotted at two time levels that

correspond to before the shock reaches the rim of

the vortex core (t = 0.10) and to a long time af-

ter the interaction has occurred (t = 0.42). The
pressure contour levels have been chosen to illustrate

the small-scale flow-field characteristics in the region

trailing the shock wave (i.e., 30 contours uniformly

spaced in the interval 0.85 _<P/Pinlet <- 1.10) (ref. 8);
the change in pressure between the contours is less

than 1 percent of the pressure jump across the shock
wave.

(b) t = 0.42.

Figure 10. Contour plots of pressure field for fine-static-grid
solution.
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Onlythekeyfeaturesthat canbeeasilydiscerned
from the attachedpressureplots are highlighted
herein;for athoroughreviewof thephysicsinvolved
forthedynamicinteractionoftheshockwiththevor-
tex, seePaoandSalas(ref.25),or Meadowset al.
(ref.27).Asshownin figure10(a),beforetheshock
wavereachesthevortexcore,theshockfrontis still
essentiallyplanarandthe pressurefieldbehindthe
shockwaveis slightlyasymmetricbut mostlycon-
stant. Whenthe shockwavepassesoverthe vor-
tex core,the shockfront becomescurved.A long
time afterthe interactionhasoccurred(fig. 10(b)),
the shockwavehasmovedalmostto theoutlet, the
shockfrontisstill curved,andthevortex,whichcan
beidentifiedbytheconcentricpressurecontoursbe-
hindtheshockwavealongthechannelcenterline,has
beenconvecteddownstream.In figure10(b)thereis
avisibleseparationbetweentheshockwaveandthe
vortexbecausetheshockwavepropagatesat afaster
speedthanthevortex.With thebasicsolutionestab-
lished,theadaptivegrid methodcannowbeapplied
to reducethenumberof gridpoints.

Adaptation to Only the Shock Wave

In the first adaptive grid solution an 80- by 32-cell

grid is adapted to a monitor surface formed from the

density field. Redistributing the grid points based

on the density field clusters the grid points at the
shock front because the density field is approximately
constant within the vortex and far behind the shock

front but undergoes a large increase across the shock
front.

The monitor surface for this case is described by

02i,j = h(pi,j - Pmin) (18)
Pmax - Pmin

where Pmax -- Pinlet is the maximum density, Pmin --

Poutlet is the minimum density, and h is the height

of the monitor surface. By adjusting h, we can make

the node cell spacing at the shock front as small as

desired. Setting h = 0.20 results in a grid cell spacing

at the shock wave (i.e., a numerical shock width) that

is comparable to that of the fine-static-grid solution.
Because there is little variation in the density field in

the transverse direction, to maintain adequate grid

resolution along the channel centerline, the grid point
movement in the transverse direction occurs with

respect to a background nodal distribution given by
a hyperbolic tangent spacing (Y = tanh 2y/tanh2).

This node spacing is locally deviated from only in

regions having a high normal curvature which receive

additional node concentration. The percentage of

grid points attributed to curvature clustering is set at

f = 0.075. The initial grid (i.e., at t = 0) is obtained

through adaptation of the grid to a monitor surface

formed from the density field of the initial condition.

Illustrated in figure 11 are the grid and pressure-

field contour plots for adapting the grid to only the
shock wave. In the grid plots, the location of the

shock wave can be determined by the densely packed

strip of grid lines. Comparing the grid and pressure

contour plots in figure 11 shows that the adaptive

grid correctly tracks the shock wave. Comparing the

pressure contour plots in figures 10 and 11 shows that
there is good agreement between the adaptive and

static grid solutions. However, in the adaptive grid

case significantly fewer grid points have been used.

Adaptation to Both the Shock Wave and
the Vortex

Illustrated in figure 12 are the results for a solu-

tion computed on an 80- by 32-cell grid adapted to a

monitor surface containing data from both the shock

wave and the vortex. Adapting the grid to the shock

wave alone is much simpler than adapting it to the

vortex because the shock wave is confined to a very

narrow-banded region. Adapting the grid to the vor-

tex requires clustering grid points into a broad area
in the flow field in which the solution does not nec-

essarily exhibit severe behavior. It should be noted
that the flow-field variations created by the presence

of the vortex in the region trailing the shock wave are
almost two orders of magnitude smaller than the in-
crease in the flow-field values across the shock wave.

For this solution, the grid is obtained with a

vector monitor surface defined from the density field

and the circulation about each point. As described

above, the density field identifies the shock front and

concentrates points to it. The circulation is defined

as F -- j_ V • dl, where V is the velocity vector and
dl is the differential length along a closed path in

the flow field. The circulation provides a means of

tracking and clustering at the vortex core because
F is approximately zero everywhere except within
the vortex core. The circulation is computed at each

node through use of a circuit around the node defined

by the four adjacent grid points that surround it; on
the boundaries of the domain the circulation is set to

beF=0.

The vector monitor surface is described by

8 V _ps - = hs Pi,j -- /:hnin /
t'3 Pmax -- Pmin

_v --_ hv ['i,j - Fmin',J :T&

(19)
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(a)t = 0.10.

I T-

J

It

(b) t = 0.42.

Figure 11. Grid and pressure-field contour plots

where p and F are the density and circulation, Pmax

and Pmin are as defined in equation (18), Fmi n and
Fmax are the minimum and maximum values of F

that occur within the solution domain, and hs and

hv are the heights of the shock wave and vortex com-

ponents of the monitor surface. For the solution de-

scribed here, hv = 0.35, hs = 0.20, and the normal

curvature clustering parameters for the shock wave
and vortex are fs = 0.075 and fv = 0.0375. Us-

ing these values results in approximately the same

grid resolution on the shock wave as for the previous

adaptive solution. Because the computed circulation
values can contain a large amount of high-amplitude,

J t

for adapting grid to only the shock wave.

but unimportant, variations in the regions along the

shock front, the previously described data smoothing

and clipping schemes are applied to the vortex com-

ponent of the vector monitor surface. In addition,

because the intent is to capture both the vortex core

and its effect on the flow field trailing the shock wave,
the vortex component of the vector monitor surface

is smeared over a large number of grid points; the

smearing is performed by passing the vortex com-

ponent 25 times through the low-pass filter used to

smooth the monitor surface values before any grid
movement occurs.
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Figure 12. Grid and pressure-field contour plots for adapting grid to both shock wave and vortex.

The key feature to notice in figure 12 is that the

adaptive grid correctly mimics the shock wave and

vortex portions of the flow field. That is, the grid
is correctly capturing the time-dependent location

and shape of the shock wave and the vortex; in the

grid plots, the cluster of grid points near the channel
centerline is due to the attraction to the vortex.

Comparing figures 11 and 12 shows that adapting the

grid to the vortex results in a slightly tighter packing

of the pressure contours about the vortex, but near
the channel centerline there is a slight degradation

of the shock wave because the same number of grid

points are used to resolve two solution features as are

used to resolve just one.

Conclusions

A general adaptive strategy is described for use

with structured grids. The basic grid movement

scheme is capable of producing smooth grids that

accurately place the grid points in regions of severe
solution behavior. The multidimensional nature of

the smoothing filter controls excessive skewness in

the grid. New grid movement techniques have been

15



demonstratedthat improvethe trackingof multi-
plesolutionfeaturesandeliminate"noisy"valuesin
theadaptivedata. A simpleandflexibleprediction-
correctionschemeis demonstratedfor couplingthe
adaptivegrid to a staticgrid Eulerequationsolver.
Theadaptivesolutionmethodis appliedto solvefor
the unsteadyflowfieldof ashock-vortexinteraction
problem;theabilityof theadaptivemethodto com-
putetime-accuratesolutionsandto accuratelyadapt
thegrid to multiplesolutionfeaturesis thusdemon-
strated.Thesameadaptivesolutionmethodcanbe
usedto study a largenumberof compressible-flow
problems.Furthermore,this methodisalsoapplica-
bleto awiderangeof problems.

It shouldbenotedthat theadaptivemethodde-
scribedhereinis still in theresearchstagesandre-
quiresfurther improvementto becompetitivewith
a fine-static-gridsolution. Future work should
concentrateon extendingthe currentmethodto
three-dimensionalproblemsandimprovingthecom-
putationalefficiencyof the temporalcoupling.The
extensionto three-dimensionalproblemswill require
derivingtheintrinsiccurvaturepropertiesforacurve
containedin a three-dimensionalsurfaceembedded
in a four-dimensionalspace.In the temporalcou-
plingschemethecomputationalresourcesconsumed
by thepredictionstagemustbe reduced.In partic-
ular, the storageondiskof the individualmonitor
surfacesshouldbe replacedwith computationof a
runningsumof the individualmonitorsurfacesin
aninternalarray.In addition,formanyapplications
an adequateestimateof the adaptivedataneeded
to generatethe newgrid couldbeobtainedwith a
coarsegrid in the predictionstage.Thecoarsegrid
couldbecomputedfromthefull gridby elimination
of everyothergrid point in eachdirection,the re-
sult beingthe predictedsolutionis only integrated
overonly one-fourthas manygrid pointsas for a
two-dimensionalproblem.Furthermore,the coarse
gridwouldallowuseof a largertimestepbasedon
the Courant-Freidrichs-Lewy(CFL)constraint.Use
of a largertimestepwouldresultin fewertime in-
tegrationsto coverthe time intervalof the predic-
tionstageandtherebyprovideasignificantreduction
of the computationaltime to performthe adaptive
solution.

NASALangleyResearchCenter
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