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Abstract

This paper considers the use of massively parallel architectures to execute discrete-event simulations

of what we term "self-initiating" models. A logical process in a self-initiating model schedules its own

state re-evaluation times, independently of any other logical process, and sends its new state to other

logical processes following the re-evaluation. Our interest is in the effects of that communication on

synchronization. We consider the performance of various synchronization protocols by deriving upper

and lower bounds on optimal performance, upper bounds on Time Warp's performance, and lower bounds

on the performance of a new conservative protocol. Our analysis of Time Warp includes the overhead costs

of state-saving and rollback. The analysis points out sufficient conditions for the conservative protocol to

outperform Time Warp. The analysis also quantifies the sensitivity of performance to message fan-out,

lookahead ability, and the probability distributions underlying the simulation.

*A preliminary version of this paper appears in the Proceedings of the 1990 SIGPLAN PPoPP Symposium.

tSupported in part by the Virginia Center for Innovative Technology, by NASA grant.s NAG-I-060 and NAS1-18605, and

NSF grant ASC 8819393
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1 Introduction

The problem of parallelizing discrete-event simulations has recently received a great deal of attention. Parallel

simulations are typically described as a collection of Logical Processes, or LPs. Each LP maintains its own

simulation clock, and communicates with other LPs using time-stamped messages. We assume each LP

executes on its own processor, as it might on a massively parallel architecture. The state of an LP at

simulation time t depends on the contents of all messages that should be sent to it with time-stamps less

than t. There are two primary ways in which an LP re-evaluates its state. One way is epitomized by a

queueing network simulation: a job leaving one queue (LP) causes the receiving queue to re-evaluate its

state. This is an example of a message-initiating model, because state re-evaluations at an LP are caused by

messages sent from other LPs. A different method occurs when an LP alone determines when to re-evaluate

its state. The LP will send messages to other LPs following a re-evaluation, because those LP's eventual

re-evaluations will require that information. However, the state messages do not cause the recipients to re-

evaluate their state. The messages cause events that serve only to store the transmitted state information.

This paper concerns such models; we will call them self-initiating models. As we later discuss, this class of

models includes problems as diverse as the Ising spin simulation[14], and trace-driven multiprocessor cache

simulations.

Synchronization has been a major concern of research in parallel simulation. One way of ensuring

correctness is to block an LP from computing its state at t if there is any chance that it will later receive

a message with time-stamp s < t. This type of blocking is an open invitation to deadlock; irregular

and unpredictable synchronization requirements make parallelizing discrete-event simulations a non-trivial

problem. Early research efforts focussed on developing deadlock-free synchronization protocols. Two schools

of thought emerged. The conservative school studied protocols that maintain consistency in the simulation

state: an LP is never allowed to advance its clock so far that it can receive a message in its past. LPs

exploit specific information about the simulation model to avoid or break deadlock. The optimistic school

proposed Time Warp, a scheme that permits an LP to advance its clock without blocking. When an LP

does receive a message in its past, it "rolls back" its clock to the point of the temporal fault, and restores its

state to one existing prior to the fault. Time Warp does not need to use specific model information. Indeed,

a major attraction of Time Warp is its transparency to the simulation modeler.

Before parallel machines were commonly available, the debate between conservative and optimistic camps

was largely philosophical. Then, as performance studies were published, no clear consistently best choice

emerged. The earliest conservative protocols of Chandy and Misra were shown to suffer from serious per-

formance problems on some queueing network simulations [22], but have recently been shown to work well

on road network simulations [17]. Other conservative protocols, notably [13] and [21], achieved acceptable

performance on some problems by exploiting information about the simulation model. Time Warp too was



shownto achieveacceptableperformanceonsomeproblems[3,4]. Theoverheadcostsof state-savingand
rollbackcontinueto beamajordrawbacktoalloptimisticschemes;hardwareacceleratorsforthesefunctions

havebeenproposed[1,5].

Throughoutthis debate,little analytictheorywasdevelopedto predict,explain,or boundtheperfor-

manceofparallelsimulations.Exceptionsarethedetailedanalysesdevelopedin [9]and[18].However,these
studiesarelimitedto twoprocessors,andhavenotbeenextended.Theoryfor massivelyparallelsimula-

tionsis nowstartingto appear.WagnerandLazowskaderiveanupperboundon thespeedupspossible
in a queueingnetworksimulation[25].Studiesof TimeWarptendto assumenegligiblestate-savingand

rollbackcosts.Lin andLazowskahaveshownthat if TimeWarphasnostate-savingorrollbackcosts,and
if "correct"computationsareneverrolledback,thenTimeWarpachievesoptimality[11].Thisis intuitive,

becauseTimeWarpaggressivelysearchesfor thesimulation'scriticalpath--if it is ableto dosowithout
cost,itsperformancemustbeoptimal.OtheranalyseshighlightthefactthatTimeWarpcan"guessright"
whileconservativemethodsmustblock.LiptonandMizellhaveshownthat thereisa certainasymmetry

betweenoptimisticandconservativemethods:whileit ispossiblefor anoptimisticmethodto arbitrarily

outperformaconservativemethod,theconverseisnottrue[12].Madisetti,Walrasad,andMesserschmitt[16]
havedevelopeda performancemodelthat aspiresto estimatetherateat whichsimulationtimeadvances

underanoptimisticstrategysuchasTimeWarp.TheymodelthebehaviorofthesystemasaMarkovchain,
andincludethecostof communicationandof synchronization.Theiranalysisisexactfor twoprocessors,
andapproximateforageneralnumberofprocessors.Theiranalysisisinterestingin thatit permitsastudyof

differentre-synchronizationschemes.However,it doesnotaddressissuesweattackdirectly,namely,bounds

onoptimalperformanceandsensitivityto message-fanoutandlookaheadability.
Analyticstudiesof conservativeprotocols[15,20]areof synchronousprotocols--asignificantdeparture

fromthefield'srootsin distributedsystems.Thesestudieshaveestablishedtheimportantpropertythat
performanceof thestudiedmethodsscalesupwith increasingproblemsizeandarchitecture.Furthermore,

theanalysisin [20]demonstratesthat astheproblemsizeincreasesrelativeto thearchitecture,performance

underthemethodconvergestooptimality.Therateof convergencedependsverymuchonthenatureof the

stochasticprocessesdrivingtile simulation.
A numberof issueshavenotyet beendirectlyaddressedanalytically,andarethefocusof thispaper.

Specifically,weplacenon-trivialupperboundsonoptimalperformance;weincludetheoverheadcostsof

TimeWarpin amodelthat boundsits performancefromabove;westudyanewconservativeprotocoland
placealowerboundonits performance;wegiveconditionsunderwhichtheconservativeprotocolachieves

betterperformancethanTimeWarp. In thecourseof thesederivationswequantify(approximately)the

sensitivityof performanceto lookaheadability,messagefan-out,andtheprobabilitydistributionsdriving
thesimulation.All of thesefore-mentionedfactorsareshownto havesignificantinfluenceonperformance;



performanceimprovesaslookaheadability improvesor asthevariabilityof the probability distribution

decreases, performance degrades as the message fanout increases. It is important to note that these conclu-

sions are derived in the context of self-initiating simulation models only. Different but related results can be

derived in the context of message-initiating models 1.

2 Model

We model a parallel simulation as a collection of N logical processors (LPs) named LP1,..., LPx. Each

logical processor has its own simulation clock. LPs communicate through the exchange of time-stamped

messages. Viewed from the perspective of simulation time, an LP advances forward by executing some

activity that we will call a cycle. In the self-initiating models we consider, at the end of one cycle the LP

schedules the end of the next cycle, independently of any messages it may have received from other LPs.

We let Ci(j) denote the value of LPi's clock at the end of the jth cycle. The length of simulation time that

LPi advances by executing its jth cycle is a random number Xij from a distribution .T'. Consequently, for

every LPi and cycle j
J

Ci(j) = E X,k.
k=l

Assuming that the time increment variables are all independent, Ci(j) can be interpreted as the time of the

jth renewal in some renewal process [24] with inter-renewal distribution _'. We introduce communication

to the model by assuming that each LP_ associates a set of K messages with the completion of each of its

cycles. It" is called the message fanout. Typically, these K messages are intended to inform "nearby" LP's

of the new state just computed. The arrival of such a message at an LP may cause an event, but one that

serves only to store the transmitted value. K -- 2 might be appropriate in a 1D domain, K = 4 or K = 8 in

a 2D domain, K = 6 or K = 26 would be appropriate in a 3D domain. It is important to note that under

our formulation these message fanouts are part of the simulation model, and hence are independent of the

synchronization protocol used. A message associated with the completion of LPi's jth cycle has time-stamp

Ci(j).

The simulation is modeled as N statistically independent, concurrent renewal processes that communi-

cate. Certain points in the analysis to follow are made possible by the assumption of statistical independence

between the recipients of a common message. To support this need for independence we assume that the K

recipients of a message are chosen uniformly at random from the set of all LPs, and that each LP indepen-

dently chooses a new set of recipients each cycle. This assumption does not accurately model the behavior

of any common simulation model, and is used purely to promote tractability. We have performed simula-

1 Performance Bounds on Parallel Message-Initiating Discrete-Event Simulations, D. Nicol, in prepaxatlon



tion studies of our analytic model using "nearest-neighbor" communication, and have found that processor

utilizations are only slightly higher than those achieved using the randomized communication patterns our

analysis assumes. We may have some confidence therefore that the conclusions derived under the assumption

of randomized communication are not completely off the mark.

We will consider two different forms for the probability distribution _'. In one form 9v has a continuous

cumulative probability distribution function, implying that its associated renewal process is non-lattice[24] _.

This form excludes simulation models where time-increments move forward more discretely. We therefore

also derive results under the assumption that .$" is a geometrically distributed random variable, with mean

1/p, where 0 < p_< 1.

Depending on the simulation model, it may be possible to send the messages associated with the comple-

tion of a cycle before an LP actually executes that cycle. In some cases the content of the messages cannot be

predicted, but the time of the messages can. In the former case we will say the simulation has full.lookahead,

in the latter case we say it has time-lookahead. An example of a model with time-lookahead is the Ising spin

simulation [14]. LPs model individual particles, each of which is "jiggled" by thermal effects, at random

intervals. When a particle is jiggled its new magnetic spin is computed as a function of the spins of nearby

atoms at that simulation time. The length of simulation time between jigglings defines a cycle. We are able

to predict when next a particle will be jiggled--this time comes from a random number generator--but will

not know the spins of nearby particles at that simulation time until the simulation actually advances that

far.

An example of a model with full-lookahead (although it's a message initiating model) is a queueing

network with a non-preemptive and load-independent queueing discipline. At the time a job enters service,

say s, we can predict the time at which it will leave service, say _. In fact, we can notify the recipient queue

of that job's arrival at time t. This is not to say that we can actually simulate up to time t. For example,

one of the statistics we may be interested in is the average length of the queue at the time a job departs.

To measure the queue length at t we need to receive any additional jobs that may arrive between times s

and t. The lookahead ability derives from the fact that arrivals between s and t in no way affect the output

behavior of the LP at time t.

Another example of a model with full-lookahead is a simple trace-driven multiprocessor cache simulation

that estimates hit statistics, such as that described in [10]. An LP models one processor's cache; cycles

are composed of the processing of a contiguous sequence of purely local memory references terminated by a

reference to global memory, the "time" of any reference is the number of trace references preceding it a. An

2 A non-negative random variable X is non-lattice if there does not exist any real number d such that _=.-0 Pr{X =nd) = 1.

3note that this property would not be satisfied by a simulation that more accurately models the advancement of time, e.g.,

one that accounts more time for a nfiss than a hit. A weaker form of lookahead exists where the LP can put a lower botmd on

the time of its next global reference by assuming all local references will be hits.



LP sends messages to all other LPs whenever it makes a reference to global memory. By looking at its own

trace the LP can predict the time and content of its future messages. Throughout this paper, protocols that

exploit full-lookahead will do so by requiring an LP to send a message as soon as it is able to predict that

message. We will still require that an LP not process a cycle with completion time t until all messages with

time-stamps less than t have been received, because certain calculations internal to the LP (e.g. statistics

gathering) may require that this monotonicity be preserved. Protocols that exploit time-lookahead do so by

requiring an LP to send an appointment message containing the time of a future message as soon as it is

able to predict that a message will later be sent with that time-stamp. Our analysis will be of simulations

with full-lookahead. We will later remark on how that analysis can be extended to simulations with only

time-lookahead.

We assume that processing a cycle requires one tick of real time. This permits us to view the progress of

the simulation synchronously. While an LP will read all messages sent to it, at each tick, it need not process

a cycle every tick; in fact, synchronization constraints may prevent it from doing so.

Some synchronization protocol must be used to ensure correctness. A conservative protocol prevents an

LP from advancing so far that it can receive a message with a time-stamp smaller than its clock value. For

example, imagine a situation where LPi's clock is s and it will increment its clock to value t on the next

cycle it processes. Imagine that LPk will send a message to LPi with time-stamp v, s < v < t, at the end

of the k + 4th tick. A conservative protocol will ensure that LPi is idle during ticks k + 1 through k + 4.

An optimistic protocol may permit LPi to advance its clock during these ticks, but will then recognize a

temporal error upon receipt of the message with time-stamp v, and roll back. A rollback at LP, can itself

cause other rollbacks on other LPs, as false messages sent by that LP are undone.

Our goal is not to propose a model that precisely describes all self-initiating parallel simulations, nor

is it to analyze the most general possible class of simulation models. Self-initiating models are by no

means the most common kind of simulations, and many simulations will not have the power of lookahead

that we analyze. However, the analytic modeling of parallel simulations is an art in its infancy. We are

simply trying to shed some light on a tractable style of analysis that produces reasonable (and intuitive)

results. Even so, despite the many preceding qualifications the proposed model bears a close resemblance to

simulations of practical interest. In particular the model accurately describes the behavior of the Ising spin

and multiprocessor cache simulations described earlier.

3 Optimal Performance

Finding non-trivial upper and lower bounds on the performance one can achieve in a parallel simulation is

an open question. _,S,_ederive an upper bound on the performance any protocol can achieve under our model



assumptions,andderivelowerboundsontheperformanceof anewsynchronousconservativeprotocol.Our

bound on the performance of optimistic protocols is independent of the message-cancellation strategy used.

3.1 Upper Bounds

We will present an analytic approach that provides upper bounds on optimal performance for a whole family

of lookahead capabilities. Consider any cycle on any LP, and assume that an oracle schedules the processing

of that cycle on the earliest possible tick such that no further messages will be received by that LP with

a time-stamp less than the time at the end of the cycle. Under our assumptions, this scheduling policy is

obviously optimal. Our upper bounds assume the use of this oracle.

Different simulation models have different lookahead abilities. Some models have no lookahead, others

are able to predict ahead one cycle, some may be able to predict multiple cycles into the future. For example,

the ability of the multiprocessor cache simulation to predict its own future references to global memory is

limited only by the memory required to store its trace. We will categorize these abilities by the number of

cycles that can be predicted. A simulation model will be said to have J-cycle full-lookahead if the time and

content of output messages associated with the completion of cycle k can be predicted at the completion of

cycle (k - Y). We assume that simulations exploiting J-cycle full-lookahead will always "pre-send" a message

Y cycles before the message's associated cycle.

The basic approach to constructing an upper bound is simple. The Global Virlual Time [7] at tick i

is denoted GVT(i); this quantity is the least clock value among all LPs at tick i, and is typically used

to gauge the progress of the simulation. We desire to bound the limiting rate of simulation time increase,

lim,-.oo GVT(i)/i. Our approach is to bound GVT(i) by a function N(i), which is the minimum time-stamp

among the "next" messages sent by LPs who received the minimum-time stamped message at tick i- 1.

We then appeal to asymptotic arguments to estimate limi...oo N(i)/i, and hence bound the limiting rate of

simulation time increase.

The bound is constructed as follows. Let train(i) be the least time-stamp among all messages sent at tick

i. This value need not be equal to GVT(i), because the LP with least clock may not have sent a message,

being prevented from doing so by the knowledge that an impending message will arrive with time-stamp

less than its next cycle time. Let r(i, j) be the index of the jth LP (among K) who receives the message

with time-stamp train(i) at tick i. Consider any LPr(ij), and suppose time tmin(i) falls within the simulation

time span encompassed by its njth cycle. Tile next message LPr(ij) sends cannot have a time-stamp larger

than Cr(i,j)(nj -F J), the time associated with the end of its (hi + J)th cycle. The gap of simulalion lime

between train(i) and Cr(i,j)(nj + J) is composed of tile sum of a number of random variables: a cycle residual

Cr(i,j)(nj) -train(i), plus J cycle time random variables ( a J-fold convolution of.%-). This is illustrated by

Figure 1
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Figure 1: Cycle residual and lookahead cycles for LPr(i,j) in model with J = 4 cycle full-lookahead

tmin(i + 1) cannot be larger than the least time-stamp on any message sent at the end of tick i + 1 by

one of LPr(i,1) .... , LPr(i,n). Call this latter time-stamp N(i + 1). Observe that we may write

N(i + 1) = tmin(i) + Mg,j(i + 1),

where

Mg,.t(i + 1) = rain .{Cr(i,j)(nj) - train(i) + _'j(J)},
I<j<_K

g:j(J) being a J-fold convolution of Y random variables. FinMly, observe that N(i+ 1) > GVT(i + 1). Since

our object is to bound limi--.oo GVT(i)/i, it will suffice to bound limi.-.,o N(i)/i.

Observe that for all i > O,

N(i)/i

i

--Z
j=l

i

=E
j=l

i

<-Z
j=l

i

=E
j=l

(N(j) - N(j- 1))/i

(tmin(j - 1) + MK,z(j) - N(j - 1))/i

(N(j - 1) + MK,J(j) -- N(j - 1))/i

MK,j(j)/i. (1)

The appendix gives heuristic reasons for expecting that if _"s tails aren't too large, (e.g., if.T is NBUE, or has

an increasing hazard rate function), then it is reasonable to assume that the sequence {MK,j(i)} converges



intoawide-sensestationaryprocesshavingfinitecorrelationtime[8].Whilethesuppositionis technical,for

ourpurposeshereit impliesthat thelimitingvalueofsum(1)convergesto _(K, J) = limi-c¢ E[MK,j(i)].

• (K, J) then bounds the limiting rate of increase in GVT.

The preceding discussion leads to our first proposition.

Proposition 1 For every tick i let tmin(i) be the least time-stamp among all messages sent at the end of

lick i, and let LPr(i,1),..., LPr(i,g) be the set of LP who receive the tmin(i)-time message. Let nj be the

cycle index of the LPr(ij) cycle containing time train(i), and .T'j(g) be a convolution of J random variables

having distribution .T. Define

MK.J(i + 1) = lmi<_nK{Cr(ij)(nj) -- $min(i) + .T'j (J)},

and let _(K,J) = limi-.ooE[MK,j(i)]. If the sequence MK,_(1),MK,s(2),... converges to a wide-sense

stationary process with finite correlation time, then

lim GVT(i)/i < _(K, J).

A second proposition follows from the observation that a simulation advancing time at rate qp has an average

processor utilization of q%.

Proposition 2 Let the conditions of Proposition 1 be satisfied, and let p be the mean ofF. Then the average

processor utilization is no greater than qt(K, J)/p.

We must estimate q/(K, J) before these propositions yield any insight on performance. Reconsider the

definition of MK,j(i). One takes the minimum of K random variables; each random variable includes the

excess time after train(i) of the cycle containing train(i). We call this time difference a residual. A similar

concept is studied in renewal theory, the residual life of a renewal processes. The difference between our

residuals and those of renewal theory is that our train(i) is itself variable, whereas renewal theory considers the

residual following a constant time t. However, in the Appendix we show that if .T"is non-lattice and tmin(i )

is independent of LPr(i,j), then the limiting residual life has the same distribution as that derived in renewal

theory. This limiting distribution is the equilibrium distribution[24] of _', called 9v_. It is not completely

unreasonable to to assume for the purposes of approximation that train(i) is independent of ;_ll the LPr(i,j),

due to the fact that the set of recipients of the tmin(i)-time message were chosen uniformly ._t random from



the entire collection of LPs. To the extent that this is a reasonable approximation, as k grows, MK.s(k)

increasingly becomes the minimum of K independent and identically distributed (lid) random variables, each

the sum of an _e random variable and an independent J-fold convolution of 9v. Alternately, if _ is geometric

then its residual life has the same geometric distribution, due to the memoryless property.

Our assumption of random communication patterns is now needed again. When the number of LPs is

large compared to K, and when the partners of each communication are chosen randomly, we may take

the K random variables comprising Mg,j(k) as being independent. This is not rigorously true, as there is

a very slight dependence of the residuals on the fact that their LP's did not send the train-time message;

since this is true of all but one LP in the entire system, the assumption of independence is reasonable. Our

approximation of @(K, J) is denoted A(K, J), and is given by

• (I£, J) _ E[min{K iid _'e +-T'(J) random variables}] (2)

-- A(K, Y).

Throughout this paper we will implicitly assume the validity of this approximation as a hypothesis to

each proposition. The form of the approximation is especially nice, as it permits us to analyze some special

cases.

3.1.1 NBUE Distributions

The case of J = 0 is of special interest, as it concerns simulations with no lookahead ability. Furthermore,

consider simulations where _" is non-lattice and New Belier Than Used in Expectation, (NBUE) [24] 4. Many

common distributions are NBUE, including normals truncated to be positive, gammas, Weibulls, and sums

of nonnegative constants with exponentials. When 9r is NBUE, then Ue is dominated stochastically 5 by the

exponential with mean p. Thus, if we replace each 9_e random variable in the definition of A(K, 0) with an

exponential having mean /_, the resulting mean p/K is at least as large as A(K, J).

Proposition 3 Suppose that ._" is non-lattice and NBUE. Then A(K,0) < #/K . The optimal processor

utilization in a no-lookahead simulation where .T" is NBUE is no greater than 1/K.

This result shows the strong influence that K has on performance when F is non-lattice--it limits processor

utilization to 1/K. If/_ remains proportional to N as N increases we have the following result.

4A non-negative random variable X is NBUE if for all t > O, E[XIX > t] < E[X]. In other words, the expected residual life

of X is never greater than the expected value of X.

5X is said to dominate Y stochastically if Pr{X > t} > Pr{Y > t) for all t.



Proposition 4 Let .T" be non-lattice and NBUE, and suppose K >_ 13N for all N in a no-lookahead simu-

lation. Then under any protocol and for any N, the average number of total cycles processed by the system

per lick cannot exceed 1//3.

K equals N in the cache simulation we have already described, because one LP's global reference is sent to

all other LPs. The conclusions of Proposition 4 apply whenever a synchronization protocol treats the model

as having no lookahead.

3.1.2 Geometric Distribution

Propositions 3 and 4 depend on 9_ being non-lattice. When U is geometrically distributed with mean

p _- 1/p, then the residuals defining A(K, 0) are also geometric with mean lip. It is straightforward to

compute A(K, 0) as the expected minimum of K independent geometrics. This mininmm has the same

distribution as one geometric with mean 1/(1 - (1 - p)g). Observe that this mean is always at least one, it

cannot diminish arbitrarily as K is increased. When either p is small or K is large the mean is very close to

one, leading us to the next proposition.

Proposition 5 Suppose that 9c is geometric with mean # = lip. Then

1
a(U, O) <_

1 - (1 - p)K'

and processor utilization is no greater than p/(1 - (1 - p)K). Thus, as (1 --p)g _ O, processor utilization

is no greater than p.

3.1.3 Constant plus Exponential Distributions

Larger upper bounds on utilization are possible given better lookahead ability. Suppose that a simulation

has one-cycle full-lookahead ability, and consider the family of distributions where a constant 6 is added to

an exponential with mean Px. Within this family we can decrease the variability by increasing 6, but still

retain the tractability of the exponential. This family of random variables is NBUE. In the Appendix we

show that under these assumptions

ex_f -K6

A(K, 1) _< 6 + y _ff + K (3)

The interesting thing to note about this bound is that it decreases in 1/V_ rather than in 1/K, as in

the no-lookhead case. This suggests that really significant performance gains may be possible when ff is

10



moderatelylarge,byexploitingone-cyclefull-lookahead.However,thefactthatwehaveincreasedanupper
boundonperformancedoesnotnecessarilyimplythat performanceitselfmustincrease.In thefollowing

sectionweaddressthis issuebyderivinga lowerboundonoptimalperformanceundertheassumptionof

full-lookaheadfor J > 1 cycles.

3.2 Lower Bounds

We now derive a lower bound on optimal performance for simulation models with full-lookaheads of J > 1

cycles. Our approach is to view synchronization as a scheduling problem, and derive the performance one

achieves using a particular scheduling strategy. Being sub-optimal, this performance provides a lower bound

on optimal performance. The strategy we study forms the basis for a conservative synchronization protocol.

Consider a simulation model with J-cycle full-lookahead. Recall that we exploit J-cycle full-lookahead

by requiring an LP who completes cycle m to predict and send the message associated with the end of cycle

m + J. Suppose LPi last executed cycle m, and knows (through some as yet unspecified means) that it will

not receive any further messages with a time-stamp t or smaller, t falling within its (rn + k)th cycle. LPi

may safely compute cycles m + 1 through m + k - 1, and in doing so predict the messages associated with

the completion of its cycles m + 1 + J through m + k + J - 1. The idea behind our scheduling strategy is

to define a window by defining this t. All LPs may then advance as described above, whereupon we define

a new t and hence a new window. Our strategy defines and processes each window with tlle following steps.

1. For each LP determine the time of the next message it will send. If LPi last evaluated cycle m, the

time of the next message it will send is Ci(m + J + 1). Compute the minimum such Cmin among all

LPs. Cmin is called the ceiling.

2. Each LP computes all its cycles with termination times strictly less than Cmin. For each cycle n that

is so processed, the LP predicts and sends the message associated with the completion of cycle n + J.

3. Each LP accepts the messages sent in the previous step.

This process is repeated until the simulation termination condition is reached.

The performance of this mechanism is derived as follows. Let train(j) be the ceiling computed during the

jth window. The asymptotic rate at which sinmlation time advances is identical to the asymptotic rate at

which emin(J) advances. Consider the jth window: every LP¢ computes all as-yet-unprocessed cycles with

completion times less than Cmin(j). Let rrl i be the last cycle so processed by LPi. Note that by the end of

the window, LPi will have sent messages associated with cycles up to mi + J. The time of the next message

LPi will send can be expressed as the sum of train(j), the residual of the cycle containing Cmin(j), and the

cycle time increments of the following J cycles. Therefore, the difference between tile time of LPi's next
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messageandemin(j) is composed of a cycle residual plus a J-fold convolution of cycle time increments. We

have already seen in §3.1 that as j grows large this difference may be approximated as a random variable

having the distribution of.T, +.T(J). Then Cmin(j + 1) can be expressed as craig(j) plus the minimum of N

such random variables. This shows that

E[cmin(j + 1) - Cmin(J)] -'-* @(Y, J) as j --_ _.

No LP can process more than J cycles in a window, because it can never advance beyond the time of

the next message it will send (J cycles distant), computed in step 1 of the window processing. #(N, J)/J

consequently bounds the limiting rate at which simulation time advances from below.

Proposition 6 If the suppositions of Proposition 1 are met, then the limiting ra_e of simula$ion time advance

using lookahead scheduling on a J-cycle full.lookahead simulation model is at least _(N, J)/J. The limiting

processor utilization is at least _(N, J)/(J#).

Now consider the special case of J = 1, and the 6 + exp{tt_} distribution. In the Appendix we show that

6 + U_ _< A(N, 1), (4)

implying that p, the average processor utilization achieved, is at least

p >
- 6+_,

_ r+ _ where r = 6/tt_.
r+l

This shows that the extreme conservatism of having every LP block on the Cmin-time messages can be highly

tempered. If r = 6/p, is at all significant the utilizations are quite good. For example, if r = 0.25 we still

get at least 20% utilization. Increase r to 1 and we are assured of 50% utilization, r = 10 delivers 91%

utilization.

The case where .T is geometric is also of interest. A(N, J) is composed of the minimum of N random

variables, each the sum of J geometric random variables. Each geometric is at least as large as one, implying

that A(N, J) > J. If the geometries have mean /_ = I/p, Proposition 6 shows that average processor

utilization is at least 100. p%.

4 Analysis of Optimistic Protocol

We next turn to a similar analysis of optimistic protocols. These protocols are complex, especially with

regard to the effects of cascading rollbacks. It. appears to be a formidable task to put a lower bound on

12



therateat whichanoptimisticprotocoladvancessimulation time. However, it is easy to extend the ideas

of the previous section to put an upper bound on this rate. Indeed, our ideas of focusing the analysis on

the costs along the critical path are mirrored in Lipton and Mizell's proof that conservative methods cannot

arbitrarily outperform Time Warp.

Successful conservative schemes exploit simulation model characteristics such as non-preemptive queue-

ing, and precalculation of event duration times. One of the great hopes for optimistic protocols is that

they can be implemented without using explicit knowledge about the simulation model. Consequently, a

"model-independent" implementation cannot assume any lookahead. The results of the previous section

show that this assumption immediately limits the processor utilizations that are possible. Naturally, the

cost of state-saving and rollback limits utilizations even more. To be sure, simulations using Time Warp may

exploit model information; indeed, users who have and use Time Warp implementations have suggested they

should do so [2]. Note however that these types ofoptimizations do not alleviate the burden of state-saving.

The arguments to follow assume that Time Warp treats the simulation model as though it has no lookahead.

Under Time Warp an LP rolls back if it receives a message with a time-stamp less than its clock. We

assume that an LP's state is always saved prior to the execution of a cycle, and model that cost with ticks

of length Cs > 1, as compared to the earlier ticks of length 1. We suppose that a rollback requires CR time,

measured in units where processing an event (without state-saving) takes unit time. The model bounds

the rate of simulation time increase on the critical path. The only assumption used by the analysis is that

a "late" message causes a rollback at the receiving processor, any effects due to rollback propagation are

ignored. A rolled-back processor will re-execute cycles it was rolled past. For this reason our analysis is

independent of whether "aggressive" or "lazy" message cancellation[23] is used. By assuming that cycles

passed by the rollback are reevaluated, the analysis assumes that "jump forward" mechanisms [6] are not

used. Under an optimistic protocol a given cycle of an LP may be processed a number of times before it is

"cast". To avoid complications we assume that the length in simulation time of a cycle is the same, every

time the cycle is processed.

Suppose that a rollback is initiated at LPi at tick k. Barring any further interruptions due to cascading

anti-messages, the rollback completes at tick k + Cn. At tick k + Cn + 1 the LP rejoins the simulation and

communicates its K messages. The idea behind the analysis of optimal performance in §3 was to bound the

advance in simulation time between two ticks by looking at the LPs which receive the message with least

time-stamp at a tick. Exactly the same idea applies here, except that the increase in simulation time must

be measured over more than one tick.

Consider the set of LPs who receive the message with time-stamp /rain(i). Let LPmin be the LP in this

set with the minimum cycle residual (measured from train(i)), and recall that N(i) is the tick at which LPmin

sends its next message. We will use these definitions to partition the running time into phases that measure
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thetimebetweenanLP's receipt of a train-time message, and the next tick at which the LP completes

a cycle and sends a message. The idea of a phase is to measure the rollback delay caused by receipt of

the train-time message. Phase 1 encompasses ticks 1 through N(1)- 1. Phase 2 encompasses ticks N(1)

through N(N(1)) - 1, phase 3 encompasses ticks N(N(1)) through N(N(N(1))) - 1, and so on. When jr

is non-lattice, any LP receiving the tmin(i)-time message at the end of tick i must roll back, or already be

rolling back. If it is already rolling back and if the transmission of the train-time message to that LP is

independent of the fact it is already rolling back, then on average the rollback is half-way completed. In

this case the mean number of ticks in a phase must be at least 1 + CR/2. This argument requires _" to be

non-lattice, for when .T"is discrete it is possible for an LP receiving the least time-stamp message to have

the same clock value as the time-stamp, possibly making a rollback unnecessary.

Let P(i) be the number of phases that have completed by tick i, ci be the tick that completes the phase

containing i, and let tj be the tick that completes the jth phase. Then

GVT(i)/i < GVT(c,)/i < N(ci)/i

<- \(P_+IMK'J(J)) /ii=l

= \ >37(0¥ /

(EJ°=(il)+1 MK__,J(J)_ ( P(i) +1 )<- k P(i) + 1 ] _ X-'P(i)rt .- "XZ__j=l _ $ tj-1)

We have already identified conditions under which the leftmost quotient converges to A(K, 0). Under similar

conditions on the length of phases the rightmost quotient will converge to the reciprocal of the mean number

of ticks per phase. Recall that each tick is a factor of Cs slower due to the cost of state-saving. This

argument proves our next proposition.

Proposition 7 Suppose the sequences { MK,j( i) } and {ti+l-ti} converge to respective wide-sense stationary

processes with finite correlation time. Let CRh = CR/2. If Time Warp treats a simulation model as though

it has no lookahead then

,(K,o)
lim GVT(i)/i < Cs(CRh+I)

i --* c_ --
Cs

Consequently, the processor utilization is no greater than

than _ when Y: is discrete.
t_C s

if J r is non-lattice

if._ is discrete

@(K,O)
_,Cs(CRh+I) when .T is non-lattice, and is no greater
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An easyupperboundcanbeput onTimeWarpevenwhenit exploitslookahead,becauseeveryLP

incessantly saves state. Each tick some LP executes a cycle, and first saves state, so that every processing

tick is delayed by a state-save. Therefore, Time Warp's performance cannot be any better than a factor of

Cs worse than optimal.

Proposition 8 The optimal rate of simulation time advance under Time Warp on a simulation model having

J-cycle full-lookahead is no greater than _JCs ," average processor utilization is no greater than _(K,S)juCs"

5 A Conservative Protocol

The promise of (sometimes) good performance achieved by the scheduling strategy described in §3.2 sug-

gests its use as the basis for a synchronization protocol. Unlike many conservative protocols, this one is

synchronous, in that the computation of the ceiling value implicitly contains a global synchronization among

processors. This synchronization is all that is needed to implement the policy. The lower bound on perfor-

mance we derived in §3.2 must change to accommodate the cost of computing the ceiling. Define Ca >_ 1

so that a processor is engaged in synchronization overhead 100(1 - 1/C6)% of the time. Equivalently, one

can view the ticks as being Ca percent of the length of our earlier ticks, due to the overhead of synchroniza-

tion. Depending on the granularity of the event computation the delay cost of synchronization can be quite

small, as most richly connected architectures such as a hypercube can compute a global minimum in log N

steps. Some architectures such as the second generation Connection Machine already have hardware support

for common global reductions like the minimum. Including this synchronization cost, the lower bound on

processor utilizations becomes gl(N, J)/(CaJlt).

Consider again a simulation with 1-cycle full-lookahead with 6+exp{#_} time increments. Using approx-

imation (3) and inequalities (3) and (4) we can put a lower bound on the ratio of the conservative protocol's

utilization to optimal utilization. Table 1 plots this bound as a function of 6 and K, for fixed/_r = 1, Ca = 2

and N = 65536.

Relatively good performance is possible when 6 is non-trivial relative to #, and/or when K is large, even

though synchronization overheads are 50%. However, if the upper bound on optimal performance is at all

tight there is clearly room for significant improvement. It is here that the extreme conservativeness of having

every LP wait for the least-time future message hurts. It may be that more complex protocols such eus the

bounded-lag protocol [la] could significantly boost performance in this region.

We can determine situations where this conservative protocol achieves better performance than Time

Warp. Assume the validity of approximation (3), and assume that _" has the 6 + exp{#_} distribution.

15



K\_f 0.00 0.10 0.5 1.00 5.0 10.0

2 0.001 0.021 0.076 0.116 0.208 0.237

4 0.002 0.034 0.119 0.176 0.295 0.330

8 0.003 0.053 0.173 0.243 0.367 0.399

16 0.004 0.079 0.231 0.303 0.409 0.435

32 0.007 0.114 0.284 0.348 0.434 0.453

(Conservative utilization)/(Optimal utilization)

Table 1: Approximated lower bound on fraction of optimal performance achieved by the conservative protocol

when px = 1, CG -- 2 and N -- 65536.

This distribution is NBUE, whence by Propositions 3 and 7, 1/(Cs(CRh + 1)K) is an upper bound on Time

Warp's utilization. From this, Proposition 6, and equation (4) we determine that the conservative protocol

achieves better performance than Time Warp whenever

+
Cs(C._ + l) < _+_,_

Note that this inequality assumes that Time Warp is not exploiting lookahead.

Estimates for individual process state sizes in the near term at the Jet Propulsion Lab are from 4K up

to 1M bytes [1]. For 4K state sizes, it is estimated that 90% of a processor's time could be devoted to

saving state. Using Time Warp on these production problems without the benefit of hardware accelerators,

Cs : 10 is apparently a reasonable value.

Physical processes modeled by LPs very rarely have zero duration times. Many modeled processes exhibit

a fixed startup cost, e.g. chocking a bit into a drill in a manufacturing simulation. Therefore, non-zero values

of 5 seem reasonable in practice. Relatively large values K are also common, especially in domain oriented

simulations where domain sectors are LPs that communicate in a nearest neighbor pattera.

Table 2 plots the ratio of the lower bound on the conservative method's utilization to the upper'bound

on Time Warp utilization, as a function of _ and K for fixed /z_ = 1, N = 65536, Co = 2, and Cnh = O.

One set of data assumes that Cs = 10. Another assumes that Cs : 2, making state-saving comparable to

the cost of a global synchronization.

The performance difference is not so great when _- is geometric. Using Propositions 5 and 7 we bound

Time Warp's utilization from above by p/(Cs(1 - (1 - p)K). A simple lower bound on the utilization of

the conservative protocol is p/Cc. Table 3 plots the ratio of these bounds for the same set of parameter

values as did Table 2. The values of p are chosen to yield the same mean values of.T" as those in Table 2.
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K\6 0.00 0.10 0.50 1.00 5.0 10.0

2 0.049 0.954 3.366 5.024 8.341 9.095

4 0.098 1.907 6.732 10.049 16.683 18.191

8 0.196 3.814 13.464 20.098 33.366 36.381

16 0.392 7.629 26.928 40.196 66.732 72.763

32 0.783 15.258 53.856 80.392 133.464 145.526

(Conservative utilization)/(Time Warp utilization)

+ exp{#.) distribution, high state-saving costs

K\6 0.00 0.10 0.50 1.00 5.0 10.0

2 0.010 0.191 0.673 1.005 1.668 1.819

4 0.020 0.381 1.346 2.010 3.337 3.638

8 0.039 0.763 2.693 4.020 6.673 7.276

16 0.078 1.526 5.386 8.039 13.346 14.553

32 0.157 3.052 10.771 16.078 26.693 29.105

(Conservative utilization)/(Time Warp utilization)

6 + exp{#_) distribution, low state-saving costs

Table 2: Comparison of conservative protocol and Time Warp when .T has the 6 + exp{_} distribution.

p_ = 1, N = 65536, CRh = 0. High state-saving costs modeled with Cs = 10, low state-saving costs with

Cs=2.

Despite the better showing by Time Warp, in most of the cases shown the conservative method compares

favorably with Time Warp. The insensitivity of the conservative method to fanout is a direct consequence

of its implicit assumption assumption that the next message to an LP can come from anywhere. This is

equivalent to assuming a fanout of N.

Simulation studies suggest that our upper bound on Time Warp's performance is somewhat larger than

the observed performance. Figure 2 illustrates the point by plotting the measured (simulated) performance of

Time Warp and our conservative method on the analytic model. Comparable overheads are used (Cs = CG =

2), the conservative method exploits a 1-cycle full-lookahead model while Time Warp does not. Aggressive

cancellation is used in the Time Warp simulation.
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K\p 1/1 1/1.1 1/1.5 1/2 1/6 1/11

2

4

8

16

32

5.000 4.959 4.444 3.750 1.528 0.868

5.000 5.000 4.938 4.688 2.589 1.585

5.000 5.000 4.999 4.980 3.837 2.667

5.000 5.000 5.000 5.000 4.730 3.912

5.000 5.000 5.000 5.000 4.985 4.763

(Conservative utilization)/(Time Warp utilization)

geometric distribution, high state-saving costs

K\p 1/1 1/1.1 1/1.5 1/2 1/6 1/11

2 1.000 0.992 0.889 0.750 0.306 0.174

4 1.000 1.000 0.988 0.938 0.518 0.317

8 1.000 1.000 1.000 0.996 0.767 0.533

16 1.000 1.000 1.000 1.000 0.946 0.782

32 1.000 1.000 1.000 1.000 0.997 0.953

(Conservative utilization)/(Time Warp utilization)

geometric distribution, low state-saving costs

Table 3: Comparison of conservative protocol and Time Warp when _ has geometric distribution. #x -- 1,

N = 65536, CRh = O. High state-saving costs modeled with Cs = 10, low state-saving costs with Cs = 2.

6 General Application

The conservative protocol described earlier has broader application than just to our simple analytic model.

Its principles form the basis of a parallel simulation testbed we have implemented on an Intel iPSC/2 [19].

The key idea to making efficient use of such a coarse-grained machine is aggregating large numbers of LPs for

evaluation on each processor. One advantage to aggregation is that a model which suffers very low processor

utilizations when each LP has its own processor can achieve good processor utilizations on a coarse grained

machine. For example, consider a model with 65536 LPs, which gets 1% utilization on an architecture with

65536 processors. Evaluate that model on a machine with 64 processors, and on average each processor

will have more than l0 events to process each synchronization window. Indeed, the results developed in the

framework of a more complex stochastic model show that given 1-cycle full-lookahead, performance of our

method approaches optimality as the size of the problem is increased relative to the architecture [20]. These
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Figure 2: Empirical comparison of Time Warp with aggressive cancellation and conservative protocol. Con-

servative protocol exploits 1-cycle full-lookahead, Time Warp does not. Overheads are equivalent: Cc = 2,

Cs = 2. N -- 65536, communication patterns are random. _ = 0.25, p_ = i.

conclusions are supported by experiments on the testbed where we have achieved processor utilizations in

the range of 60%- 85% using 32 processors on large queueing network, logic network, and cellular automaton

simulations. The performance degradation there is not due to blocked processors, it is due to communication

and synchronization overheads.

The results reported here are easily adapted to simulation models having only time-lookahead. The

conservative protocol is modified so that promises of future messages are sent as soon as possible, and then

tile messages themselves are sent upon completion of the appropriate cycle. The windows are defined a.s

before (the ceiling is the least next appointment time to be sent), but instead of processing all events in

one pass, the protocol iterates over the window. Each iteration, computations that are assured of no future

messages (as established by the lookahead message times) are performed. These create messages tbat will

"free" other computations that depend on them. The analysis goes through as before, except that the

increase in simulation time must be amortized over the average number of iterations in a window. We have

not yet firmly established this value, but heuristic arguments suggest that it is O(log N).
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7 Conclusions

This paper proposes and analyzes an intuitive model of massively parallel discrete-event simulations. We

derive non-trivial upper and lower bounds on optimal performance for certain classes of simulations, derive

an upper bound on Time Warp's performance, and derive a lower bound on the performance of a newly

proposed conservative method. These results permit a derivation of sufficient conditions for the conservative

method to outperform Time Warp.

Our analysis quantifies the dependence of performance on the time-increment distribution, showing that

distributions with significant constant components lead to good performance. We also determine the sensitiv-

ity of performance to lookahead, and to message fan-out. Unfortunately, our results rest on approximations

which are justified only heuristically, although there is excellent agreement between analytic and empirical

results. Future research may be directed towards firming up the foundations of our approach.

Our results are significant in two ways. To our knowledge this is the first analysis able to analytically

compare the performance of a synchronization protocol on a stochastic model with a non-trivial bound on

the optimal performance one can achieve. It is also significant that we are able to classify simulation models

under which a conservative method has provably good performance. To be sure, there are a large number of

simulation models where our protocol will fail miserably, and there are a large number of models which lack

the lookahead demanded by our method. Nevertheless, a better understanding of the complex behavior of

parallel simulations demands analysis, and this paper is an early effort at providing that analysis.
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Appendix

In this appendix we derive a number of results too detailed to include in the body of the paper.

Limiting Distribution of Residual

Let X(t) and Y(t) be independent renewal processes having non-lattice inter-renewal distribution F and G

respectively. Let Rx(t) denote the residual life at t of the process X(/)--the remaining time until the next

renewal. It is known [24] that as t grows large Rx(t) converges in distribution to F's associated equilbrium

distribution F_ :

Pr{F_ > s} = Pr{F > u}/# du

where/_ is F's mean. Now let Sj be the time of the jth renewal in Y(t). We will sketch an argument showing

why the limiting distribution of Rx(Sj) as j _ oo is also F_.

To show convergence we must demonstrate that for every x > 0 and e > 0 there exists a j( such that for

all j > j,,

I Pr{Rx(Sj) > x} - Pr{Fe > x}l < e.

Choose any x and e. Let gj(t) be the density function of Sj (a j-fold convolution of G). By the independence

of X(t) and Y(t) we may write

Pr{Rx(Sj) > x} = Pr{Rx(t) > x}gj(t) dt,

and

_0 °°
IPr{Rx(Sj) > x} - Pr{F_ > x}l = IPr{Rx(t) > x} - Pr{F_ > x}lgj(t) dt.

Because Rx(t) converges in distribution to F, as t _ _, we may choose t¢ so large that for all t > t,, the

absolute difference inside the integral above is no greater than e/2. We may also choose some j_ so large

that Pr{Sj < t,} < e/2 for all j _> j_. In this case for all j >__j_

I Pr{Rx(t) > x} - Pr{Fe > x}lgj(t ) dt < gj(t) dt + (e/2)gi(t) dt

<_ e/2 + c/2.

This demonstrates that the distribution of Rx(Sj) converges to F,.

limj--,oo JEi=l MK,j(i)/i _ _(K,J)

Here we describe reasonable conditions under which the limiting average of the sequence {'_ll(,j (i)} converges

to _(h', J). View the sequence mg,.t (1), MK,j(2),..., as a discrete-time stochastic process {mK,j(i)}. For i

large it is reasonable to assume that this process is stationary in the wide-sense[8], meaning that there exists
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values_K,J andC_,j such that E[MK,j(i)] - _K,_ < oo and E[MK,j(i) 2] = C_,j < oo for all i sufficiently

large, and that Cov[MK,j(i), Mg,j(j)] is a function only of [i - j[. Furthermore, we expect that MK,j(i)

and MK,j(j) should become independent as [j - i[ grows. If they become independent quickly enough, we

will have
co

[E[MK I(i)MK,j(j)] - 2, _,+] < _. (5)
j=iq-1

If this inequality holds true (for a general wide-sense stationary process) the process is said to have a finite

correlation time.

We have not developed formal arguments that {MK,1(i)} becomes wide-sense stationary with a finite

correlation time. However, we can give heuristic reasons why it is reasonable to assume so. MK,j(i) is the

minimum of K random variables, each comprised of the sum of a residual plus the sum of J cycle times.

Among all these let nmax be the maximum index of a cycle time random variable (or residual) appearing

in MK,j(i). Now suppose the time-increment distribution is exponential. Any MK,j(j) composed entirely

of random variables from cycles with indices greater than nma × is independent of Mg,j(i), owing to the

memoryless property of the exponential. Let D be the random number of ticks that pass after i before every

LP has evaluated cycle nmax- Then we have

_ [E[MK,j(i)MK,j(j)] -- _I(K, J)_[ =

j=i+l

i+D

[E[MK,j(i)MK,j(j)] - _(K, j)21.
j=i+l

Since MK,j(i) and MK j(j) have the same distribution, we must have E[MK,j(i)MK,j(j)] < C 2 Thus, -- K,J "

i+D

[E[MK,j(i)MK,I(j)] -- q(g, j)2[ < E[D] (C_,j - q2K,j) <
j=i+l

provided that E[D] is finite. Assuming that a serial simulation will always advance a given finite amount of

simulation time in a finite expected number of cycle executions, E[D] will be finite. This is true because a

serial simulation will always advance the LP with least next message time each tick, and in a finite expected

number of steps will advance each LP at least once. E[D] is no larger than this expectation, and is hence

finite. This argument rests on the fact that MK,j(i) and MK,j(j) become independent once j is large

enough. The independence is an artifact of the exponentiality. Intuitively, if the tail of _" cannot become too

large (e.g. if _ is NBUE or if it has an increasing hazard rate function), it is reasonable to expect rapidly

diminishing correlation and hence a finite correlation time. Such technical details appear to be difficult to

establish.

The result we want follows if {MKj(i)} is wide-sense stationary with a finite correlation time. Let

Mg,j(i) be the average ]_+[g,J value taken over the first i ticks:

_1g j(i) = _=1 MK,J(j)
' i
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From[8](p.484)wefindthat

lim E[(MKj({) - _(K, j))2] = 0.
i---* Oo

This condition is sufficient strong for us to take _(K, J) as the limiting value of MK,j(i).

Expected Minimum of Exponential Sums

Next we derive upper and lower bounds on the expected minimum of n independent and identically random

variables, each constructed by adding two independent exponentials which need not have the same mean

(this is a slight generalization of an Erlang-2 distribution).

Our approach is to analyze the hazard rate function of a single exponential-sum. We will construct one

random variable with a larger hazard rate, and one with a smaller one. The former is stochastically smaller

than the exponential-sum, hence the minimum of n such is stochastically smaller than the minimum of n

exponential-sums. Similarly, the minimum of n independent random variables that stochastically dominate

an exponential-sum will stochastically dominate the minimum of n exponential-sums.

Let A1, A2 with A1 :> A2 be the exponential parameters for exponentials X1 and X_. The hazard rate

function As(t) of X1 4- X_ is found by considering a two-stage process where the the first stage requires X1

time and the second stage requires X2. Intuitively As(t) is the instantaneous probability density associated

with the process finishing at t, given that it has not yet finished. Condition on whether X1 < t: if so, then

As(t) is A2 because the process is in the second stage, if not it is zero because the process has not yet finished

the first stage. Thus we have

As(t) = (1 - Pr{X1 > tlX1 + X2 > t)A_. (6)

An equivalent (but much nastier) expression for A is derivable from first principles, taking the quotient of

the density function of X1 4- X_ to the probability that X1 4- X2 > t. Our expression is more convenient, in

that it suggests simple ways in which As(t) can be bounded from above and below.

An upper bound on A,(t) is constructed by observing that the conditional probability in equation (6) is

at least as large as Pr{Xa > t} = exp{-Alt}. Thus

As(t) < (1 -exp(-Alt})A2.

This latter function is concave in t and is hence dominated everywhere by the line tangent to it at t = 0:

hi(t) = tA1A2. A random variable with hazard rate function ht(t) is therefore stochastically dominated by

X1 + X2.

An lower bound on As(t) is constructed by exploiting the fact that

Pr{XI>tlXI+X_ >t} = Pr{Xl>t}
Pr{X1 + X_ > t}
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< Pr{Xl > t}

Pr{Xx + X3 > t}

1

1 + Air

where X3 has the distribution of X1

Consequently,

A,(t) > 1 1+ _1t

This function is increasing and concave in t. It equals A_/2 when t = l/A1. Consequently, this function

dominates the piecewise linear function h,,(t) which rises linearly with slope A1A2/2 until t = 1/A1, and then

is the constant A2/2.

Let Zx,..., Z,_ be n independent random variables with hazard rate ha(t). The hazard rate of the

minimum of these is simply n • h,,(t). To compute the expected minimum we use a well-known relationship

between a random variable's hazard rate function and its cumulative distribution function. We have

E[min{Z1,..., Zn }] = _0 °° Pr{min{Z1,...,Zn} > t} dt

/o /o'= exp{- n. h_(s)ds} dt

/101Ix' exp{-nA1A2t2/4} dt + exp{-(tnA2/2 nA2/(4A1))} dt

f® 2 exp{-nA2/(4A1)}= I]A, exp{-nAxA2t2/4} at + (hA2)

To evaluate the remaining integral we make the change of variables s = t_, and discover that

f® 1/:% exp{-nA1A2t2/4} dt : _ [v/'ffZ_exp{-s2/2} ds
J®

= 4_ (O(V/=_) - 1/2),

where ®0 is the cumulative distribution function for a standard normal. This gives the upper bound

E[minimum of n iid exponential-sums] < \/-_----_-_A(®(V/_)47r _ 1/2) + 2 exp{-nA2/(4A1)}(nA_)

2 exp{-nA_/(4A1)}< + (n_)
(7)

A lower bound is found similarly. The hazard rate for the minimum of n independent random variables

having hazard rate function ht(t) is n. hdt ), Integrating as we did to derive the upper bound, we determine

a lower bound of

__ E[minimum of n iid exponential-sums] (8)_<
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Bounds on _ + exp(p_) Distribution

NextweconsidersomeboundsonA(K,1)derivablewhenthetime-incrementdistributionis a constant6

plusanexponentialwithmean/_x,andwhenthesimulationhas1-cyclefull-lookahead.

A(K,1) is the expectedminimumof K random variables, each comprised of a residual plus a time-

increment value. The residual has the distribution of the equilibrium distribution of the 6 + exp(px) distri-

bution. We first consider this equilibrium distribution. Working directly from definitions [24], we determine

that its hazard rate is

{1h(t) = 6+ff_-t for t < 6

fort >6

Since h(t) > 1/(6 + p_) for all t, the equilibrium distribution is stochastically dominated by an exponential

with mean 6 + p_. Let Ri be a residual having this equilibrium distribution, R{ be an exponential with

mean 6 +/_x, and Xi be exponential with mean/_. Then the sum Ri + 6 + Xi is stochastically dominated

by R{ + 6 + Xi, and

E[ min {R_+6+X,}]
l<i<K

_< 6 + E[minimum of K iid exponential-sums, parameters 1/(6 + p_:) and 1/px]

x/Tr(6#z +p_) 2(6 + p_) exp{_}
< 6+ v _ +

Ri stochastically dominates an exponential with mean _t,. Consequently a lower bound on the minimum

of interest is found by replacing R_ with such an exponential. Then

{a + x,} > 6 + E[minimum of K iid exponential-sums, both parameters 1/p, ]

_> 6+#_ .
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