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ABSTRACT

Gary Patrick Warren, Master of Science, 1990
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ABSTRACT

t

A numerical algorithm ispresented for solving the two-dimenslonal flux-spilt

Euler equations using a multigrid method with adaptive grid embedding. The

method uses an unstructured data set along with a system of pointers for com-

mulfication on the irregularlyshaped grid topologies. An explicittwo-stage time

advancement scheme isilnplemented. A nmltigrid algoritlunisused to provide grid

level commmfication and to accelerate the convergence of the solution to steady

state. Results are presented for a subcritlcalairfoiland a transonic airfoilwith

3 levelsof adaptation. Comparisons are made with a structured upwind Euler

code which uses the same flux integration teclmlques of the present algorithm.

Good agreement isobtained with converged surface pressure coei_cients.The lift

coefficients of the adaptive code are within ') 1 o- of the structured code f_,r the sub-

I0_ of the structured code for the transonic case llsingcritical case and within 4_ ,'_

approximately one-third the number of grid points.
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NOMENCLATURE

A,B

a

CFL

Cp

c

Cd

Cl

e

F

Gi

I_ -1

z,2

k_

M

flux Jacobians,-_ and -_Q

speed of sound

Courant-Friedrichs-Lewy number

pressure coefficient

chord length

drag coefficient

lift coefficient

total energy

fluxes of mass, momentum, and energy

grid level i

collection operator used for transferring information on grid level i

to grid level i- 1

interpolation operator used for transferring information on grid level

i - 1 to grid level i

collection operator for residual

unit vectors in x and y directions

denotes _ or 7/

length of a face

Mach number

Mach number in _ direction

vi



h

P

Q

qi

q

R

S

8

t

U, V

Vi

x,y

At

O_

V

¢

_,_

unit normal

x and y components of a unit normal

pressure

conserved state vector, Q = [p,pu, pv,e]_r

most current approximation to Q on grid leveli

velocitymagnitude

residualvector for mass, momentum, and energy

surface area

entropy, also parameter for flux limiter

time

contravariant velocities

cartesian velocitiesin x and y directions

correction at grid leveli

cartesiancoordinates

time step

angle-of-attack

refinement parameter

ratio of specificheats, taken as 1.4

gradient operator

accuracy parameter

undivided gradient operator

general curvilinearcoordinates
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parameter controllingspatialdifference-scheme type

p density

r relative truncation error

Subscripts:

c information at coarse grid face

fl, f2 information at fine grid faces

oo denotes conditions at infinity

Superscripts:

n denotes time level

÷,- denotes direction from which information was obtained
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CHAPTER I

INTRODUCTION

In spite of many recent developments in computational fluid dynamics al-

gorithms and substantial increases in computer speed and memory, many flow

situations still impose unsatisfactory requirements on computer time. These re-

quirements are driven by the large nmnber of grid points required to sufficiently

resolve important flow field features. Since most algorithms use structured grids

without embedding, adequate resolution of important flowfield features requires

either lffglfly stretched grids or the inclusion of many unnecessary grid points away

from tile main areas of interest.

As a solution to tiffs problem, several adaptive techniques have been developed

in recent years which attempt to concentrate grid points only in regions of high

gradients. These tectmiques can be grouped into one of two categories. In the first

category, higher resolution of specific areas is accomplished by redistributing the

grid points of an existing structured grid into the regions of interest. The primary

advantage of this method is its relative ease of implementation into existing flow

solvers because no modifications to the data structure is required. Unfortunately,

this technique often results in highly stretched and skewed grid lines and can leave

sonle regions of the flowfield with inadequate resolution. Another method some-

times used to enlmnce grid resolution is the embedding of grid points into specific

areas of an existing grid based on some reasonable criteria such as high flow gra-



dients or high local errors. Tiffs allows improved resolution of important features

with a relatively smaU increase in grid points and without adversely affecting

other portions of the grid. Grid embedding teclmiques, however, are dlffcult to

implement into existing computer codes because of the necessary data structure

required for inter-grid transfer of information. The difficulties encountered in grid

embedding, however, are more than compensated by increased capability.

There have been several recent investigations into grid embedding using

central-difference algorithms 1'2,3. Berger I developed a grid embedding technique

for a structured grid algoritlun using a central-difference method developed by

Jameson. This Mgorithm adapted to an estimate of the truncation error. More

recently, Daimenhoffer 2'3 developed an adaptive grid embedding method that was

used in conjunction with a central differenced node based scheme. Dannenhoffer's

method used an unstructured grid along with a multigrid algorithm.

In recent years, upwind clifferencing has gained in popularity because of in-

creased accuracy and robustness over its central differencing counterparts. The

finite vohmle technique, as described in references 4 asld 5, has been applied to a

variety of flow problems. This scheme uses the flux-vector splitting of van Leer s or

the flux-difference-splitting of Roe 7 coupled with an implicit, multigrid algorithm.

This multigrid scheme is a well proven and documented algorithm which has been

used mainly on block-structured grids with limited use on embedded grids s.

In the present study, the same spatial differencing used in reference 4 is applied

to a data structure designed for the use of asl unstructured adaptive grid embed-



cling algorithm. Because of the unstructured grids, an implicit time advancing

method is not easily implemented and so the equations are advanced in time with

an explicit, two-stage time marching scheme. Since explicit time marching often

results in poor convergence rates, a multigrid algorithm is employed. Use of the

multigrid algorithm not only improves the convergence rate, but as importantly,

it also provides a mecha, fism for inter-level grid commtufication. Tlfis thesis will

present algorithnfic details and results of this method.



CHAPTER II

GOVERNING EQUATIONS

2.1 Euler Equations

Tile govenfing equations are the time dependent Euler equations, which ex-

press the conservation of mass, momentum, and energy for an inviscid gas. The

equations are given by

0q
o-7 + v. _ = 0 (2.1)

where the state vector Q and the flux vectors 1_ are given as

(2.2)

= _'1 i + _'2j (2.3)

(_ + _)aJ L(_+ r_)_

The equations are closed with the equation of state for a perfect gas

(2.4)

f = (_- 1)[_- p(a: + _2)/21 (2.5)

The variables in equations 2.1-2.4 can be non-dimensionallzed by introduction of

tile following definitions:

4



f3 _ _ taoo

u_ a=, "- p=aL' Y: 7' a- =a_

(2.6)

The non-dimensional equations are not repeated here since introduction of

the previous variables into equations (2.1)-(2.4) results in an identical form of

equations as given above but with the ( " ) removed.

2.2 Integral Formulation

The Euler equations can be integrated over an arbitrary control volume, as

shown in figure 1, with the resulting equations given by

n

Figure 1. Arbitrary Control Volmne



The first integral in equation (2.7) is then written as

where Q is given by

(2.s)

(2.9)

and the average value of the state vector over tile control volume is defined as

Q = _ qas (2.10)

Tile second integral in equation (2.1) is converted to a line integral by use of

tile divergence theorem

where fl is the outward pointing tufit vector normal to the control volmne.

(2.11)

fi = _.i + _j (2.12)

hi tlrls form, the flttxes normal to the surface of the control volume are written as

r pv l
IpV.+_.pl

: _ n = / ¢" + iyv/ (2.13)
L (e +p)U J

where U is tile velocity in the direction of/.lie outward pointing normal

U : _.tt 4- _y,, (2.14)



2.3 Flux-Vector Splitting

The time dependent Euler equations form a hyperbolic system of equations

and hence information is propagated along characteristics. Therefore, to correctly

model the flow physics, some form of upwind differencing should be used in order to

model the characteristic nature of the governing equations. The upwind method

used in the current study is the flux-vector-splitting method in wlfich the flux

vectors are split into forward aald backward running contributions and differenced

accordingly.

The split flux-vectors used in the current study were developed by van Leer 6.

These have been generalized to curvilinear coordinates by Anderson a and have

since been widely used for flow computations on structured grids a,s,s. They are

continuously differentiable at eigenvalue sign changes and allow shocks to be cap-

tured with at most two interior zones. In practice, only one zone is usually

observed 4. After splitting, the flux vectors normal to the cell face given in equation

(2.13) can be re-expressed as

= F+ + F- (2.15)

where F+ and g- are given below for I__I_ l< 1

/:_ rrlo s*

ss _,

f_kmass[_y(-U4-2a) + t']
.y

f+ energy

(2.16)



where

]:+,_a,, = +pa(Me 4- 1)2/4 (2.17)

f4-energy

4-
=f ma,,[{--(_' -- 1) U2 4- 2(7 -- 1)Ua

+ 2a2}/(_ 2 - 1) + (u 2 + v2)/2]

(2.18)

Here, M_ = v is the Mach number normal to the surface of the control volume.

For supersonic flow (i.e.I Me 1> 1), the fluxes are given as

_+= _ _-=0 (axe > +1) (2.19a)

_- = _ _+ = 0 (Me < -1) (2.19b)

where F is given by equation (2.13).

8



CHAPTER III

NUMERICAL METHODS

3.1 Data Structures

The governing equations are solved on a discrete curvilinear grid wlfich con-

sists of ceils, faces, and nodes. Generally, a structured grid consists of a collection

of ceils wlfich are orgalfized into a single or multiple block structure as shown in

figure 2. In each block an implied data structure exists in which the relation-

ships between the nodes, cells, and faces are deternfined by simple addition or

subtraction of integer values from the current ceil index (i.e. i + 1, i - 1, etc.).

Unstructured grid algorithms, however, rely on a system of pointers to determine

node, cell, and face relationstfips needed to transfer information within the grid.

Every cell, face, and node is assigned an integer value, as shown in figure 3, and

access to each is obtained through the use of various pointers. For example, to

obtain ilfformation stored at the nodes which define a cell, an array called a ceil-

to-node pointer must be accessed. The number and type of pointers needed is

higlfly dependent on the computational stencil for a particular scheme.

To efficiently employ adaptive grid embedding, it is desirable to remove the

restrictions of the implied data structure required for single and multiple block

grids. In the current work, the grids consist of a collection of ceils which are aligned

with the _ and _7 coordinates but no block structure is required. In addition,

9



all infomnation in the grid is obtained tlrrough a system of pointers as in an

unstructured grid. The use of the _ and 1/ coordinate system makes it simple

to implement the spatial differencing tecluffques of structured algorithms in all

unstructured framework. Tlffs approach call be referred to as a semi-unstructured

method since some structure is required for the cell alignment but not the cell

collection as shown in figttre 4.

There are two basic methods in which the embedded grid regions can be

handled. Tile first method is to treat the entire grid as a single level and have

special data structures to handle the hanging nodes as shown in figure 5. Tiffs

can be somewhat tedious because some cells may have more thaal 4 faces. For

example, cell a in figure 5 consists of 6 faces and 6 nodes. The second nlethod,

which is used in the current work, is to treat the embedded grids as separate

levels as shown in figure 6. Tlffs allows every cell to have oldy 4 faces and nodes.

This multi-level grid structure also facilitates tile use of a multigrid algoritlml to

enhance the convergence rate of the flow solver. The use of upwind differencing,

adaptive embedding, and multigrid, is accommodated with the following set of

pointers:

1. Cell-to-Face pointer - relates a cell to its four faces.

2. Cell-to-Node pointer - relates a cell to its four nodes.

3. Face-to-Cell pointer - relates a face to the ceils used in deternffning quantities

on tile face.

4. Face-to-Node pointer - relates a face to its two nodes.

10



5. Link pointer - relates a cell to the four cells below it aald the four cells above

it. The coarse cell which lies below four finer cells is referred to as a parent

and the finer cells are referred to as clfildren.

These pointers, and the nmnbering system for each, are demonstrated in figures

7a-f. For setting the boundary conditions, additional ilfformation is required wlfich

contains the face numbers of both the solid walls and the ildtow/outflow bound-

aries. The indexing used in the algorithm descriptions will be based on the use of

these pointers.

3.2 Flux Integration

The equations are solved using a fufite volume formulation wlfich entails solv-

ing for the average quantities in each cell. The flux integral in equation (2.11) is

approximated by:

4

where the subscript n is the face number (see figure 7a) and l,_ is the length of

each face. Note that the flux balance given by equation (3.1) is based on outward

pointing normals whereas the normals for the semi-mlstructured grid have been

chosen, for conveuience, to always point in the positive _ and 71 direction. Tile

resulting flux integration (with splitting) for a cell is written as

_ (g)d'f'=-[_'+(Q;)+ _?(Q*_ )IQ +[_'*2(Qf)+ _;(Q+)]C2 (3.2)

+ [_'_+(q;)+ _';( *Q_ )]e3- [_',+(q_ ) + _ (Q,+)]t,

11



The fluxes _'+ are constructed using the same equations as F+ but normals point-

ing in the positive coordinate directions are used in place of outward pointing

normals. Here, e,_ is the physical length of face n and Q+ are the state variables

interpolated to the faces from the positive and negative directions. The interpo-

lation fornmlas, using the stencil shown in figure 7c, are given by

1

qf-_ce(n) ----qcelZ(:) + _$[(1 -- _)A_ + (1 + n)A+]Qc,zl(:) (3.3)

+ __ 1
Qface(n) - Q_ll(3) - _b[(1 + _)A_ + (1 - _)A+]Q,,u(3) (3.4)

where A+ and A_ are forward and backward difference operators defined as

A+Q_,u(_) = Q_,H(_+I) - Q_,tz(_) (3.5)

(3.6)

For n -- -1, these interpolation formulas give a fully one-sided extrapolation of

the dependent variables to the cell faces which results in a second-order accurate

difference fornmla for equation (3.2) on a uniformly spaced grid s. Similarly, the

1

use of k -- _ results in a three-point interpolation fornmla which produces a tlfird-

order accurate difference approximation to equation (3.2) on a mliform grid.

When using a three-point interpolation formula, oscillations in the solu¢ion

can occur in regions of strong gradients such as shocks. To elilninate Chese oscil-

lations, flux-limited interpolations "5are employed which are given by

.g

qf_c,(_l = q¢_Iz(2)+ 4_[(1 - ,ca)&_ + (1 + ,cs)A+]qc,zt(2) (3.7)

12



where

Qf_c,(n) = Qcetl(3)- _b[(1 + ,_s)A_ + (1 - ns)A+]Q_,zt(3) (3.8)

2A+A_ +
s -- (3.9)

(_x+)_+ (__)_ +

and e is a small number (_ = 10 -s) preventing division by zero in regions of null

gradients. The variable ¢ is a user defined parameter wlfich is equal to 1 but can

be set to 0 for a oue-sided first-order method.

3.3 Time Advancement

The solution of equation (3.2) is advanced in time using the modified Euler

method 9, wlfich is an exphcit 2-stage scheme of the form

Q* = Q" +AtR '_ (3.10)

Q_+' = _(Q'_ + Q*) + _AtR" (3.11)

where the residual is given as

R = -{ - [F+(Q_) + FI(Q+)]6 + [F+(Q;) + F;(Q2 +)]t_

(3.12)

+ [_,+(q;) + _ (q+)1_ - [i"+(q_) + _'; (q+)]e_ }

The superscripts for the residual designate the time level of tile state variables

used in the flux evaluation.

The solution for each cell is advanced at its own local time step corresponding

to a CFL number given by:

CFL = at{t U I + I v I +_,[Ig_d(_) I + Ig_ad(.)l]}

13
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The contravariant velocity in the _ direction, U, is given in equation (2.14). The

contravariant velocity, V, is obtained simply by replacing _ with 7.

3.4 Stability Analysis

The stability analysis follows from the work of reference 4. The stability

characteristics are exanfined using tile linearized two-dimensional Euler equations

given by

0Q
- P(Q) (3.14)

Ot

where

OQP(Q) = A-SZ-z + B (3.15)

The flux Jacobians, A = _ and B = _ are computed using the split flux
0Q OQ '

vectors for the z and y directions respectively. The differeutials are computed

across the cell using the interpolatiou formulas given by equations (3.3) - (3.6).

The Fourier mode for Q is assumed to be

Q = Qei_e wy (3.16)

where Q is an initial state vector. Substituting -P(Q) for the residual in equations

(3.10) and (3.11) and replacing Q with its Fourier mode, a system of equations is

Q,+1 = GQ" (3.17)

obtained of the form

The magnitude of the maxinmm eigenvalue of the amplification matrix G must

be less than unity for stability. A computer program was used to cycle ttrrough a

14



fixed nmnber of each of the spatial frequencies in tile range

0 </3Az, FAy < 2_- (3.18)

for a series of CFL numbers between 0.1 and 1.2. The generalized eigenvalue

problem is solved using an IMSL 1° routine. Ill addition, the high frequency error

damping properties (smoothing) of the scheme can be studied by examining tile

'_ and 3,_lnaxinmnx eigenvalue in tile frequency range between _- -y.

Shown in figures 8 and 9 are the stability characteristics for t¢ = 1/3 and

t_ = -1 for a Mach nmnber of 0.8 and a = 0.0. Both schemes exhibit poor high

frequency error damping properties. Because the t¢ = 1/3 scheme allows a lffgher

CFL number along with higher spatial accuracy, tiffs was the scheme chosen for

tilecomputations presented later.

3.5 Boundary Conditions

For setting the boundary conditions, there are tlu:ee possible bomldary types

which must be considered. These include ildtow/outflow, solid wall, and interfaces

between embedded grid regions. All of the boundary conditions are implemented

using "ghost" cells which lie outside of the computational domain. The solid wall

and inflow/outflow botmdary faces have only one ghost cell and hence the general

four point stencil shown in figure 7c does not exist. The differencing on these faces

is accomplished by setting Q+ or Q- (depending on the boundary) equal to that

of the ghost cell. For the solid wall and embedded interface bomldary conditions,

15



the ghost cells are updated before each time step whereas, for the imqow/outflow

boundaries, the ghost cells are set to freestream values.

3.5.1 Inflow/Outflow Boundary Conditions

The inflow/outflow boundary conditions are developed using characteristic

theory 11 which is summarized here. A local coordinate system (_, U) is constructed

orthogonal to the boundary as shown in figure 10. The characteristic equations

are constructed assmning the tangential derivatives are negligible so that a one-

dimensional analysis normal to the boundary can be employed. The resulting

characteristics are sketched in figure 11. Assuming locally isentropic flow, the

characteristic equations are given by

d$

=0 along C O =u (3.19a)
dt

de
--=0 along C o =u (3.19b)
dt

d(R±) :0 along C + = fi + a (3.19c)
dt

where the Riemann invariants, R +, are given by

R + = fi =t=2a (3.20)

The variables at the new time level t "+1 are obtained from the Riemann invariants.

Assunfing that _ points away from the computational donlain, R + and R- are

evaluated using the state variables from outside and inside the computational

domain respectively. The normal velocity and speed of solmd on the inflow/outflow

16



boundary are obtained by adding and subtracting the Riematm invariants.

1

=2(R + + R-) (3.21)

af_ce (7- 1)(R + _ R-) (3.22)
4

Once tile normal velocity and speed of sotmd are calculated, tile Cartesian

velocities are determined by decomposing the normal and tangential velocity vec-

tors

tYface =Uref JV l_ly(_tface -- _Lvef )

(3.23)

(3.24)

where the subscript ref represents freestresan values for inflow or from tile cell

inside the domain adjacent to the boundary for outflow. It should be noted that

since the local coordinate _ points away from tile computational domain, ilfftow

corresponds to fi < 0 and outflow corresponds to fi > 0. The variables h_ and fir

are the z and y components of the outward pointing unit normal for tile face.

Tile entropy s is deternfined using tile value from outside tile domain for

inflow and from inside the domain for outflow. Once the entropy on the boundary

is known, the density on the face is calculated from the entropy and speed of sound

on the face

pfa_e = (3.25)
[."_Sface J

The energy on the face is then calculated using tile equation of state.
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For supersoIficconditions, the state variables areextrapolated to the bomld-

ary from the exterior for inflow boundaries and extrapolated from the interior for

outflow boundaries.

3.5.2 Solid Wall Boundary Conditions

Tile variables on solid wall boundaries are computed by extrapolating from the

interior of tile computational domain. For the cases presented here, the pressure

and density on the face are simply set to the values of the cell above it. The

normM velocity is then set to zero so that tile resulting Cartesian velocities on the

face are given by

(3.26)

(3.27)

Here, tT_iz is constructed with a normal facing in the positive _ or 7/direction and

h_ and h v are the z and V components of this normal. The density, pressure, and

Cartesian velocities are then extrapolated to tile ghost cells using

(3.28)

Note that oxfly the Cartesian velocities need to be extrapolated since the pressure

and density ill the ghost cell are the same as ill the computational cell above it.

3.5.3 Embedded Interface Boundary Conditions

A difficulty encountered when using embedded grids is in deternfining the

fluxes on the interface between the coarse and title grids inside the computational
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domain so that the accuracy and conservation properties of the flow solver are

maintained. The method for obtaining the flux on the coarse grid is the same as

that for obtaining the other coarse grid faces since the four-point computationM

stencil is complete. Obtaining the flux on the two finer faces can be accomplished

several ways. The method developed here is sinfilor to that of Berger 1. A set

of ghost cells is constructed outside of the interface region as shown in figure 12.

Note that with the addition of the ghost cells, the four-point stencil needed for

the interpolations to obtain the state variables on the faces is preserved. In this

region, the state variables ore determined by bilineor interpolation from the next

coarsest grid level using the most current solution on that level. This produces

the interpolation stencil shown in figure 13 for the free grid fluxes since all nine of

the shaded coarse grid values are used to obtain the values in the ghost cells. The

coarse grid flux stencil is shown in figure 14.

This method of calculating the fluxes, however, does not enforce conservation

at the interface region since there is nothing to ensure the stun of the fluxes on

the finer grid equals the flux on the coarse grid. To enforce conservation at the

interface, the fluxes from the two finer faces are added and injected onto the coarse

grid before the coarse grid update

F¢_¢ = Ffl(fl -_ Ff2_f2 (3.29)

3.6 Multigrid Algoritlun

The algorithm presented thus far is still incomplete because no comnmnication
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exists between the grid levels. The increased accuracy of the fine grids is not

passed to the coarser grids, so the solution on the coarse grid remains mlchanged.

This is unacceptable since the ghost cells for the finer grids are determined by

interpolation from the coarse grid solution. A multigrid algoritlun is a natural

way to obtain grid-level conunmfication. The truncation error between a fine and

a coarse grid is passed to the coarse grid in such a way that the coarse grid is

driven by the title grid residual. Hence, the Free grid accuracy is maintained on

the coarser grid.

The multigrid algorithm used in the current study is the _'ktU-Approximation

Scheme (FAS) wlfich has been primarily used in solutions of the Euler equations

as a method of convergence acceleration such as described in reference 4. Because

of the embedded grids used in the current algoritlrm, slight modifications to the

algorithm presented in reference 4 must be made since not all cells on the coarser

grids have finer cells above them.

The application of multigrid algorithms to Euler solvers has primarily been

due to the convergence acceleration which is attained. The improved conver-

gence is attributed to the fact that the multigrid algorithm efficiently damps low-

frequency errors on the finer grids by using a sequence of grid levels denoted by

GN, GN-1, "',G1 where the coarsest grid level corresponds to Gi. Since the

lower levels have greater spacing between grid lines, the low frequency errors on

the lfigher levels appear as lfigh frequency errors on the lower levels where they

can be eflqciently damped.
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Explanation of the nmltigrid process is facilitated by first examining the Euler

equations written in operator notation and discretized on a given grid, GN, which

is defined to be the Finest level.

LN(QN) : 0 (3.30)

where QN is the exact solution to the dlscretized system mid LN is the discrete

steady state operator given by

LN(QN) : --{ --[_'+(Q1-) + F_-(Q+)]el + [F2+(Q2) + _'_-(Q+)]e2

(3.31)

+ [_'_+(q;) + _'_ (q_+)]t3 - [$'_+(q;) + _;(q_+)]e4}

When solving iteratively, equation (3.31) is solved approximately at each time

step so that the right hand side of (3.30) is not identically zero. This can be

represented by introduction of a residual defined implicitly by

LN(q_) = P_N (3.32)

where q_ is the most current approximation to QN and RN is the residual. Note

that the residual will be zero only when the approximate solution (q_v) is equal

to the exact solution (QN).

Since it is the errors that are damped on any given grid, it is desirable to cast

the govertfing equations for a given grid in terms of the errors. This is achieved

by subtraction of equation (3.32) from equation (3.31)

LN(QN) - LN(q_) = -RN
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If the time stepping method adequately elinfinates the lfigh-frequeney errors on

the current grid level GN, the residual equation, (3.31), may be adequately ap-

proximated on the coarser parent ceils GN-1 by

LN-I(QN-1) = I_-I(--RN) + LN-l(I_-lq_v) (3.34)

Here INN-1 is a vohune-weighted collection operator that transfers dependent vari-

ables from tile children to tile parents so that conservation is maintained 4 and is

given by

IN-1QN _ EVQN
_v (3.35)

Here, V is the voltmae of each child cell. Similarly iNN-1 is the collection operator

for tile residual wlfich is defined as

= RN (3.36)

For equations (3.35) and (3.36) the sununations are over the four fine grid cells

(children) which make up the coarser parent cell. In the current study, the depen-

dent variables in the ghost cells for the finer grid are not restricted down to the

coarser grid.

Note that equation (3.34) can be written as

LN-I(QN-1) _- rN-I (3.37)

where

= irN- "N-1(RN)rN-I L._'-t_-N - I,,,
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is the relative trmlcation error between grid levels GN mad GN-1. For coarse grid

cells with no fitter cells above them, rx-1 is set to zero. The inclusion of rN-I

allows the solution in the parent cells to be driven by the fitxer grid so that the

order of accuracy on the fine grid is maintained. The new residual which can be

written in a form applicable to all grid levels, Gi is given by

ai = Li(q_) - _'i (3.39)

This residual is now used for updating the solution on the current grid using the

time advancing algoritlun, equations (3.10) mad (3.11), described earlier.

To proceed down to the next coarsest level, GN-2, the analogous equation to

equation (3.37) is given by

LlV-2(QN-2) = rN-2 (3.40)

where

N-2 c ^N-2
rN-2 = LN-2(IN_,qN_,)- IN_ ' (RN-,) (3.41)

Note that RN_lcontains the relative truncation error between levels N and N- 1

so that tile relative truncation error on this grid is the sunk of the truncation errors

between levels N and N - 1 as well as N - 1 and N - 2.

Thus far, the relative tmmcation errors between the parents and children

have been succesively passed down to each of the parent cells so that the order

of accuracy of the children is preserved. In tlds manner, the accuracy of the fitter

levels "drives" the accuracy of the coarser levels.
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Since the lower levels damp out the low frequency errors of the higher levels,

8

a correction from the coarse grid must be passed up to the higher levels. Tlfis

correction V is formed on grid level N - 2 as

IN-2 cVN-2 : q_¢-2 -- N-lqN-1 (3.42)

This correction is then added to the dependent variable in the clfildren cells

c vN-I Vqx-I _ q_v-1 +'2v-2 X-2 (3.43)

/V-1
where IN_ 2 is an interpolation operator for passing information from a lower level

to a higher level as described in Appendix A. A correction is then formed on level

N - 1 and passed up to level N using equations (3.42) and (3.43) by replacing

N - 1 with N and N - 2 with N - 1. Note that no additional iterations are

performed on grid N - 1 before interpolation of corrections to grid level N.

The process described above is a three-level "V"-cycle algorithm and is de-

picted in figure 15. For further clarity, detailed steps for a three-level V-cycle are

given below.

1. Start on the lfighest grid level and advance the solution in time using equation

(3.39) aaxd T x = 0.

2. Calculate the residual with the most current vahtes on the highest level from

equation (3.39) and rN : O.

3. For cells on GN-1 with children, collect the dependent variables from GN

using equation (3.35).
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4. For cells on GN-1 with children, collect the residuM from GN using equation

(3.36) and calculate the relative truncation error between the grids using

equation (3.38). For cells on Gm-i with no children, set rm-1 = 0.

5. Advance the solution in time on level GN-1 using equation (3.39) to calcu-

late the residual. Since rm-1 has been previously calculated, the residual is

calculated by evaluating Lm-l(q_¢_l) from the most current values of tile

dependent variables on this level and subtracting rN-1. Again, note that

rN-1 ----0 for cells on GN-1 with no children.

6. Calculate the residual on this level using equation (3.39).

RN-I = LN-I(q_¢_I) -- rN-1

7. For cells on GN_ 2 with children, collect the dependent variables from GN-1

using equation (3.35).

8. For cells on GN-2 with children, coUect the residual from GN-1 using equation

(3.36) and calculate the relative truncation error using equation (3.41). For

cells on GN-2 with no children, set rN-2 = 0.

9. Advance tile solution in time on this level using equation (3.30) to calculate

tile residual on GN-2. Since tiffs is the lowest level used in the present exam-

ple, several solution updates are performed to get an approximation to QN-2.

During each step, the residual is updated to use the most current values of

tile dependent variables in LN-2(q__2). Note that rN-2 will not change.

9. Calculate the correction on tiffs level to give

c TN--2 c
VN-2 ---- qN-2 -- 1N-lqN-1
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10. Pass tile correction to the next finest mesh using bilinear interpolation and

update the solution to give

12. Calculate the correction on the N - 1 level with

= - INN-1VN-I q_-I q_v

13. Pass this correction to the highest level and update the solution

c N
qN <--- qN + IN-IVN-I

14. Advance the solution in time to smooth tile errors.
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Figure 2. Structured Grid
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Figure 3. Unstructured Grid
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Figure 4. Semi-unstructured Grid
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j Hanging node

Figure 5. SingleGrid Level Structure
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Figure 6. Multiple Grid Level Structure
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ctof(n,1) = face 1
ctof(n,2) = face 2
ctof(n,3) = face 3
ctof(n,4) = face 4

Figure 7a. Cell-to-Face Pointer

+_

+_ cton(n,1) = node 1
. cton(n,2) = node 2
cton(n,3) ffinode 3
cton(n,4) = node 4

Figure 7b. Cell-to-Node Pointer

+k

n,1) = cell 1
• _( " ftoc(n,2) cell 2

/ _ cell 1 J _ ftoc(n,3) cell3

/ _/ \ t"to_n,4) cell 4

Figure 7c. Face-to-Cell Pointer
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+k fton(n,1) = node 1
fton(n,2) = node 2

Figure 7d. Face-to-Node Pointer
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cell n

//
_/.'i

/ ce11.4 I.

i
link(n,1) = cell 1
link(n,2) = cell 2
link(n,3) =celI 3
link(n,4) = cell 4

Figure 7e. Lower Link Pointer

cell 4 cell 3
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Icell_\, I I_ / 1

children

link(n,5) = cell 1
link(n,6) = cell 2
link(n,7) = cell 3
link(n,8) = cell 4

Figure 7f. Upper Link Pointer
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Inflow/Outflow Boundary , Ghost Cell

Xo_/ (" o '',
Region Interior to _,/" _ o _... o-',
Computational Domain "\ 0 \ _

Figure 10. Inflow/Outflow Boundary
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Figure 11. Characteristics at Inflow/Outflow Boundary
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Interface ghostcells
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Figure 12. Embedded Ghost Cells
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Figure 13. Computational Stencil for Fine Grid Fluxes
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Figure 14. Computational Stencil for Coarse Grid Flux
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Grid Level

Gi Q(n)*_ _ Q(n+l)*

C\ /p E: Euler Calculation

_ C: Collection of Residual and Q to
_ parents, injection of fine grid fluxes at

embedded grid interfaces
Gi-2 Q(n)*

_ Q(n+l)* P: Prolongation of Correction to children

and update interface ghost cells

Figure 15. Multigrid V-cycle

35



CHAPTER IV

GRID EMBEDDING AND ADAPTATION

4.1 Grid and Pointer Generation

The data structure of tiffs algorithm requires the generation of all the pointers

described in chapter 3. This is accomplished by first obtaining an iuitiM structured

grid from wlfich all the necessary pointers are then extracted. The initial grids used

in this study are O-type grids, as shown in figure 16. These grids are generated

using transfiuite interpolation to obtain the coordinates of each of the nodes 12.

Global coarser grids, required for use in the multigrid algorithm, are generated

simply by removing every other point from the next _lest grid. On each of these

grids, the pointers are obtained in the same mamler as for the finest grid.

4.2 Adaptation

For grid adaptation, it is first necessary to determine wlfich regions of the

flowfield contain high gradients. For tlfis, various refinement parameters can be

used which have been investigated in recent years. An extensive investigation into

the suitability of many parameters appropriate for inviscid transonic flow has been

conducted by Dannenhoffer 3. A summary of the refinement parameters and their

effectiveness in detecting flow features is given in table 4.1. As seen in the table,

the reFmeinent parameters [VPl (P = deuisity) and [_'q] (q = velocity magnitude)

36



I3

VP

~2
VP

Ipl

~2
Vp

lql

Vq

~2
Vq

Ipo[

VPo

V2po

Feature type

shock

wave

0

2

2

0

2

2

0

2

2

1

2

2

slip

line

0

1

2

0

0

2

0

2

2

0

2

2

expansion

fan

0

0

0

stagnation

zone

2

2

2

0

2

2

0

0

0

shock

wake

0

0

0

0

0

0

0

0

0

2

2

2

Note: 0 _ the feature is not detected

1 =. the feature is somewhat detected

2 _ the feature is well detected

Table 4.1: Expected effectiveness of various refinement parameters for

inviscid, transonic flows over airfoil-like bodies (from reference [3])
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are both capable of detecting all of the features considered except the wake region

belfind a shock. As noted in reference 3, refinement parameters based on total

pressure can be used to snccessfidly refine this region but tend to over-refine the

grid downstream of the shock with the result that the grid extending from the

shock all the way to the downstream boundary is flagged for refinement.

The operator X7 used in defining the refinement parameter is the mxdlvided

gradient whose magnitude for an arbitrary scalar _ is given by

E00}I 01= + N

The partial derivatives in equation (4.1) are currently evaluated using mldlvided

central differences. The refinement parameters, /3 = ICpl _d 13 -- ICql, are

normalized to form a new parameter,/3

/j = /3 -/3ram (4.2)

which varies from 0.0 to 1.0.

After a solution is obtained on a current grid level, each clfildless cell is exam-

ined to determine whether/_ for that cell is less than a user input threshold value

_°, in wlfich case the cell is flagged for refinement. Note that the value of/3" is

somewhat arbitrary. However, selecting a tltreshold value too low will embed too

mmly cells and generally pick up "noise" in the solution. Conversely, a value too

high will not embed enough cells and may result in critical flow features remaining

mldetected. For the current study, it has been found that specifying /__* to be

approximately 0.1 generally gave acceptable results.
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After flagging cells, voids in the new grid topology can exist as shown in

fgure 17. Thesevoids occur in areasof the grid where the refinement parameter

/_ is close to the threshold value _* causing a scattering of the flagged cells over

the parent grid. Voids in the adapted grid region can be avoided by eliminating

undesirable cell arrangements using a mapping fmlction along with the face-to-cell

pointers to add new cells. This mapping function is illustrated in figure 18 in wlfich

five tmdesirable cell arrangements have been identified and a more desirable cell

arrangement is suggested for each. Tlfis process of elinlinating voids is referred to

as grid amalgamation.

After the grid amalgamation process, the ghost cells for the embedded inter-

faces must be created. These cells are not constructed in the same malmer as the

computational embedded cells since they are updated by interpolation and not

through the time advancement scheme. Oxfly the nodes mid link pointers are gen-

erated for these cells. The link pointers are needed for the bilinear interpolation.

The llnk pointers for the parent cell do not point to the children who are embed-

ded ghost cells since no information is passed from the children to the parents for

these cells (such as the relative truncation error).

After the cells are flagged for adaptation, new nodes nmst be generated in

order to refine the grid in these regions. The generation of new nodes, h()wever,

is somewhat difficult since it is necessary to maintain both the grid smoodmess

and stretching of the parent grid. This is particularly true for cells which lie on

the surface of the geometry since nonsmooth grid lines can resltlt in oscillations in
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the solution. The most straightforward approachto generating new grid points is

to sinlply averagethe coordinatesof the neighboring nodes. This teclmique,how-

ever, doesnot resolve the curvature of the grid lines and will produce discontinous

metrics. Another method for generating new points is to use an interpolation

function, such as cubic splines. However, tlfis approach presents two problems.

The first problem arises if there is an inadequate nmnber of defining points in the

initial grid so that the resulting spline coefficients may not represent the true grid

shape accurately. The second problem is caused by the pointer structure used for

the unstructured grids which olfly provides local information on the connectivity

of faces and does not provide the global connectivity required to implement an in-

terpolation flmction such as cubic splines. Tlfis could be circumvented by creating

the colmectivity required but would add to the complexity of the data structure

and would not elinfinate the first problem of the initial coarse grid.

The current approach used to construct the embedded regions is to create the

finest level grid with a structured grid generation package and extract the nodes

from tlfis fine grid data file as needed. Tlfis approach, although costly, ensures

that the new grids maintain the same stretclfing and smoothness.

After the embedded regions are generated, the solution from the previous grid

is interpolated to the new cells using the same bilinear interpolation operators

used by the multi-grid algorithnL The solution is then advanced in time using the

multigrid method of section 3.6. The overall adaptation process for a single grid

level is illustrated in figure 19.
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Figure 16. O-GridTopology
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Figure 17. Voids in Grid
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Figure 18. Grid Remapping Criteria
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CHAPTER V

RESULTS

Results are now presented for the adaptive semi-unstructured Euler solver.

Tile computer code for tiffs algoritlnn used 105 storage locations for each compu-

tational cell. The iterative scheme of the Euler solver is completely vectorizable

and has a computational rate of 14 nffcroseconds per cell per iteration for a sin-

gle grid level on the Cray-2 supercomputer at NASA Langley Research Center.

Implementation of tile nmltigrid algorltlml with five grid levels requires approxi-

mately 30 nffcroseconds per cell per iteration but tiffs is dependent on the munber

of embedded ghost cells in the computational domain. All of the cases presented

1 for equations 3.7 and 3.8.here were run using n =

Comparisons are made with tile two-dlmensional Euler code of reference 4

referred to as CFL2D. As mentioned previously, the flux integration techniques

for tiffs code are the same as the present adaptive code. The version of CFL2D used

for comparisons requires 130 storage locations per cell and has a computational

rate of approximately 45 microseconds per cell per iteration. This Euler code

uses an implicit time advancing scheme and has better smoothing characteristics

for the nudtigrid algorithm than the explicit scheme used in the adaptive code.

Hence, on a given structured grid, CFL2D will converge in less cpu time than the

adaptive code.
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The grid used with CFL2D was a 257x97 O-grid with an outer bom_dary

40 chords away from the airfoil. Tlfis was the sametitle grid used for extracting

points for the adaptive Euler code. The solutionspresentedhere were considered

converged after the rms of the average residual had been reduced by at least

7 orders of magnitude which generally required 2000 iterations for the adaptive

code (1 V-cycle = 1 iteration).

5.1 NACA 0012, Mach : 0.63, a = 2.0 °

The NACA 0012 airfoil in a freestream Mach number of 0.63 and at 2.0 degrees

angle-of-attack is presented here. Tlfis is an isentropic case and should produce

a drag coefficient of zero. Figure 20 shows the iuitial grid for the adaptive Euler

code wlfich is a 33x13 structured O-grid. The surface pressure coefficients are

shown in figure 21 and the Mach number contours are shown in figures 22 and 23.

The coarseness of the grid produces large entropy values near the leading edge of

the airfoil and degrades the solution downstream wlfich is evident from the poor

resolution of the trailing edge stagnation point.

The first adaptive embedding was performed using the undivided gradient

of the density magnitude 1 _7p [ with the threshold value _* set to 0.1. The

solution was converged on each level before the next level _f embedded grids was

created. Figures 24 through 29 show each successive level of refinement with _he

corresponding surface pressures. As shown, the embedding significantly improves

the overall solution quality without a large increase in the number of cells. Figures
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36 and 37 show the Mach contours on the final adapted grid. These contours show

the smooth transition of tile solution at the embedded interfaces.

The second adaptive embedding case was performed using the undivided gra-

dient of the velocity magnitude ]_'q] with _* again set to 0.1. The computations

were carried out in the same manner as the previous case with the resulting grids

and surface pressures shown in figures 30 tltrough 35. As shown, tlfis refinement

parameter embedded more points thaal the density gradient for the same value of

_*. Table 5.1 shows a comparison of the lift and drag values obtained for the two

cases along with those obtained with CFL2D.

5.2 NACA 0012, Mach = 0.8, a = 1.25 °

The NACA 0012 airfoil in a freestream Mach number of 0.80 and at 1.25

degrees angle of attack is presented here. Using [(7p[ or [Vql produced nearly

identical grids for tlfis case and so olfly the [_'q[ case is shown.

These freestream conditions produce a strong shock on the upper surface of

the airfoil with a relatively weak shock on the lower surface. The Math contours

and pressure distribution for the initial grid are shown in figures 38 and 39. The

final adapted grid, pressure distribution, and Mach contours are shown in figures

40 through 42. As shown, the Final grid produces a sharp shock on b,,lh the

upper and lower surfaces with no oscillations. Table 5.2 shows the comparison

1% difference from that of CFL2D.with CFL2D. The final ce has about a 4_
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Figure 20. Initial Grid
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Figure 21. Initial Grid Pressure Distribution, M_ = 0.63, _ = 2.0 °
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Figure 22. Initial Grid Mach Contours, Moo = 0.63, a - 2.0°,AM= 0.05

Figure 23. Leading Edge Initial Grid Mach Contours, Moo = 0.63, a = 2.0 °
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Figure 24. 2 Level Adapted Grid (Qp), Moo = 0.63, _ = 2.0*
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Figure 25. 2 Level (_Tp) Pressure Distribution, M_o = 0.63, a = 2.0 °

49



\

Figure 26. 3 Level Adapted Grid (_p), Moo = 0.63, a = 2.0"
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Figure 27. 3 Level (_p) Preseure Distribution, M_ = 0.63, a = 2.0 °
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Figure 28. 4 Level Adapted Grid (_'p), Moo = 0.63, a = 2.0 °

o Adaptive Code

CFL2D

o:

1.2 I I I ! i I I
0 .25 .50 .75 1.00

x/c

Figure 29. 4 Level (_p) Pressure Distribution, Moo = 0.63,a = 2.0 °
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Figure 30. 2 Level Adapted Grid (_'q), M_ - 0.63, a = 2.0"

o Adaptive Code

CFL2D

Cp 0

x/c

Figure 31. 2 Level (_q) Pressure Distribution, M_ = 0.63, c_ = 2.0"

52



Figure 32. 3 Level Adapted Grid (_'q), Moo= 0.63,ce-- 2.0 °

o Adaptive Code

CFL2D

Cp 0

x/c

Figure 33. 3 Level (_q) Pressure Distribution, Moo = 0.63, ot = 2.0 °
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Figure 34. 4 Level"Adapted Grid (Vq), Moo -- 0.63, a = 2.0 °

o Adaptive Code

C_2D

Cp o

1.2 ! , I , I
0 .25 .50 .75 1.00

x/c

Figure 35. 4 Level (_'q) Pressure Distribution, Moo = 0.63, a = 2.0 °
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Figure 36. 4 Level (Vp) Mach Contours, Moo = 0.63, a = 2.0 °, AM= 0.05

Figure 37. Leading Edge 4 Level (_Tp) Grid Mach Contours, Moo = 0.63, a -- 2.0 °
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Adaptation Number of Cd
Criteria Cells Cl

None 32,298 .328 0.270 x 103
(CFL2D)

Vq 11,132 .320 0.249 x 10 "3

Vp 7,648 .323 0.769 x 10 .3

Table 5.1. Results Compafilon for Moo = 0.63, a = 2.0 °
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Figure 38. Initial Grid Mach Contours, Moo -- 0.80, a - 1.25 °
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Figure 39. Initisl Grid Pressure Distribution, Moo = 0.80,_ = 1.25"
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Figure 40. 4 Level Adapted Grid (_'q), Moo = 0.80, a -- 1.25 °

-1.2

-,6

0
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Figure 41. 4 Level (Vq) Preseure Distribution, Moo = 0.80,a - 1.25 °
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Figure 42. 4 Level (_q) Mach Contours, Moo = 0.80, _ - 1.25 °

Adaptation Number of Cd
Criteria Cells Cl

None 32,298 .352 0.211 x 10 "1
(CFL2D)

Vq 11,132 .337 0.251x 101

Table 5.2. Results Compsrison for Moo = 0.80,a - 1.25°
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CHAPTER VI

CONCLUDING REMARKS

A semi-unstructured algoritlun to solve tile two-dilnensional Euler equations

with adaptive grid embedding has been presented. A multigrid algoritlun has been

implemented to provide the required grid level conmmlfication and to accelerate

the convergence.

Results have been shown for a subcritical airfoil and comparisons have been

made with a structured algoritlun using the same flux integration teclmiques.

The final lift coefficients are within 12_% of those obtained with CFL2D. Restdts

have also been shown for a transouic airfoil where the increased resolution of the

shocks is very substantial without the large increase in grid points. The final lift

coefficients for tiffs case are aromxd 4_% of CFL2D.

One problem with the present method is the poor error-damping character-

istics of the two-stage time advancing scheme. Further research is needed in tlfis

area to produce an acceptable scheme. The menmry requirements on a per cell

basis for the present method are approximately the same as that for an implicit

scheme. Since the present method requires less grid points to resolve the flow, the

overall memory requirements are less. The advantages of using this scheme would

probably be greater in three-dimensions.
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APPENDIX A

Interpolation Operators

Interpolation can be performed in a two-dimensional field, shown in figure 43,

by assmning a bilinear function of the form:

f(z,y) = a + bx + cy + dxy (A.1)

The constants a, b, c, and d, can be evaluated given four boundary values:

f(xl,yl) = a+ bxl + cyl + dzlyl (A.2a)

f(zz,y2) = a + be2 + cy2 + dz2y2 (A.2b)

f(zz,yz) = a + bzz + cy3 + dz3y3 (A.2c)

y(r4,Y4) : a -4- bx4 4- ¢_t4 -_- dx4_/4 (A.2d)

This can be written in matrix form as:

1 z2 Y2 z2y2 f(z2,Y2)|

1 z3 y3 zay3 : f(z3,y3)]

1 Z 4 /14 Z4_t4 /(Z4, _]4) /

(A.3)

This matrix can be simplified if (21, _/1 ) is defined to be (0, 0). Equation (A.2a) is

reduced to:

f(_l, gl ) _-- (1 (A.4)

This reduces (A.3) to a 3x3 matrix.

x3 Y3 X3Y3 = A f3

_4 Y4 z4Y4 d A f4

(A.5)
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where;

Afn = f(zn,Yn)- f(zl,yl)

The system of equations given in (A.5) can now easily be solved by the use of

Kramer's rule. The deternfinaalt of the coefficient matrix in (A.5) is given as:

A

z2 !12 z2y2

z3 //3 _3//3

_4 //4 Z4//4

_-- T224//3(//4 --//2)-I- Z2Z3//4(i/2 --//3)'4- Z3Z4//2(//3 --//4) (A.6)

Tile coefficients can then be solved for:

b

e

A

z2 A f2 z2y2

• 3 A f3 z3//3
.T 4 A f, _4//4

A

d

A

z_ //2 A f2
x3 //3 A f3

Z4 //4 A f4

A

A

(A.7a)

(A.Tb)

(A.7c)

Assuming a uniform Cartesian grid of unit width and heighth, the nodes would

be:
= (0,0)

(z2,//2) = (1,0)

(_3,//3) = (1,1)

(A.S)

(z4,//4) = (0,1)
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Substituting (A.8) into (A.7) yields the following solution:

a = f(_,,_)

b= Af=

c= A f4

(A.9)

Substituting (A.9) into (A.1) yields:

f(x,y) =f(r,,y,) + (f(z_,y2) - f(z,,yl))z + (f(z4,Y4) - f(zl,y,))y

+ (-(f(xe,y2) - f(zl,y,)) (A.10)

+ (f(x3,y3) -- f(xl,Yl)) -- (f(x4,Y4) -- f(zl,Yl)))zy

Simphfying this gives:

f(z,y) = (1 - z - y + zy)f(z,,yl) + (z - ry)f(z2,y2)

+ (zy)f(z3,ys) + (y - zy)f(z4,Y4)

(A.11)

For a Cartesian grid as shown in figure 44, (z, y) = (0.25, 0.25), so that

f(0.25,0.25) = (0.5625)f(zl,yl) + (O.1875)f(z2,y2)

+ (O.0625)f(zs,y3) + (O.1875)f(z4,y4)
(A.t2)

Although the grids are generally not Cartesian, this is a close approximation to

the actual weightings for grids that are not highly stretched.
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_- I (x1'Yl) x2'Y2)

Figure 43. Typical Quadrilateral

cell4 cell3
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Figure 44. Quadrilateral in a Uniform Cartesian Grid
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