A

_— as A SupRur s
N —e it - C /’8/

=775 T
774

ADAPTIVE GRID EMBEDDING FOR THE TWO-DIMENSIONAL

FLUX-SPLIT EULER EQUATIONS

by

Gary Patrick Warren

A Thesis
Submitted to the Faculty of
Mississippi State University
in Partial Fulfillment of the Requirements
for the Degree of Master of Science
in the Department of Aerospace Engineering

Mississippi State, Mississippi

May 1990

(NASA-CR-186533) ADAPTIVE GRID EMBRODING NQD-21571

FOR THE TWU-DIMFNSINNAL FLUX-SPLIT FULER

EQUATIONS M.S. Thesis {Mississippi State

Univ.) T7 o C3CL 12A A Unclas
Gifeh 0277597

ADAPTIVE GRID EMBEDDING FOR THE TWO-DIMENSIONAL

FLUX-SPLIT EULER EQUATIONS

APPROVED:

by

Gary Patrick Warren

Professor of Aerospace
Engineering (Major Professor)

Associate Professor, Graduate
Coordinator, Department of
Aerospace Engineering

Professor and Head of the
Department of Aerospace
Engineering

May, 1990

Director of Graduate Instruction
College of Engineering

Dean of the College of
Engineering
Acrospace Engineering

Vice President for Graduate
Studies and Research

ACKNOWLEDGMENTS

The author wishes to thank the NASA Langley Research Center for their
financial support for this project. Also, thanks go to Jim Thomas for helpful
discussions and Jerry South for his patience. Special thanks to W. Kyle Anderson

for always having the time to be a teacher and a friend.

il

ABSTRACT

Gary Patrick Warren, Master of Science, 1990
Major: Engineering, Department of Aerospace Engineering

Title of Thesis: Adaptive Grid Embedding for the Two-Dimensional Flux-Split
Euler Equations

Directed by: Joe F. Thompson

Pages in Thesis: 65 Words in Abstract: 185

ABSTRACT

A numerical algorithm is presented for solving the tw:;-dimensional ﬂux-sélit.
Euler equations using a multigrid method with adaptive grid embedding. The
method uses an unstructured data set along with a system of pointers for com-
munication on the irregularly shaped grid topologies. An explicit two-stage time
advancement scheme is implemented. A multigrid algorithm is used to provide grid
level communication and to a;:celerate the convergence of the solution to steady
state. Results are presented for a subcritical airfoil and a transonic airfoil with
3 levels of adaptation. Comparisons are made with a structured upwind Euler
code which uses the same flux integration techniques of the present algorithin.
Good agreement is obtained with converged surface pressure coefficients. The lift
coefficients of the adaptive code are within 2%0'(‘ of the structured code for the sub-

critical case and within 43 % of the structured code for the transonic case using

approximately one—third the number of grid points.

i

TABLE OF CONTENTS

ACKNOWLEDGEMENTS
ABSTRACT
NOMENCLATURE e e e e
LISTOF FIGURES
LISTOF TABLES

CHAPTER

I. INTRODUCTION

II. GOVERNING EQUATIONS
2.1 Euler Equations

2.2 Integral Formulation
2.3 Flux Vector Splitting

III. NUMERICAL METHODS
3.1 Data Structures e
3.2 Flux Integration
3.3 Time Advancement

3.4 Stability Analysis

3.5 Boundary Conditions, . Ce e e e e
3.5.1 Inflow/Outflow Boundary Conditions .
3.5.2 Solid Wall Boundary Conditions . .
3.5.3 Embedded Interface Boundary Conditions . .

3.6 Multigrid Algorithm

iv

page

ii

. il

. vi

A .4

. xi

. . . .

O O N1 s A

o1

........

. .13

14

.15

. 16

.. .18
. 18
. 19

IV. GRID EMBEDDING AND ADAPTATION

4.1 Grid and Péintcr Generation
4.2 Adaptation
V.RESULTS

5.1 NACA 0012, MACH = 0.63, « = 2.0°

5.2 NACA 0012, MACH = 0.80, o = 1.25° . .
VI. CONCLUDING REMARKS

APPENDICES

A. INTERPOLATION OPERATORS

BIBLIOGRAPHY

. 36
. 36
. 36
. 44
. 45
. . 46
. 60

. . 61
. 65

NOMENCLATURE

A,B flux Jacobians, %F-QL and %lz.

a speed of sound

CFL Courant-Friedrichs-Lewy number

C, pressure coefficient

c chord length

cd drag coeflicient

ce lift coefficient

€ total energy

F fluxes of mass, momentum, and energy

G; grid level ¢

I::_l collection operator used for transferring information on grid level &

to grid level t — 1
I, interpolation operator used for transferring information on grid level

t — 1 to grid level ¢

i::"l collection operator for residual
;',3' unit vectors in z and y directions
kn denotes £ or

¢ length of a face

M Mach number

M, Mach number in ¢ direction

vi

s 4

<q

§&n

unit normal

z and y components of a unit normal
pressure

conserved state vector, Q = [p, pu, pv, e]T
most current approximation to Q on grid level ¢
velocity magnitude

residual vector for mass, momentum, and energy
surface area

entropy, also parameter for flux limiter
time

contrava-,riant velocities

cartesian velocities in £ and y directions
correction at grid level ¢

cartesian coordinates

time step

angle—of-attack

refinement parameter

ratio of specific heats, taken as 1.4
gradient operator

accuracy parameter

undivided gradient operator

general curvilinear coordinates

vil

K parameter controlling spatial difference-scheme type

p density

T relative truncation error
Subscripts:

¢ information at coarse grid face

f1,f2 information at fine grid faces

oo denotes conditions at infinity

Superscripts:

n denotes time level

+,— denotes direction from which information was obtained

viii

A L A W

Ta
7b
7c
7d
Te
7t

10
11
12
13
14
15
16
17

List of Figures

Arbitrary Control Volume
Structured Grid
Unstructured Grid
Semi-unstructured Grid

Single Grid Level Structure . .

Multiple Grid Level Structure .
Cell-to-Face Pointer
Cell-to-Node Pointer
Face-to-Cell Pointer
Face-to-Node Pointer

Lower Link Pointer L
Upper Link Pointer

Stability Characteristics for x = 1/3
Stability Characteristics fork =-1
Inflow/Oufiow Boundary
Characteristics at Inflow/Outflow Boundary
Embedded Ghost Cells

Computational Stencil for Fine Grid Fluxes

......

......

....

Computational Stencil for Coarse Grid Flux .

Multigrid V-cycle
O-Grid Topology
VoidsinGrid

X

. . .

.....

.....

.
o
W a

.27
.27
. 27
. 28
. 28

.. 29

. 29
. 29
. 30

. . 30

. 30
. 31
. 31

.. 32

.32
. 33
. 34
. 34
. 35
. 41
. 42

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Grid Remapping Criteria R
Grid Adaptaéion Steps o oL oo
Initial Grido
Initial Grid Pressure Distribution, My, = 0.63, 0 =2.0°
Initial Grid Mach Contours, M, = 0.63,a =2.0°, AM =005
Leading Edge Initial Grid Mach Contours, M, = 0.63,a =2.0°
2 Level Adapted Grid (Vp), Moo = 0.63,a =2.0°
2 Level (@'p) Pressure Distribution, M, = 0.63,a =2.0°
3 Level Adapted Grid (Vp), Moo = 0.63, 0 =2.0°
3 Level (Vp) Pressure Distribution, My, = 0.63,0 =2.0°
4 Level Adapted Grid (Vp), Moo =0.63,0=2.0°
4 Level (Vp) Pressure Distribution, My, = 0.63,a =2.0°
2 Level Adapted Grid (Vq), Mo, = 0.63,0 =2.0°
2 Level (@q) Pressure Distribution, My, = 0.63, 0 =20°
3 Level Adapted Grid (Vq), Moo =0.63,0 =2.0°
3 Level (Vq) Pressure Distribution, My, = 0.63,a =2.0°
4 Level Adapted Grid (Vq), Moo =0.63,a =2.0°
4 Level (Vq) Pressure Distribution, My, = 0.63,a = 2.0°

4 Level (Vp) Mach Contours, Mo, = 0.63,a = 2.0°,AM =0.05
Leading Edge 4 Level (Vp) Mach Contours, My, = 0.63, a = 2.0°
Initial Grid Mach Contours, Moo =0.80, 0 =1.25°
Initial Grid Pressure Distribution, My, = 0.80, a0 =1.25°
4 Level Adapted Grid (Vq), Moo =0.80,0 =1.25°
4 Level (Vq) Pressure Distribution, My, = 0.80,0 =1.25°
4 Level (@q) Mach Contours, M, = 0.80,0=125°
Typical Quadrilateral

Quadrilateral in a Uniform Cartesian Grid

List of Tables

Table Page
4.1 Expected effectiveness of various refinement parameters for inviscid,

transonic flows over airfoil-like bodies37
5.1 Results Comparison for My, =063, =2.0°56

5.2 Results Comparison for M, = 0.80, =1.25°59

Xi

CHAPTER I

INTRODUCTION

In spite of many recent developments in computational fluid dynamics al-
gorithms and substantial increases in computer speed and memory, many flow
situations still impose unsatisfactory requirements on computer time. These re-
quirements are driven by the large number of grid points required to sufficiently
resolve important flowfield features. Since most algorithms use structured grids
without embedding, adequate resolution of important flowfield features requires
either highly stretched grids or the inclusion of many unnecessary grid points away

from the main areas of interest.

As a solution to this problem, several adaptive techniques have been developed
in recent years which attempt to concentrate grid points only in regions of high
gradients. These techniques can be grouped into one of two categories. In the first
category, higher resolution of specific areas is accomplished by redistributing the
grid points of an existing structured grid into the regions of interest. The primary
advantage of this method is its relative ease of implementation into existing flow
solvers because no modifications to the data structure is required. Unfortunately,
this technique often results in highly stretched and skewed grid lines and can leave
some regions of the flowfield with inadequate resolution. Another method some-
times used to enhance grid resolution is the embedding of grid points into specific
areas of an existing grid based on some reasonable criteria such as high flow gra-

1

dients or high local errors. This allows improved resolution of important features
with a relatively small increase in grid points and without adversely affecting
other portions of the grid. Grid embedding techniques, however, are difficult to
implement into existing computer codes because of the necessary data structure
required for inter-grid transfer of information. The difficulties encountered in grid

embedding, however, are more than compensated by increased capability.

There have been several recent investigations into grid embedding using
central-difference algorithms!?:3. Berger' developed a grid embedding technique
for a structured grid algorithin using a central-difference method developed by
Jameson. This algorithm adapted to an estimate of the truncation error. More
recently, Dannenhoffer?® developed an adaptive grid embedding method that was
used in conjunction with a central differenced node based scheme. Dannenhoffer’s

method used an unstructured grid along with a multigrid algorithm.

In recent years, upwind ciiﬂ'erencing has gained in popularity because of in-
creased accuracy and robustness over its central differencing counterparts. The
finite volume technique, as described in references 4 and 5, has been applied to a
variety of flow problems. This scheme uses the flux-vector splitting of van Leer® or
the flux-difference-splitting of Roe” coupled with an implicit, multigrid algorithm.
This multigrid scheme is a well proven and documented algorithm which has heen

used mainly on block-structured grids with limited use on embedded grids®.

In the present study, the same spatial differencing used in reference 4 is applied

to a data structure designed for the use of an unstructured adaptive grid embed-

2

ding algorithm. Because of the unstructured grids, an implicit time advancing
method is not easily implemented and so the equations are advanced in time with
an explicit, two-stage time marching scheme. Since explicit time marching often
results in poor convergence rates, a multigrid algorithm is employed. Use of the
multigrid algorithm not only improves the convergence rate, but as importantly,
it also provides a mechanism for inter-level grid communication. This thesis will

present algorithmic details and results of this method.

CHAPTER II

GOVERNING EQUATIONS

2.1 Euler Equations
The governing equations are the time dependent Euler equations, which ex-

press the conservation of mass, momentun, and energy for an inviscid gas. The
(2.1)

equations are given by
%% L v.F=0
ot

where the state vector Q and the flux vectors F are given as

p
= | pa
€
f‘:i‘]i‘*‘f‘gj (2.3)
P po
~a~ ~ -
= _ | P +P T
Fi= | s Fa=| 5y s (2.4)
(¢ +5)i

(€ + p)i
The equations are closed with the equation of state for a perfect gas
p=(y - 1E~-pa’+%)/2) (2.5)

The variables in equations 2.1-2.4 can be non-dimensionalized by introduction of

the following definitions:
4

8!

p v z
P = -, V=T, T = =, t = =
w= __7 _ ¥ _ 4
T ke YT "Tag

The non-dimensional equations are not repeated here since introduction of
the previous variables into equations (2.1)-(2.4) results in an identical form of

equations as given above but with the (™) removed.

2.2 Integral Formulation

The Euler equations can be integrated over an arbitrary control volume, as

shown in figure 1, with the resulting equations given by

/ S?gd5+//;(V~f‘)d5=0 (2.7)

Flow

Figure 1. Arbitrary Control Volume

5

The first integral in equation (2.7) is then written as

%?— ://s %—tqu (2.8)

where Q is given by

Q=5Q (2.9)

and the average value of the state vector over the control volume is defined as

Q= %//;QJS (2.10)

The second integral in equation (2.1) is converted to a line integral by use of

the divergence theorem

//S(v-i‘)ds = ffﬁ.ﬁdg (2.11)

where N is the outward pointing unit vector normal to the control volume.
0= 61+ 6,j (2.12)

In this form, the fluxes normal to the surface of the control volume are written as
PU
~ — 7
FoF.az|Plutér (2.13)
pUc + &,p
(e +p)U

where U is the velocity in the direction of the outward pointing normal

U=~fu+tye (2.14)

6

2.3 Flux-Vector Splitting

The time dependent Euler equations form a hyperbolic system of equations
and hence information is propagated along characteristics. Therefore, to correctly
model the flow physics, some form of upwind differencing should be used in order to
model the characteristic nature of the governing equations. The upwind method
used in the current study is the flux-vector-splitting method in which the flux
vectors are split into forward and backward running contributions and differenced
accordingly.

The split flux-vectors used in the current study were developed by van Leer®.
These have been generalized to curvilinear coordinates by Anderson? and have

458 They are

since been widely used for flow computations on structured grids
continuously differentiable at eigenvalue sign changes and allow shocks to be cap-
tured with at most two interior zones. In practice, only one zone is usually

observed®. After splitting, the flux vectors normal to the cell face given in equation

(2.13) can be re-expressed as

F=Ft4+F (2.15)

where F+ and F~ are given below for | M <1

fi
fimaas[é:ﬂt}:hiz + U']

f:tmaas[éy gir;i:_zﬂ + U]

+
f energy

7

)

i:

where

fimau = :*:pa(Me + 1)2/4 (217)

fienergy :fimaas[{—(7 - 1)U2 == 2(7 - l)Ua'

(2.18)
+2a’}/(7% = 1) + (u? +0%)/2]
Here, M, = % is the Mach number normal to the surface of the control volume.
For supersonic flow (i.e.| M, |> 1), the fluxes are given as
Ft=F F =0 (M, > +1) (2.19a)
F-=F F+t=0 (M < -1) (2.19%)

where F is given by equation (2.13).

CHAPTER III

NUMERICAL METHODS

3.1 Data Structures

The governing equations are solved on a discrete curvilinear grid which con-
sists of cells, faces, and nodes. Generally, a structured grid consists of a collection
of cells which are organized into a single or multiple block structure as shown in
figure 2. In each block an implied data structure exists in which the relation-
ships between the nodes, cells, and faces are determined by simple addition or
subtraction of integer values from the current cell index (i.e. i+ 1, ¢ — 1, etc.).
Unstructured grid algorithms, however, rely on a system of pointers to determine
node, cell, and face relationships needed to transfer information within the grid.
Every cell, face, and node is assigned an integer value, as shown in figure 3, and
access to each is obtained through the use of various pointers. For example, to
obtain information stored at the nodes which define a cell, an array called a cell-
to-node pointer must be accessed. The number and type of pointers needed is

highly dependent on the computational stencil for a particular scheme.

To efficiently employ adaptive grid embedding. it is desirable to remove the
restrictions of the implied data structure required for single and multiple block
grids. In the current work, the grids consist of a collection of cells which are aligned
with the £ and 7 coordinates but no block structure is required. In addition,

9

all information in the grid is obtained through a system of pointers as in an
unstructured grid. The use of the { and n coordinate system makes it simple
to implement the spatial differencing techniques of structured algorithms in an
unstructured framework. This approach can be referred to as a semi—unstructured
method since some structure is required for the cell alignment but not the cell
collection as shown in figure 4.

There are two basic methods in which the embedded grid regions can be
handled. The first method is to treat the entire grid as a single level and have
special data structures to handle the hanging nodes as shown in figure 5. This
can be somewhat tedious because some cells may have more than 4 faces. For
example, cell a in figure 5 consists of 6 faces and 6 nodes. The second method,
which is used in the current work, is to treat the embedded grids as separate
levels as shown in figure 6. This allows every cell to have only 4 faces and nodes.
This multi-level grid structure also facilitates the use of a multigrid algorithm to
enhance the convergence rate of the flow solver. The use of upwind differencing,
adaptive embedding, and multigrid, is accommodated with the following set of

pointers:

1. Cell-to-Face pointer - relates a cell to its four faces.

2. Cell-to—Node pointer - relates a cell to its four nodes.

3. Face-to—Cell pointer - relates a face to the cells used in determining quantities
on the face.

4. Face-to-Node pointer - relates a face to its two nodes.

10

5. Link pointer - relates a cell to the four cells below it and the four cells above
it. The coarse cell which lies below four finer cells is referred to as a parent

and the finer cells are referred to as children.

These pointers, and the numbering system for each, are demonstrated in figures
7a-f. For setting the boundary conditions, additional information is required which
contains the face numbers of both the solid walls and the inflow/outflow bound-
aries. The indexing used in the algorithm descriptions will be based on the use of

these pointers.

3.2 Flux Integration

The equations are solved using a finite volume formulation which entails solv-
ing for the average quantities in each cell. The flux integral in equation (2.11) is

approximated by:
4

fBrae = (R, (3.1)

§ n=1

where the subscript n is the face number (see figure 7a) and £, is the length of
each face. Note that the flux balance given by equation (3.1) is based on outward
pointing normals whereas the normals for the semi-unstructured grid have been
chosen, for convenience, to always point in the positive £ and 5 direction. The

resulting flux integration (with splitting) for a cell is written as
Jre = - BH@D) + Fr(@DI + (FH@D) + 3 (@116

+ [FHQ;) + F5 Q)6 - [FHQL) + Fr(Q])]4

11

The fluxes F* are constructed using the same equations as Ft But normals point-
ing in the positive coordinate directions are used in place of outward pointing
normals. Here, ¢, is the physical length of face n and Q¥ are the state variables
interpolated to the faces from the positive and negative directions. The interpo-

lation formulas, using the stencil shown in figure 7c, are given by
~ 1
Qface(n) = chll(?) + z‘ﬁ[(l - R)A— + (1 + K)A+]chll(2) (33)

1
Q?ace(n) = QCC”(3) - ng[(l + R)A‘ + (1 - K‘)A'G']chll(:’) (34)

where A, and A _ are forward and backward difference operators defined as

AL Qon(n) = Qeeti(nt1) — Qeeti(n) 7 (3.5)
A——chll(n) = chll(n) - Qccll(n—l) (36)
For k = —1, these interpolation formulas give a fully one-sided extrapolation of

the dependent variables to the cell faces which results in a second-order accurate

difference formula for equation (3.2) on a uniformly spaced grid®. Similarly, the

1

; results in a three-point interpolation formula which produces a third-

useof k =
order accurate difference approximation to equation (3.2) on a uniform grid.
When using a three—point interpolation formula, oscillations in the solution

can occur in regions of strong gradients such as shocks. To eliminate these oscil-

lations, flux-limited interpolations® are employed which are given by

_ s -
Qice(n) = Qeeu2) + Zd’[(l —k8)A_ + (14 £8)A4]Qceu(z) (3.7)

12

3

Q7 ce(n) = Qeeiga) — 201+ ko)A + (1 - ka)A4]Qecua) (3.8)

where

_ 2A+A_ + ¢
VAL N O (39)

and ¢ is a small number (¢ = 107°%) preventing division by zero in regions of null
gradients. The variable ¢ is a user defined parameter which is equal to 1 but can
be set to 0 for a one-sided first—order method.

3.3 Time Advancement

The solution of equation (3.2) is advanced in time using the modified Euler

method?, which is an explicit 2-stage scheme of the form

Q' = Q" + AR (3.10)
Q" = 2(Q"+ Q") + AR’ (3.11)

where the residual is given as

R=—{-[F{(Q))+F{(QN)t + [F7(Q;) + F;(Q7))6
(3.12)
+[FF(Q5) + F5(Q7)]6 — [F7(Qy) + F (QF)]ea}
The superscripts for the residual designate the time level of the state variables
used in the flux evaluation.

The solution for each cell is advanced at its own local time step corresponding

to a CFL number given by:

CFL=At{]U |+ |V | +a[| grad(§) | + | grad(n) |]} (3.13)

13

The contravariant velocity in the ¢ direction, U, is given in equation (2.14). The

contravariant velocity, V, is obtained simply by replacing ¢ with .

3.4 Stability Analysis

The stability analysis follows from the work of reference 4. The stability
characteristics are examined using the linearized two-dimensional Euler equations

given by

0Q
Bt = -P(Q) (3.14)
where
d 8C ,
P(Q) = —53- + B% (3.15)

The flux Jacobians, A = % and B = %, are computed using the split flux
vectors for the # and y directions respectively. The differentials are computed
across the cell using the interpolation formulas given by equations (3.3) ~ (3.6).

The Fourier mode for Q is assumed to be
Q = QetPeety (3.16)

where Q is an initial state vector. Substituting — P(Q) for the residual in equations
(3.10) and (3.11) and replacing Q with its Fourier mode, a system of equations is
obtained of the form

Q! = GQ” (3.17)

The magnitude of the maximum eigenvalue of the amplification matrix G must
be less than unity for stability. A computer program was used to cycle through a

14

fixed number of each of the spatial frequencies in the range
0 <pBA=z,TAy <2n (3.18)

for a series of CFL numbers between 0.1 and 1.2. The generalized eigenvalue
problem is solved using an IMSL!? routine. In addition, the high frequency error
damping properties (smoothing) of the scheme can be studied by examining the
maximum eigenvalue in the frequency range between 7 and 37"

Shown in figures 8 and 9 are the stability characteristics for k = 1/3 and
k = —1 for a Mach number of 0.8 and a = 0.0. Both schemes exhibit poor high
frequency error damping properties. Because the x = 1/3 scheme allows a higher

CFL number along with higher spatial accuracy, this was the scheme chosen for

the computations presented later.

3.5 Boundary Conditions

For setting the boundary conditions, there are three possible boundary types
which must be considered. These include inflow/outflow, solid wall, and interfaces
between embedded grid regions. All of the boundary conditions are implemented
using “ghost” cells which lie outside of the computational domain. The solid wall
and inflow/outflow boundary faces have only one ghost cell and hence the general
four point stencil shown in figure 7c does not exist. The differencing on these faces
is accomplished by setting Q1 or Q™ (depending on the boundary) equal to that
of the ghost cell. For the solid wall and embedded interface boundary conditions,

15

the ghost cells are updated before each time step whereas, for the inflow/outflow

boundaries, the ghost cells are set to freestream values.

3.5.1 Inflow/Outflow Boundary Conditions

The inflow/outflow boundary conditions are developed using characteristic
theory!! which is summarized here. A local coordinate system (Z, §) is constructed
orthogonal to the boundary as shown in figure 10. The characteristic equations
are constructed assuming the tangential derivatives are negligible so that a one-
dimensional analysis normal to the boundary can be employed. The resulting
characteristics are sketched in figure 11. Assuming locally isentropic flow, the

characteristic equations are given by

d

j:— =0 along C°=u (3.19q)

do 0

pr =0 along C" =u (3.19%)
%(Ri) =0 along Ct=d+a (3.19¢)

where the Riemann invariants, R*, are given by

2a

Rf=a+
(vy-1)

(3.20)

t" 1 are obtained from the Riemann invariants.

The variables at the new time level
Assuming that # points away from the computational domain, R™ and R~ are
evaluated using the state variables from outside and inside the computational

domain respectively. The normal velocity and speed of sound on the inflow/outflow

16

boundary are obtained by adding and subtracting the Riemann invariants.

1
i face =§(R+ +R7) (3.21)

Aface :(1%1—)'(}2+ - R_) (322)

‘Once the normal velocity and speed of sound are calculated, the Cartesian
velocities are determined by decomposing the normal and tangential velocity vec-

tors

Ufgce =Uref + ﬂz(ﬁface - ﬁref) (323)

Vfgce =Uref t+ ﬁ'y(ﬁfacc - ﬁref) (324)

where the subscript ref represents freestreamn values for inflow or from the cell
inside the domain adjacent to the boundary for outflow. It should be noted that
since the local coordinate # points away from the computational domain, inflow
corresponds to & < 0 and outflow corresponds to @ > 0. The variables i, and n,
are the z and y components of the outward pointing unit normal for the face.
The entropy s is determined using the value from outside the domain for
inflow and from inside the domain for outflow. Once the entropy on the boundary
is known, the density on the face is calculated from the entropy and speed of sound

on the face
N
1

@ 17

ace

Pface = [] (325)
Y3 face

The energy on the face is then calculated using the equation of state.

17

For supersonic conditions, the state variables are extrapolated to the bound-
ary from the exterior for inflow boundaries and extrapolated from the interior for
outflow boundaries.

3.5.2 Solid Wall Boundary Conditions

The variables on solid wall boundaries are computed by extrapolating from the
interior of the computational domain. For the cases presented here, the pressure
and density on the face are simply set to the values of the cell above it. The
normal velocity is then set to zero so that the resulting Cartesian velocities on the

face are given by
Uface =Ucell — ﬁ:(ﬁcell) (326)
Uface =Ucell — ﬁy(ﬁcell) (327)

Here, ii oy is constructed with a normal facing in the positive £ or 7 direction and
fi, and n, are the z and y components of this normal. The density, pressure, and

Cartesian velocities are then extrapolated to the ghost cells using

d’ghost = 2¢face - ¢cell (3‘28)

Note that only the Cartesian velocities need to be extrapolated since the pressure

and density in the ghost cell are the same as in the computational cell above it.
3.5.3 Embedded Interface Boundary Conditions

A difficulty encountered when using embedded grids is in determining the

fluxes on the interface between the coarse and fine grids inside the computational

18

domain so that the accuracy and conservation properties of the flow solver are
maintained. The method for obtaining the flux on the coarse grid is. the same as
that for obtaining the other coarse grid faces since the four-point computational
stencil is complete. Obtaining the flux on the two finer faces can be accomplished
several ways. The method developed here is similar to that of Berger!. A set
of ghost cells is constructed outside of the interface region as shown in figure 12.
Note that with the addition of the ghost cells, the four-point stencil needed for
the interpolations to obtain the state variables on the faces is preserved. In this
region, the state variables are determined by bilinear interpolation from the next
coarsest grid level using the most current solution on that level. This prodﬁces
the interpolation stencil shown in figure 13 for the fine grid fluxes since all nine of
the shaded coarse grid values are used to obtain the values in the ghost cells. The
coarse grid flux stencil is shown in figure 14.

This method of calculating the fluxes, however, does not enforce conservation
at the interface region since there is nothing to ensure the sum of the fluxes on
the finer grid equals the flux on the coarse grid. To enforce conservation at the
interface, the fluxes from the two finer faces are added and injected onto the coarse

grid before the coarse grid update
Fol.=Fst5 +Fpolp (3.29)
3.6 Multigrid Algorithm

The algorithm presented thus far is still incomplete because no communication

19

exists between the grid levels. The increased accuracy of the fine grids is not
passed to the coarser grids, so the solution on the coarse grid remains unchanged.
This is unacceptable since the ghost cells for the finer grids are determined by
interpolation from the coarse grid solution. A multigrid algorithm is a natural
way to obtain grid-level communication. The truncation error between a fine and
a coarse grid is passed to the coarse grid in such a way that the coarse grid is
driven by the fine grid residual. Hence, the fine grid accuracy is maintained on

the coarser grid.

The multigrid algorithm used in the current study is the Full-Approximation
Scheme (FAS) which has been primarily used in solutions of the Euler equations
as a method of convergence acceleration such as described in reference 4. Because
of the embedded grids used in the current algorithm, slight modifications to the
algorithm presented in reference 4 must be made since not all cells on the coarser

grids have finer cells above them.

The application of multigrid algorithms to Euler solvers has primarily been
due to the convergence acceleration which is attained. The improved conver-
gence is attributed to the fact that the multigrid algorithm efficiently damps low-
frequency errors on the finer grids by using a sequence of grid levels denoted by
Gn, Gn_1, -G, where the coarsest grid level corresponds to G,. Since the
lower levels have greater spacing between grid lines, the low frequency errors on
the higher levels appear as high frequency errors on the lower levels where they
can be efficiently damped.

20

Explanation of the multigrid process is facilitated by first examining the Euler
equations written in operator notation and discretized on a given grid, G 5, which

is defined to be the finest level.

Ly(Qn) =0 (3.30)

where Qn is the exact solution to the discretized system and Ly is the discrete

steady state operator given by

Ly (Qn) = —{ - [F{(Q7) + F1(QT)]& + [FF(Q7) + F5 (Q3)]ex
(3.31)
+[F3(Qy) + F5 (Q9)6 - [FI(Qy) + Fi(Q)))t}
When solving iteratively, equation (3.31) is solved approximately at each time

step so that the right hand side of (3.30) is not identically zero. This can be

represented by introduction of a residual defined implicitly by

Ly(ay) =Ry (3.32)

where q%; is the most current approximation to Qx and Ry is the residual. Note
that the residual will be zero only when the approximate solution (q%) is equal
to the exact solution (Qx).

Since it is the errors that are damped on any given grid, it is desirable to cast
the governing equations for a given grid in terms of the errors. This is achieved

by subtraction of equation (3.32) from equation (3.31)

Ln(Qn) ~ Ly(qy) = —Ry (3.33)

21

If the time stepping method adequately eliminates the high-frequency errors on
the current grid level G, the residual equation, (3.31), may be adequately ap-

proximated on the coarser parent cells Gny_; by

Ly-1(Qn-1) = Iy 7Y (-Rn) + Ly (IN " 'aR) (3.34)

Here I%_] is a volume-weighted collection operator that transfers dependent vari-
ables from the children to the parents so that conservation is maintained? and is

given by

Here, V is the volume of each child cell. Similarly ix_l is the collection operator

(3.35)

for the residual which is defined as
IN'Ry =) Ry (3.36)

For equations (3.35) and (3.36) the summations are over the four fine grid cells
(children) which make up the coarser parent cell. In the current study, the depen-
dent variables in the ghost cells for the finer grid are not restricted down to the
coarser grid.

Note that equation (3.34) can be written as

Ly 1(Qnx-1) =T (3.37)
where
-1 =Ly (IN Tay) - IV (Ry) (3.38)

22

is the relative truncation error between grid levels Gy and Gn_;. For coarse grid
cells with no finer cells above them, ry_; is set to zero. The inclusion of 7 _;
allows the solution in the parent cells to be driven by the finer grid so that the
order of accuracy on the fine grid is maintained. The new residual which can be

written in a form applicable to all grid levels, G; is given by
R; =Li(q;) — 7 (3.39)

This residual is now used for updating the solution on the current grid using the
time advancing algorithin, equations (3.10) and (3.11), described earlier.
To proceed down to the next coarsest level, G2, the analogous equation to

equation (3.37) is given by

Ly_2(Qn-2)=7Tn_2 (3.40)

where

TN-2 = LN—z(I%:quv_l) - i%:f(RN_l) (3.41)

Note that R _;contains the relative truncation error between levels V and N —1
so that the relative truncation error on this grid is the sum of the truncation errors
between levels N and N —1aswellas N —1and N — 2.

Thus far, the relative truncation errors between the parents and children
have been succesively passed down to each of the parent cells so that the order
of accuracy of the children is preserved. In this manner, the accuracy of the finer
levels “drives” the accuracy of the coarser levels.

23

Since the lower levels damp out the low frequency errors of the higher levels,

a correction from the coarse grid must be passed up to the higher levels. This

correction V is formed on grid level N — 2 as

Vo =ay_, — IN2aiv_, (3.42)

This correction is then added to the dependent variable in the children cells

Ay_; — dy-1 + I%:;VN—Z (3.43)

where I%:; is an interpolation operator for passing information from a lower level
to a higher level as described in Appendix A. A correction is then formed on level
N — 1 and passed up to level N using equations (3.42) and (3.43) by replacing
N — 1 with N and N — 2 with V — 1. Note that no additional iterations are
performed on grid N — 1 before interpolation of corrections to grid level N.

The process described above is a three-level “V”-cycle algorithm and is de-
picted in figure 15. For further clarity, detailed steps for a three-level V-cycle are
given below.

1. Start on the highest grid level and advance the solution in time using equation

(3.39) and 7y = 0.

2. Calculate the residual with the most current values on the highest level from

equation (3.39) and 7 = 0.

3. For cells on Gy_; with children, collect the dependent variables from Gy

using equation (3.35).

4. For cells on G with children, collect the residual from Gy using equation
(3.36) and calculate the relative truncation error between the grids using
equation (3.38). For cells on Gy _; with no children, set ry_; = 0.

5. Advance the solution in time on level Gy _; using equation (3.39) to calcu-
late the residual. Since 75 _; has been previously calculated, the residual is
calculated by evaluating Ly _;(q% _,;) from the most current values of the
dependent variables on this level and subtracting rv_;. Again, note that
rn-1 = 0 for cells on Gn_; with no children.

6. Calculate the residual on this level using equation (3.39).

Ry_1 =Ln-i(ay_y) — TN

7. For cells on Gy _; with children, collect the dependent variables from G _;
using equation (3.35).

8. For cells on G y_; with children, collect the residual from G _, using equation
(3.36) and calculate the relative truncation error using equation (3.41). For
cells on Gy _2 with no children, set ry_, = 0.

9. Advance the solution in time on this level using equation (3.39) to calculate
the residual on Gy_2. Since this is the lowest level used in the present exam-
ple, several solution updates are performed to get an approximation to Qn_5.
During each step, the residual is updated to use the most current values of
the dependent variables in Ly _»(q%;_,). Note that ry_; will not change.

9. Calculate the correction on this level to give

Vo2 =diy_, - Iy jdh_,

25

10.

12.

13.

14.

Pass the correction to the next finest mesh using bilinear interpolation and

update the solution to give
c c N
ay — ay +In_; Vv
Calculate the correction on the N — 1 level with
Vyo1 = q}:v_l - Ix‘lq}:v
Pass this correction to the highest level and update the solution
c c N
ay —dy + Iy VN

Advance the solution in time to smooth the errors.

26

/ Hanging node

-

Figure 5. Single Grid Level Structure

level 1

level 2

level 3

level 4

Figure 6. Multiple Grid Level Structure

28

ctofln,1) = face 1
ctofin,2) = face 2
ctofin,3) = face 3
ctofin,4) = face 4

Figure 7a. Cell-to-Face Pointer

cton(n,1) = node 1
_cton(n,2) = node 2
cton(n,3) = node 3
cton(n,4) = node 4

Figure 7b. Cell-to-Node Pointer

+k

ftoc(n,1) = cell 1
ftoc(n,2) = cell 2
ftoc(n,3) = cell 3
ftoc(n,4) = cell 4

Figure 7c. Face-to-Cell Pointer

29

Figure 7d. Face-to-Node Pointer

celln

7
2

il

/,4’\‘/

4 \

N\

o o
cell 2 cell 1

Figure 7e. Lower Link Pointer

fton(n,1) = node 1
fton(n,2) = node 2

link(n,1) =cell 1
link(n,2) = cell 2
link(n,3) = cell 3
link(n,4) = cell 4

cell 4 cell 3 — children
[4 ”>
¥ AT cell 2

cell 1 \

/

\o
cell n

parent

Figure 7f. Upper Link Pointer

30

link(n,5) = cell 1
link(n,6) = cell 2
link(n,7) = cell 3
link(n,8) = cell 4

1.2

8 Smoothing
I —- Average
0.8 : - & Maximum

05 T v v v r

0.0 0.2 0.4 0.6 0.8 1.0 1.2
CFL

Figure 8. Stability Characteristics for k=1/3

& Smoothing
- Average
; - & Maximum

Al

0.0 0.2 0.4 0.6 0.8 1.0 1.2
CFL

Figure 9. Stability Characteristics for k=-1

31

Inflow/Outflow Boundary . Ghost Cell

Region Exterior to
Computational Domain

Region Interior to
Computational Domain

Figure 10. Inflow/Outflow Boundary

Region Interior to = Region Exterior to
Computational Domain Computational Domain

Figure 11. Characteristics at Inflow/Outflow Boundary

32

Interface ghost cells

Pt

_\
.

\

Figure 12. Embedded Ghost Cells

33

level n+1

level n

Interface Boundary

level n

leveln-/ .

Figure 13. Computational Stencil for Fine Grid Fluxes

Interface Boundary

level n ﬂ

Figure 14. Computational Stencil for Coarse Grid Flux

34

Q(n+1)*

Q(n)"‘ = cells with no children

: Euler Calculation

: Collection of Residual and Q to

parents, injection of fine grid fluxes at
embedded grid interfaces

Prolongation of Correction to children
and update interface ghost cells

Figure 15. Multigrid V-cycle

35

CHAPTER IV

GRID EMBEDDING AND ADAPTATION

4.1 Grid and Pointer Generation

The data structure of this algorithin requires the generation of all the pointers
described in chapter 3. This is accomplished by first obtaining an initial structured
grid from which all the necessary pointers are then extracted. The initial grids used
in this study are O-type grids, as shown in figure 16. These grids are generated
using transfinite interpolation to obtain the coordinates of each of the nodes!Z.
Global coarser grids, required for use in the multigrid algorithm, are generated
simply by removing every other point from the next finest grid. On each of these

grids, the pointers are obtained in the same manner as for the finest grid.
4.2 Adaptation

For grid adaptation, it is first necessary to determine which regions of the
flowfield contain high gradients. For this, various refinement parameters can be
used which have been investigated in recent years. An extensive investigation into
the suitability of many parameters appropriate for inviscid transonic flow has heen
conducted by Dannenhoffer’. A summary of the refinement parameters and their
effectiveness in detecting flow features is given in table 4.1. As seen in the table,

the refinement parameters [Vp| (p = denisity) and |Vg| (¢ = velocity magnitude)

36

Feature type

B shock slip expansion | stagnation shock

wave line fan zone wake
1ol 0 0 1 0
vp 2 1 2 1 0
@2 o 2 2 1 1 0
Pl 0 0 0 2 0
vp 2 0 2 2 0
{72 p 2 2 1 2 0
lql 0 0 0 0 0
vq 2 2 2 2 0
62 q 2 2 1 2 0
|pol 1 0 0 0 2
VPo 2 2 0 0 2
v"2 Po 2 2 0 0 2

Note: 0 = the feature is not detected
1 = the feature is somewhat detected

2 = the feature is well detected

Table 4.1: Expected effectiveness of various refinement parameters for
inviscid, transonic flows over airfoil-like bodies (from reference [3])

37

are both capable of detecting all of the features considered except the wake region
behind a shock. As noted in reference 3, refinement parameters based on total
pressure can be used to successfully refine this region but tend to over-refine the
grid downstream of the shock with the result that the grid extending from the
shock all the way to the downstream boundary is flagged for refinement.

The operator V used in defining the refinement parameter is the undivided

gradient whose magnitude for an arbitrary scalar ¢ is given by

oy (5] (3]

The partial derivatives in equation (4.1) are currently evaluated using undivided

central differences. The refinement parameters, 3 = |Vp| and g = |Vq|, are

normalized to form a new parameter, 3

g P Pmin (4.2)
Bmaz — Bmin
which varies from 0.0 to 1.0.

After a solution is obtained on a current grid level, each childless cell is exam-
ined to determine whether 3 for that cell is less than a user input threshold value
3*, in which case the cell is flagged for refinement. Note that the value of 3* is
somewhat arbitrary. However, selecting a threshold value too low will embed too
many cells and generally pick up “noise™ in the solution. Conversely, a value too
high will not embed enough cells and may result in critical flow features remaining
undetected. For the current study. it has been found that specifying 3* to be

approximately 0.1 generally gave acceptable results.

38

After flagging cells, voids in the new grid topology can exist as shown in
figure 17. These voids occur in areas of the grid where the refinement parameter
3 is close to the threshold value 3* causing a scattering of the flagged cells over
the parent grid. Voids in the adapted grid region can be avoided by eliminating
undesirable cell arrangements using a mapping function along with the face-to-cell
pointers to add new cells. This mapping function is illustrated in figure 18 in which
five undesirable cell arrangements have been identified and a more desirable cell
arrangement is suggested for each. This process of eliminating voids is referred to

as grid amalgamation.

After the grid amalgaination process, the ghost cells for the embedded inter-
faces must be created. These cells are not constructed in the same manner as the
computational embedded cells since they are updated by interpolation and not
through the time advancement scheme. Only the nodes and link pointers are gen-
erated for these cells. The link pointers are needed for the bilinear interpolation.
The link pointers for the parent cell do not point to the children who are embed-
ded ghost cells since no information is passed from the children to the parents for

these cells (such as the relative truncation error).

After the cells are flagged for adaptation, new nodes must be generated in
order to refine the grid in these regions. The generation of new nodes, however,
is somewhat difficult since it is necessary to maintain both the grid smoothness
and stretching of the parent grid. This is particularly true for cells which lie on
the surface of the geometry since nonsmooth grid lines can result in oscillations in

39

the solution. The most straightforward approach to generating new grid points is
to simply average the coordinates of the neighboring nodes. This technique, how-
ever, does not resolve the curvature of the grid lines and will produce discontinous
metrics. Another method for generating new points is to use an interpolation
function, such as cubic splines. However, this approach presents two problems.
The first problem arises if there is an inadequate number of defining points in the
initial grid so that the resulting spline coefficients may not represent the true grid
shape accurately. The second problem is caused by the pointer structure used for
the unstructured grids which only provides local information on the connectivity
of faces and does not provide the global connectivity required to implement an in-
terpolation function such as cubic splines. This could be circumvented by creating
the connectivity required but would add to the complexity of the data structure
and would not eliminate the first problem of the initial coarse grid.

The current approach used to construct the embedded regions is to create the
finest level grid with a structured grid generation package and extract the nodes
from this fine grid data file as needed. This approach, although costly, ensures
that the new grids maintain the same stretching and smoothness.

After the embedded regions are generated, the solution from the previous grid
is interpolated to the new cells using the same bilinear interpolation operators
used by the multi-grid algorithm. The solution is then advanced in time using the
multigrid method of section 3.6. The overall adaptation process for a single grid

level is illustrated m figure 19.

40

Figure 16. O-Grid Topology

41

Void

Figure 17. Voids in Grid

Undesirable Arrangement Desirable Arrangement

SRRREEER

H 1 FHHH]

Figure 18. Grid Remapping Criteria

42

Flag cells for embedding

Amalgamate grid

Flag embedded ghost
cells

Generate new nodes, cells,
and pointers. Interpolate

state variables onto
children.

0 0 0 0 0
0 1 1 1 0
0 0 1 1 0
1 0 0 1 0
0 0 0 0 0
0 1 1 1 0
0 1 1 1 0
1 1 1 1 0
0 2 2 2 0
2 1 1 1 2
2 1 1 1 2
1 1 1 1 2
H ' :
F-r=-"r~F=r--
] L} []
H '
b~ - - -
1 1
n :
-t -1-
] I
H
-y
]

Figure 19. Grid Adaptation Steps

43

CHAPTER V

RESULTS

Results are now presented for the adaptive semi-unstructured Euler solver.
The computer code for this algorithim used 105 storage locations for each compu-
tational cell. The iterative scheme of the Euler solver is completely vectorizable
and has a computational rate of 14 microseconds per cell per iteration for a sin-
gle grid level on the Cray-2 supercomputer at NASA Langley Research Center.
Implementation of the multigrid algorithm with five grid levels requires approxi-
mately 30 microseconds per cell per iteration but this is dependent on the number
of embedded ghost cells in the computational domain. All of the cases presented

here were run using k = % for equations 3.7 and 3.8.

Comparisons are made with the two—dimensional Euler code of reference 4
referred to as CFL2D. As mentioned previously, the flux integration techniques
for this code are the same as the present adaptive code. The version of CFL2D used
for comparisons requires 139 storage locations per cell and has a computational
rate of approximately 45 microseconds per cell per iteration. This Euler code
uses an implicit time advancing scheme and has better smoothing characteristics
for the multigrid algorithm than the explicit scheme used in the adaptive code.
Hence, on a given structured grid, CFL2D will converge in less cpu time than the

adaptive code.

44

The grid used with CFL2D was a 257x97 O-grid with an outer boundary
40 chords away from the airfoil. This was the same fine grid used for extracting
points for the adaptive Euler code. The solutions presented here were considered
converged after the rms of the average residual had been reduced by at least
7 orders of magnitude which generally required 2000 iterations for the adaptive

code (1 V-cycle = 1 iteration).
5.1 NACA 0012, Mach = 0.63,a = 2.0°

The NACA 0012 airfoil in a freestream Mach number of 0.63 and at 2.0 degrees
angle—of—attack is presented here. This is an isentropic case and should produce
a drag coeflicient of zero. Figure 20 shows the initial grid for the adaptive Euler
code which is a 33x13 structured O-grid. The surface pressure coefficients are
shown in figure 21 and the Mach number contours are shown in figures 22 and 23.
The coarseness of the grid produces large entropy values near the leading edge of
the airfoi‘l and degrades the solution downstream which is evident from the poor

resolution of the trailing edge stagnation point.

The first adaptive embedding was performed using the undivided gradient
of the density magnitude | Vp | with the threshold value 3* set to 0.1. The
solution was converged on each level before the next level of embedded grids was
created. Figures 24 through 29 show each successive level of refinement with the
corresponding surface pressures. As shown, the embedding significantly improves
the overall solution quality without a large increase in the number of cells. Figures

45

36 and 37 show the Mach contours on the final adapted grid. These contours show
the smooth transition of the solution at the embedded interfaces.

The second adaptive embedding case was performed using the undivided gra-
dient of the velocity magnitude |Vq| with 3* again set to 0.1. The computations
were carried out in the same manner as the previous case with the resulting grids
and surface pressures shown in figures 30 through 35. As shown, this refinement
parameter embedded more points than the density gradient for the same value of
3*. Table 5.1 shows a comparison of the lift and drag values obtained for the two

cases along with those obtained with CFL2D.
5.2 NACA 0012, Mach = 0.8, a = 1.25°

The NACA 0012 airfoil in a freestream Mach number of 0.80 and at 1.25
degrees angle of attack is presented here.‘ Using | Vp| or | Vq| produced nearly
identical grids for this case and so only the | Vgq| case is shown.

These freestream conditions produce a strong shock on the upper surface of
the airfoil with a relatively weak shock on the lower surface. The Mach contours
and pressure distribution for the initial grid are shown in figures 38 and 39. The
final adapted grid, pressure distribution, and Mach contours are shown in figures
40 through 42. As shown, the final grid produces a sharp shock on both the
upper and lower surfaces with no oscillations. Table 5.2 shows the comparison

with CFL2D. The final ¢, has about a 4% %% difference from that of CFL2D.

46

Figure 20. Initial Grid

o Adaptive Code
— CFL2D

Figure 21. Initial Grid Pressure Distribution, Mo, = 0.63,a = 2.0°

47

Figure 22. Initial Grid Mach Contours, Mo = 0.63,a = 2.0°, AM= 0.05

Figure 23. Leading Edge Initial Grid Mach Contours, Mo = 0.63,a = 2.0°

48

Figure 24. 2 Level Adapted Grid (Vp), Moo = 0.63,a = 2.0°

-1.2
o Adaptive Code
— CFL2D

Figure 25. 2 Level (€7p) Pressure Distribution, Mes = 0.63,a = 2.0°

49

Figure 26. 3 Level Adapted Grid (Vp), Mo = 0.63,a = 2.0°

-1.2
o Adaptive Code

— CFL2D

D08

Figure 27. 3 Level (6p) Pressure Distribution, Mo, = 0.63,a = 2.0°

50

Figure 28. 4 Level Adapted Grid (Vp), Moo = 0.63,a = 2.0°

-1.2
o Adaptive Code

— CFL2D

o 8

Figure 29. 4 Level (Vp) Pressure Distribution, Moo = 0.63,a = 2.0°

51

TL"L' L

Figure 30. 2 Level Adapted Grid (Vg), Moo = 0.63,a = 2.0°

-2 N © Adaptive Code

— CFL2D

Figure 31. 2 Level (V¢) Pressure Distribution, Mo, = 0.63,a = 2.0°

52

1

ot

Figure 32. 3 Level Adapted Grid (Vq), Moo = 0.63, = 2.0°

-1.2 o Adaptive Code
) — CFL2D

Figure 33. 3 Level (Vgq) Pressure Distribution, Mo, = 0.63,a = 2.0°

53

Figure 34. 4 Level Adapted Grid (Vg), Mo = 0.63,a = 2.0°

-1.2 o Adaptive Code
— CFL2D

Figure 35. 4 Level (Vg) Pressure Distribution, Mo, = 0.63,a = 2.0°

54

Figure 36. 4 Level (V.?p) Mach Contours, Mo, = 0.63,a = 2.0°, AM= 0.05

Figure 37. Leading Edge 4 Level (Vp) Grid Mach Contours, My, = 0.63,a = 2.0°

55

Adaptation

Number of

Criteria Cells q cd
None 3

(CFL2D) 32,298 .328 0.270 x 10
Vq 11,132 320 0.249 x 10-3
vp 7,648 323 0.769 x 10-3

Table 5.1. Results Comparison for My, = 0.63,a = 2.0°

56

Vs

Figure 38. Initial Grid Mach Contours, Moo = 0.80,a = 1.25°

o Adaptive Code
— CFL2D

Figure 39. Initial Grid Pressure Distribution, M, = 0.80,a = 1.25°

57

Figure 40. 4 Level Adapted Grid (éq), Mo = 0.80,a = 1.25°

.75 1.00
Figure 41. 4 Level (6q) Pressure Distribution, M, = 0.80,a = 1.25°

~
)

58

/!
D

/

)

Figure 42. 4 Level (Vq) Mach Contours, Mo = 0.80,a = 1.25°

Adaptation Nu}nber of q cq
Criteria Cells
None -1
(CFL2D) 32,298 352 0211 x 10
Vq 11,132 .337 0.251 x 10-1

Table 5.2. Results Comparison for Mo, = 0.80,a = 1.25°

59

CHAPTER VI

CONCLUDING REMARKS

A semi-—unstructured algorithm to solve the two—dimensional Euler equations
with adaptive grid embedding has been presented. A multigrid algorithm has been
implemented to provide the required grid level communication and to accelerate
the convergence.

Results have been shown for a subcritical airfoil and comparisons have been
made with a structured algorithm using the same flux integration techniques.
The final lift coefficients are within 2%% of those obtained with CFL2D. Resﬁlts
have also been shown for a transonic airfoil where the increased resolution of the
shocks is very substantial without the large increase in grid points. The final lift
coeflicients for this case are around 4%% of CFL2D.

One problem with the present method is the poor error-damping character-
istics of the two—stage time advancing scheme. Further research is needed in this
area to produce an acceptable scheme. The memory requirements on a per cell
basis for the present method are approximately the same as that for an implicit
scheme. Since the present method requires less grid points to resolve the flow, the
overall memory requirements are less. The advantages of using this scheme would

probably be greater in three-dimensions.

60

APPENDIX A

Interpolation Operators

Interpolation can be performed in a two-dimensional field, shown in figure 43,

by assuming a bilinear function of the form:

flz,y) =a+be + cy + day (A.1)

The constants a, b, c, and d, can be evaluated given four boundary values:

f(z1,31) = a+ by + cyr + dz1pn (A.2a)
f(z2,42) = a + bay + cy; + dzay: (A.2b)
f(z3,y3) = a + bas + cys + dzsys (A.2¢)
f(za,y4) = a+ bxy + cyy + dzays (4.2d)

This can be written in matrix form as:

1 =z y1 =n a f(z1,01)
1 z; y2 =z b f(z2,92) A

= .3
1 =23 y3 =z3ys3 c f(z3’y3) ()
1 x4 ys =z4ys d f(z4,y4)

This matrix can be simplified if (z;,y;) is defined to be (0,0). Equation (A.2a) is

reduced to:

flri.91) = a (4.4)

This reduces (A.3) to a 3x3 matrix.

T, Y2 T2 b Afy
&3 Y3 T3yYs3 [= Af'; (A5)
Ty Yg T4lYq d Afy

61

where:

Afn = f(znvyn) - f(zlvy])

The system of equations given in (A.5) can now easily be solved by the use of

Kramer’s rule. The determinant of the coefficient matrix in (A4.5) is given as:

T2
T3
Ty

A=

Y2
Y3
Ya

T2Y2
T3ys | = 2224Y3(ys —y2) + 2223y4(y2 —y3) + 2azay2(ys —y4) (A.6)
TalY4

The coeflicients can then be solved for:

b=

d=

Af
Afy
Af

Y2
Ys
Y4
A

Yaya(za — 23)Af2 + yaya(z2 — z4)Afs + yays(@s — 22)Af4
A

Z2Y2
T3Y3
T4l4

(A.7a)

Af
Afs
Afs

T2
T3

r2Yy2
T3Y3

Ty T4Ya

A
z3z4(ys — ya)Af2 + z2xa(ya — y2)Afs + 2223(y2 —y3)A S

n (A.Tb)

Af,
Afy
Afs

T2
T3

Y2
Y3

s Y4

A
(z3ys — 24y3)Afz + (2ay2 — 22y4)Afs + (223 — 23y2)A Sy

. (A.Tc)

Assuming a uniform Cartesian grid of unit width and heighth, the nodes would

be:

(zlvyl) :(0’0)
(Tzﬁyz) =(1,0)

(4.8)
(z3.y3) = (1,1)

(z4,94) = (0,1)

62

Substituting (A4.8) into (A.7) yields the following solution:

a= f(z1,4)
b= Afz
(A.9)
c=Af,
d=-Afa+Afs —Afs
Substituting (A.9) into (4.1) yields:
flz,y) =f(z1,y1) + (f(z2,92) = f(z1,31))z + (f(=4,94) — f(=1, 1))y
+ (= (f(=2,42) — f(=1,11)) (4.10)
+ (f(23,43) — f(z1,11)) — (f(z4,94) — f(z1,31)))2y
Simplifying this gives:
f(zy) = (1 -z -y +zy)f(z1,m) + (z — zy) f(22,2)
(4.11)
+ (zy)f(z3,y3) + (v — zy) f(=4,94)
For a Cartesian grid as shown in figure 44, (z,y) = (0.25,0.25), so that
£(0.25,0.25) = (0.5625)f(=1,y1) + (0.1875) f(z2, y2)
(A.12)

+ (0.0625) f(z3,y3) + (0.1875) f(x4,ys)

Although the grids are generally not Cartesian, this is a close approximation to

the actual weightings for grids that are not highly stretched.

63

{x4.¥4)

(x1.y1)

Figure 43. Typical Quadrilateral

cell 4
L

cell 3
: J

coll 1

‘cell 2

(x2.¥2)

@ - Coarse grid celi-centered data

O - Fine grid cell-centered data

Figure 44. Quadrilateral in a Uniform Cartesian Grid

64

10.

11.

12.

13.

14.

BIBLIOGRAPHY

. Berger, M. J., Jameson, A., “Automatic Adaptive Grid Refinement for the

Euler Equations,” AIAA Journal, Vol. 24, No. 4, April 1985, pp. 561-567.

Dannenhoffer, J. F., and Baron, J. R., “Grid Adaptation for the 2-D Euler
Equations,” AIAA 85-0484, January 1985.

Dannenhoffer, J. F., “Grid Adaptation for Complex Two-Dimensional
Transonic Flows.” Sc.D. Thesis, Massachusetts Institute of Technology, Au-
gust 1987.

Anderson, W. K., Thomas, J. L., and Whitfield, D. L.: Three-Dimensional
Multigrid Algorithms for the Fluz-Split Euler Equations. NASA TP-2829,
1988.

Anderson, W. K., Thomas, J. L., and Van Leer, B., “A Comparison of Fi-
nite Volume Flux Vector Splittings for the Euler Equations,” AIAA Jour-
nal, Vol. 24, No. 9, September 1986, pp. 1453-1460. :

Van Leer, B.: Flux Vector Splitting for Euler Equations. Lecture Notes in
Physics, Vol. 170, 1982, pp. 501-512.

. Roe, P., “Approximate Riemann Solvers, Parameter Vectors, and Difference

Schemes,” Journal of Computational Physics, Vol. 43, 1981, pp. 357-372.

Krist, S. L., Thomas, J. L., Sellers, W. L., Kjelgaard, S. O., “An Embedded
Grid Formulation Applied to a Delta Wing,” AIAA 90-0429, January 1990.

Shu, C. W., Osher, S., “Efficient Implementation of Essentially Non-
Oscillatory Shock Capturing Schemes,” ICASE Report No. 87-33, 1987.

International Mathematical and Statistical Library, Version 9, Houston,
Texas.

Thomas, J. L., Salas, M. D., “Far-Field Boundary Conditions for Transonic
Lifting Solutions to the Euler Equations,” ATAA 85-1111, January 1985.

Thompson, J. F., Warsi, Z. U. A., Mastin, C. W.: Numerical Grid Genera-
tion: Foundations and Applications. North-Holland, New York, 1985.

Allmaras, S. R., Baron, J. R., “Embedded Mesh Solutions of the 2-D Euler
Equations: Evaluation of Interface Formulations,” AIAA 86-0509, January
1986.

Rai, M. M., “A Conservative Treatment of Zonal Boundaries for Euler
Equation Calculations,” AIAA 84-0164 January 1984.

65

