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TECHNICAL MEMORANDUM

DEFINITION OF LARGE COMPONENTS ASSEMBLED ON-ORBIT
AND ROBOT COMPATIBLE MECHANICAL JOINTS

I. INTRODUCTION

The Pathfinder Project was conceived to develop the technology required for future space
flight missions, such as establishing a permanent presence on the Moon, a manned mission to
Mars, or a combination of both. There are four key areas to Project Pathfinder: in-space assembly
and construction, extraplanetary exploration (including remote surveillance and surface exploration,
humans-in-space (including closed-loop life support and space medical science), and transfer vehicle
technology (providing the means for leaving and returning to low Earth orbit).

The Pathfinder in-space assembly and construction activity focuses on the technology that is
needed to construct large, massive, and complex vehicles in space. The program is intended to
provide a wide range of design options that are independent of any particular vehicle or platform
concept. There are four main objectives for this task:

1. Define methodologies for constructing generic spacecraft components, such as aerobrake
shells, backbone trusses, and pressurized modules, that can be applied to a variety of different
missions.

2. Develop processes for joining components in space, including welding, bonding, and
mechanical fastening.

3. Develop the ability to manipulate and precisely position elements and large components
so that they can be joined.

4. Define the facility layout and infrastructure that would be required to support the con-
struction of entire large space vehicles and platforms in orbit.

NASA/Marshall Space Flight Center (MSFC) is responsible for defining generic large space-
craft components and the methods for building them on orbit, including welding and mechanical
joining processes. The primary purpose of this report is to document (1) the definition of some
“typical” large components in space, and (2) the development of joint load requirements and con-
cepts for use in assembly of large space components.

li. AEROBRAKE STUDIES

The Structures Division at MSFC had previously performed several studies to further define
“typical” configurations, loads, and packing requirements for aerobraked vehicles. This work was



done primarily to support mechanical joint detailed design for in-space assembly and construction.
During this early work, a search for mission studies utilizing aerobraked vehicle concepts was
performed. The studies of greatest interest and value are listed in the bibliography.

Through analysis of these reports and discussions with Langley Research Center (LaRC), the
“generic” vehicle concept shown in Figure | emerged as the baseline for the studies. As can be
seen, this vehicle concept is based upon a 120-ft (36.57-m) diameter aerobrake with a spherical
surface. This aerobrake would be assembled on-orbit using hexagonally shaped thermal panels
attached to a tetrahedral truss structure. Large components would be attached to the back side of
the aerobrake truss through an intermediate or “transition” truss (see Section III, Transition Truss,
and Section IV, Large Components). Figure 2 shows a detail of the baselined aerobrake structural
assembly. The concept, while not intended to represent an optimized design, did make possible a
derivation of first-order requirements for heavily loaded structural joints which were used in the
MSFC detailed design efforts (see Section V, Mechanical Joints).

A finite element model of the baseline aerobrake structure was then developed in order to
identify loads at mechanical joints within the aerobrake truss using MSC Pal, a personal computer
version of NASTRAN. For the purpose of this model, the spherical aerobrake profile was approxi-
mated as flat, as shown in Figure 3. Figure 4 outlines further assumptions made in the configura-
tion and exterior loading of the aerobrake model. The hexagon size chosen for the thermal panels
was 14.5 ft (4.42 m) from comer to corner, the maximum size that could be stacked within the
space transportation system orbiter bay. From this, the total number of thermal panels for the
aerobrake was derived as 61, yielding a total aerobrake area of 8,330 ft*> (773.88 m?). The length
of each of the aerobrake struts, 12.55 ft (3.83 m) from node center to node center, was also
derived from the size assumed for the aerobrake panels (with three struts forming the equilateral
triangular support base for each aerobrake panel). The thickness of the overall aerobrake structure,
10.25 ft (3.12 m), results from the geometry of placing struts of this size within a tetrahedral
arrangement. It is important to note that a spherical aerobrake profile would result in a number of
different sizes of struts within the aerobrake truss (rather than the one size determined for the flat
truss) with an accompanying increase in assembly complexity.

The point loads applied to all of the “front” aerobrake truss nodes (facing the “windstream”
during aerobraking) were derived from the vehicle mass and decelerations quoted in Reference 1,
as pictured in Figure 4. While these loads were applied to the “front” of the aerobrake, the mode:
was constrained from motion at the “rear” of the aerobrake truss in three different constraint cases,
modeling three different payload attachment conditions. Case | was a four-point “payload” con-
straint of model motion at the nodes shown in Figure 5. Case 2 was an eight-point “payload” con-
straint of model motion at the nodes shown in Figure 6. Case 3 was a multipoint constraint of all
model nodes in the lower half of the aerobrake model.

The results from constraint Cases | through 3 are shown in Figures 7 through 9. Figure 7
shows that for the four-point payload constraint (Case 1), maximum loads in the truss members
varied from + 200,000 Ib (887.6 kN) to —120,000 1b (-533.76 kN) with the largest loads con-
centrating in the members around the four nodes of constraint. Figure 8 shows that for the eight-
point payload constraint (Case 2) maximum loads in the truss members were lower, varying from
+ 240,000 1b (1,067.52 kN) to —140,000 Ib (—622.72 kN) with the largest loads concentrating in
the members around the eight nodes of constraint. Case-3, the multipoint payload constraint,
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Figure 7. Axial load versus element number, four-point payload constraint.
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showed a roughly equal load in all aerobrake truss members of 13,000 Ib (57.82 kN). Loadings for
all three cases are broken down by percentages into several ranges and are shown in Figure 9. Tt
was noted that most of the truss member loads (>90 percent) were below 100,000 Ib (444.80 kN)
in magnitude, even for the worst case constraint (Case 1). This finding, combined with the reason-
ing that more than eight points of payload connection were probable in the case of a “real”
aerobrake, led to the establishment of a 100,000-1b (444.8 kN) load as the preliminary load criteria
for mechanical joint design (see Section V, Mechnical Joints).

lll. TRANSITION TRUSS

The purpose of the transition truss task was to develop concepts and requirements for
attaching large components to an aerobrake truss. A transition truss is defined as the arrangement
of structural members that support and connect large components to an aerobrake truss. The
components selected for attachment to the aerobrake were typical large and heavy components
representative of the data in Section IV, Large Components. The aerobrake configuration for this
study was a 120-ft (36.57-m) diameter tetrahedral truss as described in the Aerobrake Study. The
plane view of the tetrahedral truss, upon which large components would be attached, is shown in
Figure 10. Two types of large components were used to characterize typical transition truss con-
figurations—a 12.91-ft (3.94-m) diameter spherical, liquid oxygen (LOX) tank, and a 42-ft (12.80-
m) long by 14.5-ft (4.42-m) diameter Space Station Freedom laboratory module. Figure 11 shows
the 12.91-ft (3.94-m) LOX tank and how it is mounted and restrained on the aerobrake. The tank
is arranged, and the transition truss structure designed, so that it would easily attach to the
aerobrake truss. The LOX tank is connected to the aerobrake truss by six transition truss members
at 60-degree locations that correspond to six node locations on the aerobrake truss. Diagonal
members are placed between alternating transition truss members to provide for torsional stiffness.

Figure 12 shows the Space Station Freedom laboratory module and how it might be
mounted and restrained to the aerobrake truss. The module is arranged, and the transition truss
structure designed, so that it would easily attach to the aerobrake truss. The module is connected to
the aerobrake truss with four transition truss members and at one keel location, similar to its struc-
tural attachment to the space transportation system (STS) cargo bay. The keel attachment i1s made
at the front of the cylinder to an aerobrake truss node.

Preliminary axial loads were determined by building a three-dimensional finite element
model of a 12.91-ft (3.94-m) 80,356-Ib (357.42-kN) sphere and a 42-ft (12.80-m) long by 14.5-ft
(4.42-m) diameter 64,328-1b (286.13-kN) cylinder. The transition truss members were attached to
the components and attached to the appropriate location on the aerobrake. The aerobrake, for this
analysis, was assumed to be infinitely rigid. The aerobrake node end of the transition truss
members was restrained in various configurations to determine which method of constraining would
result in the lowest axial loads. A 3.0-g deceleration in the vertical direction and a 1.0-g decelera-
tion in each of two transverse directions was applied to the sphere and to the cylinder. The nodes
restrained as shown in Figures 11 and 12 resulted in the lowest axial loads in the transition truss
members for this transition truss configuration. The axial loads on the spherical tank and the cylin-
der struts range from —71,000 Ib (=315.81 kN) to 160,000 Ib (711.68 kN) and -34,000 Ib (-151.23
kN) to 35,000 Ib (155.68 kN), respectively.

11
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IV. LARGE COMPONENTS

The purpose of the large components task was to determine possible vehicle components for
aerobrake attachment, including such components as fuel tanks, cryogenic tanks, pressurized habita-
tion modules, liquid storage tanks, and unpressurized storage tanks. Once these types of
components were identified, the size, shape, volume, mass, and thermal and radiation protection
were determined as shown in Tables 1, 2, and 3. These components will be used in defining the
axial loads in the transition truss that connects the components to the aerobrake (see Section 111,
Transition Truss). The specific details of the large components described were taken from previous
interplanetary mission studies [2,3] that defined the size of tanks, modules, descent stages, etc.,
required for particular missions and acrobrake sizes. The propulsion system used on all the studies
was LOX and liquid hydrogen (LH;) with a mixture ratio of six to one. The tank weights include
the total propellant used plus the additional amount needed to compensate for propellant boiloff
during the assembly, checkout, and travel time to and from Mars.

The optimum pressure vessels for use in space vehicles are spherical but are limited in size
by the existing transportation vehicles. In the aerobrake vehicle studies evaluated, the transportation
vehicle varied with each study. To get a representative database, a single cargo vehicle (the
Advanced Launch Vehicle) was baselined for use in this study which features a 43- and 45-ft
(13.11-and 13.72-m) diameter cargo bay. Table 1 shows typical large components that might be
required for a manned mission to Mars. These components would have to be assembled to the
vehicle in low Earth orbit, checked out, transported to Mars, and then be used for the return trip to
Farth. Table 2 shows typical large components that might be used to propel a manned vehicle
toward Mars. These components would be attached to the vehicle, checked out on-orbit, then
expended when the desired specific impulse was achieved. Tables 1 and 2 show the variation in
sizes of LOX tanks and LH, tanks required to contain the “typical” volume of propellant required
for planetary exploration missions, according to the referenced studies. These charts show the size
difference between using a single LOX tank and LH, tank using a number of smaller diameter
tanks that would carry the same propellant weight. Given these “typical” propellant volumes and
tank sizes, the tank thickness and weight were then determined by assuming a low pressure pump-
fed propellant storage tank. The design pressures for the LOX tank and LH, tank were 23 psi
(158.58 kN/m?) and 50 psi (344.75 kN/m?), respectively.

Table 3 shows the typical insulation required for the propellant tanks for the journey to
Mars. The tanks used to propel the vehicle out of low Earth orbit would require less insulation
because the boiloff rate is comparatively small and the time these tanks are in use is comparatively
short to those used in deep space.

V. MECHANICAL JOINTS

Much work has been devoted to the development of mechanical joint concepts for in-space
construction and assembly. Initially, these concepts for attaching struts to truss nodal points were
required to satisfy only two major criteria. First, the joint designs had to maintain sufficient

16
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strength in order to withstand aerobrake induced loads of 100,000 Ib (444.80 kN) in tension or
compression. Second, they had to have the capability of being assembled from the side. These
preliminary conditions are still valid; however, more mechanical joint requirements have evolved
and have been incorporated accordingly into the following joint designs. All joints are composed of
two parts: the connector and receptacle. The connector is attached to the strut and the receptacle is
attached to the node. '

A. Threaded Truss Joint

The first mechanical joint, the threaded truss joint, that was designed is displayed in Figure
13. In this particular design, an outer alignment joint surrounds a stronger mechanically driven
threaded joint. This joint was designed to meet the 100,000-1b (444.80-kN) axial load and robot
assembly requirements. The assembly of this joint requires the robot to perform two opera- -
tions—place the element near the attachment location and turn a bolt. A temporary outer alignment
feature holds the position of the element after it has been placed near the receptacle, then a robot
turns a standard hex head bolt. However, after this joint design was in its final stages, a new
requirement was established. The mechanical joint needs the capability to adjust node centers from
a +0.020-in (*=0.0508-cm) axial misalignment within a truss structure to a “true” position. This
joint was modified (Fig. 14) to meet this requirement by redesigning the temporary alignment
sleeve, and providing tapered surfaces to push the element into position. As the threaded section is
rotated, the tapered surfaces on the threaded section force the element end up or down against the
tapered surfaces on the tube end. The tapered surfaces on the tube transfer the force into an axial
load, pushing the element into the correct position. These modifications required an excessive
number of parts, and made the assembly torque prohibitively high, approximately 4,000 in-Ib
(45,192 N-m) Also, these redesigns made the joint longer and consequently heavier. For these
reasons the threaded truss joint was deemed too complicated and was shelved.

B. Grip Joint

The second concept, the grip joint, was designed to the requirements of robotic assembly,
+ 100,000-1b (444.80-kN) axial load and a +0.020-in (+0.0508-cm) misalignment correction and
is shown in Figure 15 and 16. The assembly of the joint requires a robot to perform the same two
operations as for the threaded truss joint—placing the element and turning a bolt. As the robot
brings the element near its final position, the bolt engages a “zip nut®,” and the joint’s grooves
become roughly lined up. Then the robot turns a standard hex head bolt aligning the connector and
receptacle to the final “true” position.

The “zip nut®” is an independently designed and patented nut, in which the threads are cut
into three segments and spring loaded. This allows a bolt to be pushed into it, then tightened by a
single rotation. This not only reduces assembly time by saving the robot 30 or 40 revolutions of an
end effector, but saves weight by eliminating a temporary alignment feature such as that in the
threaded truss joint.
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As the bolt is tightened, its tension pulls the axisymmetric inclined planes of the grooves
together. The inclined planes transfer the vertical force to the bolt into an axial force which
stretches or compresses the element until it is in the correct position. The maximum axial load
required to position the elements is about 5,000 1b (22.24 kN), found by the elastic deformation of
a beam under axial loading.

There were several design considerations in this joint: shear area of the grooves, stress con-
centrations caused by the grooves, bolt loading and torque requirements, bending moments along
the axis of the gripper sections, and bending moments acting to open the semicircular gripper
sections (large moments could be countered by adding tabs on the edges of the element and node
that would prevent gripper section deformation past a certain point).

The grip joint, while not having been optimized, is now being built out of several materials
including 2219-T87 aluminum, titanium 6A 14V alloy, and an “isotropic” 20-percent silicon carbide
aluminum 2124 metal matrix composite. The grip joint is being fabricated from these materials to
determine which material will optimally meet the strength, weight, and coefficient of thermal
expansion requirements established for in-space assembly and construction. Tension and torque tests
are scheduled to be performed in early CY 1990. Tension and compression tests in a thermal
vacuum chamber may be scheduled if preliminary test results are positive.

C. Clevis Joint

The third mechanical joint, the clevis joint, is displayed in Figure 17. This design incor-
porates a tang and clevis concept. As the bolt engages the “zip nut®,” the two cones are pulled
into a locked position, thus producing a double wedge effect. Further analysis of this joint yielded
mechanical and fabrication complexities which resulted in shelving the concept.

D. Slip Joint

The fourth concept, the slip joint, is pictured in Figure 18. This design is still undergoing
preliminary analysis and feasibility studies. Both halves of the joint are conically shaped and are
wedged into a locked position by the bolt engaging a “zip nut®.” Two new mechanical joint
requirements are being applied to this current concept. First, the joint must be disassembled as
easily as it is assembled. Second, not only should the joint possess the capability of being assem-
bled by a robot, but by an astronaut as well. Much more work is required to solidify this concept.

Vi. CONCLUSION

A generic space structure for studying in-space assembly and construction was developed by
NASA to determine the technology required for building large structures in space. The space struc-
ture defined was a 120-ft (36.57-m) diameter aerobrake, i.e., thermal insulation supported by a
tetrahedral truss with manned facilities and engines attached to the tetrahedral truss. An analysis of
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the structure was performed to define load requirements for the design of mechanical joining
methods. Four methods of mechanically connecting truss elements via a robot were investigated.
One, the grip joint, was designed and is being built.

Research was initiated to define the types of large components that might be attached to the
aerobrake for interplanetary missions. A task was performed to determine an optimum method of
attaching the components to the tetrahedral truss. Two large components, a 12.91-ft (3.94-m)
diameter LOX tank and a 42 by 14.5-ft (12.8 by 4.42-m) Space Station Freedom laboratory
module, were used to define loads and attachment schemes for connecting these components to the
tetrahedral truss.
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APPENDIX A

1.529 ~

Py=BOLT LOAD
0=60°

<— 100,000 Ib



R=1.529 inches

3/4" bolt, Fuu = MINIMUM TENSILE STRENGTH 126,758 psi per

MS90727

Assumption: p=.10

TFx=0

*Fy=0

Px-PnSINO-uPnCOS6=0

Pn: PX

SING + 1 COS 8

Pn-= 100,000
= 109,167 Ibs

SIN 60° + .1(C0S 60°)

Py+uPnSIN6- PnCOS6=0
Py=Pn(COS6-pu SINO)
Py=109,167 (COS (60°) - (.1) SIN (60°))

Py=45,129 Ibs

Calculation of the bolt load, Py, assumed a flat plate. However,
the part is actually a circle.
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P, (Ibs/in)

g0 P =Pr (27 R)

P = 45,129
on  (1.529)

Pr = 4,698 Ib/in

Py* is defined as the actual bolt load on the circular section of
the joint.

Py'~ P:COS6ds= PrCOS6Rds

Py* = 4P (R[90COS 6 do =2 PrR
0

Margin of Safety (Bolt):
Sty bolt= 56,000/[r (.3752)]= 126,758 psi

o*= P, /Area of 3/4" bolt=28,733/[r (.3752)]=65,038 psi

y

M.S.= Oypey -1 = 126,758 - 1 =+0.39

F.S. " 1.4(65,038)



SHEAR AREA OF EXTERNAL THREADS (NUT):
Area = TInLgKp(max)l[1/(2n) + 0.57735 (Es(min)Kn(max)¥

where:  n = Number of threads per inch = 16
Lc = Length of thread engagement = 3/4 in (scaled)
Kn(max) = Maximum minor diameter of internal

threads = 0.6908 in
Eg(min) = Minimum pitch diameter of external

threads = 0.7079 in
Fey = 0.57 (Fy,) = 0.57 (126,758) = 72,252 psi

Area = I (16) (3/4) (0.6908) [1/(2(16)) + (0.57735)
(0.7079-0.6908)]
=1.07 in?

o= Py* / Area = 28,733 Ibs / 1.07 in? = 26,850 psi

M.S. = 72,252 / [(1.4) (26,850)] -1 = +0.92

SHEAR AREA OF INTERNAL THREADS (BOLT):

Area = HnLeDS(min)[1/(2n) + 0.57735 (Ds(min)' En(max))]

where:  Dg(mjn) = minimum major diameter of external
threads =0.7406 in

En(max) = maximum pitch diameter of internal
threads = 0.7179in
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Area = [1(16) (3/4) (0.7406) [ 1/ (2(16) + 0.57735 (0.7406 -
0.7179)] =1.238 in2

G =Py* / Area = 28,733 lbs / 1.238 in® = 23,209 psi
M.S. = [72,252 / (1.4) (23,209)] - 1 = +1.22

SHEAR AREA OF INTERNAL THREADS (NODE TUBE):

Area = TInLgDg(min)[1/(2n) +.57735 (Dg(min)- En(max))]

n=2
Le=1.341 in

Ds(mm) =3.1151in
En(max)) = 29325 in
Fgy = 34,000 psi per MIL- HDBK-5E, table 3.2.6.0 (c)

Area = T1(2) (1.341) (3.115) [ 1/ (2(2) + 0.57735 (3.115 - 2.9325)]
=9.327 in2

o =F / Area = 100,000 Ibs / 9.327 in® = 10,722 psi

M.S. = [34,000 / (1.4) (10,722)] - 1 = +1.26

SHEAR AREA OF EXTERNAL THREADS (NODE TUBE):

Area = TInLgKn(max)[1/(2n) + 057735 (Eg(minyKn(max))



Kn(max) =2.745in
Es(min) =2.93in

Fsy = 34,000 psi per MIL- HDBK-5E, table 3.2.6.0 (c)

Area = [1(2) (1.341)(2.745) [ 1/ (2(2) + 0.57735 (2.93 - 2.745)]
-8.2525 in?

o =F /Area = 100,000 Ibs / 8.2525 in2 = 12.118 psi
M.S. =[34,000/(1.4) (12,118)] - 1 = +1.00

THIN TUBE SECTION (NODE TUBE)

\/\/\/\/\/\/\A+T

A YA YA YAVAVAVE

Area = [1/4 [ (4.0)2 - (3.5)2 | = 2.9452 in?
6 = 100,000 Ibs / 2.9452 in? = 33,954 psi
F.S.=1.1 on yield

Fey = 40,000 psi per MIL-HDBK- 5E, table 3.2.6.0 (c)
(for T852)
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M.S. =[40,000/ (1.1) (33,954)] -1 = +.07

SHEAR AREA OF EXTERNAL THREADS

Area = HnLeKn(max)[H(Zn) + 0.57735 (Es(min)'Kn(max))]
n=8

Le = 1/2(2.5) = 1.25 in (assumed 1/2 of length of

threads)
Kn(max) =4.0in

Es(min) =4.125in
Fgy = 34,000 psi per MIL- HDBK-5E table 3.2.6.0 (c)

Area = T1(8) (1.25)(4.0) [ 1/(2)(8) + 0.57735 (4.125 - 4.0)]
=16.923 in2

o =F / Area = 100,000 Ibs / 16.923 in = 5,909 psi

M.S. = [34,000/ (1.4) (5,909)]-1 = +3.11

>TRESS ARQUND BOLT HOLE:

-

)| e

_ 4 <— 100,000 Ibs
1Y ’

t 45% T T RT= 2.125in

R4

/ R=1.623in




L

b =9/16 in (.5625) scaled from drawing

Area = Areaa + Areab

Area = [1{[(2.125)2 - (1.623)2] + [ (1.623)2 - (1.623 - .5625)))
= 10.65 in?

c=F/A=100,000/10.65 = 9,389 psi

Assuming a stress concentration factor of 3.0 around the hole,
Shole = 3.0 (9,389) = 28,170 psi

for Fy, = 56,000 psi

M.S. = [ 56,000 / (1.4) (28,170) ] -1 =+ .42

for Fcy = 40,000psi

M.S. = [ 40,000/ (1.1) (28,170) ] -1 =+.29
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