
'I N90- 22 29 5

The Application of Connectionism to Query

Planning/Scheduling in Intelligent User
Interfaces

Nicholas Short, Jr."

Lokendra Shastri

Abstract- In the mid nineties, The Earth Observing System will
generate an estimated 10 Terabytes of data per day. This enormous
amount of data will require the use of sophisticated technologies from
real-time distributed Artificial Intelligence (AI) and data
management. Without regard to the overall problems in distributed
AI, this paper focuses on developing efficient models for doing query
planning/scheduling in intelligent user interfaces that reside in a
network environment. Before intelligent query/planning can be
done, a model for real-time AI planning/scheduling must be
developed. As Connectionist models (CM) have shown promise in
increasing run-times, this paper proposes a connectionist approach
to AI planning/scheduling. The solution involves merging a CM rule-
based system to a general spreading activation model for the
generation and selection of plans. The system was implemented in
the Rochester Connectionist Simulator and runs on a Sun 3/260.

INTRODUCTION

The major mission of the National Space Science and Data Center
(NSSDC) has been to archive and provide access to a wide variety of data from
NASA's scientific experiments in the Earth and space disciplines. Historically, the
NSSDC has been a centralized organization where all of the 2,500 online accesses
per year for the over 125,000 tapes are sent to the Goddard facility (Green,
1989). While the volume of data requests can be currently handled, the arrival of
many of NASA's new projects promises to cause not only a glut of data but also a
large increase in number of data requests. This enormous amount will create a
bottleneck at the centralized facility.

While an increase in the NSSDC's resources will assuage some of these problems,
the authors believe that the size and complexity of the upcoming projects will
require a distributed systems approach. For example, the NSSDC's data holdings
will double every two years, reaching about 30 Terabytes by 1995 (Green,
1989). Moreover, projects like the Earth Observing System (EOS) will generate an
estimated 10 Terabytes of data per day (Campbell, 1988). Considering that the
NSSDC's current archive contains around 6 Terabytes (Green, 1989), it is doubtful
that the current or future facility's resources can support the volume of requests

* Nicholas Short, Jr. is with NASA/Goddard Space Flight Center, Code 634,
National Science Data Center, Greenbelt, Maryland 20771. He is also a graduate
student at the University of Pennsylvania, Philadelphia PA 19104. Lokendra
Shastri is a faculty member at the University of Pennsylvania.

PRECEDING PAGE BLANK NOT FILMED

without an introduction of new real-time distributed data management into the
organizational structure.

Foreseeing this need, the NSSDC established the Intelligent Data Management (IDM)
project, which has, as one of its goals, to develop advanced workstation tools for
operation in a network environment. One component of this involves the use of
intelligent user interfaces in a distributed architecture (Short, 1988). These
interfaces will contain knowledge about the available resources and the access
procedures not only from the NSSDC but from other archives as well.

One way to reduce the number of requests would be to guarantee that the queries to
the facility are both accurate and supported by existing data. That is, if tools can be
provided to the user that will allow him to develop intelligent queries at his own
facility, then fewer ill-formed queries will be sent to the data center.

As is well known to researchers in real-time systems and database management, a
critical ability required will be the need to plan and coordinate the various data
access and manipulation tasks that are required to support a particular user's data
goal. For example, suppose a user requires data sets A,B,C, and D and archives 1,2,
and 3 contain some subset of the needed sets. Specifically, suppose

1) archive 1 contains A and B;

2) archive 2 contains A, B, and C;

3) archive 3 contains C and D.

Now, the obvious access plan would be to query either archive 2 and archive 3 or
archive 1 and archive 3. The choice between these options will be determined from
constraints such as network loads, the request arrival rates to the archives,
processor loads at a particular archive, etc. All these choices must be resolved in
real-time in spite of large number of expected data requests.

This problem of solving tasks based on constraints has been addressed by the
planning sub-field of Artificial Intelligence, as well as the real-time systems field
(Stakovic, 88). It would be apparent that solving the real-time constraints in
distributed query planning will require a solution to the planning/scheduling
problem.

Unfortunately, intelligent real-time planning in the AI field is only now beginning
to be addressed by researchers. In this paper, we will explore the limitations of
classical AI planning, propose a solution, and discuss some of the applications to the
data management field. We hope that a minimization of requests to an archive can
occur through the intelligent formulation and execution of queries through
planning/scheduling.

QUERY PLANNING/SCHEDULING AND REAL-TIME SYSTEMS

Not surprisingly, scheduling of tasks for real-time systems cannot be based on
algorithms which just try to satisfy deadlines. Stankovic states that

4

"Thegoal is to find optimalstatic schedulesthat minimizethe responsetime for a
given task set....The system is often highlydynamic, requiringon-line, adaptive
scheduling algorithms" (Stankovic, 1988).

In fact, as these algorithmsare NP-hard,the solution must be heuristic,forcing
the probleminto the AI domain(Zhao,1987).

Any hope of solving this schedulingproblemalong with planningmay have been
thwarted by Chapman's proof that efficient, general-purpose planning is
undecidable(Chapman,1987).Yet, humanscansolvethe problemby, as Chapman
states, "...improvisation,doing somethingeasy and debuggingthe result when it
fails " (Chapman, 1987).

This suggeststhat a solutionmaybe to storenumerousfixedplans,determinewhich
plansare applicableto a givensituation,and executetheseplansefficientlyuntil an
error in executionoccurs. Many trials (i.e., plan attempts)will be executedbefore
the correctfinal plan is determined.That is, incrementalplanningmustbe done.

The incessantneed to plan/replanwill cause havocfor the schedulingalgorithms
which are trying to minimizeresponsetime for the systems. This delicatebalance
between response times and planning can be maintainedby utilizing the most
efficient methodfor heuristicplanning/scheduling.

Connectionist Models (CM) have shown time reductions in several classical
Artificial Intelligence (AI) algorithms (Shastri, 1989), but few CMs have been
appliedto the planningfield (Whithead,1989; Blelloch,1986). In this paper, we
presentan initialattemptto movesomeof the functionsof a classicalplannerintoa
CM. The idea involvesmergingspreadingactivationover a semantictask-netand
rule-basedinference into a CM to aid in the selectionand generationof plans
(Hendler, 1988; Shastri, 1989).

Fromthe networksystem'sperspective,The CM plannerwill resideon each node
and will exist in the node's intelligent user interface. The user interface°s
knowledge-basewill contain informationabout interactiveproblemsolvingamong
other network nodes. While this distributedAI problem is beyond this paper's
scope,we will focuson the modelof a node'sCM plannerwithoutregardto specific
detailsaboutcooperativeplanningover the network.

The role of the CM in a particularnode's data managementsystem will be to
interfacethe high-level,symboliccomponentsto the standarddatabasemodels, as
describedin (Short, 1988). More specifically, expert databaseadvisors, natural
language front-ends, and graphics interfaceswill comprise the high-levelwhile
databasemanagementsystemswill form the low-level.

PLANNING DESCRIPTION

In general, planning can be broken into two distinct phases: plan generation and
planning decisions (Charniak, 1985). Plan generation resembles a deductive
problem in that, given a task (goal) and a situation (database), we achieve that goal
by solving any number of subtasks (subgoals). The product of plan generation is an
"and/or" graph where the "and" branches correspond to ordered steps in a plan
and the "or" branches match alternative plans.

5

Planningdecisions,on the otherhand,consistof two phases:plancoordinationand
plan selection. In the former, the partial-orderproducedby the plan generatoris
convertedto a total-order. This is done by detectingplan failuresthat occurwith
some orderings of the "and/or" graph. In the latter, plan selection involves
searching through a plan library to find the best alternatives(i.e., for the "or"
branches). In this phase,the properselectionof planscan aid in the reductionof
the "and/or"graph and, hence,the run-timeof the planner.

In fact, if it can be shownthat, while the plan generatoris executing,a particular
choiceof plan can neverbe usedgiventhe currentchoiceof plans,then no further
reductionof that plan is required. For example,supposethat our planneris flown
out to Californiaon a trip and thatwhile in California,it decidesto buya gun. If the
planner has some prescienceabout airport security, it will realize that a return
flight is impossible,becausecarrying a gun through a metal detector is illegal.
Therewill be no needto reducethe subgoal"fly home"and an alternativeplan like
"drive home"could then be selected for reduction.

Analogously, some choices of plans could be chosen over others based on the current
situation. For instance, suppose our planner wanted to determine the amount of
deciduous forestation in Maryland and it contains an entry in a database for such
information. In this situation, it would be better for the planner to select the
alternative "database-query" as opposed to "calculate-from-raw-image-data."
Choosing the former would save the planner from having to find the Landsat data,
find an efficient processing environment (e.g., the MPP), determine the correct
algorithms, transfer the data to the MPP, etc.

The output from the planner is a the total-order of tasks to be executed in order to
achieve the goal. Each step in the total-order is a primitive task that corresponds
to a leaf in the "and/or" graph and is defined a priori. One phase not included in the
above discussion is the use of execution monitoring to provide feedback to the
planner about its choice of plans. This module will notify the planner when error
recovery routines must be invoked. Moreover, it can provide statistical
information about outcomes in order to aid the plan selector.

RULE-BASED CONNECTIONISM

One of the first attempts to reduce the the run-times of planners was Hendler's
Scraps model (Hendler, 1988). Scraps kept the plan generation and coordination
modules in a symbolic logic-based system (i.e., NASL), while the plan selector was
moved to a CM-like method using spreading activation over a task-network.

Although spreading activation was introduced by psychologists (i.e., by M.
Quillian) as a cognitive model, it has proven useful to AI in reducing the costly time
of unification of the rules to semantic networks. In general, the spreading
activation is a bi-directional, breadth-first search over a semantic net. Beginning
at two nodes, two searches are conducted by having each search mark its
neighboring nodes as visited until the two searches intersect via a path. Once a path
is found, it is returned to the logic system for unification against the rule-base. If
unification fails, then more paths can be examined, as the spreading activation
algorithm will continue independently of the logic system. Spreading activation in
these terms can be viewed as a fast-subsetting mechanism of the semantic net. Of
particular note, the nature of spreading activation makes it very amenable to
implementation on parallel machines that act in background to the logic system.

In Hendler'smodel,a variantof spreadingactivation,calledmarkerpassing,is used
where insteadof just markingnodesas visited, nodes receiveand save complex
messagesas marks. Whencoupledwith the plangenerator,the markerpasserlooks
throughmemoryto determinewhichplansthe plan generatorshouldreduce. That
is, the markerpasser would returnpaths to a plan evaluatorwhich would either
rule in or rule out choices. Specifically,the plan evaluatorconsistedof a set of
heuristics which would reject or accept paths a viable before notifyingthe plan
generatoraboutplanchoices.

The problemwith Scraps, as with all markerpassingsystems, is that too many
irrelevantpathscan be returned. For example,in Charniak'sWIMPsystem,only
twopathsoutof 40 returnedpathswereusablefroma semanticnet of 75 nodesand
255 facts (Charniak,1986). Hence,the path evaluatorrepresenteda bottle-neck
thatcouldmakethe timesavingsnegligible.

Onesolutionto the problemwouldbe to movethe plan generatorinto a CM in the
hopesof getting rid of the plan evaluator. Unfortunately,attemptsat movingmore
functionalityinto the planner have beenlimited due to what is commonlyreferred
to as the "variablebindingproblem."For example,Hendlerstates

"Givena plan for 'MOVINGX TO Y,' his (Blelloch,1986)systemmustbuildspecial
networkcomponentsfor eachpossiblemovethatcouldbemade.Therangeof X andY
must be predefinedand the systemcan only planon those. For example,given N
blocks we generate the 2(1 + 2 + ...N)(N -1) plans for MOVE-A-TO-B,MOVE-A-
TO-C,etc. Thesearethen theonlyoperatorsusable,andnewblockscannotbeadded
without changing the system"(Hendler, 1988).

Anothersolutioncomesfrom the recognitionthat plan generationresembleslogical
inference. That is, if we can modifya reasonableCMdeductive-retriever,thenboth
the plan generatorand markerpassercouldexecutesimultaneouslyin the CM. In
fact, this paperpresentsa limitedstep at realizingthis goal.

Basically,the approachis to modify the rule-basedinferenceof (Shastri,1989) to
work with a spreadingactivationalgorithm. In general,this is done by organizing
the plansand goals into rules and the constantsinto a semanticnet. Solutionsto
goals are then done by simultaneouslyproving a goal using the Shastri &
Ajjanagaddemodel and spreadingthe activationover the constant semantic net.
Whena path is found that could rule-outa subgoalor plan, an inhibitoryactivation
is sent over to the rule-basedside of the network. That is, if a goal or task is
ruled-outand the rule-basedportionof the net has not tried proving it, then the
inhibitionwill preventthe rule-basedside from workingon that subgoal.

Unfortunately,therecan occursituationsin whichthe rule-basedside has already
started proving the subgoal that was ruled-out. In this case, the inhibitory
activationwili send notificationof its inhibitionto the parent goals recursivelyup
the "and/or"graph. Thus,both the rule-basedmodeland the markerpasserare in
a race-condition.Fromthe point of view of the planner,this presentsno problem.
However,the goal of reducingsomeof the time spent in plan generationmay not
havebeenmet.

THE RULE-BASED CONNECTIONIST MODEL

In this connectionist model, there exists several types of units which correspond to
predicates, arguments, etc. For each unit, several types of sites cluster the input

EA

MP L.!
PAED NODES I CONSTANT NOOE

-1
I I _15RAG NODES

FIGURE I CONNECTi0NISTENCODING OF "FOR EVERY H,P(X) IMPLIES Q(X)"

connections from other units and modulate the inputs depending on the site
characteristics. Connections between units are made to simulate both the database
of assertions and the implications of the rules. Below, we provide an abstract
description of the representation and reasoning in the rule-based system. For a
complete discussion on the expressiveness of the rule-based system, see (Shastri,
1989; Shastri 1990).

In fig. 1, predicates are represented as rectangles, the associated arguments are
represented as diamonds, and constants are represented as circles. For every
predicate, there exists a number of associated argument nodes for every variable
slot. The hexagons, called instancers, represent instantiated predicates. Suppose
we wish to represent the rule:

(Every (x) (P x) => (Q x)) (*)

Also, suppose that we also know (P c) for some constant, c. If we wished to
determine whether (Q c) were true, then we would activate the node representing Q,
the argument node corresponding to Q, and the constant node c, allowing the network
to run until (Q c) is proven true or false.

Now, each of these nodes is based on a node type called a binary threshold unit
(BTU). That is,a BTU will output a 1 if any of its input values equals one.
Otherwise, it will output 0. The key to controlling the spreading of activation is to
make the activation of these BTUs phase sensitive.

The phase interval structure is defined by the query structure. In other words, the
spreading activation is controlled by a clock where each cycle is broken into a fixed
number of phases. The number of phases is dependent upon the number of bound
arguments a the query. For example, one phase would be required to prove (R c) or
(Love c y), for some constant, c, and variable, y.

A node type is partially characterized by the phase for which it can be activated. So,
a constant node is active in the phase for which it was initially activated. For
example, if the query (loves John Mary) were posed, the John and Mary constants

wouldalwaysbe active in the first and secondphase, respectively. Similarly,an
argumentnodebecomesactivein a phase i if it receivesinput from phasei in the
previouscycle.

Predicateand instancernodesare morecomplicatedand areabstractionsof BTUs.
First, a predicate (pred) node contains three sites, IMP, INST, and BC, which
collect all the connectionsfrom othernodes. Insteadof just two states as in the
BTU, the pred node has three internaland output states. The internalstates are
Inert,Enabled,and Activeandthe correspondingoutputstatesare0, low,and high.
Thepred nodechangesstatefromInertto Enabledif its BCsitereceiveslowor high
inputand from Enabledto Active if its INSTsite receivesat leasta low inputor its
IMPsite receivesa highinput.

Second,an instancernodecontainsanEnablesiteandn bindsitesthatcorrespondto
the arg nodesin the instantiatedpredicate. The Enablesite receivesinputfrom the
instantiatedpredicate'soutput link, whileeach of the bind sites receive input from
boththe argnodesof the instantiatedpredicateandthecorrespondingconstant.The
instancernodebecomesactiveat the end of a cycleif everybindsite receivesinput
from both the correspondingargumentnodeand constantnode. If only either the
argumentnode or the constantnode sends activationto the same site, then the
instancercannotbe activated.Onceactive,the instancernodesendsits outputto the
INSTsiteof its prednode.

Rulesareencodedbymakingconnectionsamongtheaforementionednodetypes. That
is, implicationis enforcedby makinglinks betweenthe prednodesand arg nodesof
the antecedentandconsequencesof therule. Ifa variablein theconsequenceoccurs
in the antecedent,then a link is made from the consequence'sarg node to the
antecedent'sarg node. Also, there will exist a link from the consequence'spred
outputto the antecedent'sBC siteanda linkfromthe antecedent'spredoutputto the
IMPsiteof theconsequencenode. So,for the rule (P x y) => (Qx),Q will haveone
argnodewhichconnectsto thefirstargnodeof P'stwoargnodes.

Then,whenall the rulesof theknowledgebasearecompiledinto this formalism,the
correspondingnetworkformsa typeof directedacyclicgraph(DAG). The leavesof
this DAGcorrespondto thoseantecedentswhichcorrespondto eitherassertedfacts
or antecedentswhich require no proof. Answeringa query then correspondsto
sendingactivationfromthequery'spred nodebackwardson the DAGuntilthe leaves
are reached. Oncethe leavesbecomeactive,activationis sentbackalongthe IMP
links to the originalquery's pred node. If the query pred nodereceivesactivation
back, representedvia the state of the pred node,then the queryis consideredtrue,
otherwise it is consideredfalse. Notice that the complexityof the proof is then
twicethe lengthof the longestpathin theDAG.

Foran example,supposewe wantedto prove(Q c) from (*). Becausethere is just
one boundconstant,c,in the query,there wouldbe just one phase per cycle. In
phase1of cycle1,theQprednode'sstatewouldbesetto Enableandtheargnodeand
constantnodec would be set to 1. At phase 1 of cycle2, P's pred nodewill be
enabledby the link fromQ'soutputand P's argnodewill beenabledby the link from
Q's arg node. It will then send output to the Enablesite of the instancer node
correspondingto the fact (P c). At thispoint,sincebothP's argnodeandthe c node
are sendingoutputto the instancernode,the instancernodeis activatedand sends
outputto backto theP prednode. ThiscausestheP nodeto go froma stateof Enable
to Active. Whenthisoccurs,highactivationis sent to the IMPsite of Q. Thiscauses
Q to go froma stateof Enableto Activesuggestingthatthe proofworked. Hadwenot

9

hadthefact that (Pc) exists,theproofwouldhavefailed in the secondcyclebecause
the Bind siteof the instancernodewouldnothaveallowedP to activate. That is, its
Bind sitewouldhavebeenreceivingactivationfromthe argnodeonly.

SPREADINGACTIVATION SUBSECTION

THE SPREADING ACTIVATOR

Before getting into the details of the interaction between the spreading activator and
the rule-based CM approach, the implementation of the spreading activator in the
CM simulator will be described.

Generally, the implementation is a simplification of Hendler's marker passer. In
Hendler's model complex markers consisting of fields like origin, fromnode,
formula, zorch, etc. are passed from node to node. Because these markers violate
the CM assumption that simple messages are passed, only one field, zorch, is used in
the communication. Zorch is an attenuation mechanism that dampens the spreading
of activation through the net. That is, as each mark is passed, the zorch factor is
decreased by dividing it by the degree at each node. When zorch falls below a certain
threshold, marking is stopped.

To start the spreading activation, the constants from the bound arguments in the
initial goal are marked initially. In terms of the simulator, the unit's state is set to
a value MARK and the potential and output are set to the initial zorch. To decrease
zorch, the output links are weighted with the degree of the node. Zorch is then
reduced at the site "MP" by dividing the link value by the weight (i.e.,
neighbor_num * 1000). tf two zorch factors enter the site at the same time, then
the smaller of the two is chosen.

In addition to reducing zorch, the site function at "MP" flips the pointer back to the
originator of the activation. This is done so that the original path can be recovered
when an intersection is found. Using this method avoids the problem of looping that
Hendler's algorithm had to solve.

PATH EVAL UA TION

As aforementioned, Hendler's algorithm uses a set of heuristics to reduce the
number of paths. When a path is returned from the marker passer, each heuristic
examines the path to see if it is relevant to planning. Specifically, the five
heuristics used are:

1) QUICK REJECTION: reject the paths that have already been examined,

2) DEALING WITH DEMONS: execute a demon when it occurs in the path,

3) DEALING WITH PERCEPTUAL FLAGS: "rule in" any tasks on a path that
contains a perceptual flag,

4) DEALING WITH FAIL FLAGS: "rule out" any tasks on a path that contains a
fail flag,

5) DEALING WITH PLAN INTERACTIONS: rule-in/rule-out plans that affect
other choices in plan generation (e.g., the California plane trip example).

10

Of particularnote, demonsare rulesthat recognizecertainconditionsand interrupt
the planner in order to add/modifyplan steps. They are often used when a
particulareventmustoccurnow, insteadof laterin the planexecutionphase.

In additionto demons,flagsarenotesthatareassertedintothe semanticnetwhenan
importantpropertyhasoccurred. For example,whenthe planneris holdinga gun,
a flag is assertedinto the net by the forwardchainingrule

(-> (POSSESS?x?y)(FLAG?y PERCEPTUAL(POSSES?x ?y)

Theassertion(FLAG'gun PERCEPTUAL(POSSESS'planner'gun))couldbeusedby
the path evaluator to rule-in the "shoot oneself"plan. Similarly, a fail flag like
(FLAGFAIL (ON-STRIKE(CHEF?x))) could rule-outa plan for a chef to cook a
meal.

In our system,heuristic1,3, and4 canbe replacedby the schemediscussedbelow.
Although2 and5 maybepossiblein thisscheme,theywerenotaddressed.

First,heuristic1 is implementedby a combinationof the back links and spreading
activationback from an intersectionnode. In detail,when two paths intersect,the
intersectingnode beginssendinginformationback to the startingnodes. As this
activationcrossesthe markednodes, it checks the node-type, defined by the set
membership in the simulator, to determine if activation should be sent to the rule-
based portion. Since the rule-based nodes need only be excited or inhibited once to
rule-in or rule-out a path, an activation crossing the marked nodes for a second
time will have no effect on the corresponding rule-based node. Hence, duplicate
paths are irrelevant.

The type-checking is actually implemented by a connecting link from the marked
node to the corresponding node in the rule-based section. Details of how the rule-
based section behaves will be discussed in the next section.

Second, heuristic 3 and 4 are implemented in a similar manner. Like Hendler's
algorithm, flags are asserted into the net. However, when the marker passer
crosses a flag, it checks the node type. If the node type is a fail flag, the zorch is
negated and passed to its neighbors. This is done so that when an intersection
occurs, the system knows that a rule-out should occur. That is, at an intersecting
node, instead of sending a positive activation back to the origins, a negative or
inhibitive value is returned. This tells the various nodes along the return path
whether to excite or inhibit the corresponding rule-based nodes. Since this system
only "rules in" or "rules out" plans, a positive activation implies a "rule in",
whereas a negative implies a "rule-out."

RULE-BASED PLAN GENERATOR

Unfortunately, the CM rule-based implementation had to be modified to handle the
interaction between it and the spreading activator. This amounted to changing many
of the unit functions, site functions and behavior of the constant nodes.

First, in order for the variable bindings to work in the rule-based section, they
must be activated in the phase corresponding to their position in the query. This
will, however, disrupt the spreading activation as these constant nodes are
participating in both plan generation and spreading activation over the constant
task-net. That is, if a constant node activates in its phase it will not only send

11

activation to an instancer node but also another neighboring constant. The
neighboringconstantwill mistakethat activationas zorch.

The solutionto the problemis to noticethat the bindingof constantsoccursonly in
the first cycle. So, if spreadingactivationis delayed until the secondcycle, the
first cyclecan be used to notify the instancernode aboutthe phasein whichthey
shouldbeactivated. In otherwords,anothertypeof instancerNodeis created. This
node records the phase in which it receivesactivationin the first cycle. Acting
independentlyfrom the constantnodes,it then activatesin its respectivephasefor
the rest of the cycles.

Second, in order to rule-in/rule-outplans, a link exists betweenthe constants in
the spreadingactivatorandthe rule-basedsection. That is, the constantsconsistof
threetypes:constants,tasks,and flags. Thissemanticnet is organizedlike a task-
orientedhierarchyas in fig. 2. For each nodeof type "task" (henceforthcalled
task constant)a link is made from it to the correspondingpred node in the rule-
basedsection. So, for eachplan/task/etc,two nodesare requiredinsteadof theone
used in the original rule-basedCM. So, when activation from a returnedpath
crossesthe task constant,the pred nodereceivesactivationfromthe task constant
as to whetherto activateor shutdown.

IMPLEMENTATION DETAILS

The model was implemented in the Rochester Connectionist Simulator (RCS) on a
Sun 3/260 workstation. The RCS was chosen for its portability to numerous
machines including a parallel machine, implementations in both Suntools and
Xwindows, and its graphics interface.

A lisp interface to the planner was written to allow access from various expert
system shells, including the Automated Reasoning Tool and the Advice
Taker/Inquirer (ATI) (Cromp, 1988). Eventually, the ATI will be used to enter in
plans from an expert for execution in the connectionist planner. Both the ATI and
the connectionist planner could reside on several nodes on the network, where each
node will contain heuristic knowledge about network resources, network traffic,
and access procedures.

EXAMPLE

Suppose that the intelligent user interface on machine A has determined that the
user wishes to "get" a file which exists on another machine B. To illustrate how
the spreading activator could stop plan generation, suppose that the other machine's
"get" command has been disabled. Because of this, initiating the file transfer
protocol would be useless and we would want the planner to avoid reducing the ftp
command.

Specifically, the following plan library solves this problem:

(To-do (user-request ?dataset ?location)

(DataAccessPlan ?dataset ?location))

(Plan (DataAccessPlan ?dataset ?location)

(steps (check-net-node-status ?location on)

12

LLI
Z
rJ

iii
(D

UJ

rr"

13

(ftp ?dataset ?fromloc ?toloc)))

(Plan (ftp ?dataset ?floc ?toloc)

(steps (open ?floc)

(open ?toloc)

(get ?dataset)

(close ?floc)

(close ?toloc)))

The connectionist implementation is shown in fig. 2 Because machine B's get is
down, a flag is placed in the constant net. To solve this problem, the query

(solve '(user-request 'FarkleSet 'Vax-1))

is posed to the connectionist net. Because there are two arguments, we have two
phases for every clock cycle. After the first clock cycle, the spreading activation is
started in the semantic net on the Vax-1 and FarkleDataSet nodes. Eventually, a
path will be found between the DirError node and Vax-1, causing negative,
inhibitory values to be sent from the intersecting node back to the starting nodes.
When the inhibitory scalars cross the Get node, inhibition is sent to the Get pred
node on the rule-based side. This will shut off the Get pred, causing negative
scalars to be sent back to parent pred nodes via the implication links.

Of particular note, many of the details for the choice of constant node in spreading
activation have been left out. See (Hendler, 1988) for a better description.

CONCLUSION AND FUTURE DIRECTIONS

The advantages of moving the plan generator into rule-based CM are threefold.
First, we have shown how to avoid part of the path evaluator in order to stop the
bottle-neck between plan generator and plan selector. Second, we have reduced the
expense of plan generation by going to the linear run-time of the rule-based CM.
Lastly, we can still use our hierarchical representations while ignoring the
implementation question.

Unfortunately, not all of Hendler's functionality was achieved. For instance, Rule-
in in our model is somewhat meaningless in the CM. Because there is no way of
knowing which argument nodes in the middle of the "and/or" graph will be
activated by lower argument nodes, the CM planner must wait for the activation to
come up. Rule-in's only use is to help the plan coordinator in choosing an
alternative. One possible addition could be to have the ruled-in pred node laterally
inhibit its sister alternatives. Then, when activation reaches the ruled-in node,
values will propagate only through that node. Hence, no nodes are unnecessarily
activated.

Much work still needs to be done to make this a viable model for planning. For
example, a plan coordinator must be integrated naturally, as (Whithead, 1989) has
suggested. Finally, if not all of the planner can be moved into a connectionist model,
then the simple planning could be reserved for the CM, while complex planning

14

could be done in a classical symbolicplanner. In other words, the planner first
tries to planand executea plan sequenceusingthe CM. If thatfails, it thenpasses
partial informationup to the symbolicplannerwhichuses that to generatea more
complicatedplan. This is, of course,exactlywhatChapmansuggestedas a solution
to the generalplanningproblem.

While this research may not be significant in the "short-run" to NASA's data
managementproblems,we arguethat with NASA'sappropriationof severalparallel
machines,connectionistmodels in general have the propensity to increase the
efficiencyfor AI requirementsin intelligentuser interfaces. The major benefit of
thesemodelsis that muchof the classicAI algorithms(e.g., back-chaining)can be
keptwithoutanyloss,as is not thecasewithmorestandardneuralnet approaches.

REFERENCES

Blelloch, G., (1986),"AFL-1: A Programming Language for Massively Concurrent
Computers," MIT AI Laboratory, Technical Report AI-TR 918.

Charniak, E. (1986), and McDermott, D. ,Introduction to Artificial Intelligence,
Addison-Wesley Publishers.

Charniak, E. (August, 1986), A Neat Theory of Marker Passing, Proceedings from
the Fifth National Conference on Artificial Intelligece (pp. 584-88), Philadelphia,
Pennsylvania.

Campbell, W., Short Jr., N. and Treinish, L.,(May, 1989) "Adding Intelligence to
Scientific Data," Computers In Physics..

Chapman, D., (1987) "Planning for Conjunctive Goals," Artificial Intelligence
32..

Goddard, N., (1987) "The Rochester Connectionist Simulator: User Manual," Dept.
of Computer Science, University of Rochester.

Cromp, R. (1988) "The Advice Taker/Inquirer, A System for High-Level
Acquisition of Expert Knowledge, Telematics and Informatics, 5(3), pp. 297-312.

Green, J. (1989), "The New Space and Earth Science Informations Systems at
NASA's Archive," Accepted for publication in Government Information Quarterly.

Hendler, J., (1988) Integrating Marker-Passing and Problem Solving: A Spreading
Activation Approach to Improved Choice in Planning, Lawrence Erlbaum Associates,
Publishers.

Shastri, L., (1988) Semantic Networks: An Evidential Formalization and its
Connectionist Realization, Morgan Kaufmann Publishers, Inc.

Shastri, L. and Ajjanagadde V., (January1989) , "A Connectionist System for Rule
Based Reasoning with Multi-Place Predicates and Variables," Computer and
Information Science, MS-CIS-8905, Univ. of Pennsylvania.

Shastri, L. and Ajjanagadde V., (January1990) ,"From Simple Associations to
Systematic Reasoning: A Connectionist Representation of Rules, Variables, and

15

DynamicBindings," Computerand InformationScience,MS-CIS-90-05,Univ. of
Pennsylvania.

Short, Jr., N. and Wattawa, S., (December1988) "The Second Generation
Intelligent User Interface for the Crustal Dynamics Data Information System,"
Telematics and Informatics, 5(3), pp. 253-67.

Stankovic, J., (October 1988) "Misconceptions about Real-Time Computing," IEEE
Computer, pgs. 10-19.

Whitehead, S. and Ballard, D., (1989) "Connectionist Designs on Planning," 1989
Summer Workshop on Connectionism, Carnegie-Mellon University.

Zhao, W., Ramamrithham, K., and Stankovic, J., (May 1987) "Scheduling Tasks
with Resource Requirements in Hard Real-Time Systems," IEEE Trans. Software
Eng., Vol. SE-12, No. 5, pgs. 564-577.

16

