
The

Planning

N90-22298
PLAN-IT-2
Next Generation

& Scheduling
Tool

by

William C. Eggemeyer

Jennifer W. Cruz

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, California

Plan-IT is a scheduling program which has been demonstrated and evaluated

in a variety of scheduling domains (Spacelab, Deep Space Network, Comet
Rendezvous and Asteroid Flyby, Telescience, Space Station Power). This paper
discusses the capability enhancements being made for the next generation of
Plan-IT, called Plan-IT-2. Plan-IT-2 represents a complete rewrite of the
original Plan-IT incorporating major changes as suggested by our application
experiences with the original Plan-IT. A few of the enhancements described
in the paper are additional types of constraints, such as states and resettable-
depletables (batteries), dependencies between constraints, multiple levels of
activity planning during the scheduling process, pattern constraint
searching for opportunities as opposed to just minimizing the amount of
conflicts, additional customization construction features for display and

handling of diverse multiple time systems, and reduction in both the size and
the complexity for creating the knowledgebase to address the different
problem domains.

As the complexity of software on future spacecraft increases, so will planning
and scheduling activities for the spacecraft. For a ground support tool to
handle the scheduling/planning for spacecraft from manual to automatic
operation the tool must: 1) contain multiple levels of planning from goal
planning down to the detailed command level; 2) be adaptable to changes in
the structure of the activities; 3) consider the resource constraints at multiple

planning levels; 4) be adaptable to changing rules and strategies as mission
goals and requirements change; 5) be user-natural (program operation is both
user-friendly and intuitive to the user). Plan-IT-2 is the second step in
bringing this capability to the sequencing domain. It is expected that

experience gained with Plan-IT-2 will serve as good preparation for coping
with spacecraft systems with various levels of autonomous behavior.

43

PRECEDING PAGE BLANK NOT FILMED

INTRODUCTION

Plan Integrated Timelines (Plan-IT) [7] is a scheduling tool coded in LISP that
has been used and demonstrated on various projects. The major success of the
program has been its ability to enhance the human schedulers' ability not
only to produce an acceptable schedule more quickly than before but also to
make adjustments to the schedule dynamically. The cognitive approach of
encoding user-visualizations of constraints and a timeline view of the

schedule makes this possible. Knowledge gained from the past scheduling
experiences has led to the development of Plan-IT-2. This paper reviews Plan-
IT experiences, and then discusses what has been learned from those

experiences. The main portion of the paper describes Plan-IT-2's capabilities
and representations.

PLAN-IT

Plan-IT was our first attempt to cognitively address activity scheduling for
spacecraft missions. The approach of the program was to mimic how a human
scheduler visualizes the problem to simplify resolving conflicts that occur
during the scheduling process. This visualization took the form of a timeline
oriented display for both the activities to be scheduled and the constraints

considered in the schedule. Plan-IT also differed from previous approaches in
that the representation allowed conflicts to exist in the schedule. The tool

supported a range of scheduling capabilities from interactive manual editing
up to automatic scheduling by strategy invocation.

Plan-IT Background

The Sequence Automation Research Group (SARG) originally had demonstrated
the potential use of Artificial Intelligence (AI) concepts in the field of
sequencing during Voyager Uranus encounter planning by using a program
called DEVISER [2] [3] to create Voyager sequences at an intermediate level of
detail. This program took a backward-chaining goal expansion approach with
a rule-type knowledge base to create a temporally instantiated tree of activities
to achieve those goals. The success of the DEVISER demonstration sparked
interest from management at Marshal Space Flight Center concerned with
scheduling SpaceLab missions for the Shuttle. Unfortunately, the SpaceLab
scheduling problem exploited the weaknesses in DEVISER's approach to
planning while not taking advantage of the strengths. The original Plan-IT
was developed in less than a year to overcome this problem [5] [6]. Because of
Plan-IT's cognitive approach to the scheduling problem [7], Plan-IT was
adapted to a number of projects [12] besides SpaceLab to demonstrate the
usefulness of the Plan-IT concept. Below is brief description of those efforts.

SpaceLab

SpaceLab was a multi-year effort requiring extensive code additions to adapt
Plan-IT to operate within an already existing scheduling system, called
Experiment Scheduling Program (ESP). Plan-IT's task for this application was

to permit the user to tweak an already existing schedule either graphically by
manual tweaks or by algorithmic strategies specially coded for the SpaceLab
problem domain. The SpaceLab experience demonstrated that the Plan-IT
approach could handle their scheduling problem with a few caveats. The

44

drawbacks were that adapting Plan-IT to SpaceLab's particular problem
domain took an excessive amount of time and required extensive coding
modifications to Plan-IT's internal representations. These drawbacks indicated
that Plan-IT's internal structures were not robust enough for easy adaptation
to different problem domains.

Space Station Power SchedulingProof of Concept

The Space Station Power Scheduling demonstration [4] was one of the first
successesof Plan-IT's approach. This application required Plan-IT to work
with simple prioritized activities and real-time dynamic changes to update the
schedule as changesoccurred during its execution. Adaptation to the problem
domain was easy becauseof its restrictive nature, but it also indicated the need
for additional types of resourceconstraints that Plan-IT did not model.

Deep Space Network (DSN) Application

Plan-IT was adapted in six months for scheduling the allocation of DSN radio-
dishes around the world [8]. Plan-IT enhancementsdeveloped for this problem
domain included easing the user edits, handling of generic as well as specific
requests, and specialized algorithmic strategies. Plan-IT was used as an
interim solution to the DSN scheduling problem until the ResourceAllocation
Planning Helper (RALPH) system development was completed [13]. Plan-IT
successfully demonstrated its capabilities by reducing the DSN turn around
time for schedulingby an order of magnitude. In spite of the improvement in
turnaround time for scheduling, it was found that Plan-IT's global algorithmic
strategies (unlike the specially coded strategies that were local in scope)
either did too much or too little to the schedule. This illustrated that Plan-IT's
global strategy algorithms are too brute force in nature because of their
programmatic approach.

Comet RendezvousAsteroid Flyby (CRAF) Demonstration

This was the first successful demonstration of Plan-IT's application to deep
space missions [9]. Additionally, Plan-IT was combined with a natural
language understandingsystem [10] [11], enabling Plan-IT to take requests for
the spacecraft in English form and translate them into activities which then
can be scheduled. This demonstratedto JPL managementthat such a "user-
natural" scheduling system can have significant contributions to the
spacecraft command and control process. The Plan-IT concepts proven by the
demonstration are presently being implemented in a C-based version, called
SFOC Planner, on the Sun microsystem workstation for JPL's Space Flight
Operations Center. Early estimates showed a projected cost savings of $4
Million for the planned CRAF and Cassini missions due to the SFOC Planner
implementation.

Telescience Demonstration

This demonstration was a joint JPL and Goddard Space Flight Center (GSFC)
effort. GSFC provided the user-interface into the scheduling system, and JPL
provided PLAN-IT, the scheduling tool. This task demonstratedthat additional
research into the field of peer teleconferencing is greatly needed. Allowing
multiple users to concurrently interact from their home institutions on a

45

schedule of activities raises a few issues: 1) how are multiple user
simultaneous and cooperative edits to the schedule to be handled; 2) how is

control of the scheduling session handled; 3) how should security be handled
to guarantee privacy among the users, and, 4) how should the database be
maintained. These and other Telescience issues will be addressed in a
proposed future effort.

Knowledge Gained from Past Experiences

Scheduling in various problem domains has led us to the following conclusions
about capabilities required for a scheduling tool. Some of these requirements
may seem trivial and obvious, but their inclusion may make or break the tool's
acceptance. Plan-IT-2 is being developed with extensive changes to both the
internal representations and conceptual operation of the program to address
the issues below.

Visualization and Adaptation Issues

The activities, resource constraints, and display layout must be dynamically
configurable. For the various problem domains that Plan-IT was applied to,
the display had to change in one form or another to meet the desired

requirements of the users. Even within the same problem domain different
users wish to view the schedule differently to enhance their visualization of
the problem.

Time representation and its display must be changeable. Experiences with
Plan-IT have shown that users like to see and work with multiple time systems.
Some of these time systems can be very strange (ie: Galileo Command Data

System time works by major and minor frames and realtime interrupts which
are 60+2/3 second, 2/3 second and 2/30 second respectively), so a mechanism

must be incorporated into the tool to allow the users not only to add unique
time systems but also to work with and display multiple time systems.

Adaptation of the tool to the problem domains should be done with as high a
level of language as possible. Plan-IT's adaptation process was overly complex
and tedious. Each particular problem domain required the person adapting
Plan-IT not only to be knowledgeable about Plan-IT but also to know how to

program in LISP to overcome the restrictive internal representations present
in Plan-IT.

Constraints and Representation Issues

There are many different types of resource constraints that a scheduling tool
must handle. Plan-IT's repertoire of scheduling constraint types was limited

and not complete. Additionally, some of the problem domains require
complicated models, consisting of combinations of these simpler constraint
types working in unison via dependency relationships.

In many of the problem domains there were requirements for handling
temporally complex activities. Plan-IT's activity representation by only
frames and slots [1] was not flexible enough for adequately representing these
complex types of activities. An example of a complex activity is a generic

request or a cyclic where an activity is supposed to occur multiple times every

46

so often in time. Tweaking components of such a structure may have
repercussions on the other components depending on the temporal
dependencies involved. Defining complex activities in Plan-IT was a
complicated and tedious programming task, leading to the need for a simpler
and more robust method.

Scheduling Issues

Scheduling by algorithmic means works fine for simple restricted problem
domains, but spacecraft activity scheduling requires a more robust approach.
Users found that Plan-IT's strategies do either too much or not enough to the
schedule even if the user constrained them through windowing and resource
constraint consideration techniques. The users also found that traceability of
the strategy execution was not intuitive enough to understand why particular
actions occurred. Additionally, the task of creating new strategies required
too much coding in LISP.

Users have multiple focus levels on the detail of the activities, along with their
resourceusage, in the schedule. Plan-IT scheduledactivities at only one level
of detail. Typically, as a scheduledevelops in an incremental fashion, users
tend to work from a broad view of the activities and their resources to
generate a preliminary schedule down through more levels of detail as the
schedule is refined. Sometimesduring this process the user's focus level may
changeback up to a more abstract level to resolve conflicts that arise. Plan-
IT's single level focus operation was clearly a limitation to users who found it
contextually limited for editing and for perceiving the problems within the
schedule.

Users always want faster turnaround time in generating the schedule. Plan-
IT's advantage in producing schedules faster was that users were able to
concentrate on solving conflicts rather than taking time to identify the
conflicts. Even though Plan-IT was much faster than DEVISER (scheduling
speed decreaserelative to the number of activities was linear vs. exponential),
speed improvementscan still be made.

PLAN-IT-2

The remaining sections of the paper concentrate on Plan-IT-2. The first is an
overview of how the program interacts with the user through its five
different independent processes. Following the process overview is a brief
description of the file types the program supports, along with a very brief
description of other user interaction capabilities with the program. The
remaining portion of the paper concentrates on the actual Plan-IT-2 objects
and their representation. Further elaboration of the definitions used for

describing Plan-IT-2's objects can be found in [15].

Processes in Plan-IT-2

Plan-IT-2 operation is controlled by five different types of independent
processes. These processes are created and invoked by the user, and monitor
user-interaction with the program. The five processes are called the display,
mouse-buffer, task-buffer, tactical process and activity process. Figure 1

describes the processes in Plan-IT-2.

47

_cTw1 Mouse-Buffer _

rack mouse moves and I
icks. Also maintain 1

ho-line documentatio_l h

o Display-Process _'_

pdate the whole screen given[
interval of time independent[

incremental updates by the J
_Lndividual Plan-It-2 objects J

J

f Tactical Process -'_

ne or more user-invoked complex I

heduling tasks provided by either I

ctical parser or loaded script J

Plan-IT-2's Processes

I Task-Buffer "_Specific action 1

invocation queue_

I
Activity-Process -_

ser-invoked process where[
e sequence elements in the I

rogram schedule themselve_

Figure. 1

Process Interaction

In Plan-IT-2 there are two processes called mouse and task buffer that always

run in the background of the program. All actions invoked by the user and

Plan-IT-2, varying from changing the scale of the display to invoking a

tactical process, are executed from the task buffer. The other processes may be

user-invoked at any time during the scheduling session.

Scheduling Processes

The user can invoke automatic scheduling in three ways. Two of these

scheduling ways are performed by the tactical process, while the third way is
handled by the activity process.

The tactical process is generated by the user in two different ways. The first

way is by invoking a tactical natural language parser that accepts from the

user a sentence in a simple language describing the algorithm of scheduling

he wants to perform. A simple sentence example that would duplicate the old
Plan-IT shuffle strategy is, "For all classes of activities move while conflict". A

little more complicated example would be, "For the classes meta-activity and
activity move, spawn and slink considering power and camera while conflict".

This would cause Plan-IT-2 to determine the subset of all instances of the type

meta-activity and activity if they are involved with a conflict for the power

and camera resource constraints. Then for each individual activity or meta-
activity instance within that subset of activities, move to the most receptive

place in the schedule. If conflict is still present for the individual activity
then focus down a level in detail to its sub-components, and then if there is

still conflict try to slink (flex its structure) to eliminate the conflict. If the

user worded the tactical command in the form of "For classes meta-activity and
activity move then spawn then slink considering power and camera while
conflict" then the program would form a subset of the activities for actions as

before, but the order invoking those actions would change. The program
would loop through the subset of activities and meta-activities three times

instead of once applying the requested action if the activity instances were in

48

conflict. So, instead of moving, spawning and slinking on each activity
instance before going to the next instance in the set, Plan-IT-2 applies each
action to the whole set of activity instances before going to the next action.
This demonstrates the relative ease for a user to generate scheduling

algorithms at his own level of understanding, rather than by unintelligible

predefined hard-coded routines.

The second way of invoking the tactical process is to read a file that scripts out
the tactical commands to perform in order. The user is permitted to execute

multiple tactical processes simultaneously; however, interaction between them
may cause trouble. Plan-IT-2 is being coded so that it will also be a useful
testbed for testing how different aspects of its operations would work in

parallel.

The last way that the Plan-IT-2 can schedule is the activity process. This

process allows the activities from their own perspective to try to fix the
conflicts in the schedule. This will be explained in further detail under the

Activity Representation section.

File Types

File I/O capabilities of the program have been increased to accept the

following types of files: 1) display establishes the display setup (activity
displaying panes, resource constraint displaying panes, etc.), time resolution,
the start time of the schedule, and the time systems to be use; 2) legend -

manipulates where activities are to be vertically located within each activity
displaying pane (more than one is now allowed); 3) setup defines the
resource constraints which are to be used, which constraint pane they belong

to, optional initialization parameters, and the duration of the schedule; 4)
script contains a batch execution file of commands and actions to execute in
the program; 5) data activity data that the program schedules; 6) project
load problem definition system and optionally; 7) owlt - contains one-way
light time data for conversion from ground to spacecraft time. All of these file
types, with the exception of the project definition type, are for both input and
output and are in human readable form.

Other Interaction Capabilities

The manipulation of Plan-IT-2's display is built into the tool itself. The user
can access a graphical display editor to modify the display format in realtime,
to load a display file for possible editing, or to save a newly generated display
format. In addition to giving the user the flexibility of modifying the display,
the user may also graphically create, modify, and save activity types for the
schedule. This is accomplished by another built in graphical editor (explained
in the Activity Representation section). Two forms of Plan-IT-2's display are
illustrated on the following page.

Plan-IT-2 also contains an action pane which keeps a verbatim history of what
actions both the user and the program perform on the schedule. The contents
within the action pane may be selectively saved to a script type file for other

scheduling sessions, or may be scanned through to re-execute a specific
command or action by a mouse click.

49

I

.... ,_.,,.,,.,,_ ..,..,,,,,,,,,.__..,..,,,o, _,,..,,,_._, , _...,,;,..,4,_-_ ?,®'
SLEW II:IIIIEIIj (I0) IESltlDi (IO) EIIIII_II (I0) IIE:SIIIL_I (1(_ IElilIIIEI_ (10) s |

nCTURL| lntn_Fn:!lur'la 1117 IC_t Intil

i
TLH-KATE-IIB%-CL

(_LLISTO

F_nJ_L i TIGI
III llill (I1_)

NA-CAI'IE RA

WA-C_4EnA Dr HiE

'°"" ill L JLitdL___m

-?

I

I_I_Y-STI_-flCT

(_q-I. IST9

i _-%0,,_t -o., t-t -o _ ---.2I
/_-PREP.2

BSIflRfl-RCT

Plan-IT-2 Normal Display (top) and Graph Editor Display (bottom)

50

ORIGINAL PAGE IS

OF POOR QUALITY

Resource Constraint Capabilities

The planning/scheduling problems of spacecraft require a multitude of

different types of resource constraints. Plan-IT-2's resource constraint

representation is more complete than that of the original Plan-IT. The

resource constraints exist as timelines on Plan-IT-2's display illustrating

exactly how they are represented internally to the program. The main job

performed by all of these timelines is to maintain a breakdown of the unique

list of temporally intersecting activities in the schedule as iIlustrated in the

figure 2.

E
I I

uses 10 of A
D F

I I I I
uses 5 ofA & 5 of B uses 5 of B

i C i
I |

uses 0 of B

Resource A

Resource B

Time

Figure. 2 Activities C, D, E and F monitored by resource constraints A and B

Constraint Dependency Mechanism

All resource constraint types have the ability to influence other resource
constraints through two types of dependency mechanisms that are concerned

with the constraints' usage state. The usage state is typically a histogram

breakdown of the usage of the resource constraint over time. But because the

usage state may not change as the unique list of intersecting activities in time

changes for that resource constraint, it may not necessarily have a one-to-
one correspondence with how the resource constraint line itself is divided up.

When a dependency exists between the resource constraints, the resource
constraints generate and maintain dependency events or daemons between

themselves. These dependency events exist in two basic forms. The simplest is
a uni-directional dependency in which one resource constraint directly

influences another by its usage state. A simple example of this would be a

power and energy constraint system. The power and energy system would

consist of two simple resource constraints, power and energy. There would

exist a uni-directional dependency going from the power resource to the

energy resource in the form of multiplying the unique power amounts by

their respective durations of existence to determine the energy consumed.

The power constraint looks for exceeding the threshold of available power as
the energy constraint checks if the threshold amount of energy available for

the schedule is over-utilized. Figure 3 illustrates the dcpendency mechanism

given a uni-directional dependency between the resource constraint B in the

previous figure and another constraint called C.

51

Resource B

Dependency E-1 Dependency t_-2
] I ' '

Res°urce C I Nil I E-1 I Nil I E-2 I Nill

Time

Figure. 3 Uni-directional generated dependency events monitored from B to C

The more complicated dependency is called a bi-directional dependency. Its
job is to link two resource constraints together, as the uni-directional does, but
given the condition of both timelines it determines which one to influence
and by how much. Both dependency mechanisms create the same type of
primitive dependency event that is monitored by the resource constraints.
This daemon is monitored the same way as are the activities within the
schedule.

Concurrencies

The simplest resource constraint in Plan-IT-2 is called concurrency. This type
of resource constraint exists in two forms, called concurrency and non-

concurrency. Both types of timelines monitor two types of activities in the
schedule. One type of activity indicates the presence of something while
another type of activity indicates the need for it. The concurrency constraint
looks for matching the two types of activities together. If an activity of one
type needs whatever the constraint represents at a time where that constraint
is not present then there is a conflict. The non-concurrency constraint
operates in just the opposite manner. Non-concurrency wants no intersection
in time between those types of activities that need the constraint with those
that indicate its presence.

Non-Depletables

Non-Depletables are non-consumable types of resource constraints that
automatically restore themselves when they are not in use. This resource
constraint was pioneered by the original Plan-IT program. Non-depletables
exist in Plan-IT-2 in several forms. The simplest one called availability
monitors a resource constraint such as whether a camera is used more than

once simultaneously. The next most complicated type called non-depletable-
step is concerned with an amount of something such as power being
oversubscribed at any one time (note: that this limiting amount may itself

vary over time but in a step-wise fashion). Finally there is the continuous one
called non-depletable-continuous which is similar to non-depletable-step
except the amount's limit is determined by some continuous function (eg: the
shuttle's thermal constraint).

Depletables

Depletables are a consumable type of resource constraint that DOES NOT restore
itself when not in use. As with non-depletable types there are several forms

of depletables. The simplest called depletable starts with a fixed amount of

52

something and through a step-wise fixed consumption the amount gradually
becomes depleted. A simple example of this is modelling fuel usage on a

spacecraft in a step-wise fashion. The spacecraft starts out with a fixed
amount and as it is being consumed by the thrusters during maneuvers it

gradually becomes depleted.

The next most complicated one called resettable-depletable operates just as a
depletable does, except that it permits certain activities or other resource
constraint dependencies to replenish the amount. This replenishment may
either be a partial or complete amount. A good example of a rescuable-

depletable type of constraint is a rechargeable battery.

The last and most complicated form of a depletable is the positional-depletable.
This constraint acts similarly to the resettable-depletable by being both

depletable and replenishable except that it is also concerned with the location
of usage. An excellent example of this is a digital multi-track tape recorder
(DTR) that allows positioning for recording and playing back data.

States

States are the most complex type of constraint. A state constraint is a mode or a
condition of being. A simple example of this is a toggle switch that can either
be in an on or off state. There are three state operators, called changer (an

activity that changes the state), user (an activity influenced by a state), and
prohibitor (an activity that prohibits certain states). Plan-IT-2's
representation for a single state constraint actually consists of two
interdependent timelines. One timeline keeps track of the time the state
changes, the current state, state users concerned about overlapping the time
of a state change, state changers occurring at the same time, the most desircd
state derived from all of the users within that state's duration and finally,

times when the selected state is prohibited. The other timeline keeps track of

the unique time intersecting activities in the schedule, a running sum of all of
the potentially desired states by the users of this resource, lists of those
activities that cannot use that selected state, and lists of activities whose

desired states conflict with any prohibited states.

Activity Representation

Plan-IT-2's representation of activities in the schedule has dramatically
changed from the original Plan-IT. Plan-IT-2's enhancements to the frame
and slot structures elevated the user's understanding and maintenance of the
activities in the schedule. As in the original Plan-IT, frames and slots are still
used to hold the information that represents a single activity and all of its
resource constraints. Additionally, the activity structure contains knowledge
for scheduling itself. The activity attributes described below detail out these
improvements.

Time Slot

Time representation has bcen separated from the rest of the slots to give the
user a greater anaount of flexibility for influencing the activities' choice of
actions. The time slots in Plan-IT-2 permit the user to define temporal
flexibility of the activity instances in the schedule. The time slots vary from

53

just having a start, stop and duration value to having a flexible duration with
multiple time windows containing multiple preference choices. Another new
Plan-IT-2 feature is the ability to tag the time system type to the data during

input so that it can be saved in the same time format.

Generic Slots

As before in the original Plan-IT, the slots in all of the activity types,
represent the resource constraint utilization applicable to that activity. In
the original Plan-IT the slots unfortunately required extensive coding to
adequately represent the constraint usage for the activities. However the slots
in Plan-IT-2 are now generic types requiring only a single form to define the
slots' linkage to either a particular constraint or list of resource constraints

applicable to the activity type. Table 1 gives the generic slot types.

Table 1. Thirteen different Plan-IT-2 Slots

$_t Tyt_ [X_n0_

Single-Availability
Multiple-Availability

A,murt
V_r_Amount
Reset-Amount
Reset-Varying-Amount

What isneededor present
Ustof what is neededor present

umm
Rargeofusage
Amountto rep_nish
Ranman'_nt tore#er'_

Ir'eutData

:Presentor :Needed
Listand :Presentor :Needed

Numberor funclbn
Nun't_ rangeor lunctionandchobe
Numberorsymbolor functbn
Nurrt_ rangeor functionandchoice

S_ Rescuaehuse N/A
Muit_ A listof resourcesto use Listor function

State-Changer
State-User
State-Prohibitor

Changingresourceto a state
Desiredstatefrom state resource
States to avoid for state resource

Change stateand listor functbn
Desiredstate and listor function
List of states or function

Priority Priority Numberor symbolor funclbn

Into Other informationon theactivity Text

Each slot is capable of reading in, being edited, and writing out its contents
within the context of the activity using it. Some of the slots change

themselves appropriately depending on the scheduling actions applied to
them. Presently, the functions invoked by slots are passed the instance to
execute on and a time value. Additional slot options are the initialization
parameters for the slot type, an ordering precedence for how the frame
structure displays a slot relative to other slots, and the slot utilization by the
activity type definition.

Example 1 illustrates definitions of multiple choice, simple and state slots for
the narrow angle (NA) and wide angle (WA) camera system and for some
databus telemetry modes (DMODE) used by the Voyager spacecraft.

54

(Define-Slot-TypeInstrumentMultiple-Choice2 t :list-of-choices'(na-camerawa-camera))
(Define-Slot-TypeNa-Camera Simple 2t)
(Define-Slot-TypeWa-Camera Simple2 t)
(Define-Slot-TypeDmode-ChangerState-Changer2 nU:nameDMODE :state-I'_t'(gs3ira2 im7 irnl 1ocl))
(Define-Slot-TypeDmode-UserState-User2 t name DMODE)
(Define-Slot-TypeDrnode-ProhbitorState-Prohibitor2 nil :name DMODE)

Example 1. Some Slots for the Voyager Problem Domain

In example 1, the slots fit into two basic categories called shared and non-
shared slots. The t or nil following the ordering precedence number indicates
whether or not that slot is to be shared by all of the components of the activity
structure that uses that slot. For both speed and memory considerations Plan-
IT-2 allows the user to control how the activity structures are constructed with
the slots. The shared attribute even has a global option for sharing, so for a
given problem domain all activity instances using that slot will be using the
same slot instance. Depending on how the slot is defined by the user, there is a
wide variety in the scope of any changes made to that slot during the
scheduling process. For instance, if the slot is defined as being globally
shared, a change to that slot implies a change to every activity instance using
that slot.

Activity Types

Activities in Plan-IT-2 have been redefined into five specific types of objects
called event, step, activity-step, activity and meta-activity in ascending order
of complexity. All of these object types contain a time slot whose type
influences the activity's execution of different scheduling actions. Slots
representing the usage of particular resources may optionally be included in
any of these five activity type structures.

An event is the simplest and easiest type of activity to schedule. The event
represents a single level of detail for the resource usage for its duration and is
not dependent on anything else in the schedule with the exception of time.

A step is exactly like an event, except that it has a more abstract parent object
controlling it. The step represents the most detailed level of resource usage
for either an activity-step, activity, or meta-activity object. Any temporal
dependencies involved with that step are controlled by its parent.

An activity-step provides an intermediate level of abstraction between a step
and either an activity or a meta-activity. The activity-step can contain slots
representing resource usages at that level and may have other activity-steps
as either its parent or children. There is essentially no limit to the number of
intermediate levels of activity-steps a user may define in Plan-IT-2.

Both activity and meta-activity are the most abstract objects that Plan-IT-2
schedules. They may optionally contain slots for resource usages to be
considered at their level of abstraction for the overall activity structure that
they reside on top of. The major difference between activity and meta-activity
is the way they control the monitoring of their slots by the resource
constraint timelines.

55

The user can define his own activity type for Plan-IT-2 built upon these basic

types with a simple form. This form specifies the activity type, its time
capabilities, display attribute options (except for meta-activity), slot type
attributes, component relationships (except for event and step), and default
values for its slots• Additionally, the timing requirements and action
capabilities (such as move, shrink, etc.) are assigned to the five activity types.
These simple forms are illustrated in the examples following the next section.

Activity Node Network Structure

Each activity type, except those created from the event type, is represented by

a specialized node network• Each node within this network contains
information representing both temporal and functional relationships between
a node and its neighboring nodes. There are twelve fields per node. One field
of a node maintains a list of one or more activity types that are represented by
the node in the network. These activity types may be at intermediate levels of
abstraction in which they themselves consist of their own node networks.
Another field represents how the activities could be repeated (every so often,
during something, how many times, etc.). Seven other fields hold pointers to
other nodes each representing a specialized form of temporal relationship
with this node. These relationships are: 1) comes-before; 2) starts-before; 3)
comes-after; 4) starts-with; 5) ends-with; 6) during; 7) not-during. Another
field represents the concept of OR in the network. This field gives the network
the ability to handle activities that may be multi-configurable in their
structure. The graphical representation of these relationships used by the
network graph editor in Plan-IT-2 is illustrated in figure 4.

B starts-with A B ends-with A B during A

A comes-before B

B not-during A

A starts-before B

A or B or C

Figure. 4 The seven nodal relationships for an activity network

The two remaining fields of a node are called BY and IF. The temporal
relationship specifics of these seven fields is controlled by the BY field. This
field consists of an association list containing the nodes from the other seven
fields and their specific temporal relationships with this node. The final
field of the node is the IF field. This is similar to the BY field except that
instead of holding temporal relationship information associated with the
neighboring nodes it contains specific conditions to determine the linking of
the node with its neighboring nodes•

The activity node networks can be both created and modified by the user
before, during (causing changes in the schedule) and after the scheduling
process in the program. This can be done graphically through the network
graph editor built into the program or by textually typing in the simple form
definition.

56

Example of Defining Activity Types

To illustrate the clarity and ease of this approach, we define an imaging
activity for simultaneously shuttering both Voyager cameras three times. The
constraints considered for this activity type are the cameras and the databus
telemetry mode state. Below is a breakdown of how the representations would
look textually as well as graphically, using the same slots defined in example 1.

In example 2, the most detail level defines the shuttering and image data
readout steps for both cameras. Note the durations of the readouts are
determined by a LISP function that is concerned with the databus telemetry
state. Since it is a shared slot the dmode-user will be defined at the top-most
abstract level of the activity structure that uses it.

(Define-Step Na-Prep basic-time 0 (Na-Camera Drnode-User) ((Duration"00:48'_))
(Define,StepNa-R/O Duration-Range0 (Na-Camera Dmode-Use0

((Duration-RangeDetermine-Duration-From-Data-Mode)))
(Define-Step Wa-Prep basic-time() (Wa-Camera Dmode-User) ((Duration"00:48")))
(Def'_-:_StepWa-R/O Duration-Range0 (Wa-Camera Dmode-User)

((Duration-RangeDeterrrine-Duration-From-Data-Mode)))

Example 2. Step Definitions for an Imaging Activity

In example 3, the intermediate level of detail is an activity object but the
consideration of the camera constraints is for both of them over its duration.

This activity type's duration is also functionally dependent.

(Define-Step-ActivityBotsim-Activity Duration-Range 0 (instrument Dmode-User)
("Na-Prepand Wa-Prep oomes-beforeNa-R/O"
'1,,la-RK3comes-before Wa-RO')

((Duralion-RangeDeterrnine-Botsirn-DuratbrvFrom-Data-Mode)
(instrument2 0Na43ameraNa-Camera)(Wa-Camera Na-Camera))))

Example 3. Activity Definition for Intermediate Level of Detail

Finally in example 4, the top abstract level of the imaging activity, the camera
constraints are not even considered, but the default values for the dmode-user
are given. Note that dmode-user is used for the activity structure construction
name but it is reference as dmode in the default template form because that is
the actual name of the constraint it is concerned with.

(Define-Activity3-Pairs-Of-Simultaneous-ShutteringsDuration-Range(Dmode-User)
('13otsirn-ActMtyrepeats3times every Determine-Botsirn-Duration-From-Data-Mode")

((Drnodeirn2im7 iml 1)))

Example 4. Most Abstract Activity Definition

Figure 5 illustrates the complete graphical representation of this activity
structure.

57

Levelsof Abstraction

High firs-Of-Simultaneous-Shuttering

I otsim c ivi yl

Na-Prep I I] I]Low Wa-Prepl I Na-R/O I I Wa-R/O

Figure 5. Abstract layering of 3-Pairs-Of-Simultaneous-Shutterings

There are some important aspects of the way the program handles this
structure. First there is only one instance of the node network per activity

type. When multiple instances of each activity type are instantiated, each
creates a special list structure that instantiates a specific path through this
node network with the actual children instances of the activity types specified
within the nodes. This instantiation list also contains specific temporal

flexibility information that exists between those children instances, so that
the structure knows how to contextually control both Plan-IT-2 actions and
user modifications to it.

This representation gives Plan-IT-2 two important capabilities that were
lacking in the original Plan-IT. First is the ability to plan and schedule a
sequence from any number of focus levels in much the same way a human
scheduler works. Second, the robust activity definition capability eases

adaptation of Plan-IT-2 to all of the known activity scheduling problem
domains.

Generic Action Definition

The remaining information the user must define for an activity structure is
the set of valid scheduling actions that are permitted. Plan-IT-2's new
approach to scheduling has vastly changed from the old programmatic
approach of the original Plan-IT. There exists within Plan-IT-2 a library of
human-comprehensible scheduling actions (move, move-to, shrink, change-
slot, change-self, distribute-self, reconfigure, slink, etc.) that may be invoked
on the activities in the schedule.

There are two objectives for this approach: 1) scheduling actions are both
traceable and executable in terminology palatable to the user rather than
obtuse programmatic algorithms; 2) scheduling tasks are defined in more
abstract terms leaving the local details to be handled by the objects
themselves. For example, a generic action like rnove can be controlled
contextually by the structure it is invoked on and also by the types of
constraints and other dependencies it was told to consider.

User modifications on the activity structures are handled in much the same
way. For example, if a user moves an intermediate-level abstract activity
instance by the mouse. If this instance, being a child to a complicated activity

58

structure, was moved beyond its allowable flexibility definition within the
node network, or moved into another state that causedit to change, the whole
layered structure of the node networks updates itself appropriately.

Remaining Plan-IT-2 Objects Used in Scheduling

Four remaining objects used by Plan-IT-2 for the scheduling process are
mediators, scouts, short-term memories and rule monitoring. Mediators are

objects that group conflicts over multiple constraints in a temporal fashion.
The mediator's first job is classifying the conflict group into an abstract form.
Once classification is complete, the mediator then determines which activities
are involved with that conflict group. The mediator may optionally query the
activities for information concerning their flexibility for taking action and
what actions they are capable of. The mediator then uses the information
available to suggest actions to activities for reducing or eliminating that
conflict group. After several activities take the actions suggested by the
mediators, the mediators will be regenerated.

Scouts perform resource usage pattern searches across the temporal areas of
interest for the particular activity that originates them. It is the job of these
scouts to receive openness reports for their temporal location from each of the
constraints involved. Each resource reports this openness within its own
predefined normalized form. The scout merges these reports together in a
final report for the activity. This report is from an opportunistic perspective
because of the way the resources responded to the scout's request. If the
action derived by the scout's report results in escaping the conflicting
situation for that activity without effecting dependent neighboring activities,
the activity would immediately execute the action. However, if the action's
effects do ripple beyond that activity, then the activity must report to its
parent what it desires to do and wait for the parent to decide if the action
should be done at that level, or at a higher abstract level, or done differently,
or even done at all.

Both the short-term memory for the activity structures and the monitoring of
rules have yet to be finalized in form. The main objective for the short-term
memory is to influence the action decision process of both the activities and
the mediators. Rule monitoring will be a user-invoked independent process
that will apply defined heuristics to the schedule. Here is an example of a
heuristic concerned with the activity structure related to resource utilization.
If there are enough top level activities of a particular type consuming a
depletable resource (such as memory bytes) and the use of that resource can
be reduced by making the activity instances part of a meta-activity, then
change their structure appropriately and create the parent meta-activity.

Plan-IT-2 Mode of Execution

Plan-IT-2 uses conflicts in the schedule only as motivators for taking
scheduling actions. The conflicts themselves are no longer used to determine
the success of a scheduling action. The monitoring of success of an action is
left to both the activities themselves and the user monitoring the program.
The execution of the scheduling actions relies on viewing across multiple
constraint timelines based upon the opportunistic view presented by the
constraints, merged together by the scouts for the activities. Unlike the
original Plan-IT, there is no form of global measurement of goodness for the

59

schedule by the constraints. Presently, Plan-IT-2 executes these actions

serially from the task buffer. When Plan-IT-2 is completed an attempt to
parallelize the automatic determination and execution of non-interfering
actions will be made.

SUMMARY

Plan-IT-2 is our first system to address all of the issues involved with generic

activity scheduling. From the early days of our DEVISER experience with
Voyager, we learned that AI concepts were applicable to spacecraft
sequencing. Experience gained by the application of the original Plan-IT in
other activity scheduling domains further evolved our scheduling concepts to
the structures and representations in Plan-IT-2. A comparison of the estimated
amount of adaptation required for Plan-IT-2 when completed vs. DEVISER for
Voyager class problems illustrates how astounding the advancements are.
DEVISER required about 45 pages in rules and a few additional pages for
domain specific LISP functions to address Voyager activity scheduling. Plan-
IT-2 is estimated to handle the Voyager scheduling problem with about 10
pages for its knowledgebase and domain specific functions. This is due to the
inherent robustness in Plan-IT-2 structures and representations. Plan-IT-2 is
also attempting to address faster turnaround time for scheduling, both by code
optimization and by the new approach. Finally, both the object-oriented
design and conceptual operation of Plan-IT-2 makes it a good platform for
research on addressing the scheduling problem with parallel architectures.

ACKNOWLEDGEMENTS

The research described in this paper was performed by the Jet
Propulsion Laboratory, California Institute of Technology, under contract with
the National Aeronautics and Space Administration.

Other individuals participating in this project include R. Brill, C. Collins,
W. Dias, J. George, S. Grenander, M. Hollander, W. Lombard, J. O'Meara, D.
Mittman, S. Peters, M. Rokey, J. Sisino, E. Zamani, and B. Zimmerman.

REFERENCES

1) The Handbook of Artificial Intelligence, Barr, A. and Feigenbaum, 1981, Vol.
1 p. 156.

2) "Planning in Time: Windows and Durations for Activities and Goals", S. Vere,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 5, 3, 1983.

3) "Toward the Fully Capable AI Space Mission Planner," S. U. Grenander,
Aerospace America, August 1985.

4) "Space Power System Scheduling using and Expert System," K. Bahrami, E.
Biefeld, L. Costello, J. Clein, Proceedings, 21st lntersociety Energy Conversion
Engineering Conference, San Diego, CA, August, 1986.

5) "Outward Bound: Machine Intelligence in Deep Space", S. Grenander,
Computers in Mechanical Engineering, September, 1986.

6O

6) "Artificial Intelligence Planning Applications for Space Exploration and
Space Robotics", M. Rokey, S. Grenander, Aerospace Applications of Artificial
Intelligence, Conference Proceedings, Dayton, Ohio, October 1986.

7) "PLAN-IT: Knowledge-Based Mission Sequencing," E. Biefeld, Proceedings,
Advances in Intelligent Robotics Systems Conference, Cambridge, Mass.,
October, 1986.

8) "Deep Space Network Resource Scheduling Approach and Application," W.

Eggemeyer, A. Bowling, Proceedings, Space Applications of AI and Robotics,
GSFC, May, 1987.

9) "Plan-It: Scheduling Assistant for Solar System Exploration," W. Dias, J.
Henricks, J. Wong, Telematics and lnformatics, Vol. 4, No. 4, pp. 275-287, 1987.

10) "Understanding Natural Language for Spacecraft Sequencing," B. Katz, R.
Brooks, Spaceflight, the Journal of the British Interplanetary Society, Nov.,
1987.

11) "START Natural Language System", B. Katz, MIT AI Lab Memo, 1987.

12) "Plan-It Applications and Knowledge Gained", W. C. Eggemeyer, S. U.
Grenander, Workshop on Operations Planning and Scheduling Systems for the

Space Station Era, University of Colorado-Boulder, Boulder, Colorado, August,
1987.

13) "Ground Data System Resource Allocation Process", Carol Berner, Ralph
Durham, Norman Reilly, NASA Pub. 3033 for 1989 Goddard AI Conference, May
16-17,1989.

14) "Spacecraft Activity Planning Tool Using Object Oriented Techniques", E.
Zamani, J. George, C. Collins, B. Zimmerman, Proceedings, Tools '89, Paris,
France Nov. 13-15, 1989.

15) A Planning and Scheduling Lexicon, Jennifer W. Cruz, William C.
Eggemeyer, JPL Publication 89-25, Sept. 15, 1989.

61

