
N90-22316
KNOWLEDGE STRUCTURE REPRESENTATION AND AUTOMATED UPDATES IN

INTELLIGENT INFORMATION MANAGEMENT SYSTEMS

Stephen M. Corey
Richard S. Carnahan, Jr.

Martin Marietta Information & Communications Systems
Denver, Colorado

1.0 ABSTRACT

Work reported in this paper is part of a continuing effort
to apply rapid prototyping and Artificial Intelligence
techniques to problems associated with projected Space
Station-era information management systems. In par-
ticular, timely updating of the various databases and
knowledge structures within our proposed intelligent in-
formation management system (IIMS) is critical to
support decision making processes. Because of the sig-
nificantly large amounts of data entering the IIMS on a
daily basis, information updates will need to be auto-
matically performed with some systems requiring that
data be incorporated and made available to users within a
few hours. Meeting these demands depends first, on the
design and implementation of information structures
that are easily modified and expanded, and second, on the
incorporation of intelligent automated update techniques
that will allow meaningful information relationships to
be established. This paper examines potential tech-
niques for developing such an automated update capabil-
ity and examines IIMS update requirements in light of
results obtained from our IIMS prototyping effort.

2.0 INTRODUCTION

The advent of large, information intensive data systems
will require sophisticated user access capabilities. In
particular, projected large data volumes necessitate im-
plementation of extensive browsing and querying facili-
ties. Indeed, given the prospect of multiterabyte
databases (which will be continually updated), it is our
contention that without the availability of higher-level
information to help focus a user's search, data access
would be virtually impossible. To provide rapid access
in a data environment whose structure can be transpar-
ently and dynamically altered, we employ the conceptual
structure of rnetadata, or information about the data, as

the main information structure. Additionally, to allow
for maximum efficiency in the incorporation of new in-
formation, metadata structures must be automatically
generated and maintained. When an update message is
received indicating the arrival of new data, the message
is processed inferring new rnetadata that is then appro-
priately linked to already existing metadata in the
knowledge structure. As we have mentioned before
(Carnahan, Corey, & Snow, 1989), the speed at which

this process can be accomplished depends on the type of

data received and its potential relationships to other
metadata. Following sections describe the approaches
we have taken to better define requirements for an
advanced information management metadata knowledge
structure and automated update system.

3.0 TYPICAL QUERY FORMULATION

In typical query systems, much is required of the user.
Before users can formulate queries to locate data sets re-
lated to their areas of interest, a mathematically oriented
query language must generally be learned. In addition,
users must become familiar with the physical or logical
view of the data structure. In a relational database man-

agement system (DBMS), this process requires learning
attribute and relation names, as well as relationships be-
tween them. While such a condition is acceptable for

small systems containing few relations and attributes,
the situation rapidly becomes unmanageable for very
large database systems.

Recently, natural language (NL) query formulation sys-
tems have been implemented to aid in the elimination
of the need for a mathematical query system.
Nevertheless, even though the query language associated
with NL systems is not mathematical, the user is still
required to learn a query language of sorts. As a result,
words and phrases recognized by the NL system gram-
mar and appropriate procedures for combining them
must be learned. Unfortunately, users must face other
problems when using a NL system. NL systems must
be trained for a specific domain under which it will op-
erate. Domain terminology is taught to the grammar so
that a specific user may converse in a manner common
to that domain. Terminology, however, is often dis-
similar among scientific domains; NL systems are gen-
erally not well suited for multidisciplinary information.
Yet it must be remembered that even if problems asso-
ciated with different domain terminology are resolved,
the user is still required to learn the underlying data
su'ucture and its relationships.

With either the NL or the typical query system, the user
forms queries without complete knowledge of data
contained in the database. In this type of an
environment, results of the query may contain data sets
of no interest, or the results may contain only some
relevant data sets. The former consequence results from

271

either inadequate or inappropriate types of constraints
being placed on the query. Hence, the querying process
is not completed and the user has to sift through
inappropriate data to locate data sets of interest. The
latter consequence is more serious; some of the data sets
of interest cannot be found because of constraints placed

on the query by a user who does not fully comprehend
the parameters of the targeted data sets. Furthermore, a
null result is also possible and the user is left to wonder
at the cause for lack of system response. Database
research applied to this issue has resulted in prototype
systems in which the user is provided with an
understanding of which subclause(s) of the query has
caused the inappropriate elimination of data sets, but
commercially available DBMSs have not yet
implemented this feature. Yet, even when such features
do become available, information provided concerning
the failed query is post hoc; no real aid is provided to
the user while the query is being formed. For users
who are unfamiliar with the data, the task of forming an
appropriate query will be formidable. In light of prob-
lems associated with current systems, we have taken a

different approach.

4.0 IIMS QUERY FORMULATION

To address the limitations of typical query systems and
notably, those encountered when accessing extremely
large databases, the query system of the prototype
Intelligent Information Management System (IIMS) has
been implemented using a metadata base (rather than a
database containing actual data), and with a querying ap-
proach called assisted query formulation.

Since databases in which data sets are to be located will

likely be extremely large, geographically distributed,
and heterogeneous, the possibility of providing a real-
time interface with standard techniques is, at best, re-
mote. One way to address this problem is to employ a
method that reduces the amount of information to be

searched. A typical information reduction technique
used in standard database systems is the use of indices.
We believe, however, that the exclusive use of this
technique will not adequately reduce access time in the
type of query environment we envision. In contrast, the
IIMS achieves information reduction through the appro-
priate selection of a small abstraction of all possible in-
formation contained in the databases; this abstraction of
data we refer to as the metadata base. Through the use
of a metadata base, not only is the amount of informa-
tion to be accessed reduced, but relationship information
among the data can also be included; a capability that
would be impossible without abstraction due to over-
head associated with this information. Thus, the meta-
data base represents not simply an abstraction of infor-
mation but a knowledge base of metadata and metadata
relationships, and provides the user with more extensive
help to eliminate irrelevant information and increases

the probability that all data sets of interest are located.

While the selection of a metadata base as the focus of

access only serves to bring the problem of very large
database access to a manageable level, it does nothing to
address query problems encountered in normal systems.
It seems apparent that a query system must be created
that takes advantage of knowledge contained in the
metadata base. With assisted query formulation, the
user is guided through the process of formulating
queries on the metadata base through menus that present
only relevant information. Items displayed to the user
are controlled by the underlying knowledge structure and
are determined largely by the user's navigation path
through the metadata. The user is never presented with
selections that are not contained in the metadata base.

Since query formulation is based entirely on the user's
navigation path and selections, only valid queries can be
formed.

This approach to navigation and query formulation frees
the user from having to learn a query language since the
knowledge structure provides the user with appropriate
next selections that are syntactically and semantically
valid. In addition, because the query system presents
the user with value information contained within the

database, the user never has to guess what an appropri-
ate value is for attributes being presented. For example,
when the user chooses the "Programs" metadata con-
cept, valid values for this node in the knowledge struc-
ture (data collection programs) are presented as selec-
tions. The user does not have to be concerned about the

form of the query input, whether it is a string, if it con-
tains spaces or underscores, and the like. All valid po-
tential query inputs are presented to the user in a menu
that allows the desired item to be selected. Since such

information is presented to the user as the query is be-
ing formed, the user is actually browsing information
contained in the metadata base and forming the query
based on actual information; as a result, a more accurate

query is formed. This process reduces the number of
probing queries users have to form before information
for which they are searching is located. Furthermore,
response time for each step in the query formulation
process is rapid due to the fact that only a small amount
of metadata is being processed at a given time.

Obviously, since projected databases are likely to be
very large, not all value information can be contained in
the knowledge structure; if so, the size of the metadata
base would approach or exceed the size of the original
databases. However, it is important for the metadata
base to be able to contain more detailed information in

some areas than in others. As a result, it is necessary
for the knowledge structure to be able to handle multi-
ple levels of metadata abstraction. During navigation,
the user will be presented with value information only
when available, and in a seamless, transparent manner.

272

Assisted query formulation also frees the user from hav-
ing to understand the physical organization of informa-
tion contained in the metadata base. Appropriate infor-

mation is presented to the user when required and all the
user must do is select from presented items. However,
the user is not totally released from understanding in-
formation categorization. Before the user can select an
item, the relative position of the item within the
knowledge structure must be understood. Therefore, the
user may know the concept (node) in the knowledge
structure at which he desires to be positioned, but he
may not be able to readily locate or navigate to the con-
cept. To help resolve this problem, the IIMS prototype
employs two features: first is the use of domain
specific terminology and information organization; that
is, information is presented to the user in a familiar
manner and is achieved through the use of data views.
Second, we have implemented a FIND capability that
allows the user to select from a list of appropriate
concepts. Only those concepts relevant to the user's
interests are presented. Once the selection is made, the
IIMS prototype locates the shortest path to the chosen
concept from the user's current knowledge structure lo-
cation and then automatically navigates to that concept.
In the future, other navigation assistance tools address-
ing this issue will also be studied.

5.0 KNOWLEDGE-NET - THE IIMS
KNOWLEDGE MODEL

To provide the types of capabilities described above and
still satisfy the critical requirements of dynamic modifi-
cation and update (which in most instances, we believe,
will have to be performed automatically) we have im-
plemented metadata knowledge and relationship informa-
tion using a data representation rather than procedural
approach. The data representation we are using can be
categorized as a semantic network consisting of typed
nodes and typed, unidirectional links. One unique fea-
ture of our implementation is that relationships have
conditional relevance, that is, not all links emanating
from a particular node are relevant under all conditions.
Link relevance is computed dynamically and is based
primarily on the navigation path traversed by the user
through the knowledge structure. Determination of link
relevance at any given time and its use in the query
formulation process is discussed in section 5.5.

In the knowledge-net (k-net), metadata concepts or facts
are represented as typed nodes while relationships be-
tween concepts are represented as typed links. Node or
link characteristics and their effects on knowledge struc-

ture composition and use are governed by their types.
In the current system, eight types of nodes (Fact,
Information, ISA-S, ISA-V, Paren, Operator, Structure,

Value) and ten types of links (Abstraction, Acronym,
Alias, Fact, Information, ISA, Reverse, Structure,
Value, Value Selection) are used. Of course, the

number of types of both nodes and links is not fixed and
will likely change as the k-net increases its expressive
capabilities. Rather than discussing separately each of
the typed nodes and links listed above, each will be dis-
cussed, whenever possible, in the context of its com-
bined use with other nodes and links to represent
knowledge. Primary knowledge representation capabili-
ties of the k-net are implemented using Fact, ISA-S,
ISA-V, Structure and Value nodes and Abstraction,
Fact, ISA, Structure, Value, and Value Selection links.

Other node and link types are generally used to define
associated information, alternative names for domain
concepts, and syntax representation (see section 4.2).
Figure 1 illustrates a sample value tree from the current
IIMS knowledge structure.

Figure 1 Example Knowledge Structure
Value Tree

The current implementation of the k-net may be
thought of as a series of value trees grouped together
through the use of Structure nodes (while this is gener-
ally true, it should be noted that the knowledge structure
is highly interconnected). Similar to any typical hierar-
chical representation of knowledge, Structure nodes are

generally used as category headings. Similar to a direc-
tory smacture, they are also used to represent a concept
which does not directly have an associated value.
Selection of structure nodes does not cause a change in
the status of the query currently being formed and hence
are not involved in any value processing performed.

5.1 VALUE TREES - ATTRIBUTE/VALUE
BINDINGS

Within the k-net, value trees control the setting of
atUibute values (attributes are parameters describing ap-
propriate data sets). Query formation is fundamentally

the process of setting values or ranges of values for

273

known data set attributes and relationships among at-
tributes. This process is achieved by navigating
through relevant nodes of the k-net. However, no con-
straints are added to the query until entering a value tree
and indicating the value for a specified attribute. Of
course, this process is transparent to the user and navi-
gation procedures are not perceptively different when a
value tree is entered. ISA-S nodes are the attribute

nodes of the k-net, and are the only nodes that can be
assigned a value. Values oflSA-S nodes are designated
by nodes below them in the tree and hence, they repre-
sent root nodes of small value trees embedded within the

k-net. Value trees are generally never more than a few
levels deep, but node values may be set at different
levels within the value tree. This is caused by the itera-
tive refinement of the original domain concept into
more specific detail represented by the value tree. For
example, in the current prototype k-net, the node
"Collection Variables" is an ISA-S node which has

"Trace Species" as one of the concept nodes below it
(see Figure 1). The "Trace Species" node represents a
valid value for the "Collection Variables" node whose

value specification, at this point, can be terminated.
However, if "Trace Species" is still too general, the user
can select the "Trace Species" node and more specific
concept nodes or values of "Trace Species" will be
offered to the user. Upon selection of one of these more
specific concept nodes, the value for the node
"Collection Variables" is altered to reflect the new
selection. A Value link is used to model a value

relationship between two nodes, in which the
destination node represents a legitimate value of the
originator node. This relationship implies that the
destination node represents an ISA type of the originator
node. Because of this, whenever a Value link is defined,
an ISA link is automatically defined in the opposite
direction of the Value link. If the destination node of

the ISA link (i.e., the originator node of the Value link)
is a Structure or a Value node, the node type is altered
to indicate that this node now represents an ISA
concept. When a node type change is required, a
Structure node is changed to an ISA-S node and a Value
node is changed to an ISA-V node.

When the query formulation process arrives at the
"Collection Variables" node, the root node of the exam-

ple value tree illustrated in Figure 1, determining what
concepts to present to the user is governed by the ISA
concept structure mentioned above. Determining
whether the concept "Trace Species" should be presented
does not depend on the relevance of the link between

"Collection Variables" and "Trace Species" but rather on
the relevance of the links between "Trace Species" and
"N20" and other related concepts. To represent this cor-

rectly, all RELEVANCE conditions (see section 5.5 for
a discussion of RELEVANCE conditions) on links

emanating from "Trace Species" would have to be
associated with the link between "Collection Variables"

and "Trace Species". Such a procedure is inefficient
since multiple copies of the same relationship represen-
tation must be maintained. Instead of this approach, we
have chosen to implement an Abstraction link, repre-
senting the notion that the relationship between nodes
is an abstraction of the value of the node attribute being
set.

Upon encountering an Abstraction link, the system
progresses directly to the appropriate destination node
and begins relevance processing on links emanating
from that node. When one of these Value links is found

to be relevant, given the current state of the k-net, the
Abstraction link is then considered to be relevant.

Abstraction relevance processing is an iterative process.
If links from the destination node of the Abstraction

link also contain Abstraction links, relevance process-
ing then shifts to the destination node of the new
Abstraction link. The process continues until no
Abstraction links are encountered, at which point rele-
vance processing then begins. Under appropriate condi-
tions, Abstraction links, like the ISA link, are generated
automatically whenever a Value link is defined. Figure
2 illustrates the state of the value tree at the time a re-

quest is received to define the Value link between "Trace
Species" and "N20". Since the Value link between

Figure 2 Value Tree State Prior to "Trace
Species" Value Link Definition

"Collection Variables" and "Trace Species" represents
the same relationship as the Abstraction link is intended
to represent (see Figure 3), the Value link is deleted
from the k-net and replaced with the Abstraction link.
Thus, defining a Value link can generate three links,
delete one link, and change a node type. Since relevance
of the Abstraction link is determined by other links,
Abstraction links are allowed only to contain view rele-

vance and are processed using view filtering (see section
5.5).

Originally, ISA-S nodes are specified as Structure nodes
but their type is changed to ISA-S when an ISA link
creation request is received specifying the Structure node
as the destination node of the link. Specification of the
ISA link indicates that the 1SA-S node represents a node
value abstraction and, thus, has different characteristics

than a typical Structure node.

274

When an ISA link is defined, an Abstraction link is au-

tomatically defined in the opposite direction.
Determining the relevance (see section 5.5 for a
discussion of relevance processing) of the Abstraction
link should be based on the relevance of the links to the

concept which is the destination of the Abstraction link.
The Abstraction link is considered relevant if at least

(ISA-S)

ISA Abstraction

Trace Species
0SA-V)

ISA Value

N_
(Value)

Figure 3 Value Tree State After "Trace
Species" Value Link Definition

one of the value links of its destination node is relevant.

Abstraction links are used to prevent maintaining dupli-
cate copies of relevance instances and the situation
where an Abstraction concept node is offered to the user,
but upon its selection all further selections have been
eliminated because of relevance processing. For exam-
ple, the concept "Collection Variables" has an
Abstraction link to the node "Trace Species". When the
k-net determines if the node "Trace Species" should be
offered, value links emanating from "Trace Species" are
relevance processed. Upon locating the first value link
from "Trace Species" considered relevant, the link from
"Collection Variables" to "Trace Species" is then de-
clared relevant. Relevance processing is recursive and if
any links emanating from "Trace Species" are also
Abstraction links, each destination node of each
Abstraction link is processed in turn until a relevant
link is located. As stated above, the node "Trace
Species" is a valid value selection for the ISA-S node
"Collection Variables". However, it is also an abstrac-

tion of more specific value concepts. This type of
node, one which represents a value but is not a leaf
value node, is referred to as an ISA-V node. As with

ISA-S nodes, the ISA-V node began as a Value node but
was modified when a request was received to define an
ISA link with the Value node as the destination.

Leaf values of value trees are generally Value nodes,
although there are exceptions. Value nodes represent a
valid value for the attribute node that is the root of the

tree. They represent the most specific domain concept
known for any attribute and, hence, do not have links to

more specific concepts. The only exception to this rule
is when value range type information is known. In
such a case a Value-Selection link is defined for the

node pointing to an appropriate Structure node. The
Structure node then has Fact links defined that point to
Fact nodes representing specific ranges of values for the
associated Structure node. Upon selection of the
Structure node, a routine is invoked that displays rele-
vant value range information, allowing the user to indi-
cate value ranges of interest. In this way, the value tree
structure allows multiple levels of data abstraction with
different metadata items having varying levels of at-
tribute value abstraction.

Although the node value structure has been described in
terms of a tree (which it appears to be upon first
glance), there is nothing to prevent links from entering
the structure at any location from outside, or to prevent
links within the value tree from pointing outside the
structure. The latter condition is almost always the case
although these types of links are generally not involved
with the selection of a value for an attribute, but are
links to other related concepts. It is important to realize

that the value tree structure allows setting attributes to
desired values, with only relevant and valid values being
offered to the user. Thus, the user browses relevant data

while forming the query.

As stated above, the k-net may be thought of as a series
of value trees grouped together through the use of
Structure nodes and Structure links and representing cat-
egory headings or other structural components. While
defining a Value link causes a companion ISA link to
be defined in the reverse direction of the Value link, not
all links cause the creation of companion links.
However, certain analysis procedures require traversing
structural and value relationships within the k-net.
Therefore, to provide this capability, a Reverse link
must be defined in the opposite direction of the
Structure link. It is important to understand that
Reverse links are not used to model relationships in the
k-net and are not used in any way to control the naviga-
tion process; they are only used to provide for required
analysis capabilities.

5.2 SYNTACTIC REPRESENTATION

While assigning values to attributes is a large part of
the query formulation process, it is also necessary for
these bindings to be grouped and joined in a logical
manner. Paren and Operator nodes are used to imple-
ment this capability for English-like syntax representa-
tion in the k-net, and these nodes have inherent capabili-
ties that impact query syntax. For example, a right
paten cannot be offered unless there is a corresponding
open left parcn, or a conjunction cannot be offered until

275

an attribute/value binding is completed.

5.3 NON-QUERY INFORMATION REPRE-
SENTATION

Information nodes and links provide the capability to

provide non-query related information about nodes to
which the user has navigated. Information nodes are
usually entry points into the tutorial system and provide
such information as drawings, explanations, and techni-
cal specifications. In the IIMS prototype, this type of
information is provided by hypermedia presentation so
the user can use the entry point as the beginning loca-

tion for an in-depth exploration of the given subject, or
related subjects. Selection of these nodes does not di-
rectly add anything to the query.

5.4 ALTERNATIVE NAME REPRESEN-
TATION

Two links are used within the k-net to represent alterna-
tive names for nodes: Acronym and Alias. The pres-
ence of an Acronym link indicates that a certain node
has an associated acronym, and, since these links can
have relevances associated with them, a single node may
have more than one acronym. In the IIMS prototype, a
user can request that a node be displayed using either its
full name or its acronym. If acronym is selected, the
IIMS prototype processes relevance instances associated
with each Acronym link until one is found to be rele-
vant. The acronym name given to the destination node
will then be used as the display name of the node.

The Alias link is used to allow alternative names for
nodes. Such a situation is made necessary given the
condition where one node represents a single concept
but different domains may have different names for that
concept. Obviously, this link is used only when the
concepts are exactly the same. If concepts are slightly
different, a different node will have to be defined.

5.5 LINK RELEVANCE PROCESSING

Within the k-net, a single concept (i.e., node) appears
only once within the semantic network. However, dur-
ing the navigation process, it may seem to the user that
many nodes exist expressing the same concept. Such a
perception is caused by choices the user is offered upon
selection of a concept. Remember that choices offered
are dependant upon the path the user has taken to arrive
at the concept. As briefly discussed above, this is
achieved through the use of relevance descriptions asso-
ciated with each link. Therefore, when a user arrives at

a node, the k-net processes each link emanating from
the node. Only those links determined to be relevant are
used to define the next choices offered to the user. For

display purposes, this conditional relevance technique is
used to reduce the number of nodes and links typically

associated in a highly interconnected network.

Associated with each link is a list of RELEVANCE

conditions. When a link creation request is instantiated,

the system determines if a similar link-type already ex-
ists (i.e., the same as that requested other than the asso-
ciated RELEVANCE condition). If such a link is
found, a new link is not created. Instead, the
RELEVANCE condition of the new link request is
added to the existing link. As a result, unbridled prolif-
eration of links is controlled. Currently, two types of
RELEVANCE conditions are used: COMPLIANCE
and NON-DISPUTING.

If a RELEVANCE condition is specified as
COMPLIANCE and the condition fails to be satisfied,
the link is rejected without further processing.
However, if a RELEVANCE condition is NON-
DISPUTING, then as long as the link's relevance is not
disputed by the current state of the query (i.e., a variable
set by the query process does not have a value conflict-
ing with that specified in the RELEVANCE condition),
then failed relevance does not cause the processing of

the link to be terminated. Such a process is made nec-
essary to allow specification of RELEVANCE condi-
tions that will not cause rejection of the link if vari-
ables used in the specification of the RELEVANCE
condition have not been set by the query process. For
example, if a RELEVANCE condition is specified by
the fact that the program must be NIMBUS and a NON-
DISPUTING condition is present, then the link's rele-
vance is rejected only if the program is specified to be
something other than NIMBUS. If the program vari-
able has not already been set, link relevance is not
rejected. However, if the RELEVANCE condition is
COMPLIANCE, then the link's relevance is accepted
only if the "Programs" variable is set to NIMBUS.

Determination of link relevance also involves process-
ing the non-reentrant state (see section 5.5.1) of the
link's destination node and then processing
RELEVANCE conditions associated with it. If the link

passes the non-reentrant filter test, then RELEVANCE
conditions associated with the link are processed in two
steps: view fihering and relevance predicate processing.
Results of this two-step process can be used to immedi-
ately accept or reject the link or indicate that no infor-
mation concerning link relevancy can be provided. In
the second case, the next RELEVANCE condition is

processed. This process continues until the link has
either been accepted or rejected, or there are no more
RELEVANCE conditions to process; in such a case the
link is accepted as relevant. The second process step is
more involved and takes more time than the first. In

this way, view filtering and non-reentrant processing
act as rapid filters that eliminate many links from the
more intensive and time consuming relevance predicate
processing. Each of these processes are discussed more

276

fully in the following sections.

5.5.1 Non-Reentrant Nodes

It is necessary that the k-net be able to represent the fact
that under certain conditions some nodes cannot be reen-

tered during the navigation process. In the current k-
net, most nodes representing variable binding may not
be reentered under an AND condition. This requirement
can be illustrated when one considers the possibility of
a single data set having two Analysis Product Qualities:
A AND B; obviously, such a state is untenable.
However, it is possible for a data set to have an

Analysis Product Quality of A OR B. Therefore, the
node "Analysis Product Quality" must have non-
reentrant capability so that it will not again be offered
to the user if it has already been offered within the scope
of the current AND condition, but may again be offered

under other conditions. Non-reentrant capabilities have
been implemented in the current k-net, and checking
this condition is the first step in link relevance
processing, needing to be performed only once per link.
If the destination node of the processed link indicates
that the non-reentrant attribute is activated, syntax of
the current state of the query formed through navigation
is analyzed to determine if a restrictive condition exists.
If so, the link is rejected and processing on this link
ceases. If the link passes the non-reentrant processing
test, individual RELEVANCE conditions are processed
until determination can be made about the relevance of

the link. The first step in this process is passing the
RELEVANCE condition through a viewfilter and then,
if successful, relevance processing concludes with rele-
vance predicate processing.

5.5.2 View Filtering

A view in the IIMS prototype is a set of nodes and
links which may be composed of, but are not limited
to, nodes and links of the system-wide knowledge struc-
ture. Each view is the encapsulation of knowledge rele-
vant to a particular interest or domain and contains do-
main relevant concepts, relationships, and terminology
not included in the system-wide knowledge structure.
User views, then, represent sets of base knowledge
structure changes required to reflect user-specific domain
knowledge. Views provide the user with the capability
to form queries in a familiar environment and exclude
information irrelevant to interests defined by the view.
In the IIMS prototype, views are used to aid in the effi-
cient presentation of relevant information to the user,
and to present the information in an appropriate form
for the specified user's interests. Separate views defined
in the IIMS prototype form a hierarchical inheritance
structure in which a view inherits all associated subview

modifications. For example, a Physics view might be

composed of all concept and relationships defined in the

Astrophysics, Geophysics, and Atmospheric Physics
views since the generalized Physics concept consists of
all these specific domains.

Each RELEVANCE condition contains a list of views
for which the associated link is considered relevant. To
determine the relevance of the current RELEVANCE
condition, this view list must be compared against the
view in which the k-net is currently operating. A link

passes the view relevance filter if one of the views or
subviews for which the link is relevant is currently

active. To use the example above, if the current view
of the k-net was Physics and one of the views of the
current RELEVANCE condition is Astrophysics, the
RELEVANCE condition would pass the view relevance
filter. Of course, the converse would not be true. Once
a view passes the view relevance filter, view filtering of
the link can be terminated and relevance processing can
continue into the next phase. If no views contained in
the RELEVANCE condition are found to be relevant,

then processing of the RELEVANCE condition is
terminated.

5.5.3 Relevance Processing

Once the link has passed both view and non-reentrant
filtering, it enters the next phase of relevance process-
ing. As discussed above, there are two types of rele-
vance instances: COMPLIANCE and NON-
DISPUTING. The RELEVANCE conditions associated

with the link are grouped according to these types. All
COMPLIANCE relevance conditions must be processed
and all must be satisfied. If one of these relevance in-

stances fails, relevance processing of the link ceases and
the link is rejected. If all COMPLIANCE tests are
completed successfully, NON-DISPUTING relevance
conditions are then processed. In this instance, a nega-
tive result does not cause the rejection of the link while
a positive response results in the link being immedi-
ately accepted.

Associated with every RELEVANCE condition is an
EVALuable predicate that determines conditions under
which the link is relevant and a set of variables that

must be set before the predicate is EVALed. Values to
which variables will be set are determined from the cur-

rent state of the k-net. While navigating the k-net, cer-
tain attribute/value bindings and relationships between
them have been formed. For example, when a user nav-
igates to the "Programs" node, all relevant programs
are offered for selection. Once a specific program has
been selected, a binding for the node "Programs" has
been made. Once value bindings of specified variables
have been set based on the current state of the k-net, the

relevance predicate is EVALed. The resulting action de-
pends on the type of RELEVANCE condition being
processed. It is possible for an attribute to have more
than a single value set during the navigation process

277

(through the use of an OR operator) and thus, if the re-
sult of the EVALuation of the relevance predicate is
NIL, then, maintaining the original semantics of the
query, alternative values for the variables are tried and
the predicate is reEVALed. This process continues until
the predicate returns T or there are no more alternative
values for the variables.

Use of the EVALuable predicate introduces an element
that is less flexible than desired. Originally, relevance
was determined based strictly on the attribute/value
bindings established during the query process. An elab-
orate process that involved "covering" all facts associ-
ated with link relevance was used to determine if the

current navigation path supported acceptance of the link
as relevant to the current state. This technique worked
well in most cases since query formation is, basically,
the process of indicating desired values of certain
attributes describing information to be retrieved.
However, this method proved less robust than required
for more involved selection criteria such as conditions
under which links to the Paren nodes are valid. This

case involves more than simple attribute/value bindings
but rather, involves qualifications of a semantic nature.
Therefore, to provide the capability to handle these more
complex relationships, the EVALuable predicate expres-
sion was employed, making link relevance more diffi-
cult to set or change. Yet, with certain tools that we
will provide, the problem should be manageable.

This limitation most frequently arises when the user
attempts to define his own link. To do this users must
specify the conditions under which the link is relevant.
By providing the capability to allow the user to input
attribute/value bindings and associated conjunctions
through the use of a form system, most of the difficulty
can be eliminated. This utility will then convert user
input into an appropriate predicate to be included with
the link. However, for those instances when this proce-
dure will not suffice, the user will be able to directly
input the code satisfying the link's relevance require-
ments. This issue will be studied further, but in any
case, original source code will not have to be changed
nor will the system have to be rebuilt if RELEVANCE
conditions of a node or group of nodes need to be al-
tered. Hence, original requirements placed on the
knowledge structure are satisfied.

stored, and the secondary requirement 1 that all updates

be managed in a completely dynamic environment; that
is, the system must be able to accept continuous
updates at the same time multiple users are accessing
the system. As we have suggested earlier (Carnahan,
Corey, & Snow, 1989), several alternatives for

implementing automated updating are possible. 2
Following sections describe in detail the initial
approach we have taken.

6.1 AUTOMATED UPDATE REQUIRE-
MENTS

As we have already suggested, the requirement to auto-
matically update data, as well as information about the
data, will drive the design and implementation of ad-
vanced information management systems. The ap-
proach we have taken to the issue of automated

data/information updates is based on the premise that
any future system will have to consider not only which,
if any, existing data parameters to classify as metadata,
but also how those parameters may be translated into

more meaningful information related to other, existing
information. 3 Obviously, the second objective, to re-
late information, is of paramount importance if the user
is to have any success at all in accessing the large vol-
umes of available data. Figure 4 shows our functional
approach to IIMS implementation. Those components
we believe are best suited to the application of intelli-
gent systems are indicated. For purposes of the discus-
sion at hand, we will focus on the three components
comprising the Information Update System.

In general, we view the process of updating information
about data to be two-phased. The first phase includes
processing of the update message by the Knowledge
Encapsulation System (KES). Described in more detail
in section 6.2, KES functionality includes the capabil-
ity to infer metadata information from data parameters
provided by the update message, and then relate that in-
formation to already existing information resident in the
Knowledge Net. The Update Processor is not only re-
sponsible for providing the update message to the KES,

but, just as important, it is responsible for translating
the output of the KES into something the Knowledge
Net can understand Neither process, information
inference nor translation, is trivial. 4 As discussed

6.0 AUTOMATED KNOWLEDGE STRUC-
TURE UPDATES

This section focuses on the primary requirement that fu-
ture information management systems be able to incor-
porate new data and information in an automated fash-

ion. This requirement is particularly important when
one considers the projected rates at which data will be
captured, the projected volumes of data that will be

1Some may argue its primacy.

2The key criterion here is that the user's search efficiency
and effectiveness are minimally impacted by the the ability
of the update system to provide adequate metadata and to
establish appropriate links to already existing informa-
tion.

3While the issue of updating the database where the actual
data are stored must also be addressed, it is the not the focus
of our current work.

4It is important to realize, however, that we view the two

278

earlier, the Knowledge Net, or metadata base, is that
portion of the IIMS where metadata information is
stored. When users access the IIMS and browse or

query the system, they deal almost exclusively with the
Knowledge Net. The Knowledge Net includes

procedural information concerning navigation paths and

these new data sets will not add any new knowledge
concepts or relationships to the knowledge structure
since information known about the data set is an

abstraction of the real data. In most cases, this abstract
information will not actually include information about
data set range values and hence, each data set collected

I 1 DB3 DB4 DB5 DB6
DB DB2

Raw Input l

Data I Raw Data L__ /
-'-I Process°r I i /
' ' I__I DataSet I

_1 Update I

IApplicati°nl I----I ModuleI
I DataSet H I

L
Expert I _'_" = _ "=.....
Domain_°putlLl_!_i:ii:::,_,_;i_/I umate I

l=rle_p_l/tlonI-Processor I
I J

IIMS Information

Update System

Distributed Heterogeneous DBa

]
l

J
loa,a]Ordenng

Module

IIMS User Interface

I Key:

I Data Set
Analysis
Module

Query
Formulation/
Browse
Module

Intelligent Systems _ I
[::Mtd01e ::_: [I I

IIMS L_:_J I Module I

Figure 4 HMS Implementation Approach

associated dynamic relevance weights used to present
users with the most appropriate information given the
user's interests and present location within the

Knowledge Net. The Knowledge Net also contains
control knowledge necessary to form the appropriate
node and link updates once new information has been
inferred and then transferred by the Update Processor.

6.2 KNOWLEDGE INFERENCE FROM
METADATA

Update messages are generated whenever new data sets
are input and they serve to inform the system of the var-

ious known data set parameters. 5 The vast majority of

by an instrument during a certain mission phase will
only differ from a previous data set by temporal and
spatial values.

Automated processing of update messages proceeds in
two phases. The first phase (analysis phase), involves
extracting a set of knowledge concepts and relationships
represented by the data set parameters existing in the
update message. It should be noted that this process
involves more than a simple, direct extraction of
attribute/value pairs; it also involves reasoning about

the data parameters specified in the update message.
The second phase (distribution phase), takes this
reasoned set of knowledge concepts and relationships
and integrates it into the basic knowledge structure, as

processes as independent.

5As Figure 4 indicates, such data sets could be raw data that
has not been processed to any higher level than level 0 or

higher level processed data input from data users. In the
latter case, we would expect that some level of metadata
other than basic data set parameters would already exist.

279

well as into other knowledge used by the system. The
distribution phase is also responsible for storing data
reflecting knowledge structure changes so that user
views will be updated appropriately. These two phases
are examined in more detail in the following sections.

6.2.1 Inferring Metadata - The Analysis
Phase

Analysis of the update message, the first phase of au-
tomated update processing, must extract all relevant
concept and relationship information contained, either
explicitly or implicitly, in the update message. To do
this requires the ability to incorporate expert informa-
tion about relevant scientific domains into the system
for use in reasoning about appropriate metadata and
metadata relationships. 6 Information such as data set

interrelationships, the relationship of terminology used
by different domains, and information concerning the
potential relevancy of new concepts and relationships
(including the view(s) under which the relationship is
valid) must be encapsulated in a form that can be ap-
plied to the update message and that can be altered when
necessary. An expert system 7 is the most likely choice
for this type of knowledge representation as long as the
expert system development environment allows for easy
modification of the knowledge it contains and can be
invoked from a program.

The process of updating the expert system does not have
the same stringent restrictions as those placed on
updating the knowledge structure since the expert
system will only be used to process update messages.
Accessing of the knowledge structure will not be im-
pacted if the knowledge encapsulation process needs to
be shut down for a period of time to effect modifications
to the expert system. The real problem then becomes
the ease with which the expert system can be updated
and how such updates are distributed. 8

It is important to note that the set of knowledge con-
cepts and relationships generated by this phase is inde-
pendent of the knowledge representation scheme used in
the actual knowledge structure; if the knowledge struc-
ture representation system changes, the module perform-
ing the analysis phase will not have to be altered.
Additionally, the translation of information generated
during the analysis phase to a form that can be input to

6Obviously, selection of what scientific domains are rele-
vant is somewhat subjective and influenced largely by user
interest.

7Or more globally, a reasoning system.

8One could speculate wildly here concerning the potential
applicability of automated knowledge system updating or
learning systems. At this time, we believe such updates are
likely to be generated manually, at least initially.

the knowledge structure is totally dependent on the
knowledge structure implementation. An example of
the types of information we expect to be provided from
the KES is given in section 6.2.3.

6.2.2 Reasoning and Knowledge Structure
Modification The Distribution Phase

The distribution phase, the second phase of automated
update processing, uses the set of knowledge concepts

and relationships generated by the analysis phase to
make appropriate modifications in overall system
knowledge. This process involves updating (1) the
knowledge structure accessed by users, (2) system and
user views used in navigation, and (3) other knowledge

used by the system. 9

Five types of knowledge structure updates can be gener-
ated from modifications to the expert system or from
the analysis phase. They include:

1. Adding new relevance conditions to already
existing relationships;

2. Adding new relationships;

3. Adding new knowledge concepts;

4. Deleting existing relationships;

5. Deleting existing knowledge concepts.

The first three update types can be generated from either
the analysis phase or by a modification of the expert
system; the last two can only be generated from a modi-
fication to the expert system. As stated above, these
updates can affect three knowledge areas in the system,
the base navigation knowledge structure, the system and
user views, and other knowledge structures. The first
two will be more fully developed below while the third
area has yet to be defined in the current system.

Modification of the base knowledge structure is straight-
forward and is handled no differently than the normal
process of creating knowledge concepts and relation-
ships handled by the knowledge representation scheme.

The set of knowledge concepts, appropriate relationship
information, and the conditions under which both con-
cepts and relationships are relevant ,are generated during
the analysis phase. All that must be done is translate

9Other knowledge might include that used by a learning
system to interpret user actions in terms of goals. We can
envision, for example, a parallel system that monitors user
activity to determine abstract types of information the user
may be interested in. Such information could then be in-
corporated into the user's profile and views to make future
sessions more efficient.

280

this information into the appropriate requests to the
knowledge system. Knowledge structure modification
requests take the same form as those initially used to
create the original knowledge structure; indeed, the same
methodology to create new nodes and links is used.
Since an initial requirement of the knowledge system
was that it must have the ability to be dynamically
updated, execution of knowledge structure modification
requests can be accomplished with no operations
interruption to current users of the system.

The more complex task resulting from updates is the
modification of user views. User views are the

overlying representation of a set of additional or differ-
ent knowledge concepts and relationships than those de-
fined by the base knowledge structure. Therefore, user
views reflect knowledge concept and relationship change
sets applied to the base knowledge structure, creating
access environments desired by individual users. When
a modification occurs to the base knowledge structure,
the change may be outside the domain or set of domains
represented by any user view. 1° In such a case, no
changes in user views need be reflected. However, it is
highly possible that a base knowledge structure
modification would affect the knowledge concepts and
relationships within any particular user view. In this
case, several situations may be encountered. For
example, users may not agree with the change or the
change request represents an inadequate or inaccurate re-
lationship within a user's domain of interest and hence,

it would not be appropriate to include the change in that
user's view. However, in most cases, the user will
likely want changes to the base knowledge structure re-
flected in his or her view so that the most recent infor-

mation is available. If such is the case, nothing special
needs to occur. In the first situation, several modifica-
tions would be required.

In addition to user view updates, it must be remembered
that existence of a significant potential for a large num-
ber of user defined views could result in an inordinate

amount of time being required to update all user views
concurrently. Obviously, such a condition is undesir-
able. The following methodology is used to address
this problem. When an update request is received by the
base knowledge structure, the update is logged in a
database keyed, for example, on time of request initia-
tion and possibly the potential user view(s) involved.
As a result, when a user selects a view, the update
database is checked to determine which updates have
been executed since the last time the view was instanti-

ated and which of those are applicable within the scope
of the view. (Remember, as suggested earlier, most up-
date messages will not involve actual changes to

10Such modifications might occur, for example, when new
missions are launched and the base knowledge structure is
modified to reflect the new information.

knowledge concepts or relationships defined in the base
knowledge structure and hence, the number of updates
potentially relevant to the user should be small.
Changes reflecting temporal and spatial differences in
data sets will not invoke an update resulting in a poten-
tial user view modification.)

If modifications affecting the user's view have been
logged, the user is notified that potentially relevant
changes have occurred. The user then has the option of
addressing the changes at the current time or processing
them at a later time. When the user decides to address

the changes, a list of request changes are presented and
the user can select those considered relevant within the

current view. When the selection has been made, ap-
propriate changes will be made to the view. If the
change is accepted, nothing will have to be done to the
user's view since the change has already occurred in the
base knowledge structure. However, for those changes
that are rejected, appropriate modifications need to be
made in the user's view to undo modifications already
made to the base knowledge structure. If the user
chooses to postpone addressing the changes, the user's
view will have to be modified to undo the changes
which were made to the base knowledge structure.

Since most users will likely want to accept changes au-
tomatically, a facility is provided to allow the user to
select a mode of system operation in which changes are
immediately instantiated within the appropriate user
views. Or, if desired, the user can be prompted for each
change before incorporation.

6.2.3 Automated Update Message Processing
An Example

To help clarify the process of automated update message

processing and potential difficulties that may be en-
countered when implementing such a capability, several

example update messages are provided. 11 Additionally,
further clarification of reasoning required for automated
knowledge structure updating is given in terms of po-
tential analysis phase output.

The first example update message is taken from an ama-
teur observation of a comet under the jurisdiction of the
International Halley Watch organization. Most of the

11Example update messages represent information
extracted from the headers of various data files included in
the NASA, Space Science Sampler, Volume 2: PDS
Interactive Data Interchange CD-ROM. These data files
represent various data and header formats in common usage
in scientific domains. We are assuming that types of
information contained in the headers represent the types of
information to be included in update messages for
processed data sets.

281

attribute names are extracted directly from the file.

Update Message 0001

Object=P/CROMMELIN
File-Num--800200

Date-Obs=29/12/83

Time-Obs=.7600

Date-Rel=13/12/85

Discipln=Amataur

Long-Obs=999/99/99
Lat-Obs=+99/99/99

System=85000000

Spec-Evt=F

Dat-Type=Visual Mag. Est
Instrume=Newtonian

Aperture=.26
Fratio=6.

Power=63

Origin=Jet Propulsion Lab
Comment=Observing Site Unknown
Associated-File=AMATE001 .FIT

Origin=JPL

To correctly process this update message, processing
occurring during the analysis phase must be able to de-
termine what type of observation was made and the
identity of the observation target. The first piece of in-
formation is supplied by the attribute Object which
identifies the observation target as P/CROMMELIN.
Obviously, to correctly incorporate the object into the
knowledge structure, the type of object which
P/CROMMELIN represents must be determined. For
example, it must first be determined that
P/CROMMELIN is a comet, and that as a comet, it has
certain other attributes (e.g., orbit, size, next predicted
encounter, previous encounters, components).

The observation type is provided by the attribute Dat-
Type and is identified as Visual Mag. Est. For the
uninitiated user to make sense of this, the abbreviation

must be expanded and its meaning understood. For ex-
ample, because the observation involves measuring
magnitude, the system should be able to reason what
types of instruments might be used to make this type of
observation. Such a capability aids additional process-
ing of the message and aids the appropriate placement of
the observation within the knowledge structure.

The lnstrume attribute indicates that the measuring in-
strument is a Newtonian. The system will have to rea-
son that a Newtonian instrument, which can be used to

perform magnitude measurements, is a telescope, and
that, as a telescope, it has certain characteristics.
Within this context, processing of the update message
can continue. Therefore, the attribute Power, when

encountered, is now interpreted within the appropriate
domain context (i.e., telescope), suggesting that Power
indicates magnification used in the observation instead
of an electrical power setting or other possible
interpretation. Another example of inferring missing
information from context can be seen when examining
the attribute File-Num. This attribute provides a unique
identifier but only within the organization responsible
for the data. Meta-information inferred from File-Num
must be determined from domain information contained

within the KES and using various clues resident in the

update message. From these clues it can be determined
that File-Num refers to files maintained by the
International Halley Watch.

However, this type of reasoning is not the only type re-
quired during the analysis phase. Different data formats
use different attribute names to represent the same in-
formation or the same name to denote different informa-

tion. Additionally, attribute formats indicating spatial
and temporal information do vary, and the system must
be able to understand how to interpret each type of
information. This situation can be illustrated when

comparing the update message 0001 with update
message 0002.

Update Message 0002

Spacecraft_N ame=Voyager_l
Mission_Phase=Jupiter_Encounter

Target_Body=Jupiter

Frame_ld=1309J1-059

Spacec raft_Clock_co unt= 14641.14

Spacecraft Event_Time=1979/01/06-
05:32:34

Eart h_Received_Time= 1 979/01/07-00:20:51

Instrument_Name=Narrow_Angle_Camera

Instrument_Scan_Rate=1:1

Instrument Shutter_Mode=NAONLY

Instrument_GainState=Low

Instrument_Edit_Mode= 11

Instrument_Filter_Name=Orange
Instru ment_Filter_N umber=3

Instrument_Exposu re_Du ration=0.96000
Associated- File=C 1464114. IMG

Notice the different names and formats for observation

time, instrument used, and spatial specifications. In ad-
dition, notice how the attribute Frame-ld in update mes-
sage 0003 uses a different format than update message
0002.

Update Message 0003

Spacecraft_Name=Voyager_l

Mission_Phase=Jupiter_Encounter

282

Target_Name=Jupiter_Magnetosphere
Frame Id=16269.49

Frame_Period=48 <seconds>

Spacecraft_Clock_cou nt= 16269.49

Spacecraft_Event_Time= 1979/060-12:24:36

Instrument_Name=Plasma_Wave_Spectrometer
Instrument_Mode=Waveform_Receiver

Instrument_Sampling_Rate=28800

Instrument_Lost Samples=128
Associated- File=C 1626949. IMG

It is possible that information used in the reasoning
process during the analysis phase is inadequate to under-
stand all pieces of the update message. When an update
message is received in which some attribute or attribute

value is unknown, further aid in interpreting the in-
formation will be required. In this case, the update
message would likely be placed in a temporary buffer
and a clarification request sent to the system operator.
The update message is processed when the system oper-
ator responds to the clarification request. The operator's
response might be as simple as identifying the un-
known attribute in terms of an ISA-relationship with a
known knowledge concept. For example, if reasoning
during the analysis phase could not identify
P/CROMMELIN, the system operator could inform the
system that it is a comet and the update message could
then be processed. 12 However, it is possible that a

more complex alteration to the knowledge used by the
reasoning system is needed. As a result, the expert
system would have to be modified to reflect the new

knowledge concept and its relationships to existing
metainformation resulting in updates being processed as
describe earlier. 13

To better understand the nature of analysis phase pro-
cessing and its relationship to automated updating of the
knowledge structure, we have begun to closely examine
what possible structure output of the analysis phase
may take. For purposes of this discussion and to help
the conceptual framework of analysis phase processing,
initial results of our examination are presented here in
terms of one of the example update messages provided
earlier. Update message 0001 is reproduced below.

Update Message 0001

Object=P/CROMMELIN
File-Num=800200

Date-Obs=29/12/83

12Such a scenario assumes the system operator is either
knowledgeable concerning basic domain information or
has access to reference material describing such informa-
tion.

13This scenario might require contact with a domain expert
to help define appropriate domain knowledge.

Time-Obs=.7600

Date-Rel=13/12/85

Discipln=Amateur

Long-Obs=999/99/99
Lat-Obs=+99/99/99

System=85000000

Spec-Evt=F

Dat-Type=Visual Mag. Est
Instrume=Newtonian

Aperture=.26
Fratio=6.

Power=63

Origin=Jet Propulsion Lab

Comment=Observing Site Unknown
Associated-File=AMATE001 .FIT

Origin=JPL

The first step of the analysis process would examine the
Object attribute, the first attribute provided in the update
message, and would relate the attribute to the concept

target body. 14 Establishing this relationship deter-
mines where in the knowledge structure target body is
located. In this example, we assume that target body is
directly related to the concept Science Interests. 15

Knowing this information results in the generation of
the first segment of relevant concept/relationship infor-
mation. Part of this information is given below:

Concept 1: Science Interests

Concept 1 Type: Structure

Concept 2: Target Body

Concept 2 Type: Structure

Relationship: Structure

Relevance View: Cometary Studies

This information identifies applicable concepts, their
types, relationships existing among them, and associ-
ated relevance conditions. At this point in the process,
only the appropriate relevance view is known. After all
concept/relationship information is known, a compre-
hensive relevance condition would also be generated.

After the attribute has been processed, the attribute's
value is processed. The system would then reason
about P/CROMMELIN taking into account that it is a
type of target body. The fact that P/CROMMELIN is a

comet can then be determined. 16 Using the concept

14The concept target body represents one node in the ex-
isting knowledge structure. In reality, the system would at-
tempt to relate the attribute to as many concepts as possi-
ble.

15Keep in mind that the term 'concept' is used here to refer
to any node in the knowledge structure. The term
'relationship' refers to nodal links.
16The actual relationship would be ISA.

283

target body as a starting point, the concept comet can
then be located within the knowledge structure. In this
case, comet has a direct relationship with target body

and hence, the following concept/relationship
information is generated.

Concept 1: Target Body
Concept 1 Type: Structure

Concept 2: Comet

Concept 2 Type: Value

Relationship: Value
Relevance View: Cometary Studies

Note that the relationship is now of the type value since
comet is a valid value for the concept target body.

The next piece of information follows directly, linking
the concepts comet and P/CROMMELIN.

Concept 1: Comet

Concept 1 Type: Value
Concept 2: P/CROMMELIN

Concept 2 Type: Value

Relationship: Value

Relevance View: Cometary Studies

Given this new concept/relationship structure, a user
could indicate that the desired value for the concept tar-
get body could be either comet (all data sets pertaining
to any comet are selected) or P/CROMMELIN (only
those data sets dealing with this specific comet are se-
lected). The user is allowed to specify the more general
concept comet for the value of target body and then, if
desired, return at a later time and define the concept
more specifically by selecting a specific comet or group
of comets of interest.

As with the concept target body, most concepts can

only be assigned a single value. 17 However, there are
concepts for which multiple values are acceptable. One
of these concepts is Instrume. It is possible that some
data sets can be generated by a collection of instruments
working together. 18 Therefore, the concept Instrume
would have to represented with multiple value
capability in the output of the reasoning system.

In our example, when analysis processing arrives at the
concept Instrume, it must be reasoned that this concept
is the same as the concept instrument to be found in the
knowledge structure. Like target body, instrument is re-
lated to the concept Science Interests. The following
information would then be generated.

17Within an AND condition, alternative values can be se-
lected using an OR condition.
18A photometer attached to a telescope is one example.

Concept 1: Science Interests

Concept 1 Type: Structure

Concept 2: Instrument
Concept 2 Type: Multiple Value Structure

Relationship: Structure
Relevance View: Cometary Studies

As before, the value of the Instrume attribute is then
processed. The system determines that Newtonian is a
type of the concept telescope which is a type of instru-
ment. These concepts are located in the knowledge
structure and the following information is generated.

Concept 1: Instrument

Concept 1 Type: Multiple Value Structure

Concept 2: Telescope

Concept 2 Type: Value

Relationship: Value

Relevance View: Cometary Studies

Concept 1: Telescope

Concept 1 Type: Value

Concept 2: Telescope Type

Concept 2 Type: Structure

Relationship: Qualification

Relevance View: Cometary Studies

Concept 1: Telescope Type

Concept 1 Type: Structure

Concept 2: Newtonian
Concept 2 Type: Value

Relationship: Value

Relevance View: Cometary Studies

Finally, there are times when concept defining in-
formation will need to be generated. Using update mes-
sage 0001, one example is to define value units for the
attribute aperture. Aperture must be processed in the
context that it represents a qualification of the specified
instrument. The reasoning system indicates that aper-
ture specifies the aperture size of the instrument tele-
scope. In addition, the reasoning system determines
that defining information is required. As a result, the
following information would be generated.

Concept 1: Telescope
Concept 1 Type: Value

Concept 2: Telescope Aperture

Concept 2 Type: Structure

Relationship: Qualification

Relevance View: Cometary Studies

Concept 1: Telescope Aperture

Concept 1 Type: Structure

284

Concept 2:.26

Concept 2 Type: Value

Relationship: value
Relevance View: Cometary Studies

Concept 1: Telescope Aperture
Concept 1 Type: Structure

Concept 2: Telescope Aperture Information

Concept 2 Type: Information

Relationship: information
Information: The size in meters of the effective

aperture of the specified telescope.

When the user navigates to the value .26 for aperture,
an information concept is provided which defines the
value.

In the course of generating this type of output for each
update message, it becomes clear that many redundant
specifications exist. Such a situation does not pose a
problem since the knowledge structure checks specified
relationships and concepts, and if an exact match is
found, the concept or relationship will not be redefined.
It is important for two reasons that the complete set of
concepts and relationships included in the update
message be generated each time: the analysis phase
does not maintain information about which

relationships have already been defined, and users may
not have the specified relationship within their views.

When all concept/relationship information is generated,
the reasoning system then knows under what conditions
each link is relevant. In this case, the following infor-
mation has been understood:

Target Body - Comet or P/CROMMELIN

Instrument Type - Newtonian

Instrument Aperture - .26

This information would then have to be combined with

other information to form the appropriate relevance con-
dition for the link. As indicated earlier, a relevance
condition can be more than a simple specification of
attribute/value bindings. It can also contain complex

logic based on other factors (see section 5.5). 19

7.0 SUMMARY AND CONCLUSIONS

We have attempted in this paper to provided the underly-
ing framework for what we consider to be two of the
most crucial problems facing future, advanced informa-
tion management systems: the design and implementa-
tion of an efficient knowledge structure supporting so-
phisticated user information access and manipulation,

19Relevance condition specification is beyond the scope
of this paper.

and the incorporation of automated knowledge structure
update processing to provide an effective means for
accomplishing knowledge structure evolution. As a re-
suit, the underlying knowledge structure for an earlier
IIMS prototype has been extended and modified to han-
dle not only semantic but also syntactic information, a
capability made necessary by the requirement for the
IIMS to be updated automatically. Our approach to
knowledge structure development and modification has
resulted in a significantly more flexible and easily
modified knowledge structure that will be used in the
future to continue to examine issues related to au-

tomated data and metadata updates for very large
data/information systems.

REFERENCES

Carnahan, R.S., & Corey, S.M. (1989). Advanced in-
formation management and global decision making.
Proceedings of the Conference on Earth Observations
and Global Change Decision Making: A National
Partnership, in press.

Carnahan, R. S., Corey, S. M., & Snow, J. B. (1989).
A rapid prototyping/artificial intelligence approach to
space station-era information management and access.
Telematics and lnformatics, 6(3-4), 273-297.

285

