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ABSTRACT

Computer communication network

design is well-known as complex

and hard. For that reason, the

most effective methods used to

solve it are heuristic. In this

paper, we list weaknesses of

these techniques, and present a

new approach based on artificial

intelligence for solving this

problem. This approach is

particularly recommended for

large packet-switched

communication networks, in the

sense that it permits to ensure

high degree of reliability, and

offers a very flexible

environment dealing with many

relevant design parameters as

link cost, link capacity and

message delay.
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I. INTRODUCTION

A computer communication

network is generally modelled as

a valued graph whose nodes

represent computers and arcs

communication links [2, 3].

Before implementing protocols

allowing the operation of a

network, we must determine the
manner whose nodes are linked

between them and the capacity of

each link. Such a problem is

known in the literature as the

topological design of computer

communication networks [2, 8,

13].

This paper proposes a

knowledge-based system with

inductive learning for solving

this problem. It is organized as

follows : section 2 sets up

background for the topological

design problem and underlines

some weaknesses of conventional

methods; section 3 puts forward

the architecture and the running

of the knowledge-based system;
section 4 deals with the

knowledge organization within

the system; section 5

conceptualizes the inductive

learning module and states the

learning algorithm; section 6
summarizes some results and

makes concluding remarks.
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2. THE TOPOLOGICAL DESIGN PROBLEM

In this section, we first

present prerequisite definitions

and notations, a formulation of

the topological design problem,

and finally the conventional
methods used to solve it.

2.1 DEFINITIONS AND NOTATIONS

Let us consider a set of nodes

N and a set of edges A connecting
these nodes. Let n be the

cardinality of N and m the

cardinality of A. A "topology" is

an undirected graph G=(N,A) ,

where each edge represents a full

duplex link with a given

capacity, expressed in bits per

second (bps).

There are [n(n-1)/2] possible

links between all pairs of nodes.

This number is denoted by mma x.

So, the basic characteristics

of a topology are its topological

configuration materialized by A,

which can be represented by a

binary characteristic vector

t=(tk) , k=l,2,...,mmax, and its

capacity assignment . For

convenience, we shall use i to

denote the i-th node and k=(i,j)

the edge joining node i and node

j, with i,j = 1,2,...,n, i#j, and

k = I , 2, . . . ,mma x. Such a

numbering scheme can easily be

devised. Note that:

_ tk = m
k

It follows that various

topological configurations can be

obtained by varying the set of
links.

For a given topology, each

link k of the topological

configuration t=(tk) is assigned

a capacity Ck, such that tk=0

implies Ck=0. C=(Ck) denotes the
capacity vector associated with

the topology. Consequently, a

topology will denoted by (t,C).
Each link k of t is associated

with a cost D k which is a

function of its capacity Ck:

D k = dk(C k) ( I )

In reference to the running

network, all information or

message to be transmitted is

first broken in small parts

called "packets". Independently

passing from one node to

another, these packets are

reassembled at the destination:

this is the packet-switching

principle [11].

Let I/_ be the average packet

length expressed in bits/packet

and Yi5 the required traffic in

packe£{/second from source i to

destination j. The traffic

requirement rij , expressed in
bits/second, can be defined as

follows:

= Yij/_ (2)rij

Then the traffic matrix is

R=(rij) , i, j = 1,2,...,n, with
i#j.

In order to satisfy the

traffic requirements, it is

first necessary to choose a

routing strategy. The choice is

generally motivated by

computational considerations and

should make the link flow

computation relatively easy. If

we denote by fk(P,q j the flow in

bps on link k produced by

packets travelling from source p

to destination q, the total flow

fk in link k is given by:
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n n

fk = _' E fk (p,q) (3)

p=l q=1

(P#q)

Consequently, the overall network

flow can be represented by a flow

vector:

f = (fk) (4)

For a given topological

configuration, f is uniquely

determined by the routing

strategy. Note that Ck=0 implies

fk=0. Thus, tk=0 implies fk=0.

The routing problem concerns

the choice of the best path,

according to a given criterion,

for traffics from a source to a

destination, provided that there

exist multiple routes between all

pairs of nodes. Such a situation

materializes the concept of K-

connectivity often used as a

network reliability metric.

There are two types of

connectivity : the edge-

connectivity C e , and the node-

connectivity C n . The edge-

connectivity between two nodes i

and j can be defined as the

minimum number of edges whose

removal will disconnect these two

nodes. If we call edge-disjoint

paths the paths which have no

edges in common, then such an

edge-connectivity is equivalent

to the number of edge-disjoint

paths between the two considered

nodes. So, the edge-connectivity

of a network is the minimum of

the edge-connectivities amongst

all pairs of nodes, that is, the

number of edge-disjoint paths

connecting the most critically

connected pair of nodes.

Similarly, the node-

connectivity between two nodes i

and j is the minimum number of
nodes which must be removed from

the network to disconnect these

two nodes. If we take the

minimum node-connectivity over

all pairs of nodes, we obtain

the node-connectivity of the

network, C n.

If we denote by d the degree

of a network, that is, the

minimum degree of all nodes, it

can be shown that C n -< C e -< d.

So, for design purposes and for

a given degree of connectivity,

the node-connectivity C n is more

demending than the edge-

connectivity.

Packets take time for

travelling from source i to

destination j . The average

packet delay from i to j, is

denoted by Z_. The overall

average delay T-_an be generally

expressed as follows:

n n

T= ! Z E Yij Zij (5)

y i=I j=l

(i%j)

where y is the total traffic in

the network which can be

obtained by summing the Yij's-

Based on a set of simplifying

assumptions, a useful and easily

computable expression for the

overall average delay has been

derived [2] :

I _'-----fk- (6)
T-- Y ------- Ck - fk

k e A

So, the overall average delay T

appears as a function of link

capacities C k and link flows fk,
for all links included in the

topological configuration which

is considered.
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2.2 PROBLEM FORMULATION

The network topological design

problem can be formulated as

follows [2, 4, 7, 8]:

Given:

Switching node locations

Traffic requirements

R=(rij)
Capacity options and

associated costs for all

potential links

Maximum overall average

delay allowed Tma x

Min D = Z dk(C k) (7)
k

Over:

Topological configuration t

Capacity vector C

Flow vector f

Subject to:

f -< C (component wise)

t is a K-connected

topological configuration,
2 _< K _< n-1

T-- 1_____fk. -< Tma x (8)
g/___ Ck fk
keA

This problem is known to be

NP-hard [ 5, 6] . The first

difficulty arises from the

combinatorial character of link

selection which involves some

explosion risk.

Another major difficulty is

the nonlinearity of relevant

functions such as communication

link costs D, and the average

packet delay T. For that reason,

only local optima are guaranteed

by Kuhn-Tucker conditions [2].

Finally, link capacities are

only available in some discrete

values as 2400, 4800,9600,

19200, 50000 bps, etc. That

constitutes a nontrivial problem

which cannot be efficiently

solved by discrete programming

techniques, because of the size

of the problem [2].

2.3 CONVENTIONAL METHODS

Taking into account the

previous considerations, it is
not suitable to search for an

exact solution. Only approximate
methods are recommended for

finding realistic and suboptimal

solutions. In fact, the

combinatorial nature of this

problem suggests the use of

heuristics for attempting to

reduce the search space of

candidate topologies.

Most of conventional

procedures use heuristics, and

produce suboptimal solutions.

They essentially correspond to

search procedures which optimize

network structure by

sequentially changing small

parts of a larger network [2, 9,

10, 12, 14].

In the case of small size

networks (about 30 nodes), the

most popular solution methods

are Branch Exchange (BXC),

Concave Branch Elimination (CBE)

and Cut Saturation (CS) [2, 12].

Lavia and Manning [10] have

proposed perturbation techniques

under connectivity and diameter

constraint. Moreover, for large

computer networks (more than 100

nodes), Kleinrock and Kamoun [9]

have elaborated optimal

clustering structures for

hierarchical topological design,

while Chen et al. [I] proposed

an extended model and a solution

method for network topological
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design, taking into account the

selection of switching node

locations.

These methods present

major disadvantages:

two

- they cannot deal with high

degree of reliability

(connectivity greater than 2)

which is required by the

large computer networks;

- they require human

intervention for obtaining

alternate solutions, by minor

modifications on a given

solution.

3. A KNOWLEDGE-BASED APPROACH

This approach consists in

generating an initial topology

well characterized, on which some

perturbations are applied by an

knowledge-based system in order

to obtain a good suboptimal

solution, lower-cost topology

satisfying all constraints of the

specified problem [4, 7, 8]. An

inductive learning module is also

available for the evaluation of

rules already stored in the rule

base and the generation of new

rules from knowledge contained in

the system. In this section, we

explain the proposed approach and

present the architecture of the

system.

3.1 GENERAL ORGANIZATION

From data specified by a user,

a good starting topology is first

generated. Rules are applied on

this topology for providing

positive examples (good

topologies satisfying all

constraints, particularly the

delay constraint ) and negative

examples (good topologies

violating the delay constraint).

All positive examples determine

a set of feasible good

topologies, and a solution

corresponds to the least cost

topology of this set .

Furthermore, the generated

examples are submitted to an

inductive learning module, whose

the role is to improve the rules

for generating examples. More

precisely, this module deals
with:

- the detection and correction

of rule inconsistencies;

- the elimination of rule

redundancies;

- the addition of new

knowledge;

- the rule updates;

- etc..

The system is decomposed into

four major functional modules,

as follows:

- the initial topology

generator which produces a

starting topology satisfying

the K-connectivity

constraint;

- the example generator playing

the role of an rule-based

system or expert system, and

using heuristic perturbations

for generating positive and

negative examples from the

starting topology;

- the inductive learning module

which receives a set of

nondeterministic rules and a

collection of representative

examples, and improves the

rule base; and

- the user interface module

which permits interactions

between (expert and
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nonexpert) users and the

system, particularly in order

to specify data and

parameters characterizing the

network to design.

3.2 ARCHITECTURE OF THE SYSTEM

Figure I gives a detailed

representation of the problem-

solving system. In order to

understand it, we first present

some basic definitions, then a

summary of used notations and

finally the general algorithm.

3.2.1 Basic Definitions

The rules can be deterministic

or nondeterministic .

Deterministic rules generally

express the analytic properties

of generated initial topologies.

They serve to describe absolute

truth contexts, and are

consequently accompanied by

likelihood factors equal to one.

On the other hand, a rule is

nondeterministic when it refers

to an uncertainty situation,

expressed by a likelihood factor

less than one. These rules are

inspired either by conventional

heuristics or experimental

methods of machine learning from

examples . Obviously, the

likelihood factors are

nonnegative real numbers not

greater than one.

When a starting topology is

submitted to the example

generator, all applicable rules

are applied to it, in order to

generate new derived topologies,

called examples, which are stored

in the knowledge base. This is

called a "perturbation cycle".

For the first perturbation cycle,

the starting topology is

generated by the initial

topology generator and is

consequently called an "initial

topology". For the subsequent

perturbation cycles, the

starting topology is somehow

selected among these derived

exemples and is renamed a

"reference topology". So, for a

given design task, it can exist

many reference topologies, but

only one related initial

topology. Similarly, we can

define a "learning cycle" as the

process allowing to modify the

base of nondeterministic rules,

on user requests.

3.2.2 Summary of Notations

The meanings of notations

used in figure I are as follows:

F : an information vector

submitted by the user

interface module to the

initial topology generator;
it contains the

specifications which are

necessary to start the

system.

q : a question/answer vector

exchanged between the user

interface module and the

system; according to the

nature of the dialogue, the

example generator appears as

the unit which interprets,

formulates and fulfils user

requests.

X : an example base acting as

input to the inductive

learning module, which is

accumulated during the life

time of the system.

E : an example base accumulated

during the solution of the

current design problem.
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Example base
corresponding to

a perturbation
cycle

Initial
topology e_

generator

F

User
interface

module

Example )

generator CPH

R

e •

X

\

R °

|r_ I

compressed X or'X

X

Inductive
learning
module

R_

learning
cycle

Fig. 1 ° Detailed architecture of the system
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ei: an initial topology.

BR: a rule base allowing to

generate examples or facts

which constitute E.

M : an inference engine, allowing

to apply the rules in BR to

the examples in E, which are

considered as facts.

e+: a positive example provided

by the example generator.

e : a negative example provided

by the example generator.

e : the best feasible solution so

far obtained during one or

more perturbation cycles

already performed.

{e+}: a set of positive examples

accumulated.

{e-}: a set of negative examples
accumulated.

(e): the least cost example in E

given to the example

generator to start a new

perturbation cycle.

: a representative example

selected by the inductive

learning module.

CPH: a hypothesis preference

criterion, allowing to

discriminate plausible

assumptions in the learning

process.

R0: a base of initial rules,

including both deterministic

and nondeterministic rules.

0:ri a nondeterministic initial

rule.

0

{ri}: a subset of
nondeterministic initial

rules.

J%

R_d: a base of nondeterministic
initial rules.

ri: a nondeterministic rule

resulting from a learning

cycle.

{ri}: a subset of
nondeterministic rules

accumulated during a

learning cycle.

Rnd: a base of nondeterministic

rules resulting form a

learning cycle.

R: a new rule base, obtained by

an union of the subset R d of
deterministic rules and the

base Rnd of nondeterministic

rules resulting from a

learning cycle.

3.2.3 General Algorithm

The general algorithm is

defined by the following steps:

Step I : The user interface

module transmits to the

initial topology generator

the information vector F

specifying the context of

the design.

Step 2

generator produces a

starting example

initial topology e i
satisfying the

specification vector

The example base E is

empty.

: The initial topology

or

F °

Step 3 : The example generator

applies the rule base to

the starting topology to

generate positive examples

e + and negative examples

e- satisfying the

specification vector F.
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All generated examples are
included in E.

Step 4 : At the end of a

perturbation cycle, the

system proposes the best

feasible feasible solution

obtained, that is,
W

e = min {e + }

D

Step 5 : The user interface

module, via the vector q,

possibly asks for

explanations about the

proposed solution,

generation of a new

solution, learning new

rules, and so on.

Step 6 : If a new solution is

required, the example

generator applies again the

rule base to a new

reference topology or

example (e), which is the

least cost example in E,

that is, go back to step 3.

Step 7 : If a learning cycle is

required, the inductive

learning module receives

the example base X, the

hypothesis preference

criterion CPH and the

base of nondeterministic

R_d, induces newrules

nondeterministic rules

{ri}, and constructs a new

abstract and compressed

representation of X

called X.

Step 8 : At the end of a

learning cycle, the

example base X is updated

by the assignment

X := X U X, the base of

nondeterministic

rules R%d is then replaced

by the new base Rnd. The
result of that is a new

rule base defined by

the assignment

R := R d U Rnd.

Step 9 : The user interface

module, via the vector q,

possibly asks to display

the new induced rules, to

modify the rule base, to

submit a new vector q, to

stop the running of the

system.

Step 10 : Stop.

4. KNOWLEDGE ORGANIZATION

The example generator which

is represented in figure I acts

as a knowledge-based module. It

essentially consists of a rule

base and an inference engine. In

this section, we explain the

operating of the example

generator and deal with the rule

base organization.

4.1 THE EXAMPLE GENERATOR

When the initial topology

generator provides a particular

initial topology considered as a

starting topology (t o ,C O ) from

the problem specifications, the

example generator receives this

topology and applies its

knowledge base to transform
(t0,C 0 ) into (t I ci), i= 1,2,...

The initial topology is

characterized by the following

attributes: a number of nodes, a

number of links, a link flow

vector, a link capacity vector,

a link utilization vector, a

degree of connectivity, an

average delay , a total

communication design and other

secondary attributes mainly used

by the learning process. These
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are the features of the concept

of example. Moreover, an example

whose the average delay is

greater than the maximum allowed

delay is classified as a

rule R i generates an example e i
which is stored in the short-

term example base. When all the

rules were considered with

regard to that starting

applying link deletion rules.

They are based on the set of

propositions expressing the

analytical properties of initial

topologies. The following is an

example:

If I) the related initial

topology contains more
than 4 nodes

2) the related initial

topology has a degree of

connectivity equal to 2

Then at most (n- 3) links can be

deleted from the reference

topology to obtain a derived

topology.

5. Inductive Learninq

Inductive learning is

defined as the acquisition of

knowledge by means inductive
inferences which are effectuated

from facts provided by a teacher

or an environment (Mitchell,

Carbonell and Michalski 1986 ) .

The related module aims at

improving the rule base in order
to achieve more refined

inferences. In this section, we

first formulate our inductive

learning problem, then we present

an appropriate algorithm.

5.1 LEARNING CHARACTERIZATION

The implemented learning is

incremental, with partial-memory

of past examples [15]. It can be

formulated in the following

terms:

Given:

- a nondeterministic rule

base, Rnd
- an example base, E

- with each rule r i of Rnd
is associated a candidate

hypothesis space H

- an hypothesis preference

criterion CPH which permits

to select amongst a set of

plausible hypotheses.

Objective:

- Find - by generalization,

specialization or

reformulation- a new

nondeterministic rule base

Rnd such as the description

R = R d U Rnd consistently
covers the near total of

good examples stored in E.

5.2 Learninq Alqorithm

The proposed inductive

learning algorithm is defined by

the following steps:

0
Step 1 : Receive the set Rnd of

nondeterministic initial

rules and do Rnd := Rnd;

Step 2 : Receive from the

example base E an example

e, then build the subset

Rnd(e) of nondeterministic

rules which has generated

e, where e E E and

Rnd(e)C Rnd;

Step 3 : If e is a positive

example, then the

nondeterministic rules

Rnd(e) which have generated
it are checked:

update the likelihood

factors, if necessary;

make a list of

discriminating properties

of e which could imply the

generality of rules in the

subset Rnd(e);

generalize, if necessary,

the rules of Rnd taking
into account the related

hypothesis spaces; if

there is conflict in the



selection of hypotheses,
use the given hypothesis
preference criterion to
solve it;

Step 4 : If e is a negative

example, then at least one

of nondeterministic rules

which have generated it is

not confirmed:

update the likelihood

factors;

make a list of involved

discriminating properties

of e;

specialize or reformulate

the rules of Rnd(e) taking
into account the related

hypothesis spaces; if

there is conflict in the

selection of hypotheses,

use the given hypothesis

criterion to solve it;

Step 5 : If at least one example

of the rule base E is not

yet considered, then go to

step 2;

Step 6 : Stop.

6. Computational Experience and

Concluding Remarks

In order to evaluate the

efficiency of our method, now

implemented on a typical IBM PC

AT, we have considered a set of

fifty network problems, randomly

generated, which have been also

solved by the cut saturation

method . For a convenient

comparison with the cut

saturation method, our experience

is based on the following

choices :

- the number of nodes is always

kept equal to 25;

- traffic is constant between

each pair of nodes;

- the degree of connectivity is

always equal to 2;

- the maximum delay is

Tma x = 200 msec;
- the average size of data

packets is equal to 1000

bits/packet.

For a given problem, a

solution is characterized by a

topological configuration t, a

capacity vector C, a flow vector

f, an average delay T, a

transmission links cost D, and

CPU time. In 80 % of cases,

solution provided by our method

gives a lower cost than the cut

saturation solution .

Furthermore, in 90 % of cases,

the CPU time required to provide

a solution is lower in the case

of SIDROGT than cut saturation.

In this paper, we have

presented an artificial

intelligence approach for

solving the network design

problem. The heart of this

approach is constituted by an

expert module which receives an

starting topology and operates

on it local transformations by

means heuristic perturbations.

An inductive learning module is

used for improving the

efficiency of those

transformations.

Solution provided by such a

system is obviously suboptimal.

But, it is made up by an

computationally efficient and

flexible process which allows to

attempt a new solution by

initiating a new perturbation

cycle, or to improve the rule

base by initiating a new

learning cycle. Furthermore,

another advantage of that system

is the high degree of

connectivity which it permits.

The initial topology generator
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provides topologies which are I,

2,..., (n-l) connected (where n

denotes the number of nodes),

satisfying by the way the

reliability constraint. That is

truly innovative in comparison

with the other methods, which are

limited to the 2-connectivity and

generally start with an unrefined

starting topology. The degree of

connectivity is preserved by both

the knowledge-based module and

the inductive learning module.

So, it is not necessary to run a

time-consuming connectivity-

restoring algorithm. For those

reasons, such a system is

suitable for designing large

scale computer networks, where a

high level of reliability is

required.
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