ABSTRACT

Computer communication network design is well-known as complex and hard. For that reason, the most effective methods used to solve it are heuristic. In this paper, we list weaknesses of these techniques, and present a new approach based on artificial intelligence for solving this problem. This approach is particularly recommended for large packet-switched communication networks, in the sense that it permits to ensure high degree of reliability, and offers a very flexible environment dealing with many relevant design parameters as link cost, link capacity and message delay.

KEYWORDS: knowledge-based system, communication network design, inductive learning.

1. INTRODUCTION

A computer communication network is generally modelled as a valued graph whose nodes represent computers and arcs communication links [2, 3]. Before implementing protocols allowing the operation of a network, we must determine the manner whose nodes are linked between them and the capacity of each link. Such a problem is known in the literature as the topological design of computer communication networks [2, 8, 13].

This paper proposes a knowledge-based system with inductive learning for solving this problem. It is organized as follows: section 2 sets up background for the topological design problem and underlines some weaknesses of conventional methods; section 3 puts forward the architecture and the running of the knowledge-based system; section 4 deals with the knowledge organization within the system; section 5 conceptualizes the inductive learning module and states the learning algorithm; section 6 summarizes some results and makes concluding remarks.
2. THE TOPOLOGICAL DESIGN PROBLEM

In this section, we first present prerequisite definitions and notations, a formulation of the topological design problem, and finally the conventional methods used to solve it.

2.1 DEFINITIONS AND NOTATIONS

Let us consider a set of nodes \(N \) and a set of edges \(A \) connecting these nodes. Let \(n \) be the cardinality of \(N \) and \(m \) the cardinality of \(A \). A "topology" is an undirected graph \(G=(N,A) \), where each edge represents a full duplex link with a given capacity, expressed in bits per second (bps).

There are \(\frac{n(n-1)}{2} \) possible links between all pairs of nodes. This number is denoted by \(m_{\text{max}} \).

So, the basic characteristics of a topology are its topological configuration materialized by \(A \), which can be represented by a binary characteristic vector \(t=(t_k) \), \(k=1,2,\ldots,m_{\text{max}} \), and its capacity assignment. For convenience, we shall use \(i \) to denote the \(i \)-th node and \(k=(i,j) \) the edge joining node \(i \) and node \(j \), with \(i,j = 1,2,\ldots,n \), \(i\neq j \), and \(k = 1,2,\ldots,m_{\text{max}} \). Such a numbering scheme can easily be devised. Note that:

\[
\sum_{k} t_k = m .
\]

It follows that various topological configurations can be obtained by varying the set of links.

For a given topology, each link \(k \) of the topological configuration \(t=(t_k) \) is assigned a capacity \(C_k \), such that \(t_k=0 \) implies \(C_k=0 \). \(C=(C_k) \) denotes the capacity vector associated with the topology. Consequently, a topology will denoted by \((t,C) \). Each link \(k \) of \(t \) is associated with a cost \(D_k \) which is a function of its capacity \(C_k \):

\[
D_k = d_k(C_k) \quad (1)
\]

In reference to the running network, all information or message to be transmitted is first broken in small parts called "packets". Independently passing from one node to another, these packets are reassembled at the destination: this is the packet-switching principle [11].

Let \(1/\mu \) be the average packet length expressed in bits/packet and \(\gamma_{ij} \) the required traffic in packets/second from node \(i \) to node \(j \). The traffic requirement \(r_{ij} \), expressed in bits/second, can be defined as follows:

\[
r_{ij} = \frac{\gamma_{ij}}{\mu} \quad (2)
\]

Then the traffic matrix is \(R=(r_{ij}) \), \(i, j = 1,2,\ldots,n \), with \(i\neq j \).

In order to satisfy the traffic requirements, it is first necessary to choose a routing strategy. The choice is generally motivated by computational considerations and should make the link flow computation relatively easy. If we denote by \(f_k(p,q) \) the flow in bps on link \(k \) produced by packets travelling from source \(p \) to destination \(q \), the total flow \(f_k \) in link \(k \) is given by:
\[f_k = \sum_{p=1}^{n} \sum_{q=1}^{n} f_{k}^{(p,q)} \quad (3) \]

Consequently, the overall network flow can be represented by a flow vector:

\[f = (f_k) \quad (4) \]

For a given topological configuration, \(f \) is uniquely determined by the routing strategy. Note that \(C_k = 0 \) implies \(f_k = 0 \). Thus, \(t_k = 0 \) implies \(f_k = 0 \).

The routing problem concerns the choice of the best path, according to a given criterion, for traffics from a source to a destination, provided that there exist multiple routes between all pairs of nodes. Such a situation materializes the concept of K-connectivity often used as a network reliability metric.

There are two types of connectivity: the edge-connectivity \(C_e \), and the node-connectivity \(C_n \). The edge-connectivity between two nodes \(i \) and \(j \) can be defined as the minimum number of edges whose removal will disconnect these two nodes. If we call edge-disjoint paths the paths which have no edges in common, then such an edge-connectivity is equivalent to the number of edge-disjoint paths between the two considered nodes. So, the edge-connectivity of a network is the minimum of the edge-connectivities amongst all pairs of nodes, that is, the number of edge-disjoint paths connecting the most critically connected pair of nodes.

Similarly, the node-connectivity between two nodes \(i \) and \(j \) is the minimum number of nodes which must be removed from the network to disconnect these two nodes. If we take the minimum node-connectivity over all pairs of nodes, we obtain the node-connectivity of the network, \(C_n \).

If we denote by \(d \) the degree of a network, that is, the minimum degree of all nodes, it can be shown that \(C_n \leq C_e \leq d \). So, for design purposes and for a given degree of connectivity, the node-connectivity \(C_n \) is more demanding than the edge-connectivity.

Packets take time for travelling from source \(i \) to destination \(j \). The average packet delay from \(i \) to \(j \), is denoted by \(Z_{ij} \). The overall average delay \(T \) can be generally expressed as follows:

\[T = \frac{1}{Y} \sum_{i=1}^{n} \sum_{j=1}^{n} Y_{ij} Z_{ij} \quad (5) \]

where \(Y \) is the total traffic in the network which can be obtained by summing the \(Y_{ij} \)'s.

Based on a set of simplifying assumptions, a useful and easily computable expression for the overall average delay has been derived [2]:

\[T = \frac{1}{Y} \sum_{k \in A} \frac{f_k}{C_k - f_k} \quad (6) \]

So, the overall average delay \(T \) appears as a function of link capacities \(C_k \) and link flows \(f_k \), for all links included in the topological configuration which is considered.
2.2 PROBLEM FORMULATION

The network topological design problem can be formulated as follows [2, 4, 7, 8]:

Given:
- Switching node locations
- Traffic requirements \(R = (r_{ij}) \)
- Capacity options and associated costs for all potential links
- Maximum overall average delay allowed \(T_{\text{max}} \)

\[
\text{Min } D = \sum_{k} d_k(C_k) \quad (7)
\]

Over:
- Topological configuration \(t \)
- Capacity vector \(C \)
- Flow vector \(f \)

Subject to:
- \(f \leq C \) (component wise)
- \(t \) is a \(K \)-connected topological configuration, \(2 \leq K \leq n-1 \)
- \(T = \frac{1}{\sum_{k \in A} C_k} \sum_{k \in A} f_k \leq T_{\text{max}} \quad (8) \)

This problem is known to be \(\text{NP}\)-hard [5, 6]. The first difficulty arises from the combinatorial character of link selection which involves some explosion risk.

Another major difficulty is the nonlinearity of relevant functions such as communication link costs \(D \), and the average packet delay \(T \). For that reason, only local optima are guaranteed by Kuhn-Tucker conditions [2].

Finally, link capacities are only available in some discrete values as 2400, 4800, 9600, 19200, 50000 bps, etc. That constitutes a nontrivial problem which cannot be efficiently solved by discrete programming techniques, because of the size of the problem [2].

2.3 CONVENTIONAL METHODS

Taking into account the previous considerations, it is not suitable to search for an exact solution. Only approximate methods are recommended for finding realistic and suboptimal solutions. In fact, the combinatorial nature of this problem suggests the use of heuristics for attempting to reduce the search space of candidate topologies.

Most of conventional procedures use heuristics, and produce suboptimal solutions. They essentially correspond to search procedures which optimize network structure by sequentially changing small parts of a larger network [2, 9, 10, 12, 14].

In the case of small size networks (about 30 nodes), the most popular solution methods are Branch Exchange (BXC), Concave Branch Elimination (CBE) and Cut Saturation (CS) [2, 12]. Lavia and Manning [10] have proposed perturbation techniques under connectivity and diameter constraint. Moreover, for large computer networks (more than 100 nodes), Kleinrock and Kamoun [9] have elaborated optimal clustering structures for hierarchical topological design, while Chen et al. [1] proposed an extended model and a solution method for network topological
design, taking into account the selection of switching node locations.

These methods present two major disadvantages:

- they cannot deal with high degree of reliability (connectivity greater than 2) which is required by the large computer networks;

- they require human intervention for obtaining alternate solutions, by minor modifications on a given solution.

3. A KNOWLEDGE-BASED APPROACH

This approach consists in generating an initial topology well characterized, on which some perturbations are applied by an knowledge-based system in order to obtain a good suboptimal solution, lower-cost topology satisfying all constraints of the specified problem [4, 7, 8]. An inductive learning module is also available for the evaluation of rules already stored in the rule base and the generation of new rules from knowledge contained in the system. In this section, we explain the proposed approach and present the architecture of the system.

3.1 GENERAL ORGANIZATION

From data specified by a user, a good starting topology is first generated. Rules are applied on this topology for providing positive examples (good topologies violating the delay constraint). All positive examples determine a set of feasible good topologies, and a solution corresponds to the least cost topology of this set. Furthermore, the generated examples are submitted to an inductive learning module, whose the role is to improve the rules for generating examples. More precisely, this module deals with:

- the detection and correction of rule inconsistencies;
- the elimination of rule redundancies;
- the addition of new knowledge;
- the rule updates;
- etc..

The system is decomposed into four major functional modules, as follows:

- the initial topology generator which produces a starting topology satisfying the K-connectivity constraint;

- the example generator playing the role of an rule-based system or expert system, and using heuristic perturbations for generating positive and negative examples from the starting topology;

- the inductive learning module which receives a set of nondeterministic rules and a collection of representative examples, and improves the rule base; and

- the user interface module which permits interactions between (expert and
nonexpert) users and the system, particularly in order to specify data and parameters characterizing the network to design.

3.2 ARCHITECTURE OF THE SYSTEM

Figure 1 gives a detailed representation of the problem-solving system. In order to understand it, we first present some basic definitions, then a summary of used notations and finally the general algorithm.

3.2.1 Basic Definitions

The rules can be deterministic or nondeterministic. Deterministic rules generally express the analytic properties of generated initial topologies. They serve to describe absolute truth contexts, and are consequently accompanied by likelihood factors equal to one. On the other hand, a rule is nondeterministic when it refers to an uncertainty situation, expressed by a likelihood factor less than one. These rules are inspired either by conventional heuristics or experimental methods of machine learning from examples. Obviously, the likelihood factors are nonnegative real numbers not greater than one.

When a starting topology is submitted to the example generator, all applicable rules are applied to it, in order to generate new derived topologies, called examples, which are stored in the knowledge base. This is called a "perturbation cycle". For the first perturbation cycle, the starting topology is generated by the initial topology generator and is consequently called an "initial topology". For the subsequent perturbation cycles, the starting topology is somehow selected among these derived examples and is renamed a "reference topology". So, for a given design task, it can exist many reference topologies, but only one related initial topology. Similarly, we can define a "learning cycle" as the process allowing to modify the base of nondeterministic rules, on user requests.

3.2.2 Summary of Notations

The meanings of notations used in figure 1 are as follows:

F : an information vector submitted by the user interface module to the initial topology generator; it contains the specifications which are necessary to start the system.

q : a question/answer vector exchanged between the user interface module and the system; according to the nature of the dialogue, the example generator appears as the unit which interprets, formulates and fulfills user requests.

X : an example base acting as input to the inductive learning module, which is accumulated during the life time of the system.

E : an example base accumulated during the solution of the current design problem.
Example base corresponding to a perturbation cycle

Initial topology generator

Example generator

Inductive learning module

User interface module

Learning cycle

Compressed X or \bar{X}

Inductive learning cycle

Fig. 1 - Detailed architecture of the system
e_i: an initial topology.

BR: a rule base allowing to generate examples or facts which constitute E.

M : an inference engine, allowing to apply the rules in BR to the examples in E, which are considered as facts.

e^+: a positive example provided by the example generator.

e^-: a negative example provided by the example generator.

e^* : the best feasible solution so far obtained during one or more perturbation cycles already performed.

{e^+}: a set of positive examples accumulated.

{e^-}: a set of negative examples accumulated.

(e): the least cost example in E given to the example generator to start a new perturbation cycle.

e: a representative example selected by the inductive learning module.

CPH: a hypothesis preference criterion, allowing to discriminate plausible assumptions in the learning process.

R^0: a base of initial rules, including both deterministic and nondeterministic rules.

r_i^0 : a nondeterministic initial rule.

{r_i^0} : a subset of nondeterministic initial rules.

R^0_{nd}: a base of nondeterministic initial rules.

r_i: a nondeterministic rule resulting from a learning cycle.

{r_i} : a subset of nondeterministic rules accumulated during a learning cycle.

R^0_{nd}: a base of nondeterministic rules resulting from a learning cycle.

R: a new rule base, obtained by an union of the subset R^0_{nd} of deterministic rules and the base R^0_{nd} of nondeterministic rules resulting from a learning cycle.

3.2.3 General Algorithm

The general algorithm is defined by the following steps:

Step 1 : The user interface module transmits to the initial topology generator the information vector F specifying the context of the design.

Step 2 : The initial topology generator produces a starting example or initial topology e_i satisfying the specification vector F. The example base E is empty.

Step 3 : The example generator applies the rule base to the starting topology to generate positive examples e^+ and negative examples e^- satisfying the specification vector F.
All generated examples are included in E.

Step 4: At the end of a perturbation cycle, the system proposes the best feasible solution obtained, that is,

\[e^* = \min \{ e^+ \} \]

Step 5: The user interface module, via the vector \(q \), possibly asks for explanations about the proposed solution, generation of a new solution, learning new rules, and so on.

Step 6: If a new solution is required, the example generator applies again the rule base to a new reference topology or example \(e \), which is the least cost example in \(E \), that is, go back to step 3.

Step 7: If a learning cycle is required, the inductive learning module receives the example base \(X \), the hypothesis preference criterion \(CPH \) and the base of nondeterministic rules \(R_{nd} \), induces new nondeterministic rules \(\{ r_i \} \), and constructs a new abstract and compressed representation of \(X \) called \(\overline{X} \).

Step 8: At the end of a learning cycle, the example base \(X \) is updated by the assignment \(X := X \cup X \), the base of nondeterministic rules \(R_{nd} \) is then replaced by the new base \(R_{nd} \). The result of that is a new rule base defined by the assignment

\[R := R_d \cup R_{nd} \]

Step 9: The user interface module, via the vector \(q \), possibly asks to display the new induced rules, to modify the rule base, to submit a new vector \(q \), to stop the running of the system.

Step 10: Stop.

4. KNOWLEDGE ORGANIZATION

The example generator which is represented in figure 1 acts as a knowledge-based module. It essentially consists of a rule base and an inference engine. In this section, we explain the operating of the example generator and deal with the rule base organization.

4.1 THE EXAMPLE GENERATOR

When the initial topology generator provides a particular initial topology considered as a starting topology \((t_0, C_0) \) from the problem specifications, the example generator receives this topology and applies its knowledge base to transform \((t_0, C_0) \) into \((t_i, C_i) \), \(i = 1, 2, \ldots \).

The initial topology is characterized by the following attributes: a number of nodes, a number of links, a link flow vector, a link capacity vector, a link utilization vector, a degree of connectivity, an average delay, a total communication design and other secondary attributes mainly used by the learning process. These
are the features of the concept of example. Moreover, an example whose average delay is greater than the maximum allowed delay is classified as a rule \(R_i \) generates an example \(e_i \) which is stored in the short-term example base. When all the rules were considered with regard to that starting applying link deletion rules. They are based on the set of propositions expressing the analytical properties of initial topologies. The following is an example:

If 1) the related initial topology contains more than 4 nodes
2) the related initial topology has a degree of connectivity equal to 2
Then at most \((n-3)\) links can be deleted from the reference topology to obtain a derived topology.

5. Inductive Learning

Inductive learning is defined as the acquisition of knowledge by means inductive inferences which are effectuated from facts provided by a teacher or an environment (Mitchell, Carbonell and Michalski 1986). The related module aims at improving the rule base in order to achieve more refined inferences. In this section, we first formulate our inductive learning problem, then we present an appropriate algorithm.

5.1 LEARNING CHARACTERIZATION

The implemented learning is incremental, with partial-memory of past examples [15]. It can be formulated in the following terms:

Given:
- a nondeterministic rule base, \(R_{nd} \)
- an example base, \(E \)
- with each rule \(r_i \) of \(R_{nd} \) is associated a hypothesis space \(H \)

hypothesis preference criterion \(CPH \) which permits to select amongst a set of plausible hypotheses.

Objective:
- Find - by generalization, specialization or reformulation- a new nondeterministic rule base \(R_{nd} \) such as the description \(R = R_d U R_{nd} \) consistently covers the near total of good examples stored in \(E \).

5.2 Learning Algorithm

The proposed inductive learning algorithm is defined by the following steps:

Step 1: Receive the set \(R_{nd} \) of nondeterministic initial rules and do \(R_{nd} := R_{nd} \);

Step 2: Receive from the example base \(E \) an example \(e \), then build the subset \(R_{nd}(e) \) of nondeterministic rules which has generated \(e \), where \(e \in E \) and \(R_{nd}(e) \subseteq R_{nd} \);

Step 3: If \(e \) is a positive example, then the nondeterministic rules \(R_{nd}(e) \) which have generated it are checked:
- update the likelihood factors, if necessary;
- make a list of discriminating properties of \(e \) which could imply the generality of rules in the subset \(R_{nd}(e) \);
- generalize, if necessary, the rules of \(R_{nd} \) taking into account the related hypothesis spaces; if there is conflict in the
selection of hypotheses, use the given hypothesis preference criterion to solve it;

Step 4 : If e is a negative example, then at least one of nondeterministic rules which have generated it is not confirmed:
- update the likelihood factors;
- make a list of involved discriminating properties of e;
- specialize or reformulate the rules of RND(e) taking into account the related hypothesis spaces; if there is conflict in the selection of hypotheses, use the given hypothesis criterion to solve it;

Step 5 : If at least one example of the rule base E is not yet considered, then go to step 2;

Step 6 : Stop.

6. Computational Experience and Concluding Remarks

In order to evaluate the efficiency of our method, now implemented on a typical IBM PC AT, we have considered a set of fifty network problems, randomly generated, which have been also solved by the cut saturation method. For a convenient comparison with the cut saturation method, our experience is based on the following choices:

- the degree of connectivity is always equal to 2;
- the maximum delay is \(T_{max} = 200 \) msec;
- the average size of data packets is equal to 1000 bits/packet.

For a given problem, a solution is characterized by a topological configuration \(t \), a capacity vector \(C \), a flow vector \(f \), an average delay \(T \), a transmission links cost \(D \), and CPU time. In 80 % of cases, solution provided by our method gives a lower cost than the cut saturation solution. Furthermore, in 90 % of cases, the CPU time required to provide a solution is lower in the case of SIDROGT than cut saturation.

In this paper, we have presented an artificial intelligence approach for solving the network design problem. The heart of this approach is constituted by an expert module which receives an starting topology and operates on it local transformations by means heuristic perturbations. An inductive learning module is used for improving the efficiency of those transformations.

Solution provided by such a system is obviously suboptimal. But, it is made up by an computationally efficient and flexible process which allows to attempt a new solution by initiating a new perturbation cycle, or to improve the rule base by initiating a new learning cycle. Furthermore, another advantage of that system is the high degree of connectivity which it permits. The initial topology generator
provides topologies which are 1, 2,..., (n-1) connected (where n denotes the number of nodes), satisfying by the way the reliability constraint. That is truly innovative in comparison with the other methods, which are limited to the 2-connectivity and generally start with an unrefined starting topology. The degree of connectivity is preserved by both the knowledge-based module and the inductive learning module. So, it is not necessary to run a time-consuming connectivity-restoring algorithm. For those reasons, such a system is suitable for designing large scale computer networks, where a high level of reliability is required.

References

