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VIDEO DISPLAYS

Recent development in video technology, such as the liquid crystal displays and shutters,

have made it feasible to incorporate stereoscopic depth into the three-dimensional representations

on two-dimensional displays. However, depth has already been vividly portrayed in video dis-

plays without stereopsis using the classical artists' depth cues described by Helmholtz (1866) and

the dynamic depth cues described in detail by Ittleson (1952). Successful static depth cues include

overlap, size, linear perspective, texture gradients, and shading. Effective dynamic cues include
looming (Regan and Beverly, 1979) and motion parallax (Rogers and Graham, 1982).

Stereoscopic depth is superior to the monocular distance cues under certain circumstances. It

is most useful at portraying depth intervals as small as 5-10 arc seconds. For this reason it is

extremely useful in user-video interactions such as in telepresence. Objects can be manipulated in

3-D space, for example, while a person who controls the operations views a virtual image of the

manipulated object on a remote 2-D video display. Stereopsis also provides structure and form
information in camouflaged surfaces such as tree foliage. Motion parallax also reveals form; how-

ever, without other monocular cues such as overlap, motion parallax can yield an ambiguous per-
ception. For example, a turning sphere, portrayed as solid by parallax, can appear to rotate either

leftward or rightward. However, only one direction of rotation is perceived when stereo-depth is

included, ff the scene is static, then stereopsis is the principal cue for revealing the camouflaged
surface structure. Finally, dynamic stereopsis provides information about the direction of motion

in depth (Regan and Beverly, 1979). When optical flow patterns seen by the two eyes move in

phase, field motion is perceived in the fronto-parallel plane. When optical flow is in antiphase

(180 °) motion is seen in the saggital plane. Binocular phase disparity of optical flow as small as 1°

can be discriminated as changes in visual direction of motion in a 3-D space (Beverly and Regan,

1975). This would be a useful addition to the visual stimuli in flight simulators.

Several spatial constraints need to be considered for the optimal stimulation of stereoscopic

depth. The stimulus for stereopsis is illustrated in figure 1. Each peg subtends a visual angle at
the entrance pupils of the eyes, and this angle is referred to as binocular parallax. The difference in

this angle and the angle of convergence forms an absolute disparity. In the absence of monocular

depth cues, perceived distance of an isolated target, subtending an absolute disparity is biased

toward 1.5 meters from the physical target distance. Gogle and Teitz (1973) referred to this as

equidistance tendency. If the target moves abruptly from one distance to another, convergence

responses signal the change of depth (Foley and Richards, 1972); however, smooth continuous

changes in binocular parallax, tracked by vergence eye movements do not cause changes in per-
ceived distance (Erkelens and Collewijn, 1985; Guttmann and Spatz, 1985). Once more than one

disparate feature is presented in the field, differences in depth (stereopsis), stimulated by retinal

image disparity become readily apparent. Stereothresholds may be as low as 2 sec arc, which

ranks stereopsis along with vernier and bisection tasks among the hyperacuities.
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Stereo-sensitivityto agivenangulardepthintervalvarieswith thesaggitaldistanceof the
stimulusdepthincrementfrom thefixationplane.Sensitivityto depthincrementsis highestatthe
horopteror fixationplanewherethedisparityof oneof thecomparisonstimuli is zero(Blakemore,
1970).Thisoptimalconditionfor stereopsiswasusedbyTschermack(1930)asoneof fourcrite-
ria for definingtheempiricallongitudinalhoropter.TheWeberfractiondescribingtheratioof
incrementstereothreshold(arcsec)overthedisparitypedestal(arcmin) (3 sec/min)is fairly con-
stantwith disparitypedestalamplitudesup to 1°. This fractionwasderivedfrom figure2, which
plotsstereothresholdin secondsof arcatdifferentsaggitaldistancesin minutesarcfrom thefixa-
tionpoint for targetsconsistingof verticalbarscomposedof coarseor fine features.A two-
alternative,forcedchoiceis usedto measureajust-noticeabledifferencebetweenadepthincrement
betweenanuppertestbarandalowerstandardbar,bothseenat somedistancebeforeor behind
thefixationplane. Thebarusedwasanarrow-band,spatiallyfilteredline producedfrom adiffer-
enceof Gaussians(DOG) whosecenterspatialfrequencyrangesfrom9.5 to 0.15 cycles/deg

(Badcock and Schor, 1985). When these thresholds are plotted, the slopes of these functions

found with different width DOGs are the same on a logarithmic scale. However, thresholds for

low spatial frequencies (below 2.5 cpd) are elevated by a constant disparity which illustrates they
are a fixed multiple of thresholds found with higher spatial frequencies. These results illustrate that

depth stimuli should be presented very near the plane of fixation, which is the video screen.

Stereo-sensitivity remains high within the fixation plane over several degrees about the point

of fixation. Unlike the rapid reduction of stereo-sensitivity with overall depth or saggital distance
from the horopter, stereo-sensitivity is fairly uniform and at its peak along the central 3 ° of the fix-

ation plane (Blakemore, 1970; Schor and Badcock, 1985). Figures 2 and 3 illustrate a comparison

of stereo-depth increment sensitivity for this fronto-parallel stereo and the saggital off-horopter

stereothreshold. Also plotted in figure 3 are the monocular thresholds for detecting vernier offset

of the same DOG patterns at the same retinal eccentricities. Clearly, stereopsis remains at its peak

at eccentricities along the horopter and there is a percipitous fall of visual acuity (Wertheim, 1894)
and, as shown here, of vernier acuity over the same range of retinal eccentricities where stereo

increment sensitivity is unaffected (Schor and Badcock, 1985). Thus, stereoacuity is not limited

by the same factors that limit monocular vernier acuity because the two thresholds differ by a factor
of 8 at the same eccentric retinal locus.

In addition to the threshold or lower disparity limit (LDL) for stereopsis, there is an upper
disparity limit (UDL), beyond which stereo depth can no longer be appreciated. This upper limit is

small, being approximately 10 arc min with fine (high-frequency) targets, and somewhat larger

(several degrees) with coarser (low spatial frequency) fusion stimuli (Schor and Wood, 1983).

This depth range can be extended either by briefly flashing targets (Westheimer and Tanzman,

1956) or by making vergence movements between them (Foley and Richards, 1972) to a UDL of
approximately 24 °, The UDL presents a common pitfall for many stereo-camera displays that

attempt to exaggerate stereopsis by placing the stereo-cameras far apart. Paradoxically, this can

produce disparities that exceed the UDL and results in the collapse of depth into the fronto-parallel

plane.

Diplopia is another problem that accompanies large disparities. The diplopia threshold is

slightly smaller than the UDL for static stereopsis, and depth stimulated by large flashed disparities

is always seen diplopically. Normally, this diplopia can be minimized by shifting convergence
from one target to another. However, this is not as easily done with a stereo-video monitor. In

real space the stimulus for vergence is correlated with the stimulus for accommodation. With video

displays, the stimulus for accommodation is fixed at the screen plane while vergence is an
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independentvariable. Becausethereis cross-couplingbetweenaccommodationandvergence,we
arenotcompletelyfreeto dissociatethesemotorresponses(SchorandKotulak, 1986). With some

muscular effort, a limited degree of vergence can be expected while accommodation is fixed,

depending on the accommodative-convergence ratio (AC/A). When this ratio is high, a person
must choose between clearness and singleness.

Additional problems for stereoscopic depth occur with abstract scenes containing high spatial

frequency surface texture. This presents an ambiguous stimulus for stereopsis and fusion which

can have an enormous number of possible solutions as illustrated by the wallpaper illusion or by a

random-dot stereogram. The visual system uses various strategies to reduce the number of

potential fusion combinations and certain spatial considerations of targets presented on the visual
display can help implement these strategies. A common technique used in computer vision is the

coarse-to-fine strategy. The visual display is presented with a broad range of spatial frequency

content. The key idea here is that there is little confusion or ambiguity with coarse features like the

frame of a pattern. These can be used to guide the alignment of the eyes into registration with finer

features that present small variations in retinal image disparity. Once in registration, small

disparities carried by the fine detail can be used to reveal the shape or form of the depth surface.

An essential condition for this algorithm to work is that sensitivity to large disparities be greatest
when they are presented with coarse detail and that sensitivity to small disparities be highest with

fine (high spatial frequency) fusion stimuli. This size-disparity correlation has been verified for

both the LDL and UDL by Schor and Wood (1983). Figure 4 illustrates the variation of stereo-

threshold (LDL) and the UDL with spatial frequency for targets presented on a zero disparity

pedestal at the fixation point. Stereothresholds are lowest and remain relatively constant for spatial

frequencies above 2.5 cycles/deg. Thresholds increase proportionally with lower spatial fre-
quencies. Even though stereothreshold varies markedly with target coarseness, suprathreshold

disparities needed to match the perceived depth of a standard disparity are less dependent on spatial
frequency. This depth equivalence constitutes a form of stereo-depth constancy (Schor and

Howarth, 1986). Similar variations in the diplopia threshold or binocular fusion limit are found by

varying the coarseness of fusion stimuli (Schor, Wood, and Ogawa, 1984b).

Figure 5 illustrates that the classical vertical and horizontal dimensions of Panum's fusion

limit (closed and open symbols, respectively) are found with high spatial frequency targets, but the

fusion limit increases proportionally with the spatial width of targets at spatial frequencies lower
than 2.5 cycles/deg. When measured with high-frequency DOGs, the horizontal radius of PFA

(Panum's fusional area) is 15 min; and when measured with low-frequency stimuli, PFA equals a

90 ° phase disparity of the fusion stimulus.

The increase in Panum's fusion limit appears to be caused by monocular limitations to spatial

resolution. For example, ff the same two targets that were used to measure the diplopia threshold

are both presented to one eye to measure a two-point separation threshold, such as the Rayleigh

criterion, then the monocular and binocular thresholds are equal when tested with spatial frequen-
cies lower than 2.5 cpd. At higher spatial frequencies we are better able to detect smaller separa-

tions between two points presented monocularly than dichoptically. This difference at high spatial

frequencies reveals a unique binocular process for fusion that is independent of spatial resolution.

With complex targets composed of multiple spatial frequencies, at moderate disparities such as

20 min arc, a diplopia threshold may be reached with high spatial frequency components while
stereopsis and fusion may continue with the low spatial frequency components. An example of

this simultaneous perception can be seen with the diplopic pixils in a random dot stereogram whose
coarse camouflaged form is seen in vivid stereoscopic depth (Duwaer, 1983).
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In additionto targetcoarseness,thereareseveralotheraspectsof spatialconfigurationthat
influencestereopsisandfusion. Thetraditionalstudiesof stereopsis,suchasthoseconductedby
Wheatstone(1838),mainlyconsiderthedisparitystimulusin isolationfrom otherdisparitiesatthe
sameor differentregionsof thevisual field. It is saidthatdisparityis processedlocally in this
limiting case,independentof otherpossiblestimulusinteractionsotherthanthecomparison
betweentwo absolutedisparitiesto form arelativedisparity. However,recentinvestigationshave
clearly illustratedthatin additionto thelocalprocesses,thereareglobalprocessesin whichspatial
interactionbetweenmultiplerelativedisparitiesin thevisualfield caninfluencebothstereopsisand
fusion. Threeformsof globalinteractionshavebeenstudied.Thesearedisparitycrowding,dis-
paritygradients,anddisparitycontinuityor interpolation.Theseglobalinteractionsappearto
influencephenomenasuchasthevariationin sizeof Panum'sfusionalarea,reductionsand
enhancementof stereo-sensitivity,constanterrorsor distortionsin depthperception,andresolution
of a3-D form thathasbeencamouflagedwith anambiguoussurfacetexture.

Spatialcrowdingof visualtargetsto lessthan10arcmin resultsin adepthaveragingof
proximalfeatures.This is manifestasanelevationof stereothresholdaswell asadepressionof the
UDL (Schor,Bridgeman,andTyler, 1983).Thesecondglobalinteraction,disparitygradient,
dependsuponspacingbetweendisparatetargetsandthedifferencein theirdisparities.(Schorand
Tyler, 1981).Thedisparitygradientrepresentshow abruptlydisparityvariesacrossthevisual
field. Theeffectof disparitygradientsuponthesensoryfusionrangehasbeeninvestigatedwith
point targetsby Burt andJulesz(1980),andwith periodicsinuosidalspatialvariationsin horizontal
andverticaldisparityby SchorandTyler (1981). Bothgroupsdemonstratethatthediplopia
thresholdincreasesaccordingto aconstantdisparitygradientastheseparationbetweenadjacent
fusionstimuli increases.Cyclofusionlimits arealsoreducedbyabruptchangesin disparity
betweenneighboringretinal regions(KerteszandOptican,1974). Stereothresholdscanalsobe
describedasa constantdisparitygradient.As targetseparationdecreases,sodoesstereothreshold,
upto a limit of 15arcrainseparation.Furtherreductionin separationresultsin crowding,which
elevatesthestereothreshold.TheUDL is alsolimitedby aconstantdisparitygradient(fig. 5). As
spacingdecreases,thereisaproportionaldecreasein theUDL. Thesegradienteffectssettwo
strictlimitationson therangeof stereopscopicdepththatcanberenderedbythevideodisplay. As
crowdingincreases,theUDL will decrease.Theeffectis thattargetsexceedingtheUDL will
appeardiplopicandwithoutdepth. Forexample,a top-downpictureof aforestwhichhastreesof
unevenheightwill notbeseenasunevendepthif thetreesareimagedtooclosely. To remedythis
problem,thedepthshouldbereducedby movingthestereocamerasclosertogether.In theother
extreme,ashallowslopewill notbeseenin depthunlessit exceedsthegradientfor stereothresh-
olds. Evenif it does,it maystill notbeseenif it extendsacrosstheentirevisualdisplay. Nor-
mallytherecanbeunequalopticalerrorsof thetwoeyeswhichproduceunequalmagnificationof
thetworetinal images.Thisanisomagnificationproducesanapparenttilt of thestereoscopicframe
referencereferredto asthefronto-parallelplane.However,thisconstantdeptherroris normally
correctedor compensatedfor perceptually(Morrison,1977).Thisperceptualcompensationcould
reducesensitivityto widestaticdisplaysof ashallowdepthgradient.

A third form of globalinteractionisobservedunderconditionswheredisparitydifferences
betweenneighboringregionsoccurtoograduallyto bedetected,suchasin the3-Dversionof the
Craik-ObrienCornsweetillusion (fig. 6 byAnstis,Howard,andRogers,1978),whenstereopat-
ternsarepresentedtoobriefly to beprocessedfully (RamachandranandNelson,1976;Mitchison
andMcKee,1985),or whenseveralequallyprobable,butambiguous,disparitysolutionsarepre-
sentedin aregionneighboringanunambiguousdisparitysolution(Kontsevich,1986).Underall
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of theseconditions,thedepthperceptresultingfrom thevaguedisparityis similar to or continuous
with thedepthstimulatedby themorevisibleportionof thedisparitystimulus.This illustratesthe
principleof depthcontinuityformulatedbyJulesz(1971)andrestatedlaterby MarrandPoggio
(1979),whichrecentlywasshownby RamachandranandCavanaugh(1985)to includetheexten-
sionof depthto subjectivecontoursin whichnophysicalcontouror disparityexists.

Clearlytherearemanyspatialconstraints,includingspatialfrequencycontent,retinaleccen-
tricity, exposureduration,targetspacing,anddisparitygradient,which--when properly
adjusted---cangreatlyenhancestereodepthin videodisplays.
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Figure 1. Retinal image disparity based on horizontal separation of the two eyes.
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Figure 2. Threshold depth increments obtained, for observer D.B., as a function of pedestal size in

both the convergent and divergent directions. Functions illustrate results obtained with a thin

bar and DOGs whose center spatial frequencies ranged from 0.15 to 9.6 c/deg. Panels C and D

plot the performance measured when the comparison sm'nulus was a thin bright bar and the test
stimulus was a DOG. Panels A and B show the results obtained when a DOG was used both

as a comparison and as a test stimulus. Panels A and C plot stereothreshold on a log scale.

The data are replotted on a linear scale in panels B and D.
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Figure 3. A comparison is made of extra-foveal vernier threshold (solid line) with extra-foveal

(mixed dashed line) and extra-horopteral (long dashed line) stereothresholds for a high spatial

frequency stimulus (upper plot) and a low spatial frequency stimulus (lower plot). Note that

retinal eccentricity has been doubled to be comparable to disparity pedestal. Over a 40 arc min

range of retinal eccentricity, stereoacuity remained unchanged and vernier acuity increased
moderately. A marked increase in stereothreshold occurred over a comparable (80 arc min)

disparity pedestal range.

2-11



A
C
._

E

o

o
v

>-
I--

K:
<t
O_

t,O

t'_

25O

IO0

4O

2O

_0

5

25

tO

O5

250

I00

40

20

I0

5

25

I0

05

I I I I [ I I i

cs UNCROSSED

U_)OI_I" Di,$pQrit_ Llmil I

I"
t

./

I 1 I-

ij
/

/

// Lower Oispority Limit

/
/

/
/

/
/

/

I I ! I I ]

I

cs

I I

upmeO_eori_ Limit

250

_oo

4O

20

to

5

25

I0

O5

1 I 1 I I I

CROSSED
t

,s"

s

//_

/

//LO_ o_,_o_,ycm,

/
/

/
/

/
/

I I I [
083 167 33 6.7

12 0.6 03 015

250

IOO

40

2O

Io

25

I0

05

I I I I I I I I I

Iw UNCROSSED

//
f

I

Upper OilpOtlly Limit ///

.-..) --

- --.).

--->

/"
/

/

/I"

/
/ Lower Disparity Lii1111

/
/

/

l I l I ] i I l

IW CROSSED

./

/

Upper Oilparity L_I /
f

/
/

/
/

/

/

/

/
/

/
/

/
/

/
/

/
/

/
/

/
/

Lower D_pority Limit

I l I J I J I I I I I
005 OI 021 0.42 136 0.05 OI 0.21 0.42 083 t67 33 136
192 96 48 ?_4 0075 192 96 4.8 24 12 06 03 015 0075

CENTERSPATIALPERIOD(DEGREES)
CENTERSPATIALFREQUENCY(CYCLES/ DEGREE)

Figure 4. Upper and lower 1Lrmtsfor stereopsis are plotted for two subjects as a function of DOG
center spatial period along dashed curves at the top and bottom of data sets for uncrossed and

crossed disparities respectively. Stereothreshold was lowest at small spatial periods

(<0.42 arc min) and increased according to a 6 ° phase disparity between stereo-half images as

spatial period increased. The upper limit increased proportionally to the square root of spatial

period over the same range of broad spatial periods. Depth matching curves (solid lines) for

several standard suprathreshold disparities (horizontal mows) have flatter frequency responses

than the upper and lower dashed threshold curves. Their breakaway point occurs at a higher

spatial period for crossed than for uncrossed disparities. The luminance profile of the
difference of two Gaussian functions is inset in the upper left comer.

2-12



ZOO CS BAR DOG ._ -

Ho,i_o,_ot A o J,_
-z _"_°' " • Z/
-_-,oo j./ -

90"_,,/_.//-
dispority / C)" //

.... --IL

200

c: I00
E

11_ 25

_J

Z

_o
m 113
h

_ 5

z

2.5

I I I I I I I k/l
.L).-4IW

BAR DOG //7_ /

v,o_zontol,', o _/_/_

vo_, " " 90" ...x(:_v/_l_ -
-/// !

I ,/ I l I l I I I

960 48o 240 _20 06 0.3 0._5 007

PEAK SPATIAL FREQUENCY (cyc/deg)

274 547 10.94 2188 4375 875 175 350

BRIGHT BAR (B) DIAMETER (orc rain)

Figure 5. Diplopia thresholds for two subjects are plotted as a function of bright bar width (B) of
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stimuli are inset below and above the data respectively. A constant phase disparity of 90 ° is

shown by the dashed diagonal line. Horizontal and vertical Panum's fusion ranges (solid lines)

coincide with the 90 ° phase disparity for DOG widths greater than 21 arc rain. At the broadest

DOG width, the upper fusion limit equals the upper disparity limit for stereoscopic depth per-

ception (bold dashed line). The standard deviation of the mean is shown for the broadest DOG

stimulus. At narrow DOG widths, both horizontal and vertical fusion limits approach a con-
stant minimum threshold. Panum's fusion ranges remain fairly constant when measured with

bar patterns (dotted lines) and resemble values obtained with high spatial frequency DOGs.
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Figure 6. Perspective sketch of the illusory depth surface. Left part looks apparently nearer than
the right part.
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