
NASA Contractor Report 182038

ICASE Report No. 90-33

ICASE

A SCHEME FOR SUPPORTING AUTOMATIC DATA

MIGRATION ON MULTICOMPUTERS

Seema Mirchandaney
Joel Saltz

Piyush Mehrotra
Harry Berryman

Contract No. NAS1-18605

May 1990

To appear in Proceedings of the Fifth Distributed Memory Computing

Conference, Charleston, South Carolina, April 1990

1

4

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Vh'ginia 23665-5225

Operated by the Universities Space Research Association

N/ A
National Aeronautics and

Space Adminislralion

Langley Research Cenler

Hampton, Virginia 23665-5225

(NASA-Crt-IO203_) A SCHFMr FOR

AUTqM_T!C DATA MI_RAT!_,B._ 3N

Final Report (TCASF) 1'9 p

SUPPORTING

MULTICOMPUTERS

CSCI 12A

GJ/59

Nq0-22973

Unc | ,as

0280818

A SCHEME FOR SUPPORTING AUTOMATIC

DATA MIGRATION ON MULTICOMPUTERS 1

Seema Mirchandaney

Department of Computer Science

Yale University

New Haven, CT 06520

Joel Saltz

Piyush Mehrotra 2

Harry Berryman

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23665

ABSTRACT

We propose a data migration mechanism that allows an explicit and controlled mapping

of data to memory. While read or write copies of each data element can be assigned to

any processor's memory, longer term storage of each data element is assigned to a specific

location in the memory of a particular processor. We present data that suggests that the

scheme may be a practical method for efficiently supporting data migration.

IResearch supported by the National Aeronautics and Space Administration under NASA Contract No.

NAS1-18605 while the authors were in residence at the Institute for Computer Applications in Science and

Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.
2On leave from the Department of Computer Science, Purdue University, West Lafayette, IN 47907.

1 Introduction

It is well known that data distribution and load balance play critical roles in determining

the performance one can expect to obtain from distributed machines. Data must be

moved from processor to processor in response to computational demands. One way

of supporting data migration is to explicitly designate blocks of data that are to be

prefetched into the memory of a given processor and to copy the data into customized

data structures. Programs are written on each processor with intimate knowledge of

the format used to store off-processor data. For some problems, this approach to data

distribution can be extremely efficient. However, programming in this manner can be

very time consuming, and can lead to programs that are difficult to debug. In this paper

we describe a scheme which allows data to be automatically moved to the processor

that needs it. In the remainder of this section, we provide an overview of our data

migration scheme. Section 2 gives details of the hashed cache used in this scheme. The

remainder of this paper describes the experiments that we have performed. Section 3

studies the overheads due to accessing the hashed cache. Section 4 outlines the results

we have obtained using the model problem of sweeping over an unstructured mesh. These

results were obtained with a synthetic workload along with an unstructured mesh used in

aeronautical simulations. We finally present our conclusions in Section 5.

Overview of the Data Migration Scheme

In our scheme, data structures can be distributed across the set of processors. Such

distribution of data structures across processors are supported in languages and systems

such as [2, 3, 4, 8, 10, 11].

While read or write copies of each data element can be assigned to any processor's

memory, longer term storage of each data element is assigned to a specific location in

the memory of a particular processor. A processor needing to read or write an array

element gets a copy of that element. In a distributed memory machine, run-time proce-

dures carry out the actual movement of data. Local copies of data are stored in a hash

table. The hashing scheme for storing off-processor data in distributed machines will be

called a hashed cache. There are many possible ways of organizing such a hash table, we

experimentally examine a straightforward scheme for storing and retrieving off-processor

data.

It is not realistic to expect that all loops can be parallelized or that it will be feasible

to always map arrays so that computations taking place on a given processor use mostly

local data. We must be able to handle the situation in which a single processor must access

large numbers of off-processor array elements. This can happen either in a sequential code

that executes on a single processor of a distributed machine or in a given processor's part

of a parallelized loop computation. The hashed cache provides a mechanism for memory

management on a distributed memory machine.

Coherency between the distributed data structures and the hashed caches must be

maintained in software. It is particularly easy for compilers to generate code that guaran-

tees coherency for (nested) parallel loops or sequential code. Although the hashed cache

mechanism can be used in more general contexts, we will limit the discussion that follows

to those two cases.

A parallel loop is transformed into two parts by a compiler. One part is called an

inspector, the other is called an ezecutor. The inspector is responsible for determining

What data elements are required by a loop, the executor carries out the actual computa,

tions. Note that an inspector may have to be incremental subsets of the loop iterations

when the amount of off-processor data to be stored exceeds the memory allocated to the

hashed cache. The idea of splitting a parallel loop into an inspector and executor appeared

in [5, 7, 9, 12]. In the context of sparse matrix computations, the idea was advanced in

[i].

2 The Hashed Cache

We presume here that arrays have been distributed based on user annotations or directives.

Once a distributed array is initialized, one can use the specified partitioning information to

find, for any distributed array element, a unique processor P along with a unique location

in that processor P's storage. In each processor, contiguous memory locations are used to

store local elements of a given distributed array. The unique location in P's storage can

thus be expressed as an integer offset 0.

The program in Figure 1 will be used as a running example in this discussion. This

program performs a sequence of matrix vector multiplications. In order to compute y(i)

at each iteration, we need yold(nbrs (i,j)). At the end of each matrix vector multipli-

cation in loop $5, the newly computed values y(i) are copied back into yold(i).

Both arrays y and yold are distributed. When the loop is distributed, loop iterations

may be assigned to processors in an arbitrary fashion. Consequently, long term storage

of elements of yold may not be assigned to the processors that execute code referring to

those elements. Due to the structure of the code, it is straightforward in this case to make

sure thatarray y is-distributed so that each processor accesses only local elements of y.

The global arrays are initialized at the start of the program. We proceed to describe

the primitives that support the inspector and ezecutor phases of the hashed-cache system.

To best understand the details of the inspector and ezecutor phases we describe them in

the context of the example presented in Figure 1.

2.1 The Inspector Phase

2

SI do iter=l, num

S2 do i=l,n**2

S3 do j=O, m

$4 y(i) += values(i,j)*yold(nbrs(i,j));

end do

end do

$5 do k=-l,n**2

yold(k) = y(k) ;

end do

end do

Figure 1: Sparse Matrix Vector Multiply

Figure 2 depicts the pseudo-code of the inspector phase for the sparse matrix vector

multiply. During the inspector phase we go through the inner-loop once to check for local

and non-local global array accesses. If an array reference is local we do nothing. However,

if it is a non-local reference to a global array, we compute the processor on which the

element resides and its offset. We need to store this information in such a way that

accessing it is efficient. This is achieved by using a hashed cache scheme.

The location of a non-local distributed array element is determined by a hash function.

Currently, we use a hashing function that, for a hash table of size 2 k, simply masks the

lower k bits of the key. The key is formed by concatenating the processor-offset pair,

(P, 0), that corresponds to a distributed array reference. A linked list is used in case of
collisions. To access the cache, the appropriate linked list must be traversed until the

correct key is found. Each entry in the hash table consists of the following:

1. a reference to the non-local data item, i.e., the data item's processor-offset pair,

2. whether the item is to be read (read flag),

3. whether the item is to be written (write flag),

4. the data value itself.

5. a pointer to the next data item that hashed to the same location.

If the data item is a non-local read reference R, it is processed by the process-global-

read() routine. The routine is described as follows:

3

Loop over local iterations i assigned to P

do j = O,m

Compute processor, offset pair for element of yold

If yold reference is to non-local array element,

process-global-read()

end do

End loop over local iterations i

Loop over local iterations k assigned to P

If yold reference is to non-local array element,

process-global-writeO

End loop over local iterations k

Perform global communications to set up send and receive

pairs for the non-local data to be scattered and gathered

Figure 2: Inspector: Sparse Matrix Vector Multiply

I

process-global-read 0

1. Search for tee reference R in the hashed-cache.

2. If 1%exists and the read flag is Set, do nothing.

3. If R exists and the read flag is not set, set read flag.

4. If R is not found in the hashed cache, create ah entry with read flag set and enter it
in the hashed-cache.

5. In the latter two situations, increment a count variable that Contains the number

of non-local elements to be gathered from the processor P on which this element

resides. The offset of this element is inserted in a list containing the offsets of all

the elements to be gathered from P.

Non-local array references R that are written to, are processed by the process-global-

write() routine. As was the case with process-gIobal-readO, this routine maintains a count

variable containing the number of non-local elements to be scattered to P. It also maintains

a list of the offsets of all the elements R to be scattered to P. At the completion of the

4

do iter=l, num

process-gather-data() - obtain needed yold values from other

processors and put in hashed cache

Loop over local iterations i assigned to P

do j = O,m

Perform calculation reading yold values or writing y

values using hashed cache or local memory as is appropriate.

end do

End loop over local iterations i

Loop over local iterations k assigned to P

Perform assignment reading y values or writing yold values

using local memory or hashed cache as is appropriate.

End loop over local iterations k

process-scatter-data()

end do

- scatter yold values from hashed

cache to appropriate processors

Figure 3: Hashed Cache Executor: Sparse Matrix Vector Multiply

inspector phase we precompute the communication pattern required to efficiently gather

or scatter all the relevant non-local data referenced in the loop. This requires a global

communication phase in which all processors participate. For a detailed description,

see [5, 12].

2.2 The Executor Phase

Figure 3 depicts the pseudo-code of the executor phase for the sparse matrix vector

multiply. The non-local data required by the inner loop is first obtained from other

processors and stored in the hashed-cache by the process-gather-data routine. We now

proceed to execute the doall loop.

During the execution of the inner-loop we check each distributed array reference to

decide whether it resides in the local array or not. If it does, we compute the offset of the

element in the local array and fetch the data item from the appropriate memory location.

If it does not, we fetch it from the hashed cache. If the array reference occurs on the left

hand and it is non-local, we enter the new value in the hashed cache. At the end of the

execution of the inner-loop, each processor calls the process-scatter-data 0 routine. This

routine goes through the list of non-local offsets of elements to be scattered, searches for

these elements in the hashed cache and writes the value to a list containing the new values

to be written to the distributed memory. The data is then scattered to the distributed

memory.

The operations for computing processor number and offsetare computationally very

cheap since we assume the distributedarray may be partitionedin a block or block wrap

fashion. The sizeof each block isa power of 2 and thus we need to perform simple integer

operations such as shiftsto compute the oflTsetand processor number of a distributed

array dement.

2.3 Enumerated Version of the Hashed Cache System

We have also implemented two modifications of the hashed cache system to allow us

to quantify the cost of accessing the hashed cache and of transforming references to

distributed array elements to locations in local storage. In these schemes, the non-local

data is stored in the hashed cache as described in Section 2. Along with the hash table, we

also have a list of pointers to all array elements referenced during the loop computation,

on processor p. This enumeration list allows us to retrieve off-processor array elements

during the executor phase without going through the hash table. Furthermore, locally

stored elements of the distributed array can also be accessed without translating a global

index to local offset in P's storage. We call this the full enumeration scheme. Note that

the enumeration list can be easily generated by the inspector as it examines all the array

references in the loop.

The fully enumerated version of the hashed cache can clearly require extremely large

amounts of storage for storing its array of pointers, and is not a practical alternative for

most applications. It is possible instead to employ an array of pointers that point only to

hash table locations accessed. In this case, the number of pointers maintained is equal to

the number of accesses to off-processor array references. This version is called the partial
enumeration schemel

3 Hash Table Overhead ::

We first present a set of simple experiments to illustrate the overheads associated with

initializing and accessing the hashed cache. An array a is distributed between processors

in blocks of slze-b: A_ioop executing on processor 0 (Figure 4) accesses off-processor data

with varying strides. Recall from Section 2 that when multiple data elements hash to the

same location we store the overflow in a linked list. By varying the stride of this simple

y_

Z

t

Table 1: Inspector

loop max links
stride traversed

1 0

2 1

4 3

8 7

16 15

39. 31
31 0

and Executor timinl_
executor

colnln

executor

comp

time time

(ms) (ms)

30 82

31 93

19 112

15 154

14 238

17 381

18 82

as a function of the loop stride

inspector

comm

time

(ms)
10

10

11

12

15

21

22

inspector

comp

time

(ms)
49

62

86

130

217

391

49

sequential

time

(ms)

20

20

20

20

20

20

20

loop, we are able to study the effect of link traversal through the hashed cache on the

executor and inspector times. We fix the following parameters:

• hash table size = 4096

• numiter = 4096

• total non-local accesses = 4096

• b = 8192

Table 1 reports the experimental results we obtained by running the loop in Figure 4

with varying strides, all but one of which was a power of two. These experiments were

carried out on a 32 node iPSC/2. With an odd stride, there were no hash table collisions

and hence no links need to be traversed. This can be seen from the similar timings for

strides 1 and 31. With power of two strides, we can have up to stride - 1 links in a hash

bucket. The overhead of the executor increases as the possible number of links traversed
for each hash table access increases. This is reflected in the increase of the executor

SO if(my_processor .eq. O)

$1 do j = b, numiter*stride + b,

S2 asum = asura + a(j)

end do

stride

Figure 4: Processor 0: Accessing non-local data

computation time as the number of links increases from 0 links to 31. The executor

communication time, however, dropped by 50 %. This is because with a block size of

b and stride 1 all the 4096 non-local elements accessed by the above loop on processor

0, reside on a single processor, processor 1. Thus processor 1 has to send all the 4096

array elements to processor 0. With stride 8, the 4096 elements accessed by processor 0

are distributed across four other processors. Thus, these four processors send their data

concurrently to processor 0, reducing the overall executor c0mmunlcation time.

An the stride increases, the number of processors from which data is needed, increases.

This is reflected in the inspector communication timing, which doubles as the the stride

goes from 1 to 32. The stride used also has an effect on the inspector computation time.

As noted above, an increase in the stride increases the maximum number of links in the

hash table which is turn leads to an increase in the time required to access the hash table.

Since the inspector computation time is directly dependent on the time required to access

the hash table, we see a fairly rapid increase in this time with the increase in stride.

4 Unstructured Mesh Results

In this section we present the performance of the hashed cache system for the program

depicted in Figure 1. This code exhibits greatly varying patterns of locality depending on

how loop iterations are assigned to processors and the contents of the integer array nbrs.

The integer array nbrs can be viewed as a representation of a sparse or unstructured

mesh. We obtained these meshes in the following two ways :

• We used a synthetic workload to generate sparse matrices with differing dependency

patterns.

• We used an unstructured mesh that was generated to carry out an aerodynamic
simulation.

The next two sections describe the details of the synthetic workload and the unstructured
mesh.

4.1 Synthetic Workload

The synthetic workload was defined in the following way. A square mesh in which each

point was linked to four nearest neighbors was incrementally distorted. Random edges

were introduced subject to the constraint that in the new mesh, each point still required

information from four other mesh points.

Our workload generator makes the following assumptions:

m

1. The problem domain consists of a 2-dimensional mesh of points which are numbered

using their row major or natural ordering;

2. Each point is initially connected to its four nearest neighbors

3. Each link produced in the above step is examined, with probability q the link is

replaced by a link to a randomly chosen point.

4. We use the rand() function available on Unix System V

Once generated, this connectivity information is stored in the integer array nbrs. We

used this workload generator to obtain a set of matrices generated from 256*256 meshes.

These matrices were used to perform a sequence of parallelized sparse matrix vector mul-

tiplications using our hashed cache data migration scheme for non-local array references

to yold. We partitioned yold in various ways. First, let us define the terms:

• p = Total Number of Processors

• MSize = matrix size = n × n

• BlockSize = MSize/p

We partitioned yold as follows:

1. partition the array indices in contiguous blocks of size BlockSize, i.e. processor i is

assigned indices i × BlockSize through (i + 1) x BlockSize- 1

2. partition the indices in an interleaved fashion i.e. processor i is assigned indices

i,i + p,i + 2p,...,i + (BlockSize - 1)×p.

In the following sections, experiments involving matrices generated from 256 by 256

meshes in which yold is partitioned into blocks will be labeled by the descriptor Blocked.

When yold is partitioned in an interleaved manner and the same sized mesh is used, the

resulting experiments will be labeled by the descriptor Interleaved.

We now proceed to describe the details of the unstructured mesh.

4.2 Unstructured Mesh

We used an unstructured mesh that was generated to carry out an aerodynamic simulation

involving a multielement airfoil in a landing configuration [6].

9

Figure 5: Unstructured Mesh for Multielement Airfoil E

i0

The unstructured mesh consists of a highly non-uniform scattering of mesh points

joined together by line segments to form a set of triangular elements. The algorithm

used is the Delaunay Triangulation algorithm [13]. The resulting mesh was then modified

slightly in a postprocessing phase. Details of this mesh generation process can be found

in [6]. An illustration of the mesh used is shown in Figure 5.

To obtain an experimental estimate of the efficiency of the executor and inspector on

the Intel iPSC/2, we carried out a sequence of sparse matrix-vector multiplications using
the unstructured mesh described above.

4.3 Performance of Off-Processor Data Access Mechanisms

In this section, we present data that gives an overview of some of the performance tradeoffs

between different variants of the hashed cache data access mechanism. A major motivation

for this set of experiments is to quantify the costs of accessing copies of off-processor data.

There are clearly a tremendous number of different schemes that could be used to store and

retrieve off-processor data, and we do not attempt to argue that the hashed cache method

is in any sense optimal. In Section 2.3 we suggested building a list of pointers to locations

in the hashed cache where off-processor data is to be cached; we called this mechanism

partial enumeration. When computations are carried out, copies of needed off-processor

data can be accessed by dereferencing pointers rather than by searching the hashed cache.

We present in Table 2 parallel efficiencies obtained using the hashed cache and partial

enumeration off-processor data access strategies. These parallel efficiencies only include

the ezecutor times, they do not include preprocessing overhead. As one might expect,

the efficiencies obtained vary with the problem, but the use of partial enumeration led to

efficiencies which ranged from roughly 3 to 19 % higher than those obtained from direct

use of the hashed cache. The number of parallel iterations per inspector quantifies the

required preprocessing overhead. Let T_q represent the time required by an optimized

sequential code on a single processor and P represent the number of processors. Then

the number of parallel iterations per inspector is defined as the ratio between the time

required to carry out a perfectly parallelized iteration (To_q/P) and the time required for

the inspector.

When we use only the hashed cache without enumeration, the number of parallel itera-

tions per inspector varies from 1.08 to 5.10. The number of executor iterations required to

carry out the inspector ranges from 0.66 to 0.99 when only the hashed cache is used, i.e.,

the inspector always takes less time to run than the executor. Since extra preprocessing is

needed to assemble the enumeration list, it is to be expected that the number of parallel

iterations per inspector is increased when partial enumeration is employed. The number

of parallel iterations per inspector in this case ranges from 1.10 to 6.09.

In Section 2.3, we described another scheme called full enumeration, in which all

memory accesses are enumerated. By enumerating all memory accesses, we can eliminate

the costs incurred by

11

Problem

Blocked

Blocked

Blocked

Interleaved

Interleaved

Interleaved

Unstructured

q

le 2: Performances o:
Hashed Cache

effic parallel iters

/ inspector
0.0 o.61 1.08
0.2 0.36 2.14

0.4 0.30 2.80

0.0 0.23 4.30

0.2 0.21 4.57

0.4 0.19 5.10

0.43 1.81

Data Access Mechanh
Partial Enumeration

effic parallel iters

/ inspector

0.63 1.10

0.39 2.33

0.35 3.00

0.27 4.44

0.25 5.20

0.23 6.09

0.51 1.90

Full Enumeration

effic parallel iters

/ inspector

0.80 1.36

0.46 2.57

0.39 3.27

0.30 4.60

0.27 5.67

0.25 6.04

0.63 1.98

1. determining whether a memory reference is to a locally stored array element and if

it is locally stored

2. translating global array indices to locations in a processor's local storage

The storage costs incurred for this data access scheme are high enough to make the method

impractical in many situations.

For the Blocked partitioning, with probability of deletion, q = 0, most array elements

accessed are on the local processor. The hashed cache executor efficiency for this problem

is 0.61. Use of partial enumeration leads to a small improvement in efficiency (0.63), full

enumeration on the other hand leads to an efficiency of 0.80. For Blocked with q=0.4,

approximately half of the array elements referenced are stored off-processor. The hashed

cache executor efficiency in that case is 0.30, the use of partial enumeration increases this

to 0.35 and full enumeration increases efficiency further to 0.39. The cost of accessing

off-processor data in the hashed cache is clearly a much more important factor with q =

0.4 which has a larger number of off-processor references.

We ais0"present in_Ta-b]e 2 the parallel efficiencies arising from the application derived

unstructured mesh described in Section 4.2. This mesh was partitioned into 32 strips,

and a strip was assigned to each processor. The strips were chosen so that the same

number 0f floating p01n{ computations were required by each processor. The parallel

efficiency obtained when we used only the hashed cache data structure was 0.43. Partial

enumeration_ causedt_his e_ciency to increase to 0.51 and ful!enumeration resulted in a

further increase to an efficiency of 0.63. The number of parallel iterations per inspector
varied from 1.81 when the hashed cache was used to 1.98 when full enumeration was

employed.

In Table 3 we present the executor computation times for the hashed cache, partial

enumeration andfull enumeration data access methods. The executor computation times

include the time required to:

12

L

m

1. copy off-processor data into hashed cache

2. distinguish between local and non-local references (for hashed cache and partial

enumeration case)

3. obtain required locally stored data

4. access hashed cache (by searching hashed cache or by pointer dereference)

5. perform floating point computations

6. store off-processor writes to hashed cache

7. copy from hashed cache data needing to be scattered to other processors

The executor computation time does not include the time required for carrying out

interprocessor communication.

For a given sized mesh, all of the synthetic workload problems require the same number

of operations. Consider first the Blocked partitioning generated by the synthetic workload

generator. When the hashed cache was employed, as q increased from 0.0 to 0.4, the

executor computation time increased 41%. Both partial and full enumeration eliminate

the need to search the hashed cache for each non-local memory reference. The increase

in execution time as q went from 0 to 0.4 for the Blocked partitioning was consequently

only 18 and 19 % for partial and full enumeration respectively

When yold is assigned in an interleaved manner, for all values of q most array refer-

ences are non-local. Consider first the case in which the hashed cache is accessed directly.

We note that for Interleaved, q equal to 0, we have a hashed cache executor computation

time of 185 ms, while for q equal to 0.4 we have a time of 232 ms. This increase made

sense when we noted that the number of different non-local off-processor references in-

creased with q. Furthermore there is an increase with q in the number of hashed cache

links that must be traversed in order to access copies of off-processor data (as we will

show in Table 4). A more modest increase in execution time with q was noted in the

partial enumeration and full enumeration cases; in these cases we expect only increases in

the cost of copying elements to and from the hashed cache to play a role in the execution

time increase. For the application derived unstructured mesh from Section 4.2, we mea-

sured executor computation times of 34 ms, 27 ms and 20 ms for hashed cache, partial

enumerations and full enumerations respectively.

Further insight into the behavior of the hashed cache can be obtained from Table 4.

This table categorizes array references in processor 0, it gives the percentage of references

to locally stored data and to data accessed by traversing varying numbers of links in the

hashed cache. For instance, for Blocked with q equal to 0, 97 % of array references were to

local array elements and 3 % could be accessed by referring to the hashed cache without

traversing any links. On the other hand, for Interleaved, only 3 % of array references were

13

Table 3:

MVM for 32 _rocessors

Problem

Blocked

Blocked

Blocked

Interleaved

Interleaved

Interleaved

Unstructured

Executor Computation Times for the Off-Processor Storage Schemes Sparse

0.0

0.2

0.4

0.0

0.2

0.4

hashed

cache

time

(ms)
122

148

172

185

209

232

34

partial

enumeration

time

(ms)
119

131

142

140

150

156

27

full

enumeration

time

(ms)
93

101

110

108

127

128

20

Table 4: MVM: Data Accesses by
Problem q % local

Blocked 0.0

Blocked 0.2

Blocked 0.4

Interleaved 0.0

Interleaved 0.2

Interleaved 0.4

Processor 0 during
% link % link

accesses

97

79

60

4

4

3

0

3

18

30

96

79

66

0

3

9

0

15

24

the executor phase
% link

2

0

0.25

2

0

2

6

% link

3

0

0

0.15

0

0.1

1

to locally stored data. 66 %, 24 % , 6 % and 1% of references to copies of off-processor

data required traversal of 0, I, 2, and 3 links in the hashed cache respectively. In all cases,

over two thirds of memory accesses did not require i_raversing even one hashed cache link.

It should be noted that all table entries over 0.5 were rounded to the nearest integer so

that row entries may not add to exactly 100.

5 Conclusion

In this paper, we have proposed a scheme for automatically migrating data across the

processors of a distributed memory machine. The scheme uses a hash table for the easy

access and modification of off-processor data. Using such a hashed cache allows us to
supp0rt-parallel loops accessing distributed data through a gl01_al name space.

We have investigated a set of model problems to characterize the performance of the

hashed cache method. This model problem analysis employed a synthetic workload and

an unstructured mesh that allowed us to perform a detailed examination of different rou-

14

tines required to implement the hashed cache scheme. The data presented here suggests

that this scheme may be a practical method for efficiently supporting data migration on
distributed machines.

References

[1] D. Baxter, J. Salts, M. Schultz, S. Eisentstat, and K. Crowley. An experimental

study of methods for parallel preconditioned krylov methods. In Proceedings of the

1988 Hypercube Multiprocessor Conference, Pasadena CA, pages 1698,1711, January

1988.

[2] H. Berryman, J. Saltz, and J. Scroggs. Execution time support for scientific programs

on distributed memory machines. In Proceedings of the Fourth SIAM Conference on

Parallel Processing for Scientific Computing, December 1989.

[3] D. Callahan and K. Kennedy. Compiling programs for distributed-memory multi-

processors. Journal of Supercomputing, 2:151-169, 1988.

[4] A. Cheung and A. P. Reeves. The paragon multicomputer environment: A first

implementation. Technical Report EE-CEG-89-9, Cornell University Computer En-

gineering Group, Cornell University School of Electrical Engineering, july 1989.

[5] C. Koelbel, P. Mehrotra, and J. Van Rosendale. Supporting shared data structures on

distributed memory architectures. In $nd A CM SIGPLAN Symposium on Principles

Practice of Parallel Programming, pages 177-186. ACM SIGPLAN, March 1990.

[6] D. J. Mavriplis. Multigrid solution of the two-dimensional euler equations on un-

structured triangular meshes. AIAA Journal, 26(7):824-831, July 1988.

[7] P. Mehrotra and J. Van Rosendale. Compiling high level constructs to distributed

memory architectures. In To appear in: Proceedings of the Fourth Conference on

Hypercube Concurrent Computers and Applications, March 1989.

[8] P. Mehrotra and J. Van Rosendale. Parallel language constructs for tensor product

computations on loosely coupled architectures. In Proceedings Supercomputing '89,

pages 616-626, November 1989.

[9] R. Mirchandaney, J. H. Saltz, R. M. Smith, D. M. Nicol, and Kay Crowley. Prin-

ciples of runtime support for parallel processors. In Proceedings of the 1988 A CM

International Conference on Supercomputing , St. Malo France, pages 140-152, July

1988.

[10] A. Rogers and K. Pingali. Process decomposition through locality of reference. In

Conference on Programming Language Design and Implementation, pages 69-80.

ACM SIGPLAN, June 1989.

15

[11] M. Rosing and R. Schnabel. An overviewof Dino - a new language for numerical
computation on distributed memorymultiprocessors.TechnicalReport CU-CS-385-
88, University of Colorado,Boulder, 1988.

[12] J. Saltz, K. Crowley, R. Mirchandaney, and Harry Berryman. Run-time scheduling

and execution of loops on message passing machines, (to appear in Journal Parallel

and Distributed Computing, April 1990). Report 89-7, ICASE, January 1989.

[13] N. P. Weatherill. The generation of unstructured grids using dirichlet tessalations.

Report MAE 1715, Princeton, July 1985.

I

16

Report Documentation Page
Nalo'_31A_'Or, aulC S ancf
Srk_('e AOr'r_c.SlfalO'_

1. Report No.

N_._SA CR- 182038

ICASE Report No. 90-33

2. Government Accession No.

4. Title and Subtitle

A SCHEME FOR SUPPORTING AUTOMATIC DATA MIGRATION

ON MULTICOMPUTERS

7. Author(s)

Seema Mirchandaney
Joel Saltz

Piyush Mehrotra

Harry Berryman
9. Performing Organization Name and Address

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225
12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

3. Recipient's Catalog No.

5. Repo_ Date

May 1990

6. Performing Organization Code

8. Performing Organization Report No.

90-33

10. Work Unit No.

505-90-21-01

11. Contract or Grant No.

NASI-18605

13. Ty_ ofReportandPeriodCovered

Contractor Report

14. Sponsoring Agency Code

15. Supplementaw Notes

Langley Technical Monitor:

Richard W. Barnwell

Final Report

To appear in Proceedings of the

Fifth Distributed Memory Comput-

ing Conference, Charleston, SC,

April 1990

16. Abstract

We propose a data migration mechanism that allows an explicit and controlled

mapping of data to memory. While read or write copies of each data element can be

assigned to any processor's memory, longer term storage of each data element is

assigned to a specific location in the memory of a particular processor. We pre-

sent data that suggests that the scheme may be a practical method for efficiently

supporting data migration.

17. Key Words(SuggestedbyAuthor(s))

Distributed machines, data migration,

cacheing

19. Security Classif. (of this report)

Unclassified

18, Di=ribution Statement

59 - Mathematical and Computer Sciences

(General)

61 - Computer Programming and Software

62 - Computer Systems

Unclassified - Unlimited

_. 'Security Cla_if. (of this pa_) 21. No. of pa_s _. Price

Unclassified 18 A03

NASA FORM 1628 OCT 86

NASA-Langley, I_

i

i

