JPL Publication 89-45, Vol. 1

Proceedings of the 3rd Annual
Conference on Aerospace
Computational Control

Volume 1

D. E. Bernard
G. K. Man

Editors

December 15, 1983

NNASAN

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

—

- , PO
S SR S Wu= T

(MATA-L T =Y af ey T LT T s
ANNUAL CohpTO0 0l A wg AL CaMPUTATTaNAL - Tt
CARTROL, VoluMe | 1JdPL) i Lol N9 s NG

wnel s
I TS| G2y

JPL Publication 839-45, Vol. 1

Proceedings of the 3rd Annual
Conference on Aerospace
Computational Control

Volume 1

D. E. Bernard
G. K. Man

Editors

December 15, 1989

NANASAN

National Aeronautics and
Space Administration

Jet Propulsion Laboratory
Caiifornia Institute of Technology
Pasadena, California

This publication was prepared by the Jet Propulsion Laboratory, California institute
of Technology, under a contract with the National Aeronautics and Space
Administration.

ABSTRACT

This is Volume I of two volumes of the Proceedings of the 3rd Annual
Conference on Aerospace Computational Control.

The term Computational Control was coined this year to encompass that
range of computer-based tools and capabilities needed by aerospace control
systems engineers for design, analysis, and testing of current and future
missions. This year's conference furthered the dialogue in this area begun
at the 1987 Workshop on Multibody Simulation in Pasadena and continued
at the 1988 Workshop on Computational Aspects in the Control of Flexible
Systems in Williamsburg, Virginia.

A group of over 200 engineers and computer scientists representing
government, industry, and universities convened at Oxnard for a three-day
intensive conference on computational control. The conference consisted of
thirteen sessions with a total of 107 technical papers in addition to opening
and closing panel discussions.

Conference topics included definition of tool requirements, advanced
multibody simulation formulations, articulated multibody component
representation descriptions, model reduction, parallel computation, real time
simulation, control design and analysis software, user interface issues,
testing and verification, and applications to spacecraft, robotics, and aircraft.

CONTENTS

CONFERENCE FINAL REPORT
"Final Report on the 3rd Annual Conference on Aerospace 1
Computational Control,” Douglas E. Bernard

QPENING SESSION
"An Assessment of Multibody Simulation Tools for Articulated 12

Spacecraft,” Guy K. Man and Samuel W. Sirin
MULTIBODY ADVANCED FORMULATION |

"Spatial Operator Algebra Framework for Multibody System Dynamics,” 26
G. Rodriguez, A. Jain, and K. Kreutz

"An Order (n) Algorithm for the Dynamics Simulation of Robotic 41
Systems,” H.M. Chun, J.D. Turner, and H.P. Frisch

"Aspects of Efficient and Reliable Multibody System Simulation,” 42
R. Schwertassek, C. Fihrer, and W. Rulka

"Systematic Generation of Multibody Equations of Motion Suitable for 43
Recursive and Parallel Manipulation,” Parviz E. Nikravesh,
Gwanghun Gim, Ara Arabyan, and Udo Rein

"Recursive Linearization of Multibody Dynamics Equations of Motion,” 57
Tsung-Chieh Lin and K. Harold Yae

"An Innovations Approach to Decoupling of Multibody Dynamics and 71
Control,” G. Rodriguez

"Efficient Dynamic Simulation for Multiple Chain Robotic Mechanisms,” 73
Kathryn W. Lilly and David E. Orin

"A Nearly-Linear Computational-Cost Scheme for the Forward Dynamics 88
of an N-Body Pendulum,” Jack C.K. Chou

CONTROL DESIGN AND ANALYSIS |

"Sliding Control of Pointing and Tracking with Operator Spline Estimation,” 102
Thomas A.W. Dwyer Ili, Fakhreddine Karray, and Jinho Kim

"A Survey on the Structured Singular Value,” Andy Packard and 103
Michael Fan
"Algorithms for Computing the Multivariable Stability Margin," 104

Jonathan A. Tekawy, Michael G. Safonov, and Richard Y. Chiang

PRECEDING PAGE BLANK NOT FILMED

CONTENTS

"Robustness Analysis for Real Parametric Uncertainty,” 119
Athanasios Sideris
"Computational Issues in the Analysis of Adaptive Control Systems," 120
Robert L. Kosut
"Experimental Experience with Flexible Structures,” Gary J. Balas 121
"A Disturbance Based Control/Structure Design Algorithm," 122
Mark D. McLaren and Gary L. Slater
"Using Deflation in the Pole Assignment Problem with Output Feedback," 140
George Miminis
"Combined Control-Structure Optimization," M. Salama, M. Milrﬁan, 155
R. Bruno, R. Scheid, and S. Gibson

PARALLEL PROCESSING |
"Parallel Processing of Real-Time Dynamic Systems Simulation on 170

OSCAR (Optimally SCheduled Advanced MultiprocessoR),”
Hironori Kasahara, Hiroki Honda, and Seinosuke Narita

“Parallel and Vector Computation for Stochastic Optimal Control 184
Applications,” F.B. Hanson

"A Robot Arm Simulation with a Shared Memory Multiprocessor 198
Machine,” Sung-Soo Kim and Li-Ping Chuang

"A Unifying Framework for Rigid Multibody Dynamics and Serial 199
and Parallel Computational Issues,” Amir Fijany and Abhinandan Jain

"Parallel Algorithms and Architecture for Computation of Manipulator 200
Forward Dynamics,” Amir Fijany and Antal K. Bejczy

"Computational Dynamics for Robotics Systems Using a Non-Strict 216
Computational Approach," David E. Orin, Ho-Cheung Wong, and

P. Sadayappan

" ‘Computational Chaos' in Massively Parallel Neural Networks," Jacob 228

Barhen and Sandeep Gulati

MULTIBODY ADVANCED FORMULATION I

"Multi-Flexible-Body Dynamics Capturing Motion-Induced Stiffness," 229
Arun K. Banerjee, Mark E. Lemak, and John M. Dickens

"Nonlinear Strain-Displacement Relations and Flexible Multibody 230
Dynamics,"” Carlos E. Padilla and Andreas H. von Flotow

vi

CONTENTS

"Nonlinear Finite Element Formulation for the Large Displacement 246
Analysis in Multibody System Dynamics,” J. Rismantab-Sany, B. Chang,
and A.A. Shabana

"Optimum Control Forces for Multibody Systems with Intermittent 247
Motion,” S.K. Ider and F.M.L. Amirouche

“Development of Efficient Computer Program for Dynamic Simulation of 248
Telerobotic Manipulation,” J. Chen and Y.J. Ou

“The Coupling Effects of Kinematics and Flexibility on the Lagrangian 263
Dynamic Formulation of Open Chain Deformable Links,” Koorosh

Changizi

"Explicit Modeling of Composite Plates and Beams in the Dynamics of 264

Multibody Systems,” F.M.L. Amirouche, S.K. Ider, and M. Moumene

"Experimental Verification of Dynamic Simulation,” K. Harold Yae, 265
Howyoung Hwang, and Su-Tai Chern

CONTROL DESIGN AND ANALYSIS Il

"Frequency Response Modeling and Control of Flexible Structures: 277
Computational Methods,” William H. Bennett

“Efficient Computer Algebra Algorithms for Polynomial Matrices 292
in Control Design,"” J.S. Baras, D.C. MacEnany, and R. Munach

"Integrated Control-System Design via Generalized LQG (GLQG) Theory," 293
Dennis S. Bernstein, David C. Hyland, Stephen Richter, and Wassim M.

Haddad

"Modern CACSD Using the Robust-Control Toolbox,” Richard Y. Chiang 294
and Michael G. Safonov

"H2 - and H>~- Design Tools for Linear Time-Invariant Systems," 312
Uy-Loi Ly

"An Algorithm for the Solution of Dynamic Linear Programs,” Mark L. 327
Psiaki

"A Finite Element Based Method for Solution of Optimal Control Problems,” 342
Robert R. Bless, Dewey H. Hodges, and Anthony J. Calise

"A Methodology for Formulating a Minimal Uncertainty Model for Robust 355

Control System Design and Analysis,” Christine M. Belcastro, B.-C. Chang,
and Robert Fischl

ILLUSTRATIVE DYNAMICAL SYSTEMS

“Space Station Dynamics, Attitude Control and Momentum Management,” 370
John W. Sunkel, Ramen P. Singh, and Ravi Vengopal

vii

CONTENTS

"Approximate Minimum-Time Trajectories for 2-Link 371
Flexible Manipulators,” G.R. Eisler, D.J. Segalman, and R.D. Robinett
"Modeling of Control Forces for Kinematical Constraints in the Dynamics 382
of Multibody Systems— A New Approach,” Sitki Kemal Ider
"Application of Numerical Optimization Techniques to Control System 394
Design for Nonlinear Dynamic Models of Aircraft,” C. Edward Lan and
Fuying Ge
"An Inverse Kinematics Algorithm for a Highly Redundant Variable- 407
Geometry-Truss Manipulator,” Frank Naccarato and Peter Hughes
"Determination of Joint Drives for Stable End-Effector Motion in 421
Flexible Robotic Systems," Sitki Kemal Ider
"Control of a Flexible Planar Truss Using Proof Mass Actuators,” 434
Constantinos Minas, Ephrahim Garcia, and Daniel J. Inman
"Simulation Studies Using Multibody Dynamics Code DART," James E. 446
Keat
"On Trajectory Generation for Flexible Space Crane: Inverse Dynamics 447
Analysis by LATDYN," G-S. Chen, J.M. Housner, S-C. Wu, and C-W. Chang
"Minimum Attainable RMS Attitude Error Using Co-Located Rate 449
Sensors,” A.V. Balakrishnan

PARALLEL PROCESSING Il
"Characterization of Robotics Parallel Algorithms and Mapping onto a 460
Reconfigurable SIMD Machine," C.S.G. Lee and C.T. Lin
"Concurrent Processing Simulation of the Space Station,” R. Gluck, 477
A.L. Hale, and J.W. Sunkel
"A Decoupled Recursive Approach for Constrained Flexible Multibody 492
System Dynamics,” Hao-Jan Lai, Sung-Soo Kim, Edward J. Haug, and
Dae-Sung Bae
"Algorithmic Considerations of Integrated Design for CSl on a 513

Hypercube Architecture,” U. Ozgtner and F. Ozgiiner
"A Parallel Structure Transient Response Algorithm Using Independent 525

Substructure Response Computation,” Jeffrey K. Bennighof and Jiann-
Yuarn Wu

viii

CONTENTS

"Parallel Conjugate Gradient Algorithms for Manipulator Dynamic 537
Simulation,” Amir Fijany and Robert E. Scheid

EMERGING INTEGRATED CAPABILITIES

"Methodology for Analysis and Simulation of Large Multidisciplinary 538
Problems,” William C. Russell, Paul J. lkeda, and Robert G. Vos

"Enhanced Modeling Features Within TREETOPS," R.J. VanderVoort and 548
Manoj N. Kumar

"Implementation of Generalized Optimality Criteria in a Multidisciplinary 563
Environment,” R.A. Canfield and V.B. Venkayya

“New Multivariable Capabilities of the INCA Program," Frank H. Bauer, 577
John P. Downing, and Christopher J. Thorpe
"Multidisciplinary Expert-Aided Analysis and Design (MEAD)," 585
Thomas C. Hummel and James H. Taylor
"Overview of Computational Control Research at UT Austin,” Bong Wie 599
"ASTEC—Controls Analysis for Personal Computers,” John P. Downing, 600
Frank H. Bauer, and Christopher J. Thorpe
"Control/Structure Interaction Design Methodology,” Hugh C. Briggs 606
and William E. Layman

LOW ORDER CONTROLLERS
"Model Reduction for Flexible Spacecraft with Clustered Natural 620
Frequencies,” T.W.C. Williams and W.K. Gawronski
"Substructural Controller Synthesis,” Tzu-Jeng Su and Roy R. 621
Craig, Jr.
“Extensions of Output Variance Constrained Controllers to Hard 636

Constraints,” R. Skelton and G. Zhu

"Minimal Complexity Control Law Synthesis,” Dennis S. Bernstein, 638
Wassim M. Haddad, and Carl N. Nett

*"OPTICON: Pro-Matlab Software for Large Order Controlied Structure 640
Design,” Lee D. Peterson

*Robust Fixed Order Dynamic Compensation for Large Space Structure 641
Control,” Anthony J. Calise and Edward V. Byrns, Jr.

"Multivariable Frequency Weighted Model Order Reduction 649
for Control Synthesis,” David K. Schmidt

ix

CONTENTS

"Distributed Neural Control of a Hexapod Walking Vehicle," R.D. Beer, 664
R.D. Quinn, H.J. Chiel, L.S. Sterling, and R. Ritzmann

BEAL TIME SIMULATION

"Combining High Performance Simulation, Data Acquisition, and Graphics 674
Display Computers,” Robert J. Hickman

"Man-in-the-control-loop Simulation of Manipulators,” J.L. Chang, 688
T.C. Lin, and K.H. Yae

"A New Second-Order Integration Algorithm for Simulating Mechanical 700
Dynamic Systems,” R.M. Howe

“The Use of Real-Time, Hardware-in-the-Loop Simulation in the 713
Design and Development of the New Hughes HS601 Spacecraft Attitude
Control System," Loren |. Slafer

"A Real Time, FEM Based Optimal Control Algorithm and its implementation 714
Using Parallel Processing Hardware (Transistors) in a Microprocessor
Environment,” William Neff Patten

"Six-Degree-of-Freedom Aircraft Simulation with Mixed-Data Structure 715
Using the Applied Dynamics Simulation Language, ADSIM," Clare Savaglio

"Six-Degree-of-Freedom Missile Simulation Using the ADI AD 100 Digital 724
Computer and ADSIM Simulation Language,” Koos Zwaanenburg

"Real-Time Closed-Loop Simulation and Upset Evaluation of Control 729
Systems in Harsh Electromagnetic Environments,” Celeste M. Belcastro

*JPL Control/Structure interaction Test Bed Real-Time Control Computer 739
Architecture,” Hugh C. Briggs

"Faster Simulation Plots,” Richard A. Fowell 756
MBODY COMPONENT REPRESENTATION

"Multibody Dynamics: Modeling Component Flexibility with Fixed, Free, 761

Loaded, Constraint, and Residual Modes,” John T. Spanos and Walter S.

Tsuha

"Component Model Reduction via the Projection and Assembly Method,” - 778

Douglas E. Bernard

"Model Reduction in the Physical Coordinate System,” K. Harold Yae 792
and K.Y. Jeong

CONTENTS

"Modal Identities for Multibody Elastic Spacecraft— An Aid to Selecting 805
Modes for Simulation,” Hari B. Hablani
"Issues in CSI Analysis for Large Scale Systems,” Paul Blelloch 818
"Structural Modeling for Control Design (Articulated Multibody 819
Component Representation),” E.D. Haugse, R.E. Jones, and W.L. Salus
"Significance of Norms and Completeness in Variational Based Methods," 831
Joel A. Storch

USER ENVIRONMENT

"The Power and Efficiency of Advanced Software and Parallel Processing," 843
Ramen Singh and Lawrence W. Taylor, Jr.

"Dynamic Analysis of Flexible Mechanical Systems Using LATDYN," 844
Shih-Chin Wu, Che-Wei Chang, and Jerrold M. Housner

"Contro! Design and Simulation of Systems Modeled Using ADAMS," 860
Vikram N. Sohoni

"Multibody Dynamics Mode! Building Using Graphical Interfaces,” Glenn A. 867

Macala

DISTRIBUTED PARAMETER TECHNIQUES
"Controlling Flexible Structures with Second Order Actuator Dynamics," 879
Daniel J. Inman, Jeffrey W. Umiand, and John Bellos
"Approximation in LQG Control of a Thermoelastic Rod,” J.S. Gibson, 891
1.G. Rosen, and G. Tao
*Numerical Algorithms for Computations of Feedback Laws Arising in 899
Control of Flexible Systems,” Irena Lasiecka
"Modeling and Control of Flexible Space Stations (Slew Maneuvers),” 900
N.U. Ahmed and S.S. Lim
"Mini-Mast Dynamic Analysis Using the Truss-Beam Model," Elias G. 915
Abu-Saba, William M. McGinley, and Raymond C. Montgomery
"Neural Networks in Support of Manned Space,” Paul J. Werbos 916

CLOSING SESSION

"A Verification Library for Multibody Simulation Software," Sung-Soo 917

Kim, Edward J. Haug, and Harold P. Frisch

INDEX 929

FINAL REPORT
ON THE
3rd ANNUAL CONFERENCE ON AEROSPACE COMPUTATIONAL CONTROL
Douglas E. Bernard
Jet Propulsion Laboratory

California Institute of Technology

21 NOVEMBER 1989

ACKNOWLEDGMENT

The 3rd Annual Conference on Aerospace Computational Control was designed to advance the
state of the art by bringing together users, researchers and software developers in the field of
computational tools for control system design. Bringing such a conference together required the
support and participation of a large number of individuals. Guy K. Man chaired the conference
organizing committee which included Larry Taylor of NASA Langley, Terry Hinnerichs of the Air
Force Weapons Laboratory, and Mike Jahanshahi and Ray Miller of the Jet Propulsion Laboratory.

Special thanks go to Mike Jahanshahi for organizing the vendor display and Ray Miller for
administrative support of the planning and operation of the conference.

Finally, this conference could not have taken place without the interest and financial support of
NASA, NSF, and DOD.

EXECUTIVE SUMMARY

The term Computational Control was coined this year to encompass that range of computer-based
tools and capabilities needed by aerospace control systems engineers for design, analysis, and testing
of current and future missions. This year's conference advanced the dialogue in this area begun at
the 1987 Workshop on Multibody Simulation in Pasadena and continued at the 1988 Workshop on
Computational Aspects in the Control of Flexible Systems in Williamsburg, Virginia.

A group of over 200 engineers and computer scientists representing government, industry, and
universities convened at Oxnard for a three-day intensive conference on computational control. The
conference consisted of thirteen sessions with a total of 107 technical papers. During the conference,
eleven prominent computer hardware and control system design software companies displayed their
products via hands-on demonstrations.

It was confirmed at the conference that the current control design and simulation tools are a
limiting factor in today's control design and testing and are inadequate for future needs. The areas of
concern are: A) Control design tools break down for high order systems. B) Spacecraft simulation
tools are too slow to be used effectively for design and testing. C) An integrated computer-aided
modeling-design-simulation environment is needed to improve productivity.

INTRODUCTION

The objective of the Computational Control Program is to spur the development of a new
generation of articulated multibody spacecraft and robot modeling, control design, and simulation
software tools. In order to assure a research approach that meets the needs of the community, it is
necessary to bring the researcher, hardware and software developer, and user communities together
on a periodic basis to allow exchange of ideas on requirements and developing capability. This
conference provides a forum for that exchange. The term Computational Control was coined this
year and encompasses the effort begun at the 1987 Workshop on Multibody Simulation in Pasadena
and continued at the 1988 Workshop on Computational Aspects in the Control of Flexible Systems
in Williamsburg, Virginia. These workshops are now considered the first and second annual
conferences (workshops) on Computational Control, respectively.

The objectives of the 3rd annual Conference on Aerospace Computational Control were: 1) To
provide NASA, NSF, and DOD a window into current computational control research and
development in the areas of multibody dynamics formulation, concurrent processing, computational
techniques, and control analysis and simulation software. 2) To allow researchers and tool
developers to exchange ideas and experience on the correctness, efficiency, and usability of current
computational tools. 3) To identify needs in important research areas such as computer-aided control
design and multibody simulation tools which can be dealt with by government, industry, and
university combined efforts. 4) To strengthen cooperation between industry and university
researchers and aid in the transfer of technology from the research level to the users.

Each of these objectives was successfully met. Among the more than 200 conference
participants in Oxnard were representatives from government, aerospace and computer hardware and
software industries, and universities. The conference was led off by an opening session centered on
a panel discussion of requirements for computational control tools and the state-of-the-art of such
tools. The bulk of the conference consisted of thirteen sessions with a total of 107 technical papers.
The sessions ranged from multibody dynamics formulation to parallel processing methods to control
design and analysis tools to user environments. During the conference, eleven prominent computer
hardware and control system design software companies displayed their products via hands-on
demonstrations. The conference concluded with a lively panel discussion focused on future
directions with active participation by users, researchers, hardware and software developers, and
SpPONSors.

It was confirmed at the conference that the current control design and simulation tools are a
limiting factor in today's control design and testing and are inadequate for future needs. The areas of
concern are: A) Control design tools break down for high order systems. B) Spacecraft simulation
tools are too slow to be used 'effectively for design and testing. C) An integrated computer-aided

modeling-design-simulation environment is needed to improve productivity.

This report is organized into three sections: the first describes the opening session with the panel
discussion on requirements and state-of-the-art, the second section discusses highlights of the
technical sessions, and the third section captures the closing session with its panel discussion on
future directions.

OPENING SESSION

Sponsor Remarks

The conference was opened with remarks from each of the sponsors. NASA was represented by
John DiBattista, the manager of the NASA Guidance, Navigation, and Control Program, who
indicated that he planned to make the Computational Control area one of his highest priorities for
funding. Elbert Marsh, NSF program director for Dynamics, Systems, and Control, stressed the
interest of NSF in supporting basic and fundamental research in science and engineering. This
includes computational control to the extent that it addresses generic issues within dynamic systems
and control. Terry Hinnerichs, Chief of the Control and Development Branch at AFWL, described
future DOD space missions which will need the sort of expanded capability at which computational
control is aiming.

Introduction to Computational Control

The conference chair, Guy K. Man, gave an introduction to Computational Control. He
explained that this conference is a sequel to the effort begun at the 1987 Workshop on Multibody
Simulation and continued at the 1988 Workshop on Computational Aspects in the Control of Flexible
Systems. He described the recommendations from the first workshop that led to a needs assessment
effort and the formation of a multibody simulation technology verification committee. The needs
assessment showed that in selected areas of multibody simulation and computer aided control design,
orders of magnitude of improvement are necessary. The progress was interrupted at this point due to
cutoff of SDIO funding. Out of the verification effort and the needs assessment findings, the case
was made to NASA that a new program was needed. Computational Control is that new program.

The objective of Computational Control is to develop a new generation of articulated multibody
spacecraft and robot modeling, control design, and simulation prototype software tools. The
motivation behind this objective is that current tools are a limiting factor in today's control design and
verification, and are inadequate for future needs.

Panel Discussion: Requirements and State-of-the-Art
The panel discussion was organized to give computational control tool researchers, developers,

and users a forum to discuss their perceptions of the state of the art and future requirements. The
panel comprised: Panel Chair Larry Taylor of NASA Langley, John Sunkel of NASA Johnson Space
Center, Glenn Macala of Jet Propulsion Laboratory, John Breakwell of Lockheed Missiles and
Space, Terry Hinnerichs of the Air Force Weapons Laboratory, Guy K. Man of Jet Propulsion
Laboratory, Achille Messac of C. S. Draper Laboratories, Jim Turner of Photon Research Asso-
ciates, and Alan Laub of University of California Santa Barbara. Most panel members gave opening
remarks of 5-15 minutes; Alan Laub gave a full-length paper as requested.

A brief sketch of the panelists' opening remarks follows. Larry Taylor introduced the panel
noting that if we continue business as usual, the computational burden will be overwhelming.

John Sunkel described NASA Space Station requirements. He described the space station as a
multibody system. The approach to flexible dynamics on Space Station is to separate the flexible
modes—starting at 0.1 Hz—from the control Bandwidth of 0.01 Hz. A high fidelity flexible body
simulator is needed for verification.

A test-bed environment is being developed for Space Station support. It will include orbital
dynamics, aerodynamics, gravity gradient effects, sensor and actuator models, and flexible
multibody dynamics. An early flexible body simulation dramatizes the need to improve the speed of
current simulations: a 141 mode model required 7-8 hours to simulate 300 seconds.

Glenn Macala discussed the NASA effort to define computational control tool user requirements.
User requirements are intended to illuminate the path towards efficient realization of computational
control tools. The approach has been to first call out the basic functions of the controls engineer in
the development of a spacecraft control system. Next, the functions of the tools needed to support
the control engineer in his task were defined. In addition, NASA mission models were identified that
would be good candidates to use the next generation of computational control tools. The final step is
to compare the needed functions with the mission models to set performance requirements on the tool
functions.

The report "Computational Control Program User Requirements,” JPL Publication 89-40, is in
preparation.

John Breakwell gave a view from industry. His perspective is that control engineers typically
stick with what worked the last time. The change that he sees is that the availability of real-time
control analysis tools is giving the analyst more ability to go into the laboratory and contribute to the
test and verification activity. He feels that tools which reduce the gap between designers and
implementers would be of great value.

Terry Hinnerichs discussed Air Force space requirements. Focusing on SDI, he described a
wide variety of space systems concepts. One example of where multibody dynamics and

computational control fit in was the problem of a fine pointing telescope attached to a noisy laser
device.

Guy K. Man outlined the results of the multibody simulation codes user survey. A total of 243
questionnaires were sent to 78 organizations. There were 40 responses, covering 27 organizations
and 21 codes. Data collected included documentation, welcome features, additional features desired,
ease of use, typical applications, run time acceptability, and over 20 additional issues. The details
will be included in a paper in the conference proceedings.

Achille Messac discussed the Control Structure Interaction (CSI) problem-redefining it as one of
Control Structure Integrated Design. His message was that the combination of the optimal structure
and the optimal control does not necessarily yield the optimal system.

Jim Tumner discussed current and possible future directions for multibody dynamics software.
He listed three technical breakthroughs which are stimulating current research: Order N algorithms,
symbolic manipulation, and parallel processing. He also identified areas with little current capability
which remain areas for potential growth. These included fluid/mechanical coupling, large deflection
flexible dynamics, and event driven activities such as robot/payload interaction.

Alan Laub gave a survey paper covering control algorithms and software. He started by agreeing
that much of today's software either is not extensible or is inadequate to address future requirements.
He advanced the folk theorem that methods that are good for hand calculation are typically poor for
digital computation.

Accuracy is seen to be dependent on: the conditioning of the problem, the numerical stability of
the algorithm, and the specifics of the hardware and software implementation. In the area of
modeling, problems were identified for transformations between transfer function and state space
realizations for large order systems. Since much problem structure is lost when second order
systems are recast as first order systems, the value of developing control and synthesis methods for
state space models in second order form was stressed.

Laub described the status of current control algorithms as follows: modest size (<200 states),
dense matrices, no exploitable structure, serial computing. Suggestions for future developments are:
use reliable components (for example LAPACK as a starting point,) create an extendible package
rather than including everything anyone could want, and plan a team approach resulting in a
coordinated, broad based, focused, long-term, carefully planned effort.

Open Discussion
Following the panel discussion, Larry Taylor opened the floor to open discussion.

During the open discussion, Ray Gluck raised the issue of funding for computational control
research. John DiBattista responded that there is a definite opportunity for increased funding—but

only if the community can clearly characterize the field as one ripe for solutions to problems of
importance to NASA.

John Hedgepeth addressed the issue of assuring that the results of computational control research
get into real applications. Comparing computational control to CSI he suggested that concrete
examples are needed to make clear where this art can help in the design of advanced performance
spacecraft in ways that are really needed by users of the system.

Ed Haug stressed the importance of Differential Algebraic Equations (DAE) in the simulation of
constrained systems. Alan Laub agreed, adding that control of DAEs is much harder than control of
ODEs.

TECHNICAL SESSIONS

Due to the size of the conference compared to previous computational control workshops, it was
necessary to break the technical sessions up into parallel sessions. The individual technical papers
are described in the conference proceedings.

Any list of highlights would certainly omit important papers, but a few items will be mentioned
to capture some of the flavor of the technical sessions. In the multibody formulation area, von
Flotow addressed the issue of the need for non-linear strain-displacement relations in dynamic
analysis—describing three options as consistent, inconsistent, and ruthless. Rodriguez outlined a
powerful new dynamic analysis approach—"spatial operator algebra." In the parallel processing area,
many authors discussed methods and advantages of fine and coarse grain parallelization. Slafer
addressed the state-of-the-art in real-time hardware-in-the-loop simulation, and Howe put forward
new numerical integration techniques which help increase simulation speed.

A number of papers discussed dynamic analysis applications ranging from the space station to
manipulators to fighter aircraft. Others discussed emerging integrated capabilities: Russell discussed
ISM at Boeing, Bauer and Downing discussed INCA and ASTEC at NASA Goddard, Kumar discussed
TREETOPS work at Dynacs, and Canfield and Hummel discussed ASTROS and MEAD at Wright-

Patterson.
ADDITIONAL CONFERENCE ACTIVITIES

A banquet was held the second day of the conference with Ed Haug of the University of Iowa as
the featured speaker. Haug took a global perspective, looking at the competitive position of the
United States in the world. He concluded that one place that we could leverage our capabilities was

in expanded use of simulation technology to improve the performance and reliability of our products.

Eleven software and hardware vendors displayed their products during the technical sessions of
the conference. These included Applied Dynamics International, AT&T/Circuit Studios, BBN
Laboratories, Boeing Computer Services, Cray Research Inc., Integrated Systems, Mitchell,
Gauthier & Associates, SIKOG Inc (LEVCO), Silicon Graphics, Systolic Systems, and 3-D Visions.

CLOSING SESSION

The closing session was designed to bring everyone back together after two days of parallel
sessions for two general interest papers followed by a panel discussion on future directions.

Full-Length Papers

The first speaker was Ed Haug of the University of Iowa, who described the concept of a
Verification Library for multibody simulation software. The idea of a verification library is to build
up a public domain library to store data for example problems. The intent is to facilitate the
comparison of test results and the results from different multibody simulation codes. The library
would contain model information, simulation results, test definition data, and processed test data.

Three flexible multibody codes are being compared at this time: DADS, DISCOS, and CONTOPS.
Fundamental differences between these codes include: DADS and DISCOS use absolute coordinates
where CONTOPS uses relative coordinates, DISCOS uses Euler angles to define joints while CONTOPS
and DADS use unit vectors. In DISCOS and CONTOPS, the user must specify a kinematically
acceptable initial condition, while DADS will solve an optimization problem to provide the initial
condition based on estimates of the states. These differences make the job of designing a translator
between input data sets for these codes difficult. The complete paper discussing the above is in the
conference Proceedings

The next speaker was John Doyle of the California Institute of Technology. Doyle gave his view
of the history of control theory and its future directions. His main message was that for the "post-
modern" control era we should emphasize control as a strategy for dealing with uncertainty.

Panel Discussion]

Guy K. Man moderated the panel discussion with the theme "future directions.” The panel was
composed of government sponsors, users, software/hardware developers, and academicians. John
DiBattista of NASA Headquarters and Terry Hinnerichs of the Air Force Weapons Laboratory
represented government sponsors. Government and industry users of Computational Control tools
included: John Sunkel of NASA Johnson Space Center, Loren Slafer of Hughes Aircraft, and John
Breakwell of Lockheed Missiles and Space. Hardware and software developers were represented by

Jim Taylor of General Electric, Doug Petesch of Cray Research, and Dan Rosenthal of Symbolic
Dynamics. Academic participants included George Lee of Purdue University, Alan Laub of
University of California Santa Barbara, and John Doyle of the California Institute of Technology.

Guy K. Man started off the discussion by relating firsthand experience with existing tools
leading to the conclusion that they are too slow for use for spaceflight projects. He mentioned the
mission models currently being considered as computational control reference problems. Other
possibilitics mentioned by panelists and attendees included Lunar/Mars initiative spacecraft, space
transportation systems, solar-electric propulsion, solar sail, national aerospace plane, SDI directed
energy spacecraft, and tether systems. |

George Lee mentioned a related program in flight controls sponsored by the Wright Patterson
Research Center. He had two key messages based on their experiences: use the best quality low
level numerics package you can find, and when considering user friendliness, think of the expert
user as well as the novice.

Alan Laub stressed that current state-of-the-art numerical analysis software such as EISPACK and
LINPACK were only possible due to stable long-term funding, and that year-to-year funding tends to
lead to the taking of shortcuts.

The issue of the interaction between the control engineer and the computer scientist in
computational control was raised. Amir Fijany raised the issue of the importance for the controls
and dynamics specialist to know the power of parallel processing. Similarly, Dan Rosenthal related
from his experience the value of bringing in the talents of computer scientists at an early point. The
flow of tool requirements from control engineers to computer scientists was discussed, and
additional comments stressed the feedback from the computer scientists back to the control
engineers.

John Doyle sees a set of core control routines—comparable to computing eigenvalues of a
matrix—that are essential to being able to solve the types of problems that we talk about, and need a
lot of work for actual implementation. He also finds that MATLAB-type packages, while good for
linear algebra, have completely inadequate data types for control.

The issue of the lack of standardization in interfaces between packages was raised. This is an
issue that many groups are concerned about. Jim Taylor mentioned that the International Federation
of Automatic Control (IFAC) has a working group studying standardization of data structures. Terry
Hinnerichs referred to a Russell's paper at this conference describin g a AFWL sponsored effort tying
together structural dynamics, controls, thermal and optics codes. This development is the Integrated
Structural Modeling (ISM) program, which is to go into beta testing in 1990.

10

Doug Petesch suggested that users explore supercomputing capabilities before presuming that the
solution required parallel processing. He also mentioned the advantage that comes from doing
software development as well as production runs on the supercomputer. The value of a hypothetical
teraflop machine was discussed. It was agreed that while valuable, it would not solve all the
problems—such as numerical difficulties with higher order systems. In addition some thought that
the same speed could be achieved at a much lower cost using parallel processing.

Dick Vandervoort of DYNAC referred back to John Doyle's comments about uncertainty, noting
that multibody dynamics modeling gives highly detailed models—more detailed than the control
designer needs or wants. In fact most of it is uncertainty, and what we need is a way to model that
uncertainty in a way that can be used in the control design

Perhaps John Hedgepeth's comment best summed up the reason to move forward with
Computational Control. Summarizing the comments of several speakers, he noted that we are
proceeding ahead conservatively in control system design for planned missions, and that without
improvements in technology—we are choosing to design only spacecraft that we already know how
to design.

11

N90-22988

An Assessment of Multibody Simulation Tools
for Articulated Spacecraft

Guy K. Man and Samuel W. Sirlin

The Jet Propulsion Laboratory
The California Institute of Technology
4800 Oak Grove Drive, Pasadena, CA 91109

Introduction

A survey of multibody simulation codes was conducted in the spring of 1988, to obtain an
assessment of the state of the art in multibody simulation codes from the users of the codes.
This information will be used to evaluate the need to develop future codes. If this need is
established, it will also be used to guide the development of future capabilities. A questionnaire,
covering 30 issues, was developed for this purpose. Sixty questionnaires were sent out to 50
organizations. We received 40 replies from 30 organizations covering 21 simulation codes.

This survey covers the most often used articulated multibody simulation codes in the
spacecraft and robotics community. There was no attempt to perform a complete survey of all
available multibody codes in all disciplines. Furthermore, this is not an exhaustive evaluation
of even robotics and spacecraft multibody simulation codes, as the survey was designed to
capture feedback on issues most important to the users of simulation codes. We must keep in
mind that the information received was limited and the technical background of the respondent
varied greatly. Therefore, this paper only reports the most often cited observations from the
questionnaire. In this survey, it was found that no one code had both many users (reports)
and no limitations.

The paper is organized as follows. The next section is a report on multibody code applica-
tions. Following applications is a discussion of execution time, which is the most troublesome
issue for flexible multibody codes. The representation of component flexible bodies, which
affects both simulation setup time as well as execution time, is presented next. Following com-
ponent data preparation, two sections address the accessibility or usability of a code, evaluated
by considering its user interface design and examining the overall simulation integrated envi-
ronment. A summary of user efforts at code verification is reported, before a tabular summary
of the questionnaire responses. Finally, some conclusions are drawn.

Applications

It is not surprising that general purpose multibody simulation codes are used to address
spacecraft and robotics with articulated elements, because of the complexity of the equations

g .

of motion. Some codes are equipped to simulate ground vehicles or aircraft. The actual
applications include control design and verification, deployment simulation, machine design,
impact simulation, tether simulation, explosion simulation, and human in-the-loop real time
simulators for the Space Shuttle and Space Station. About 70% of the users reported that
multibody codes are used for control system design and verification. The remaining 30% apply
multibody codes for system design and dynamics studies. It is also reported that multibody
codes are used to check other codes. For example, a rigid body code might be used to check a -
more complex flexible multibody code.

System order exercised varies from a robot arm with less than 10 states to a Space Station
model with 150 states. One user reported trying a model with over two hundred states with
modes up to 1000 Hz using DISCOS. Flexible body systems usually are higher order systems
than rigid body systems, and the simulation duration is usually shorter. Simulation duration
does however vary according to the application.

Execution Time

Excessive execution time is one of the two most cited shortcomings of current multibody
codes. This concern applies especially to flexible multibody simulations. Existing codes are so
slow for most problems that it is impossible to use them during the design phase when quick
turnaround is needed. Highly simplified flexible models or even rigid body models must suffice,
even though the control system designer fully recognizes that the result may be inaccurate.
For example, consider a 20 degree of freedom flexible system with flexible modes less than 100
Hz. The CPU time to real time ratio for this example is 200/1 on a VAX class computer.
As the system order becomes higher, the computational load will become much more stressing
because the computational load scales as N3, for the current codes, where N is the number of
degrees of freedom.

It is interesting to note from the survey that the simulation durations for flexible body
problems are usually short (seconds). Very few users are using flexible codes for long runs.
From the data, simulation duration is seen to be inversely proportional to the system order.
This telltale observation indicates that flexible multibody simulation codes are not being used
extensively, because long duration simulation costs are too high. One of the respondents
summarizes this quite well - “Multibody run times are seldom acceptable. You either pay the
price or get approximate answers.”

Getting an approximate answer is the only way to reduce excessive execution time for given
hardware and software. Approximation of flexible multibody systems is done most commonly
by reducing the order of the individual flexible body dynamics, in fact often reducing the bodies
down to rigid bodies. More than one user reported that fast rigid body simulations were used
to check the more complex flexible body simulations. If appropriate, the more complex flexible
body simulation is abandoned in favor of the faster rigid body code. The model reduction
approach has not been included in this survey. But some observations of this method are
discussed in the next section.

13

Component Model Representation

One of the major concerns in modeling a flexible multibody system is how to obtain data
for the component elastic bodies. Among the flexible multibody codes surveyed, all except
one code use the modal representation for flexible bodies. The primary benefit of using a
modal representation is “simplicity,” which can lead to reduced computation time. There are
a variety of modes one can use to represent the individual bodies of a multibody system, such
as Hurty modes (Craig Bampton modes) or cantilever modes. The modes of each body have
to be supplied to the multibody code which will then synthesize the modes of the component
bodies to arrive at a system model for time simulation.

The body of knowledge of choosing the best component mode set for system synthesis
is called component mode synthesis. This includes both choosing the type of modes to use
(possibly several) as well picking out which of the modes must be retained for simulation
fidelity. The various component mode sets were developed for this purpose, however they were
developed for systems with no articulating components, essentially static system geometry.
Flexible multibody codes, on the other hand, were developed to model dynamical systems with
varying geometry. The applicability of component mode synthesis results to multibody analysis
is not well understood and care must be taken in each specific case to ensure that the results
are correct. One question that needs to be asked often is whether or not a set of component
body modes is complete over the range of interest of the articulation angles (or translations).
After the system is synthesized in the multibody code, a check can be made against a higher
fidelity linear model such as a NASTRAN system model only for a fixed geometry.

It was pointed out in the previous section that model reduction is one of the commonly used
methods to obtain an approximate solution. This is a necessary step for obtaining a reasonable
simulation computational time. A variety of methods exist to pick out the significant modes.
These arose out of the the slightly different model reduction problems of control theory. What
model reduction criterion should one use to obtain an adequate approximate multibody model?
No definitive answer exists, but the answer certainly depends on how the simulation is to be
used. For example, if the simulation is to be used for control system design, then controllability
and observability criteria may play a part. It may also be useful to consider the control design
problem simultaneously with the model reduction problem. In some multibody codes the level
of modal approximation used (for example the DISCOS mass distribution options) ties directly
into the flexibility data preparation process, compounding the data preparation problem.

Considering these issues, it is not surprising that the survey indicates flexible data require-
ments are obscure, challenging, poorly treated and inadequate. Considerable research remains
to be done in component model representation.

User Interface
One of the most common complaints concerning current multibody simulation codes is

the lack of interactive model setup capability. Codes that have a friendly input format win
praise from the users. Interactive, menu driven type preprocessors with good error messages are

14

indicated as highly desirable. Incomplete documentation of the code was the second most cited
complaint. Sophisticated users also desire well commented source code, especially if the user .
manual is inadequate. Online manuals and documentation were mentioned by several users as
highly desirable. For flexible multibody codes, the availability of the theoretical background on
which the code is based is very important. In addition to documentation, application examples
are found to be an effective way to train users. It was also indicated that examples are needed
for modal data preparation.

At the output interface, data retrieval flexibility and graphics seemed to be most impor-
tant. Users were divided on whether they wanted built-in plotting capabilities or whether they
simply wanted the ability to export data to their own favorite plotting programs. The survey
did not indicate any major concerns in this area.

Integrated Environment

Multibody codes are sometimes used as stand alone tools but more recently complex
flexible multibody codes are often used in conjunction with other software such as finite element,
control analysis, or optics codes. In the latter environment, the multibody code becomes
a fundamental building block of an integrated design and analysis environment. Some of
the codes surveyed, such as TREETOPS, are actually a microcosm of such an environment.
This is a natural development trend, because multibody systems are becoming more complex,
forcing system engineering work to become multidisciplinary. The survey pointed out that
no environment can satisfy everybody. Every organization has its own culture and emphasis.
Everybody has some pet code. It is therefore perhaps wise to treat multibody codes as modular
building blocks which can be easily integrated into a bigger environment. If this is the approach
we adopt, then there is a need to define a standard interface for data passage.

There are a number of additional capabilities that users found helpful beyond the gen-
eration and integration of equations of motion. These are: a library of joints sensors and
actuators, the ability to obtain constraint forces, transfer functions, Jacobians, and key state
matrices for external control analysis, the ability to incorporate user defined subroutines, and
of course a model reduction preprocessor.

Verification

A number of codes have been independently checked by users with other codes. Most
users utilize simple test cases and the principles of mechanics to check simulation results. Of
the test cases reported, none are designed to check flexible body effects. This is not surprising,
because if component model data generation is not well understood, the verification of the
model must also be nontrivial. More work should be done in this area so as to add confidence
in the simulation results and the flexible multibody codes.

It is suggested that a set of standard test cases be collected, which can be used by the

community to check both existing and new simulations codes. The set should include simple
test cases with known simulation results as well as actual experiments with test data. This

15

collection process has been started by NASA and the University of Iowa.
Tabulated Data

The user questionnaire data has been summarized in the following tables. Table 1 gives the
availability of the multibody code, as well as how many respondents used each code and how
extensive the information provided by the users was. Almost all of the software is available,
either commercially or in the public domain (COSMIC).

Table 2 gives various details of how users used the codes, and what code features they
liked or felt needed improvement. Typical applications and whether or not the run times were
acceptably fast are given, as well as what component data the code required and, in general,
how easy the code was to use. User comments are included on the quality of the documentation
as well as what features of the code they liked, and what features could be added to improve
productivity. Following are some comments on the individual columns.

There was a wide range in documentation quality, from “clear and precise” to “inadequate
overall,” which in general indicates how much care the developer took with making the code
easy to use.

There was very little overlap from code to code of features that the users appreciated.
Some users liked the user interface of some codes, while one code was notable for animation,
and another for being database driven. Two features that did show up more than twice were
the ability to add user-defined subroutines, and a library of application modules.

There was also a wide variety of additional features that the users desired, again with
surprisingly few common needs from code to code. Significant needs included better documen-
tation (mentioned for four codes), and a better data interface capability (also mentioned for
four different codes).

The acceptability of the simulation run times was much more uniform. The rigid body
codes were all considered acceptably fast, while the flexible body codes were, in general, ac-
ceptable only for small problems.

There was considerable variety in the user comments on the type of data needed for the
representation of flexible components, indicating the lack of maturity of this area.

It is important to keep in mind that some multibody codes have been around for a long
time and so have an extensive user and applications base, while other codes are new and have
only been used by relatively few people on a small number of examples.

Conclusions

Examining the reports of existing multibody code users, three facts become evident:

16

1. Tt is difficult to use flexible multibody codes in design and analysis due to the long execution
times for realistic problems,

2. Representation of component flexible bodies is poorly understood, and
3. Not enough thought has been given to the user interface by the code developers.
At the Workshop on Multibody Simulation in 1988, JPL made a commitment to coordinate
a multibody code verification, as part of an ongoing effort of the whole multibody simulation
community. This survey report, as well as the verification library begun jointly with the
University of Iowa, represent the first steps toward meeting that commitment.
Acknowledgement
The Research described in this paper was performed by the Jet Propulsion Laboratory,

California Institute of Technology, under contract with the National Aeronautics and Space
Administration.

17

81

TABLE 1 MULTIBODY SIMULATION CODES INCLUDED IN THE SURVEY

of Information . e Host
Code Contact Repiys Received A\Iallablllty Computer
“‘
« Cray + Prime
«NEC + Cybe
Rajiv Rampali + IBM . SGyI f
ADAMS MO Inc. 3 extensive yes, commercial * Alliant - HP
3055 Plymouth Rd. .c .S
Ann Arbor, MI 48105 onvex \n
! * DEC « Apollo
+ Intergraph
Jimmy Ho
Lockheed Missiles & Space Co. » CRAY
Space System Division 1 moderate yes * VAX
ALLFLEX 1111 Lockheed Way
Sunnyvale, CA
David Levinson
93-30s250
AUTOLEV Lockheed Palo Alto Research Lab 1 moderate yes, commercial IBM PC/CLONE
3251 Hanover Street
Palo Alto, CA 94304
John Sharkey
CONTOPS Code ED 12 4 extensive yes, COSMIC * MICRO VAX
Marshall Space Flight Center * HP 9000
Alabama 35812
« VAX * Muttiflow
« Alliant < Prime
CADS|, Inc. + Apollo -« Silicon Graphics]
DADS P.O. Box 203 5 extensive yes, commercial «+ Cray -IBMPC
Oakdale, A 52319 - DEC + Computervision
«IBM + Cyber
* Sun * HP

61

of Information . . Host
Code Contact Replys | Recelved Availability Computer
A.A. Shabana
P.O. Box 4348
DAMS Dept. of ME 1 limited yes IBM
U of lllinois @ Chicago
Chicago, IL 60680
COSMIC - IBM 3080, 770
U. of Georgia
DISCOS Computer Service Annex 7 extensive yes, COSMIC *+ VAX 11/780, 750
382 E. Broad Street * MICRO VAX
Athens, GA 30602
i
0ot Cinonars - 1BM 4043
DYNOCOMBS Dept. of ME & IE 1 moderate yes .« VAX 1170
Cincinatti, OH 45221-0072
Jim Lawrence
NASA JSC
DYNA/EF3 Mail Code EF3 1 moderate yes Gould Concept 32
Houston, TX 77058
Farid Amirouche
Dept. of ME
DYNAMUS' 3'3,‘ Iﬁi:;:aéacmca o 1 extensive yes * 1BM 370
9 . VAX 11/780

Chicago, IL 60680

ADDITIONAL TYPICAL EASY AUN TIME FLEXIOLE
pocumenTAnioN | WELCOME PEATURES vesn
CODE FEATURES DESIMED EXPEMENCE APPLICATIONS TO UsE ACCEPTABILITY COMPONENT DATA
Generic + Moderately +Opsnandciosed |- Betwr VO . Doss not mode!
documented chain dyramics + Flexbody dynamics i . g
Manipulator |. Seuce eviedie | loeds | limited Manipulator yes yo Hexibility
Simulation and commented
+ Manual availsbie | « Easy 10 use finite | - Nesd restart * RMS slew on
+ Source available elamant code + Betier naming spacestation
and cormynented « Modeling of corwertion « impact, lockup)
LATDYN forces + Available for newer moderate yos Problem depandant Ensy, finite slement
* Macros computars approach
- Sixtic Anaiysis
* inmeractive
pregrocasssy
Partial, subroutines | « Dassbase driven | - More generic N body modenas » Loads o « Not acceptable for Lumped mase
MIRRORS are not completely code * Shutte RMS flexible problems - Crai Bampeon
- User manual « Easy 10 change » Better documentation « Shutte RMS - Easy setup = Problem dependent « Made shape functions
+ Source not configuration + Graphic preprocessor moderate - Spacecraft - Acceptable on Cray
aveilable, lightly | + Symbolic pre- « Torsionai flexibility
MULTFLEX documented processor « Transfer function
« Code generation
capability

ALITYND ¥00d 40

Si 30vd TYNIOINO

¢4

Host
Computer

Martin Tong

The Aerospace Corp. CDC Cyber 175
MULTFLEX MS (M4/972) 4 moderate proprietary yber
P.O. Box 92957 « Cray X-MP
Los Angeles, CA 90009-2957

of Int i ' -
Code Contact Roplys | Facerved Availability

COSMIC

University of Georgia o
NBOD2 Computer Services Annex 1 limited yes, COSMIC VAX 11/785
382 E. Broad Street
Athens, GA 30602

« VAX 11/785

ban A Dl - |1BM 3090

an Rosen . : « VAX Station 1l

SD/EXACT 11585 Silvergate Drive 6 extensive yes, commercial « Sun Workstation
Dublin, CA 94568 « HP-9000

« MICRO VAX

cOosSMIC

SPASIS University of Georgia - VAX 8650
Computer Service Annex 1 moderate yes, COSMIC + Harris-800

382 E. Broad Street
Athens, GA 30602

: John W. Sunkel
Station Control NASA JSC

Simulation Mail Code EH2 1 limited yes CYBER 830
Houston, TX 77058

John Sharkey
NASA MSFC
TREETOPS Code ED 12 3 moderate yes, COSMIC VAX
Marshall Space Flight Center
Alabama 35812

[44

TABLE 2 USER EXPERIENCE

ADDITIONAL USER TYPICAL RUN TiME FLEXIBLE
CODE DOCUMENTATION | rEATURES FEATURES DESIRED | EXPERIENCE APPLICATIONS EASY TO UsE? ACCEPTABILITY COMPONENT DATA
+ Subsystem & system reduced siifiness
*Extensive rmodeling + 9 commercie! v
« udu:w . Joint (>100 Engineers + Suspension Design Preprocessors Problem - Direct physical
| ADAMS wu;‘mw :"'A:‘:"'FY:“WW . Bult in conrol siements| raned at MDI) « Ride Anslysis sav-hblo
- Theory Notes + Ful Femure Restat |* Theory manual Fully stfed ASOPAE o graphice] * Handies & geometric
* Souros not avaliable |- imeriace 10 MatrixX hotiine support + Rabotics imation post nonlinearites
* Postproosesor with e suppo » Spacecralt Simuiation « Sandard beamn and
Animasion + Mechanism anaiysis processors field elements
l * User_Subroutines g desion I
. . Format is well
* Documantation « Easy and fast 10 * Menu driven input extensive Spacecraft yos Problem deperdent defined
ALLFLEX * Source not avaliable | assembie simulation
 Documented l* Very versatile + Robotic device
AUTOLEY - On-line heip * PC based + Spacecraft Handies systams of
comyrand o Explicit symbolic Nore thus far moderate yoe yos rigid bodies only
I Source not aveilable| equations
« More heip in error
tracing
« Modal data prep + Robots * More flexibility in
+ VO weil do « Inter v - AMS o ; flex-body
« Inner workings not | prepr + More application axtonsive * Spacecraft yos aq, not accepiable for | L Ll ion
CONTOPS well documeniad |+ Plotting nicely done | sxamples * Robot experiment flexible problems | H..:blo augmentation
- Code comments * Sensor model + Smart Structures 1s obecure
skatchy * More boundary con-
ditions for flex data
* Fraquency response datal
+ Expand output st
+ CAD/CAE interfaces |* More sophisticated « Component modal
* Preprocessor POSIprocessor synthesis
* Well documented - Control system * interface o control | . Extensive - Servo control of + Intortaces 10 NASTRAN,
H * Source not avaiable mogeiing slements | analysis package * Fully stffed robot arme ANSYS, ABAQUS
DADS + User's manual + PoStprocessor - Stop/testart hotiine support * Vehicle simulation yos Problem dependent |, anes alt geometric
* Examples manual « Extremely stable |° Error messsges « Mechanisms noniinearities
integration * Control Analysis - Spacecraft
capability
+ Machine design "
User subroutine not avaiisbie moderate « Robot Mixed Prablem Dependent Normal modes
facility « impact

It

ALITVNO ¥o0d 0
o] 3nVd4 TYNIDIHO

£€C

ADDITIONAL '
CODE DOCUMENTATION | WELCOME FEATURES usEn A TIONS EASY RUN TIME FLEXIBLE
FEATURES DESIRED EXPERIENCE To use ACCEPTABILITY COMPONENT DATA
— —_— - I —
; H u., qener - Nuch befiar docy —— — e
» User facility . men
« Source code subroutine . Much beller Lser » Spacecraft « No
commented -m&:d interface + Rapid retargeling « Problem dependent + Normal modes
H « Fastar code extensive manewvers * Need thorough .
Discos + Documentation ‘;’""“" -B.onun cal « Deployment undarstanding » Too slow for high + Any mode shepe
inadequate overall | Very lew bugs now stability + Propellent siosh of code order sysiems
. Wide user 4. a o + Check other code
*Trustworthy
o . Well documented |+ Efficiency + Animatad output ‘ T’,"r" of submarged Flexibdity is modeled
YNOCOMBS + Source avsilable [* Broad Applicabilityle Menu driven input modenais « Robotic you you at joints
+ Human body
. Mathematical model * Human-in-the-loop
docurnentation Extensi) real lime simuiator
. Soltware design | —Lunsve vehicle |, Expert systems shell for shuttle and
DYNA/EF3 Software de lbvary - Beter control of e — space siason ,, . Does not made
+ Source available time, transport delay « Shuttie RMS ar yos (real time) tiexibility
and commentad shuttie/station
docking
« Friendly input
format
« Automatic
eliminagon of
DYNAMUS Yeu, ¢ . . Constraint Tree, Normal mudes
ear, procise :"9‘"‘""9‘""“ N/A ndemis Flexibile Spacecraht yos goad Camponent mode
o H consaas . depioyment, Manipuiator analysis
noniinearities
+ Not well
- Fast - Better VO
FB2 + Source Is Lots of optons |- Better documantation limited : ns"‘"”'" yos yos Craig-Bampton
commentsd . Luqo rotation between modes

ALMYnd ¥00d 30
Si 39v¥d TYNIDO

(4

’_———'——_—_'———'———————_——————-—-—‘. T
RUN TiMg FLEXIBLE

ADDITIONAL TYPICAL EASY
pocumenTATION | WELCOME FEATURES usen
CODE FEATURES DESIMED EXPENENCE APPLICATIONS To use ACCEPTABILITY COMPONENT DATA
I — ——
Yas, but initial 9 v RASTRAN
N . investment 1o learn .
FLEXIM Well documenied * Very fow bugs Not avsilable limited * Spacecraft he code is high N/A POSIPrOCessOr exists
* Moderately + Open and closad - Betler VO
g'":"‘: . documeniad chain dynernics and |+ Flexbody dy limited « Manipulator yos you °°", ""'.'I'.'"‘"
shipulator + Source svailable foads lexibility
Simuiation and commanied
+ Marusi available |- Easy 10 use finite |+ Need restart + RMS siow on
* Source avsilbie slement code - Botier naming space staion
LATDYN and commeniad « Modeling of conrol{ corwention + Impact, lockup
forces « Available lor newer moderats yos Problem dependent Easy, finite element
* Macros computers approach
» Siatic Analysis
+ Interactive
Preprocessor
MIRRORS Partial, subroutines |- Database driven |+ More generic N body modenate * Loade o + Not acceptable for « Lumped mese
are not completely code * Shule RMS flexible prablems « Ciaig Bampion
documentad
« User manual - Easy © change » Belter documentation - Shutile AMS > Easy setup « Problem dependent * Mode shape functions
« Source hot configuration » Graphic prepr o » Spacecraft * Acceptable on Cray
MULTFLEX available, ighty |- Symboiic pre- |- Torsional flexibility
documenied processos * Transfer function
+ Code generation
capability
\|L=‘ — -~

ALYNDd HoOd 40
Sl 39Vd TYNIDIMO

Y4

R R R} R R e — — —————— —————
—_—— —
ADDITIONAL TYPICAL EASY FLEXIBLE
DOCUMENTATION WELCOME FEATURES USER RUN TME
CoDE FEATURES DESIRED Expemence | APPLICATIONS TO use ACCEPTABILITY | COMPONENT DATA
—————— e —————— — — —— ~
+ Indexing scheme on ree,
- Faity wol can be improved
. Source availeble | reProcsssor code |- Simple application imi - Attitude control of . yos, but should be Doss not modal
NBOD2 anxd commanted s hoiphst axamples desied limited spacecratt mixed improved Hexibility
+ Good manuai « Configuration |- More efficient) . f Doss not modet
SD/EXACT - Source code not parameters can be | memory use oxtensive « Robot yos yos flexipility
available changed at run time{+ Handie flexibility « Robot experiment
* Fast - Graphics « Code checking
¢ Variable degree of
freedom
* Large space
platforms
= Well Documented |+ Good documentation|. More efficient aero- + Smail space Doas not model
SPASIS - Source available |+ User frienat dynamics and propelk o platiorme you you Hexibility
and commanted inputs dynamics options + Propeliant dynamics
» Baich processing | Animation + Dacking
utiites - Reboost ability
- Extonsive earth
orbital dynamics
« Modular design « Model reduction code - Space station GN&C
+ Seif contained « Faster code design Outputs 2 and 4
Station + Code documantad » limited - RCS reboost yos Excassive when fisxible trom NASTRAN
Control + Source avsilable mansuver model used
Simulation and commenisd
+ Fleasonably - Interactive + Cortain Rex inputs not
documentad moderate « Shutle and payloads . Di i
TREETOPS S . sable |. opnp;wm 1uly :bﬁnod . mton usuaily Pwdlz high for Duillcult, ud‘dat_i‘oml
but not thoroughly |, | inrery of « Cumbersome o ¢ Wing fap S + Modes are resriciive
commented ackusiors and - Wwwmwz“m *+ Check other codes
sensors user subroutines
M E— E——

Aynd unod 30

1
£

Lt T Dido

1
J

g

N90-22989

SPATIAL OPERATOR ALGEBRA FRAMEWORK FOR MULTIBODY
SYSTEM DYNAMICS

G. Rodriguez, A. Jain, and K. Kreutz
Jet Propulsion Laboratory/California Institute of Technology
4800 Oak Grove Drive, MS 198-219, Pasadena, CA 91109

Abstract: This paper describes the Spatial Operator Algebra framework for the dynamics of general
multibody systems. The use of a spatial operator-based methodology permits the formulation of the dy-
namical equations of motion of multibody systems in a concise and systematic way. The dynamical equations
of progressively more complex rigid multibody systems are developed in an evolutionary manner beginning
with a serial chain system, followed by a tree topology system and finally, systems with arbitrary closed
loops. Operator factorizations and identities are used to develop novel recursive algorithms for the forward
dynamics of systems with closed loops. Extensions required to deal with flexible elements are also discussed.

1 Introduction

The field of multibody dynamics is currently being challenged in two major ways. The increase in the size and
complexity of spacecraft systems requires the development of tools that not only help manage the complexity
of such systems, but also facilitate the development of novel dynamics formulation techniques and solution
algorithms. Areas such as robotics involve multibody systems consisting of multiple robot manipulators
interacting with each other and with complex environments. These are multibody systems with not only
constantly time-varying topological structure, but also ones in which the constituent bodies change with
time. Coping with this aspect requires versatile and flexible dynamics simulation tools.

In this paper, the Spatial Operator Algebra Framework [1] is used to develop a systematic procedure
for concisely formulating the equations of motion and derive spatially recursive forward dynamics algorithms
for multibody systems. The equations of motion of progressively more complex rigid multibody systems such
as serial chains, tree topology systems and finally closed chain systems are developed. Operator factorizations
and identities are then used to obtain efficient spatially recursive algorithms for the forward dynamics of
such systems. Extensions to handle flexible link elements are also discussed.

2 Equations of Motion

We begin by briefly describing the coordinate-free spatial notation used throughout this paper. Given the
linear and angular velocities v and w, the linear force F', and moment N at a point on a body, the spatial
velocity V, spatial acceleration o and the spatial force f in RS are defined as follows:

A w A A N
2 (7). ee e ()

The rigid body transformation operator ¢(.) € R*S is defined as:
a (11

26

where [is a vector joining two points, and [is the cross-product matrix associated with I which acts on a
vector to produce the cross—product of { with the vector. ¢(!) and ¢*(!) transform spatial forces and spatial
velocities respectively between two points on a rigid body seperated by the vector I. For a rigid body, its
spatial inertias Mc and Mo at its center of mass C' and at another point O respectively, are defined as

A JC 0 A N J(O) mp
mer2 (760) e Mo 2 s = (79)
where p is the vector from O to C, m is the mass of the body, and J(C) and J(O) are the inertia tensors
for the body about C and O respectively. The reader is referred to [2] for additional discussion on the use

of spatial notation.

2.1 Dynamics of a Serial Rigid Multibody System

Serial rigid multibody systems form basic subsystems from which the dynamics of more general rigid multi-
body systems can be generated. In this section we derive the equations of motion of a serial multibody system
consisting of n rigid links connected together by multiple dof joints. The links are numbered 1 through n
from tip to base. We use the terms outboard (inboard) link to refer to a link on the path towards the tip
(base).

The set of configuration variables for the serial chain are the collection of the joint configuration
parameters. It is assumed that the k'* joint possesses rp(k) positional dofs parameterized by the vector of
configuration variables #(k) (of dimension at least r,(k)), and that its r, (k) motion dofs are parameterized
by the r,(k) dimensional joint velocity vector A(k). The kinematical equations which relate (k) to B(k)
depend on the specific nature of the k*# joint. It is assumed for notational convenience that all the joint
constraints are homogeneous (i.e., catastatic). H(k) is defined such that H*(k) is the 6 x r,(k) joint map
matrix for the k™ joint whose columns span the space of permissible relative spatial velocities Ay (k) across
the joint. The complexity of the dynamics algorithms for the serial chain is determined by the number of

overall motion dofs N 2 > k=1 Tu(k) for the chain. The state of the multibody system is defined by the
collection of [0(.), B(.)] for all the joints, and is assumed known.

Since each link is rigid, it suffices to develop the equations of motion at a single reference point
on each link, which is taken to be the inboard joint location (9 for the k'® link. With V (k) denoting the
spatial velocity, a(k) the spatial acceleration, f(k) the spatial force and T'(k) the joint force at Oy for the
k' link, the following Newton -Fuler recursive equations describe the equations of motion for the serial rigid
multibody chain:

Vin+1)=0, an+1)=0

fork = n---1
Vk) = ¢ k+1L,)V(k+1)+ H'(k),{?(k)
a(k) = ¢*(k+1,k)alk+1)+ H*(k)4(k) + a(k)
end loop
(2.1)
F(0)y=0
fork = 1.-..n
f(k) = ¢(k+1,k)f(k—1)+ M(k)a(k) + b(k)
dT](k) = H(k)f(k)
end loop

a(k) and b(k) are the velocity dependent Coriolis acceleration and gyroscopic forces repectively for the
k*™ link at O . &(k, k — 1) denotes the transformation operator from @;_; to @; . For additional details
regarding the derivation .of these equations of motion, see [1]. We have made the simplifying assumption

27

that the tip force f(0) is zero. Attaching a full 6 motion dof joint between the physical base and the inertial
frame allows us to easily deal with the mobile base situation. For the inverse dynamics problem, the joint
accelerations are known, and Eq. (2.1) represents an O(AN) computational process involving a base-to-tip
recursion to compute the velocities and accelerations, followed by a tip-to-base recursion to compute the
joint forces.

In order to express the equations of motion given by Eq. (2.1) in a more compact form, we define
the stacked notation. In this notation, the V(k)’s, a(k)’s etc are viewed as components of vectors V', o etc.
Then Eq. (2.1) can be written in the following compact form:

V = EV4+HP
a = Ea+ H*B+a
f = Ef +Ma+b (2.2)
where,
(0 0 0 0 0 M(Q) 0 0
¢(2,1) 0 0 0 0 M) 0
£y a 0 #(3,2) 0 01l M [: : ,
\ 0 0 d(nn—1) 0 o 0 M(n)
(H(1) 0 0
0 H(2 0
H 2)) . (2.3)
\ © 0 ... H(n)
However, since £, is nilpotent (£3 = 0),
I 0 0
é(2,1) I ... 0
SR (I—E) =T +E,+E+ - +E371 = : S (2.4)
é(n,1) @$(n,2) ... 1
where,
#(i,) & ¢Gi,i—1) -+ 6 +1,4)
Thus Eq. (2.2) can be reexpressed in the form,
V = ¢'H'B
= ¢°(H'f+a) (2.5)

[4 2
f = é(Ma+b)=¢M¢*H*B+$(M¢"a+b)
T = Hf=H¢M$"H*B+ Hp(M*a+b)

= MA+C, where M2 H¢M$"H*, and C2 H$(M¢a+b)

M € RN*N ig the mass matriz for the serial chain and C € RV consists of the velocity dependent Coriolis,
centrifugal and gyroscopic joint forces. In the terminology of Kane’s method [3], § are the generalized speeds
and the elements of ¢* H* are the partial (spatial} velocities.

Es, &, H, and M are the first of the spatial operators that will be encountered. Recursive dynamical
algorithms can be derived naturally by exploiting the special state transition properties [1] of the elements of
spatial operators such as €4, ¢ etc.. For instance, given a vector y, the evaluation of the matrix-vector product
¢y does not require an O(n?) matrix-vector product computation, and not even the explicit computation

28

of the elements of ¢, but rather, it can be evaluated using an O(n) recursive algorithm involving only the
elements of £, and y. This is precisely the correspondence between the concise operator based high-level
description of the equations of motion in Eq. (2.5) and the recursive algorithmic description in Eq. (2.1).

Spatially recursive O(N) forward dynamics algorithms for serial chains have been developed in
[4] based on the recognition of the isomorphism between the structure of the dynamics equations and the
equations encountered in Kalman Filtering theory. These insights have formed the basis for the development
of the Spatial Operator Algebra Framework for multibody dynamics.

2.2 Tree Topology Systems

In this section, the dynamics of rigid multibody systems with tree topological structure are discussed. A
tree topology system may be viewed as a set of component serial chains (referred to as branches) coupled
together via joints at their terminal links. The total number of branches is denoted £. The index for the
branches thus ranges from 1 --- £, and consistent with the link numbering scheme in the previous section,
the inboard branches are assigned indices larger than those for the outboard ones. The connectivity function
i(k) is defined as the index of the direct predecessor branch, i.e., the inboard branch to which the k** branch
is connected. The j** branch is simply denoted a predecessor branch for the k** branch if it belongs on the
unique path from the kP branch to the base, i.e., if ?*(k) = j for some integer p > 0. The joint coupling two
branches is assigned to the outboard branch. Figure 1 illustrates the link/branch numbering convention for
tree topology systems.

The notation for serial chains from Section 2.1 is carried over to describe the branches in the tree
structure, and an additional subscript is used to identify the specific branch in the system. Thus n; and N;
denote the number of links and the number of motion dofs respectively, while V;, M;, &, ¢; etc. denote
the appropriate spatial velocity etc. quantities for the §** branch. A link/joint is identified by the index
of the branch it is on, plus its location within the branch. For instance, V(k;) (or more accurately Vi(k))
denotes the spatial velocity of the the k' link of the j* branch at its inboard joint location O(k;). The
overall stacked spatial velocity, acceleration etc. vectors for the tree are now denoted V, a, f etc. with

= [V --- V] etc.. The total number of links n, and the total number of motion dofs A for the system
are given by

¢ ¢
n2 an and N 2 ZJVJ (2.6)
j=1 i=1

Note that when the j*» branch is the direct predecessor of the k*» branch, i.e., j = 1(k), the joint connecting
them is the ni* joint on the k** branch and is located on link 1; on the j** branch. The transformation
operator from the ni® joint to the 1;-" joint is denoted ¢(1;,nx). The spatial operator £, is now defined in
terms of its block matrix elements below. For j k€ 1--.¢,

(Es; for j=+k
0 -+ 0 ¢(1,n)
' 0 --- 0 0
Eld k) = ¢) . . for j =1(k), i.e. if j is the direct predecessor branch of k
0 0 0
L 0 for j # 1(k). i.e. if j is not the direct predecessor of k

(2.7)
0 denotes a zero matrix of dimension appropriate for the context. As a consequence of the numbering scheme
used here, for j < k, the j** branch cannot be a predecessor to the k™ branch and thus the (j, k)" block

29 .

element, £4(j, k) = 0. Thus &, is a strictly lower triangular matrix. The analogs of Eq. (2.2) are as follows:

V = EV+HP
a = Lo+ H*B+a
f = Ef+Ma+b (2.8)
Once again (analogous to Eq. (2.4)), &, is nilpotent (€3 = 0), and so
$E(T—E) = I+E,+ 62+ e+ £ (2.9)
The block structure of ¢ is described below:
o; for j=¢%
é(J, kY = ¢ {o(mj, k) }m if 3p>0:j5=1"(k), te, if jis a predecessor branch of k (2.10)
0 if j#£®F(k)Yp>0,ie.,ifjis nota predecessor branch of k

Here {¢(m;,lk)}m, denotes a block matrix whose (m,l)*® entry is given by ¢(m;,{;) with m € 1 ---n; and
L €1 np. ¢(my,lx) is the transformation operator from joint Iy (on the k** branch) to joint m; (on the
j** branch) and is a generalization of the transformation operator ¢(i,;) in Eq. (2.4) for serial chains. It
is formed by sequentially composing all the individual transformation operators that lie on the unigue path
joining the two joints. The numbering scheme used here ensures that ¢ will be a lower triangular matrix.
The operator ¢ has state transition properties analogous to the ¢ for serial chains, and as a consequence, it
can be used for high-level and concise description of the dynamics of tree topology systems (as in Eq. (2.11)
below), but with the full understanding that from the computational perspective, these equations directly
map into recursive implementation procedures. From Eq. (2.8) and Eq. (2.4) it follows that,

V = ¢"H'B
a = ¢"(H'f+a) (2.11)
f o= ¢(Ma+b)=9¢M¢* H* B+ $(Me*a+b)
T = Hf=H¢M$*"H*B+ Hp(M¢*a +b)

= MB+C, where M2 HOM@"H*, and C2 Ho(Mé*a+b)

M € RM*N denotes the mass matrix for the tree system. T' £ T —C can be easily computed from the
knowledge of the system state, and so the equations of motion for the system can be rewritten in the form

MB=T (2.12)

The forward dynamics problem requires then the solution of the joint accelerations ,B for a given set of joint
forces T'. The mass matrix for the system is typically not available and potentially needs to be computed to
solve the forward dynamics problem. However, in Section 3, a recursive O(N) forward dynamics algorithm
for tree topology systems, which does not require the explicit computation of the mass matrix M, is derived.

Before proceeding on to closed topology systems, we first derive the structure of the Jacobian
operator. Given nc¢ points, denoted Cy’s, on the tree (see Figure 1), the Jacobian operator J € RncxN
defines the mapping between § and V', ie., V = JB, where V € R®"C denotes the vector of spatial velocities
at these points. If C is on link m;, then the spatial velocity at Cy is given by

V(k) = ¢°(O(m;), Ci)V (my)

with ¢(O(m;), Ci) denoting the rigid body transformation operator from Cy to the point O(m;). With the
block elements of B € R6**67c defined as

#(O(m;),Cy) if Cr € m;—" link
B(m;, k) = fork=1-n¢ (2.13)
0- otherwise

30

it follows that :

V=B'V=B¢"H*B, ie, J=B'¢"H" (2.14)
This gives us an expression for the desired Jacobian operator which will be used below when dealing with
loop closure constraints for closed topology systems.

2.3 Closed Topology Systems

This paper develops a systematic procedure for the formulation of the equations of motion and derivation of
forward dynamics solution algorithms for general topology multibody systems with time-varying topologies
as well as changing constituent bodies. Based on the specific application, such systems may be conceptually
partitioned as follows:

(a) The primary system consisting of the least time-variant part, i.e., the multibody subsystem with fixed
topology and constituent bodies. :

(b) The secondary system consisting of the multibody subsystem which may change from time to time.

(c) The set of closure constraints and/or boundary conditions between/within the primary and secondary
systems which change with changes in the system topology.

Note the the subsystems described above are in the order of increasing time-variation. As an example, let
us examine the robotics scenario of multiple manipulators interacting with each other and the environment
to perform complex tasks. In this context, the manipulators belong to the primary system since their innate
structure varies very little with time. The task objects vary from task to task and form the secondary
system. The constraints between these two subsystems change during the execution of a task, such as
grasping, mating, tool operation etc., and belong to the last category.

This partitioning allows us to derive a very general and yet systematic procedure for the development
of dynamics algorithms which are responsive and adaptable to time-varying systems. The procedure involves
a sequence of decoupled steps for each of the primary and secondary system dynamics, and one step in which
they come together when the constraint forces are computed. Being structurally time-invariant, it is possible
to put in place optimized algorithms for the dynamics of the primary system. The time-variant secondary
system is typically of small complexity and thus the use of standard, though suboptimal, algorithms does
not substantively degrade performance.

This decomposition of the closed topology system is a departure from the more traditional approach
(see [5, 6]) of forming a spanning tree for the full system and computing the constraint forces at the points
of closure. In these latter approaches, even small changes in the original system typically lead to whole new
spanning trees for the system. This disallows any algorithmic optimization, and the algorithms are also not
very amenable to coping with time-varying systems.

The primary and secondary systems in most applications have tree topological structure. However
in general there may be internal closed loops within either system. In any case, by cutting an appropriate
number of joints, each subsystem may be regarded as a tree topology system with additional kinematical
constraints at the internal loop closure points. The equations of motion for tree topology systems derived in
Eq. (2.12) will be used to describe the dynamics of the tree components of both the primary and secondary
systems, with the subscripts “P” and “S” differentiating the two subsystems. Thus the dynamics of the tree
part of the two systems are described by

Te = HpopMpéhHpfBp = MpBp, and Ts= HsésMsdsHEBs = MsPs (2.15)

Mp and Mgs denote the mass matrices, Bp and fs the motion dof parameter vectors, Tp and Ts the
bias-free internal joint forces for the primary and secondary subsystems respectively.

31

Combining the internal loop points of closure with the points of closure coupling the two systems, we
obtain the overall points of closure for each of the subsystems. Let Vp and Vs denote the spatial velocities
at these overall points of closure for the two systems, and following the discussion leading to Eq. (2.14), let
Jp = Bpo¢pHp and Js = By¢5Hy denote the Jacobian operators for the two systems corresponding to
these points. Thus Vp = JpBp and Vs = Js0s. The kinematical constraints due to the existence of internal
closed loops within the primary and secondary systems leads to constraint equations of the form:

QpVp=Up and QsVs=Us

The coupling together of the primary and secondary systems via joints leeds to constraint equations of the
form: oL oo .
QrVp +QsVs =Uc

Qr Q
PQ(QP), As-‘A‘-(OS), and A.é[APAS]
0 Qs

the closure constraints can be collectively expressed in the form:

A(%):[AP AS](JOP J(’S)(g:)=[APJP ASJS]([;’S’)=(%§) 27 (216)

It is assumed that [ApJp Ast] is of full row rank N'g. The overall number of motion dofs of the closed

chain system is given by N¢ = 2 N + Ns — Ng, and if necessary, Eq. (2.16) can be used to find the N¢
dimensional minimal set of motion generalized coordinates for system. Based on the principle of virtual
work, Eq. (2.16) implies that the closure constraint joint forces are of the form

7343\ f
(T4y)’

for some f € RNe . This leads to the following overall equations of motion:

Mp 0 JpAp Bp Tp A s : : v,
0 Ms J3A% gs | =1 s |, where UZU-[(4pJp) (ASJS)](V’;)

Defining

ApJp AsJs O f U
Mp 0 TpAp Bp Tp
- 0 Ms J3 A% Bs | = Ts
0 0 —[APAPAP + ASASA] f U - [APJPM;ITP + AstMElTS]

(2.17)
where a A
Ap = JpM3plJp, and Ag = JsM3'J
Note that Ap and Ag are the effective “admittances” of the primary and secondary systems reflected to the
points of closure. We now describe some special cases of the above setup:

o The joint constraints coupling the primary and secondary systems are typically on the relative spatial
velocity across the joints at the points of closure. When this is true for all joints, an appropriate
reordering of the elements of V will result in Qp = —Qs Furthermore, if no relative motion is
permitted across the joint, ie., there is rigid rather than loose coupling, then in fact Qp =1 and
Qs =]. When this is the case for only some of the joints, only the corresponding rows have these
special features.

e If the secondary system has no internal actuators or source of generalized forces, then Ts = 0.

e If the secondary system is a free rigid body with no internal degrees of freedom, then the motion
generalized coordinates vector Js is of dimension 6 and consists of the 3 translational and 3 rotational
dof parameters.

32

3 Forward Dynamics of Closed Chain Systems

In this section we discuss a recursive method for solving the forward dynamics of closed chain rigid multibody
systems. This method does not require the explicit computation of the primary and secondary tree system
mass matrices Mp or Mg, but does require the computation of the constraint force parameters.

From the equations of motion of the closed chain system with dynamical closure constraints given
by Eq. (2.17), the solution of the forward dynamics problem can be solved by the following sequence of steps:

(A) Solve Mpf! =Tp for B} Solve Mgsph=1Ts for B
(B) Compute &£ = Jpﬁ'{, Compute &é = .]sﬂ.:;

(C) Compute Ap = JpMp'Jp Compute As = JsM3'J3
(D) Solve [ApApA} + AsAsAS)f = (Apad + Asah) U for f

(E) Solve Mpfh = —JpApf for f% Solve Mg = —J3A%f for B
(F) B = Bh + B Bs = B+ B

As a result of the partitioning, a changes in the closure constraints only effect A and thus only STEP
D, while changes in the secondary system effect only the steps in the right half column. Recursive algorithms
for carrying out each of these steps are derived below. The proofs of the various lemmas are omitted due
to space limitations. However they follow precisely along the lines of the proofs for serial chains discussed
in [7]. The explicit use of the subscripts indentifying the primary/secondary system is dropped (except for
STEP (D)) since the discussion is equally applicable to either subsystem.

STEP (A) Solve MB!I =T. (Forward Dynamics of a Tree Topology System)

Note that Step (A) is equivalent to solving the forward dynamics of a tree topology system, and we
develop an O(N) recursive algorithm for this solution. This algorithm is based on a new factorization
of the mass matrix M in terms of square factors. which may be contrasted with the earlier non—square
factorization in Eq. (2.11). This square factorization is then used to obtain an explicit expression for
M1

The articulated body inertia matriz P is defined as the solution to the following equation:

M =P — &P - PH*(HPH") 'HPIE; (3.1)

P is block diagonal and the elements on the diagonal (denoted P(k;)) can be obtained using a recursive
algorithm described in Eq. (A.1) in Appendix A. Physically, P(k;) is the articulated body tnertia as
seen at the ki® joint, i.e., it is the effective inertia of all the links outboard from the ki* joint assuming
that the joint forces at all the outboard joints are zero.

For the subsequent development, it is convenient to define

HPH*, GEPH'D!, KZ2¢G
GH, 721-1 £,2657 (3.2)

D

e b

T

Note that D,G, t and T are all block diagonal. The structure of £y is identical to that of £ with its
elements being given by

Wik ki — 1) = p(k;, k; — 1)7(k; — 1)

33

£, is also nilpotent (£7 = 0), and analogous to @, ¥ is defined as
v ¥

YE(I-g) =T+ E+E 4 - +E3! (3.3)

The structure of 9 is very similar to that of ¢ and it also possesses the state transition properties which
are used to develop recursive algorithms. ¢ may be viewed as the transformation operator for composite
bodies (i.e., as if all the joints are locked), while ¥ is the transformation operator for articulated bodies
(i-e., as if all the joint forces were zero). The following lemma yields a square factorization of M.

Lemma 1: The mass matrix M has the following factorization:

M =[I+ H¢K|D[I + HpK]", Bl
The following lemma gives the explicit form for the inverse of [I + H$K].

Lemma 2:
I+ H¢K)™! = [I — HYK] 3.5 1

Combining Lemma 1 and Lemma 2 leads to the following form for the inverse of the mass matrix.

Lemma 3:
MY ={I - HYK)*D [l — HYK] (3.6) 1

Thus, . R i
B = MT =[I - HYK]"D™'[I - HYK|T (3.7)

The O(N) recursive computation of the expression on the right is given in Eq. (A.2) in Appendix A.

STEP (B) Compute &/ = JB!
From Eq. (2.14), &/ = B*&/, where
&l Lo H (3.8)

However we have that,
Lemma 4:

(I - HYK)YH¢ = Hy (3.9) 1
Thus using Eq. (3.6) and the above lemma in Eq. (3.8),

&l = ¢*"H*[I - HYK)*' D~ VI - HYK|T =¢"H* D[l — HYK|T

Comparing this with Eq. (3.7) we see that @/ can be evaluated as an intermediate quantity in the
O(N) recursive algorithm for computing 3/ described in STEP (A).

STEP (C) Compute A = JM~1J*
Using Eq. (2.14) and Eq. (3.6),
A

i

{[1 - HYK)H¢B} D™ {[I - HyK|H¢B}
B*Y"H*'D 'HyB = B*QB, where Q2 ¢ H D 'Hy (3.10)

34

where Eq. (3.9) has been used to simplify the above expression. A recursive O(N') procedure for the
computation of is given in Eq. (A.5) in Appendix A. Note that without the simplification resulting
from the use of Eq. (3.9), the computation of A would be an O(N?3) process.

STEP (D) Solve [ApAA}b + AsAsAS)f = (Apah + Asal)—U for f
Now, :
f=[ApAAS + AsAsA) " (Apah + Asal) — U] (3.11)

In this form this step is of O(N32) complexity. However, when (ApApA}) is invertible, we can obtain
an alternative expression for f by reexpressing Eq. (2.17) as follows:

Mp 0 I3 Ap B Tp
0 Ms J5A% Bs | = Ts
0 AsJs —ApApA} f U— Apéal
and consequently,

Mp 0 Tp Ay g
0 Ms+ J3A5(ApAAL) 1 Asls 0 Bs | =

0 AslJs —APAPA;) f

Tp
(Ts + J3 A% (ApApA%) YU — Apdd,)
U — Apad,
From the above equation it follows that
Bs = [Ms+J3A5(ApApAp) " AsJs]T [Ts — J5AS(ApAAR) ™ (Apdh — U)]
f (ApAALY Y(Apah + AsIsBs) — U)
= (ApApAp)~N(Apad + Asas) — U], where as = Jsfis

Note the similarity between the forms of Eq. (3.11) and the above equation for f The computational
cost of the above operation is a combination of the cost of inverting ApAp A}, and the O(N3) step of
solving a square linear system of equations of size Ng. The cost of inverting ApApAp depends on its
structure: its sparsity reflects the degree of coupling between the closed loops in the system. The cost
is typically much less than the worst case of O(N3). In many application domains such as robotics,
ApApAjp is in fact block diagonal and is thus invertible in O(NE) steps [1]. In addition, for most
applications Ng <« Mg, and this new formulation can lead to considerable computational savings.

The inverse of [ApApA} + AsAsA%] will not exist if [ApJp AsJs) is not of full rank, ie., the
configuration is such thai the number of motion dofs for the system have changed. It is therefore
necessary to reformulate the constraint equation Eq. (2.16) so as to preserve the full rank property.
Such changes of rank can occur at kinematically singular configurations.

STEP (E) Compute ¢ = —M~1J"A*f
We have from Eq. (3.6) and Eq. (2.14) that

B8 = —(I - HYK]*D™'[I - HYK|H¢BA" f
Using Lemma 4 this simplifies to
B = —[I - HYK]"D™'HyBA"f (3.12)

The recursive O(N')' implementation of the above step is given in Eq. (A.6) in Appendix A.

35

The overall complexity of this spatially recursive forward dynamics algorithm ranges between O(N +

Ns) + O(N3) for the worst case and O(N + Ns) + O(NEg) + O(N2) in the best case.

By treating the primary and secondary system as one system, which amounts to defining the quan-

tities ¢ £ diag(yp,¥s), H 2 diag(Hp, Hg) etc., and using the above results, the overall closed topology
forward dynamics algorithm can be restated in the following form:

f=[I-HyK)D} [1 - b(AAA*)“‘b‘] D3I — HYK)T, where b2 HyBA® (3.13)

Note that when there are no closed loops in the overall system, A = 0, and the middle term reduces to T,
and we recover the form for for the forward dynamics of tree topology systems in Eq. (3.7).

4 Flexible Multibody Dynamics

In this section we briefly describe the extensions to handle the case of flexible links. We use the serial chain
discussed in Section 2.1 as an illustrative example, but now assume that the links in the chain are flexible.
It is assumed (without losing any generality) that finite element models are available for all the links, and
in particular, the k** link is characterized by: n; node points with the location of of the j'* node denoted
Qr(j)’s, the vector of displacement variables u{ € R®"*, a free—free mass-matrix m; € R+ %57 4 stiffness
matrix Kj € RS X657 The ordering of the nodes is such that Q,(1) is on the same element as 0., and
Qi(nk) is on the same element as O . Treating the k®* link as being pinned at @ , this implies that
ui(nk) = 0, and thus the true flexible dofs are given by the vector u; = hkui, where hi[I,0]. Note that
up € R¥(*=1) and hy € REP#X6(e-1),

With V (k) denoting the spatial velocity of the k** link at Oy ,

V() = ¢ (k+1EV(E+1)+ B (B)BE) + 6" (Qrsr(1), Ok ursa (1)
= ¢ (k+ LEWV(E+ 1)+ H (B)B(K) + Ciyrhiuens (4.1)
where Cji,, 2 [¢‘(Qk+1(l),0k), 0, -~ 0] € RE*6n (4.2)

Thus,
V=¢'[H*B+C"h"y]
with C defined as the block matrix with C; to C, along its first block subdiagonal, and A is the block

diagonal matrix with j** block diagonal element being h;. Let VJ € R®"* denote the vector of spatial
velocities on the k*” link at the n; node points. Then

Vk! = B:V(k)"'h;uk) where Bk é [¢(0k) Qk(l))1 '1¢(0kJQk(nk))] € Rsxsnk

= VI = BV+hu=B"¢'[H'B8+Chul+h*u=B"¢"H" B+ [+ B ¢"C"]h"u
= [[+B*¢°C’|[r* B*H")X, where X 2 (;) (4.3)

B denotes the block diagonal matrix with the B:’s along its diagonal. We have used the facts that,
BiCr =¢(k,k-1) = BC=& = BC¢=¢-1 = B[I+C¢B]=¢B

Note that X is the vector of motion dofs for the serial links and includes both the rigid and flexible dof
parameters.

Using Eq. (4.3), the kinetic energy for the whole chain is given by

T= -;—(VJ)"me = %X’M’X, where M/ 2 (B)[I+C¢B]m[1+C¢B]' (o)

36

M/ is the mass matrix for the flexible serial chain. Given this factored form for the mass matrix, similar
techniques to those used for the rigid multibody case in the earlier sections result in alternate factorizations
and inversion of the mass matrix, and recursive forward dynamics algorithms. The reader is referred to [8]
for additional details. Just as for the rigid multibody case, the algorithms for flexible serial chains directly
extend to the flexible general topology multibody systems.

5 Conclusions

This paper describes the Spatial Operator Algebra Framework for the dynamics of general multibody systems.
Based on their rate of time-variation, the multibody system is partitioned into a primary subsystem, a
secondary subsystem and the set of closure constraints. This allows the development of forward dynamics
algorithms which are not only recursive and efficient, but also capable of easily coping with time varying
multibody systems. The solution procedure consists of a sequence of steps on parallel paths involving the
dynamics of the spanning trees for the primary and secondary systems. The two paths come together for
one step in order to compute the constraint forces. Using the spatial algebra techniques to develop novel
factorizations of the mass matrix and operator identities, efficient recursive algorithms for carrying out each
of these steps is developed. The overall algorithm does not require the computation of the mass matrix, and
its complexity is linear in the number of dofs for the tree systems. In addition, the impact on the complexity
of the algorithm, of the degree of coupling among the closed loops in the system topology is made clear,
and it is shown that the in the best circumstance, the algorithmic complexity is also linear in the number
of closure constraint equations. During the development, an O(N) forward dynamics algorithm for tree
topology systems is also developed. For the sake of clarity, the focus of much of the paper was on multibody
systems with rigid links. However the extensions necessary to deal with flexible elements are discussed.

6 Acknowledgement

The research described in this paper was performed at the Jet Propulsion Laboratory, California Institute
of Technology, under contract with the National Aeronautics and Space Administration.

References

[1] G. Rodriguez and K. Kreutz, “Recursive mass matrix factorization and inversion: an operator approach
to open and closed-chain multibody dynamics,” JPL Publication 88-11, Jet Propulsion Laboratory,
Pasadena, CA, 1988.

2] A. Jain, “Unified formulation of dynamics for serial l‘lgld multibody systems,” Eng. Memo. 347-89-264
g ’
(Internal Document), Jet P l’OpUlSiOﬂ Laboratory, Pasadena, CA, 1989,

[3] T. Kane and D. Levinson, Dynamics: Theory and Applications. McGraw-Hill, 1985.

[4] G. Rodriguez, “Kalman filtering, smoothing and recursive robot arm forward and inverse dynamics,”
IEEE J. Robotics Automat., vol. 3, Dec. 1987. (JPL Publication 86-48, 1986).

[5) H. Brandl, R. Johanni, and M. Otter, “An algorithm for the simulation of multibody systems with
kinematic loops,” in Werld Congress on the Theory of Machines and Mechanisms (7th), Seville, Spain,
1987.

[6] D. Bae and E. Haug, “A recursive formulation for constrained mechanical system dynamics: Part II.
Closed loop systems,” Mechk. Struct. & Mach., vol. 15, no. 4, pp. 481-506, 1987-88.

37

[7] G. Rodriguez, K. Kreutz, and A. Jain, “A spatial operator algebra for manipulator modeling and control,”
in IEEE Conf. Rob. and Aul., Scottsdale, Az, May 1989.

[8] G. Rodriguez, “Spatial operator approach to multibody manipulator inverse and forward dynamics,” in
IEEE Conf. Rob. and Aut., Cincinnati, OH, May 1990.

A Appendix

Based on the special structure of ¢, etc., it is possible to evaluate many of the dynamical expressions
in a recursive manner and we describe some recursive algorithms in this appendix. First we define some
notational shorthand to simplify the description of the algorithms that follow:
z(nj + 1) P x(l,(j))
y(nj +1,n5) = ¥l)
v(1;,0)z(0;) =) y(lj,nm)z(nm)
mes=1(j)

y(1;,0)z(0)¥"(1;,0;) = Y ¥(Lj,nm)z(nm)y* (1, nm)
mes=1(j)

where y(.,.) and z(.) stand for some appropriate arrays. Thus wherever a term with indices as in the left
column appears, its meaning is actually given by the corresponding term in the column on the right. !pr

e A recursive method for the computation of the block diagonal elements of P as defined by Eq. (3.1)
and the entries of D, G, K, £, and T defined in Eq. (3.2) are given by:

(

forj = 1---£

(If :=1(j) = @, then P(0;) =0
fork = 1JnJ
P(k) = ok k—1)P(k—1)y"(k,k—1)+ M(k)
) D(k) = H(k)P(k)H*(k) (A.1)
\ G(k) = P(k)H*(k)D~'(k)
T(k)y = I-G(k)H(k)
Y+ 1,k) = o(k+1,k)T(k)
K(k+1,k) = o¢(k+1,k)G(k)
| end loop

| end loop

e The recursive computation of 3/ = [I — HYK]|*D~[I — HYK]T in Eq. (3.7) in STEP (A) can be
carried out via the O(N) tree topology forward dynamics algorithm described below. It also results in
the computation of &/ = ¢* D[l — HYK|T required in STEP (B) as an intermediate quantity.

(

forj = 1.--¢

If +=1(j) = 8, then 2(0;) = 0,7(0;) = 0

fork = 1;---n;
g 2(k) =k k—1)z(k—1)+ Kk, k- 1)T(k-1)
(k) = T(k)— H(k)z(k)
v(k) = D7Y(k)e(k)
end loop

\ end loop

38

f &!(n[+ 1) =0
forj = £.--1
fork = n;-.-1;
J Gk T P(k+ 1,08 (k4 1) + B (b)u(k) (4.2)
Bl(k)y = v(k)—K*(k+1)a/(k+1)
end loop
. end loop

e STEP (C) requires the computation of A = B*QB. In order to obtain a O(N) recursive scheme for
the computation of Q we first define the matrix T as the one satisfying the equation:

H*D™'H =T - &Y, (A.3)

T as defined above is a block diagonal matrix and its elements can be computed recursively. We now
obtain the following decomposition of .

Lemma 5:

Q=T+9'T+ Ty (A.4)

Noting that 1 is strictly lower triangular, we can then recognize that Y as nothing but the diagonal
elements of 2. We now present a recursive scheme to compute the block diagonal elements of T and of

Q.
T(n¢+1):0
forj = £---1

for k = nJ]'J
T(k) = v (k+1,k)T(k+ Dy(k+1,k) + H'(k)D‘l(k)H(k)

i Q(k, k) = T(k)
form = k—l---lj
Qk,m) = Q*(m,k)=T(k,m+ 1)y(m+1,m)
end loop
\ end loop
. end loop

The above recursion yields the elements 2; on the block diagonal of Q. Since Q is symmetric, the
off-diagonal elements satisfy Q;; = €2} ;, and can be computed from the diagonal elements as follows.
Qj forl€1---(j—1) can be obtained via the following recursive scheme:

(if +P(1) = j for some p > 0

(

for k = n']l.l

< form = nj---1

< Qk,m) = Q*(m,k)=Q(k,1;)¥(1;,m) (A.5)
end loop
| end loop
else

| end if

39

e The O(N) recursive implementation of 3% = —[I - H wK]*D-'HyBA"f in Eq. (3.12) in Step (e) is

given below:

Define £ = — BA*f
forj = 1---£
If :=1(5) = 0, then z(0;) = 0,2(0;) =0
fork = 1;---n
ﬁ (k) = Pk k—1)z(k—1)+ K(k,k—1)2(k-1)
e(k) = —H(k)z(k)
v(k) = D7Y(k)e(k)
end loop
L end loop
(a(ng+1)=0
forj = ¢---1
fork = nj"'lj (A.6)
) a(k) = $(k+1k)alk+1)+ H (k)w(k) '
Bik) = wv(k)-K*(k+a(k+ 1)
end loop
\ end loop

Figure 1: Ilustration of link/branch numbering convention for multibody system

N90-22990

An Order (n) Algorithm for the Dynamics Simulation of Robotic
Systems

H.M. Chun,].D. Turner, and H.P. Frisch
NASA Goddard Space Flight Center

Abstract

The ability to simulate and analyze the dynamics of complicated
multibody systems has been of great benefit to engineers for the past
decade. Applications have included robotics, land vehicles, and spacecraft.
However, many of the commercially available software have been
computationally intensive and are costly and time-consuming for analyzing
large systems. Fortunately, recent developments in Order (n) algorithms
and parallel processing for multibody dynamics simulation have drastically
reduced the computer time needed to simulate systems involving many
bodies.

This paper presents the formulation of an Order (n) algorithm for
DISCOS (Dynamics Interaction Simulation of Controls and Structures), which
is an industry-standard software package for simulation and analysis of
flexible multibody systems. For systems involving many bodies, the new
Order (n) version of DISCOS is much faster than the current version. Results
of the experimental validation of the dynamics software are also presented.
The experiment is carried out on a seven-joint robot arm at NASA's
Goddard Space Flight Center.

The algorithm used in the current version of DISCOS requires the
inverse of a matrix whose dimension is equal to the number of constraints
in the system. Generally, the number of constraints in a system is roughly
proportional to the number of bodies in the system, and matrix inversion
requires O(p3) operations, where p is the dimension of the matrix. The
current version of DISCOS is therefore considered an Order (n3) algorithm.
In contrast, the Order (n) algorithm requires inversion of matrices which
are small, and the number of matrices to be inverted increases only linearly
with the number of bodies.

The newly-developed Order (n) DISCOS is currently capable of handling
chain and tree topologies as well as multiple closed loops. Continuing
development will extend the capability of the software to deal with typical
robotics applications such as put-and-place, multi-arm hand-off and surface
sliding.

41

N90-22991

Aspects of Efficient and Reliable Multibody System Simulation

R. Schwertassek and C. Fuhrer
Institut for Dynamik der Flugsysteme
and
W. Rulka
MAN Technologie

Abstract

Multibody system equations can be generated in various forms. All of
these may be interpreted as results of two basic approaches, the
augmentation- and the elimination-method. The former method yields the
descriptor form of the system motion, a set of differential-algebraic
equations (DAE), and the latter the state space representation, a minimal set
of ordinary differential equations (ODE). Both of these methods are
surveyed. Particular emphasis is on the discussion of recursive
computational schemes, generating the equations of motion with a number
of operations, which is proportional to the number N of system bodies
(O(N)-formulations).

For simulation purposes one would like to create that set of system
equations, which can be generated most efficiently and for which the most
efficient and reliable solution techniques are available. Numerical solution
techniques for ODE have been studied in great detail and they are well-
developed. By contrast, DAE have not been investigated for such a long
time. In view of new developments in the latter field the generation of all
the equations required for an efficient and reliable solution of DAE
describing multibody system motion is discussed. These methods, i.e. an
O(N)-formulation and new techniques for solving DAE, are implemented in
the SIMPACK code. Its capabilities are illustrated by simulation of
multibody robot models.

42

N90-22992

SYSTEMATIC GENERATION OF MULTIBODY EQUATIONS OF MOTION
SUITABLE FOR RECURSIVE AND PARALLEL MANIPULATION

Parviz E. Nikravesh, Gwanghun Gim, Ara Arabyan, Udo Rein

Computer-Aided Engineering Laboratory
Aerospace and Mechanical Engineering Department
University of Arizona
Tucson, AZ 85721

ABSTRACT

This paper summarizes the formulation of a method known as the joint coordinate method for
automatic generation of the equations of motion for multibody systems. For systems containing
open or closed kinematic loops, the equations of motion can be reduced systematically to a
minimum number of second order differential equations. The application of recursive and
nonrecursive algorithms to this formulation, computational considerations and the feasibility of
implementing this formulation on multiprocessor computers are discussed.

1. INTRODUCTION

In the past decade, the joint (or natural) coordinate method has been implemented in formulating
the equations of motion. The methodology for open loop systems is well developed in a variety of
forms [1-5]. For these systems, the method yields a minimal set of equations of motion since the
joint coordinates are independent. The joint coordinates are no longer independent when closed
kinematic loops exist in a system. For multibody systems containing simple closed loops, constraint
equations between joint coordinates may be derived easily. However, for most spatial closed loops,
the derivation of these constraints can be rather complicated. A simple method for automatic
generation of the closed loop constraints, and a technique to generate a minimal set of differential
equations of motion has been reported in reference [6].

This paper briefly describes the method of joint coordinates for the systematic generation of
the equations of motion for open and closed loop systems. These equations are shown to be
suitable for recursive and nonrecursive algorithms, serial or parallel processing, and symbolic
manipulation. While the discussion principally focuses on multi-rigid-body systems, the assumption
of rigidity may be relaxed by introducing the finite element technique in modeling the deformation
of bodies. This formulation has been incorporated in a set of large-scale computer programs which
have been used extensively to simulate the dynamic behavior of a variety of multibody systems.

2. EQUATIONS OF MOTION

The equations of motion for a multibody mechanical system can be expressed in different forms
depending upon the choice of the coordinates and velocities that describe the configuration and
motion of the system. In the following subsections, the equations of motion are first expressed in
terms of absolute coordinates and velocities of the bodies in the system. Then these equations are
reduced to a minimal set of equations for open-loop systems. Furthermore, the equations are
generalized for systems containing closed kinematic loops.

43

2.1 Absolute Coordinate Formulation

In order to specify the position of a rigid body in a global non-moving xyz coordinate system, it is
sufficient to specify the spatial location of the origin (center of mass) and the angular orientation of a
body-fixed Eng coordinate system as shown in Fig. 1. For the ith body in a multibody system, vector
q; denotes a vector of coordinates which contains a vector of Cartesian translational coordinates r;
and a set of rotational coordinates. Matrix A; represents the rotational transformation of the £nz;
axes relative to the xyz axes. A vector of velocities for body i is defined as v;, which contains a
3-vector of translational velocities f; and a 3-vector of angular velocities w;. The components of the
angular velocity vector w; are defined in the xyz coordinate system rather than the body-fixed
coordinate system. A vector of accelerations for this body is denoted by v;, which contains r; and &;.
For a multibody system containing b bodies, the vectors of coordinates, velocities, and accelerations
are q, v, and v which contain the elements of gq;, vj, and v;, respectively, fori =1, ..., b.

The kinematic joints between the bodies can be described by m-independent holonomic constraints
as

®q)=0 (M

The first and second time derivatives of the constraints yield the kinematic velocity and acceleration
equations

°
L

¥

Dv=0 (2)

Dv+Dv=0 (3)
where D is the Jacobian matrix of the constraints. The equations of motion are written as [7]
Mv -DTa =g (4)

where M is the inertia matrix containing the mass and the inertia tensor of all bodies, A is a vector of
m Lagrange multipliers, and g = g(q, v) contains the gyroscopic terms and the forces and moments
that act on the system. The inertia matrix is not a constant matrix since the rotational equations of
motion are written in terms of the global components of the angular accelerations. The term DA in
Eq. 4 represents the joint reaction forces and moments. Equations 1-4 represents a set of
differential-algebraic equations of motion for a multibody system when absolute coordinates are used.
These equations will have the same form whether the system is open- or closed-loop.

2.2 Joint Coordinates and Open Loop Systems

The constrained equations of motion expressed by Eqs. 1-4 can be converted to a smaller set of
equtions in terms of a set of coordinates known as joint coordinates, For multibody systems with open
kinematic loops, this conversion yields a set of differential equations equal to the number of degrees
of freedom. We may consider one branch of an open-loop system as shown in Fig. 2. The bodies are
numbered in any desired order. The relative configurations of two adjacent bodies are defined by one
or more so-called joint (or natural) coordinates equal in number to the number of relative degrees of
freedom between these bodies. For example, 8jj contains two angles if there is a universal joint
between bodies i and j, or it contains only one translational variable if there is a prismatic joint
between the two bodies. The vector of joint coordinates for the system is denoted by 8 containing all
of the joint coordinates and the absolute coordinates of a base (reference) body if the base body is
not the ground (floating base). Therefore, vector 8 has a dimension egual to the number of degrees
of freedom of the system. The vector of joint velocities is defined as 8, which is the time derivative
of 8. It can be shown that there is a linear transformation between 8 and v as [1-4)

v =88 (5)

8 8
12
34 B4s
Figure 1 Body-fixed and global coordinate systems. Figure 2 An open-loop system.

Matrix B is orthogonal to the Jacobian matrix D. This can be shown by substituting Eq. 5 in Eq. 2 to
find DB8 = 0. Since 8 is a vector of independent velocities, then

DB =0 (6)
The time derivative of Eq. 5 gives the transformation formula for the accelerations,
v=BY+Bo (7)

Substituting Eq. 7 in Eq. 4, premultiplying by BT, and using Eq. 6 yields

MY = f (8)
where |

M =8BTMB 9

f=BT(g - MBO) (10)

Equation 8 represents the generalized equations of motion for an open-loop multibody system when the
number of the selected coordinates is equal to the number of degrees of freedom.

2.3 Joint Coordinates and Closed-Loop Systems [6]

The equations of motion for open-loop systems, represented by Eq. 8, can be modified for systems
containing closed kinematic loops. Assume that there is one or more closed kinematic loops in a
multibody system, such as the closed-loop shown in Fig. 3(a). In order to derive the equations of
motion for such a system, the closed-loop is cut at one of the kinematic joints in order to obtain an
open-loop system as shown in Fig. 3(b). For this cut system, which will be called the reduced system,
the joint coordinates are defined as for any open-loop system. It is clear that if we now close this
system at the cut joint(s), the joint coordinates will no longer be independent, i.e., for each closed-
loop there exist one or more algebraic constraints between the joint coordinates of that loop.

The constraint equations for the closed kinematic loops may be expressed implicitly as
¥(0)=0 (1)
The time derivative of the constraints yields

$:Co=0 (12)

45

Figure 3 A system containing a closed-loop. (a) The closed-~loop.
(b) Its reduced open-loop representation.

where C is the Jacobian matrix of these constraints. Similarly the acceleration constraints for the
closed-loops are written as

¥=cb+lo=0 (13)
Now the equations of motion of Eq. 8 are modified for closed loop systems as
ME-CTy =f (14)

where v is a vector of Lagrange multipliers associated with the constraints of Eq. 11. Equations
11-14 represent the equations of motion for a multibody system when the number of selected joint
coordinates is greater than the number of degrees of freedom of the system.

It is shown in [6] that the Jacobian matrix C in Egs. 12-14 can be obtained systematically. If the
Jacobian of the constraints for the cut-joint(s) is denoted by D*, then the product of this matrix and
matrix B yields the C matrix as

D°B + C (15)

The product D'B, in most cases, will have redundant rows. Matrix C is found after the redundant rows
are eliminated. Since the elements of both matrices D* and B are available explicitly in symbolic
form, the elements of C can also be determined symbolically. Note that C is a small matrix in
comparisson with D" and B. Furthermore, since the elements of C can be determined symbolically,
the term €0 in Eq. 13 can also be found symbolically.

2.4 Minimum Number of Equations of Motion for Closed-Loop Systems

For a multibody system containing closed kinematic loops, the Lagrange multipliers of Eq. 14 can be
eliminated in order to obtain a minimal set of equations of motion in terms of a set of independent
joint accelerations. For this purpose, a set of independent joint coordinates are selected as a subset
of vector 8. Then a velocity transformation matrix E can be found such that [6]

0 = Eb(;) (16)
where é(i) is the vector of independent joint velocity with a dimension equal to the number of degrees
of freedom of the system. Note that the joint velocities outside the closed-loops and the independent

joint velocities within the closed-loops are not affected by this conversion. The matrix E is
orthogonal to the C matrix; i.e.,

CE=0 (17)

The time derivative of Eq. 17 gives

6 = EU(i) + Eé(l) (18)

Substituting of Eq. 18 in Eq. 14, premultiplying by ET, and using Eq. 16 yields

where
M' = ETME (20)
£ = ET(f - MEG ;) 1)

Equation 19 represents the minimum number of equations of motion describing the dynamics of a
multibody system containing closed kinematic loops.

Matrix E can be found in either explicit form or in numerical form for most closed kinematic
loops. For this purpose, we can partition vector 0 into dependent and independent sets, G(d) and
8 i), and correspondingly we can partition matrix C into two submatrices C(q4y and Cj). Therefore,
Eq. 16 becomes

C(a)9(d) * C(i)8(i) = 0
This equation can be written as,

. -1 e

9(d) ="~ C(d) Ciéai

or,

. ' .
0= [-1] e(,) (22)
< €

where a proper selection of the independent joint velocities guarantees that C(4) is a nonsingular
matrix. Comparing Eqs. 16 and 22 yields an expression for E as

E=[' } (23)
<) €

Since the elements of matrix C are available explicitly, it may be possible to find the elements of E
explicitly. This is due to the fact that the operation of Eq. 23 is performed separately on each
closed-loop, and in addition, the C matrix for a closed-loop is relatively small in practical

applications.

Equation 21 states that for evaluating the equations of motion, in addition to matrix E, matrix E is
also needgd. An apparent approach is to evaluate the time derivative of Eq. 23. However, since the
product EO(,) is needed in Eq. 21, we can evaluate this product directly. For this purpose, Eq. 13 is
written in a partitioned form as

Cd)¥(y * Ceiybi) = €8

This equation is then rearranged as

: =1 . -1 a
By = - Ca) €@ - oy vCe

47

or,

I : 0
“=[. | el T @4
< Ci) C(gy €O

Comparison of Eqs. 18 and 24 yields

ESj) = 0 ' (25)

-1 .

In the process of solving Eq. 19, the independent joint accelerations and velocities are integrated
to obtain the independent joint velocities and coordinates. Then Eq. 16 (or Eq. 12) is used to find the
dependent joint velocities. However, prior to that the dependent joint coordinates need to be
computed. In order to find the dependent joint coordinates, the constraints of Eq. 11 must be solved
for each closed-loop. These constraints are nonlinear in 0 {or q) and they are not available
explicitly. However, an iterative formula for finding the dependent joint coordinates can be derived.
By applying the Newton-Raphson method to Eq. 11, the iterative formula is found as

C 46 =- ¢* (26)

where A0 denotes the corrections in vector 8 and #* denotes the violation in the constraints. Note
that the violation in the constraints of Eq. 11 is the same as the violation in the constraints written in
terms of the absolute coordinates of the bodies common to the cut joint(s). For the sake of simplicity,
the iteration formula of Eq. 26 is shown in its abstract form. We assume it is understood that in this
equation the known (independent) elements of 8 and their corresponding columns of C have been
manipulated properly. Furthermore, if there is more than one closed kinematic loop in the system, this
iterative process can be applied separately to the constraint equations of each loop. The important
point to draw from Eq. 26 is that explicit exptessions for the joint coordinate constraints, represented
by Eq. 11, are not needed.

3. COMPUTATIONAL CONSIDERATIONS

For most multibody systems, the inertia matrix M and the vector g containing the external
forces/moments and the gyroscopic terms can be constructed systematically [7]. A systematic
construction of the velocity transformation matrix B, for open or reduced open loop systems, has been
shown in [4]). This matrix is constructed from the topology of the system by assembling smaller block
matrices representing different type of kinematic joints. Since magrix B can be constructed in
explicit form in terms of the absolute coordinates q, then matrix B can also be determined and
expressed in explicit form as a function of q and v. For multibody systems containing closed
kinematic loops, matrix C for Eqs. 11-14 and matrix E for Eq. 18 must be constructed. The process
outlined in the preceding sections will be demonstrated by a simple example.

Example: Consider the multibody system shown in Fig. 4(a), containing four moving bodies. Body 1
is connected to the ground by a prismatic joint T, , and there are four revolute joints, R, through R, ,
with parallel axes connecting the bodies in a closed-loop. If the closed-loop is cut at R,, the reduced
system of Fig. 4(b) is obtained. For the reduced system, four joint coordinates, 6, , 8, , 8, , and 8,
are defined, where 8, represents relative translation between body 1 and the ground, and the other
three joint coordinates represent relative rotations between the adjacent bodies. Four unit vectors,
u, through u, , are defined along the four joint axes. The vector of absolute velocities v is a
24-vector, where the vector of relative velocities @ is a 4-vector. The velocity transformation
matrix for this reduced system is:

X

Figure 4 (a) A multibody system with four moving bodies containing a closed-loop.
(b) Its reduced open-loop representation.

[~ 7
u, 0 0 0
0 0 0 0
u, -auu, 0 0
0 U, 0 0
B = u, -a,,uz -a,,u,)]
0 u, u, 0
u, "au“a 'au"s 'au“b
0 u, u, u,
L .
where dij vectors, for i, j = 2, 3, 4, are shown in Fig. 4(b). In this matrix, a represents a 3x3 skew-

symmetric matrix made of the components of a 3-vector a, and ab represents the cross product of two
vectors a and b. The structure of B shows that the matrix is constructed from 6x1 block matrices

| , T . N
[0], representing a prismatic joint along the unit vector u;, and 6x1 block matrices [u! ,

i
representing revolute joints along unit vectors uj, i = 2, 3, and 4 [4].

The constraint equations for the cut revolute joint R, , i.e., ®", between bodies 1 and 4 in terms
of the absolute coordinates of these bodies can be expressed as [7]:

.3

[+s, ~r,-s5,=0

.Z nmn, = 0

where #° represents three algebraic equations stating that two points P, and P, on the joint axis must
coincide, and #? states that two unit vectors n, and n, along the axis of Ry must remain parallel. It
should be noted that the cross product of two vectors yields three abgebraic constraints, and only two
out of three are independent. The time derivative of these constraints yields [7]:

9

[] ol [~

L Y + u1$, T Fy = 0,8, = 0
~ o~ ~ -~

n,n,e, -~ nnu, =0

or,

I 51 0000 -1 S» iv | [o
O0nn, 0000 O -nn, e, | (O

-

Therefore, the coefficients of the velocity components provide the Jacobian matrix for this cut
revolute joint as:

D.=[| =1 0000 -1 §~]
Onn, 0000 0 -nn, (5x24)

Note that this is a 5x24 matrix. The product D*B is found to be

D*B =) (davtsy)uz (dsy*sy)us (daatsi)u,
- 0 'ﬁ,ﬁ.u, 'ﬁlﬁ.u, ‘E]ﬁy"y

](5)(4)

which is a 5x4 matrix since the columns of the matrix correspond to the four joint coordinates. Note
that the first column of the matrix is all zeros, and this column corresponds to 8, which is not in the
closed-loop. Based on the initial assumption, the four revolute joint axes are parallel, therefore, the
cross product a,u, = AU, = n,u, = 0. This means that the last two rows of the 5x4 matrix are zeros
and they can be eliminated from the matrix. This leaves a 3x4 matrix as:

DB = [0 (azu";b)“z (dsy*sy)uy (a~~*’;~)u~](3x4)

If for a given configuration numerical values are substituted for the components of the vectors in this
matrix, it will be found that the three rows are not independent -- one row is redundant and can be
eliminated. For example, for a particular configuration, the numerical values of the elements of this
matrix may be:

0 0 -1.4142 -1.4142
|0 0 L4142 14142
DB=10 -1.4142 14142 0 (2)

(3x4)

This result should have been expected, since the closed-loop is a four-bar mechanism with one relative
degree of freedom between its four bodies. Since there are three joint coordinates associated with
this four-bar mechanism, there must be only two independent constraints between them. Therefore,
matrix D"B of Eq. (a) becomes

50

c=[° 0 -1.4142 -1.4142 b)

0 -1.4142 -1.4142 0](2x4)

Since matrix C is available in explicit form, its time derivative and hence the product) can be found
for Eq. 13,

After elimination of the redundant row matrix C can be written in abstract form as
€, C2 Cy
0 cy, C5 Cg

where ¢, , ..., c¢ are known explicitly from Eq. (a). If we choose 8, as the independent joint
coordinate for the closed-loop, and noting that 8, is independent from the loop, we can have

(.
0,
B,
8 6,
=E
8 8
- . - 2
where
1 0
o 1
0 © C3Cy ~ C1Cs CiCg = C2Cy
E= , € = _ — ,and €= ——————
0 e, C2Cg = C3Cs CaCg ~ CyCs

If the numerical values of the elements of C from Eq. (b) are used, matrix € will be found to be

SO O =
'
-

4. RECURSIVE VERSUS NONRECURSIVE ALGORITHMS

The equations of motion for open or closed loop systems (Eq. 8 or Egs. 11-14) can be generated and
solved for the accelerations either recursively or nonrecursively. Since the inertia matrix M is
symmetric, a standard nonrecursive technique such as LTDL factorization can be employed to solve for
the unknown accelerations. An alternative recursive approach for finding the unknown accelerations
was first developed by Featherstone [8]. The idea is to remove one body from a multibody system and
then to consider the remaining system as a new multibody system. Articulated body inertias are the
properties which make the remaining system act as the original one. The articulated inertias are
calculated by projecting the mass and inertia of the removed body onto the remaining system.
Repeatedly removing one body from the multibody system leads to a system with only one body for
which the accelerations can easily be calculated. The accelerations of the removed bodies will then
be obtained by back substitution. Wehage interpreted this process mathematically by using a large
number of equations of motion [9-11]. The unknowns of the equations are the absolute and joint
accelerations, as well as joint reaction forces. The equations of motion are solved by applying matrix
partitioning. This more theoretical approach allows for a very general formulation of the recursive

51

projection algorithm. Wehage shows that a recursive algorithm is equivalent to a “block LU
factorization."

For an open loop system containing n joints, a nonrecursive matrix factorization algorithm requires
a CPU time of approximately Order(n?). For the same system, a recursive algorithm requires a CPU
time of Order(n). However, the factor in front of O(n) or O(n?) can make one algorithm more or less
efficient than the other, depending upon n. Therefore, some examples are shown in this section to
clarify this concept.

In the recursive algorithms, the velocity transformation matrix B can be represented as the
product of two matrices [9],

B=G H (27)
The matrices G and H are found from velocity transformation equations between consecutive bodies as
v.=G.uv. +H8 (28)
) j)l
The equations of motion for an open loop system; i.e., Eq. 8, are then written as
G " Hy'Mc THE = ¢ W) (g - MGy (29)
where y contains quadratic velocity terms which can be constructed from

v, = Civi + Ao (30)

A detailed description of the recursive algorithm used in this study can be found in [12].

Two simple examples are considered here for comparison of the CPU times. Figure 5 shows a
highly parallel and a highly serial system. In both systems, the number of joints n is increased,
starting from one, between simulations. For the parallel system with only revolute joints, the
nonrecursive method is more efficient than the recursive method regardless of number of joints, as
shown in Fig. 6(a). It can be observed that both algorithms yield CPU times that increase almost
linearly as n is increased. For the serial system, however, there is a breakpoint beyond which the
recursive algorithm becomes more efficient than the nonrecursive algorithm. As shown in Fig. 6(b, c,
d), the breakpoint for the number of joints n is six, nine, and five when the serial system contains only
revolute joints, prismatic joints, or spherical joints respectively.

5 ¢
o

(a) (b)

Figure 5 Two systems with (a) a highly parallel and (b) a highly serial structures.

52

o

)
e
o

recursive algorithm *r—e p recursive algorithm *— L’
nonrecursive algorithmO----9 0.5] nonrecursive algorithmO----© 4
0.4 .
1
@ LT v 0.
§ 0.3 87 g
T o 7 0.
& 0.2 ot
&) v Q.
0.1 0.1
0.0+ - v B v v 0.0+ v v v T v
1 2 3 4 5 6 7 1 2 3 4 5 6 7
number of joints number of joints
0.6 1.0 - :
recursive algorithm *—e recursive algorithm *—e
nonrecursive algorithmG----© nonrecursive algorithmC----© R
0.4 0.84
o ‘ ™
E0.31 . £0.61
7 g i
‘ |
= =
8. 0.24 -
& 8 0.4
0.1 0.2
k
0.04+—— v v v v v v 0.0
1 2 3 4 5 6 7 8 9 1
number of joints number of joints

Figure 6 CPU time for one function evaluation versus number of joints for (a) a highly parallel system,
and (b), (c), (d) highly serial systems containing only revolute, prismatic, and spherical joints

respectively,

In reference [11], the recursive projection algorithm of open loop systems is modified for systems
containing closed kinematic loops. This algorithm has been tested and the result is reported in [12].
It is shown that since a closed loop is cut at one of the joints to form a reduced open loop system, the
breakpoint for the number of joints in a closed loop is approximately double of that of an open loop
system. For example, if the closed loop contains only revolute joints, there should be approximately
twelve or more bodies in the loop for the recursive algorithm to exhibit more efficiency than the

nonrecursive method.

For mechanical systems with only rigid bodies, it is rather unlikely to have open or closed loops
with enough number of bodies to make a recursive algorithm more efficient than a nonrecursive one.
However, when one or more of the bodies in a system are considered as deformable, then the concept

of recursive projection technique becomes highly attractive.

5. PARALLEL COMPUTATIONAL CONSIDERATIONS

When computation on a multiple-instruction multiple-data (MIMD) multiprocessing system s
considered, obvious parallelisms arising from the topology (e.g. multiple branches) can be exploited.

However, a true measure of the suitability of a computational scheme for parallel processing is the
degree of intrinsic parallelism in the scheme for the worst case (i.e. single branch open-loop linkage).

53

The formulation described by Eq. 8 was applied to a 6 degree-of-freedom Stanford arm that
consists of a base body plus 6 links all of which are connected to each other serially by revolute joints
except link 3 which is connected to link 2 by a prismatic joint. The algorithm to compute 8 at each
time step was represented as a data-flow graph. It is known that the shortest possible time to
traverse the graph from its beginning to its end is the length of the longest possible path in the graph,
or the critical path.

The maximum speedup for any multiprocessing system is, therefore, the ratio of the serial
computation time to the time corresponding to the critical path of the data-flow graph, since the
latter is a property of the computational scheme alone. The length of the critical path was computed
for a Stanford arm possessing 1 through 6 degrees of freedom. A plot of the maximum speedup with
the degrees of freedom in the Stanford arm is shown in Fig. 7. The plot indicates the possibility of
large speedups (11 to 76) if a suitable multiprocessing system and a proper scheduling algorithm are
used. It is also observed that the length of the critical path of the data-flow graph resulting from the
formulation increases linearly as the number of degrees of freedom increases in a serially connected
multibody system. This suggests that the maximum speedup will approach a constant (ratio of the rate
of increase of serial computation time to the rate of increase of critical path length) for a large
number of degrees of freedom.

®
o

Maximum Speedup
W B O o
S © & © o
L A A ' i

AN
[=}
A

b
[«)

2 3 4 5 6
Degrees of Freedom

—

Figure 7 Maximum speedup versus number of degrees of freedom for the Stanford arm.

The velocity transformation of Eq. 5 offers other possibilities for parallel processing. It is
evident from the approach described above that if the coordinate set, 8, used to describe the
configuration of the system is such that the critical path of the data-flow graph does not increase or
increases very slowly as new degrees of freedom are added to the system, then the maximum speedup
will increase linearly or approach a very high limit at large numbers of degrees of freedom.
Therefore, if matrix B can be chosen such that the resulting @ is this type of a coordinate set, then
the formulation would be very suitable for parallel processing because of very large potential gains in
speedup. Work is currently under way to determine such matrices B automatically on the basis of the
topology imposed by each type of joint in a multibody system.

6. DEFORMABLE BODIES

In the dynamic analysis of multibody systems, the elastodynamic effects may play an important role on
the behavior of the system. The most popular technique for describing the flexibility of the
components of a system is the finite element method. [n standard finite element formulation, the
gross motion (large displacements, large deformations) is not taken into account. However, in order
to analyze flexible multibody systems, such phenomena must be considered. Several researchers have
suggested procedures that successfully introduce elastodynamic effects into multibody dynamics

54

equations [13-15]. The main problem with the inclusion of elastodynamic effects is that the flexible
bodies may have a relatively complex geometry. This implies that a large number of nodes may be
necessary and, therefore, a system of equations with a large number of degrees of freedom will result.
In order to gain computational efficiency, a formulation based on the modal superposition method has
been suggested to reduce the number of degrees of freedom of the model [14].

The method of joint coordinates for multi-rigidbody dynamics can be extended to a system of
mixed rigid and flexible bodies. The equations of motion for the rigid bodies are written in terms of
the absolute coordinates, similar to Eqs. 1-4, and the equations of motion for the flexible bodies are
written in term of either nodal or modal coordinates. Additional kinematic constraints may be
necessary to represent the connectivities between rigid-to-flexible and flexible-to-flexible bodies.
Then, a velocity transformation process, similar to that of rigid bodies. (Eqs.5-10) can be applied to
remove the algebraic constraints and their corresponding Lagrange multipliers. The resultant
equations of motion for an open loop system can be converted to a minimal set of differential
equations. In the case of closed loop systems, the equations of motion may or may not contain
algebraic constraints and Lagrange multipliers.

For systems containing flexible bodies with linear elastic material properties, the equations of
motion with modal coordinates can be used. However, in some applications, it may be necessary to
consider the equations of motion in terms of the nodal coordinates in order to obtain more accurate
results.

7. CONCLUSION

The equations of motion for multibody systems containing closed kinematic loops can be written either
as a set of differential-algebraic equations (Eq. 11-14) or as a set of ordinary differential equations
(Eg. 19). The elements of the constrained equations of motion given by Egs. 11-14 can be constructed
efficiently. Although all of the joint coordinates are not independent of each other, and hence the
number of integration variables is not a minimum, the numerical integration of these equations can be
performed efficiently. For example, a dynamic simulation of the system shown in Fig. 4, including
several force elements, was performed using two different formulations -- the absolute coordinate
formulation of Eqs. 1-4 and the joint coordinate formulation of Eqs. 11-14, The numerical integration
of the equations of motion in both cases was carried out using a predictor-corrector Adams-Bashforth
algorithm on a desktop workstation. The CPU time for simulating ten seconds of dynamic response
was 352 seconds for Eqs. 1-4 and 75 seconds for Eqs. 11-14. The results obtained from these and
other simulations have shown that the formulation of Egqs. 11-14 yields about five times or more
efficiency over the formulation of Eqs. 1-4. The degree of efficiency depends on the number of
bodies, number of joints, and the connectivity between the bodies.

Equation 19 provides the minimum number of equations of motion for a multibody system
containing closed kinematic loops. The number of equations and the number of integration variables
are smaller when compared to those of Eqs. 11-14, Therefore, it may appear that the numerical
solution of Eq. 19 to be more efficient than that of Eqs. 11-14., However, a careful examination of
the elements of Eq. 19 would reveal that the overhead associated with evaluating these elements may
be more than the overhead associated with the additional number of equations and integration
variables of Eqs. 11-14. Numerical simulations of several problems using the two methods have shown
that the computation time associated with these two formulations are about the same.

Systematic generation of the elements of the equations of motion with the joint coordinates
makes the formulation ideal for symbolic generation of these elements. Computer programs have been
developed that symbolically generate the equations of motion for rigid body systems. The equations
are generated in an optimized fashion to improve the computational efficiency of the dynamic
simulation. The programs dealing with rigid and flexible bodies evaluate the equations of motion
numerically. The equations of motion for deformable bodies can be considered either in terms of the
modal or the nodal coordinates.

55

Another interesting feature of these equations is that the process of solving the equations of

motion for unknown accelerations can be performed either recursively or nonrecursively. It has been
shown that for highly serial systems with long chains, a recursive process may yield computational
efficiency. Further adaptation of these equations to multiprocessor computers results in a highly
efficient simulation package.

1.

2,

3.

4.

6.

7.

8.

9.

10.

11.

12.

13.

14,

15.

REFERENCES

Wittenburg, J., Dynamics of Systems of Rigid Bodies, B. G. Teubner, 1977,

Jerkovsky, W., "The Structure of Multibody Dynamics Equations,” }. Guidance and Control, Vol. 1,
No. 3, pp. 173-182, May-June 1978.

Roberson, R.E., and Schwertassek, R., Dynamics of Multibody Systems, Springer-Verlag, 1988.

Kim, S.S., and Vanderploeg, M.}., "A General and Efficient Method for Dynamic Analysis of
Mechanical Systems Using Velocity Transformations,” ASME J. Mech., Trans., and Auto. in Design,
Vol. 108, No. 2, pp. 176-182, June 1986. :

Ashrafivon, H., Computer-Aided Optimal Design of Multibody Mechanical Systems Using Symbolic
Computation, Ph.D. Dissertation, Mechanical Engineering, SUNY Buffalo, NY, 1988,

Nikravesh, P.E., and Gim, G., "Systematic Construction of The Equations of Motion for Multibody
Systems Containing Closed Kinematic Loops,” Proc., 15th ASME Design Automation Conference,
Montreal, Canada, 1989.

Nikravesh, P.E., Computer-Aided Analysis of Mechanical Systems, Prentice Hall, 1988.

Featherstone, R., Robot Dynamics Algorithms, Kluwer Academic Publishers, 1987,

Wehage, R.A., "Application of Matrix Partitioning and Recursive Projection to O(n) Solution of
Constrint Equations of Motion," Proc., 20th ASME Mechanisms Conference, Orlando, Florida, 1988.

Wehage, R.A., "Solution of Multibody Dynamics Using Natural Factors and Iterative Refinement
-~ Part I: Open Kinematic Loops,” Proc., 15th ASME Design Automation Conference, Montreal,
Canada, 1989,

Wehage, R.A., "Solution of Multibody Dynamics Using Natural Factors and Iterative Refinement
-~ Part 1l: Closed Kinematic Loops,® Proc., 15th ASME Design Automation Conference, Montreal,
Canada, 1989.

Rein, U., implementation of a Recursive Projection Algorithm in a General Purpose Computer
Program, Joint Diploma Thesis, Mechanical Engineering, Univ. of Arizona and Univ. of Stuttgart,
1989.

Song, J.0., and Haug, E.]., "Dynamic Analysis of Planar Flexible Mechanisms," Computer Methods
in Applied Mechanics and Engineering, Vol. 24, pp. 359-381, 1980.

Shabana, A., and Wehage, R.A., *Variable Degree of Freedom Component Mode Analysis of Inertia
Variant Flexible Mechanical Systems'® ASME). of Mech., Trans., and Auto. in Design, Vol. 105,
pp. 371-378, 1983,

Sunada, W., and Dubowsky, S., *The Application of Finite Element Method to the Dynamic Analysis
of Flexible Spatial and Co-Planar Linkage Systems," ASME J. of Mech. Design, Vol. 103, pp.
643-651, 1981,

N90-22993

Recursive Linearization of Multibody Dynamics Equations of Motion
Tsung-Chieh Lin and K. Harold Yae

Center for Simulation and Design Optimization of Mechanical System
Department of Mechanical Engineering
The University of lowa
lowa City, lowa 52242

Abstract

The equations of motion of a multibody system are nonlinear in nature, and thus pose a
difficult problem in linear control design. One approach is to have a first-order
approximation through the numerical perturbations at a given configuration, and to design a
control law based on the linearized model. In this paper, a linearized model is generated
analytically by following the footsteps of the recursive derivation of the equations of motion.

The equations of motion are first written in a Newton-Euler form, which is systematic
and easy to construct; then, they are transformed into a relative coordinate representation,
which is more efficient in computation. A new computational method for linearization is
obtained by applying a series of first-order analytical approximations to the recursive
kinematic relationships. The method has proved to be computationally more efficient because
of its recursive nature. It has also turned out to be more accurate because of the fact that
analytical perturbation circumvents numerical differentiation and other associated numerical
operations that may accumulate computational error, thus requiring only analytical
operations of matrices and vectors.

The power of the proposed linearization algorithm is demonstrated, in comparison to a
numerical perturbation method, with a two-link manipulator and a seven degrees of freedom
robotic manipulator. Its application to control design is also demonstrated.

1. Introduction

The behavior of a nonlinear dynamic system can be approximated by a linearized model
in the neighborhood of a reference configuration. Intuitively, linear models of dynamic
systems can be obtained by simply omitting nonlinear effects of the nonlinear dynamic
systems, such as Coriolis forces, centrifugal forces, and the interaction forces between bodies.
Such a model, however, cannot satisfy the needs of computer-aided design of control systems
for multibody systems because the intuitive simplification is usually case-dependent.
Therefore, a better linearized dynamic model based on a general purpose dynamics model is
necessary. The approach that fits this requirement most is first-order approximations of the
nonlinear dynamic models, which yield valid results in the neighborhood of the reference
configuration for dynamic and control analysis. A straightforward approach to obtain first-
order approximations of multibody systems is first to generate the analytical closed-form,
nonlinear equations of motion of the systems, and then to generate the linearized equations of
motion using first-order Taylor expansions. Unfortunately, these analytical equations of
motion are generally not available because they are too complex to be generated.

Due to the difficulty of analytically generating the closed-form, nonlinear equations of
motion of a multibody system, a numerical perturbation method is usually applied to obtain a
linearized model at a centain configuration. For instance, in DISCOS [1] the numerical
perturbation method is employed to generate a linearized model for stability analysis of a

57

multibody system at a selected configuration. Following a similar idea, Liang [2] implemented
a numerical perturbation method with DADS [3] for multibody mechanical system control.
Moreover, the numerical perturbation method has been widely implemented in dynamic and
control analysis. For example, Sohoni and Whitesell [4] applied it in ADAMS, and Singh,
Likins, and Vendervoortt applied [5] it to generate linear models of flexible body systems.

In the implementation of the numerical perturbation method, iterative computations
are employed to ensure that the resulting linearized models are accurate. However, the
iterative computation sometimes may not generate a satisfactory linearized model because of
failure in convergence. Therefore, a trade-off between the accuracy and convergence must be
made to generate a useful linearized model. An accurate linearized model is difficult to be
generated with good computational efficiency when the numerical perturbation approaches are
applied. In resolving this problem, the numerical perturbation method must be avoided during
the linearization procedure.

On the other hand, symbolic programming languages can be used to devise efficient
computational techniques to obtain the linearized manipulator models. Vukobratovic and Nenad
[6] proposed the linearization technique that first generates the nonlinear dynamic models of
the manipulator by means of symbolic programming languages, and then takes first-order
approximation from the given nonlinear model. Following the same approach, Neuman and
Murray [7] linearized symbolically the Lagrangian dynamic robot mode! about a nominal
trajectory to generate the linearized and trajectory sensitivity models of a manipulator.
Balafoutis, Misra, and Patel [8] further extended Neuman's approach to obtain more
computational efficiency in generating linearized models by using the fact that the derivatives
of trigonometric functions need not be computed explicitly, and that the partial derivatives of
the homogeneous transformation matrices may be obtained merely by row and column
manipulations. The same idea was applied to generate linearized models for flexible multibody
systems by Jonker [9]. Thus, although this approach has the advantage of not using the
numerical perturbation method, there is at the same time a disadvantage: it relies heavily on
symbolic programming languages. Consequently, the approach is restricted to special case
studies only until a general purpose symbolic manipulation package for the dynamic modelling
becomes available.

In searching for a general purpose computer-aided dynamic analysis algorithm, Bae
and Haug [10,11,12] developed a recursive formulation, which was later improved by Bae,
Hwang and Haug [13,14]. In this approach, the equations of motion are first written in a
Newton-Euler form, which is systematic and easy to construct. They are then transformed
into a relative coordinate representation, which is efficient for computation. This approach is
extended in this paper to efficiently generate a linearized model using the recursive
computational structure and applying the analytical linear approximations of the recursive
kinematic relationships, without applying numerical perturbations. The computational
efficiency and opportunity for parallelism of the recursive algorithm would make it possible
to linearize successively for adaptive dynamics control.

An analytical linearization algorithm is derived by using the recursive variational
derivation, and by linearizing kinematic relationships analytically. In the recursive
formulation, the equations of motion are obtained through a series of coordinate
transformations. By analytically taking first-order approximations of kinematic
relationships between Cartesian, state vector, and joint variables and then applying these
linearized relationships in the recursive variational derivation, linearized equations of motion
are generated in joint space. The proposed linearization algorithm is shown in Fig. 1 and is
explained as follows:

(1) Variational equations of motion are obtained in Cartesian space and the generalized mass
and force are approximated with first-order Taylor expansions.

(2) First-order approximate kinematic relationships are obtained between Cartesian
variables and state vector variables [14] and are substituted into the variational

58

equations obtained in (1). Linearized variational equations in state vector space are
generated.

(3) First-order Taylor expansions for the kinematical relationships between state vector
variables and joint variables are obtained, and then substituted into the approximate
variational equations obtained in (2).

(4) Linearized equations of motion are obtained from the approximate variational equations
in joint space. At this stage, open-chain mechanisms are expressed in terms of
independent coordinates and closed-chain mechanisms are expressed in a mixed
differential algebraic equation (DAE) form.

(5) Linearized equations of motion expressed only in terms of independent coordinates are
written in state space form for control applications.

The rest of the paper is organized as following. In Section 2, linearized kinematic
relationships are expressed in terms of the generalized state vector, which is used to simplify
expressions and to obtain compact equations. In Section 3, linearized relative kinematics
relations are derived for two contiguous bodies. The linearized equations of motion are
developed in Section 4. In Section 5, numerical examples of the recursive linearization
method are given. In addition, control designs based on the linearized models and linear control
theory are demonstrated. Finally, conclusions are presented in Section 6.

2. Generalized State Vector Notation

In this section, a first-order Taylor expansion is applied to approximate the
relationship between Cartesian variables and generalized velocity state variables. The
generalized velocity state vector, called the velocity state, is used to simplify expressions in
later derivations. It is defined as [13]

Yp=| TP*fP% (1)
Op

where the subscript P represents the origin of a body-fixed frame, as shown in Fig. 2. The

Cartesian velocity of point P can be written as

Yp=[P] (2)
Op

where I:P and o, are the translational velocity ot point P and the angular velocity of a body-

fixed frame at point P, respectively.
From the velocity expressions in Egs. 1 and 2, the Cartesian velocity Yp is expressed as

ey e

Replacing I:P by the virtual displacement érp and wp by the virtual rotation &xnp, yield
the variation of the position state vector.
82p =Tp 82p (4)

The Cartesian acceleration of the body-fixed frame shown in Fig. 2 is defined as the time
derivative of Eq. 3,

Yp =Tp ?p-Vp (5)

59

Fpop | , .
where Vp = is a velocity coupling vector.
0
Since the right sides of Eqs. 1 to 5 are explicitly expressed in terms of Cartesian
variables, their first-order expansions can be obtained analytically with respect to
perturbations in the Cartesian variables.
First, by expanding Tp at a reference configuration, Eq. 4 can be represented as

52p = (TS +d TS + O(&)%) 82p (6)
where d denotes a first-order perturbation with respect to Cartesian variables; the
superscript o signifies that the quantity is evaluated at a reference configuration, i.e.,

aTp
dTp=>"-
P BZp evaluated at o

and A denotes perturbed quantity, which is expressed in terms of the variables in the
Cartesian space. The perturbation of matrix T, can be obtained as

dTp = [0 -drp] (7)
0 0
where the partial derivative of the position vector of point P can be expressed as

Similarly, the acceleration relationship, Eq. 5, can be expanded as

Yp = [T +dTB + O(8)?] ¥p-[VD +d VR + O(8)3 (9)
The derivatives of the position state variable and the Cartesian variable can be related
from Eq. 6 as

dZp=Tp dﬁp (10)
and the derivative of the Cartesian velocity vector can be written as
dYp=d(Tp Yp)

=Tpd?p+dTp ?p (11)
where
dTp ?p=[“;p ‘”S’P]dip (12)

where d QP andd 2,, are the perturbations of velocity and position state vectors. Based on the

relationships in Egs. 9, 10, and 11, the derivative of the variables in the Cartesian space can
be expressed in terms of the derivatives of the state variables.

3. Relative Kinematics of Two Contiguous Bodies

In this section, a first-order Taylor approximation is derived to represent relative
kinematic relationships between contiguous bodies that are constrained by a kinematic joint,
as shown in Fig. 3. The relative kinematic relation between the velocities of the two
contiguous bodies i and j is defined as [13]

~ ~ . 1
Yj= Yi"'Bijqij (3)
where

od

1 P & \H.:
Relationships between virtual displacements and rotations of these bodies are obtained by
replacing the velocity vectors in Eq. 13 with virtual translational and rotational vectors; i.e.,

82j=5ii+Bij5qij (14)
Taking the time derivative of Eq. 13 yields the acceleration relationship

Yj= Y+ Bijqij+ Dij (15)
where

Djj - Bjj qjj

Asj shomjm irll Egs. 13, 14, and 15, the state variables of body j are expressed in terms
of the state variable of body i and the joint variables used to define the relative motion between
bodies i and j. The first-order Taylor expansions of Egs. 14 and 15 with respect to the state
variable of body i and the joint variables can be expressed as

52, = 82; + [Bfj + dBY + O(8)2] 3qjj (16)
¥ = Vi + [B} + 0B} + 0(4)2] qjj. [DY) + dDf + O(4)2] (17)

where dBj; and dDj; are computed in terms of the state variables of body i and the joint

variables.

Linearized equations of motion are generated based on the linearized joint kinematic
relationships and linearized relationships between the state space variables of bodies i and j-
From Egs. 13 and 14, relations between the perturbations of state variables and relative
coordinates are expressed as

de=dii+Bij dq; (18)
d?j= d?i"‘dBij(‘lij"’Bijddij v (19)
dY; = dY; + dBjj q; + Bijddii + dDj; (20)

4. Linearized Equations of Motion of a Tree Structural Mechanism

The linearized equations of motion of a tree structure mechanism that contains n joints
and n+1 bodies, as shown in Fig. 4, are presented in this section. By going through the
procedure of variational derivation [13] and by replacing the nonlinear kinematic
relationships with their first-order approximations, one can generate the linearized
equations of motion for an open-chain system. Applying the linearized kinematic
relationships to the recursive variational approach yields the linearized equations of motion
that are written in terms of the joint variables.

The variational form of the Newton-Euler equations of motion for an n-body system is
written as [3]

n
0= D &% MYi-Q;) (21)
i =0

61

where M; is the mass matrix and Q; is the generalized force. The variational equation must
hold for all kinematically admissible variations 8Z;, i = 1,...,n; i.e,, the kinematic constraints
on the system must be satisfied by 82;. Then approximate variational equations can be

generated from a set of approximations of the generalized mass and force for each body, which
are expressed as

M; = M9+ aM? + O(a)2 (22)
Q = Q¥+ daf + O(a)? (23)
where dM; and dQ; are expressed in terms of Cartesian variables.

4.2 Variational Equations in State Vector Space

Approximated variational equations in state vector space can be obtained by
substituting Egs. 6, 10, 22, and 26 into the equations of motion in Cartesian space and by
replacing Cartesian variables with the state variables. The approximated variational
equations can be written as

n
0= D52l (TIMOTN; - TT"(MOVO+ Q9] + [(aTTMOTO LTTIMOTO &
i =0

(o]) o o (o] o o
TIMGarY; -@TT MOVO +1TaMOVe +TTMOVO +aTT Q% +TTdQ%)]+0(4)2)
(24)
where V; is a velocity coupling term, which is defined in Eq. 5. In order to simplify Eq. 24,
the notation of the generalized mass matrix M j and force vector 6; in the state vector space
[13] will be used henceforth. The equations of motion are thus expressed as

n
0= Zﬁﬂ {(MDY, - G + d MOV, - @ + 0(a)?) (25)
i =0

where
oM; = dTIMT; +TTdMT; +TIMdT;

dQ; = dTIMV; +TTdmMyV; +TTMav; +daTTQ; +TTdq;
and dM;, dT;, dV; and dQ;, which are expressed in terms of the perturbations of the Cartesian
variables, can be rewritten in terms of the perturbations of the state variables by
substituting the relationship between the Cartesian variables and the state variables into
their expressions.
13, L ized Equall { Motion in Joint S

The approximated variational equations of motion in state vector space can be rewritten
in terms of joint variables. As the results in Section 3 indicate, the variables in state vector
space can be transformed into joint variables. The linearized equations in joint space can be
obtained by applying the following procedures. Substituting the approximated kinematic
relationship between bodies n and n-1 into the variational equations yields

n-1 :

0= Z 821 {(MY, - O) + oMY, - dBP + O(a)2 } +
i=0

8201 {(MOV, - &) + dMSY, - d& + O(a)2} + (26)

62

o] (] . - ~ -
san { (B +dBj + O®)?) [(MYV, - &) + aMRY, - &l + O(8)°
where the perturbations are taken with respect to the state variables of the inboard bodies
and the relative variables that are used to defined the relative motion between the bodies n and
n-1. Moreover, the relative kinematic matrix B,,_{ , is denoted as B, to simplify the

expressions during the derivation.
Because joint n is not subject to any relative constraint between the connected bodies,

the virtual displacement of the joint coordinate is arbitrary. Thus the coefficient of 2Sq1,'1 is
equal to zero; i.e.,

(o] o M o R
0= (B) +dB] + 0@)?2)[(MY, - Q) + dMO¥, -d@ + OA)2] (27)
Substituting the first-order Taylor expansion of the acceleration vector into state vector

space, and substituting the relationships between state and joint spaces into Eq. 27, gives the
equation of motion corresponding to joint n.

[o) . [o] . [¢]
0 =B (KMOVS-&0) +d B MOYS) -dB &) + 0(n)?) (28)
where
d (BfM.Y,) =dBIM,.Y, + BIdM Y, + BIM.dY,
d(BJQ,) =dBlQ, + BldQ,

and dlﬂln and dén can be written in terms of the state variables of body n-1 and the relative

variables that are used to define the relative motion between bodies n and n-1. Moreover, the
equation of motion corresponding to joint n at the reference configuration is

[o] »
0 =B, (MOV - &) (29)
Substituting the relationship in Eq. 29 into Eq. 28 and omitting higher order terms yields

(o] . (o]
0 = d (B MOY]) -dB] &) (30)
where ?n can be expressed in terms of the derivative of a set of independent variables

x (=[Y5 Y5 20 g 4] q] ... &} qf ql") by substituting the relationships from Egs.
18, 19, and 20 recursively for j from n to 1.

Following the same arguments used in obtaining Eq. 30, one can obtain the linearized
equations of motion corresponding to joint i as

o A . .
0 =BT d(KYi+Ki1Bipy Gipr+ - + KnBp dn - L)® +

o} -
dBT" (K;¥i + Ki11Bisy Gisr+ ... + KoBp dp - Lj)°
fori=1,..,n
where Ki= Kﬂi + Ki+1' Li = 6i + Li+1 - Ki+1Di+1' Kn = hﬁn, and Ln = 6n.

By repeating the above procedure in backward path sequence to the base body, one can
obtain the linearized equation of motion for the base body as

(31)

d(Ko¥o + KB1G1+ . + KBnGp - Lo)® =0 (32)

63

For the open-chain mechanism, the linearized equations of motion at the reference
configuration, which are represented in Egs. 31 and 32, can be obtained recursively. During
the derivation, every perturbed term in the linearized equations can be computed either from
the perturbed variables in the Cartesian variables, which are computed analytically, or from
the analytically linearized relationships among the Cartesian, state vector, and joint
coordinate spaces.

5. Numerical Examples

In this section, the applications of the recursive linearization algorithm are illustrated
by two examples: a two-link manipulator and a robot arm with seven degrees of freedom. The
accuracy and computational efficiency of the proposed algorithm are demonstrated by
comparing the models obtained from the recursive algorithm with those obtained from the
analytical approach and from a numerical perturbation method. In the case of the two-link
system, an exact linearization is accomplished by the use of the symbolic manipulator
(MACSYMA) [15]. However, to generate the exact linearized model for a complicated system
is very difficult, even with a symbolic manipulator. In the second example, a numerical
perturbation is applied to the robot with seven degrees of freedom in order to generate a
reference linearized mode! with which the results of the recursive linearization algorithm are
compared.
51 A Two-Link Manipul

In this subsection, a two-link manipulator, as shown in Fig. 7, is modeled and tested.
Since all the joints are revolute, one independent coordinate is assigned to each joint. The
manipulator can be modeled as a system of two differential equations. For this system, the
linearization can also be carried out analytically by using the symbolic manipulator
(MACSYMA). Therefore, it is possible to check the accuracy of the recursive linearization
algorithm by comparing the linear models obtained from both approaches: recursive
linearization and MACSYMA implementation.

The recursive linearization produced a linearized model at the specified configuration

that was defined by setting 64, 6, 6, and 8, to zero. The linearized equation of motion is
written as

o 0 0o 10 gg"’ 0 0
dé, 0 0 0 1 1 0 0 [de]
db, |~ | -5.191 3.4612 0 0 || d& [* |-0.0824 0.0294](dTy
, 1.1537 -4.0380 0 0 J| 0.0294 -0.0176
d61 d91

(33)

where T4 and T, are actuating torques that are applied at the revolute joints. At the same
specified configuration, the symbolic manipulation generated the exact linearized model, which
is identical to the one obtained from the recursive linearization approach. A comparison of the
numerical and analytical results shows that the proposed recursive linearization algorithm
can generate a correct linearized model at a given configuration.

After the linearized model is obtained, a linear controller can be designed by applying
the linear model to existing control design tools. A linear regulator is designed to control the
motion of the manipulator by using the Pro-Matlab package. The pole placement algorithm
[16] is used to compute the full state feedback gain matrix for the nonlinear dynamic model.
The effectiveness of this regulator is tested by applying an initial deviation of the system and
using the regulator to stabilize it. As expected, the linearized model can well represent the
nonlinear model. Therefore, a small initial deviation is tested first. The results of 0.05
radian initial deviations are shown in Figs. 6 and 7. The nonlinear system can be stabilized by

the linear regulator. Similar results are presented in Figs. 8 and 9 for 1.0 radian initial
deviations.

However, the pole placement algorithm for a multiple-input muitiple-output system
does not have a unique solution [17]. The feedback gain obtained from the Pro-Matlab package
is an iterating solution, which is designed to find an insensitive set for the configuration
change. However, this algorithm requires a lot of computation to generate an optimal gain
matrix. Thus, this algorithm cannot be used for an on-line computation for the real time
simulation. To fulfill the on-line computation requirement, a simple and stable pole
placement algorithm is needed. A case particularly interesting is to determine the feedback
controller [17] in such a way that the closed loop equation is decomposed into a set of n
decoupled second-order differential equations. ,

0=d6;+ 28 w;dd, +2dB;; i=1,..n (34)
where the damping factor &; and the undamped frequency ; of each tracking error are
specified by the designer. Defining the nxn constant diagonal matrices Aq= diag;{2&; w; } and
A, = diag;{ ®7 }, one can obtain the desired decoupled closed loop equation from Eq. 34 as

0 =db + AdO + Ay dO (35)
The closed loop equation of the linearized model with a proportional-derivative (PD)
controller can be written in a second order differential equation form as

0=Mdb +(P;-Ky)dd + (P, -Kp) do (36)
where Kp is the position feedback gain matrix and Ky is the velocity feedback gain matrix.
Equating coefficients in Eqs. 35 and 36 gives the desired closed-loop feedback gain matrices as

Ky = MA, - P, (37)

Kp =MA, - Po (38)
Consequently, a linear regulator is designed to control the dynamic system. As shown in Figs.
10, 11, 12, and 13, the linear regulator can stabilize the nonlinear dynamic model for both
small and large initial deviation cases.

Figure 10 shows a robot arm that has seven degrees of freedom. The system consists of
eight bodies, including the base body, which is designated as ground. The adjacent bodies are
connected by revolute joints. Joints 1 to 7 are identified as Shoulder Roll, Shoulder Pitch,
Elbow Roll, Elbow Pitch, Wrist Roll, Wrist Pitch, and Toolplate Roll.

Since adjacent bodies are connected by revolute joints, one generalized coordinate is
assigned to each joint. The motion of this system can be described by seven generalized
coordinates; the dynamic system is thus formulated as a system of seven differential equations.
When a reference configuration is selected, a linearized model can be generated at this
configuration using the proposed linearization algorithm.

The configuration that is shown in Fig. 10 is selected as a reference configuration: the
angles of all the joints are zero (qy, gs, -, 47 = 0), and the velocities of all the joints are also

zero (d1, ... &7 = 0). At this reference configuration, the linearized model that is obtained
from the recursive linearization algorithm is expressed as

. 0 { 0
dx = [M'1P2 M-1p1]dx+ [qua]du (39)

where x = [q4 Gp 93 G4 Gs 96 97 % G % G4 G5 G G7]' , u is the actuating torque
vector, M is the generalized mass matrix that is expressed in terms of joint variables, and

65

-1
M Py =077

[15.737 0 -1.607 0 -.1451 0 -.18e-8]

0 15.228 0 2.8549 0 -.3485 0

.41697 0 9.2375 0 -.4480 0 -.13e-7

M'P, = 0 -11.44 0 -6.361 0 .5637 0
-29.11 0 3.711 0 21.533 0 .93e-7

0 -5.0345 0 -13.19 0 -15.76 0

(14.914 0 5.9428 0 -25.38 0 -.58e-7.

Pz =1

In this case, to generate a closed-form analytical expression for the linearized model is
too difficult for accuracy checking even if the symbolic manipulation is employed. Instead, two
comparisons were derived to make certain that the linearized mode! in Eq. 39 accurately
represents the nonlinear model. In the first comparison, both the nonlinear and linearized
models were perturbed with the same amount, and then the resulted acceleration changes were

examined. In the second comparison, two linearized models—one obtained from the recursive

approach and the other obtained from the numerical perturbation method—are examined.
In the first comparison, perturbation of the generalized coordinate x by

108 incurs the relative error of the acceleration changes between the linearized and
nonlinear model as

dx -dx
dx —dxll, 2.739 e-6

I dx’i, (40)

where dx is the acceleration change obtained from the linearized model and dx” is obtained
from the nonlinear model.

In the second comparison, a simple numerical perturbation without any convergence
checking is implemented to generate a linearized model, which will serve as a reference in
comparing the recursive linearization with the numerical perturbation. Comparing the
linearized model obtained from the numerical method with those obtained from the recursive
approach, one can observe that at the given configuration both approaches generate nearly

identical linearized models, in which the relative difference is less than 10°.

However, the recursive algorithm proves to be more efficient than the numerical
perturbation method. In comparison with the numerical perturbation method, the recursive
linearization took half the cpu time to generate a linear model, even though the numerical
perturbation method used here was a relatively simple one. If a convergence checking
algorithm was employed for the numerical perturbation method, it would take even longer to
generate a linear model.

The simple pole placement used in the previous example was used again to design a
linear regulator. The desired closed-loop poles were selected to make the simulation results
similar to the experimental results. After properly selecting the desired poles, we used this
linear regulator to control the nonlinear dynamic model. The step response of Joint 4 is shown
in Fig. 11. From this result, it is clear that a simple regulator based on a linearized model
simulates the behavior of a complicate control system around a reference configuration.

6. Conclusion
In these examples, we have shown that the proposed linearization algorithm is both
efficient and accurate in generating a linear mode! at given configurations. These linear

models are converted to the standard state space forms, which are convenient for linear
control design. Moreover, the driving force input for a required motion around a given
configuration can be predicted by using the linearized model. When a large gross motion is
involved in a prescribed trajectory, more than one linearized model may be necessary for
robust control. In such a case, the computation of linearization must be fast enough to update
the linearized model before it fails to represent the system adequately. With the emerging
parallel processing computers and computation algorithm, the use of successive linearization
will be possible for on-line adaptive control.

References

1. Bodley, C., Devers, A., Park, A., and Frisch, H., A digital Computer Program for Dynamic
nﬁmlgn_annﬁmmlatmm&gnm&andmmmm NASA Tech. Paper 1219,
May 1978.

2. Liang, C.G., and Lance, G.M., Dynamic Analysis and Control Synthesis of Integrated
Mechanical Systems, Ph.D. Thesis, University of lowa, 1985.

3. Haug, E.J., Computer Aided Kinematics and Dynamics of Mechanical Systems. Volume [:
Basic Method, Allyn & Bacon, Boston,1989.

4. Sohoni, V.N., and Whitesell, J., "Automatic Linearization of Constrained Dynamical
Models," Journal of Mechanism. Transmission, and Automation in Design. Transactions of
ihe ASME, vol. 108, Sept., 1986, p. 300-304.

5. Singh, R.P., Likins, P.W., and VenderVoortt, R.J., "Automated Dynamics and Control
Analysis of Constrained Multlbody System,” Bg_QQﬂg_&Manyj_anung_Aanang_u 1985,
p. 109-113.

6. Vukobratovic, M. and Nenad, K., “Computer-oriented Method for Linearization of Dynamic

Models of Active Spatial Mechamsms Mechanism and Machine Theory, Vol. 17, No. 1,
1982, p.21-32.
7. Neuman, C "Linearization and Sensitivity Funcuons of Dynamic Robot Models," |EEE
, vol. 14, no. 6, 1984, p.805-818.
8. Balafoutis, C.A., Misra, P., and Patel, R.V., "Recurswe Evaluation of Linearized Dynamic
Robot Models "EMBQMWW Vol. RA-2, No. 3, 1986, p. 146-155.

9. Jonker, J.B., A Computer-Oriented Method for Linearization of The Dynamic Mechanism
Egquations, Lab. Report no. 822, Department of Mechanical Engineering, Delft University

of Technology, The Netherlands, 1986.
10. Bad, D.S. and Haug, E.J., "A recursive Formulation for Constrained Mechanical Systems,

Part I- Open Loop,” Mechanics of Structures and Machines, Vol. 15, No. 4, 1987.
11. Bad, D.S. and Haug, E.J., "A recursive Formulation for Constrained Mechanical Systems,

Part |I- Closed Loop," Mechanics of Structures and Machines, Vol. 15, No. 4, 1987.
12. Bad, D.S., Haug, E.J., and Kuhl, J.G., "A recursive Formulation for Constrained Mechanical

Systems, Part Ili- Parallel Processor Implementation,” Mechanics of Structures and

Machines, Vol. 16, No. 2, 1988.
13. Bae, D.S., Hwang, R.S., and Haug, E.J., "A Recursive Formulation for Real-Time Dynamic

Snmulatlon " Submitted to MMEMWWMM

Design.
14. Hwang, R.S., Bae, D.S., Kuhl, J.G., and Haug, E.J., "Parallel Processing for Real-Time

Dynamtc Sﬁmulatlon * Submitted to Jgumal_oj_Mecnamami._ILanimmm_aﬂd
15. yAx_umx_Macsxma_BeiemManual Version 11, Symbolics, Inc. 1985.

16. Kautsky, J., Nichols, N.K., and Van Dooren, P., "Robust Pole Assngnment in Linear

State Feedback " m_tg_r_n_an_o_n_al_,!_o_u_r_nal_oj_QQmm_l Vol. 41, No. 5, p. 1129-1155,
1985.

67

17. Brady, Hollerbach, Johnson, Lozano-P'eroz, and Mason, editor, Robot Motion:
Planning and Control, The MIT Press, Cambridge, 1983.

BRecursive Derivation of
Equations of Motion

Proposed Linearization Algorithm

Variational Equations for Dynamic
System in Cartesian Space

Linearized Variational Equations
ian e

Kinematic Relations
between Spaces

Linearized Kinematic
Relations between Spaces

Variational Equations for Dynamic
System in State Vector Space

Linearized Variational Equations
in State Vector Space

Kinematic Relations
v between Spaces

Linearized Kinematic
Relations between Spaces

Variational Equations for
Dynamic System in Joint Space

Linearized Variational Equations
in Joint Space

;

Equations of Motion in
Joint Space

l

Linearized Equations of Motion
in Joint Space

v

State Space Representation

Figure 1. Recursive Derivation Flow for Dynamic Equations of Motion and
Proposed Linearization Algorithm

Figure 2. Body and Global Frames Representations

Joint 2

& Body 2 Joint n
®e
®e
Body n-1
Body 1
Joint 1
n
Body 0

Figure 3. Pair of Contiguous Bodies Figure 4. An n-Joint Open -Chain Mechanism

Figure 5. A Two Links Manipulator Figure 10. A Seven Degrees of Freedom Robot
Arm

)
=]
9 J 'O 4
] © 1.0+
Q. 1.9+ —~— ;
@] 2 02
2 {182 S]
<] 1
- - < 5-
£ =
=1 S
- d
°]
N ' "
© 64 1 76
£ e — — ——— Y —
5 2 4 1 2 3 4
z Time (sec) Time (sec)
Figure 6. Response of small Initial Deviation Figure 7. Response of large Initial Deviation
o -
= ~]
o 7 . 4
o] \'2 B
L ~ e e
[2})] 7)) 7 2
o 2]
[=S = g’ h
<] <]
£] €]
3 ¢ -2
T] - 4
Q] 91 - 61
N
‘—é’ ey e T
<23 Time (sec) Time (sec)
Figure 8. Response of small Initial Deviation Figure 9. Response of large Initial Deviation
. 020
n o0—o0 o0
.015-:
—~ -4
b]
s -
- 010
2 J
g u Experiment
< YOS5
] o Simulation
-
r ™ v Y v Y T v Y T T v
[] .2 .4 N-3 .8
Time (sec)

Figure 11. Step Response of Joint 4

70

N90-22994

An Innovations Approach to Decoupling
of
Multibody Dynamics and Control

G. Rodriguez
Jet Propulsion Laboratory
California Institute of Technology

Abstract

The paper solves the problem of hinged multibody dynamics using an
extension of the innovations approach of linear filtering and prediction
theory to the problem of mechanical system modeling and control. This
approach has been used quite effectively to diagonalize the equations for
filtering and prediction for linear state space systems. It has similar
advantages in the study of dynamics and control of multibody systems.
The innovations approach advanced here consists of expressing the
equations of motion in terms of two closely related processes: (1) the
innovations process e, a sequence of moments, obtained from the applied
moments T by means of a spatially recursive Kalman filter that goes from
the tip of the manipulator to its base; (2) a residual process, a sequence of
velocities, obtained from the joint-angle velocities by means of an outward
smoothing operations. The innovations e and the applied moments T are
related by means of the relationships e = (I -L)T and T = (I + Kle. The
operation (I - L) is a causal lower triangular matrix which is generated by a
spatially recursive Kalman filter and the corresponding discrete-step Riccati
equation. Hence, the innovations and the applied moments can be obtained
from each other by means of a causal operation which is itself causally
invertible. The residuals n and the joint-angle velocities q are related by n
- (I -K*)q and q = (I -L*)n in which (I - L*) is also an anticausal, upper-
triangular, matrix. Hence, the residuals and the joint-angle velocities are
related by means of an anticausal operation which is itself anticausally
invertible. The use of the residuals process is of interest because it
diagonalizes the composite multibody system kinetic energy. In other
words, the kinetic energy] §, q) in the system can be written as J=1/2nT
Dn in which D is a diagonal matrix. The Lagrangian equations of motion
that result from this diagonal form for the kinetic energy are completely
decoupled in the sense that the equation for the residual velocity at any
given joint is independent from the similar equations at all of the remaining
joints. The innovations process appears as a driving term in these
equations. Use of the innovations, in place of the physically applied joint
moments, decouples the equations even further. The equations of motion
for joint k involves only the value of the innovations at the same joint. The
final equations of motion are therefore diagonalized in the sense that the
equation for any given joint is independent from the equations at the other

71

joints. The diagonal form of the equations of motion results in significant
simplification of dynamic analysis, simulation, stability analysis, and control

design. This simplicity is illustrated by arriving a very simple decoupled
control algorithms for robotic manipulator control.

72

N90-22995

EFFICIENT DYNAMIC SIMULATION
FOR MULTIPLE CHAIN ROBOTIC MECHANISMS

Kathryn W. Lilly and David E. Orin

Department of Electrical Engineering
The Ohio State University
Columbus, OH 43210

Abstract

An efficient O(mN) algorithm for dynamic simulation of simple closed-chain robotic mechanisms will
be presented in this paper, where m is the number of chains, and N is the number of degrees of
freedom for each chain. It is based on computation of the operational space inertia matrix (6 x 6)
for each chain as seen by the body, load, or object. Also, computation of the chain dynamics, when
opened at one end, is required, and the most efficient algorithm is used for this purpose. Parallel
implementation of the dynamics for each chain results in an O(N) 4+ O(log; m+1) algorithm.

I. Introduction

Recently, there has been an increasing interest in robotic systems with multiple chains forming simple
closed kinematic loops. Such systems of interest in space robotics applications include multilegged
vehicles, multiple manipulators, and dexterous hands. Each is characterized by multiple chains of
links (legs, arms, or fingers) in support of a body, load, or object. Real-time simulation of these
systems is important for remote operation, but difficult to achieve at present. An even greater
challenge to the computational engineer is that of super-real-time simulation, that is, planning seconds
of motion in milliseconds. This has been shown to be of value in the control of a multilegged vehicle
when predicting the action of the present control to ensure safety and stability along a planned
trajectory.

The fundamental goal of this paper is the development of an efficient algorithm for the dynamic sim-
ulation of the time-varying topological systems discussed above. Previous researchers have presented
algorithms for these and similar configurations based on equation augmentation [1], constraint prop-
agation [2], and recursive computation [3,4], but these methods are often difficult to apply and/or
computationally inefficient. The new simulation algorithm derived here makes use of efficient com-
putations for the individual supporting chains to produce an efficient simulation method for the
complete robot system. The dynamic properties of each chain are described in a simple, physically
understandable manner, which facilitates the straightforward analysis of the combined dynamics of
the entire mechanism.

Multiple chain robotic systems can take many forms, sorae of them quite complex. Simple closed-
chain mechanisms are a subset of multiple chain systems with specific structural characteristics. The
structure of a simple closed-chain mechanism is characterized by m actuated chains which support a
single common reference member [1]. A supporting chain is identified as an independent functional
unit in the closed chain system which has two ends, each terminated by a single link. Each chain
may have an arbitrary number of links and degrees of freedom, and closed kinematic loops within
a chain are permitted. The removal of the reference member breaks the closed loops formed by the

multiple chains.

73

Reference
Member (0)

Chain 2 Chain 3

/ :

Chain 1

Figure 1: Example of a Type 0 Simple Closed-Chain Mechanism

Chain 4

Chain 3

Figure 2: Example of a Type 1 Simple Closed-Chain Mechanism

There are two basic types of simple closed-chain mechanisms called Type 0 and Type 1, respectively
[1]. These two types are defined based on the nature of the interactions which occur between the
links of each chain and the reference member or support surface. Figure 1 illustrates a typical Type
0 mechanism which may be used to model multiple manipulators or dexterous hands. Note that the
support surface, shown here as a fixed inertial frame for a multiple manipulator configuration, might
also represent the moving “palm” of a dexterous hand. In either case, for a Type 0 mechanism, the
base link of each chain is connected to the support surface by an actuated joint structure, while the
last link interacts with the reference member through an unpowered contact. Figure 2 illustrates a
Type 1 simple closed-chain mechanism which may be used to model multilegged vehicles. For a Type
1 mechanism, the last link of each chain interacts with the support surface through an unpowered
contact, while the base link is connected to the reference member by an actuated joint structure. For
both Type 0 and Type 1 mechanisms, the reference member (object, load, or body) is numbered 0,
while the chains are numbered arbitrarily from 1 to m. Chain k£ (k = 1,...,m) has Ny degrees of
freedom, where N; may be less than, equal to, or greater than 6.

In order to apply the same algorithm to both types in this work, the support surface will be considered
to act as the “base” of each chain. We will refer to the terminal link which interacts with the support
surface as link 1, and the terminal link which interacts with the reference member will be called the
last link or end effector (link N). The far end of link N is the “tip” of the chain. The interactions
and connections which occur between bodies or links in the system (including those at the support
surface and at the reference member) will be described using the general joint model of [5,6]. This

74

includes both powered joint structures and unpowered contacts. The motion of the support surface
is assumed to be known.

In this paper, an O(mN) recursive algorithm for the dynamic simulation of simple closed-chain
mechanisms is derived for m chains with N degrees of freedom each. The algorithm is based on the
efficient computation of the (6 x 6) operational space inertia matrix [7] for each chain as seen by the
body, load, or object. The operational space inertia matrix, A, may be used to obtain the net effect
of the chain dynamics at its tip. The computation of the chain dynamics when the chain is open
at one end is also required, and the most efficient algorithm is used for this purpose. Given O(N)
algorithms for these two fundamental computations for each chain [4,5,8,9], an O(mN) algorithm for
the simulation of the entire multiple chain system is formulated.

In the next section, the notational and modelling conventions used in the formulation of the new
algorithm are summarized. In the third section, the dynamic properties of the individual supporting
chains and the common reference member are discussed, and the appropriate dynamic equations
are developed. The operational space inertia matrix and the open-chain dynamics of each chain
are of special significance in this discussion. In the fourth section, the O(mN) dynamic simulation
algorithm for simple closed-chain mechanisms is derived. The final algorithm is presented as a series
of five steps, which are summarized in a convenient tabular form. The computational requirements
of the new algorithm, including parallel implementation considerations, are presented in the fifth
section. Finally, the results of this work are summarized and some overall conclusions are given in
the final section.

II. Notation

Many of the notational conventions used in this paper are based on concepts introduced by Roberson
and Schwertassek in [6] and used by Brandl, Johanni, and Otter in [5]. They are similar in many
ways to those described by Featherstone in [9] for robot dynamics, although there are a few minor
differences. As in each of these, spatial notation will be used to develop the dynamic equations for
the chains and reference member. With spatial notation, velocity, acceleration, and force vectors are
all 6 x 1 column vectors, where each incorporates the appropriate linear and angular components. In
this paper, the spatial velocity of the reference member, vo, is written:

17, (1)

where (wo)z, (wo)y, and (wg), are the components of the angular velocity of the reference member
about X, ¥, and z, respectively, usually resolved in the reference member frame (frame 0) or an inertial
coordinate system. The three components, (vo)z, (vo)ys and (o), represent the linear velocity of the
coordinate origin of frame 0. Similarly, the spatial acceleration of the reference member is expressed

as:

vo = [(wo)z (wo)y (wo)z (vo)s (vo)y (vo):

a0 = [(a0)s (a0)y (a0)s (a)e (ao)y (a0)e 1", (2)

where the individual components now correspond to resolved angular and linear acceleration vectors.
Spatial force vectors have a corresponding structure:

o= (m)e (m)y (ne)e ()e Uiy (F)e 17, (3)

where, in this case, fi will be used to represent the spatial force exerted on the reference member

by chain k. The first three components, (nk)s, (nk)y, and (n), represent the elements of a three-
dimensional moment vector, while (fi)z, (ft)y, and (fi). are the elements of a three-dimensional

force vector.

15

In general, the transformation of a spatial velocity or acceleration vector from one coordinate system
to another one may be accomplished by the following spatial multiplication [9]:

’p = X;'p, (4)

where p is the vector expressed with respect to the ith coordinate system, ip is the same vector
expressed with respect to the jth coordinate system, and 7X; is the 6 x 6 spatial transformation
matrix. This spatial transformation is defined as follows:

: A; 0
A 5
JX‘_[JAib}‘ JA;}’ (5)

where JA; is the 3 x 3 rotation transformation between the two coordinate systems, and b; is the
3 X 1 position vector from the origin of frame ¢ to the origin of frame j, with components expressed
in frame ¢. The 3 x 3 matrix, b;, is an anti-symmetric matrix defined by the rule:

0 —C3 C2
¢ = c3 0 -c |. (6)
—Ca C1 0

In spatial notation, inertia matrices are also expressed as 6 X 6 matrices. An inertia matrix may be
defined for each individual link of a chain, as well as the reference member, in its own corresponding
coordinate system. For the reference member, this matrix, Iy, is represented as follows:

i() flo
= ~ 7
To [hg Mo]’ (7)

where My is a 3 X 3 diagonal matrix of the mass of the reference member, and I, is the 3 x 3 moment
of inertia tensor at the origin of coordinate frame 0. The matrix I, is symmetric and positive definite,
but not necessarily diagonal. The 3 X 3 matrix, hy, is equal to mgSg, where mg is the mass of the
reference member, and so is the position vector of the center of gravity of the reference member from
the coordinate origin of frame 0. Because I and so are defined in coordinate system 0, the matrix
Ip is constant.

To include general joints and contacts with multiple degrees of freedom in a multibody system, an
extended model of the interconnections and interactions between individual bodies of that system is
required. In this paper, the general joint model of Roberson and Schwertassek [6] is used for this
purpose. This model is also used by Brandl, Johanni, and Otter in [5]

Briefly, each interconnection and/or interaction between two bodies in a simple closed-chain mecha-
nism, hereafter referred to as a “general joint”, is described in terms of two orthogonal vector spaces,
¢ and ¢°. The matrix ¢ is of dimension 6 x n, where n represents the number of degrees of freedom
of the general joint, and it has full column rank. It represents the free modes of the joint, and its
columns make up a basis for this free vector space. We will refer to ¢ as the motion space of the
general joint. The matrix ¢¢, which is 6 x (6 — n) and also of full rank, represents the constrained
modes of the general joint. It is orthogonal to ¢, and may be called the constraint space of the joint.
Both ¢ and ¢° are usually resolved in the joint frame, and thus, they are both constant.

III. Dynamic Properties of Individual Chains and Reference Member

Each chain in a simple closed-chain mechanism is governed by the dynamic equations of motion for
a single chain. For chain &, k = 1,...,m, these are:

76

e = Hi & + Cr @k + Gy + J7 i, (8)

where
7+ = Ni x 1 applied general joint torque/force vector,
Qk, 4k, 4k = N x 1 general joint position, rate, and acceleration vectors,
H; = N; x N joint space inertia matrix,
Cr = Ni x N centripetal/Coriolis matrix,
Gr = N x 1 gravity vector,
Jr, = 6 x N Jacobian matrix,

and f} is the (6 x 1) spatial force vector exerted by chain k on the reference member.

Note that Hy, Ck, Gk, and J; are functions only of the general joint position and rate vectors, qx
and qi, respectively. Recall also that the “base” of each chain is the support surface, and the “tip”
of each chain touches the reference member. The components of q; and 7, correspond to the general
joints of each chain, starting with the joint between link 1 and the support surface and ending with
the joint preceding link N. The basic unknowns in Eq. (8) are the general joint accelerations, g,
and the components of the force vector, fi, in the constrained directions of the general joint at the
tip of chain k.

We may use the dynamic equations of motion to partition the joint acceleration and spatial tip
acceleration vectors of each chain into the difference of two terms, one known and one unknown. For
each chain, we may write [11]:

flk = (alk)open - (HZIJZ)fky (9)
= (Gk)open — Tk, (10)

where (Gk)open is the vector of joint accelerations for chain k in an open, unconstrained configuration
(fi = 0), and $2; is a function of the joint positions for chain k. Likewise, for X, the tip acceleration
for each chain:

ik = (ik)opcn - (Jk HEIJ{)fk) (11)
= (ik)opcn - A;lfk, (12)

where (3)open i8 the spatial tip acceleration vector for chain k in an open, unconstrained configu-
ration, and A;l is the inverse operational space inertia matrix for chain k, defined at the tip of the
chain [7,11].

The open-chain terms, (€)open and (Xk)open, are completely defined for each chain given the present
state joint positions and rates, q; and q, the applied joint torques/forces in the free directions, 7,
and the motion of the support surface. An appropriate open-chain Direct Dynamics algorithm may
be used to calculate these terms. The O(N) recursive algorithms of [5,10] are very efficient for this
computation, and the linear order of computation is highly desirable. Because the joint positions
are known, £2; and A;l are also defined. Efficient algorithms for €2, and A,:l for a single chain are
derived in [11], including an O(N) recursive algorithm which is the most efficient for N > 6.

The dynamic behavior of the reference member may be described using a spatial force balance
equation for that body. The sum of the spatial forces exerted by each chain on the reference member
and any other external spatial forces (including gravity) are equal to the resultant force on the
reference member. Using spatial notation, we may write the force balance equation as follows:

77

m
Fo= °fi + go, (13)

k=1
where
Fo = 6 x 1 resultant spatial force vector applied to the reference member,
Of, = 6 x 1 spatial force vector applied by chain % to the reference member,
and
go = 6 x 1 external spatial force vector applied to the reference member

(including gravity).

Each force term in Eq. (13) is defined with respect to the coordinate frame attached to the reference
member (frame 0). Applying the basic Newton-Euler equations, we may also write the resultant

vector, Fyg, as follows:

Fo = Igag+ vo X Ipvo, (14)
= Ipag + by, (15)
where
I, = 6 x 6 spatial inertia of the reference member,
ag = 6 x 1 spatial acceleration of the reference member,
vg = 6 x 1 spatial velocity of the reference member.

Both v and ag refer to the motion of the coordinate origin of frame 0. The spatial inertia matrix,
Io, is also defined at this point, and it is known and constant. Because v is given for the present
state, the velocity-dependent term, b, is known. If we combine Eqs. (13) and (15), we finally obtain
the following dynamic equation for the reference member:

m

> %% + go = Toao + bo. (16)
k=1

In this equation, the basic unknowns are ap and the components of °f; in the constrained directions
of the general joint at the tip of chain k.

IV. Multiple Chain Algorithm

In developing an efficient algorithm for the dynamic simulation of simple closed-chain mechanisms,
we are naturally led to consider the relationship between the physical structure of the robotic sys-
tem and the computational structure of the desired algorithm. Intuitively, it seems apparent that
the structural parallelism present in a simple closed-chain mechanism should lead to computational
parallelism in the solution of the Direct Dynamics problem for that mechanism.

More specifically, in a simple closed-chain mechanism, the m actuated chains act on the reference
member in parallel, and their motion is coupled with that of the reference member. If the reference
member is removed, the chains may function independently. Computationally, the physical removal
of the reference member corresponds to solving for the forces which are exerted on it by each chain.
Once these forces are known, the system is equivalent to a group of independent chains with known
tip forces. The joint accelerations may then be computed for each chain separately. Given enough
processors (one per chain), the computations for each chain may be carried out in parallel.

78

We will illustrate the basic methodology of the new simulation algorithm by first examining a simple
special case. Consider m manipulators rigidly grasping a common object. Each manipulator has six
degrees of freedom, and no chain is in a singular position. For simplicity, we will express all of the
relevant equations in absolute coordinates. Because each chain tip is rigidly attached to the reference
member, we may write:

Xk = ao (17)

for each chain k, k = 1,...,m. Thus, the operational space dynamic equation for each chain, as
given in Eq. (12), takes the form:

ag = (ik)open - A;lfk- (18)

Because no chain is in a singular position, and each chain has a full six degrees of freedom, Ay is
defined [11]. We may, therefore, solve for the spatial tip force exerted by chain k on the reference
member, i, as follows:

fk = Ak [(ik)open - aO] . (19)

With this equation we have established an explicit relationship between the spatial tip force, fi, and
the spatial acceleration of the reference member, ag. This expression may be used in the reference
member dynamic equation, given in Eq. (16), to obtain:

EAk [(’"ck)opcn h aO] = IOaO + bO — 8o- (20)
k=1

The only unknown in Eq (20) is ag, the spatial acceleration of the reference member. Collecting
terms, we may write:

[IO + f:Ak] ap = [Em:Ak ‘(ik)open —bo + Bgoj - (21)

k=1 k=1

We may now solve for ag from this linear system of algebraic equations using any linear system
solver. Note that the characteristic matrix is just the sum of the operational space inertia matrices
of the individual chains and reference member, and is only 6 x 6. With ag known, we may also
solve explicitly for the spatial tip force fy, k = 1,...,m, using Eq. (19). Thus, the motion of the
reference member and the spatial force exerted at the tip of each chain are completely defined. The
simple closed-chain mechanism is effectively decoupled. Each manipulator may now be treated as
an independent chain with a known spatial tip force. The joint accelerations for each chain may be
computed separately using an appropriate Direct Dynamics algorithm and then integrated to obtain
the next state.

The method outlined above is quite straightforward. Of course, the illustrated example represents a
special case. We will now develop a similar approach for a general simple closed-chain mechanism.
Consider a mechanism with m chains, each with an arbitrary number of degrees of freedom, N. The
interaction between each chain tip and the reference member is arbitrary and will be modelled using
the general joint model of [6]. To begin, we will derive an explicit relationship between the spatial
acceleration of each chain tip and the spatial acceleration of the reference member. The spatial
acceleration of the tip of chain k is denoted by x;. The relative spatial acceleration between the tip
of chain k and the reference member, %], resolved in the orthogonal vector spaces of the general joint
between them, may be written:

X = (¢ o + (97)k ks (22)

9

C-2

where (¢); and (¢°)x are the motion space and constraint space of the general joint at the tip of chain
k, respectively. The quantities a; and of are the corresponding components of relative acceleration
in the free and constrained directions. For each chain, (¢)i, (¢°)k, and af are known, while oy is
unknown. The sum of X; and X}, is just the spatial acceleration of the reference member on the far
side of the general joint between it and chain k, af. Thus, we may write:

ab = %+, (23)

= X+ (D ar + (¢°)k f- (24)

We may also express af in terms of the spatial acceleration of the reference member, ag, as follows:
a§ = Xg ao + (g, (25)

where X} = ¥X¥ is the spatial transformation between coordinate frame 0 and the coordinate frame
associated with the general joint at the tip of chain k. The quantity Cg is the 6 x 1 bias acceleration
vector which is a function of the position and spatial velocity of the reference member. Because the
present state of the entire system is given, both X% and (¥ are known.

Equating the two expressions above for af, we obtain the following:

% + (@)k ok + (%) af = X§ a0 + (. (26)

This equation matches the spatial accelerations at the coupling point between chain k and the refer-
ence member, giving an explicit relationship between X; and ag when the coupling is arbitrary. The
basic unknowns in Eq. (26) are Xx, ak, and ap. All other vectors and matrices may be computed
rather simply from the initial information given for the simulation problem.

To decouple the chains and the reference member, we need an explicit mathematical relationship
between the spatial force exerted by chain k on the reference member, f;, and the spatial acceleration
of the reference member, ag. Equation (26) relates the spatial acceleration of the reference member
and the spatial acceleration of the tip of chain k. We may eliminate ay, the unknown components
of the relative acceleration, by projecting Eq. (26) onto the constraint space of the corresponding
general joint as follows:

(¢)F B + (B ak + (#°)x 0f] = (#)F [Xb o + 4] - (27)
By definition [11]:

(¢)F (8)x = O, | (28)
and .

(6°)F (¢ = 1. (29)
Thus, we may write:

() %k + o = (¢)F [Xb a0 + ¢f] - (30)

Equation (12) defines % in terms of the desired force vector, fi. If we combine Eqs. (12) and (30),
we obtain:

(80T [GekYopen — A7 M| = (6T [X5 20 + 4] - e, (31)

or

80

(69 AZY] £ = [af — (4T 68 + (¢ (dopen] ~ (607 XE] 20. (32)

The first bracketed term on the right side of Eq. (32) is completely known. The only unknowns in
this equation are the constraint components of the force vector, fi, and the spatial acceleration, ag.
We may now pursue an explicit relationship between these two vectors.

Like the relative acceleration vector, fy may also be resolved in the orthogonal vector spaces of the
general joint at the tip of chain k as follows:

fr = (@)k hx + (&) hi, (33)

where hj is the vector of known force components in the free directions, and hj§ is the vector of
unknown force components in the constrained directions. Combining Egs. (32) and (33), we obtain:

(6T AT [(B)ihe + (69 hE] = [af = (6 66 + (9)T (R Joen]
- [(#)F X3] 2. (34)

If the spatial acceleration of the reference member is known, we may find an explicit solution for the
unknown force components at the tip of chain k from the following set of linear algebraic equations:

(6 AT 6] B = {at = (6 [¢§ = Gondopen + AT (B)e]}
~ [(69F X§] =0, (35)
= S - [0 X§] a0, ©(36)

where S is known. Even when ag is unknown, we may still find a solution for h{ in terms of the
unknown ag. The solution will have the following form:

hi = My[Sk— (69 Xbao|, (37)
= M;iSk - [Mk(df);{x’g] ao. (38)

If (n.)x is the number of degrees of constraint for the general joint at the tip of chain k, then My is
the (n.)k X (nc)k transformation matrix which solves for h{. By carefully considering the rank of the
coefficient matrix, this general solution can still be used for a chain in a singular position or a chain
with less than six original degrees of freedom [11]. This solution procedure requires O[(n.)3) scalar
operations.

Note that if chain k is rigidly grasping the reference member, then the constraint space for this
general joint, (¢°)x, is the 6 x 6 identity matrix. In this case, also note that af and hy are identically
zero for each chain. If chain k has six degrees of freedom and is not in a singular position, then M
will be exactly equal to Ay, the operational space inertia matrix for chain k, and the solution for h§
will be:

¢ = Ak [Sk-X§ 2| - ‘ (39)

This solution corresponds to the simple example discussed at the beginning of this section, but now
expressed in local coordinates.

81

Given the general solution for h{ in Eq. (38), the force vector, fi, may now be written:

fi = (&)hi+(¢°)hi, (40)
= [(#)k hi + (6 M Si] ~ [My (6°)F X4] o, (41)
= Pk - Rk ap, (42)

where P, and R are of dimension 6 x 1 and 6 x 6, respectively, and both may be computed from
known quantities. We now have an explicit equation relating the force vector exerted by chain &
and the spatial acceleration of the reference member. We may combine this information with the
dynamic equation for the reference member to solve for ap explicitly.

The dynamic equation for the reference member given in Eq. (16) may be rewritten as follows:

Z(Xg)Tfk + g0 = Ipag + bg. ' (43)
k=1

where f, is the spatial force exerted by chain k on the reference member, expressed in the coordinate
frame of the general joint at the chain tip. If the expression for f; in Eq. (42) is used in Eq. (43), we
obtain:

2 _(X5)T(Px — R ag) = Ipag + bo — go. (44)
k=1

Summing like terms, we may write:

[Io + fj(x{;)TRkJ ag = [f:(x'g)TPk —bo + go] : (45)
k=1 k=1
or, expanding Ry,
[ro + SO KEYT (60 My (69)] (xs)] a0 = [i(xg)fpk bo go] . (46)
k=1 k=1

In Eq. (46), the 6 x 1 spatial acceleration vector of the reference member, ag, is the only unknown.
We may find a solution for ap from the given set of linear algebraic equations using any efficient
linear system solver. Because the required system solution always involves a 6 x 6 coefficient matrix,
the computational cost of solving for ag is constant.

The coefficient matrix of ag in Eq. (46) represents the combined inertial properties of all the chains
and the reference member. The inertial properties of each chain are first projected to the tip of that
chain by computing the inverse operational space inertia matrix, A;l. Along the free directions of
the general joint which connects the chain tip and the reference member, the projected inertia of the
chain is not felt by the reference member. Along the constrained directions of the joint, however, the
corresponding components of A;l are reflected across to the reference member. These components,
spatially transformed to the coordinate origin of frame 0, are combined with the spatial inertia of
the reference member, Iy. This combination represents the effective operational space inertia of the
simple closed-chain mechanism defined at the coordinate origin of frame 0. It is the effective inertia
“felt” by the reference member in the present state. The bracketed term on the right side of Eq. (46)
represents the spatial forces which act on the reference member at the given instant,.

Once the spatial acceleration of the reference member is known, the spatial force vector applied hy

chain k to the reference member is defined by Eq. (42). That is, with ag given, we may compute f,
as follows:

82

f = P — Ry ao. (47)

Recall that fi is defined with respect to the coordinate frame of the general joint between chain k
and the reference member. The explicit knowledge of fi allows us to treat chain k as an independent
chain with a known tip force. We may now solve for the general closed-chain joint accelerations for
chain k using Eq. (10), repeated here for convenience:

dx = (dx)open — i Tk (48)

The application of Eq. (48) to every actuated chain in the simple closed-chain mechanism results in a
complete solution to the Direct Dynamics problem for this robotic system. The next state positions
and velocities may be computed by integrating the appropriate quantities for each chain and the
reference member. As discussed in [11], small amounts of negative position and rate feedback may
be employed to counteract the drift which is a result of the integration process, and which would
violate the kinematic constraints.

The algorithm developed here for simple closed-chain mechanisms may be presented as a series of
five steps. They are as follows:

1. The Open Chain Solution,

2. Calculation of the Spatial Acceleration of the Reference Member,
3. Calculation of the Spatial Chain Tip Forces,

4. Calculation of the Closed-Chain Joint Accelerations,

5. Integration for the Next State.

The fundamental computations required in each of these steps are summarized in Table 1. In Step 1,
the Direct Dynamics problem is solved for each chain of the mechanism assuming that the reference
member has been removed and each chain is in an open, unconstrained state. The general open-chain
acceleration vectors, (Qx)open and (Xx)open, are computed for each chain, along with the position-
dependent matrices, §2; and A;l. In Step 2, Eq. (45) is used to find an explicit solution for ag,
the spatial acceleration of the reference member, via linear system solution. The quantities (M Si)
and [My (¢° {X’(ﬁ], required for both P; and R, are computed in the determination of the explicit
relationship between h§ and ag. This relationship is found by linear system solution using Eq. (36),
with the solution taking the form of Eq. (38). In Step 3, this solution is used in Eq. (47) to solve
for the spatial force vector exerted on the reference member by each chain. In Step 4, the general
closed-chain joint accelerations are computed for each chain using Eq. (48), given the spatial tip force
vector. In Step 5, the appropriate rates and accelerations are integrated to obtain the next state
positions and rates for the system.

Note that the first step may be carried out for all chains in parallel, if enough processors are available
(one per chain). Once the second step is complete and ag is known, the third, fourth, and fifth
steps may also be carried out for all chains simultaneously. Thus, taking advantage of the structural
parallelism inherent in the simple closed-chain system has led to parallelism in the computational
structure of the simulation algorithm.

V. Computational Requirements

We will now consider the computational requirements of the dynamic simulation algorithm for simple
closed-chain mechanisms. First, the number of scalar operations required for each chain of the
mechanism will be tabulated, followed by the number of operations required to compute the spatial

83

Table 1: Dynamic Simulation Algori‘thm for Simple Closed-Chain Mechanisms

Given: af, hg, (¢°)k, (¢)k, and with

X%, bo, go, ¢k determined from the reference member state;

Step 1. Compute (i)open, (Xk)open, Sk, and A;l; k=1,...,m.

Step 2. Solve for ag:

m m

[Io + Z(XS)TRk] ap = [Z(X’(;)Tpk —bo+ go])
k=1 k=1

with

Pr = [(@)he+ () MxSi],
Ry = [(¢°%Mi(e)f XE],
Sk = o — (6 [¢6 — (Redopen + A7 ()i he] ,

and where (M; S;) and [M;c ()T Xg] are determined by the solution of:
(M) bg = [(49F Ag" (#9:] bt = S, - [(#9)F X¢] 2.

Step 3. Solveforfy; k=1,...,m:
f = Pi—Riap.

Step 4. Solvefor qx; k=1,...,m:
A = (k)open — R f.

Step 5. Integrate to obtain the next state positions and rates for the system.

Table 2: Computations Per Chain in the Simple Closed-Chain Dynamic Simulation Algorithm

#Mult. #Add.
Calculation #Mult. #Add. (N=6,n.=3) | (N=6,nc=3)
Qopen » Xopen 250N — 182 220N - 167 1318 1153
Q,A! 400N - 621 320N - 528 1779 1392
P,R In® +6in? +54nc+26 inl46n2 4+ inc+10 105 71
XTp, XTR 36n. + 20 36n, — 24 128 84
f 36 36 36 36
q 6N 6N 36 36
Total: 656N — 767 546N — 659 3402 2772
+(in +6in? + 41in +46) | +(3n +6n’ + 362 nc — 14)

acceleration of the reference member. The computational complexity of the complete algorithm will
then be discussed, and the parallel implementation of this algorithm will be considered.

Table 2 lists the number of scalar operations (multiplications, additions) required in the simulation
algorithm for each chain of a simple closed-chain mechanism. The operations are tabulated for the
case of an N degree-of-freedom serial-link chain with simple revolute and/or prismatic joints only.
The O(N) Direct Dynamics algorithm of [5] is used to compute the open-chain terms, Qopen and
Xopen. The O(N') Force Propagation Method of [11] is used to compute § and A~ All Gopen, Xopens
2, and A~! are computed in Step 1 of the simulation algorithm.

In Step 2 of the simulation algorithm, the spatial acceleration of the reference member is calculated
using Eq. (45). For this task, X7P and X7R must be computed for each chain. The number of
operations required to compute P, R, XTP, and XTR are also listed in Table 2. In this case, the
number of operations is a function of the number of degrees of constraint at the general joint between
the chain tip and the reference member (n.). This number can never be greater than six. The
computational complexity of these calculations is O(n2) due to the linear system solution required
in the computation of both P and R (see Table 1).

The spatial force vector, f, exerted by each chain on the reference member, and the closed-chain joint
accelerations for the chain, §, are calculated in Steps 3 and 4 of the simulation algorithm, respectively.
The appropriate equations are given in Table 1. The operations required to calculate these vectors
complete the table. The operations required for the special case of N = 6 and n, = 3 are given in
the last two columns of Table 2. This value of n. could correspond to a hard point contact between
a manipulator tip and surface of a load object when the tip is not slipping.

Given the computations required for each individual chain, the number of scalar operations needed
to compute the spatial acceleration of the reference member, ag, is given in Table 3. Equation (45)
is used to obtain the solution, which requires O(m) spatial additions and a single 6 X 6 symmetric
linear system solution. Thus, the number of operations required for ag is a function only of m, the
number of chains in the simple closed-chain mechanism. The example of three chains (m = 3) is
given in the last two columns of this table.

To determine the total number of scalar operations required to simulate the entire simple closed-
chain mechanism, the number of operations required for a single chain is simply multiplied by m,

85

Table 3: Computations for the Spatial Acceleration of the Reference Member

#Mult. | #Add.
Calculation | #Mult. | #Add. | (m=3)}|(m=23)
ag 86 2Tm 4+ 71 86 152

the number of chains, and added to the computations required for ag for the same number of chains.
Thus, the computational complexity of the complete simulation algorithm is O(mN) for a given value
of n. <6.

The total computational complexity discussed in the previous section only considered the execution of
the simulation algorithm on a single processor. In order to speed up the simulation, parallel processing
may be investigated. If a single processor is used for the entire system of m chains, the computational
complexity of the simulation algorithm is O(mN) for a given n. < 6. Given ag, all computations for
each chain may be carried out independently. Thus, if m processors are available, the computational
tasks associated with each chain may be performed in parallel, and the computational complexity
of the operations required for the m chains may be reduced to O(N). Of course, the computations
required to compute ag must also be considered. These operations may also be implemented in
parallel on the m available processors. Equation (45) requires O(m) spatial additions to compute ag.
On (m + 1)/2 parallel processors, this task may be carried out in O(logym+ 1) operations by using
the recursive doubling approach [12]. Thus, on m parallel processors, the computational complexity
of the entire dynamic simulation algorithm may be reduced to O(N) + O(log,m+1).

VI. Summary and Conclusions

In this paper, a general and efficient dynamic simulation algorithm for simple closed-chain mechanisms
was derived. The algorithm is applicable to both Type 0 and Type 1 mechanisms. Both types of
mechanisms are modelled in a convenient and general manner through the use of the general joint
concept. The operational space inertia matrix of each chain is used to project the dynamic properties
of the chain to its tip where it is coupled to the reference member. By combining the operational
space inertia of each chain with the model of the general joint at each chain tip, a solution may be
found for the spatial acceleration of the reference member and the spatial force vector exerted on it
by each chain. Once the force vectors are completely defined, the system is effectively decoupled,
and the joint accelerations for each chain may be computed separately.

The computational complexity of the new simulation algorithm is O(mN) when implemented on a
single processor. The linear dependence on N is a significant improvement over previous simulation
algorithms such as that presented in [1]. The computational complexity of the new algorithm may
be further reduced to O(XN) + O(log,m+1) if it is implemented on m processors in parallel.

VII. Acknowledgments

Support for this research was provided by a Presidential Fellowship from The Ohio State University
and by the National Science Foundation under Computational Engineering Grant No. EET-8718434.

References

[1] S. Y. Oh and D. E. Orin, “Dynamic Computer Simulation of Multiple Closed-Chain Robotic
Mechanisms,” in Proceedings of the 1986 IEEE International Conference on Robotics and Au-
tomation, pp. 15-20, San Francisco, CA, April 1986.

[2] R. H. Lathrop, “Constrained (Closed-Loop) Robot Simulation by Local Constraint Propaga-
tion,” in Proceedings of the 1986 IEEE International Conference on Robotics and Automation,
pp. 689-694, San Francisco, CA, April 1986.

(3] H. Brandl, R. Johanni, and M. Otter, “An Algorithm for the Simulation of Multibody Systems
with Kinematic Loops,” in Proceedings of the IFToMM Seventh World Congress on the Theory
of Machines and Mechanisms, Sevilla, Spain, September 1987.

[4] G. Rodriguez and K. Kreutz, “Recursive Mass Matrix Factorization and Inversion: An Opera-
tor Approach to Open- and Closed-Chain Multibody Dynamics,” Technical Report 88-11, Jet
Propulsion Laboratory, Pasadena, CA, March 1988.

[5] H. Brandl, R. Johanni, and M. Otter, “A Very Efficient Algorithm for the Simulation of Robots
and Similar Multibody Systems Without Inversion of the Mass Matrix,” in Proceedings of
IFAC/IFIP/IMACS International Symposium on the Theory of Robots, Vienna, Austria, De-
cember 1986.

[6] R. E. Roberson and R. F. Schwertassek, Introduction to the Dynamics of Multibody Systems.
Springer-Verlag, Berlin, 1987.

(7] O. Khatib, “A Unified Approach for Motion and Force Control of Robot Manipulators: The
Operational Space Formulation,” IEEE Journal of Robotics and Automation, vol. RA-3, no. 1,
pp. 43-53, 1987.

[8] K. W. Lilly and D. E. Orin, “O(N) Recursive Algorithm for the Operational Space Inertia Matrix
of a Robot Manipulator,” submitted to 11th IFAC World Congress, August 1990.

[9] R. Featherstone, Robot Dynamics Algorithms. Boston: Kluwer Academic Publishers, 1987.

[10] R. Featherstone, “The Calculation of Robot Dynamics Using Articulated-Body Inertias,” The
International Journal of Robotics Research, vol. 2, no. 1, pp. 13-30, Spring 1983.

[11] K. W. Lilly, “Efficient Dynamic Simulation of Multiple Chain Robotic Mechanisms,” Ph.D.
Thesis, The Ohio State University, 1989.

[12] M. Amin-Javaheri and D. E. Orin, “Parallel Algorithms for Computation of the Manipula-
tor Inertia Matrix,” in Proceedings of NASA Conference on Space Telerobotics, Pasadena, CA,
Jan./Feb. 1989.

87

N9O-22996

A Nearly-Linear Computational-Cost Scheme
for the Forward Dynamics of an N-Body Pendulum

Jack C. K. Chou

Erik Jonsson School of Engineering and Computer Science
The University of Texas at Dallas, P. O. Box 830688, MP 32
Richardson, Texas 75083-0688, USA
Tel: (214)690-2132

Abstract

The dynamic equations of motion of an n-body pendulum with spherical joints are derived to be a mixed system
of differential and algebraic equations (DAE’s). The DAE’s are kept in implicit form to save arithmetic and
preserve the sparsity of the system and are solved by the robust implicit integration method. At each solution
point, the predicted solution is corrected to its exact solution within given tolerance using Newton’s iterative
method. For each iteration, a linear system of the form JAX = E has to be solved. The computational cost for
solving this linear system directly by LU factorisation is O(n’) and it can be reduced significantly by exploring
the structure of J. This paper shows that by recognising the recursive patterns and exploiting the spa.rsxty
of the system the multiplicative and additive computational costs for solving JAX = E are O(n) and O(n?),
respectively. The formulation and solution method for an n-body pendulum is presented. The computational
cost is shown to be nearly linearly proportional to the number of bodies.

1 INTRODUCTION

The general modeling and formulation of an open-chain multi-body system with spherical joints was presented
by Chou, Singhal, and Kesavan in 1986 [1]. In this paper, we are interested in a single open kinematic chain
without branching which is a special configuration of a general open-chain system. Much attention was paid to
this open-chain system by researchers, such as Armstrong [2], because the system is simple and its configuration
is similar to robot arms. In Armstrong’s work, he presented an O(n) algorithm for the computation of robot
forward dynamics. However, in the conclusion of his paper he stated that his program worked only for the
Jjoints with three degrees of freedom (i.e., spherical joints). He also claimed that his algorithm can be enhanced
to include prismatic and revolute joints. In the author’s opinion, once we have joints which possess less than
three rotational degrees of freedom connecting two bodies, the bodies are rotationally dependent. In this case,
the equations of motion can not be decoupled easily, and we may not be able to find an O(n) algorithm for the
complete calculation of robot forward dynamics unless we use very simple and primitive integration methods
or other techniques such as parallel computing. In other words, if we use an unreliable integration routine we
may get invalid solutions.

A series of n rigid bodies joined sequentially by spherical joints form an n-body pendulum. The bodies are
allowed to rotate freely in space, but the motion of translation between adjacent bodies is constrained by the
Jjoint. This sequence of bodies can swing in any direction with one end fixed at the ceiling through a spherical
joint. Here, we derive the equations of motion of this pendulum in the form of a mixed set of differential and
algebraic equations (DAE’s) and solve the equations using the robust implicit integration method developed by
Petzold [3,4]. The DAE’s are kept in implicit form to save arithmetic and preserve the sparsity of the system.
At each solution point, the predicted solution is corrected to its exact solution within the given tolerance using
Newton’s iterative method. For each iteration, a linear system of the form JAX = E has to be solved. The
computational cost for solving this linear system directly by LU factorization is O(n?). In order to reduce
computatlons we explore the structure of J and take advantage of the system sparsity. This paper shows that
by recognizing the recursive patterns and exploiting the sparsﬂ.y of the system the multiplicative and additive
computational costs for solving JAX = E are O(n) and O(n?), respectively.

88

2 MATHEMATICAL MODEL

An n-body pendulum was modeled with graphs by Chou and was presented in [5]. Based on this graph-theoretic
model, the mathematical model was derived as a set of DAE’s and was written symbolically as

E(X,X,t) = 0 (1)

where the vector of unknown variables is
x =Rl v Pl sT]" (2)

The vectors R; and 'V, are the collection of displacements and velocities of all the bodies, and the vectors P,
and S; are the orientation parameters (we use Euler parametets here) and their derivatives. The superscripts
»4” and ”v” indicate the dependent set and the independent set, respectively. The equations include the
following six sets of equations: . .
'F(vh Py, Ss, Ss, i
TG(Rs, Ps, 9)
tG(Vsy, Py, S, t)
I(Ps, t)
'Iz(l.’h Ss, t)
"I’(P}, S}, 1)

and they are a total of 14n scalar equations in 14n unknown variables.

3)

=
i
I
)

3 SOLVING THE FULL SYSTEM

At each solution point, we can solve the system equations E directly, using the implicit integration method
[3,4] where the predicted solution is corrected to its exact solution within a given tolerance using Newton’s
iterative method. For each iteration, a liner system

has to be solved by LU factorization. The matrix J is the system Jacobian matrix which is specified by the
formula given by Petzold [4]. The vectors AX and E are the vectors of corrections and residuals, respectively.
Letting the Jacobian of an implicit function F with respect to the variable V be Fy, we can write the Jacobian
matrix J and the vectors AX and E of the full system symbolically as follows:

tGR 0 0 0 tGp- tGP- AR]; tG
0 !Gv 'Gs« 'Gse 'Gps |'Gps AV, tG
0 0 rIZ . 0 0 r1'2 . AS: _ rIZ
0 0 o I3, o . AS; 1 T | D8 ®
0 0 0 o cIL.|'h. | |AF S
0 ,F'V stu 'F;v ,Fpu I, Pv_ A z 'F

Solving the full system means that the system is solved by implicit integration in which the full linear system,
JAX = E, is solved by LU factorization without reducing its size. However, some structural information in J
and E can be utilized to reduce computations when they are evaluated.

3.1 Recursiveness and Special Structures

Some equations in E possess recursive properties which can be further utilized to reduce computational cost.
This recursive nature also causes the sub-matrices in J to have special structures which can be exploited to
minimize the computational cost.

3.1.1 Translational Kinematic Constraints ‘G

In [5], the translational kinematic equations were derived as

i
'G; = Ry, — Ry, — Air; + 3_Asax = 0 (5)
=1

Let

Ei:l Ah&k
Aja;
0

{&-
x;
Ao

then, (5) becomes 'G; = R;, — R,p,, — A;x; + A; = 0, or recursively

‘G; = Ry, — R,,, — A + (A1 4+x) = 0 (6)

When we evaluate the residual vector *G, we only have to compute R,,, R,p,, Air;, and x; for i = 1,...,n
once. Instead of computing A; for each equation, we only compute x; and add the previous A;_;; that is,
A=Ay +xg. ’

The Jacobian entries corresponding to the equation *G are *Gg and *Gp. The Jacobian of *G correspond-
ing to Ry can be shown to be a unit matrix easily. Here we show that *Gp has a special structure. It is written

as

8'G 8'G 8'G
_6___.;%‘ .b_xla; _Lop.,
-] a8t 8t

g, = 26 _ | B BB T m

Gp = = (7)

P, : : :

8'G ‘G ‘G

o e o S

Since *G; is a function of py,, Ps,, ..., and py,, for each row i (i = 1,...,n) we have

tQ,
9°G: _ 0; k=i+1,..,n (8)
dps.
The matrix in (7) becomes

86, 26, o ...

o o | BB BB @
2'G o'é a'b. . 2'G
Py, P, 0Py, T FPi.

and it is a blocked lower-triangular matrix. Each blocked entry is a 3 x 4 matrix. The entries in each column
i (i=1,...,n) in (9) are derived, in Appendix D.1 in [5], as

{ S = 2B a - 2B %

_ (10)
%‘p—(’:’} = 2E;a;; k=i+1,...,n
Hence, (9) becomes
[2E,(a, — 1) 0 0]
2E; a, 2E;(a; — r3) 0
‘Gp = 2E, a, 2E,; a, 2Es(ag — t3) --- 0 (11)
| 2E; a, 2E; a, 2E; ag v 2Eq(a, — T,) |

To compute ‘Gp, we only have to evaluate 2E; a;, 2F; r;, and 2E;(a; — ;) once fori = 1,...,n.
The matrix ‘Gp can be further partitioned into *Gp. and *Gp- as in (4). This involves permuting selected
columns; however, the special structure is retained for these matrices after they are partitioned.

3.1.2 Translational Velocity Kinematic Constraints tG

Translational velocity constraints are written as

n
‘(.-:'.' =V, — .:t.-r,- + Z;l,,a;. =0 (12)
k=1
Let . . .
A‘. = Z;:l Abah
X o= Ay
Ao =0

then, (12) becomes G = Vy, - A;r; + A = 0, or recursively
G = Vi, — Am + (Ao +X) = 0 (13)

Similar to (6), we only have to compute Vy,, A;r;, and X; once. Instead of computing X:, we compute Ai1+%
recursively to save computations.

The Jacobian matrices correspond to ‘G are Gy, Gy, and t@&p in which *Gy can be shown to be a unit
matrix easily, and 'G's and *G'p will be shown to possess special structures. The Jacobian matrix of tG with
respect to S, is defined as

2'G, 8'G 2'G
W::L I] 8.;: T 8 52”1
. ‘G, 8'G, 8'G,
tés = L] tG — 33.‘ 8y, 8 8,,, (14)
88, : :
O‘é D‘G O'G
5w, o8, B,
Since 'G; is a function of S5,, Sb,, - - -, and s;,, for each row i (i =1, ..,n) we have
tQy,
9Gi _ 0; k=i+1,.,n (15)
9 8y,
Hence, (14) becomes
2'G
a_s,'f 0. 0 0
8'G; 8'G, 0
‘és — 0’)‘ 0';: (16)
2'G, 2'G, 2'G, 8'G,
38, 38, 88, 8 8,,
The entries in each column i (i = 1, ...,n) in (16) are derived, in Appendix D.1 in (5], as
%ch" = 2E;a; —2E; 1;)
SSh = 2Bids k=i+1l,....n
Comparing (17) with (10), we find that
(s _0'G _ 8'G _,
Gs=—r = = "Gp (18)

Computing *G's is not required. Once we compute ‘Gp, we get tGs.

91

The Jacobian, ‘Cp, is different. Since *Gy is a function of Ps,» Pb,, ---, and pp,, tGp is a blocked
lower-triangular matrix like *Gs and is written as

Q;chx 0 0 0
.‘ .
te 8'G, 8'G
g, = 2@ _ | o, oD, O 0 19
Gp = (19)
3P5 :
G 8'G o'é,. 4:)‘(';‘-n
N) T S

The entries in each column i (i = 1, ...,n) in (19) are derived, in Appendix D.1 in [5], as

G _ 2E,’l-l.' —2Ei;,-

= o (20)
%—Iﬁ"l = 2F;a;; k=i+1,...,n
Hence, (19} becomes
[28, (a; - 1) 0 0]
2E, a, 2,(a; — 1) 0
tG@p = 2E, a, 2E, a, 2E;(as — r3) 0 (21)
| 2E, a, 2E, a, 2E; ag oo 2B, (an — 1)
To compute 'Gp, we only have to evaluate 2E; a;, 2E; r;, and 2E.~(5.- —r;)oncefori=1,...,n.

The matrices !G5 and *Gp can be further partitioned into 'Gsu, !Gss, !Gpw, and *Gp- as in (4). This
involves permuting selected columns. However, after permuting columns the special structures are retained for
these partitioned matrices.

3.1.3 Torque-Balance Equations "F

The torque-balance equations for an n-body pendulum were derived as

Fi = Ti, - KA Mi(Vy, —g) + &AT Y Mi(Vy, —g) = 0 (22)
k=1
Let . .
Ti = Yz Ma(Ve, —8)
5 = Ml'(vb.' —8)
Tn4l = 0
then, we can write (22) as 'F; = Ti‘ — #;ATs; + 8AT+; = 0, or recursively
'F; = T:‘ - E;A‘Tl,' + E,-A?(z;+r,-+1) =0 (23)

When we compute the residual of "F, we only have to evaluate Tf,‘_, %;, i'-;A,-Tz,-, and &A?r.- oncefori =1,...,n.
Instead of computing r; for each equation, we compute 5; and accumulate it recursively to save computations.
The recursive term, #; + r;41, runs in backward sequence; that is, i = =, ..., 1.

The Jacobian of "F has three parts: " Fy, "Fgs, and "Fp. They also possess special structures. First, the
Jacobian of "F with respect to V; is written as

ro'F, oF, . 8'F 1
8V, 8V, oV,
o'F, »s'F 8'F
. 8'F 8'F 8'F PE i 2l
Fy = +o0—— =06— =7 2 2 n (24)
8V, V, vV, : : . :
L 8V, 8V, 8V, .

92

Since "F; is a function of Vb_., \'ﬁ,‘.“, ..., and \.’bn, for each column i (i = 1,...,n) we have

'F
aa." =0;k=i+1,..,n (25)
LN

The matrix (24) becomes a blocked upper-triangular matrix and is written as

- o'F, oF, . o'F]
8V, 8V, oV,
0 o F, o'k,
"Fy = o oVs, oV, (26)
0 0 ... 2K,
L 8V,

The entries of each row i (i =1,...,n) in "Fy are derived as

o E — _ oM AT + oM AT
oV . (27)
e = oMyaA; k=i+1, ., n
aV,,
Hence, (26) becomes
My(a, - £)AT M,&; AT Maa, AT ces M,a;, AT
0 Ma(&; — §3)AT Msaz A; coe M.a A
'Fy = o 0 0 My(ag — §3)AT - M, a3 A3 (28)
0 0 0 oo Mn(8n — £a)AT

To compute " Fy, we only have to evaluate o M;(& — i.-)A? and aM;.i;A,T once fori =1,...,n.
The Jacobian of *F with respect to P, is similar to (24). However, since "F; is a function of py,, the
off-diagonal entries become gero:
'Fy _ 8'Fy
8 pb,’ 8 P,

=0, k=i+1,..,n (29)
fori=1,...,n. Hence, " Fp becomes a diagonally blocked matrix and is written as

s"F
.b_p_..:. 0 0
o°F

8'F 0 3_1)_1 0
*Fp = = b2 : 30
P =P : - (30)
aF
0 0 o e
where
0'F; _ 0T, 8(Alw) . 0(AlT)
9 ps, - ops,) 8 py; 8y,
T,

= — 25G; 5+ 286G i
8pbi
. «T . . ~ e
= {2I§Gi + 4G;G; I;G; — 4(8£p5‘)I;G5 - 21/!‘-(;,'}
- 28,G; t; + 28,G; ;.' (31)

where ¥; = Liw; = 2I;G;p,, and %; = ¥ x are defined in Appendix D.2 in {5].

93

"Fs has a structure identical to that in " Fp. The off-diagonal entries are zero:
8’Fk + 8'Fy. _ B'Fi + O'F,-

= =0 k=i+1,.., 32
5oy, 08, Om, C‘om, _ ESithLo.m (32)

for i=1,...,n. The Jacobian " Fs is diagonally blocked and is written as

F "F
rpg = &F | OF 0 Fartoigt o 0)
5= 355 895 - . . :
0 0 R
where

O°F, , 0K, _ 0Ty 0'T,,
885‘. 855‘. - 085_. 855_.

- {4c’:.-G,.TI.~G.- — 4(sTpu,):G; + 2;];,-(;’.-} — o(2L;G;) (34)

The derivation of (31) and (34) is given in Appendix D.2 in [5].

3.1.4 Equations Concerning Euler Parameters: "I, "1%, and "I®

When we compute the residuals of "I, *I2, and I3, there is no applicable recursive structure that can be
utilized. Howevez, their Jacobians do have some special structures because these equations are derived for each
body. Matrices with diagonally blocked structures are to be expected.

First, the normality constraint for each set of Euler parameters is written as

'I,-l = pglpbi —1=0 (35)
Since I} is a function of p;, only, we have

arn} L AS
= =0;k=i+1,..,n 36
8 pb. 8 pb'- ’ ()
From (36), the Jacobian matrix of "I' with respect to Pi,
matrix. The same argument can be applied to "I? and "I
S, are diagonally blocked.

Since the blocks concerning these three sets of equations are locally processed, as shown in [5], the Jacobian

matrices " I5., "Ip., and " Ip. possess a similar structure which is illustrated as follows:
[€ 0 ces 0 7

y Pbyy ..., and pp, must be a diagonally blocked
such that their Jacobians with respect to P, and

0 € .- 0
0 0 €
'I’ oy 0 vee 0
» 0 o3 - 0
’ 5. =1 (37)
f_If; : : -
pr 0 o0 o
1 0 0
0 | 4] 0
| O 0 Vy, |
where
€ = [d; e fi]
-0 0 0
oy = 0 —0o 0
0 0 —0
vi = [a; b o]

are defined in Appendix B.1 in [5].

4 SOLVING THE REDUCED SYSTEM

Solving the reduced system means to solve the linear system using the technique of dimension reduction.
Partitioning the linear system, JAX = E, according to the partition in (4) gives

Ju Jiz AX, | _ | By
Jo J22 AX, E.
Since J;; is a unit upper-triangular matrix and is non-singular, we can obtain
Ju le AX1 . El
0 Jr AX., | 7 | Er

For the independent corrections AX;, we solve

[7rAX2 = Er| (38)
by LU factorization where
{ Jp = Ja22 — -721-71-11-712 (39)
Er = E; — (JuJp)E1

The dependent corrections AX; are obtained by backward substitutions:

AX,; = J(B; — J12AX;) (40)

4.1 Solving for Independent Corrections

The independent corrections AX; are obtained by solving the linear system JrAX,; = Eg. The evaluation
of Jp and Epg is accomplished by developing a set of formulae such that the sparsity of the linear system is
completely utilized. From (4), we derive the following formulae for Jp and Eg:

Jr = "Fp. — ("Fy)(*Gps) — ("¥4)("TIp.)
— ("®s)("I3.) — ("®e)("Ip.) (41)
and
Er = "F — ("Fy)'G — ("8,)'* — ("®5)"I® — ("®)'T (42)
where

P, = "Fsu — (,FV)(tc:;s_)
"®y = "Fs. — ("Fv)(‘Gs~) (43)
*¥g = "Fp« — ("Fy)('Gp+)
When we compute J g and Eg using the above formulae, several matrix multiplications will be performed.
The special structures discussed in the previous section can be exploited to reduce computation cost.

4.2 Solving for Dependent Corrections

Once we obtain the independent corrections, AXj, the dependent corrections, AX;, can be computed by
Jl_ll(El —J12AX;). However, using this formula directly is not practical since J1; has a very simple structure
with many zeros. In order to utilize the sparsity completely, a set of formulae are derived symbolically for the
dependent corrections. They are as follows:

AP = 'I! — ("I}.)AP} (44)
AS; = "B - ("I}.)AP} (45)
ASY = I} — ("I%.)AP} (46)
AV, = 'G — ('Gs-)AS} - (‘Gs-)AS;

~ (*Gp)APY — (*Gp.)AP} (47)
AR, = 'G — (*Gp.)AP} — (‘Gp.)AP} (48)

Again, when we compute the dependent corrections using the above formulae, the special structures discussed
in the previous section can be exploited.

95

5 LINEAR COMPUTATIONAL-COST SCHEME

Rewriting the full system (4) by
e combining S} and S} to form S in the original order
o combining P} and P} to form P in the original order
e combining "I' and "I® to form I
e combining —20 *I? (scaled by —2¢) and "F to form F
e re-arranging the columns and rows
e dropping the subscripts and superscripts for clarity and simplicity

gives

Gr Gp 0 0 AR G
0 Ip Ig 0 AP _ I 49
0 Fp Fs Fy AsS | = | F (49)
0 ép Gs Gy AV G
or
U Gp 0 0 AR G
0 U Is 0 AP | |1 50
0 Fp Fs Fy AS | = | F (50)
0 Gp Gs U AV G

where Gr and é’v were shown to be unit matrices. In order to make Ip a unit matrix, Gaussian elimination
has to be applied to Ip, Is, and I locally. An example for one body is given in Appendix B.2 in [5]. We intend
to solve this linear system with a computational cost which is linearly proportional to the number of bodies in
the system.

5.1 Basic Theory
Applying the technique of dimension reduction to (50) gives

U Gp 0 0 AR G

0 0 Jgr O AS - Ep

6 o 0 Jp AV Er
where . .

{ Jr = U — (Gs - Gpls)J5' Fy (52)
Er = G — (Gp)I — (Gg— GpIs) I (F-Fpl)
and
Ep = F - (Fp)l - (Fv)Av

Instead of solving (50) directly by LU factorisation, we solve

[72AV = Eg] (54)

to obtain AV; then we solve : »
JrAS = Ep (55)

to obtain AS. The rest of corrections can be computed by

(AR 26 925% ()

5.2 Invertibility

In [6], we have shown that Jp is non-singular if J is non-singular. From (52), we have to find Jp in order to
evaluate Jg. We would like to show that Jr is invertible when ¢ — oo.

The matrix Jp is diagonally blocked because it is computed by Fs — Fp Is where Fg, Fp, and I are
all diagonally blocked matrices. Each block at the diagonal position in Jp is computed by its corresponding
block in Fs, Fp, and Is. Hence, we write

Jp, = Fs, — Fp, Is, (57)

+

for each diagonal block. From (B.12) in Appendix B given in [5], we find that I, is a matrix scaled by 1.
Hence, we may write

1
FplIs, = -X,

Also, from (34) we find that F's, may be written as

Fs, = - o(2I;G;) + T;
Hence, we can write
Jp, = —o(2LiGi) + T — i—r.- (58)
If 0 — oo, we have
Jp, ® — G(ZI;G,') (59)

However, we have added one more equation into the F block as mentioned previously. This increases the
number of equations in each block in F from three to four. The equation is *I? scaled by —2o; that is,

~20'0 = —20p78 =0 (60)
The Jacobian corresponding to s is
- 2crp? (61)
Combining it with (59) gives
+T
Jp, ~ —6(21,'1") (62)

Adding equation (60) into block F is equivalent to using Euler’s equations in quaternion space [7]. We
have proved that the coefficient matrix with respect to & in Euler’s equations for inertial torque in 4-space is

. . . .- + .
a non-singular matrix [7]. This matrix is exactly the same as 2I;(P;)T in (62). Therefore, Jr, as well as Jr
are invertible if ¢ — oco.

5.3 Summary of Computational Cost

The detailed discussion of the linear-cost scheme was presented in [5]. In terms of multiplicative(x) and additive
(+) operations, the computational cost required for solving the reduced linear system for the linear-cost scheme
is summariged also in detail in [5] as Tables 2 to 6. Adding up the totals in the tables gives the grand total of
operations required for the linear-cost scheme:
x: 65Tn — 324

{ +: 160 + 5T4n — 321 (63)
This cost is not for obtaining one solution point; it is the cost of solving the reduced linear system for one
Newton’s iteration. The computational cost for reaching a solution point depends on output step size and the
number of iterations.

6 IMPLEMENTATION AND RESULTS

A program, called LINPEN (LINear-cost scheme for simulating an n-body PENdulum), was coded to sim-
ulate a pendulum. The program is equipped with modules for reporting various physical quantities such as
displacement, velocity, and acceleration and was run on a VAX 750 computer. The motion of a user-specified
pendulum can be displayed on a GRINNELL display terminal.

Each body is drawn as a standardised 3-D polygon and is projected in perspective. on the terminal screen
according to its simulated position and orientation. An example of simulating a 3-body pendulum for ten
continuous positions is illustrated in Figure 1. The figure looks exactly the same as displayed on the display
terminal.

97

6.1

//

Figure 1: Simulation of a 3-body pendulum.

Comparative Study in Computational Cost

For each solution point, a linear system, J AX = E, may have to be solved by LU factorization several times.
There are four schemes available to accomplish this:

solving the full linear system by LU factorization where J is approximated by numerical difference

solving the full linear system by LU factorization where J is evaluated by the exact Jacobian matrix of
E

solving the reduced linear system by LU factorization where J is evaluated by the exact Jacobian and
is further reduced to its optimal size using the technique of dimension reduction

solving the reduced linear system by LU factorization where J is evaluated by the exact Jacobian and
is further reduced to its optimal size using the linear-cost scheme

For each iteration, the analytical count of operations required to solve the full system, reduced system, and
the linear-cost system with exact Jacobian is tabulated in Table 1. Although the additive operations for the
linear-cost system is O(n?), we may consider the cost linear because the amount of time required to perform a
multiplication or division on a computer is about the same and is considerably greater than that required to
perform an addition or subtraction.

The simulation of an n-body pendulum was run for the four systems. For each system, the program was
run ten times from one body to ten bodies. One hundred solution points were generated, for each run, with an
output time-step of 0.01 seconds and a tolerance of 10~7. Total CPU time for solving four systems is calculated
in terms of CPU time per residual-call or CPU time per Jacobian-call. Total CPU time per residual-call versus
the number of bodies is plotted in Figure 2.

98

20 + Full System (N.D.)

138 4
16
[
124
CPU Res.
Full Syat
(sec. X lO—l) 10 A ull System
3
Reduced System
6

Linear —Cost System

T T T T T 1 1 T T 1
0 1 2 3 4 3 6 7 3 9 10 11
Number of Bodies

Figure 2: Computational cost in terms of CPU time for four systems.

An N-Body Pendulum
Grand Total of Operations for Three Systems
with Exact Jacobian Matrix

System X +

Full System 915n° + 196n* — 5n | 915n° + 1960 — 19n
Reduced System 33n® + 1290 + 50n | 25n° 4 51n° 4 25n
Linear-Cost System 65Tn — 324 15n% + 574n — 321

Table 1: Analytical count of operations required for solving three systems with analytical Jacobian
madtrices.

7 REMARKS

The mathematical model of an n-body pendulum with spherical joints and its solution method have been
presented. The mathematical model derived here is a mixed system of differential and algebraic equations
(DAE’s) in implicit form. A model of state-space equations can be derived if we do further complex substitu-
tions. However, in the form of DAE’s the equations of motion provide more sparsity, and this sparsity can be
exploited when numerical solution methods are applied. The modeling and formulation of an n-body pendulum
is the first study, for its similarity to a robotic manipulator in structure and for its simplicity in equations.

We also present four solution methods for solving the equations of motion of this n-body pendulum. The
first method solves the linear system, J AX = E, directly by LU factorization where J is approximated
by numerical difference. The second method solves the linear system directly by LU factorization, but J is
evaluated by its analytical Jacobian matrix with some structural consideration.

The third method employs the technique of dimension reduction to transform the full system to its reduced
system, Jr AV = Eg, such that LU factorization is performed on the reduced system only. This technique
utilizes the sparsity of the system completely and saves a considerable number of computations. The four
methods also employ the technique of dimension reduction to reduce the size of the system. However, they
further exploit the structure of the system such that the reduced Jacobian generated possesses a very special
structuze which can be utilized to solve the system in a nearly-linear computational cost.

The comparative study in computational cost for these four systems in the paper gives strong evidence of
the success of the theory developed.

100

References

(1
(2]
(3]
(4]
(5}

(6]

[7]

J. C. K. Chou, K. Singhal, and H. K. Kesavan. Multi-body systems with open chains: Graph-theoretic
model. Mechanism and Machine Theory, 21(3):273-284, 1986.

W. W. Armstrong. Recursive solution to the equations of motion of an n-link manipulator. Proceeding of
5th World Congress on Theory of Machines and Mechanisms, 2:1343-1346, July 1979.

L. R. Petzold. Differential/algebraic equations are not ODE’s. SIAM J. Sci. Stat. Comput., 3(3):367-384,
September 1982.

L. R. Petzold. A description of DASSL: A differential/algebraic system solver. Scientific Compuling, pages
65-68, North-Holland, 1983.

Jack C. K. Chou. Modeling, Formulation, and Solution Scheme for an N-Body Pendulum. Technical Report
No. TR-89008, Program in Engineering Science, Erik Jonsson School of Engineering and Computer Science,
University of Texas at Dallas, Richardson, Texas, 1989.

Jack C. K. Chou. Compuler-Aided Design Methods for Three-Dimensional Constrained Mechanical Sys-
tems. Ph.D. Dissertation, Department of Systems Design Engineering, University of Waterloo, Waterloo,
Ontario, Canada, 1988.

Jack C. K. Chou. Quaternions, Finite Rotation, and Dynamics. Technical Report No. TR-89007, Program
in Engineering Science, Erik Jonsson School of Engineering and Computer Science, University of Texas at
Dallas, Richardson, Texas, 1989.

101

N90-22997

Sliding Control of Pointing and Tracking with
Operator Spline Estimation’

Thomas A. W. Dwyer 111" Fakhreddine Karray and Jinho Kim
3rd Annual Conference on Aerospace Computation Control

Abstract

It is shown in this paper how a variable structure control technique
could be implemented to achieve precise pointing and good tracking of a
deformable structure subject to fast slewing maneuvers. The correction
torque that has to be applied to the structure is based on estimates of upper
bounds on the model errors. For a rapid rotation of the deformable
structure, the clastic response can be modeled by oscillators driven by
angular acceleration, and where stiffness and damping coefficients are also
angular velocity and acceleration dependent. By transforming this "slew-
driven” elastic dynamics into bilinear form (by regarding the vector made
up of the angular velocity, squared angular velocity and angular
acceleration components, which appear in the coefficients as the input to
the deformation dynamics), an operator spline can be constructed, that
gives a low order estimate of the induced disturbance. Moreover, a "worst
case” error bound between the estimated deformation and the unknown
exact deformation is also generated, which can be used where required in
the sliding control correction.

*Supported in part by SDIO/IST and managed by AFSOR under contract
F49620-87-C-01013, and by NASA grant NAG-1-613

"Professor of Aeronautical and Astronautical Engineering, University of
11inois, Urbana, 1161801

Graduate Research Assistants, Department of Aeronautical and
Astronautical Engineering, University of I1linois, Urbana, I1 61801

102

N90-22998

A Survey on the Structured Singular Value

Andy Packard
Dept of Electrical and Computer Engineering
UC Santa Barbara
and
Michael Fan
Systems Research Center
University of Maryland

Abstract

The structured singular value, |, is an important linear algebra
tool to study a class of matrix perturbation problems. It is useful for
analyzing the robustness of stability and performance of uncertain,
(nominally) linear systems. Computation of (M) is difficult, and
usually, upper and lower bounds are all that can be reliably
computed. Upper bounds give conservative estimates of the sizes of
allowable perturbations. The maximum singular value of a matrix M
is an upper bound for (M). As an upper bound, it can be improved
by finding a transformations to the data (ie. M) which do not change
the structured singular value, but do reduce the maximum singular
value. Typically, upper bound algorithms involve searches over sets
of transformations to yield the tightest bound. Lower bound
algorithms produce small, destabilizing perturbations. In general, the
algorithms are intelligent searches for minimum-norm solutions to
multivariable polynomial equations, and are based on various
optimality conditions that hold at the global (and, unfortunately,
some local) minima. This paper reviews the current methods to
compute both of these types of bounds, covering theoretical
justification and extensive numerical experience with the various
algorithms.

103

N90-22999

Algorithms for Computing the Multivariable
Stability Margin

Jonathan A. Tekawy} Michael G. Safonov and Richard Y. Chiangt

Abstract

Stability margin for multiloop flight control systems has become a critical
issue, especially in highly maneuverable aircraft designs where there are in-
herent strong cross-couplings between the various feedback control loops. To
cope with this issue,we have developed computer algorithms based on non-
differentiable optimization theory. These algorithms have been developed for
computing the Multivariable Stability Margin (MSM). The MSM of a dynam-
ical system is the "size” of the smallest structured perturbation in component
dynamics that will destabilize the sytem. These algorithms have been coded
and appear to be reliable. As illustrated by examples, they provide the basis
for evaluating the robustness and performance of flight control systems.

1 Introduction

Accurate knowledge of the dynamical model associated with the design of modern
flight control system is becoming more difficult to obtain. This is especially true for
the design of the next generation fighters where many of the performance specifica-
tions go beyond the capability of the aircraft currently in service. Robust control
analysis methods have received considerable attention in recent years as a possible
solution to the problem of controlling systems for which the given model contains
significant uncertainty [Saf 1] [Doyle2]. The central feature of these methods is their
effectiveness in handling an unknown-but-bounded class of plants, instead of the nom-
inal plant only.

*Flight Control Research, Aircraft Div., Northrop Corporation, Hawthorne, CA 90250
tE. E. - Systems Dept., University of Southern California, Los Angeles, CA 90089-0781
!Flight Control Research, Aircraft Div., Northrop Corporation, Hawthorne, CA 80250

104

The uncertainty in the nominal plant arises from several different sources: For
gain-scheduled aerospace vehicle control systems, typical uncertainties in the plant at
each design point consist mainly of modeling errors due to uncertain aerodynamic co-
efficients, linearization, model reduction, neglected dynamics, time-delays, etc. Aero-
dynamic coefficients developed from wind tunnel testing or computational fluid dy-
namics usually are different from those obtained from actual flight data. Linearization
will also affect the nominal plant behavior. Nonlinear effects such as actuator satura-
tion and rate limits are neglected altogether when a model is linearized. Parameter
drift will also affect the nominal plant. There may be dynamical modes which are
intentionally or unknowingly neglected. In addition phase loss which results from
time delay also leads to an uncertainty bound.

The uncertainty may be loosely classified as falling into two categories, structured
and unstructured. Structured uncertainty arises from specific component or parame-
ter variations. Two examples of structured uncertainty are variations in weight and
drifting aerodynamic parameters. Unstructured uncertainty is any other sort of uncer-
tainty which can be regarded as a frequency-dependent norm bounded perturbation
matrix. High frequency modeling errors are one type of unstructured uncertainty.
The linearization of the nonlinear equations of motion contribute to both classes of
uncertainty. Actuator rate and position limits have a distinctive signature which can
easily be isolated, so that they fall into the class of structured uncertainties. On the
other hand, the effects of nonlinear kinematic terms can only be bounded, therefore
necessitating an unstructured uncertainty representation.

2 Robustness Measure

Safonov [Saf 2], who built upon different, but related, conic-sector nonlinear stability
theory work of Zames [Zames], reinterpreted the conic-sector stability concepts in
order to deal with uncertainty and robustness issues. Safonov, Doyle and Fan, to
name a few, have contributed to the continuing development in this area [Saf 3]
[Saf 4] [Doyle2] [Fan].

Basically the robustness measure is done by lumping uncertain deviations from a
nominal system M(s) into an uncertain matrix A(s) resulting in an uncertain feedback
system with loop transfer function A(s)M(s) as shown in figure 1.

Then, the Multivariable Stability Margin (MSM), ” K,,,”, is defined as the smallest
stable, norm-bounded perturbation A(s) that can destabilize the system. While K,
is in general difficult to compute, a reasonably tight lower bound K, theoretically
can be computed using diagonally scaled singular values [Saf 3] [Doyle2] {Fan]. The
plot of K,.(w) vs. frequency identifies tolerable levels of parameter uncertainty as a
function of frequency.

105

A(s)

M(s)

A=diag[A,,A,,....,A;,..,A,]

Figure 1: Robustness analysis model.

For unstructured uncertainty, the maximum singular value has been shown to be
useful in bounding the multivariable stability margin. However, the bound can be
very conservative in the case of structured uncertainty. The singular value analysis
will attempt to find the worst direction of the uncertainty that in reality impossible to
exist. To deal with the case of diagonally structured A, Safonov [Saf 4} introduced the
two-sided structured Multivariable Stability Margin (MSM), denoted K, and Doyle
[Doyle2] introduced the term Structured Singular Value (SSV), denoted g, to describe
the reciprocal, p(M(s)) = 1/K,,(M(s)). Diagonal perturbations are quite general
and flexible if one considers parametric uncertainties (e.g. aerodynamic coefficients).
Traditionally one defines K,,, and u for "two-sided” magnitude-bounded uncertainties
which may be either positive or negative; but in cases where the sign of the uncertain
A; is known a priori one may modify the definitions of K,, and p accordingly.

When the uncertainties are known to cover both positive and negative pertur-
bations, the SSV of Doyle and MSM of Safonov provide a "tight” (to within 15%)
condition for robust stability. This condition is measured by representing directly the
individual sources of uncertainties in the form of block diagonal perturbations.

Definition: Given transfer functions G(s),a(s) and b(s), we write

G(s) € sector|a, b]

if
|G(jw) - C(jw)| £ |r(jw)] Vw
where
C(s) = (a(s) + b(s))/2
and

r(s) = (a(s) — b(s))/2

Assuming M(s) and A(s) to be stable then the one-sided MSM, "K,,,,” and, the
two-sided MSM, " K,,,,” are defined by the following (see figure 2 and 3):

106

Figure 3: Two-sided K,,

o One-sided K,, :
The system is stable for all A with
A; € sector[0, Kmm,] Vi=1,---,n. (1)

e Two-sided K,, :
The system is stable for all A with

A; € sector|[—Kpm,, Km,] Yi=1,---,n. (2)

For any diagonal matrix D, a practical upper bound on g = 1/ Ky, i8 Omee(DM D).
Further, it is known that for 3 or fewer A; ’s that the minimum over D of this
upper bound is actually equal to p [Doyle2]. Safonov and Doyle proved that the
minimization problem of a2, __(DAM D) is convex in D' = log(D), so that every local
minimum is a global minimum. Furthermore, computational experience has shown
that minimum of opma(DM D) over D is within 15% of u. So, we choose to work
with this upper bound, [\:;12, to calculate the reciprocal of two-sided MSM. Practical
upper bound for the reciprocal of one-sided MSM can be easily derived by using conic

107

Figure 4: K

1
1

sector property of Zames [Zames]; viz. K,;! is bounded above by

K. = maz[%minpz\mu(DMD‘l +(DMDY)"),0] (3)
By modifying the former equation to include the permutation matrix ¢;, a less
conservative bound for the two-sided real MSM, K,,, is given by

K, = ma:c[%mam¢iminpz\m,,(DM¢¢D_1 + (DM¢; D)), 0] (4)

Here
¢"EQ, i=1)"',2n

and ® is the set of all permutation nx n diagonal matrices.
® = diag|(£1),........ ,(£1)]

The bound (4) is similar to the one proposed by Jones [Jones]:

%minpmaz¢,.)sm.¢(DM¢.-D—l + (DM(#.‘D-I)*) (5)
Although, equation (5) will lead to more conservative bounds. Geometrically equation
(4) is shown in figure 4.

It should be mentioned at this point that several software packages are available

to compute the two-sided MSM ,however , they are not accessible to the authors to
be evaluated.

3 K, Computation

The computation of 0,y,,, is straight forward using available numerical software (Lin-
pack). For both one-sided, real and two-sided cases, we have to solve an optimization

108

problem. However for all of these problems, the analytical gradient is available, so
accurate solution can be obtained. However, when several eigenvalues or singular
values coalesce (i.e., have multiplicity greater than one) the function is nondifferen-
tiable ("creases” produce direction-dependent derivatives), so that a more complex
algorithm of computing a descent direction is required. Before actually solving either
case, one can approximately prescale the system matrix M by substituting for M the
matrix DM D-! where D minimizes the Frobenius norm of DM D~! [Osborne].

The monotonic transformation of D — D', with D = Ezp(D'), transforms the
problem into a well behaved convex optimization [Saf 5]. The initial guess for D was
taken to be equal to the identity. This initial guess was used only for the first frequency
value in the given range. The solution obtained for a particular frequency point was
then used as an initial guess for the next value. Suppose that the largest eigenvalue
is simple, then a descent direction is calculated directly using the Davidon-Fletcher-
Powell technique. In the case that the largest eigenvalue has multiplicity greater than
1 and the function is not continuously differentiable, a generalized gradient is used
to determine a descent direction. Once this is done, the minimal point can be found
in the specified descent direction by using a well known "binary search” algorithm
of Bolzano. These steps are repeated until the global minimum is located (i.e. gra-
dient is zero). Convexity of 02, (e?'Me™P') and Amael(e?’ Me™D' + (eP'Me~P')")
ensures that this procedure is convergent to the global minimum.These steps can be
summarized as follows:

1. Initialize M, = M; D} =0; k = 1.
2. Scale My, = ePi My e~Px; set D;,_H =0
3. Find the search direction

— Davidon Fletcher Powell (DFP) deflected gradient.
— DFP generalized gradient for multiplicity > 2

4. Unidirectional search.
— Method of Bolzano (Fig. 5).
5. Dy,, — D)+ stepsize * search direction.

6. k=k+1; go to step 2.

Step 5. of the algorithm involves varying the diagonal scaling matrix D' along a line
by adjusting the scalar parameter stepsize. The size of ePr+1 could approach the
value of co. To prevent this, as the stepsize grows, My, is repeatedly updated to
M1 —€ePrti Me~Pisi and stepsize and D}, are reset to zero. This is done as often

» ' .
as needed to prevent numerical overflow when eP++1 is evaluated.

109

1]]

I Distance.

Figure 5: Method of Bolzano.

3.1 Generalized Gradient.

This discussion is not at all self contained and only key results will be stated. An
excellent reference for this algorithm is [Polak]. In the case where the greatest eigen-
value/singular value has multiplicity greater than one, the function ceases to be dif-
ferentiable. In this case the gradient is not defined and more complicated "generalized
gradient” methods must be used to compute the descent direction. The generalized
gradient at a nondifferentiable point is defined as the nearest point to the origin
in the convex-hull of the set of directional derivatives at neighboring points; thus
the computation of the generalized gradient at any point is itself a convex nonlinear
programming problem. We employ an algorithm similar to that of [Doyle2, Polak1]
to compute the generalized gradients of o2,,.(e? Me~P') and /\ma,%(eD'Me‘D' +
(eP'Me~P')"). Geometrically the algorithm is shown in figure 6 and summarized as
follows:

o Generalized Gradient is defined as:
A
Vgen = No(Co{V(z)] [zl =1})
where

Co(.) - the convex hull of the set (.).
Nr(.) - the nearest point to the origin of the set (.).
{V(z)| ||z|| = 1} - the set of directional derivatives.

o Iterative algorithm for computing V.,.:

1. Initialize &k = 1.
2. Guess z; and set y, = V(z).

110

ORIGIVAL PAGE 1S

V(=)

stop 2. V(x2)

step 3. V(x3)

- Stop §. Vix1)

>
Figure 6: Generalized gradient.

3. Find zx4; by minimizing (y; V(zk+1)) subject to |[zas|| = 1.
4. Find yas1 = Nr(Co(yr, V(zr41))-
5. Increment k — k + 1, go to step 3.

3.2 Davidon-Fletcher-Powell Scaling.

The unmodified generalized gradient determines a steepest descent direction. The
steepest descent direction is simply minus the generalized gradient. Steepest descent
usually works quite well during early stages of the optimization process but if the
Hessian (second derivative) matrix has a large condition number, the method usually
behaves poorly, and small zig-zagging steps, called "stitching”, take place (see fig.
7). Stitching problems also occur when the multiplicity of Opmaz OF Amar 18 3 or
more. Therefore we use the Davidon-Fletcher-Powell (DFP) method to modify the
generalized gradient in order to handle this phenomenon. This technique uses the
previously calculated generalized gradient to estimate the Hessian and effectively
rescale the function to make its Hessian better conditioned. This quadratic fit method
requires fewer gradient evaluations and tends to converge faster. It should also be
noted that the likelihood of stitching-induced premature termination of the algorithm
(as can occur in the unscaled steepest descent technique) can be greatly reduced with
the DFP scaling.

4 Lateral Directional Flight Control Example

4.1 Example 1

111

Steepeost descent. BFP peth. Genereilzed Nendifferentiable.
gradient. serface.

Figure 7: Minimization paths.

Yzw

Figure 8: Axis systems and sign convention

112

ORIGINAL. PagE §s
OF POOR QUALITY

Neminal C2¥
geala = ¥

— v

Conlc seocf.

Figure 9: Two-sided actuator uncertainty model.

Conic sscd

Figure 10: One-sided actuator uncertainty model.

Nonlinear elements of actuators can be treated as linear conic-sector elements with
structured uncertainty. This uncertainty can be modeled as one-sided or two-sided
uncertain gains within the actuator model. This can be shown through an example.
Consider a saturation curve below. If the input size is always less than C, then the
saturation element is equivalent to a gain element with a magnitude of one, however,
if u exceeds C, one may model the saturation element as a two-sided uncertain gain
A in parallel with a nominal gain of one as shown in figure 9. A better approach is to
model the saturation element by a gain with a nominal value of one and a one-sided
negative uncertainty as shown in figure 10. Clearly, the one-sided model will produce
less conservative margins than the two-sided model.

A design example is presented below in which MSM algorithm is asked to check the
robustness of a typical lateral/directional flight control systems with respect to the
actuator uncertainty (e.g. position saturation) and the reduction in the effectiveness
of all control surfaces. The state-space matrices are given in figure 11. The controller
uses roll rate, P, yaw rate, R, and the lateral acceleration, N, for feedback (see figure
12). By putting “extender wires” on the uncertainty blocks A; and pulling them out
into a separate “block”, one can check the system robustness.

The plot of K., K,,, and 04, are in figure 13. Note that the omae and K
which have the minimum values of .015 and .42 respectively are equal or less than
K., for all frequency, and therefore shown to be more conservative than one-sided

113

ORIGINAL PAGE g
OF POOR QUALITY

-6.3d-3 -3.6d-2 ?7.5d-1 5.1d-8 0.0d+0:

: -3.4d-1 -4.8d-1 -2.8d+2 3.2d+1 0.0d+0 >9.2d-4

: 5.2d-3 -3.0d+0 4.6d-1 -8.3d-6 0.0d+0 : 1.2d+1

R : B 1.5d-2 -1.4d-1 -1.9d+0 -7.5d-7 0.0d+0: 3.84-1
0.0d+0 1.0d+0 0.0d+0 0.0d+0 0.0d+0: 0.0d+0

______________ _| 0.00+0 0.0d<0 1.0d+0 0.0d+0 0.04+0: 0.0d+0

: 0.0d+0 5.7d+1 0.0d<0 0.0d+0 0.0d+0: 0.04+0

c :op 0.0d+0 0.0d+0 5.7d+1 0.0d+0 0.04+0: 0.0d+0

: 6.2d-2

-6.84+0
-1.2¢-2
3.2d+0
0.04+8
0.0d+9
0.04+0
0.0d:8

1.6d-1

Figure 11: State-space matrices.

n

Belistk Compensation.] :
. :

$+1.5 -

$:

H].1581 fircreft
fl FIOON eereesessneenns LCFB dynamics)
Compenseation. Sctuator Compensotion

Rpedel . -
: .645+2.5 1/52.3 q=-AK+B
s Bas-1 Y=CR+DD
495($+1)+.2(28+1) ®
(28<1)($+1) -
[1]
Compeonsation
N
1.558 < ’
151
4]
Compeonsation

Figure 12: Lateral directional flight control with uncertainties at the controller output

and plant input.

114

ORGH . a1
20. 1 5& .
Ly
10.}
0.0 ——— /\
_____ ~ < pe
— o= ~ / _/
- P
-10.} e 9
_/
.l
/ V4
-20.} O ————4 4
-I.
.I
~30. K .
'I
L e e e et =t — ., - /
-40. 1 - i 10 “To
RAD/SEC

Figure 13: MSM at the plant input and controller output.

structured stability margin K,, . This results from the one-sided structured mul-
tiplicative uncertainty that is not accounted for in the computation (i.e. nonlinear
elements of actuators and gain reduction tolerance at the controller outputs). To
properly account for the sign of the uncertainty and its structural information, the
one-sided MSM was computed and it is shown to have a better robustness measure.
K. has the minimum value of 0.677, indicating that the system can simultaneously
tolerate at least a 67.7 percent reduction in the effectiveness of all control surfaces and
the actuator inputs up to at least three times the saturation value without instability.

4.2 Example 2

The MSM’s minimal value Km,,u. also can be used to quantify a control systems
tolerance of simultaneous gain and phase variations at all the plant inputs and out-
puts. This is done so the system has good stability robustness with respect to the
uncertainties at the two actuator commands and the three sensor outputs (see figure
14). These uncertainties come from various sources. Model accuracy deteriorates at
higher frequencies due to unmodeled aeroservoelastic effect. Several potential error
sources exist within the assumed perfect sensors. Model reduction of the actuators
can also be considered as one of the effects at the plant inputs.

Shown in figure 15 is the Bode plot of the MSM vs. frequency. The minimal
value, denoted K, u = .4196, gives an indication of the minimal size of structured

perturbations required to destabilize the system or equivalently diagonal perturbation

115

ORGHIAL PALE 10
OF POOR QUALITY

[4

n :)
aslistk Cempeassiion. : .“.“"T
M K] LAY R
s D
R R
sradal Cempunsalion. Sctester
. 17513
84825 | s
[Beset

2 lairerant
: jdynemics

49513+2)+.2(25+1)

KeRN-08

23+108°1)

114

4

YeCR-00

1.558 Ny

Bl

"
Compensation

Figure 14: Lateral directional flight control with uncertainties at the plant input and

output.

50. ~———rv~

40.}
30.}
A
20.}
10. }
00 ‘\,\L
-10.} “
-20.} -—-—
- ~ -
, P \\ 1;“'
-30.} - N
Vd ~
7 Y
-40. ¥
-50. " i A i Y
1073 1072 107! 10° 10! 102 103
RAD/SEC

Figure 15: MSM at the plant input and output.

116

as large as 41.96 percent can be tolerated at any frequency; at higher frequencies,
perturbation magnitude as large as w/10 can be tolerated.

5 Conclusion

Computer algorithms for determining the multivariable stability margin “K,,” have
been developed. The algorithms provide a reliable tool for evaluating the robust-
ness of control systems with significant gain and/or parameter uncertainties. The
computation for the one-sided and two-sided structured stability margin were done
using nondifferentiable optimization theory. Robustness analysis was performed on a
typical lateral directional flight control system problem with large uncertainty.

References

[Doyle2] Doyle, J. C. (1982a). Analysis of feedback systems with structured uncer-
tainties. JEE Proc., 129,part D, 242-250.

[Fan] Fan, M. K. and Tits, A. L. (1986). Characterization and Efficient Computation
of the Structured Singular Value. JEEE Trans. on Automatic Control, AC-31,
734-743.

[Jones] Jones, R. D. (1987). Structured Singular Value Analysis for Real Parameter
Variations. 1987 AIAA Conference in Guidance and Control.

[Osborne] Osborne, E. E. (1960). On pre-conditioning of matrices. JACM, vol. 7,
338-345.

[Polak] Polak, E. and Mayne, D. Q. (1981). On the solution of singular value in-
equalities over a continuum of frequencies. IEEE Trans. on Automatic Control,
AC-26, 690-694.

[Saf 1] Safonov, M. G, A. J. Laub and G. Hartmann (1981). Feedback properties of
multivariable systems: The role and use of the return difference matrix. JEEE
Trans. on Automatic Control, AC-26, 47-65.

[Saf 2] Safonov, M. G. (1980). Stability and Robustness of Multivariable Feedback
Systems. MIT Press, Cambridge, MA.

[Saf 3] Safonov, M. G. (1982). Stability margins of diagonally perturbed multivariable
feedback systems. IEE Proc., 129,part D, 251-256.

117

[Saf 4] Safonov, M. G. and M. Athans (1981). A multiloop generalization of the circle
criterion for stability margin analysis. JEEE Trans. on Automatic Control, AC-
26, 415-422.

[Saf 5] Safonov, M. G. and J. C. Doyle (1983). Optimal scaling for multivariable
stability margin singular value computation. Proc. MECO/EES’83 Symposium,
Athens, Greece.

[Zames] Zames, G. (1966). On the input-output stability of time-varying nonlinear
feedback systems - Parts I and II. JEEE Trans. on Automatic Control, AC-11,
228-238 and 465-476, 1966.

118

N90-23000

Robustness Analysis for Real Parametric Uncertainty”

Athanasios Sideris
Dept. of Electrical Engineering
California Institute of Technology

Abstract

This paper has a twofold purpose. First, to review some key results in
the literature in the area of robustness analysis for linear feedback systems
with structured model uncertainty, and secondly to present some new
results.

Mode! uncertainty is described as a combination of real uncertain
parameters and norm bounded unmodeled dynamics. We will mainly focus
on the case of parametric uncertainty. An elementary and unified
derivation of the celebrated theorem of Kharitonov and the Edge Theorem
will be presented. Next, an algorithmic approach for robustness analysis in
the cases of multilinear and polynomic parametric uncertainty (i.e. the
closed loop characteristic polynomial depends multilinearly and
polynomially respectively on the parameters) is given. The latter cases are
most important from practical considerations.

Some novel modifications in this algorithm which result in a procedure
of polynomial time behavior in the number of uncertain parameters will be
outlined. Finally, we show how the more general problem of robustness
analysis for combined parametric and dynamic (i.e. unmodeled dynamics)
uncertainty can be reduced to the case of polynomic parametric
uncertainty, and thus be solved by means of our algorithm.

*To be presented at the 3rd Annual Conference on Aerospace
Computational Control, Oxnard CA, August 1989.

119

N90-23001

Computational Issues in the Analysis of Adaptive Control Systems

Robert L. Kosut
Integrated Systems Inc.

Abstract

Adaptive systems under slow parameter adaptation can be analyzed by
the method of averaging. This provides a means to assess stability (and
instability) properties of most adaptive systems, either continuous-time or
(more importantly for practice) discrete-time, as well as providing an
estimate of the region of attraction. Although the method of averaging is
conceptually straightforward, even simple examples are well beyond hand
calculations. Specific software tools are proposed which can provide the
basis for user-friendly environment to perform the necessary computations
involved in the averaging analysis.

120

N90-23002

Experimental Experience with Flexible Structures

Gary]. Balas
California Institute of Technology

Abstract

This paper will focus on a flexible structure experiment developed at
the California Institute of Technology. The main thrust of the experiment is
to address the identification and robust control issues associated with large
space structures by capturing their characteristics in the laboratory. The
design, modeling, identification and control objectives will be discussed
within this paper. Also, the subject of uncertainty in structural plant
models and the frequency shaping of performance objectives will be
expounded upon. Theoretical and experimental results of control laws
designed using the identified model and uncertainty descriptions will be
presented.

121

N90-23003

A DISTURBANCE BASED CONTROL/STRUCTURE DESIGN ALGORITHM

Mark D. McLaren !
Gary L. Slater 2

Department of Aerospace Engineering and Engineering Mechanics
ML # 70, University of Cincinnati, Cincinnati, OH 45221

1 Introduction

In the past, the structure and its control system have been designed independently. Structural design and
optimization, and control system design and optimization, have each been areas of separate research, each
progressing vigorously along its own path. However, spurred on by recent proposals of new, large, highly
constrained space structures, the question has arisen as to whether an integrated structural/control design
procedure might not be more appropriate. The first papers actively investigating the question of simultaneous
structure and control design began appearing in the literature around 1983 [1,2,3]. Since then, there has been
a growing interest in this subject from other authors, although the field itself is still in relative infancy. Using
a conventional design approach for a controlled structure, one would first optimize the structure alone, then
design a control system for this baseline structure. This process may then be iterated until both the structure
and control system meet necessary constraints and objectives.

Some authors ([4,5,6,7], for example) take a “classical” approach to the simultaneous structure/control
optimization by attempting to simultaneously minimize the weighted sum of the total mass and a quadratic
form, subject to all of the structural and control constraints. In this paper, the optimization will be based
on the dynamic response of a structure to an external unknown stochastic disturbance environment [8]. Such
a “response to excitation approach” is common to both the structural and control design phases, and hence
represents a more natural control/structure optimization strategy than relying on artificial and vague control
penalties. The design objective is to find the structure and controller of minimum mass such that all the
prescribed constraints are satisfied.

Two alternative solution algorithms will be presented which have been applied to this problem. Each
algorithm handles the optimization strategy and the imposition of the nonlinear constraints in a different
manner. Two controller methodologies, and their effect on the solution algorithm, will be considered. These
are full state feedback and direct output feedback, although the problem formulation is not restricted solely to
these forms of controller. In fact, although full state feedback is a popular choice among researchers in this field
(for resons that will become apparent), its practical application is severely limited. The controller/structure
interaction is inserted by the imposition of appropriate closed-loop constraints, such as closed-loop output
response and control effort constraints. Numerical results will be obtained for a representative flexible structure
model Lo illustrate the eflectiveness of the solution algorithms.

2 General Problem Formulation

The integrated control/structure design optimization problem can be stated as follows: find the vector of
structural and controller parameters that minimizes the mass of the structure subject to a set of prescribed
stochastic disturbances, with limitations on the available control energy and on a set of allowable output
responses. This can be written in the form of a nonlincar mathematical programming problem as

1Graduate Student
2Professor

122

Q Qmgesam 5-
-
®

g9
s

o ®

GJoc,
Qy

W;
Ya,

D,
Py

Minimize, with respect to p, the weight J(p), subject to

g(p) <0

z=Fz+Gu+G,w

E[u] Riu;
gcc.:—['i#ﬂ—lgo fori=1,...,np
Bi
E[y} W;
goo = WaWival | o gy,
a;
Ya, = Hy,x fori=1,...,n,

Pe<p<p,

is an N-vector of design variables,

is an m-vector of structural constraints,

is an n-vector of state variables,

18 an ny-vector of control forces,

is an ny-vector of stochastic disturbances,

is the (n x n) matrix containing the system dynamics,

is the (n x n,) matrix containing information on the
locations and orientations of the actuators,

is the (n x n,) matrix containing information on the points
of application and orientation of the disturbances,

is the i** control effort constraint cost function,

is the ny -order partition of u representing the control
forces involved in g..,,

is the maximum allowable value of the i*? expected control
effort function E[ul Rju],

is an (ny, X ny,) control force weighting matrix,

is the #*» output response constraint cost function,

is the maximum allowable value of the i** expected output
response function E[y] Wiy,],

is an (ng, X ng,) output response weighting matrix,

is the i*? design output ng4,-vector,

is an (n4, X n) matrix giving the relationship between

the state variables and y, ,

is an N-vector of minimum design variable values, and

is an N-vector of maximum design variable values.

(1)

The side constraints are the strict bounds p, and p, on the design variables, and are vector inequalities
that are imposed element by element. These design variable bounds are not included explicitly as constraints
in the problem formulation. Note that the structural weight and the structural constraints g will in general
not be functions of the controller design variables unless the controller mass is included in the design. Note
also that g.., is a weighted mean square control effort, and go., is a weighted mean square output response.
Multiple output response constraints are allowed, although only one of these will in general be active at the
optimum design. However, all of the control effort constraints will generally be active at the optimum design.

In this work w is a zero mean Gaussian white noise disturbance with covariance X,,. The structure will
respond to this disturbance with some transient behaviour, in addition to a steady-state response. It seems

123

reasonable to optimize the structure for the steady-state response to the disturbance rather than the transient
response because the transient behaviour will normally be of secondary importance to the response objectives
(such as long term pointing accuracy). Also, for steady state optimization, the differential equation constraint
(state equation) can be replaced with a steady state covariance equation, so that the control effort and output
response constraints may be recast in terms of this covariance. Therefore the two-point boundary value problem
is eliminated and the numerical solution of the problem is significantly simplified.

2.1 Full State Feedback Control

The simplest form of feedback control is to feedback the entire state vector, with u = — Kz, where K is the
(ny x n) state feedback gain matrix. The controller design variables for this case will be the n,n elements
of K. Substituting this control into the state equation, and assuming that the disturbance w is zero mean
Gaussian white noise, the state covariance matrix X for this case can be found from the Lyapunov equation

FaX + XFY + G, X,GT =0 (2)

where F.; = (F — GK) is the stable closed-loop dynamical matrix for the full state feedback case, X = E[zzT]
is the (n x n) symmetric state covariance matrix, and X,, = E[wwT] is the (n, x n,) symmetric covariance
matrix for the stochastic disturbances.

Expressions for the controller constraints in terms of this covariance matrix can then be obtained as

te]KT R; i

Gee; = w—l fori=1,...,ng 3)
te[HY W;Hq, X

Joc, = L’a—;—d'——]-—l fori=1,...,n, (4)

4

where K; is the (n,, x n) partition of K corresponding to u;. It is assumed that the u; are independent, and
that # and K are ordered as

uT={ul wf - ul,], KT'=[K] K] --- K], (5)
Note that 3 1.2, ny, = ny, and that the columns of G can be interchanged to force condition (5) to be satisfied.

Using full state feedback, the first-order necessary (Kuhn-Tucker) conditions for optimality can be analytically
solved to give [8]

K=R'GTA;,, where FTA,+AF—AGR'GTA,+W =0 (6)

and where R and W are respectively the (n, x n,) and (n x n) matrices defined as

R = diag {(%‘,—) R.-}, W:i(%) HIW:H,,. (7)
¢ i=1 i

The variables A, and Ay, come from the Kuhn-Tucker conditions, and are the Lagrange multipliers associated
with the i** control effort and output response constraints respectively.
Equations (6) define the solution to the optimal control problem

min J, = / [#TWz + uT Ru]dt (8)
0

where K is the optimal steady-state gain matrix, and A, is the steady-state solution to the associated Riccati
equation. Although this LQR property only holds true at the optimum point, it is computationally convenient
to assume that at every point in the design cycle, the control design variables will be found as the solution to the
optimal control problem (8). Therefore, the numerical optimization problem can be reduced to optimization
over just the structural design variables, along with an optimal control problem solution which will be a function
of the Lagrange multiplier vectors A, and A;. The immediate benefit of this is a reduced dimensionality
nonlinear programming problem. In addition, since the regulator solutions always give a stable closed-loop

124

system, no explicit check must be performed on the system stability during the solution procedure. The LQR
assumption in this proble formulation is similar to the approach taken in [9,10], and others, where R and W
are fixed, and not chosen to satisfy the constraints.

2.2 Direct Output Feedback Control

For most real systems, the state vector will be very large, and the use of full state feedback would result in a
controller of unacceptably high dimension, assuming additionally that the entire state is available. However,
usually only a small subset of the system states will be available to the designer, in the form of the output
measurement vector. These can include actual system states along with linear combinations of the system
states, in the form y = He, where y is the n,-vector of outputs and H is the (n, X n) output matrix giving the
relationship between the outputs and the system states. If these output states are to be used in the feedback
loop, the resulting control is termed direct output feedback, with the control forces defined to be u = — Ky,
where K is the (ny X ny) output feedback gain matrix. In this case, the controller design variables will be the
nyny elements of K.

Substituting this control into the state equation, the state covariance matrix X for this case can be found
as the solution to the same Lyapunov equation (2), except that now the closed-loop dynamics are given by
Fy = (F — GKH). Note that since K does not satisfy any special conditions (such as the LQR conditions),
the closed-loop system F,; is not guaranteed to be stable for any K. If F; is unstable at any stage in the
solution procedure, the covariance matrix X cannot be found from equation (2). Therefore, for this case, hard
constraints on the closed-loop system eigenvalues must be imposed at every step in the design proceedure.
“Hard” in this sense means that special precautions must be taken in the solution procedure such that these
constraints can never be violated.

Expressions for the controller constraints for direct output feedback in terms of the covariance matrix can
then be found to be

te[HT KT RiK: HX

gee, = il \‘ﬂ?]—l fori=1,...,ng (9
tr[HTW,;Hy X

Joc, -i—i'—a?-—d'—]—l fori=1,...,n4 (10)

3 Solution Algorithms

In the general problem formulation presented in the previous section, the constraint functions are generally
highly nonlinear implicit functions of the design variables. Solution of this problem could be attempted by the
direct application of nonlinear programming techniques; that is, using the exact functional expressions for the
constraints. However, this approach quickly becomes computationally very expensive as the dimensionality
increases since the full objective and constraint functions must be evaluated at every step, and their respective
gradients at most, if not all, steps thoughout the design procedure. Such evaluations tend to be computationally
very expensive.

Approximation techniques, where the implicit nonlinear problem is replaced by a sequence of explicit
approximate (although not necessarily linear) problems, have been shown to yield efficient and powerful al-
gorithms for structural design optimization (see, for example, [11,12]). In this paper, two solution techniques
based on approximation techniques will be tested on the integrated control/structure design optimization prob-
lem. The methods will be compared with respect to the ease of use, generality of application, and numerical
robustness to changes in move-limits and other solution parameters.

3.1 Sequential Nonlinear Approximations

In this method, the fully constrained nonlinear optimization problem is solved by the iterative construction
and numerical solution of a sequence of explicit approximate problems. The approximate problems are first-
order Taylor’s series expansions (with respect to either the inverse design variables ([13], for example), or with
respect to hybrid design variables [14]) of the objective and constraint functions. Depending on the intermediate

125

variables chosen, the approximate functions may still be nonlinear functions of the design variables. Therefore,
the numerical solution is accomplished using a mathematical programming code, specifically the modified
method of feasible directions as implemented in ADS [15).

The solution process begins with some initial structure, which is analyzed using the finite element technique.
At this point, the gradients of the active constraint set are evaluated, and the approximate problem is formed,
with respect to the current design. Expressions for the gradients of all constraints considered can be evaluated
analytically. The approximate problem is solved with ADS using an active constraint set strategy to reduce
the dimensionality of the approximate problem by deleting the inactive constraints. Move-limits on the design
variables are imposed during the solution to ensure that the design remains within the region for which the
approximation functions are of acceptable quality. The choice of move-limits and how they change can have a
significant effect on convergence, and will often be determined from numerical experience with the particular
problem at hand.

After the solution of the approximate problem, the structure and its control system are deemed optimal
if a convergence test on either the absolute or relative objective function change over a specified number of
successive global iterations is satisfied. Otherwise, the objective and active constraint gradients are evaluated
for the new design, a new approximate problem formed, and the process above is repeated in an iterative
manner. The solution procedure ends when the design variables converge, or when the number of iterations
exceeds some preset maximum.

Scaling the structure and controller to the closest constraint surface may be possible in some cases, because
of the special assumed form of the controller. Scaling to structural constraints has been performed in other
work (see [16]) and will not be covered here. If full state feedback is used, it is possible and practical to scale
the structure to the closest control effort constraint and closest output response constraint simultaneously. The
variables with which the structure is scaled are the structural design variables (elemental areas or thicknesses),
and the Lagrange multipliers associated with the two controller constraints A, and A, (where for clarity, and
without loss of generality, the subscripts on the A’s that refer to the particular control effort or output response
constraints under consideration have been dropped).

Note that changing the values of A, and A; cannot independently change the values of u,, = tr(KTRK X)
and yms = tr(HT WH4X), because in the LQR problem, only the ratio of A, to A, is important. One can
choose the ratio (A, /A,) to satisfy one of the control constraints — say u,,. Then y,,, will not in general be
satisfied. Suppose yp,, is too large (i.e. ym, > a?) at the particular point where u,y, is satisfied. Then the only
way one can satisfy the y,,, constraint is to increase the sizes of at least some of the structural members. This
seems reasonable because if the control constraints could be satisfied by simply choosing appropriate controller
parameters, then there would be no interaction between structural optimization and controller optimization.
Intuitively, it can be seen that this is not the case. Note that each member of the structure will be scaled
by the same amount to fulfill our goals. Obviously, this method is not absolutely mandated, and some other
approach could be used where the design variables are not scaled equally. However, this would then be resizing
rather than scaling, a process normally left to the nonlinear programming algorithm.

The final scaling aim is to set u,,, = 8% and ym, = a?. To perform the scaling, it is assumed that, at
iteration i, the values (ums)i and (ym,)i will change, as a result of changes to (A.); and the (p;)i, according
to the equations

(um,).'+1 a: b (ymn)l'+1 ¢; «d
— = ' s —_— Ot 6 M 11
(ums)i Ai“ 6‘“ ’ (ym')l' Al“ il 4y

where a;, b;, ¢; and d; are constants, and where

_ Q)i o _ (pi)in
S =000 T (12)
If initial (educated) guesses for these constants can be made, they can be updated in an adaptive manner
during the scaling proceedure.

Move-limits are imposed on the design variables during each approximate problem solution. This is done
in an attempt to restrain the design variables to a region in which the explicit function approximations remain
reasonably accurate. However, deciding how to impose these move-limits is a non-trivial task. The local curva-
ture of the design space (i.e. how nonlinear are the actual constraint surfaces in the region about the expansion
point of the approximations) will determine the move-limits, with more strict move-limits applied in regions

126

of high curvature, and less strict move-limits imposed in regions of low curvature. Since second-derivative
information is required to estimate curvatures, and since such evaluations are very expensive computationally,
imposing move-limits is usually reduced to an art based on past experience. Quasi-Newton methods obtain the
second derivatives using only first derivative information, however, these methods typically take N iterations
to fill the Hessian, and can be very costly if N is large.

For the purpose of this work, a move-limits factor 7 is imposed in an exponential form. If the current design
variable and approximation expansion vector is p, then the upper and lower bounds on the design variables
for the current approximate problem are defined as

1
Pu=1P Pe=_P (13)

where v > 1. The limits specified in equation (13) must be imposed element by element. Note that since
the design variables in this example will be structural design variables only, they are restricted to be positive.
Obviously, equation (13) must be modified if the design variables can be negative. The exponential form of
the move-limit factor is defined by the particular choice of Ypmin and Ymar (typically 1.2 and 1000 respectively
in this work).

3.2 Continuation and Sequential Linear Programming

The complex nature of the constraint functions in the nonlinear optimization problem, especially the con-
troller constraints, leads to various convergence problems in the context of a classical gradient based nonlinear
programming code such as ADS. As the problem dimensionality increases, convergence will usualy become
increasingly difficult to accomplish, as step sizes reduce to satisfy the local linearity assumptions inherent in
gradient based solution techniques. Another method for the solution of mathematical programming problems
that has recently become popular is the use of continuation methods to impose nonlinear constraints cou-
pled with sequential linear programming (SLP) [17,18]. The continuation procedure is a conceptually simple
method of applying restrictive constraints gradually from less restrictive ones, which replaces the most de-

manding constraint functions of the form g(p) < 0, by a set of neighbouring constraint functions G;, defined
by

Gi(pi, 1) = 9(pi) — (1 — 7)9(po) <0 fori=0,...,M (14)

where p, is the arbitrarily chosen'initial design point, and ¥; is a continuation parameter satisfying

0=v%<n< <=1 (15)

Note that for 7 = 0, when p = p,, the new constraint function Gy is identically satisfied. If convergence
is acheived for ¥ = 1, then the original constraints will be recovered in M steps. The step size Ay = ¥ — 71
(and hence M), can be chosen small enough so that assumptions on local linearity can be almost arbitrarily
satisfied.

Linear Programming (LP) methods are a powerful approach to handling a large number of locally linear
constraints, and due to the wide availability of very efficient LP codes, are an attractive alternative to nonlinear
programming methods. The neighbouring problems generated by the continuation procedure can be written
in the form

Minimize J(p;), subject to G;(p;,7:) <0 (16)

To transform these equations into a linear programming problem, the equations are linearized about the current
point p;, and move-limits on the maximum parameter changes allowable locally are imposed. Expanding the
objective and constraint equations in (16) to first order in a Taylor’s series expansion about p; gives the locally
linearized problems in linear programming form as

127

Minimize, with respect to Ap;, AJ; = Qi] Ap;, subject to
oplp,
3G 0 Vi
[M Ap; +9(p;) — (1 - 7)g(py) < 0 (17)
op p,
—e<Ap;<c¢
fori=0,...,(M —1). All elements of e are assumed positive, and the vector inequality is imposed element

by element.

The algorithm begins with an initial structure, which is analyzed using the finite element technique. The
initial problem (yo = 0) is solved, and the continuation parameter v is incremented from 70 = 0 by Ay to
71- Note that if initially K = 0, so that the control effort allowed for the initial local problem is zero, this
initial problem becomes a pure structural optimization subject to the dynamic output repsonse constraints.
The increment A+ is set by an a priori choice of M, the number of continuation steps, although A+ need not
be constant throughout the solution procedure. Successful implementation of the continuation method has
been reported when Ay was chosen as initially quite small and increased to a larger value during the solution
[18]. The choice of A« is closely coupled with the choice of the nominal design variable move limit vector £g.
There is in fact a tradeoff between the satisfaction of the local linearity assumption through e, and the ability
to converge to the neighbouring problem through Ay. Usually, for each particular problem, some numerical
trial and error will be required to find those values of €9 and Ay that yield an efficient solution technique.

The gradients of the objective and constraint functions are calculated at the current design, and then the
associated linear programming problem (17) is solved by a linear programming code. In this work, the linear
programming routine EO4MBF from NAGLIB (National Algorithms Group LIBrary) was used, although other
routines inserted at this point should provide the same solution. Since the local linearity assumption will
never be exactly satisfied, the actual constraint values at the new point, specified by the solution to the linear
programming problem, will be different than that predicted. Therefore, the constraints G; may not be satisfied
following the linear programming solution step.

Since a converged subproblem solution is required before increasing the continuation parameter, this local
problem is iterated locally until convergence is obtained. At each local iteration, new gradients are calculated,
and the move limits on the design variables are reduced so that ¢ = ceq, where a value of ¢ = 0.75 was used
in this work. If convergence to the local problem does not occur within 15 iterations (where move limits are
about 1% of their nominal values), the move limits are increased to their nominal values €0, and the local
iterations are repeated. Numerical experience with this algorithm has shown that this procedure is flexible
enough numerically so that converged subproblem solutions can be obtained in a reasonable number of local
iterations, as long as the neighbouring problems are “close enough”. Practically, this means that either the
constraint values of the initial system should be “close” to their final desired values, or that M should be
large. Once the local problem has been solved, the continuation parameter 7 is incremented, and the new local
problem solved as before. At the M** continuation step, vy = 1 and the original problem is recovered, so that
the solution to the M* local problem is the solution to the original problem.

If closed-loop stability constraints are violated at any stage in the solution procedure, these must be
imposed immediately. To achieve this, it is possible to employ a method that never requires the calculation of
the closed-loop eigenvalue derivatives, saving considerable computational expense. Of course, if in addition to
overall stability there are constraints on closed-loop damping ratios or bandwidth, then the evaluation of the
closed-loop eigenvalue derivative may be necessary at some point. The method used in this paper is to simply
bisect Ap; and perform another analysis until a stable system configuration is obtained.

4 Gradient Analysis
For the numerical optimization procedure to be practical, especially as the dimensionality increases to realistic

structures, it is essential that it be possible to evaluate the first-order sensitivities of the complex constraint
functions in an efficient manner. The objective function (the weight) is a linear function of the finite element

128

thicknesses and/or cross sectional areas (for truss type finite elements), so that its gradient is easy to calculate
at any point in the design space.

4.1 Gradients for the case of Full State Feedback Control

The gradients of the controller constraints with respect to a structural design variable p; are given by

T
%"—;f = %tr [(aK RiK; +KTR,)X+'P.7{,] (18)
1 T J
a.‘]oc 1 BH a[{d
1 — —t d; i
- 7 r[(o Willa + HT W, 5)X+QH,] (19)

where P;, Q;, and H; are evaluated using the following set of equations:

FIp,+P; F;, + KTRK;=0 (20)

FXQi+ QiFu+ H] WiH4, =0 (21)

H; = [%i ‘;’ ‘; %G;”x GT + Gy X %] (22)
(2250 of) @

%}I)—j = R™! [%%-A,, + GT 0A;] (24)

6p, i:: () (aH"- WiHq, + HI W; a;;,) (26)

Note that gradients with respect to controller design variables need not be evaluated since these design variables
were effectively removed from the optimization problem by the LQR constraint.

4.2 Gradients for the case of Direct Output Feedback Control

The gradients of the controller constraints with respect to a structural design variable p; are given by

Bgcc_ 1 [(8H T T T BH)]

28 - K/RK,H+H K; R;Ki— | X + YiN; 27
o, ﬂ"’ R; R; e i (27)
O9oc, - i OH;, _de.

apj = a‘ztr l:(_a;;LWHd' Hd. ap) X+ ZN] (28)

where Y;, Z;, and N are evaluated using the following set of equations:

FTY; + YiFqy+ HTKITR;K;H =0 (29)
FYZi+ ZiFqu+ HLW;H4, =0 (30)
OF.i OF T 4 9Gu T 8GT
N = X+X T XuwGT + GuXu 31
! [Op; Bp; Op; B 31
OF. <6F 8G 6H)

= —KH - GK— 32)

p; dp; Op; p; (

129

The gradients of the controller constraints with respect to the elements of the gain matrix K can be written
in matrix expression form as

Ogee, _ 2 Ty). T

T [{RiKH - G"y:} XHT] (33)

agoc-‘ — 2 T . T
T air [GT2Z,XHT) (34)

. . Js Os

where, for scalar s and matrix A with elements a;j, [=—| = 57—, and where

BA ij 60,‘,‘

Ri=diag {0---0 R 0--- 0}, .0 (35)

Note that the R; in equation (35) is of order (ny, X ny,), and is in the i** diagonal block of R;.

5 Example: The DRAPER I Teterahedral Truss Structure

The DRAPER 1 structure [19] is a tetrahedral truss attached to the ground by three right-angled bipods, as
shown in Figure 1. Although attached to the ground, this model will act as a typical flexible structure pointing
subsystem (e.g. antenna, radar, optical) attached to a rigid core. Any motion would then be with respect to
this rigid core, and transmit forces to it. Consequently, this mode! has no rigid body degrees of freedom. The
finite element model has 12 truss elements, since the joints are pinned and transmit no moments. There are
four nodes that are free to move in all directions, so the model contains 12 degrees of freedom. The structural
design variables are the cross-sectional areas of each of the 12 truss elements. Since there are 12 degrees of
freedom in the model for this structure, the state-space model will be 24** order. There will be 6 inputs
corresponding to the 6 legs of the structure, and a varying number of outputs, depending on the problem at
hand.

For the purposes of this work, material parameters of p = 0.1 Ib/in and £ = Young’s Modulus = 20 kpsi
were used. The dimensional values E and p were chosen to give initial numerical values of structural frequencies
for the dimensional model roughly comparable to those of the non-dimensional model. The model contains
no nonstructural mass. Elements 7 through 12, the three right-angled bipods, take on the duties of force
actuators (and possibly colocated velocity and/or displacement sensors). Only one output response constraint
is defined (n, = 1), with the design output vector y4 representing the line-of-sight error of the top vertex [(z,y)
displacements of vertex 1]. The disturbances, labelled w; and w; in Figure 2, are assumed to be independent,
zero mean, Gaussian disturbances with intensity 1.0.

The damping added to the state space system will depend on the state space realization used. For cases
where a realization based on physical variables is used, the damping matrix C is formed to be C = 0.1M +
0.001K,, For cases where a realization based on modal variables was used, the damping ratio of each mode
was specified to be 0.1% of the modal frequencies during the formation of the state matrices. The weighting
matrices R and W are set to the identity matrices, so that equal weighting is given to all components of u and
¥4- The minimum cross-sectional areas for all elements was specified as 0.1 in2. For this problem, no static
structural constraints were specified in this model of the DRAPER I structure, the intent being to investigate
the effect of the closed-loop controller constraints on the structural design optimization.

5.1 Full State Feedback Control

In this section, the sequential nonlinear approximations solution algorithm, with the addition of the scaling
procedure outlined in Section 3.1, is applied to the full state feedback control of the DRAPER I structure.
The effect of the scaling procedure used here can be determined by applying the sequential approximations
algorithm in the form of a direct output feedback problem with H = I with no scaling assumed. The
continuation solution algorithm is also best handled in the form of a direct output feedback problem since
no special scaling is assumed. Both solution algorithms applied to the case of full state feedback are discussed
in Section 5.2, where direct output feedback control is considered. For brevity, only limited results for both

130

controller methodologies are presented in this paper, but a full discussion of this example can be found in
reference [20)].

Runs were made optimizing the DRAPER I structure using an inverse design variable approximation for
all constraint functions. The initial structure was defined with all structural design variables set at 10 in%, and
with the Lagrange multipliers A, and)y set at 1.0. This set of initial conditions will be termed the symmetric
set of initial conditions, for they specify a structure with a number of vibrational modes of the same frequency
(repeated eigenvalues). A range of allowable expected output response (a?) of 1 x 1073 in? to 1 x 10~% in” in
steps of 1 x 10~% in?, and allowable expected control effort (8?) of 50 1bZ to 80 Ib? in steps of 10 1b? were used.

Table 1 summarizes the resulting minimum weight in pounds found for the case where a state-space real-
ization based on the modal displacements and velocities was used. Intuitively, two trends would be expected
in the data displayed in Table 1. The optimum weight should decrease as the allowable control effort 82 is
increased at constant allowable output response o (left to right across the table), and the optimum weight
should decrease as the allowable output response a? is increased at constant allowable control effort 32 (down
the table). With reference to Table 1, we can see that this trend is observed in a macroscopic sense only, there
being several examples where this trend is not observed. For example, considering the first column of Table 1,
which corresponds to 8% = 50 Ib? for varying a?, we see only two exceptions to the expected trends, these
being at a? values of 6 x 107° and 9 x 10-5. Similar results are observed in all other columns and rows of
Table 1. Results obtained using a state-space realization based on the physical displacements and velocities of
nodal points are more consistent than when using the modal variables, although still not totally uniform. It
might be pointed out that the results when using a physical realization were consistently easier to obtain, there
being no need to alter the nominal value of i to obtain convergence, and the number of global iterations
required for convergence being consistenty lower.

Some understanding of these contradictory results can be found by considering Table 2, which gives the
optimal element areas found for §2 = 50 and for the varying a? corresponding to the first column of Table 1.
Also given in this table is the number of global iterations required for convergence, the final values of the
Lagrange multipliers (which then defines the LQR controller), and the initial value of the structural design
variables (all the same for the symmetric set of initial conditions) at which the initial scaled system satisfies the
constraints. Immediately apparent from Table 2 is a number of seemingly separate regions of the design space
into which this structure has converged. For example, the final designs for a?=5x10"%and a® =7 x 1075
seem to be similar in relative structure. Here, “similar” refers to the relative sizing of the structural members,
in that design variables that are “larger” in one design are “larger” in the other. Both these designs are
however distinctly different from those for a? = 1 x 10-% and a? = 3 x 10~5, which themselves are similar.
The conclusion seems to be that we are converging into different regions of the design space with our solution
algorithm, and that there are numerous local minima. Several columns of Table 2 seem to define their own
region of the design space, being dissimilar to any other column. In other words, our design space seems to
have multidimensional corrugations leading to multiple local minima. The solutions will lie somewhere on the
intersection hyperplane between the surface of constant allowable output response and the surface of constant
allowable control effort.

This corrugated nature of the design space can be illustrated by considering the solutions obtained, for the
same constraint case, when starting from different initial conditions. For the case of 2 =75and a® = 1x 1075,
Table 3 summarizes the results of runs made when modal state space realizations were used, and when only the
initial conditions are varied. The different initial conditions are defined by setting all structural elements equal
except the first (element 1), to which is added a percentage of the size of other elements. Even with this limited
variation in the initial conditions, there are seemingly many distinct regions in the design space into which the
system may converge. A picture of the constraint surfaces as a one-dimensional slice of the multidimensional
space will emerge if these optimal structures are varied into each other in a linear fashion, and the constraint
values are calculated between each case. That is, the structural design variables and Lagrange multipliers are
changed linearly from the optimal values in one case to those in another case. Then the constraint surfaces
obtained would be those seen when travelling in a straight line between each successive point.

The results of such an analysis are shown in Figures 3 for the cases corresponding to those given in Table 3.
As expected, the weight varies linearly between the cases, but it is the constraint curves that are much more
revealing. For example, considering Figure 3, one can see that between case 1 and case 2, there is a “ridge”
of output response larger than the maximum allowable value. Similarly, the control effort first decreases, then
also increases to a ridge of high value. This corresponds to a hump in the constraint surfaces between the two

131

points in the design space. Assuming that we would see such behaviour when moving in every direction away
from case 1 and case 2, rather than just in a direction between the two as shown in Figure 3, then the design
points corresponding to these cases would represent local minima. In this situation, the design can become
“trapped” in such a locally convex region, causing the solution algorithm to converge to different points.

With reference to the same Figure 3, one can see that both the output response and contro! efforts are
virtually constant between cases 2 and 3, while the weight increases slightly from 2053.0 1b to 2090.6 Ib.
This indicates that case 2 and case 3 actually represent the same optimal solution, with the difference being
accounted for in the variance allowed by the convergence criteria used. The direction in the design space
represented by the movement from case 2 to case 3 would lie in the intersection hyperplane of the surfaces of
constant control effort and output response constraints, and would be at a shallow angle to the linear surface
of constant weight. Figure 3 graphically illustrates a design space that is a very complicated function of the
design variables, in which multiple local minima abound.

There are some other tests that can be made on the hypothesis that the design is becoming trapped in
local minima. If the design is actually trapped in a local minimum, the solution should stay in the vicinity of
that minimum if the problem is changed only slightly. That is, if a converged solution is used as the initial
conditions for an optimization run where the constraint objectives are changed by a “small” amount, then the
new problem should converge to a point that is “close to” the initial point. Table 4 represents such a situation.
Here, the solution was first obtained for the case where % = 50 and a® = 1 x 105, and where a modal state
space realization and inverse design variable approximations were used. This converged solution was then used
as the initial conditions for the cases 82 = 50 and a® = 2 x 10~5, and 52 = 60 and a2 = 1 x 10-5. Moving
down each column, and across the top row, of Table 4, the converged solution from the previous case was used
as the initial condition for the new problem. As can be seen from Table 4, the two expected trends in the data,
as mentioned previously, are now observed without exception. The optimal solutions for the first column of
Table 4, corresponding to the cases where 32 = 50, are given in Table 5 The solutions now appear to be in
the same local region of the design space, as evidenced by the relative sizing of the optimal structures. For
example, note that in all converged designs, structural elements 9, 10, and 12 are at their lower gage limit of
0.1 in?%, and that the first structural element is the largest by far. The optimal solutions for the 32 = 60 cases
from Table 4 also appear to be in this same region of the design space. These results test the hypothesis that
designs are converging to local minima, and indicate that the local optima are real and not simply figments of
a numerical imagination.

5.2 Direct Output Feedback Control

Recall that when using direct output feedback, no simplifying assumptions can be made regarding the controller
design variables (elements of K), such as the LQR assumption used in the case of full state feedback. Therefore,
no scaling of the structure and controller to the closest constraint surface is performed. If a full state feedback
case is to be solved in the form of direct output feedback with H = I, the number of design variables will
increase significantly over the number of design variables created when other types of controllers are considered.
This is because the number of states in the plant model will generally be large for anything but trivial systems,
hence K will have many elements, all of which will be treated explicitly as design variables. However, such a
situation is considered here to aid a comparison between the two solution algorithms, and the results obtained
in the previous section. For the continuation algorithm, convergence was obtained after the specified number
of global iterations, set by the specification of Ay. Also note that, since only one each of the output response
and control effort constraints are specified at this stage (na = 1, ng = 1), these can both be set as equality
constraints without loss of generality since they will both be active at an optimum.

Table 6 gives the optimal weights found using the sequential approximations solution ‘algorithm in the case
when a physical state space realization and inverse design variable approximations are used, for 8% = 50 and
B? = 60, and for varying a®. Compared to the similar case when scaling was performed, the optimal weights
found here are larger in every case. Additionally, the solution times were significantly larger because of the
number of iterations required for convergence. Note that some values in Table 6 are for situations where an
average steady state value was obtained, but where the design was jumping around too much over each global
iteration for convergence to occur. This was so even though the move-limits for every case in Table 6 were
set at a relatively small £2.5%. A smaller move-limit would aid convergence, but slow it considerably. Also,
smaller move-limits may cause premature convergence if the design is at a point where the constraint surfaces

132

and the surface of constant weight are nearly parallel.

Table 7 gives the optimal weights found using the continuation algorithm for the same cases listed in Table 6.
All cases listed were obtained with the continuation parameter Ay = 0.01 until y = 0.5, when Ay became 0.02,
so that for every case convergence was achieved in 75 global iterations. Also listed in Table 7 are the move-
limits on the maximum parameter changes allowable locally (e in Section 3.2). These are set to give a tradeofl
between the satisfaction of the local linearity assumption and convergence to the local neigbouring problem,
and must be found by numerical experimentation. Note that in both situations represented by Tables 6 and
7, minimum move-limits on the elements of K are set so that these elements can change sign if desired.

The solutions given in Tables 6 and 7 were obtained when the initial structure was defined with all truss
elements of equal cross-sectional area. The particular values for this area are given in Tables 6 and 7 for
each case, and were chosen so that the initial output response was “close to” its desired final value. With
all structural elements at 120 in2, 90.0 in2, and 60.0 in?, the initial output responses were 2.067 x 10-5,
3.674 x 105, and 8.266 x 10~° respectively. The initial control effort was zero of course, since all elements of
K were set initially to zero.

Comparing the optimal weights from Tables 6 and 7, it can be seen that those obtained using the con-
tinuation solution algorithm are significantly lower than those obtained using the sequential approximations
solution algorithm in every case. The optimal weights are also much more consistent, in terms of the expected
trends as a? increases, when using the continuation method. Convergence was obtained for every case listed
in Table 7, whereas for three of the cases listed in Table 6, no convergence was obtained within 300 iterations.
The reason for the convergence failure can be illustrated by considering the convergence histories given in
Figures 4 and 5, for typical cases from Tables 6 and 7 respectively. The inset in Figure 4 shows some of the
histories toward the end of the solution in more detail. These can be seen to be.very rough, as compared to
the histories in Figure 5 which are smooth everywhere. These parameter oscillations for the sequential approx-
imations solution technique are indicative of a move-limit set too high, so that the local linearity assumption
is violated. However, since the convergence is very flat toward the end of the solutions, a smaller move-limit is
likely to cause premature convergence, or to significantly slow down the convergence for very little additional
objective reduction.

The optimal weights found using the continuation method listed in Table 7 compare very favourably with
those found for the same cases (8% = 50 and varying a?) when the full state feedback LQR assumption was
used to simplify solution. In almost every case, the optimal weight is approximately equal to or lower than
those found earlier. However, the sequential approximations solution algorithm results are much worse, being
significantly larger than the optimal weights found earlier in every case. The sequential approximations solution
algorithm performs so poorly because it tends to become trapped in a local minimum close to the specified
initial conditions.

Consider now cases where the full state is not available for feedback. In the DRAPER I structure, the six
right-angled bipods are usually assumed to take on the duties of force actuators and colocated rate sensors, so
that H = GT (output state of dimension six). Tables 8 and 9 list the optimal weights found for this reduced-
order output vector for the same cases used in Table 6, when the sequential approximations and continuation
solution algorithms respectively are used. Note that the optimal weights consistently obey the trends that are
expected as the allowable output response and controller effort are altered. Even so, the designs can converge
into completely different regions of the design space for any particular case. This is illustrated by Table 10,
which gives the optimal structural design variables for the cases represented by the second column of Table 9.
Note that every solution does not define a unique local minima. Many of the solutions seem to lie in the same
local minima region, for example the solution for the case a? = 1,7, and 9x10~5. Once again, the design space
is found to have many local minima.

The two solution algorithms here seem to predict quite similar optimal weights for the cases considered,
although in general those found using the continuation method are slightly better. However, convergence for
the results using the sequential approximations solution algorithm were more difficult to obtain than those for
the continuation method. Altering the nominal move limits (set at +2.5%), and perhaps reducing it toward
the latter stages of each solution would aid convergence, but at increased effort on the part of the user. The
continuation results are easier to obtain since they require less individualized attention.

Comparing Tables 8 and 9 to Table 7, it can be seen that the optimal weights found when H = GT are
much larger than those found when full state feedback was used. The reason for this is the particular placement
of the disturbance forces relative to the design output states (which determine the output response). For the

133

case considered here, the DRAPER 1 structure is disturbed at node 1, the displacement of which is to be
kept below the design objective value a?. With full state feedback, the displacement states of node 1 are
available for feedback, whereas if H = G7, these states are not available, and the effect of the displacement
of node 1 is available only indirectly through its effect on the velocities along the six bipods that make up
the sensors. The importance of these states can be seen by examining the optimal gain matrices for the full
state feedback case. The largest gains associated with displacements and velocities in these matrices appear
in the columns corresponding to node 1 degrees of freedom, indicating that the states associated with node 1
are very important. When they are not available, the controller does not have as much information about the
state of node 1, the node it is trying to control, as it does in the case of full state feedback, and will increase
the structural stiffness (and hence mass) to compensate.

To illustrate further, consider output feedback with the displacement and velocity states of node 1 added
to the output vector used previously. The optimal weights for the same 82 = 50 and 82 = 60 cases used in
Table 9 with this new output vector (of dimension 12 now) are given in Tables 11 and 12, when the sequential
approximations and continuation solution algorithms are used respectively. There are now larger differences
between the weights found using the two solution algorithms than in the case when H = GT only, with the
continuation method giving the best results (with one exception). The weights obtained using the continuation
algorithm are now very close to those obtained when using full state feedback (in Table 7), although still a
little larger in every case. This is because even with this larger output vector, the displacement states for
nodes two through four are still not used in the controller.

All the results presented so far were generated with the external stochastic disturbance intensities set at
one (X, = I). If these intensities are varied as X, = z, I, the effect of varying z, on the optimal weight is
shown in Figure 6. These results were generated using the continuation solution algorithm, for the case when
a? =1 x 1075 and #? = 50, and when all structural design variables were initially set at 120 in%. As can be
seen, the relationship between the disturbance intensity and the optimal structural weight appears basically
linear in the range shown. However, a linear fit of the data does not produce an optimum weight of zero for
a zero intensity disturbance, as would be expected. Therefore, the relationship cannot be exactly linear. The
results also indicate that the disturbance level chosen for the previous results (z, = 1) was significant for the
range of output response and control effort constraint objectives used.

As long as the neighbouring problems in the continuation algorithm were close enough, which was satisfied
by starting from an initial point where the constraint values were “close to” their final desired locations, no
difficulties were experienced in obtaining convergence. The solution times for the continuation algorithm were
2-3 times longer than for solutions by the sequential approximations algorithm, since on average approximately
8-12 local iterations were required for convergence to the neighbouring problem for each global iteration. The
performance of the sequential approximations solution algorithm decreases as the dimensionality increases, as
evidenced by the sequence of cases where H = GT (48 design variables), H = GT plus node 1 displacement
and velocity states (84 design variables), and H = I (156 design variables). However, the continuation method
seemed much less sensitive to the problem dimension. The continuation solution method was found to be
generally superior, for this problem at least, to the sequential approximations solution method, with respect to
the confidence in obtaining a “good” converged solution. The disparity in solution times was acceptable because
of the ease with which solutions were obtained using the continuation method, and because the solutions found
seemed to be generally much better than those found using the sequential approximations algorithm.

6 Conclusions

In this work, the integrated control/structure design optimization problem has been investigated from a re-
sponse to disturbances point of view. Both full state and output feedback controllers were employed in the
control strategy, and two solution methods were compared. It was found that for this problem, the continuation
method coupled with a sequential linear programming approach performed better than the more traditional
type of nonlinear approximations approach, in the sense that it was more robust to changes in the arbitrary
parameters set by the user, obtained better results, and the results were easier to obtain. The design space was
found to exhibit multiple local minima in which the solution could become trapped, although the continuation
solution method seemed to handle the corrugated design space better than the other method. In future work,
more diverse controller types must be considered, along with structures consisting of more complicated finite

134

elements than simple truss members. Additionally, more realistic problems of higher dimension must be solved,
to demonstrate the practicality of this design procedure.

Acknowledgments

This work was partially funded by the Air Force Office of Sponsored Research at the Flight Dynamics
Laboratory, Wright Aeronautical Laboratiories, and also by a grant from CRAY Research Inc. Computer
facilities on a CRAY-XMP were provided by the Ohio Supercomputer Center in Columbus, Ohio.

References

[1] Hanks, B.R. and Skelton, R.E., “Designing Structures for Reduced Response by Modern Control Theory”,
Proceedings of the 24th ATAA Structures, Structural Dynamics and Materials Conference, Lake Tahoe,
Nevada, May 2-4, 1983.

[2] Komkov, V., “Simultaneous Control and Optimization for Elastic Systems”, Proceedings of the Workshop
on Applications of Distributed System Theory to the Control of Large Space Structures, JPL Publication
83-46, ed. by G. Rodriguez, July 1983.

[3] Hale, A.L., Lisowski, R.J. and Dahl, W.E., “Optimizing Both the Structure and the Control of Maneu-
vering Flexible Structures”, Proceedings of the AAS/ATAA Astrodynamics Conference, Lake Placid, New
York, August 22-24, 1983.

[4] Salama, M., Hamidi, M. and Demsetz, L., “Optimization of Controlled Structures”, Proceedings of the
JPL Workshop on Identification and Control of Flexible Space Structures, San Diego, California, June
4-6, 1984.

[5] Messac, A., Turner, J. and Soosaar, K., “An Integrated Control and Minimum Mass Structural Opti-
mization Algorithm for Large Space Structures”, Proceedings of the JPL Workshop on Identification and
Control of Flexible Space Structures, San Diego, California, June 4-6, 1984.

[6] Miller, D.F. and Shim, J., “Gradient Based Combined Structural and Control Optimization”, J. Guidance
and Control, Vol. 10, No. 3, May-June 1987, pp 291-298.

[7} Onoda, Junjiro and Haftka, Raphael T., “Simultaneous Structure/ Control Optimization of Large Flexible
Spacecraft”, AIAA paper 87-0823.

[8] Slater, G.L., “A Disturbance Model for the Optimization of Control/Structure Interactions for Flexible

Dynamic Systems”, AIAA Guidance, Navigation and Control Conference, Minneapolis MN, August 15-17,
1988, pp 57-63; AIAA Paper 88-4058-CP.

[9] Khot, N.S., Eastep, F.E. and Venkayya, V.B., “Simultaneous Optimal Structural/Control Modifications
to Enhance the Vibration Control of a Large Flexible Structure”, Proceedings of the AIAA Guidance,
Navigation and Control Conference, Snowmass, CO, Aug. 19-21, 1985, pp 459-466.

[10] Khot, N.S., “Minimum Weight and Optimal Control Design of Space Structures”, NATO Advanced Study
Institute, Computer Aided Optimal Design: Structural and Mechanical Systems, Troia, Portugal, June
29-July 11, 1986.

[11} Schmit, L.A., and Farshi, B., “Some Approximation Concepts for Efficient Structural Synthesis” AIAA
Journal, Vol. 12, No. 5, 1974, pp 692-699.

[12] Grandhi, R.V. and Venkayya, V.B., “Structural Optimization with Frequency Constraints”, ATAA Jour-
nal, Vol 26, No. 7, July 1988, pp 858-866.

[13] Slater, G.L. and Kandadai, R.D., “Gain Optimization with Non-Linear Controls”, Optimal Control Ap-
plications and Methods, Vol. 5, pp 207-219, 1984.

135

[14] Starnes, J.H. Jr. and Haftka, R.T., “Preliminary Design of Composite Wings for Buckling, Strength and
Displacement Constraints”, Journal of Aircraft, Vol. 16, No. 8, August 1979, pp 564-570.

[15] Kirk, D.E., Optimal Control Theory, An Introduction, Prentice-Hall, Englewood Cliffs, New Jersey, 1970.

[16] Canfield, R.A., Grandhi, R.V. and Venkayya, V.B., “Comparison of Optimization Algorithms for Large
. Structures”, Report AFWAL-TM-86-204-FIBR, Wright-Patterson Air Force Base, May 1986.

f17] Lim, K.B. and Junkins, J.L., “Robustness Optimization of Structural and Controller Parameters”, J.
Guidance, Conirol and Dynamics, Vol. 12, No. 1, Jan.—Feb. 1989, pp 89-96.

[18] Horta, L.G., Juang, J-N. and Junkins, J.L., “A Sequential Linear Optimization Approach for Controller
Design”, J. Guidance, Control and Dynamics, Vol. 9, No. 6, Nov.-Dec. 1986, pp 699-703.

[19] Strunce, R., Lin, J., Hegg, D and Henderson, T., “Actively Controlled Structures Theory”, Final Report,
Vol 2 of 3, R-1338, Charles Stark Draper Laboratory, Cambridge, Mass. Dec. 1979.

[20] McLaren, M.D., “Controller Methodologies for the Integrated Control/Structure Design Optimization of
Large Flexible Structures”, Ph.D. Dissertation, University of Cincinnati, December 1989.

|

Figure 2: The disturbance model

Figure 1: The DRAPER I Structure

ﬂ‘l
a? (x10°%) | 50 60 70 80
1 2847.1 | 2991.4 | 2107.4 | 2924.9
2077.3 | 2030.8 | 1914.4 | 1289.7
1878.0 | 1658.9 | 1472.9 | 1216.8
1548.3 | 1409.7 | 1653.2 | 1021.5
1418.9 | 1319.2 | 1459.5 | 937.4
1460.6 | 1209.5 | 964.9 | 1009.8]
mgg; 1076.0 | 928.7 | 1052.7 ORIGINAL PAGE IS
1066.7 | 1214.1 | 987.9 | 790.2 OF POOR QUALITY
1126.3 | 940.5 854.0| 720.1
10 971.9 | 1035.1 | 766.4 | 970.6

@ 0 ~1 B oA W N

Table 1: Optimal weight using a modal stale-space realization, the
syminetric set of initial conditions, and inverse design variable approx-
itnations.

136

ol [10-°
1 2 3 4 5
Scaled DV 90.437 | 63.947 | 52.212 | 45.213 | 40.441
Final DV
1 125.893 | 73.091 | 70.557 | 49.717 | 43.868
2 23.336 | 53.545 | 36.664 | 21.137 | 23.151
3 45.632 | 15.268 | 14.833 | 35.217 | 21.510
4 6.380 { 10.704 | 5.599 | 6.318 | 4.957
5 10.973] 5.375 | 12.207 | 4.213 | 9.637
6 9.800 | 6.200§ 6.953{ 5.365{ 4.914
7 17.627 | 8.610 | 10.775 | 5.638 1 9.310
8 17.719} 0.124 | 8.802 | 0.150 | 9.901
9 0.100 {1 13.250 | 0.100 | 0.100 | 0.100
10 0.100 | 9.332| 0.711 | 0313 8307
11 18.206 | 0.100 | 13.746 | 9.473 | 8.352
12 0.100 | 0.100 | 0.100 | 9.266 | 0.100
A 1.6710 | 1.4574 | 1.2620 | 1.4851 | 0.8632
Ay 1.0 1.0 1.0 1.0 1.0
iter. for 44 19 15 32 32
convergence
o (x107%)
6 7 8 9 10
Scaled DV [] 36.918 | 34.180 | 31.973 | 29.979 | 28.594
Final DV
1 25.936 | 32.194 | 9.723 | 16.757 | 20.331
2 30.650 | 21.255 | 27.425 | 32.495 | 18.508
3 28.247 | 20.736 | 28.618 | 16.565 | 11.434
4 11.168 | 5.141 | 4.083{ B8.798 | 2.041
5 10922 | 7.713] 6.737 | 4.348 | 2.369
6 6.795| 4.260| 3.815} 6.692| 2934
7 0.101} 8.299 | 0.100 | 0.100 | 0.152
8 2.501 | 9.363| 0.100| 9.628) 0.885
9 0245 0.00] 6482 1332 3.242
10 9.107 | 8.183 | 8.323 [0.100 | 5.016
11 7.744 | 7.379 | 8.218 | 7.737 2.532
12 8.583 | 0.100| 6.782 | 10.099 | 0.100
A, 0.7522 | 0.8544 | 0.7937 | 0.9117 | 1.7622
), 10 | 10 | 10 | 10 | 10
iter. for 21 18 22 22 49
convergence
Table 2: Optimal design variables for A* = 50
2500 § - — weight
:51 \ ---- control effort
24003\
E A
E BN
2300 ‘\
2 1
Q2200 3
~ E
& 21003
an E
. — 4
1) 3
g 2000 3
1900 3
1800 3 —

output response

Case 1 { Case 2 | Case 3 | Case 4 | Case §

Final Wt. {| 2451.3 | 2053.0 { 2090.6 | 1915.6 | 2067.0
Final DV

1 73.849 | 41.076 | 55.595 | 38.306 | 60.319

2 70.699 | 49.211 | 55.391 | 68.734 | 48.760

3 13.262 | 74.820 | 58.403 | 44.107 | 50.104

4 16.100 [2.146 | 1.6065 1.227 1 2.841

5 7.730 1.843 | 1.4806 16121 2.169

6 8.068 1.819 | 1.5676 | 3.161 2.834

7 3864 | 0.100| 0.100] 0.100 | 0.170

8 20.163 | 0.100 | 0.100 0.451 0.100

9 21.568 } 0.100 (0.100(7.939§ 8.984

10 5.694 | 0.100} 0.100 0.100 0.100

11 0.100| 0.100{ 0.100| 0.100{ 0.100

12 0.100 | 0.100 | 0.100{ 0.100| 9.0i4

Au 0.9765 | 3.1055 | 3.3391 | 2.6755 | 2.5236

For all j # 1, the initial conditions are:
Case 1: p = p;

Case 2: py = p; + 3%
Case 3: py = p; + 6%
Case 4: py = p; + 10%
Case §: py = p; + 50%

For all cases, (A)g = 1.0, {},)o == 1.0

Table 3: Optimal valucs when 37 = 75 and o® = 1 x 10~ for differing
initial conditions, when using a modal state space model

v

-

Case

ot

Output response (x 107%)

Figure 3: Canstraint surfaces between cases tisted in Table 3

137

] L) [+] — — —
& =3 =3 o o o
= o =)

T T T T T T T T YT T T

o]
(=]

Craan b

Control effort

i

Fyoe o

ey

A N

GF PULR QUALTY

pl
o’ (x10~%) § 50 60 70 80
1 2847.1 | 2466.0 | 2166.6 | 1969.2
2 2045.9 | 1782.1 | 1579.7 | 1443.2
3 1685.6 | 1478.8 | 1327.5 | 1197.2
4 1470.9 | 1208.0 | 1162.0 | 1052.0
5 1325.2 | 1174.2 | 1049.3 | 952.1
6 1217.0 | 1083.2 | 965.9| 880.0
7 1134.1 | 10124 | 9014] 8238
8 1065.7 | 955.3 | 849.4| 7765
9 1014.5] 907.9| 806.4| 735.3
10 961.3| 861.0 | 770.0 [700.2

table 1 Optimal weight using a miodal state-space realization and
inverse design variable approximations, where the initial condition for
cach case is the converged solution from the previous case.

o? initial dv's optimal weight iterations
(x107%) [(structural) { 2 =50 [g2 =60 | p7 =50 | 3* = 60

t 120.0 3847.9 | 3548.4 220 300"
2 90.0 27243 | 2490.7 202 300"
3 90.0 2191.7 | 2083.1 231 300°
4 90.0 1950.8 | 1771.3 188 300
5 90.0 1680.5 1702.5 300* 181
6 90.0 1529.7 | 1443.9 300° 300*
7 6.0 1443.0 | 1395.0 207 181
8 60.0 1325.6 1247.4 300" 300
9 60.0 1688.2 | 1591.6 119 123
10 60.0 1604.4 | 1487.0 126 127

indicates no convecgence in lpecTﬁed anmber of global iterations

table 6 Optimal weight using sequertial appproximations solution
alporithin without scaling for full state feedback, a physical state space

tealization, and juverse design variable approximations.

o? initial dv's | optimal weight
(x107%} | (structural) [#=50 | 57 = 60
1 120.0 3255.6 | 3013.7
2 90.0 2291.0 | 2116.4
3 90.0 1864.9 | 17372
4 9.0 1617.7 | 1630.3
5 90.0 1450.0 | 1447.6
6 90.0 1321.6 | 1221.0
7 60.0 1226.8 { 1135.0
8 60.0 1143.9 | 1064.0
9 60.0 1085.4 | 1002.9
10 60.0 1024.3 | 961.8

lable 7: Optimal weight using continna
scaling for full state feedback, and a ph

o? initial dv's I:d
(x10~%) | (structural) | 50 60

i 120.0 4764.9 | 4502.3
2 90.0 3553.6 | 3170.5
3 90.0 2744.5 | 2586.7
4 90.0 2511.8 | 2388.8
5 90.0 2090.7 | 2004.6
6 90.0 1954.7 | 1830.1
7 60.0 1797.0 | 1698.4
8 60.0 1683.6 | 1585.0
9 60.0 1584.3 | 1496.5
10 60.0 1503.4 } 1420.1

lion solution algorithm without
ysical state-space realization.

Table 9 Optimal weight using continuation solution algorithm for di-
iect natput feedhack with 2 = 07 and a physical state space realiza-

138

o (x10-°

Final DV
1 125.893 | 82.406 | 66.777 | 57.864 | 50.877
2 23.336 | 19.075 | 16.010 | 14.170 | 13.257
3 45.632 | 36.194 | 29.987 | 26.286 | 23.752
4 6.339 | 6372 5.386 | 4.736 | 4.105
5 10.973 | 8.135 | 6.487 | 5.952 | 5.429
6 9.800 | 8558 7.433(6631 | 6.0%1
7 17.627 (12.148 { 12.085 | 9.342 | 11.208
8 17.719 | 10.689 | 8.446 | 6.718 | 5.422
9 0.100 | 0.100} 0.100 | 0.100! 0.100
10 0.160 | 0.100§ 0.100| 0.100 | 0.100

11 18.206 | 11.326 | 8.820 | 8.172 | 7.764
12 0.100 | 0.100] 0.100| 0.100 | 0.100
Ay 1.6710 | 1.6281 | 1.6293 | 1.6325 | 1.6273
Ay 1.0 1.0 1.0 1.0 1.0
iter. for 44 16 2 2 2
convergence
a? (x107°
[7 8 9 10
Final DV
1 46.745 | 42.850 | 40.259 | 37.112 | 33.742

2 12.302 | 11.800 } 11.108 [11.403 | 11.179
3 21.926 | 20.458 | 19.239 | 18.610 | 17.761
4 3.996 [3.621 [3.446 | 4.045] 3.745
3 5.144 [4.708 | 4451 | 3.751 | 4.167
6 5.556 [5.241{ 4.926 | 4.681] 4.634
7 7.501) 9330 8314 | 7.053| 6.621

8 5286 | 4.390| 4167 5319 5.070
9 0.100 | 0100 0.100 | 0.100 | 0.100
10 0.100 | 0.100 | 0.106 | 0.100 | 0.100
11 7237| 6603 6.216 | 4.678| 5.357
12 0.100 { 0.100] 0.100 | 0.100 | 0.100
TN '1.6243° [1.6163 [1.6167 | 15670 | 1.5540
A 1.0 1.0 1.0 10 [10
iter. lor 2772 2 4 3
convggencf . _

Table 5. Optimal design variables for 32 = §0 cases given in Table §

—

o? initial dv's [optimal weight iterations
(x10°%) | (structural) | 2 =50 [=60 | A7 = 50 | & = 60 |

1 120.0 48305 | 4616.8 | 400° | 400° |

2 90.0 3626.9 | 3262.8 223 400°

1 90.0 2903.5 | 2668.4 100° 100"

4 90.0 23935 | 2324.4 400~ 100"

5 90.0 2152.3 2054.5 290 4007

6 90.0 2067.1 1893.6 312 265

7 60.0 1811.6 | 1815.2 136 254

8 60.0 t704.1 1639.7 400 400°

9 60.0 - - — -

10 60.0 1629.4 | 14R87.0 425 500°

* indicates no convergence in spacifie] number of global iterations

Table 8: Optimai weight wsing sequential appproximations solytion
algorithm for direct owtput feedhack with 1 = 7 and a phvsical
state-space realization,

ORIGINAL PACE IS
OF POOR QUALITY

a (x10°F
1 2 3 4 5
pana{ "t v . a2 T
16000 o 1 ox 0 Initial DV] 120.000 | 90.000 | 90.000 | 90.000 | 90.000
rxi ;3‘ x ;E) : 2100 Final DV
- -)
11000 N “ * 2000 1 92,172 | 55.944 | 41.010 | 44.107 | 36.632
/ \ 2 72.274 | 55.967 | 52.340 | 40.128 | 32.776
12000 : e 3 71.334 [62.487 | 41.938 | 38.878 | 31.848
o 1 \ 1800 4 41.867 | 27.830 | 24.475 | 24.192 § 17.445
G 10000 \ e R e AT NN Y 5 47.282 | 33.755 | 24.327 | 19.986 | 18.412
~ 1 \ 6 41.794 | 33.553 | 26.973 | 23.608 | 20.363
. 8000 N \ Rt R R B Y Y LA 7 41.341] 2365 5.462 [17.750 [8.363
"g"n \ . \ 8 41.314 | 20.562 | 1.604 | 17.277 | 1.317
o Bovn \\\ R S Com T T mmemmme e 9 2.795 | 20.742 | 23.982 | 1.761 | 10.880
= N Tl 10 9.518 1 2424 | 24.159 { 12.659 | 17.091
4000 SO 3B47.9 11 9.511 | 24.020 ;| 1.570 | 14.006 | 20.089
e - - 12 2.795 [23.903{ 5612 | 1.667 | 1.458
2000 Tl { BEOLT o renaz o’ (x107°
o 6 7 8 9 10
O e T T k00 T 280 | Bdo ln.i'.ial DV || 90.000 | 60.000 | 60.000 | 60.000 | 60.000
Jteratlion Final DV
1 28.739 | 34.922 | 25.632 | 30.032 | 23.272
Vianre 11 Convergence histories for particutar cases from Table 6 2 39.315 | 26.729 | 32.700 | 23.857 | 28.426
3 28.871 | 26.916 | 24.976 | 24.192 | 22.333
12000 4 17.154 | 16.238 { 14.880 | 14.139 | 13.401
© 5 17.249 1 17.279 | 15.037 | 15.367 | 13.472
: ot -1 x 10 6 19.143 | 16.109 | 16.386 | 14.174 | 14.662
‘ T TR 10 7 4.076 | 15734 | 3447 [14073 | 3.130
10000 4) 8 1.143 [15.739 | 0.996 | 13.904 | 0.850
i 9 16.803 | 1.039 | 14.683 | 0.806 | 13.294
- 400 10 | 16869 | 3.667 | 14.621 | 3.215|13.149
“yy BORO \ 11 1.200 | 3.627 | 1.613 | 3.291 | 0.849
Q] \ 12 3.803 1 1.038| 3.387 | 0.899) 3.069
6000] \\ A . Table 10: Optimal design variables for (77 = 50 cases from Table 9
1 \ N
an W -
qa» ~ T~
L 4000 - - ———
b] el T~ 69258 o? initial dv's | optimal weight | iterations
Tl _ {x107") | (structural) B*=60| 3 =507 =60
2000 Tl s o 18649 1 120.0 36307 | 221 27
T ——— n
© 14500 2 90.0 24345 § a00- | 4000
3 90.0 1975.4 400" 400°
O e O O O PR CT T PRI PR T T ee ey .
0 I‘O 2'0 30 4'“ 4 90.0 1732.4 277 400
(ilobal Iteration 5 90.0 15445 | 208 | 400
6 90.0 1541.1 199 189
Fignre 5: Convergence histories for particular cases from Table 7 7 60.0 1365.0 160 281
8 60.0 1234.0 187 400°
9 60.0 1156.9 400° 400"
7000 10 60.0 1206.3 | 1112.2 311 400"
1 /n “indicates no convergence in specified number of global iterations
6500 -

’ /,V Table 11: Optimal weight using sequential appproximations solution
w6000 1 Z algorithm with a physical slate-space realization, for direct output feed-
=] back with H = G7, plus node 1 displacements and velocities
™ 5500
2 1 a? initial dv's B
op 5000 3 s (x107%) | (structural) | 50 60
$ 4500 | e 1 1200 | 3516.5] 32326
—_] . 2 90.0 2402.4 | 2213.0
g "] / 3 %00 19355 | 17902
3 3500 //d 4 90.0 1671.5 | 1543.3
& Vs 5 90.0 | 1492.9 | 1379.2

3000

of 6 90.0 1364.6 { 1261.6

2500 7 60.0 1459.5 | 1166.3

2000 | 1 ey e e 8 60.0 1184.0 | 1093.4

040 060 08B0 100 120 140 1.60 9 60.0 116.8 | 1186.1

Disturbance intensity (x.) 10 60.0 1063.4 | 9833
Vigere G2 Oplimal weight for varying external distnrhance intensity Table 170 Optimal weight nsing ronfinuation solution aigorithny with
A, = rod with a? =1 x 107° and A% == 50 a physical state-space reatization, for divect oulput feedback with 1) =

139

(77 plus node 1 displacements aud velorities

ORIGINAL pAg
“E IS
OF POOR QuaLITY

N90-23004

Using Deflation in the Pole Assignment Problem
with Output Feedback

George Miminis
Department of Computer Science, Memorial University of Newfoundland

St. John’s, Newfoundland, Canada A1C 587
Abstract

A direct algorithm is suggested for the computation of a linear output feedback for a multi
input, multi output system such that the resultant closed-loop matrix has eigenvalues that include
a specified set of eigenvalues. The algorithm uses deflation based on unitary similarity transfor-
mations. Thus we hope the algorithm is numerically stable, however, this has not been proven as

yet.

1 Introduction

Deflation is a technique that has been efficiently used in the solution of the standard eigenvalue
problem of a matrix A as well as other eigenvalue related problems. According to this technique once
an eigenpair (\;,;) of A is computed, we continue the process with a matrix that possesses only
the remaining eigenvalues of A, and possibly a zero eigenvalue in the place of A;. In this way we are
left to solve a smaller problem. Deflation can be accomplished by a variety of algorithms. Some of
them are, Hoteling’s deflation, Wielandt’s deflation, deflation based on similarity transformations,
deflation by restriction, etc. An excellent review of the first three methods can be found in 7, pp.
584-600], whereas deflation by restriction can be found in [5, p. 84]. Lately, deflation has been
used in the solution of eigenassignment problems. For example, Wielandt’s deflation is used in [6]
to solve the partial eigenvalue allocation problem with state feedback for continuous time systems.
In this paper we will be concerned with deflation based on unitary similarity transformations, and
how it can be used in the pole assignment problem with output feedback, or as it is often known,
the eigenvalue allocation problem with output feedback (MEVAO).

In section 2 we define the MEVAO. In section 3 we define transmission zeros and discuss how
they affect the MEVAO. In section 4 we give an algorithm for the solution of the MEVAO. Finally

in section 5 give some numerical examples to demonstrate the performance of our algorithm.

140

Lower case Greek letters represent scalars, upper case Roman represent matrices, while lower
case Roman represent column vectors and indices. Superscripts T, H indicate transpose and con-
jugate transpose respectively. The notation k = i(r)j means that k takes all the values starting
from i until j with step r. e; represents the ith column of the identity matrix I, and A(-) the set of
eigenvalues of a matrix, counting multiplicities. R(-), N(-) will represent the space spanned by the
columns of a matrix, and the null space of a matrix respectively. R, C will represent the set of real

and complex numbers respectively.

2 The Problem

The MEVAO problem that we will attack in this paper may be defined as follows:

We are given a controllable and observable system

#(t) = Az(t)+ Bu(t) (1)
y(t) = Cz(t) . (2)

where A € R™**, B € R™™, C € RP*™, rank (B)==m, rank(C)=p, z(t) € R" is the state
of the system at time t and u(t) the input at time t. We are also given a self conjugate set
of eigenvalues);, i = 1(1)r with r=min{n,m+p-1}, we need to compute K € R™? such that
AMA - BKC) 2 {)\i | i = 1(1)r}. As a result, a linear output feedback u(t) = ~Ky(t) may be

computed that will make (1) become
z(t) = (A - BKC)z(t).

The resulting system will have desirable properties for the contror engineer.

3 Transmission Zeros

In the remaining of the paper unless otherwise stated, we will assume without loss of generality

that m < p.
Transmission zeros (trzs) play an important role in the MEVAO, thus it is vital that they are
well understood. Our experience with the literature on trzs has been rather disappointing. In our

search for a definition we have found several; some of them even contracting one another. Thus we

141

decided to resort to the physical motivation of trzs, and from that to derive a sensible definition.
Some observations that may give some physical motivation to the concept of a transmission zero
(of a controllable-observable system in our case) were found in [2], p.41. From this we concluded
that, physically, a transmission zero (trz) of a system is a specific frequency of the system for which
there exists a nonzero input that will yield a zero output. This basically is definition 1 below. In
the following we will present three definitions of trzs, and we will prove their equivalence. The
reason we present these three defintions is because the first is directly derived from the physical
motivation of {rzs, the second is very useful in matrix computations, and the third is frequently
encountered in the literature.

Definition 1: A number { € C is a trz of (1),(2) if and only if there exists nonzero input u that

can yield a zero output y = G({)u = 0, where
G(s)=C(sI - A)"'B ,with s€C

is the transfer function of (1),(2). O
The number of trzs of (1),(2) can be at most n — maz{m, p} (see for example {2], p.65). The set of
all trzs of (1),(2) will be denoted by Z;,. Often it is helpful to use the following definition of a trz.
Definition 2: { € Cis a trz of (1),(2) if and only if

A-(I B z

Ju#£0 : =0 with z=(¢(I-A)""'Bu.
c 0 u
a
Frequently we encounter in the literature the following definition of trzs.
[a0 \
1 (<) :
Definition 3: Let L~Y(()G({)R™Y(() = 'Zm_(—ll(%
Em
¥m (¢
0

be the Smith-McMillan (S-M) form of G(¢), where L((), R({) are polynomial matrices and we have
assumed that G(s) has normal rank m. Then (is a trz of (1) if and only if there exists i = 1,---,m
such that ¢({) = 0. o
In the S-M form of G(() the following properties hold

142

a(Q) e lem(@) and $n(Q) | Ym-1(O] -1 () -

Because of the above properties we see that there cannot be trz ¢ that will also be a root of ¥, (¢).
Since, if it were then €,(¢) = 0 and ¢ would have been cancelled in €, ({) | ¥m({). Hence ¢ would
not be a trz, which is a contradiction. The roots of 1;(¢), i = 1{1)m are the poles of (1),(2),
counting multiplicities. In our attempt to prove the equivalence of the above definitions we will
be using the expression G({)u with (€ Zi-. One then may wonder about the existance of G({)u
when (is also a pole of (1),(2). The following lemma will help us clarify this point.

Lemma 1: Let (€ C be a trz as well as a pole of (1),(2), then there exists u # 0 such that
lim G(s)u exists.

s—

Proof: Let be a pole as well as a trz of (1), then from the S-M form of G({) we have that

3(4,7) with i<j @ () =¢€(()=0.

Let us now for illustration assume p = m = 3 and ¥;({) = €2(¢) = 0. Then by taking al =
(0,7,8) # 0 we have the following from the S-M form of G(s).

als)
(i‘_.m(010o) 0
LR in 33
€ !S!
\ El_rpc '1’::(3)

€ !S!
\ 0},‘_,“}@(-

which is defined since ¥3({) # 0. Since L(s), R(s) are nonsingular (they have determinants inde-
pendent of s, see for example [7], p.21), lim(L‘l(s), lim(R™1(s) are defined.
s— s§—
Hence if we take u = lirr‘l:R‘l(s)ﬂ then lim(G(s)u is defined for every { € Z;, that is also a pole of
s— s—

(1):(2)- =

143

In the following when we write G(()u with (€ Z,, also being a pole of (1), we will mean
le(G’(s)u. Similarly when we write z = (¢(I ~ A)~!Bu we will mean z = lerz(sI — A)"!Bu, when
¢ € Zy, is also a pole of (1),(2).

Theorem 1: Definitions 1,2 and 3 are equivalent.

Proof: To prove that definition 1 is equivalent to definition 2 we proceed as follows:

cez, ¥ @uzo : cI-A)'Bu=0)
< {Ju#0 : Czr=0 with z=(CI- A 'Bu}
A-¢I B z

<> {3u#f0 : =0 with z=((I-A)"'Bu
C 0 u
&b ez, .

To prove the equivalence of definitions 1 and 3 we proceed as follows:

cezy ¥ Eus0 : GOu=0)
(A
diag &
Jugo : L) | =Om¥ fR(Ou=0
0

!

(3)

—

{ M(Q) J

Since L(s), R(s) are nonsingular for Vs € C, M({) must not have full column rank in (2). Hence

(3) Aand {3i€{1,2,---,m} : 6;(():0}
dh rez,.

o

In the last theorem we silently assumed that the normal rank ¢ of G(s) is m, or equivalently

A-sl B
the normal rank n + g of P(s) = is n + m. However, theorem 1 holds even for
C 0

the degenerate case where ¢ < min{m,p} (= m according to our assumption). To show this we

proceed as follows:

144

First we prove Z;, = C using definition 1. Since ¢ < m the following is true

(VCEC Fu#0 : G(c)uzo}@zﬁ:c. (4)

To prove the equivalence of definitions 1 and 2 we see

A-¢I B
Z,=C & lvcec Futo : ¢ “| =0 with z=(¢I-A)"Bu}
C 0 u

To prove the equivalence of definitions 1 and 3 we see

(4) diag 2%
Zy=C <> {V¥CeC Ju#0 : L) | =m" R(Qu=0
0

<= {¥(eC Jie {1, --,m} : () =0}

Hence another definition of ¢rzs that is often found in literature, and according to which { € Z;r
if and only if G(¢) and P(() go below their normal rank, does not agree in the degenerate case
with definitions 1, 2 and 3. This is so because not V¢ € C will make G(¢) and P({) go below their
normal rank, hence Z;, # C , according to this definition. In what follows we will assume that

trzs are defined by definitions 1, 2 or 3.

Definition 4: A number ¢ € C is a strong transmission zero (strz) of (1),(2) if and only if
G(¢) = 0, or equivalently €,(¢) = 0 (in the S — M form of G(()), or equivalently
A-(I B T

Yu#0, =0, with z=({I-A)"'Bu
C 0 u

a
Theorem 2: ¢ € C cannot be assigned by output feedback if and only if (is a strong transmission
zero.
Proof: Let G({) # 0, then if { € A(A) we take K = 0 and (is placed. If { ¢ A(A) then there
exists u # 0 such that

z=(CI - A)"'Bu
y=Cz #0

y=G(Qu#0 =

145

If we take K = —-% then we see that

[(I-(A-BKC)lz = (¢(I- A)z+ BKCz

T
uy

= Bu-B—y =0
yTy

Thus the eigenpair ((,z) has been placed, which proves the necessity of the propositionn given by

the theorem. To prove its sufficiency assume G(¢) = 0, but nevertheless ¢ has been placed. Then

there exists z # 0 such that for some K

(A-¢Nz-BKCz=0 = z-(A-(I)"'BKCz=0
= Cz-C(A-(I)'BEKCz =0
= Cz+G(()KkCz=0
= Cz=0.

Hence from (A—(I)z - BKCz =0 = (A—(I)z =0 = (€ A(A). This is a contradiction, since
if { € A(A) the G(() is not defined, however it is assumed that G(¢) = 0. O

4 The Algorithm

We give an algorithm based on deflation by unitary similarity transformations.
Step 1: Compute a feasible eigenvector z, of 4; — B1K1C; = A - BKC corresponding to, say
Ap with || z; |[;= 1. We will show in the sequel how we may compute such an z;.

Step 2: Allocate the eigenpair (A\;,z;) to A; — B, K,C; as follows: Let V; be a unitary transfor-

R
mation such that VIHCIzl = 611 and By = (Up, Uy) ! a QR decomposition of By, then

(A1 - B1K1Ch)zr = iz <= Az - Bi(KaA)(VH Cizy) = Aoy
<= B1Kibe; = (A — MDzy, with K = KV
<= Bikiby = (A - M Dz, , with ky = ke
Ry Uf (A = M Dz,

<~ k161 = (5)
0 UH (A, - A\ D)z,

146

From (5) we see that if z; was computed in step 1 so that z, € N[UT(A; —A;1)], and k, is computed
by solving
Riky = 67U (A - M Dy (6)

then (5) is satisfied and the eigenpair (A, z;) is allocated. An eigenvector z; that satisfies

z1 € N[UF(A; — M) will be called feasible.

Step 3: Compute unitary Q; = (zl,él). Hence from Q164 = 77 = Q{le = e; we see that @), can
be a Householder transformation or a sequence of rotations.

Step 4: Perform the unitary similarity transformation

H x{! =, H =
Q7 (A1 — B1K1C))Qr = o [A; = B1 K1 (V" C1)(=1,@1)
1
=i . g
= o [(Arz1 — Bik161), (A1Q1 — BiEK (V" C1)@1)] (7)
1

From step 3, k; has been computed so that A;z; — B1k18; = Mizy. If we now set K = (k1, K37)

and

. (el
vicig, = then
\ €2
(o .
(1 = \Q‘H a1, 41G1 - Bi(kief + KsCy))
1

(M| zH[A1Q1 — Bi(kicl! + K2C3))
\ Q¥ A1Q1 — QY Bikyell — QF B K, C,y

(A1 ‘ *
\ Ay — B3K,Cy

where A; = Q{IA1Q~1 - Q{IBlklc{I y B2 = Q{{B2 .
Step 5: Continue the allocations with A; — By K7Cs. a
There are two points that need to be clarified for the allocation of A; in the above algorithm. One

is, how to identify whether Ay is a strz or not, and the other is the computation of z;.

147

Lemma 2: If {\; isa strzof (1) } = § = 0.
Proof: Let A; be a strz of (1) then

Ar—MI By T
Vuly’:{) dz, : =0 = Ciz1=0 => 6§ =0.

C1 0 U

We may note however that the above lemma on its own is not adequate to identify strz. In the
sequel we will compute our feasible eigenvector z; in such a way that if §; = 0 then A; will be a
strz. As we will show, computing z; in this way will also improve the numerical stability of our
algorithm. To accomplish the above we proceed as follows:
We know that

| 61 |=|| Ciz1 |2 = {61 =0 < z; € N(C1)} .

Thus if we compute z; so that
z, € N[U (A, - M 1)] - N(Cy)

when

N[U{ (A1 = MD)] - N(Cy) # {}
then we may safely conclude that §; =0 = {X, is a strz }. If the dimension of
N[U{ (41 - MI)] - N(Cy)

is greater than one, we have some freedom in choosing our z;. To see how we may exploit this
freedom, we observe from (6) that if | §; | is unreasonably small then we may unnecessarily lose

accuracy when we solve (6). To avoid this, let

Z,
CT = (Ho, H1)

be a QR decomposition of C7, then R(Ho) = R(CT) and R(H,) = N(C;). Assuming now
| z1 lla= 1 we get
| 81 1=l Crz1 o=l Z{ HG 21 22| Z2 ol HG 21 |2 -

But || H 21 ||l2 = Omaz(HIZ)) = 080 , Omaz(-) is the maximum singular value of a matrix, and

8 is the smallest angle between R(C7) and R(z;) (see[1]). Hence from

148

| 61 1<l 2 |l2 cosé

in order to make | §; | as large as possible we need to make 4 as small as possible. Thus we will
choose z; € N[UF(A; — A\ 1)] that forms an angle 8 with R(Ho) as close to zero as possible. The
following theorem taken from [1,p.582] and modified to meet our requirements, will give us a way
to compute # as it was required above.

Theorem 3: Let Hg and W form unitary bases of two subspaces. Let also
HEw, = Yx¥A

be the singular value decomposition of H§' Wy, then the smallest angle between R(Ho and R(W))
takes place between vectors HgY e; and W; Xe, .
Proof: See [1]

Theorem 3 suggests the following algorithm for the computation of z;:
Compute the QR decomposition of CT, By, and [UF (A4, — M D)]H = (Wo, W)

Compute the singular value decomposition of VHW, =YZX H

Take z; = W Xe;.
Finally to eliminate any doubt that §; = 0 when J; is a strz we prove the following lemma.
Lemma 3: N[U(4; - MI)]C N(C1) < {Ais astrzof (1),(2)}

Proof: First we prove

N[UH (A1 - MD)} = {(MI - A1) Biur | v € R™} . (8)

To do so, we see that, given u; # 0 and computing z; to satisfy

vl -R,
(Al - /\1[)2:1 = -Biju; <= (Al - 1\11)21 = U
U 0

= ;€ N[UF(A, - M)
Thus
{Yu; € R™, (I — A1) 'Biuy € N[U{ (41 = M D]} =

149

{()\1] - Al)'lBlul | Uy € Rm} C N[UIH(AI - /\1])] . (9)
Let z; : UIH(AI — MAil)zy = 0, then, since we can always compute

ue R™ : Rju; = UJI(Al - /\1[)21 ’

v R,

we have (Ay — MD)zy = u = 1 = (Ml - A4) 1By,
v 0

from which we get

N[UIH(AI - /\11)] C {(/\1[- A])_IBIU] |u1 € Rm} . (10)

From (9), (10) we may derive (8).

Suppose now that

{/\1 ts a strz Of (1),(2)} +— {Vul € R™ Cl(/\lI— Al)_lBﬂl.l = 0}
< CN[Uf (41 -MD)=0
< N[UF(A, - M) C N(Cy).

]
The algorithm that has been described so far in this section, can be used to allocate only one
eigenvalue. We will show however that we may use it to allocate min{n,m + p— 1} eigenvalues. To
do so we need to observe that only the first column of the current K; is needed for the allocation
of one eigenvalue. We also need to consider the fact that \(4; — B;K;C;) = MAT — CTKTBY).
Given these two points then we may use the following algorithm, which for illustration we describe

for m = 2 and p = 3, thus

i X X X
Ky =
X X X

We allocate eigenvalues until the number of rows of the current K; become greater than the number

of columns. In our example this happens after the allocation of two eigenvalues, hence

X
K3 =
: X

150

At this point we continue working with the transposed system AT — ¢cTKTBT . Since K T has
two columns we are able to allocate two more eigenvalues instead of just one that we would have
allocated if we had continued with K3. In the general case we keep transposing until we run out
of eigenvalues or columns. Thus the total number of eigenvalues that we manage to allocate using

this algorithm is
m+p-—1=4.

Note that by following this algorithm we also satisfy the condition m < p at the beginning of each
allocation. This condition has been assumed throughout this paper. Note that m,p are associated
with the columns of the matrix on the left of K; or KT and the rows of the matrix on the right of

K;or K ,T respectively, rather than with B; and C;.

5 Numerical Examples

In this section we give two numerical examples to demonstrate the performance of our algorithm.
The computation was performed on double precision (56-bit mantissa) using PC-MATLAB on a
Toshiba T5100 which uses an 80387 coprocessor equipped with the IEEE floating point standard

of arithmetic. In the computation below we show, up to 12 decimal digits of accuracy.

Example 1:

(0.581314086914 0.504058837890 0.559921264648 0.741333007812 0.303421020507 \
0.166717529296 0.157394409179 0.665222167968 0.933609008789 0.144439697265
A= 0.353500366210 0.441650390625 0.373367309570 0.771942138671 0.078048706054
0.836242675781 0.200820922851 0.072296142578 0.598373413085 0.638671875000
\ 0.244094848632 0.936126708984 0.607955932617 0.154357910156 0.154678344726 /

0.549163818359 0.843856811523 0.178649902343 0.409255981445 0.595489501953
BT = | 0.942672729492 0.008666992187 0.239028930664 0.142791748046 0.671371459960
0.613098144531 0.065872192382 0.300445556640 0.576828002929 0.726318359375

151

0.561660766601 0.332702636718 0.355514526367 0.279266357421 0.531448364257
C =] 0.427825927734 0.648269653320 0.666625976562 0.572494506835 0.972076416015
0.455917358398 0.134307861328 0.497573852539 0.212463378906 0.653732299804

The eigenvalues to be allocated are

{0.704589843750, 0.421768188476, 0.572113037109, 0.396102905273, 0.127380371093}.

The K computed by our algorithm was found to be

—9.415631257941 —1.520241736469 11.520696978251
K =] —36.155174309311 —4.515055559417 41.184483490595
33.590525809043 4.071903303950 —36.923138190434

The eigenvalues of A — BKC were computed and they were A(A — BKC) = {0.704589843749,

0.421768188479, 0.572113037109, 0.396102905270, 0.127380371093}.

Example 2: In the above example we had n = m+ p— 1, thus all n eigenvalues were allocated.
However,if m + p— 1 < n then n — (m + p — 1) eigenvalues of A — BKC will take values that our

algorithm has absolutely no control over. The following example demonstrates this point.

. 0.356336616284 ~0.356626507847 —1.198870998736
A =] -0.210549376245 2.165165719183 —0.882324378697
—0.355939324751 —0.506195941988 0.721098719251

1.606955436561 —0.407338058168
B = 0.062823512419 —0.595038063525
—-1.611627967397 0.616657720777

C =~(-1.182820557312 0.343687857622 —0.357421120340)

The eigenvalues to be allocated are {-0.406648486670, -0.366406484747, 0.853280016421}.

152

The K computed by our algorithm was found to be

-2.053475126112
—6.466096811958

The eigenvalues of A — BKC were computed and they were A(4 — BK C) = {-0.406648486670,
-0.366406484747, 1.707616832510}.

Our algorithm allocates one eigevalue at a time, thus complex eigenvalues need complex arith-
metic. As a result, K may be complex. Investigation is under way to derive an algorithm that
will allocate two eigenvalues at a time in a double step. In this way we will allocate a complex

conjugate pair of eigenvalues in one double step using only real arithmetic. Hence K will be real.

6 Conclusion

We presented an algorithm for the pole assignment problem for multi-input, multi-output systems
using output feedback. The algorithm uses deflation based on unitary similarity transformations
and it allocates min{n,m + p — 1} eigenvalues. The same kind of deflation has been used in [3] to
solve the corresponding pole assignment problem using state feedback. Since the algorithm in (3]
has been proven to be numerically stable we hope the algorithm in this paper has the same property
too. However, this needs to be proven by doing a rounding error analysis of the algorithm, and we

plan to do this in the near future.

References

[1] Bjorck, A. & Golub, G.H., “Numerical Methods for Computing Angles Between Linear Sub-
spaces”, Mathematics of Computation, v.27, No.123, pp. 579-594, 1973.

[2] Macfarlane, A.G.J. & Karcanias, N., “Poles and Zeros of Linear Multivariable Systems: A
Survey of the Algebraic, Geometric and Complex-Variable Theory”, Int. J. Control, v.24,
No.1, pp. 33-74, 1976.

[3] Miminis, G.S. & Paige, C.C., “A Direct Algorithm for Pole Assignment of Time Invariant
multi-input Linear Systems using State Feedback”, Automatica, v.24, No.3, pp. 343-356, 1988.

153

[4] Miminis, G.S., “The use of Deflation in Eigenassignment Problems”, To appear in the Pro-

ceedings of the MTNS89 conference, Amsterdam, June 1989.
(5] Parlett, B., “The Symmetric Eigenvalue Problem”, Prentice-Hall, 1980.

[6] Saad, Y., “Projection and Deflation Methods for Partial Pole Assignment in Liner State Feed-
back”, IEEE Trans. Autom. Control, v.33, No.3, pp. 290-297, 1988.

[7] Wilkinson, J., “The Algebraic Eigenvalue Problem”, Oxford, 1965.

154

N90-23005

COMBINED CONTROL-STRUCTURE OPTIMIZATION

M. Salama, M. Milman, R. Bruno, R. Scheid
Jet Propulsion Laboratory
California Institute of Technology

S. Gibson
University of California, Los Angeles

1. INTRODUCTION

The strong interaction between structural dynamics and active control is a
well-recognized challenge in the analysis of controlled flexible structures.
But it is only recently that the same interaction has been exploited in the
design process. The traditional design approach in which the control design
comes very late in the development — typically after the structure has been
designed and built -~ is no longer viable. Although this approach has produced
satisfactory results for the attitude control of relatively rigid space
structures, it will not be suitable for the ambitious space missions that
require precise controlled pointing of telescopes, interferometers and the
vibration suppression for science instruments mounted on large flexible
structures. In such systems, designing the structure and designing its control
become entwined. This dictates early consideration of the control design —
well before any detailed structural design is finalized. And just as the
structure is optimally designed to meet such performance metrics as minimum
mass or response to external disturbances, it should be optimally designed to
meet its ultimate control performance as well.

A natural way to introduce the control element into the overall design
process is through an optimization procedure that combines the structural and
control design criteria into a single problem formulation. A number of authors
[1-6] have taken this perspective. In terms of the types of design parameters
and constraints considered, Ref. (2) is probably the most extensive in that the
design variables include structure parameters, actuator locations and feedback
matrix. Static output feedback is used, and the performance objectives include
total mass and robustness measures. Constraints are imposed on the eigenvalue
placements, performance bounds, and structural constraints. Since not all of
the constraints are commensurate, they are relaxed using a homotopy approach.
Just as with Ref. (6), the approach taken in the present paper is not to
produce the "best" optimized point design, but to produce a family of Pareto
optimal designs representing options that assist in early trade studies. The
philosophy is that these are candidate designs to be passed on for further
consideration, and their function is more to guide the system design rather
than to represent the ultimate design.

An optimization approach that is consistent with this philosophy is to

utilize multiple cost objectives that include an LQG cost criterion in
conjunction with structural cost(s), and possibly other control related costs.

155

After introducing the combined objective formulation in the setting of vector
optimization, we derive the necessary conditions for Pareto optimality. No
behavioral constraints are explicitly imposed in the problem formulation and a
homotopy approach is used to generate a family of optimum designs. The intent
of this paper is to explore this design approach and to provide an exposition
of the computational aspects of the problem using numerical examples.

2. COMBINED OPTIMIZATION

The combined optimization approach can be best appreciated when contrasted
with the traditional sequential optimization. In the sequential optimization,
the structure is first optimized by selecting the design variable, a (e.g.
member sizes) which minimize a structural criterion Jg(a) - often taken as the
mass of the structure subject to some behavioral constraints h(a)>0 on
deformations, stresses, open-loop frequencies, etc.

min Js(a) ; h(a)>0, aeD (2.1)
a

where D is the physical domain for a. Second, having completely specified the
optimal structural design a*, the control optimization is carried out with a*
fixed. For example, LQG or H, optimal control designs pose the problem:

min J (a*,C) (2.2)
C [o]

where J, represents either of the control criterion, and C is allowed to vary
over the class of stabilizing compensators for the plant.

By contrast, in the combined optimization formulation, the goal is to first
merge the criteria of interest (here Jg and J.) into one using non-negative
multipliers 8, and &, then optimize the combined criterion over the original
design variable space a, C:

min [BJ (a) + 6J (a,C] (2.3)
a,C s c

The following expression compares the results of the two optimization
procedures outlined above.

min {BJ (a) + 6 (a,C))<Imin BJ (a) + min 6J (a*,C)] (2.4)
a,C s c o s c c

The right-hand side of (2.4) corresponds to performing the sequential
optimization by solving (2.1) for a*, followed by solving (2.2) for C*. Note
that the optimal solution of the right-hand side is independent of 8 and 6-
but not so for the combined optimization embodied by the left-hand side. In
terms of the total cost, expression (2.4) states the fact that the combined
optimization is never inferior to the sequential optimization. In the vector
optimization setting, the relative weighting of B and § serves as a parameter
that allows the generation of an entire family of Pareto optima.

In the present paper, only two objective criteria are dealt with. But it
is not difficult to generalize the approach to incorporate other criteria such

156

as minimum open-loop frequency and certain controller robustness measures. In
general these criteria are noncommensurate, and there is no unique solution
that minimizes all criteria Jp,...,Jy simultaneously. Thus, one must look for
Pareto optimal solutions as outlined below.

First one assembles the crlterla Ji:DoR, i=1,...,N into a single criterion
J: D—PRN J(a)=(J1(a), . JN(a)) Then the cone Co = (xeRN xi20, i=1,...,N} is
defined to induce a partlal ordering < on RN by x<y 1f y-x €Cgq Now let aeD.
A design vector a*eD is said to be (strongly) Pareto optimal 1f J(a) < J(a*)
implies J(a)=J(a*). A necessary condition for Pareto optimality is contained
in the following theorem due to Lin [7].

Theorem 2.1: If a* is Pareto optimal for the combined criterion J, and D is an
open set, then there exists a nonzero vector Ze¢C, such that ZTJ*(a*)-O. Here
Js denotes the differential of J.

For the two-term optlmlzatlon problem in (2.3), we find that the Pareto
optimal solution to J = (Jg, J) can be generated by solving for the necessary
conditions for extremizing the following convex combination Jy:

JA = (1-)) Js(a) + AJc(a,C); Xe(0,1] (2.5)
where)\ replaces 8, 6§ in (2.3). The form of Eq. (2.5) suggests a homotopy (or

continuation) approach for generating a family of Pareto optima as X is
propagated from O to 1.

3. NECESSARY CONDITIONS
We begin with the ng degree-of-freedom dynamical system

M(a)Y + D(a)r + K(a)r = Gju + Gov (3.1)

where M, D, and K are the ngxng mass, damping and stiffness, G; is the constant
ngxn, control influence matrix, and Gy is the constant ngxng disturbance
matrix. The vectors r, u, and v are respectivele physical degrees-of-freedom,
control forces and disturbances. Let x = (r,r) Then the first order state
equation is

x = A(a)x + By(a)u + By(a) v + v’ (3.2)
where
0 I 0 0
A= [M'lK -M'ln] B "Iyl B2 =lu-1g, (3.22)
and an additional disturbance v’ independent of a has been introduced for
greater flexibility of the formulation. We assume that (3.2) has measured

output variables y and controlled output variables z:
y = C1x + w,

(3.3)
z = C9x

157

and that v, v’, and w are uncorrelated white noise processes with intensities
Qy. V, and Qy, respectively.

In the remainder of this paper, the total mass of the structure is assumed
to represent the structural criterion Jg. Thus, for a structure consisting of
n, one-dimensional finite elements, each having a cross-sectional area aj,
length £;{ and density p:

n
a

Js - % pfiai (3.4)

For the control criterion J. associated with (3.2) and (3.3), we assume the LQG
index
T = T T
Jc = 1im E{z (t)Dz(t) + x D.x + u (t)Ru(t)) (3.5)

t—o

1

where E is the expectation, D and Dj are non-negative definite weighting
patrices, and R is positive definite. Although D is assumed independent of a,
D could possibly depend on a. The latter case would arise, for instance, if
the first term in (3.5) were to represent the total energy in the system with
z = (r,f)T and D = diag(K,M). Under standard assumptions of stabilizability
and detectability, the optimal compensator C* for (3.5) is implemented by [8]:

T
u - -BlPx0
. (3.6)
X, = (A-KfC)x° + Kfy + Bluo’
and the optimal cost J. associated with this compensator is
J (C) = tr{P(B,Q BX + V) + P_PB.R 1B P) (3.7)
c 27072 f 1 1) ’

where P and Pg are the unique positive definite solutions to the algebraic
Riccati equations

AP + PA + D - PB R'IBT P =0,
o 1 1

(3.8)
T T T -1
APf + PfA + BZQvBZ +V - PfC1 Qw Cle =0

T - T -1
and Do - 02 D02 + Dl’ and Kf - PfC1 Qw

With the above representation for J., we seek the optimality conditions for

T -1.T
min Jk(a)-(l-A)Js(a)+<u,a>+§cr(P(BZQUBZ+V)+PfPBIR B, P) (3.9)

a

158

Ny
subject to the constraints in (3.8). 1In (3.9) an ny-dimensional vector weR
has been introduced to "regularize" the problem and to serve the purpose of
initializing the homotopy path.

Proposition 3.1 Let 3, denote the set of ny xny positive definite matrices.
The optimality conditions for a* to be a local extremum of (3.9) subject

to (3.8) are the zeros of the function H: RxR™ x %, x Z, - R"™ x I, x I,
defined by H = [H;, H, Hj, Hg4, Hg], where

Hl(A,a,Z Z P,Pf) -

122
T 1T
aJ 3(B.Q BL) a(.R BT T aD
__s 27v 2 1 1 JA dA o
(1-3)52% 4w eatr(P —2 Y2y PP o+ 2[5 P Py — + o
i i i i i i
1T T T -1
-p Egﬁ——ﬁl—r’] vz (-p 4P TGN % LRSS TG LY
da. 2'8a, £ f da, do, f da £
1 1 1 1 1
i=1,...,n,4 (3.10a)
H2(A’ a’ 21’22, P’ Pf) -
-1.T T 1T T 1T . -1.T
(a-B,R™IB]P)Z 42, (AT-PB R™1B])+B,Q B,+P B R B +B R™ B PP, (3.10b)
H3(A) a, Zly 22’ P, Pf) -
T T.-1 T -1 1.7
(AT-cTQ]! C P.) Z,42,(A-PCIQ" C))+ PBR B P (3.10¢)
H (A a, Z., Z., P, P.) = AP+PA+D -PB.R B.P (3.10d)
4 @ 290 2y, B, Py o PBiR B F, :
H.(A, a, Z., Z., P, P,) = AP _+P Al4B,Q Bo+V-P ClQ ' C P (3.10
s(A, @, 29, 29, B, Fg gHPeA +B,Q B +V-PCiQ " €y Py -10e)

The proof of proposition (3.1) is omitted here to conserve space, but is given
in detail in Ref. [9]. Thus, for the LQG formulation, the necessary conditions
involve solving two algebraic Riccati equations (3.10d, e), two Lyapunov
equations (3.10b, c), and a gradient equation (3.10a) for aj, i=1,...,n3. In

159

the case of the LQR formulation, it is easily verified that the optimization
statement expressed by (3.9) reduces to

: T
m;n JA(a)-(l-A)JS(a)+<u,a>+Atr{P(BZQUB2+V)} (3.11)

and that the optimality conditions reduce to finding the zeros of the simpler
function H=[Hj, Hjy, H3] involving one Riccati and one Lyapunov equation
(instead of two as in LQG), in addition to the gradient equations:

T
3J 3(B.Q B.)
H(A,a,Z,P) = (1-1) —= 4 » .+ Atr(p —222°_
1 da i Ja
i i
s D 6(BlR-1B$)
+Z[2P + - P P]}; i=1,...,n (3.12a)
da da Jda a
i 9% i
H (A\,a,Z,P) = A Z + ZA* + B.Q BY + V (3.12b)
2(Xve,Z, c c T BB vV, '
H,(\,a,Z,P) = AP + PA + D - PB.R I8Tp (3.12¢)
3 'a’ 3 o 1 1 » . c

with A, = A - BlR'lB{P.

4. HOMOTOPY STRATEGY

For all XAe[0,1], our goal is to minimize (3.9) in the case of the LQG
formulation or (3.11) in the case of the LQR formulation by finding the design
variables a that satisfy the corresponding optimality conditions (3.10) or
(3.12). The basic strategy is: given the solution at a value Ao, smoothly
propagate it to a new solution at A, +A)X via some local mechanism such as Newton
method or iterative optimization. This strategy has been analyzed in detail in
Ref. (9). 1In the following, only a summary of the results is given without
proofs, assuming the LQR formulation.

Let x denote a generic point (a, Z, P)e RM3x Z+ X X+ so that H(A, x) stands
for H(A, a, Z, P). In determining the zeros of H, the following proposition
asserts that in a small neighborhood about the optimal at A=0, there is a
smooth path parameterized by A consisting of the global optimal solution.

Proposition 4.1: Suppose that min Jg(a) has a unique global solution a*
satisfying the second order sufficiency condition on the positivity of the

160

Hessian [Jg(a*)],o o >0. Further, assume that Jg is coercive so that

]
|Jg(a) |+= as |a|+o. Then there exists >0 such that (3.11) has a unique global
solution for X<e.

The next proposition provides a sufficient condition for the path to remain
locally optimal.

Proposition 4.2: Let ¢()X) = (X, x())) denote a smooth path in

[0,r)xRM@ x ¥, x ¥, with H(¢(2)) = O and H,y invertible for Xe[0,xr). Such anr
is guaranteed by Proposition 4.1. Then a(X) is a local minimum for J) for each
Ae[0,1).

The purpose of the following lemma is to demonstrate that the zero set of H
is "generically" well-behaved.

Lemma 4.3: Suppose that H(0,x)=0 has a unique solution. Then for almost every
choice of (v, V, D])eR™ x ¥, x)4, the solution path emanating from (0, x*) is
diffeomorphic to the real R and every other component of H'i(o) is
diffeomorphic to either a circle or R.

Thus, following the path defined by one of the zero curves of H, not just
the one emanating from the optimal at A=0, will not lead to a pathological
behavior such as bifurcations or curves with infinite length in bounded sets.
Another fundamental and generally difficult question that arises when employing
homotopy methods is whether or not the path remains bounded. The following
result provides a partial answer to this question.

Proposition 4.4: Suppose that Jg, Bj, Dy, and A are all polynomials in
al,...apa, and assume coercivity of Jg(a)/|al. If H(O0,x)=0 has a unique
solution, then for any ¢>0 and for almost every triple (v, V, Dj)

eRNM2 x Z+ X Z , the component of H'I(O) containing (0,x*) is a bounded set in
[0,1-€]xRD@ x ', x Y,.

5. NUMERICAL RESULTS

The numerical experiments described in this section demonstrate the results
of the foregoing theory. Two prototype examples are used; both employing the
LQR formulation. Implementation of the homotopy strategy of the previous
section is achieved by iterative optimization, wherein the solution path for
minimizing (3.11) in terms of the homotopy parameter A starts at A=0 with
@l,...,apy initialized to a predetermined sufficiently small allowable size a,.
At this point in the solution space, J) is fully weighted toward minimizing Jg
only. Minimization of Jy, thus yields ap* for which H(}xp, Xo*)=0. For the
next iteration and for every succeeding one, A is incremented and the weighting
is shifted gradually toward J.. For a typical iteration j, the following steps
are performed:

(i) Aj & Aj_]_ + A)‘j-l

(ii) 1Initialize the minimization of Jyj by using aj«=a*j.j. This will
result in aj* for which conditions (3.12) hol%.

161

In performing the minimization in (ii) above, we employed the Automated Design

Synthesis (ADS) system of general purpose subroutines [10]. ADS provides a
wide selection of options at three levels: strategy, optimization, and line
search. Available strategies 1include sequential 1linear and quadratic

programming, and sequential unconstrained minimization coupled with wvarious
penalty methods. At the optimization level, one can choose between Fletcher-
Reeves algorithm and the variable metric method of Broydon-Fletcher-Goldfarb-
Shanno (BFGS) for unconstrained minimization, or Zoutendijk's method of
feasible directions and modifications thereof for constrained minimization.
For one-dimensional 1line search, the options include a combination of
polynomial interpolation/extrapolation, solution bounding, and the method of
Golden Section. Not all combination of options are compatible at the three
levels, and the program parameters must be adjusted to suit the problem at
hand. For this purpose, an analytical function was contrived which possessed
such features as: easy to compute closed form solution, multiple minima, and
insensitivity of the functions gradient near the minima to design parameters.
Several compatible options were tried and the program parameter values (e.g.,
move limits and convergence criteria on the absolute and relative changes in
objective function between two successive iterations) were adjusted until the
closed form and numerical solution agreed within as few iterations as possible,
As a result of these numerical experiments, the popular BFGS variable metric
method for unconstrained minimization emerged as the one of choice for use in
the combined control-structure optimization examples that follow. During the
one dimensional line search, the minimum is located by first computing the
bounds, then using polynomial interpolation.

Example 1: The cantilever beam of Fig. 1 resembling a flexible appendage of a
large structure is modelled by three finite elements with two degrees-of-
freedom (dof) at each node. The structural design variables are the x-
sectional areas aj, ap, a3 of the elements. The disturbance v represents a
transverse sound pressure modelled by uncorrelated unit impulses at t=0
concentrated at the three nodal transverse dof. The control force u is applied
at the free end along the transverse dof direction. With the Jg given by
(3.4), we seek the minimum of (3.11) for Xe[0,1], subject to conditions (3.12).
Here, the weighting matrices were taken as D=104 x diag(K,M), and R-lO‘A, and
the initial aj used were ai-ao-1x10'7, i=1,...,3.

Table 1 lists the family of Pareto optimal designs aj* that minimize
Jx, XAe[0,.99] along with the corresponding values for J., Jg and J,. The
variations of the Pareto optimal J.*(X), Jg*(X) and Jy*()X) are shown in Fig. 2.
A number of observations can be made from Table 1 and Fig. 2:

(i) The noncommensurate nature of the two costs J. and Jg is apparent as the
weight is shifted between them: while J. is a strictly decreasing
function of A, Jg is a strictly increasing function of X. This is

consistent since a stiffer structure requires less control energy.

(ii) Except near A=0, the optimal structural shapes that minimize J), for the
disturbance, choice of D and R, and control forces described above are
essentially aj=ay near the fixed end, and a much smaller a3 near the
free end. This is a physically plausible optimum shape that minimizes
the mixture of high strain energy density near the fixed end and high
kinetic energy density near the free end. Other choices of disturbance,
control location and D, R are expected to alter the optimal beam shape.

162

(iii) Although the design at A=0 is guaranteed to be globally optimal
(Proposition 4.1), it 1is possible that designs generated as X is
continued may be only locally optimal. To assess this possibility, the
optimal designs listed for A=.200, A=.700 and A=.900 were re-examined
separately. For each case, the minimization was restarted with randomly
selected initial aj values. In most cases, the minimization converged
to the same or to a higher minimum than obtained in Table. 1.

Table 1. Pareto Optimal Designs of Example 1

Optimal Design x10°7
A a] aj ajy Je Jg Ja

0.0 .00010 .00010 .00010 350000. .007 .007
.000001 .00035 .00038 .00032 96000. .026 .122
.00001 .00116 .00114 .00077 30800. .076 .384
.0001 .00570 .00625 .00287 5870. .369 .955
.005 .0585 .0708 .0187 495, 3.68 6.14
.010 .0801 .0802 .0212 391. 4,52 8.89
.020 .113 .111 .0300 265. 6.33 11.52
.040 .159 .155 .0438 177. 8.90 15.64
.100 .237 .249 .0761 102. 14.00 22.77
.200 .367 .349 .112 61.8 20.62 28.86
.300 425 457 .154 46.1 25.80 31.92
.400 .563 .532 .189 35.50 31.97 32.99
.500 .622 .650 .231 27.93 37.43 32.68
.600 .795 .751 .279 21.33 45.45 30.97
.700 .886 .934 .346 16.86 53.92 27.98
.800 1.20 1.14 44 11.78 69.39 23.30
.900 1.68 1.59 .62 7.30 96.98 16.27
.940 1.93 2.07 .82 5.40 119.9 12.27
.980 3.37 3.22 1.37 2.58 198.2 6.49
.990 3.95 4.40 1.81 1.81 253.6 4.33

Example 2: The beam in this example (See Fig. 3) simulates a flexible
appendage (length = 45 m) attached to a rigid hub (inertia = 50 kg.mz) to which
a control torque is applied to counteract the transverse unit impulse at the
free end. The beam is modelled by three finite elements of constant width =
.001 m, but whose nodal depths dj,...,d; represent design variables having a
lower bound = .00l m. Here again, Jg represents the total mass of the flexible
beam (excluding the hub). For the control objective J, the response energy is
weighed by D] so as to minimize the transverse free end displacement, and R is
taken = 1.x107%,

Table 2 and Fig. 4 represent analogous results to those presented for
Example 1 in Table 1 and Fig. 2. In addition to observation (i) of the
previous example - which holds here as well - the following remarks can be made
with reference to the results of this example:

163

(i) For small values of A (e.g. A=0.1), where the total mass Jg dominates
the minimization of J,, the optimal shapes tend to have a small slope
from dj-+dp—+d3, followed by a sharper slope from d3~d;. As)\ increases,
minimizing Jg becomes less important than minimizing J. (tip
displacement response energy plus control energy). As a result, the
beam becomes gradually stiffer, and the monotonic slope from dj-~djo-+dj—+d,
associated with small X values gradually disappears at A=.45, then gives
way to a pronounced inflection of slope for di3»d; for X>.45. This
results in a larger allocation of mass at the tip. This type of shape
is physically consistent with the requirements of the two parts of the
control objective J.: a stiffer structure near the hub that is reduced
toward the tip (free end) makes best distribution of mass, while
minimizing the tip displacement response. On the other hand, a large
mass at the tip (where the disturbance exists) makes the disturbance
less effective - thus requiring less control effort.

(ii) To confirm the above interpretation, the case of A=0.7 in Table 2 (i.e.
R-lO'A) was re-examined for smaller and larger values of R; R=10"° and
R-10'2, respectively. As Fig. 5 shows, smaller values of R give more
weighting to the tip displacement response energy part of J., thus
giving rise to the optimum shape being a stiffer structure near the hub
which_is reduced toward the tip. Conversely, larger values of R (e.g.
RP10-2) give more relative weighting to the control energy part of J.,
which is best minimized by the presence of the heavier tip mass. It is
interesting to note the similar effect of varying R and varying X on the
optimal shapes.

Table 2. Pareto Optimal Designs for Example 2.
Optimum Design

A d; d2 dj d, Je Jg NEY
.000 | .001 .001 .001 .001 1.6x10*10 .075 .075
.0001 .02404 .02363 .02291 .01366 3355.26 1.628 1.963
.001 .03552 .03485 .03359 .02065 | 4B2.6 2.404 2.884
.010 .05223 .05134 .04940 .03043 70.78 3.54 4.21
.100 .07699 .07559 .07157 .05303 10.03 5.28 5.757
.200 .08759 .08563 .08031 .06659 5.33 6.05 5.906
.300 .09550 .09267 .08657 .07847 3.54 6.62 5.703
.400 .10258 .09867 .09187 .09085 2.56 7.15 5.31
.500 .10944 .10389 .09670 .10470 1.93 7.66 4.79
.600 .11715 .10948 .10135 .12176 1.46 8.22 4.17
.700 .12657 .11576 .10681 .14516 1.08 8.92 3.43
.800 .13944 .12322 .11304 .18055 .77 9.87 2.59
.900 .16369 .13641 .12430 .24923 .47 11.63 1.59
.920 .17299 .14104 .12893 .27374 .41 12.28 1.355
.940 .18542 .14815 .13565 .30544 .34 13.18 1.107
.960 .20578 .16117 .14818 .35131 .26 14.64 0.83
.980 .25035 .19468 .18421 .42401 .16 17.83 0.52
.990 .29401 .25488 .24878 .48165 .09 22.20 0.32

164

(iii) Of general interest to problems in combined optimization - at least
numerically - is the question as to the degree of "roughness" of the
hyper-surface Jy(a). A partial answer to this question is provided in
Fig. 6 after introducing idealizations that reduce the number of
variables from four (dj,...,ds) to only two (d3, dg), so that a three
dimensional plot could be generated. Figure 6 shows such a surface in
the neighborhood of the optimum for the case A=0.7 in Table 2. This is
achieved by fixing dl-.13,”§110wing dy and d; to assume various values
larger and smaller than those in Table 2 for A=0.7, and letting
dp=*1(d1+d3). Assuming that the idealizations above (which led to
reducing the dimensionality of the J, surface) did not alter the basic
topology of J) surface, it appears from Fig. 6 that J) is a smooth
function of the design variables - at least in the neighborhood of the
minimum. Furthermore, with these idealizations it appears that J, is
relatively flat near the minimum along the d4 axis, and that the optimum
shape is some linear combination of the four basic shapes depicted at
the corners. '

6. CONCLUSIONS

An approach for combined control-structure optimization keyed to enhancing
early design trade-offs has been outlined and illustrated by numerical
examples. The approach employs a homotopic strategy and appears to be
effective for generating families of designs that can be used in these early
trade studies.

Analytical results were obtained for classes of structure/control
objectives with IQG and LQR costs. For these, we have demonstrated that global
optima can be computed for small values of the homotopy parameter. Conditions
for local optima along the homotopy path were also given. Details of two
numerical examples employing the LQR control cost were given showing variations
of the optimal design variables along the homotopy path. The results of the
second example suggest that introducing a second homotopy parameter relating
the two parts of the control index in the 1LQG/LQR formulation might serve to
enlarge the family of Pareto optima, but its effect on modifying the optimal
structural shapes may be analogous to the original parameter .

ACKNOWLEDGEMENT

The research described in this paper was performed as part of the Control
Structure Interaction (CSI) Program at the Jet Propulsion Laboratory,
California Institute of Technology, under contract with the National
Aeronautics and Space Administration.

REFERENCES
1. D. S. Bodder and L. Junkins, "Eigenvalue Optimization Algorithms for
Structural/Control Design Iterations," Amer. Contr. Conf., San Diego, CA,

June, 1984.

2. K. Lim and J. Junkins, "Robust Optimization of Structural and Controller
Parameters," Journal of Guidance, Vol. 12, January, 1989, pp. 89-96.

165

10.

N. S. Khot, F. E. Eastep, and V. B, Venkaya, "Simultaneous Optimal
Structural/Control Modifications to Enhance the Vibration Control of a
Large Flexible Structure," Proc. of the AIAA Guid., Nav. and Contr. Conf.,
1985, pp. 459-466.

S. K. Morrison, Y. Ye, C. F. Gregory, Jr., R. Kosut, and M. E.
Regelbrugge, "Integrated Structural/Controller Optimization for Large
Space Structures," AIAA Guid. and Contr. Conf., Minneapolis, MN, 1988,

M. Salama, J. Garba, and F. Udwadia, "Simultaneous Optimization of

Controlled Structures," Journal of Computational Mechanics, Vol. 3, 1988,
PP. 275-282,

M. Milman, R. Scheid, M. Salama, and R. Bruno, "Methods for Combined
Control-Structure Optimization," Proceedings of the VPI Symposium on the
Dynamics and Control of Large Structures, Blacksburg, VA, May, 1989.

J. G. Lin, "Maximal Vectors and Multi-Objective Optimization," Journal of

Opt. Theory and Appl., Vol. 18, January, 1976, pp. 41-65.

H. Kwakernaak and R. Sivan, "Linear Optimal Control System," Wiley Inter-
Science, NY, 1972.

M. Milman, M. Salama, R. Scheid, R. Bruno, and S. Gibson, "Integrated
Control-Structure Design: A Multiobjective Approach," JPL Report D-6767,
(internal report), October, 1989.

G. Vanderplaats, "ADS - A Fortran Program for Automated Design Synthesis,"
NASA CR-172460, October, 1984.

Figure 1

EXAMPLE 1.
CANTILEVER BEAM PROBLEM

PRESSURE IMPULSE CONTROL FORCE

| | u
2\ CEC R X

NN

ay az (*3
'.——4 =1sm+|=15m+| -1sm—.{
STRUCTURAL MODEL: MASS DENSITY = 1660 Kg/m?, MODULUS = 9.56 x 10" Nim?
MODAL DAMPING = 0.5%

CONTROL: DISTURBANCE = TRANSVERSE PRESSURE IMPULSE CONCENTRATED
AT THE NODES

RESPONSE ENERGY WEIGHTED BY D = Diag (K,M) x 102,
CONTROL ENERGY WEIGHTED BY R= 1 x 10*

DESIGN VARIABLES: oy, az, a3 2 1 x 107

Figure 2

CANTILEVER BEAM OPTIMIZATION

. NORMALIZED

Je.dg.h

A

167

Figure 3

EXAMPLE 2.
HUB-BEAM PROBLEM
CONTROL TORQUE DISTURBANCE | .
~ -
HUB f’)) Z DIGI
d, d, d, d,

STRUCTURAL MODEL: MASS DENSITY = 1660 Kg/m®, MODULUS = 9.56 x 10'° N'm?
MODAL DAMPING = 0.5%,

CONTROL: DISTURBANCE = UNIT IMPULSE
RESPONSE ENERGY WEIGHTED TO MINIMIZE END DISPLACEMENT, R = 1 x 10"

DESIGN VARIABLES: d,,- - -, d, 20.001

Figure 4
HUB-BEAM OPTIMIZATION

1.0 T T 1 T T T T T

0.9}

s}

J, (max = 5.91)

g 0.7 -

0.6 —
- q

-~ J, (max = 22.20)

~, 04 .
A
- 03 —

02 =

0.1 J, (max = 1.6 x 10'9)

1 1 1 1 1

0.0 0001 02 03 04 05 08 07 08 09 1.0
A

168

Figure 5

OPTIMUM SHAPES

IMPULSE
/
\

:\4

HUB [; :
y Z . —

Rx10¢
R=10"*
R=10?
Figure 6

J,(d3,ds) SURFACE NEAR THE MINIMUM, A = 0.7

169

N90-23006

PARALLEL PROCESSING OF REAL-TIME DYNAMIC SYSTEMS SIMULATION ON
OSCAR (Optimally SCheduled Advanced multiprocessoR)

Hironori Kasahara*, Hiroki Honda and Seinosuke Narita
Dept. of Electrical Engineering, Waseda University
3—4-1 Ohkubo Shinjuku—-ku, Tokyo, 169, Japan

Abstract

This paper presents parallel processing of real-time dynamic systems
simulation on a multiprocessor system named OSCAR. In the simulation of
dynamic systems, generally, the same calculation are repeated every time
step. However, we cannot apply the Do-all or the Do-across techniques for
parallel processing of the simulation since there exist data dependencies
from the end of an iteration to the beginning of the next iteration and
furthermore data-input and data-output are required every sampling time
period. Therefore, parallelism inside the calculation required for a
single time step, or a large basic block which comsists of arithmetic
assignment statements, must be used. In the proposed method, near fine
grain tasks, each of which comsists of ome or more floating point
operations, are gemerated to extract the parallelism from the calculation
and assigned to processors by using optimal static scheduling at compile
time in order to reduce large run time overhead caused by the use of near
fine grain tasks. The practicality of the scheme is demomstrated on OSCAR
(Optimally SCheduled Advanced multiprocessoR) which has been developed to
extract advantageous features of static scheduling algorithms to the
maximum extent.

I. INTRODUCTION

High speed dynamic systems simulation, or solution of ordinary
differential equations, has been required to simulate dynamic behaviors of
various systems such as airplanes, missiles, nuclear reactors and robots,
in real-time. So far, the dynamic systems simulation has generally been
performed on traditional amalog or hybrid computers or on general-purpose
digital computers by using a simulation language like CSMP (Continuous
Systems Modeling Program). However, these approaches have several
problems, for example, operational accuracy and realization of non-linear
functions for the analog computers and high processing cost and real-time
input-output for the general purpose main-frame computers.

In an attempt to resolve these problems, the use of parallel
processing techniques[13-14] has attracted much attention. In fact,
various parallel processing schemes, especially parallel processing using

* . ey
Prof. Kasahara is also a Visiting Research Scholar of Center for

Supercomputing R & D, Univ. of Illinois at Urbana-Champaign, 305 Talbot
Laboratory, 104 South Wright Street, Urbana, IL 61801.

170

multiprocessor systems[14-15], have been so far proposedf1-4]. The
differences among the schemes lie in the choice of task granularity and
task scheduling. For example, Korn [1] and Koyama [4] employed a large
task size (coarse task-grain) approach where the computation for the
numerical integration of each equation in a set of first-order
simultaneous differential equations was selected as a task. The generated
tasks are assigned properly by the user to a relatively small number of
processors. The functional distribution approach by Gilbert, et al[2],
dealt with each fundamental operation (four fundamental arithmetic
operations, integration and so on) as a task to be assigned to a dedicated
hardware operational unit. Yoshikawa, et al[3], also adopted an approach
where each fundamental arithmetic operation was assigned to one processor.
The common problem left unsolved to these approaches was poor parallel
processing efficiency stemming from the lack of efficient methods which
allocate the generated tasks onto an arbitrary number of parallel
processors in an optimal manner. This paper proposes a parallel
processing scheme for the solution of the above-mentioned problem by using
static minimum execution time multiprocessor scheduling algorithms[5][10]
already developed by the authors for optimum task allocation. The
proposed parallelizing compilation scheme consists of the following
processes: task generation, optimal task scheduling, and generation of
machine codes to be executed on respective processor element.

The effectiveness and practicality of the proposed scheme are
demonstrated on OSCAR's processor cluster with sixteen 32-bit RISC-like
processor elements which has been designed to extract advantageous
features of static scheduling at compile time to the maximum extent.

I1. A PARALLEL PROCESSING SCHEME USING STATIC SCHEDULING

Generally, dynamics of most continuous-time systems can be modeled by
the following explicit first-order simultaneous ordinary differential
equations:

dxi/dt=fi(t,x1,x2,....xm) (i=1,2.....,m)

Therefore, the dynamics systems simulation can be regarded as the
solution of the ordinary differential equations. Hence, this paper
handles parallel solution of the equations using various numerical
integration formulae such as Euler, Trapezoidal, 3rd- and 4th-order Adams
Bashforth, 4th-order Runge Kutta and 4th-order Adams Moulton (predictor-
corrector method) listed in Table 1. 1In applying these integration
formulae, the computation required for each integration step comsists of
arithmetic assignment statements to evaluate the derivative of each
equation and to perform numerical integration. Between consecutive
iterations, there exist data dependencies[16-17] from the end of an
iteration to the beginning of the next iteration. Furthermore, for real-
time simulation, data input and data output are required every iteration
or few iterations, namely every sampling period. Therefore, we cannot
apply Do-all and Do-across techniques to parallel processing of the
dynamic systems simulation which are popular parallel processing schemes
for a Do loop on a multiprocessor system[18][19].

Taking into consideration these facts, in order to realize efficient
parallel processing of the simulation, we must parallel process a block of
arithmetic assignment statements, or a basic block, in each iteration.

171

However, the parallel processing of the basic block on a mult iprocessor
system has been thought to be very difficult since data transfer overhead
and synchronization overhead are relatively large. The proposed scheme
allows us to minimize these overheads and to realize efficient processing
by generating optimized machine codes based on the static schedule at
compilation time.

A. Task Gemeration

As ment ioned before, in the dynamic systems simulation, we must
process each iteration in parallel though we can sometimes unroll a few
iterations if data input and output should be made every few iterations.
In order to process the iterationm in parallel, first of all, we must
generate tasks with suitable granularity, which are basic umnits assigned
to processors. As for the task granularity, several levels may be
perceived: equation level, operation element level, and intermediate
level. In the case of equation level gramularity, the computation related
to each subscript i for each numerical integration formula listed in TABLE
1 (the computation of a derivative and that of numerical integration
corresponding to each formula for each variable X;j) is considered to be a
task. When operation element level gramularity is adopted, the computation
for each derivative or for each numerical integration is subdivided into
finer fundamental operation elements such as the four arithmetic
operations and trigonometric functions, each of which is takem as a task
and allocated to the processors (fine granularity). 1In the intermediate
task granularity, several floating point operations are combined to form a
task. For instance, when Van der Pol's equations

dxl/dt
dXz/dt

X2
cxz-xlz*sxz-xl

is decomposed into fairly small intermediate-level tasks, three
multiplication tasks, two subtraction tasks, and two integration tasks
(including several floating point operations) are generated. Fig.1
depicts the block diagram representation of the seven tasks, with data
dependencies explicitly shown.

There exists no general rule for determining the best task
granularity applicable to all kinds of dynamic systems. When parallel
processing is performed on a multiprocessor system with little data
transfer and synchronization overheads among processor elements, the
operation element level granularity is known to be most advantageous to
achieve minimum processing time because parallelism can be exploited to
the maximum extent. For a large-scale probles (the order of simultaneous
equations is very high) or a multiprocessor system with poor data transfer
capabilities, however, the operation element level granularity does not
always give the best performance. In other words, much attention must be
paid to such factors as processor speed, interprocessor data transfer
speed, size and parallelism inherent to the problem in hand, and
complexities of scheduling mechanisms (both software and hardware) [7].
Namely, we must choose the best granularity for each problem and each
multiprocessor system. For this reasom, the proposed parallel processing
scheme provides with two methods for the input of simulation source
programs. The first method employs a simplified simulation language shown
in Fig.2, which allows direct input of mathematical equations. The user
can specify arbitrary task granularity from the operation element level to

172

ORIGINAL PAGE IS
OF POOR QUALITY

the equation level. The second method facilitates the input of block
diagram representations such as those employed for analog computer. As
shown in Fig.1, each operational element of analog computer (adder,
integrator, etc.) can be takem as a task, to realize near fine
granularity. Medium granularity can also be dealt with by combining
automatically several tasks with near fine granularity. (This process is
referred to as task fusion). In what follows, esphasis will be placed on
the case of near fine granularity, namely the finest granularity that can
be treated by use of the proposed scheme on a multiprocessor systea named
OSCAR mentioned later.

Next, the proposed parallel processing scheme analyzes precedence
relations caused by data dependencies among the generated tasks and
represents the task precedence relations by a task graph like Fig. 3 which
is a directed acyclic graph (DAG). The precedence constraints represent
the restrictions existing among tasks regarding the execution order of
tasks. The existence of task i precedent to task j means that the
execution of task j cannot be initiated before the completion of task 1i.
The precedence relation can be examined by the data flow analysis among
tasks. When the data flow analysis is made, the output variable of each
integration task is treated as an initial value. Each node in the task
graph stands for a task and an arc betweem a pair of nodes for the
precedence constraint. Nodes 0 and 8 are not actual nodes but dummy nodes
introduced for the sake of convenience. They represent the entry node and
the exit node, respectively. The figure beside each node represents the
estimated processing time of the corresponding task. Since the actual
processing time does not usually take on a fixed value but varies with the
data to be processed, the average value or the worst-case value is
employed as the input[7], which is used in the scheduling algorithms to
be described in the subsequent section. When the average value is used for
each task, the resultant schedule gives the minimum value of the average
processing time of the task set. Similarly, when the worst-case value is
used, the worst-case processing time is minimized. However, OSCAR, which
is a target machine in this paper, can execute all instructioms including
a few floating point operations in one clock by employing RISC like
processor. Therefore, we don't have the above mentioned problem on OSCAR,
a compiler can estimate accurate processing time of each task.

Once a task graph is generated, the minimum possible processing time
achieved by parallel processing of the tasks can be estimated as the
critical path length t.. of the task graph. In Fig.3, the critical path is
shown by double-1line segments.

An unique task graph can also be generated by following simple
procedures in the case of the block diagram input mode. The task graph
shown in Fig.3 represents the computation in one integration step when
the tasks are generated in the size of near fine granularity and the
numerical integration method employed is Euler, Trapezoidal or 3rd- or
4th-order Adams Bashforth. The integration task involves computation
specific to each numerical integration method. When the 4th-order Runge-
Kutta method is employed, ki through k4 need to be evaluated, and the
computation described by this task graph is repeated four times or the
expanded task graph involving the computation repeated four times is
processed for each integration step. In the former case, the content of
each integration task to be processed differs with the iteration count in
order to evaluate kj through k4 and their weighted average. Similarly,
when a predictor-corrector method such as the 4th-order Adams-Moultom is
used, the task graph is computed twice or the expanded task graph to

173

ORIGINAL PAGE IS
OF POOR QUALITY

represent the unrolled computation is processed for each integration step.
In the former case, the computation corresponding to the predictor of the
integration task is performed first, followed by the computation for the
corrector.

As mentioned earlier, the task graph shown in Fig.3 represents the
case where the tasks are generated in the size of near fine granularity.
When coarse granularity at the equation level is employed for task
generation, the portion surrounded by the dashed lines becomes a task.
Also, in the case of fine granularity, the portion of each integration
task is replaced by a subgraph generated by subdividing it into the
operation element level.

It should be mentioned here that parallel processing scheme proposed
in this paper is so designed that the tasks genmerated in either fine or
near fine granularity level can be fused automatically without sacrificing
much parallelism. As a simple example, when there exist a pair of
successor task (son node) with only in-edge and the predecessor task
(father node) with only ome out-edge, the two tasks are fused into a
single task. Even such an easy task fusion technique allows the
optimization of resister utilization and avoids unnecessary data transfer
for more efficient parallel processing.

B. Scheduling Algorithms

In order to process the set of tasks on a multiprocessor system
efficiently, the assignment of tasks onto the parallel processors and the
execution order among the tasks assigned to the same processor must be
determined optimally. The problem which determines the optimal assignment
and execution order can be treated as the traditional multiprocessor
scheduling problem of which the objective function is the minimization of
the parallel processing time or schedule length [5][8]. To state formally,
the scheduling problem is to determine such a nonpreemptive schedule that
the execution time or the scheduling length be minimom, given a set of n
computational tasks T=(T1, ... ,Tn), precedence constraints among the
tasks and n processors with the same processing capability. This problen,
however, has been known as a "strong” NP-hard problem [9]. In other
words, unless P=NP, it is impossible to comstruct not only a pseudo-
polynomial time optimization algorithm but also a fully polynomial time
approximation scheme. With this fact in mind, the authors have
successfully constructed a heuristic algorithm named CP/MISF and an
efficient practical algorithm called DF/IHS [5]. The former algorithm cam
provide very precise approximate solutions quite rapidly because of its
very low time complexity. The latter algorithm can obtain optimal
solutions or approximate solutions with guaranteed accuracies from optimal
solutions by combining CP/MISF and depth-first search. In what follows,
the two algorithms are explained very briefly. For further details, the
reader is referred to the literature [5].

1) CP/MISF(Critical Path/Most Immediate Successors First) Method
This method essentially is a kind of list scheduling algorithms.
step.1 Determine the level 1; for each task. The 1; is the lomgest path
from N; to the exit node.
step.2 Construct the priority list in the descending order of 1; and
the number of immediately successive tasks.
step.3 Execute list scheduling [8] on the basis of the priority list.
Since the list scheduling may be regarded as a method to comstruct the

174

PN R V)

N PPN S
ST TIL A Y UL I

OF PO QUALITY

schedule for the case where a set of tasks are processed in parallel in
the data-driven manner considering the priority assigned to each task, it
can be easily extended to dynamic scheduling at run time.

Furthermore, the list scheduling can be also modified to eliminate
unnecessary data transfer among processors. In the modified algorithm
CP/DT/MISF method[10], when the tasks with the same priority are allocated
to a processor, a task is allocated to the processor which needs the
minimum data transfer to execute the task. This simple modification
significantly decreases the data transfer overhead for the multiprocessor
system with poor data transfer performance.

Its average performance was evaluated for a total of over nine
thousand test cases by comparing the CP/MISF solutions with the lower
bound function[11]. Optimal solutions were obtained for 67 percent of the
cases tested. Approximate solutions with errors of less than 5 percent
were obtained for 87 percent of the cases and those with errors of 10
percent for 98.5 percent of the cases. The worst-case performance of
CP/MISF, i.e., the error of the worst-case solution t obtained by
CP/MISF from the true optimal solution tgpt is given by

(t-topt) /toptsl/m [5].

In addition, the time complexity of CP/MISF is 0(n2+-n). For problems with
about one thousand tasks, it only takes a few ten seconds on a HITAC M280H
system. In summary, CP/MISF is suitable for the solution of very large
problems with hundreds or even thousands of tasks.

2) DF/IHS (Depth First/Implicit Heuristic Search) Method

DF/IHS is an optimization/approximation algorithm to determine schedules
(solutions) which are always more precise than those by CP/MISF. The
method combines CP/MISF and depth-first search in a special manner and
reduces markedly space complexity (memory requirements) and average
computation (search) time. It is so practical and powerful that optimal
schedules for most large-scale problems involving a few hundred tasks for
a total of some ten parallel processors can be determined in several
seconds to one hundred seconds on an M280H. Optimal solutions could be
obtained for 75% of the test problems where the upper limit of search time
was set to 180 seconds [5]. The effectiveness of DF/IHS may be recognized
by considering the fact that use of dynamic programming could provide
optimal solutions for small problems with less than 40 tasks ever for two
parallel processors. In the case of parallel processing on a limited
number of processors, it is known that there exist such task graphs that
the minimum processing time cannot be attained by data driven execution or
the list scheduling [12]. For these task graphs, use of DF/IHS can
determine the optimal schedule that gives rise to the minimum processing
time by forcing some processors to be idle for a certain time period. This
fact implies the possibility of more efficient parallel processing than
data flow machines. In summary DF/IHS is very useful when CP/MISF fails
to obtain an accurate solution for problems with several hundred tasks.

C. Machine Code Generation
For the efficient execution on an actual multiprocessor system, the
optimal machine codes tailored to the given system must be generated by

using the scheduled results. The scheduled results give us the information
about tasks to be executed on each processor element, the execution order

175

ORIGINAL PAGE |
S
OF POOR QuALITY

of tasks on the same processor element, the rough estimates of waiting
time of the tasks which wait for the data from other tasks assigned to
other processors, the tasks to be synchronized and so on. Therefore, we
can generate the machine codes for each processor by putting together the
codes for the tasks assigned to the processor and attaching the codes for
synchronization and data transfer among processors. The "version number”
method is used for the synchronization among tasks. The version number
corresponds to the number of times of iterations or integration steps.
Each "writer" task updates the version number on the common memory to the
number of current integration step for itself after it finishes writing
the shared data. And each "reader” task checks the version number if the
number is the same as the number of current integration step to the reader
task. All processor elements (PE's) have the same version numbers during
one integration step and update or increase the number at the end of the
integration step. Updating the version number on each PE by respective
PE's allows us to eliminate the need to update the version number (or to
reset a flag used in test & set or semaphore) attached to each shared data
on a common memory when the next integration step is started. Therefore,
the version number method can minimize the frequency of access to the
common memory for task synchronization in this application.

We can also optimizZe the codes to minimiZe various processing
overheads by making full use of all information which is obtained as the
result of static scheduling. For example, the information about task
assignment and execution order allows the optimized use of the registers
of the processor when the tasks allocated to the same processor exchange
data. The optimal use of registers reduces the processing time markedly.
The knowledge about the estimated waiting time helps prevent the
degradation of data transfer perforsance caused by frequemt bus access to
check the existence of the required data (data level synchromizatiom) by
the waiting task. In other words, if it is estimated that the task must
wait the data for a long time, the frequency to check a flag on a common
memory is reduced. In addition, we can minimize the synchronization
overhead by carefully taking into comsideration the information about the
tasks to be synchronized, the task assigmment and the executiom order. For
example, let tasks A, B and C be allocated to processor 1 and tasks D and
E to processors 2 and 3 respectively as shown in Fig.4 and data among the
tasks be transferred via a common memory. Then task B does not need to
check the flag which shows the completion of task A because both tasks are
allocated to the same processor. Task E has no need to check the flag
which indicates the completion of task D because the termination of task D
has already been confirmed by task C or B.

In the parallel processing scheme, the transfer of output data of
integration tasks is not represented on a task graph since data flow
analysis is performed on the assumption that output data of the
integration tasks has been given as initial values. In actual processing,
however, those data must be transferred to several tasks allocated on
other PE's between the end of an integration step and the beginning of the
next integration step since, during ome integration step, all the tasks
except the integration tasks use the output data of the integration tasks
génerated in the previous integration step. The data transfer at ome time
causes bus congestion. In order to prevent the bus congestion, two copies
of machine codes for each PE which are assigned differeamt data storages
are generated and executed alternatively for every integratiom step.
Generating the two copies of codes allows each integration task in a copy
of codes to write or transfer its output data, as soomn as it completes

176

ORIGINAL FagE 15
OF POCR QUALITY

execution, onto a data storage assigned for the next integration step or
another copy of codes. In other words, it allows distributed bus access
and also to eliminate data synchromization to check the completion of the
integration tasks because the output data of the integration tasks has
already been transferred before the end of each integration step.

The optimal machine codes for each PE generated in the way mentioned
above are loaded to the local instruction memory of each processor element
and executed asynchronously. The four steps of the proposed parallel
processing scheme described in this section can be performed automatically
by a special purpose compiler.

1I1. PERFORMANCE EVALUATION ON OSCAR

This section discusses the performance evaluation of the proposed
parallel processing scheme on a prototype multiprocessor supercomputing
system named OSCAR being developed by the authors.

In the following, as an example of parallel processing of the
practical dynamic systems simulation for evaluating the performance of the
proposed scheme on OSCAR, dynamics simulation of a hot strip mill control
in a steel making plant is treated. The simulation program cam be
represented by a block diagram showm in Fig. 5. In this example, near
fine task granularity has been chosen in which each integration task
consists of several floating point operations and the other tasks comsist
of only one floating point operation. By the task generation method using
_near fine granularity, fifty-one tasks involving nine integration tasks
were generated. Fig. 6 is a task graph generated from Fig.5 automatically
by a special purpose compiler.

OSCAR is a hierarchical multiprocessor system which has a plurality
of processor clusters as shown in Fig.7. Its goal is to realize, by the
combined use of static scheduling and dynamic scheduling, efficient
parallel processing of Fortran programs and a variety of applications
including those which have so far been difficult to process efficiently
because of a lot of scalar assignments involved.

One processor cluster(PC) hardware has already been completed. On
the PC, various parallel processing application will be implemented. The
PC involves sixteen processor elements, three commorn memories, a local
control processor and three shared buses. Each PE consists of a 32-bit
custom-made RISC-like processor with 64 general purpose registers which
executes all instructions including a few floating point operatioms im one
clock (clock:200ns), a 256-KW local data memory, a 2-KN two-port memory to
communicate with other PE's, two banks of 128-KW instruction memory and a
DMA controller. The DMA controller realizes high-speed transfer of a block
of data to the common memories and the two-port memories of other PE's and
dynamic loading of a set of instruction codes from the common memories to
one of the instruction memory banks during execution. The reduced
instruction set and the one-clock-execution of the all imnstructions make
the estimation of task processing time for the scheduling easy and
accurate. For interprocessor communication, three types of data transfer
modes are provided such as broadcast mode, direct data transfer mode to
the two-port memory of another PE or indirect data transfer mode via a
common memory. Each mode can be used for both single word data transfer
and block data transfer. Each common memory accepts simultanecus accesses
from three buses. The data transfer speed of the three buses totals to
60MByte/s. »

177

ORIGINAL PAGE IS
OF POOR QUALITY

When we operate one PC of OSCAR, a Unix-based workstation is used as
the host computer which generates machine codes for each PE by using
static schedule providing the minimal processing time and downloads the
codes to each PE. In the generated codes, bus access timing by PE's, data
transfer modes and use of 64 registers employed to exchange data among
tasks assigned on the same PE are optimized. In addition, redundant task
synchronization is also eliminated as mentioned before. An timing chart
representing execution of the machine codes is shown Fig.8. This chart cam
be regarded as a precise simulated result of actual parallel processing on
OSCAR. Imn the figure, for PE3, characters such as "LD30","25R","wait"”,k"
PES"” and so on are written. These characters mean to load input data for
task 30 from a local data memory to registers, execute task 30 and keep
its result in registers, and wait for a while to directly transfer the
output data of task 30 to PES5. At that time, PE3 waits for bus access
since PEl is accessing bus for data broadcasting. In OSCAR, another PE
cannot access the busses while a PE is broadcasting data. Furtherwmore "U26
517." PE2","WAIT","FC44" and "38R" represent to execute task 51 by using
output data of task 26 on registers, transfer its output data to PE2, wait
for output data of task 44 from PE5. check a flag showing completion of
data transfer from task 44, execute task 38 and keep its output data om a
register.

Fig.9 shows the measured parallel processing time on OSCAR (solid
lines) and simulated parallel processing time (dotted lines and chained
lines) of 51 tasks in Fig.6. Ip this example, 4th-order Adams-Bashforth
method was used. The measured processing time on OSCAR of the near fine
granularity tasks was reduced from 108.7 us for one PE to 37.2 us (1/2.92)
for seven PE's. Next, the task fusion technique which generates a coarser
granularity task by combining several tasks in order to reduce data
transfer overhead with the minimum loss of parallelism is evaluated. As a
simple example, those tasks surrounded by dotted lines in Fig. 6 can be
fused and twenty-two medium granularity tasks are generated automatically.
Processing time of the medium graerularity tasks (after task fusion)
decreases from 105.8 us for one PE to 36.8 us (1/3.01) for seven PE’'s.
From the results, it has been confirmed that the determinatiorm of the most
suitable task granularity is very important and that the amstomatic task
fusion is useful.

The two dotted lines show the simulated processing time. It is clear
from the figure that there exists little difference between the measured
processing time and the simulated processing time or an execution image of
machine codes generated by using static scheduling. In the light of this
fact, we can conclude that the generation of the precisely optimized
machine code using static scheduling is very useful for OSCAR.

The processing time shown above, however, represents the degraded
performance of OSCAR since OSCAR is still in a stage of operation testing.
Though OSCAR can normally transfer two words data im 5 cleocks, the
processing time were measured in a degraded operating condition where two
words data transfer takes 9 clocks. Therefore data transfer overhead will
be reduced by half in the normal operating condition. The chained lines in
Fig.9 show the precisely simulated processing times in the normal
condition for the near fine granularity before task fusion and the medium
granularity after task fusion. The processing time after task fusion
decreases from 104.8 us for one PE to 28.8 us for seven PE's (1/3.64).
From the experiment mentioned above, it has been confirsed that OSCAR's
architecture, especially one clock execution of all instructions and three
types of data transfer modes, allows us to efficiently parallel process

178

OriGieaL TAGE IS
OF PCOR QUALITY

the dynamic sysie-s simulation by extracting the advantageous features of
static scheduling to the maximum extent.

V. CONCLUSIONS

In this paper, the authors have proposed a parallel processing scheme
of the dynamic systems simulation using static optimal multiprocessor
scheduling algorithms and shown that the scheme allows us to realize
efficient parallel processing on OSCAR which has been designed to extract
the advantageous features of static scheduling to the maximum extent.
More precisely speaking, the special purpose compiler for OSCAR using the
proposed scheme can generate suitable granularity tasks, the minimal
execution time schedule and optimized machine codes for each processor in
which data transfer and synchronization overheads are minimized and the
registers on each processor are used optimally.

Furthermore, it has been confirmed that the architectural support in
OSCAR for a parallelizing compiler using static schedulimng is very
useful. The authors are planning to develop a practical dynamic systeams
simulator using OSCAR which can simulate dynamics of flying objects like
airplanes and missiles, nuclear reactors, robot systems and various
industrial plamnts.

REFERENCES

{ 1} G. A. Korn, "Back to Parallel Computation:Proposal for a
Completely New On-line Simulation System Using Standard
Minicomputers for Low-cast Multiprocessing,” Simulation , Vol.19, pp.
37-44 (Aug.1972).

{ 21 E. 0. Gilbert, and R. M. Howe, "Design Consideratiom in a
Multiprocessor Computer for Continuous System Simulation," Proc.
National Computer Conf., pp. 385-393, AFIP Press, Reston (1978).

[31 R. Yoshikawa, T. Kimura, Y. Nara and H. Aiso, "A Multi-microprocessor
Approach to a High-speed and Low-cast Continuocus-system Simulation,”
Proc. National Computer Conf., pp. 931-936, AFIP Press, Reston
(1977).

[41 S. Koyama, K. Makino, N. Miki, Y. YTino and Y. Iseki, "On the Parallel
Processor Array of Hokkaido University High-speed System Simulator
"Hoss"”,” Proc. 8th IFAC World Comng., pp. 1715-1720, Pergamon Press,
Oxford (1981).

{ 5] H. Kasahara and S. Narita, "Practical Multiprocessor Scheduling
Algorithms for Efficient Parallel Processing,” IEEE Trans. Comput.,
Vol.c-33, pp. 1023-1029 (Nov.1984).

[6] H. Kasahara and S. Narita, "Parallel Processing of Robot-arm Control
Computation on a Multimicroprocessor System,” IEEE J. of Robotics and
Automation, Vol.RA-1, pp. 104-113 (June 1985).

[7] H. Kasahara and S. Narita, "An Approach to Supercomputing Using
Multiprocessor Scheduling Algorithms,” Proc. IEEE First Internatiomal
Conf. on Supercomputing Systems, pp. 139-148 (Dec.1985).

[8] E. G. Coffman, "Computer and Job-shop Scheduling Theory,” Wiley, New
York (1976).

[91 M. R. Garey and D. S. Jonson, "Computers and [ntractability : A Guide
to the Theory of NP-Completeness,” Freeman, San Francisco (1979).

{10] H. Kasahara and S. Narita, "Load Distribution among Real-time Control
Computers Connected via Communication Media,” Proc. IFAC 9th

179

[11]

[12]

{13]
[14]
[15]
[16]
[17]
(18]

[19]

Triennial World Congress, pp. 2695-2700 (1984).
E. B. Fernardez and B. Bussel, "Bound on the number of processors and

time for multiprocessor optimal schedules,” I[EEE Tramns. comput.,
Vol.c-22, pp. 745-751, (Aug. 1973).

C. V. Ramamoothy, K. M. Chandy and M. J. Gonzalez Jr., "Optimal
scheduling strategies in a multiprocessor system,” IEEE Trans.

comput., Vol.c-21, pp. 137-146, (Feb.1972).

R.W. Hockney and C.R. Josshope,"Parallel Computers 2: Architecture,
Programming and Algorithms,” Adam Hilger, 1988.

K.Hwang and F.A.Briggs, "Computer Architecture and Parallel
Processing,” McGRAW-HILL, 1984.

D.D.Gajski and Peir,"Essential Issues in Multiprocessor Systems,k”
IEEE Computers,Vol.C-18,No.6,pp.9-27,Jun.1985.

U.Banerjee, Dependence Analysis for Supercomputing, Kluwer Academic
Publisher, 1988

D.A.Padua,D.J.Kuck and D.H.Lawrie,"Highspeed Multiprocessors and
Compilation Techniques,"IEEE Trans. Comput. Vol.29,No.9,Sep.,1980.
D.J.Padua, and M.J.Wolfe,"Advanced Compiler Optimizations for
Supercomputers,” C.ACM, Vol.29,No.12,pp.1184-1201,Dec.1986.

C. Polychronopoulos, "Parallel Programming and Compilers,” Kluwer
Academic Publishers, 1988.

TABLE I. NUMERICAL INTEGRATION METHODS

Trapezo1dal Xiaet=Xi.ath (3Xi a=Xins) /2
Where X;..=f; (t-nu Xicar =00, X-.n)

Xivaar=Xi,at (k. i+2ka.:
+2ky.itks) /6

kl.l=hfi (t' x!.nu X?.n- T, Xt.n)
4th_Order ke:.i=hf; (¢+h/2, Xi.aotki. 1 /72,
Runge Kutta Xz, atki2/2, » + +, Xaatk,,e/2)

k!.l'—‘-hfl (t+h/2' xl.n+k2.l/21

Xa.atke 2/2, -+ -, _x-.o+k2.u/2)
ke.i=hf, (t, Xy.atka,
Xaatkaas =, x-.n+k!.-/2)

X% ne1=X% ath (656X =59 X5 oy
4th Order +3 7Xca.n-;"9 J’(‘a...-:)_/24
Adams Moulton X% ae1t=X%.ath (9X° . +19XS ,

=5 X% 0+ X8 0-2) /24

180

Fig.1 Block diagram for Van der Pol
eq. .

begin
a=integral¢b,0.01); (1}
b=integral(c,0.01); (2!

c=d=-a; . {3}
d=g-e; {4}
e={xg; (5}
fzaxa; {6)
g=bx1l {7}
end.
Fig.2 Assignment statements for Van
der Pol eq..
----- 3 P1 P2 Ps3
! : :
' . .
1366 1 ___,Precedence
1 relations
_____ 3
FS Flag set

FC Flag check
O Unnecessary

.
)
)
[}
4
.
‘

Fig.4 Minimization of synchronization
overhead.

Fig.3 Task graph for Vanm der Pol eq.

181

Fig.6 Task graph for Fig.5.

182

CLOBAL
KEMORY

]

HOST

L

~ e
-~

= -
-
LY

~1LOCAL
CONTROL
PROCESSOR

[
Pél [%E%]

RISC
SNFLOPS

PC : Processor Clu
N : Common Memory
PE ; Processor Ele

Fig.7 OSCAR

ster

pent

(Opt imally

SCheduled

Advanced multiprocessoR)

CLOCKO PE1 PE2 PE3 PE4 PES
1 w2 w37 | Lbio | Lb8 L03
s 7] 48R (§:14
i U48 4SR un
- lR 25R I PRSTTRTRET
107 WS 4IR 1
] 1032 b
15 - P4
4 walr |- .,ﬁl—-
’ WALT
204 &K
. WAIT
UZ7 2R
: L3t vAlT
S PES
25 W -
Juar 3R U25 26R
30 —+ PES w08
J..¥ALL]
] 26 51
] VALT
c g d PES FC1 FC4
] ~ PE2
1 wn 1R “R
40 0y v
) Fest | owair | o7 | - pe3
45 -
Juze 23r |UELHERT] 19R
i LD31 FC44 FCl
50 1 (4642 UL 108
] 38R 208
Ju2s 1R w1
55 03 Mw 40R
w?
. U4l 3SR
s o7 -
R N 5
Juis 1r zp~| 8 R

Fig.8 Execution
codes on OSCAR.

image of wmachine

183

100

Parollel processing time [ps]

(2}
(o]

H
(o]

[
o

Measured processing time

-------- Simulated processing time
{ 9 clock data transfer)

—.—-- Simulated processing time
(5 clock data transfer)

Before task fusion

<

\

: After task fusion

1AW

Fig.9 Parallel

2 3 4 5 6 7
Number of processors

processing time
measured on OSCAR and simulated
parallel processing time.

N90-23007

PARALLEL AND VECTOR COMPUTATION FOR STOCHASTIC
OPTIMAL CONTROL APPLICATIONS

F. B. HANsON
Department of Mathematics, Statistics, and Computer Science
University of Illinois at Chicago
P. O. Box 4348; M/C 249
Chicago, IL 60680
3rd CACC

Abstract. A general method for parallel and vector numerical solutions of stochastic
dynamic programming problems is described for optimal control of general nonlinear, con-
tinuous time, multibody dynamical systems, perturbed by Poisson as well as Gaussian ran-
dom white noise. Possible applications include lumped flight dynamics models for uncertain
environments, such as large scale and background random atmospheric fluctuations. The
numerical formulation is highly suitable for a vector multiprocessor or vectorizing super-
computer, and results exhibit high processor efficiency and numerical stability. Advanced
computing techniques, data structures, and hardware help alleviate Bellman’s curse of di-
mensionality in dynamic programming computations.

1. Introduction. The primary motivation for this research is to provide a provide
a general computational treatment of stochastic optimal control applications in continuous
time. In addition, fast and efficient methods are being developed by the optimization of
stochastic dynamic programming algorithms for larger multibody problems. The optimiza-
tion will help alleviate Bellman’s curse of dimensionality, in that the computational problem
greatly increases as the dimension of the state space increases. Optimization consists of par-
allelization and vectorization techniques to enhance performance on advanced computers,
such as parallel processors and vectorizing supercomputers. General Markov random noise
in continuous time consists of two kinds, Gaussian and Poisson. Gaussian white noise, being
continuous but nonsmooth, is used to model background random fluctuations, such as tur-
bulence and external field variations. Poisson white noise (its frequency spectrum is also flat
like Gaussian noise), being discontinuous, is useful for modeling large random fluctuations,
such as shocks, collisions, unexpected external events and large environmental changes. Our
general feedback control approach combines the treatment of both linear and nonlinear (i.e.,
singular and nonsingular) control through the use of small and non-small quadratic costs.
The methods also handle deterministic and stochastic control in the same code, making it
convenient for checking the effects of stochasticity on the application. Some actual appli-
cations are models of resources in an uncertain environment [15], [11], [8]. Some potential
applications are flight dynamics under random wind conditions [2] and other resource models
[12].

The Markov, multibody dynamical system is illustrated in Figure 1 and is governed by
the stochastic differential equation (SDE):

dY(s) = F(Yasyu)ds + G(y,s)dW(s) + H(Yas)dP(s)a (1.1)

184

CONTROLS
[Ui(Ya 5)]mxl

ENVIRONMENT

[Fi(Y,U,s)]mx1 Nonlinearities

S{'%‘/?TIEIS [Wi(s)]),x1 Gaussian Noise
1jmX R

4 [Pi(s)]qx1 Poisson Noise

Feedback in time dt

Figure 1: The multibody dynamical system.

y(t) = z; 0 <t <s < t; y(s) € Dy; u € D,

where y(s) is the m x 1 multibody state vector at time s starting at time ¢, u = u(y,s) is
the n x 1 feedback control vector, W is the r-dimensional normalized Gaussian white noise
vector, P is the independent g-dimensional Poisson white noise vector with jump rate vector
[Ailgx1, F is the m x 1 deterministic nonlinearity vector, G is an m x r diffusion coefficient
array, and H i1s an m x ¢ Poisson amplitude coefficient array.

The control criterion is the optimal expected cost performance,

Vix,t) = H}lin [MEANpw [V[y,s,u,P,W] | y(t) = x]], (1.2)

over some specified optimal control set D,,, where the total cost is

Viv,tou, P, W) = [7ds O(y(s),s,u(3(s),9)) (13)

on the time horizon (¢, ¢;). In (1.3), the instantaneous cost function C = C(x,t,u) is
assumed to be a quadratic function of the control,

C(x,t,u) = Co(x,t) + CT(x,t)u + %uTCz(x,t)u. (1.4)

The unit cost of the control increases with u when C, is positive definite. For example, the
cost criterion could be minimal fuel consumption, minimum distance to target or minimum
time to target. No final salvage value is assumed at final time, so V is zero at t = ;.

In addition, the deterministic, nonlinear dynamics in (1.1) are assumed to be linear in
the controls,

F(xat’u) = Fo(x,t) + Fl(xat)u ’ (15)

185

but nonlinear in the multibody state variable x.
For numerical purposes, it is more convenient to convert equations (1.1)-(1.2) to an
effectively deterministic partial differential equation using Bellman’s of optimality as illus-

. * .
trated in the optimization step from optimal control vector U to optimal expected costs
*
V in Fig. 2. The Bellman functional PDE of stochastic dynamic programming,

OPTIMAL
OPTIMAL
EXPECTED
CONTROLS R
COST
(U (X, 8)]mxa ' Vi(X,t)

Figure 2: The optimization step from controls to costs.

0 = V2 + LIV*] = V' + FiVV* + 1GGT(x,t): vVTV*
9
+ Y X[Vi(x+ Hi(x, t),t) — V*(x,t)] (1.6)
=1

+ Co + AU -U,)TCU",

follows from the generalized It6 chain rule for Markov SDEs as in [7] and [15], where U* is
the optimal feedback control computed by constraining the unconstrained or regular control,

Ugp(x,t) = ~C;1(C, + FTvvY), (1.7)

to the control set D,. In general, the Bellman equation (1.6) is nonlinear with discontinu-

ous coefficients due to the last term, (%U* — Ug)TC;U*, in (1.6) and due to the compact

relationship between the constrained, optimal control and the unconstrained, regular control,
* . .
Ui (x’ t) = mln[Umax,iy mln[Umin,ia UR,i(x, t)]]7 (1 8)

for ¢ = 1 to n controls, where U,,, is the minimum control constraint vector and U,,,
is the maximum. As the constraints are attained, the optimal control U*, changes from
the regular control, U, to the single bang control values, Upin or U,gz, which in general
are functions of state and time. In (1.6), the symbol (:) denotes the scalar matrix product
A: B = T, Y%, AijBi;, assuming B is symmetric. It is important to note that the
principal equation, the Bellman equation (1.6), is an exact equation for the optimal expected
value Vi and does not involve any sampling approximations such as the use of random number
generators in simulations.

186

Since there is no final salvage value and since (1.6) is a backward equation (unlike the

usual diffusion equation, which is a forward equation), the final condition is that V*(:c,t,) =
0 using (1.2) and (1.3). On the other hand, boundary conditions for the PDE of stochastic
dynamic programming (1.6) are not as simple or as straightforward to state. This is because
the boundary conditions vary significantly with the form the deterministic linearity function
F, the Gaussian noise W, and the Poisson noise P. Thus for treatment of general boundary
conditions, it is most practical to directly integrate (1.6) for the special values of z, or to use
the objective functional directly as defined in (1.2) and (1.3). The problem with boundary
conditions is also present in stochastic application in continuous time, even when there is no
control variable or optimization in the problem.

As the number of multibody state variables, m, increases, the spatial dimension rises,
and computational difficulties are present that can compare to those of three-dimensional
fluid dynamics computations. This is the famous Bellman’s curse of dimensionality [3]. Thus
there is a great need to make use of advanced-architecture computers, to use parallelization
as well as vectorization. The Panel on Future Directions in Control Theory [6] stresses the
importance of making gains in such areas as nonlinear control, stochastic control, optimal
feedback control and computational methods for control. This paper is a preliminary report
on our efforts to treat all of the above mentioned areas combined from the computational
point of view.

2. Numerical Methods. The integration of the Bellman equation (1.6) is backward
in time, because V* is specified finally at the final time ¢ = t; , rather than at the initial
time. A summary of the discretization in state and backward time is given below:

x — Xj = Ximaa = [Xa + (i = 1) DXimxa »

J = [jijmx1, wherej; = 1toM;, fori = ltom;
t — T, =t; —(k—1)-DT, fork = 1to K ; (2.1)
* *
V (X;,Tx) — Vik s LV](Xj’Tk+%) — Lj,k+% ;

where DX, is the mesh size for state : and DT is the step size in backward time.

The numerical algorithm is a modification of the predictor corrector, Crank Nicolson
methods for nonlinear parabolic PDEs in [5]. Modifications are made for the switch term
and delay term calculations. Derivatives are approximated with an accuracy that is second
order in the local truncation error, at all interior and boundary points. The Poisson induced

functional or delay term, V*(x + H;, t), changes the local attribute of the usual PDE to a
global attribute, such that the value at a node [X + H,|; will in general not be a node. Linear
interpolation, with special handing of point near the boundaries, maintains the numerical
integrity compatible with the numerical accuracy of the derivative approximations. Even
though the Bellman equation (1.6) is a single PDE, the process of solving it not only produces
the optimal expected value V*, but also the optimal expected control law U * . This is
because the PDE is a functional PDE, in which the computation of the regular control is fed
back into the optimal value and the optimal value feeds back into regular control through
its gradient. The nonstandard part of the algorithm is to decompose this tightly coupled
analytical feedback so that both the value and the control can be calculated by successive

187

iterations, such that each successive approximation of one improves the next approximation
of the other. While our procedure may look superficially like a standard application of finite
differences, it is not due to the nonstandard features mentioned above. For these reasons,
we are not aware of any other successful stochastic dynamic programming code that treats
anywhere near the generality of applications that we treat. Variations of this algorithm have
been successfully utilized in [15] and [8].

Prior to calculating the values, Vj 141, at the new (k+1)* time step for k = 1to K —1,
the old values, Vj x and Vjx_;, are assumed to be known, with Vjo = Vj;. The algorithm
begins with an ezirapolator (z) start:

v = 13-V — Vi), (2.2)

*
which are then used to compute updated values of the gradient of V , the second order
*
derivatives, Poisson functional terms (V at (x + H)), regular controls U, optimal controls

*
U, and finally the new value of the Bellman equation spatial functional Ljx,o5. The
extrapolation step greatly speeds up the convergence of the corrector step, except at the
initial step. These evaluations are used in the eztrapolated predictor (zp) step:
xXp) _ 1 7(X)
Viesn = Vie + DT-5ij 1 - (2.3)

2

which are then used in the predictor evaluation (zpe) step:

Xpe X
Vier = HViEh + Viw) (24)

an approximation which preserves numerical accuracy and which is used to evaluate all terms
comprising Lj,o5. The evaluated predictions are used in the corrector (zpec) step:

xpecy + 1 xpe,
V:i(.k-lzl T+bhH _ Vix + DT - L; kz;) (2.5)
*ty

for 4 = 0 t0 Ymaz While stopping criterion unmet, with corrector evaluation (zpece) step:

xpecey + 1 xpecy + 1
VRS =TT +). (26)
Y 2

The predicted value is taken as the zeroth correction. The stopping criterion for the correc-
tions is a heuristically motivated comparison to a predictor corrector convergence criterion
for a linearized, constant coefficient PDE [13]. The stopping criterion is computed with
a robust mesh selection method, so that only a few corrections are necessary. The selec-
tion of the mesh ratio, the ratio of the time step DT to the norm of the space or state
step DX, guarantees that the corrections will converge whether the Bellman equation (1.6)
is parabolic-like (with Gaussian noise) or hyperbolic-like (without Gaussian), according to
whether or not an explicit second derivative is in the equation.

Parallelization and vectorization of the algorithm was done by what might be called the
“Machine Computational Model Method,” i.e., tuning the code to optimizable constructs

188

that are automatically recognized by the compiler, with the Alliant FX/8 vector multi-
processor [1] in mind. All inner double loops were reordered to fit the Alliant concurrent
outer - vector inner (COVI) model. All non-short single loops were made vector-concurrent
Short loops became scalar-concurrent only. Multiple nested loops were reordered with the
two largest loops innermost. A total of 37 out of 39 loops was optimized. Detailed results
for a two-state and two-control model with Poisson noise are reported in [9]. Very similar
techniques work for the vectorizing Cray supercomputers, except that only inner loops are
vectorized. Vectorizing and parallelizing techniques are very similar, because vectorization
is really a primitive kind of parallelization and because both are inhibited by many of the
same types of data dependencies.

The relative performance of column oriented versus row oriented code is discussed in
[10]. Dongarra, Gustavson, and Karp [4] have demonstrated that loop reordering gives
vector or supervector performance for standard linear algebra loops on a Cray 1 type column
oriented FORTRAN environment with vector registers. However, for the stochastic dynamic
programming application, the dominant loops are non-standard linear algebra loops, so that
the preference for column oriented loops is not a rule, as demonstrated on the Alliant vector
multiprocessor [10].

Current efforts are concentrated on implementing the code on the Cray X-MP/48 and
Cray 2 for more general multi-state and multi-control applications. In order to implement
the code for arbitrary state space dimension, a more flexible data structure is needed for the
problem arrays, F, G and H, as well as for the solution arrays, V along with its derivatives
and the control U. In the straight-forward, original data structure, an array like the non-
linearity vector requires one index, js(is), to denote a numerical node for each state variable
is:

F(is’js(l)ajs(2)’ e ’js(m)) (27)
for each state equation, is = 1 to m. It is assumed that there are a common number
M = M, = --- = M, of nodes per state, so that js(is) = 1 to M for is = 1 to m states.

As a consequence, the typically dominant loops containing the nonlinearity function F, the
solution gradient DV or similarly sized array are nested to a depth of at least m + 1. A
typical loop has the form

doli=1m
do 1 j1l=1M
do 1l m=1M

! F(ij1,j2,- - jm) = --++--

This state size dependent loop nest depth level of m + 1 inhibits the development of general
multibody algorithms, especially when the state size m is incremented and the number of
loops in each nest have to be changed. Also, vectorization is inhibited for compilers that
vectorize only the most inner loop. Parallel and vector optimization is important, due to the
size of the work load, which is O(m - M™), for the dominant loop illustrated above. As the

189

number of states grows the computational load will grow like some multiple of

m-M™=m .emln(M)’
i.e., the load grows exponentially in the number of states m. This exponential growth is
merely a quantitative expression of Bellman’s curse of dimensionality.
One way around this inhibiting structure (2.7) is to use a vector data structure:

FV(is,jv) (2.8)

for the nonlinearity vector as an example, such that all the numerical nodes are collected
into a single vector indexed by the global state index jv, where jv = 1 to M™ over all state
nodes. Assuming that the number of nodes per state are fixed at M, then for a fixed set of
state node indices {js(1),7s(2),---,7s(m)}, the global state vector index is computed from
the direct mapping formula

m

jo =) (js(i) = 1) - M1 4 1, (2.9)

=1

in the case of fixed state mesh size, M; = M for all states 1.

Both the direct mapping from the original data structure to the vector data structure
and the inverse mapping are needed to compute the amplitude functions, F, G and H, as
well as the derivatives of V | because these quantities depend on the original formulation.
The pseudo-inverse of the vector index in (2.9) can be shown to permit the recovery of the
individual state indices by way of integer arithmetic:

jsisjv) =14 [jv—1— Y (js(is jv) — 1) - N“U/No1, (2.10)
t=is+1
recursively, for s = m to 1, by back substitution, with 3> . a; = 0. The vector data

structure of (2.8) to (2.10) results in major do loop nests of the order of 1 to 2, rather than
order of m + 1. A typical vector data structure loop has the form

do 2 i=1,m ! parallel loop.
do 2 jv=1 Mx»m ! vector loop.
2 FV(ijv) = ------

resulting in a reduction of the loop nest depth from m + 1 to 2, independent of the number
of states m. Preliminary implementation of the vector data structure is available on the
Alliant multiprocessor and on the Cray X-MP/48.

One major disadvantage of the vector data structure given in (2.10) is that the largest
degree of parallelism available to a parallel processor or multiprocessor in the most outer
or state number loop is m, the number of states. This task load can be better scheduled
on parallel processors by block decomposition or strip mining of the vector data structure
loop in the index 7v, so that the single inner loop is split into two evenly balanced loops (cf.,
Polychronopoulos [14]). Thus, dividing the vector data structure into blocks can enhance

190

parallelism. Let MBLK be the number of state nodes in each block and then the total
number of blocks will be

NBLK = M™/MBLK,

assumed to be an integer for simplicity. Consequently, the blocked version of the typically
dominant loop will have the form

do 3 1=1m
do 3 jblk = 1, MBLK ! parallel loop.
jv1 = 1+ MBLKx(jblk — 1)
jv2 = MBLKxjblk
do 3 jv=jvl, jv2 ! vector loop.

3 FV(ijv) = -«

This form should result in better parallel optimization when there are more than m available
parallel processors. _

The advantages of the algorithm is that it 1) permits the treatment of general continuous
time Markov noise or deterministic problems without noise in the same code, 2) maintains
feedback control, 3) permits the cheap control limit to linear singular control to be found
from the same quadratic cost code, 4) stable mesh selection can be used to control the
number of corrector steps, and 5) produces very vectorizable and parallelizable code whose
performance is described in the next section.

3. Results and Discussion. The stochastic dynamic programming code arose from
renewable resource modeling problems of Hanson and co-worker Ryan, with various one-state,
one-control models treated in [15] and [11]. Two-state, two-control models were treated
by Hanson [8]. In the two-state model (8], the two controls represent removals from the
system by respective commercial and recreational users of the system. Poisson noise 1s
used to represent natural catastrophic events. Applications to aerospace problems only
entails modification of the dynamical system and performance criteria input by appropriate
aerospace input functions and parameters.

The dynamic programming code has been optimized for parallelization and vectoriza-
tion [9] using Hanson’s two-state model [8] as a test example, and the Alliant FX/8 vector
multiprocessor as the advanced hardware. The Alliant FX/8 at the Advanced Computing
Research Facility (ACRF) at Argonne National Laboratory was used for benchmarking the
code. This Alliant FX/8 has eight vector computing elements (CEs). Each of the CEs has
eight vector registers whose length is 32 eight-byte elements, and the CEs are connected
to a 128 KB cache. Some automatic parallelization and vectorization is performed, but
significant increases are still attainable by the removal of optimization hindering data de-
pendencies. Benchmark performance was measured for many mesh sizes and on all processor
configurations. Almost all loops were of the highly optimized parallel and vector type for the
Alliant. Over 65% efficiency was achieved over a wide range of tests [9]. The temporal mesh
was chosen to be about four times more refined than the spatial mesh, K =4-(M —1) +1,
for a fixed number of spatial nodes M and for constant numerical stability conditions. In

191

addition, vector stride effects (resonance effects related to multiples of the vector register
length of 32 on the FX/8) were found with non-standard performance in both column and
row referencing environments [10].

The present results have been obtained for a three-state, three-control modification
of Hanson’s two-state resource model [8] and by implementing the vector data structure
mentioned above. The present application contains a new interacting state with competition.
The present code is in a form where it is much more convenient to change the application,
the advanced computer intrinsics, and the number of states.

Table 1 compares the performance of the code on the ACRF Alliant FX/8 vector multi-
processor at Argonne National Laboratory, the NCSA Cray X-MP /48 vector supercomputer
at Urbana, and the University of Illinois at Chicago IBM3081K as a scalar uniprocessor
reference. The Cray X-MP /48 is a four processor pipelined vector multiprocessor, but the
use of the X-MP is much more costly to use in parallel than the Alliant and so only single
processor results are reported here for the X-MP. The Cray executing on one vector processor
outperforms the Alliant using either one vector processor or the full eight vector processors,
due to the more powerful pipelined processing unit on the Cray. The advantages of block de-
composition with MBLK = 32 for eight Alliant processors are illustrated in the table, where
the eight processor time has been reduced from about 52 to 33 seconds when M = 16, while
the one processor time has increased dramatically for the block method. The IBM3081K
scalar uniprocessor is much slower when M = 8 unblocked spatial nodes than any of the
Alliant or Cray values at M = 8. However, as the spatial mesh size is refined to M = 16
spatial points, with a corresponding increase in work load, the IBM3081K performs between
the one and eight processor Alliant, but still significantly below the CRAY performance.

Table 1: Comparative Performance of IBM 3081K, Alliant and Cray,
for three state model.

Nodes Method IBM 3081K Alliant FX/8 | Cray X-MP
state | time vs fortran, opt(3) fortran -O cft77
M K p=1 p=1 | p=8 p=1
8 29 | unblocked 38.513 8.653 | 2.980 0.144
16 61 | unblocked 85.377 147.391 | 51.619 2.058
8 29 blocked — 13.693 | 1.998 —
16 61 blocked — 223.426 | 32.729 —

The performance of the stochastic programming code under parallel and vector oper-
ation is investigated in more detail on the ACRF Alliant FX/8, which has better parallel
capability than the Cray X-MP/48. The Cray X-MP /48 is also a vector multiprocessor, but
the multiprocessing features are not as easily accessed as on the Alliant, where paralleliza-
tion is more transparent. In Figure 3, the blocked and unblocked code is compared on the
Alliant FX/8 with time T'(p) plotted against the number of processors p. The unblocked
code runs faster as the number of processors increases from one, but then ceases to run any

192

faster beyond p = 3 processors due to the fact that the maximum parallelism available is
the three iterations in the three-state outer loop. The blocked code, using a block size of
MBLK = 32 (the vector register length on the Alliant) runs faster the more processors used
out of the eight vector processors. However, the unblocked code is faster for p < 5, but
slower for p > 5. The trade-off point between the blocked and unblocked code is p = 5, with
the block overhead slowing down the code for p < 5, but the benefit of parallelism is found
for p > 5.

Figure 4 shows the speedup, S(p) = T(1)/T(p), versus the number of processors p.
The unblocked code clearly exhibits a speedup platecau for p > 3 and the unblocked code
exhibits nearly ideal speedup, S(p) =~ p for all p. However, this figure illustrates the danger
of comparing speedups, because the unblocked case is better for p < 5 as demonstrated in
Figure 3. In Figure 5, the efficiency, E(p) = S(p)/p or speedup per processor, versus the
number of processors p is shown. Again, the blocked efficiency is much higher than the
unblocked efficiency, independent of the actual performance.

4. CONCLUSIONS. Stochastic dynamic programming algorithm can be optimized to
permit numerical solution of larger state space problems using vector multiprocessors. In
order to handle a large number of state variables, a large number of parallel processors
would be desirable, but Bellman’s curse of dimensionality appears to very much weakened.
Parallelization, vectorization, and general supercomputing are important in the solution
of the larger problems. Robust mesh selection techniques are necessary to achieve stable
algorithms. These techniques are generally applicable to other vector and parallel computers.
The general code is valid for general Markov noise in continuous time, feedback control,
nonlinear dynamics, nonlinear control and the cheap control limit.

Future directions include applications to aerospace problems, improved development of
general code for an arbitrary number of state variables, enhanced code portability, exten-
sions to Kalman filtering for imperfect observations, and optimization for other advanced
architectures.

Acknowledgements. Work was supported, in part, by several Faculty Research Partici-
pantships, a Faculty Research Leave at Argonne National Laboratory Advanced Computing
Research Facility, and by the Applied Mathematical Sciences subprogram of the Office of
Energy Research, U. S. Department of Energy, Under Contracts W-31-109-38 and DE-AC05-
84-R21400; the National Science Foundation Grant DMS-8806099; the National Center for
Supercomputing Applications in Urbana. The author wishes to acknowledge the work of
C.-W. Leung for the advanced analysis of the vector data structure and for investigations of
applications of Cray multitasking to the problem, and to S.-L. Chung for continued devel-
opment of optimizations for the algorithm.

REFERENCES

[1] Alliant, FX/FORTRAN Programmer’s Handbook, Alliant Computer Systems
Corporation, Acton, Mass., 1985.

[2] M. Athans, D. Castanon, K. P. Dunn, C. S. Greene, W. H. Lee, N. R. Sandell, Jr.,

193

8]

[9]

(10]

[11]

(12]

[13]

[14]

[15]

and A. S. Willsky, The stochastic control of the F-8C aircraft using a multiple model
adaptive control (MMAC) method - Part I: Equilibrium flight, IEEE Trans. Autom.
Control, vol. AC-22, pp. 768-780, 1977.

R. E. Bellman, Adaptive Control Processes: A Guided Tour. Princeton: Prince-
ton University Press, 1961.

J. J. Dongarra, F. G. Gustavson, and A. Karp, Implementation of linear algebra algo-
rithms of dense matrices on a vector pipeline machine, SIAM Rev., vol. 26, pp. 91-112,
1984.

J. Douglas, Jr., and T. DuPont, Galerkin methods for parabolic equations, SIAM 1J.
Num. Anal., vol. 7, pp. 575-626, 1970.

Future Directions in Control Theory: A Mathematical Perspective, W. H.
Fleming, Chairman. Philadelphia: Society for Industrial and Applied Mathematics,
1988.

I. I. Gihman and A. V. Skorohod, Controlled Stochastic Processes. New York:
Springer-Verlag, 1979.

F. B. Hanson, Bioeconomic model of the Lake Michigan alewife fishery, Can. J. Fish.
Aquat. Sci., vol. 44, Suppl. II, pp. 298-305, 1987.

F. B. Hanson, Computational dynamic programming for stochastic optimal contrdél on
a vector multiprocessor, Argonne National Laboratory, Mathematics and Com-
puter Science Division Technical Memorandum ANL/MCS-TM-113, June
1988, 26 pages.

F. B. Hanson, Parallel computation for stochastic dynamic programming: Row versus
column code ortentation, in Proceedings 1988 Conference on Parallel Processing,
Vol. II1 Algorithms and Applications, D. H. Bailey, Editor. University Park:
Pennsylvania State University Press, 1988, pp. 117-119.

F. Hanson and D. Ryan, Optimal harvesting with density dependent random effects,
Natural Resource Modeling, vol. 2, No. 3, pp. 439-455, 1988.

D. Ludwig, Optimal harvesting of a randomly fluctuating resource I: Application of
perturbation methods, SIAM J. Appl. Math., vol. 37, pp. 166-184, 1979.

K. Naimipour and F. B. Hanson, Convergence of a numerical method for the Bellman
equation of stochastic optimal control with quadratic costs, In Preparation, 1989.

C. D. Polychronopoulos, Parallel Programming and Compilers. Boston: Kluwer Aca-
demic Publishers, 1988, pp. 26-27.

D. Ryan and F. B. Hanson, Optimal harvesting of a logistic population in an environment
with stochastic jumps, J. Math. Biol., vol. 24, pp. 259-277, 1986.

194

250.00

J

blk

200.00

150.00

TIME IN SECONDS

100.00

unblk

T(P),

$0.00

unblk

blk

.00 2.00 4.00 6.00 8.00
P. FX/8 PROCESSORS
Figure 3: Comparison of blocked (blk) and unblocked (unblk) versions of the code.

Time T'(p) is in seconds and p is the number of processors. Results are for m = 3 states,
M =16 spatial nodes and K = 61 temporal nodes.

195

8.00

6.00

4.00

S(P). SPEEDUP

2.00

[~
(-]
.00 2.00 4.00 6.00
P, FX/8 PROCESSORS

Figure 4: Speedups for blocked (blk) and unblocked (unblk) versions of the code.
Speedup is denoted by S(p) = T(1)/T(p) and p is the number of processors. The notation
(ideal) denotes the ideal case, S(p) = p. Results are for m = 3 states, M = 16 spatial nodes

and K = 61 temporal nodes.

196

ideal

0.80

EFFICIENCY
0.60

L

.40

E(P),

blk

unblk

.00 2.00 4.00 6.0

P. FX/8 PROCESSO

0
RS

L
8.00

Figure 5: Efficiency for blocked (blk) and unblocked (unblk) versions of the code.

Efficiency is denoted by E(p) = S(p)/p and p is the number of processors. The notation
(ideal) denotes the ideal case, E(p) = 1. Results are for m = 3 states, M = 16 spatial nodes

and K = 61 temporal nodes.

197

N90-23008 :

A Robot Arm Simulation with a Shared Memory
Multiprocessor Machine

Sung-Soo Kim and Li-Ping Chuang
The Center for Simulation and Design Optimization
The University of Iowa

Abstract

A parallel processing scheme for a single chain robot arm is presented
for high speed computation on a shared memory multiprocessor. A
recursive formulation that is derived from a virtual work form of the
d'Alembert equations of motion is utilized for robot arm dynamics. A joint
drive system that consists of a motor rotor and gears is included in the arm
dynamics model, in order to take into account gyroscopic effects due to the
spinning of the rotor. The fine grain parallelism of mechanical and control
subsystem models is exploited, based on independent computation
associated with bodies, joint drive systems, and controllers. Efficiency and
effectiveness of the parallel scheme are demonstrated through simulations
of a telerobotic manipulator arm. Two different mechanical subsystem
models, i.e., with and without gyroscopic effects, are compared, to show the
trade-off between efficiency and accuracy.

198

N90-23009

A Unifying Framework for Rigid Multibody Dynamics and
Serial and Parallel Computational Issues

Amir Fijany and Abhinandan Jain
Jet Propulsion Laboratory/California Institute of Technology

Abstract

In this paper we present a unifying framework for various formulations
of the dynamics of open-chain rigid multibody systems and assess their
suitability for serial and parallel processing. The framework is based on
the derivation of intrinsic, i.e., coordinate-free, equations of the algorithms
which provides a suitable abstraction and permits a distinction to be made
between the computational redundancy in the intrinsic and extrinsic
equations. A set of spatial notation is used which allows the derivation of
the various algorithms in a common setting and thus clarifies the
relationships among them. The three classes of algorithms viz., O(n), O(n?)
and O(n3) or the solution of the dynamics problem are investigated. We
begin with the derivation of 0O(n3) algorithms based on the explicit
computation of the mass matrix and it provides insight into the underlying
basis of the O(n) algorithms. From a computational perspective, the optimal
choice of a coordinate frame for the projection of the intrinsic equations is
discussed and the serial computational complexity of the different
algorithms is evaluated. The three classes of algorithms are also analyzed
for suitability for parallel processing. It is shown that the problem belongs
to the class of N C and the time and processor bounds are of O(logz-(n)) and
O(n1), respectively. However, the algorithm that achieves the above bounds
is not stable. We show that the fastest stable parallel algorithm achieves a
computational complexity of O(n) with O(n1) , respectively. However, the
algorithm that achieves the above bounds is not stable. We show that the
fastest stable parallel algorithm achieves a computational complexity of O(n)
with O(n?) processors, and results from the parallelization of the ((n3) serial
algorithm.

199

N90-23010

Parallel Algorithms and Architecture for Computation of Manipulator

Forward Dynamics

Amir Fijany and Antal K. Bejczy
Jet Propulsion Laboratory, California Institute of Technology

Abstract- In this paper parallel computation of manipulator forward dynamics
is investigated. Considering three classes of algorithms for the solution of

the problem, that is, the 0(n), the O(nz). and the O(na) algorithms,
parallelism in the problem is analyzed. It is shown that the problem belongs

to the class of NC and that the time and processors bounds are of O(logzn) and

O(n‘), respectively. However, the fastest stable parallel algorithms achieve
the computation time of 0(n) and can be derived by parallelization of the

0(n’) serial algorithms. Parallel computation of the o(n’) algorithms requires
the development of parallel algorithms for a set of fundamentally different
problems, that is, the Newton-Euler formulation, the computation of the
inertia matrix, decomposition of the symmetric, positive definite matrix, and
the solution of triangular systems. Parallel algorithms for this set of
problems are developed which can be efficiently implemented on a unique
architecture, a triangular array of n(n+1)/2 processors with a simple
nearest-neighbor interconnection. This architecture is particularly suitable
for VLSI and WSI implementations. The developed parallel algorithm, compared
to the best serial 0(n) algorithm, achieves an asymptotic speedup of more than
two orders-of-magnitude in the computation the forward dynamics.

1. INTRODUCTION

The manipulator forward dynamics problem concerns the determination of
the motion of the mechanical system resulting from the application of a set of
joint forces/torques which is essential for dynamic simulation. The motivation
for devising fast algorithms for forward dynamics computation stems from
applications which require extensive off-line simulation as well as
applications which require real-time dynamic simulation capability. In
particular, for many anticipated space teleoperation applications, a faster-
than-real-time simulation capability will be essential. In fact, in the
presence of unavoidable delay in information transfer, such a capability would
allow a human operator to preview a number of scenarios before run-time [1].

The forward dynamics problem can be stated as follows: Given the vectors
of actual joint positions (Q) and velocities (Q), the external force (fE) and

moment (nE) exerted on the End-Effector (EE), and the vector of applied joint

200

forces/torques (t), find the vector of joint accelerations (Q). Integrating
the vector of joint accelerations leads to the new values for Q and Q, and the
process is then repeated for the next t. The first step in computing the
forward dynamics 1s to derive a linear relation (for the given manipulator
configuration described by the vector of joint positions) between the vector
of joint accelerations and the vector of appllied inertial forces/torques.

Given the dynamic equations of motion as

AQT + C(Q.Q) + G + I QF, =< (1)
and defining the bias vector b as)

b = CQ.Q) +GQ) + J(QF, (2)
the linear relation is derived:

AQIQ =1b=T (3)

where Q, 6, and 6 are nx1 vectors and FE. a 6x1 vector, is a combined
representation of fE and n. A(Q) is an nxn symmetric, positive definite,

inertia matrix, and J is the 6éxn Jacobian matrix (t denotes matrix transpose).
The bias vector b represents the contribution due to coriolis and centrifugal
terms C(Q,Q), gravitional terms G(Q), and the external force and moment.
Hence, in Eq. (3), T is the nx1 vector of applied inertia forces/torques. The
bias vector b can be obtained by solving the inverse dynamics problem, using
the Newton-Euler (N-E) formulation [2], while setting the vector of joint
accelerations to zero. The computation of the vectors b and I' represent the
common first step in any algorithm for solving the forward dynamics problem.

The proposed algorithms for the forward dynamics problem differ in their
approaches to solving Eq. (3), which directly affects their asymptotic
computation complexity. These algorithms can be classified as:

1) The O(n) algorithms [3]-[6] which, by taking a more explicit advantage of
the structure of problem, e.g., by using the Articulated-Body Inertia [3]-[4]
and recursive factorization and inversion of the inertia matrix [S5]-[6], solve

Eq. (3) in O(n) steps without explicit computation and inversion of the
inertia matrix.

2) The 0(n?) conjugate gradient algorithms [7, 10] which iteratively solve
Eq. (3) without explicit computation and inversion of the inertia matrix. The
conjugate gradient algorithm is guaranteed to converge to the solution in at
most n iterations which, given the 0(n) computational complexity of each

iteration, leads to an overall O(nz) computational complexity.

3) The 0(n>) algorithms [7] which solve Eq. (3) by explicit computation and
inversion of the inertia matrix, leading to an O(ns) computational complexity.
However, any analysis of the relative efficiency of these algorithms

should be based on the realistic size of the problem, i.e., the number of
Degree-Of -Freedom (DOF), rather than the asymptotic complexity. In fact, the

comparative study in {3]-{4] shows that the o(n®) Composite Rigid-Body
algorithm is the most efficient for n less than 12. It should be pointed out

201

that efficiency of the 0(n’) and O(nz) algorithms has been recently improved

[9]-[10). However, despite these improvements, even the fastest O(na)
algorithm is far from providing the efficiency required for real-time or
faster-than-real-time simulation. This observation clearly suggests that the
exploitation of a high degree of parallelism in the computation is the key
factor in achieving the required efficiency.

The analysis of the efficiency of the different algorithms for parallel
computation 1s more complex than that for serial computation. In the next
section, the three classes of algorithms are analyzed based on their

efficiency for parallel computation and it is shown that the O(n3) algorithms
are also the most efficient for parallel computation. However, parallelization

of the O(na) algorithms represents a challenging problem since it requires the
development of parallel algorithms for computation of a set of fundamentally
different problems, i.e., the N-E formulation, the inertia matrix, the
factorization of the inertia matrix, and the solution of triangular systems.

Lee and Chang [15] were first to investigate the computation of the

forward dynamics by parallelization of the O(na) algorithms. Considering an
SIMD architecture with n processors interconnected through a generalized-cube
network, a modified version of their O(logzn) algorithm in [16] and an O(n)

parallel version of the Composite Rigid-Body algorithm were developed for

computation of the N-E formulation and the inertia matrix. A parallel O(n2)
Cholesky algorithm and the O(n) Column-Sweep algorithms were also proposed for
the factorization of the inertia matrix and the solution of the resulting

triangular systems, leading to an 0(n) complexity of the overall computation.
However, the main drawbacks of the proposed algorithms reside in the

complexity of the required interconnection network and the O(nz) communication
complexity which mainly results from the excessive data alignment needed for
different algorithms.

In this paper, we present a set of efficient parallel algorithms for the

computation of the forward dynamics, using the O(n3) algorithms, which can be
‘implemented on a two-dimensional array of n(n+1)/2 processors with a nearest
neighbor interconnection. The overall of communication complexity, even with
such simple interconnection structure, is limited to O(n) and no additional
data alignment between the computation of the different algorithms is
required, which further reduces the overhead in the parallel computation.

A new algorithm for computation of the inertia matrix is developed which,
though not efficient for serial processing, achieves the best performance for
parallel computing in terms of both computation and communication complexity
while demanding simple architectural features for its implementation. The
parallel algorithm for computing the inertia matrix achieves the time lower
bound of O(logzn)+0(1) on the processor array. Synchronous data-flow parallel

algorithms are also developed for factorization of the inertia matrix and the
solution of the resulting triangular systems on the processor array.

202

This paper is organized as follows. In Section 11, parallelism and time and
processors bounds in the computation of the forward dynamics are investigated.
In Section III, parallel algorithm for computation of the inertia matrix is
developed. In Section IV, parallel computation of the bias vector and the
linear system solution are briefly discussed. Finally, some concluding remarks
are made in Section V.

II. PARALLELISM IN FORWARD DYNAMICS COMPUTATION

A. Time and Processor Bounds in the Computation

The analysis of time and processors bounds in parallel computation of a
given problem is of fundamental theoretical importance. It can determine the
inherent parallelism in the problem and the bound on the number of processors
required for exploiting maximum parallelism and achieving the time lower
bound in the computation. However, besides the theoretical importance, it can
also provide, as is the case for forward dynamics problems, useful insights
into devising more practical and efficient parallel algorithms (in the sense
of both computation time and number of processors) for the problem. '

Let P denote the class of problems that can be solved sequentially in a
time bounded by a polynomial of the input size, n. Also, let NC (for "Nick’s
Class" [18]) stand for the class of problems that can be solved in parallel

in a time of O(loan), for some constant k, with a number of processors

bounded by a polynomial of n. One open question regarding the complexity of
parallel algorithms is whether P = NC, which is thought to be very unlikely
{19]. It is clear that NC € P. For k = 1, the time of O(logzn)+0(1) represents

the natural time lower bound in the computation. However, most of the
kinematic and dynamic problems in robotics belong to the class of NC (8l.
Furthermore, it is possible to devise parallel algorithms which achieve the
time lower bound of 0(10g2n)+0(1) in solving these problems [8,14,16,17]. In

the following, we study the time and processors bounds in the computation of
the forward dynamics by different algorithms.

Using the N-E formulation, the bias vector can be computed in a time of
O(logzn)+0(1) with 0(n) processors [15]-{16]. This implies that the time and

processors bounds in the forward dynamics computation are determined by those
in the solution of Eq. (3). Note that, with 0(n) processors, the integration
of the computed joint accelerations can be performed in a time of 0(1).

The solution of Eq. (3) by the O(n) algorithms results in a set of first-
order nonlinear recurrences which can be represented (at an abstarct level) as

X1 = C‘ + ¢2(Xi’1)/¢1(xl*1) = C1 + ¢(X1+1) (4)

where C‘ is constant, ¢1 and ¢2 are polynomials of first and second degree,
and deg ¢ = max (deg ¢1, deg ¢2) = 2. It is well-known that, regardless of the

number of processors, the computation of nonlinear recurrences of the form of
Eq. (4) and with deg ¢>1 can be speeded up only by a constant factor
[20]-[21]. This is due to the fact that the data dependency in nonlinear

203

recurrences and, particularly, those containing division, is stronger than in
linear recurrences {22]. Hence, the parallelism in the O(n) algorithms is
bounded, that 1s, their parallelization leads to the 0(n) algorithms which are
faster than the serial algorithm only by a constant factor. Note that a rather
simple model was used for presentation of the nonlinear recurrences of the
O(n) algorithms while they are far more complex than those usually studied

in literature, e.g., in [21]-[22] (see [8] for a more detailed discussion).

For the conjugate gradient algorithms in [7], [10], the computation of
each iteration, as is shown in [15], can be done in a time of O(logzn) with n
processors, leading to the O(nlogzn) parallel algorithms. This implies that

the parallelism in conjugate gradient algorithm is unbounded. Asymptotically,
however, the parallel conjugate gradient algorithms are slower than the best
serial algorithms, the O(n) algorithms, for the solution of the problenm.

The inertia matrix can be computed in O(log n)+0(1) steps with 0(n%)
processors [8], {11], {13]. The implication of this result is that it further
reduces the analysis of the time and processors bounds in the forward dynamics
problem to that in a more generic problem, the linear system solution. Csanky

has shown that the llnear system can be solved in 0(log§n) steps with o(n*)

processors (23] . This implies that the forward dynamics problem belongs to
the class of NC. Note that, using Cramer’s rule, the linear system solution
can be computed in O(log n) steps with O(n!) processors [20]. But such a
result has neither theoretical nor practical importance.

However, Csanky’s algorithm is unpractical since, besides using too many
processors, it is numerically unstable [25]. The best stable algorithms for
linear system solution achieve a time of O(n) with 0(n?) processors [24]-[25].
Hence, parallelization of the 0(n°) algorithms results in the stable 0O(n)
parallel algorithms with O(nz) processors, which indicates an unbounded

parallelism.

The above analysis shows that the forward dynamics problem belongs to the
class of NC and that the best known upper bounds on the time and processors

are O(log:n) and O(n‘). respectively. Practically, however, the fastest (and

stable) parallel algorithm for its computation is of O(n). With respect to
these results the main question is, given the fact that both the serial O(n)

and O(n3) algorithms result in the O(n) parallel algorithms, which one is more
efficient for parallelization?
Let a1n+B1 denote the polynomial complexity of the serial O(n) algorithms.

There is a limited parallelism in both coarse grain and fine grain (in
matrix-vector operation) forms in these algorithms [8]. Exploitation of this
parallelism leads to the parallel algorithms with polynomial complexity as
a2n+B2 where, due to the limited parallelisnm, a is reduced to a, only by a

small factor. Furthermore, exploitation of both coarse and fine grain

parallelism requires additional architectural complexity. For the O(na)

204

algorithms, the polynomial complexity of the resulting parallel O(n) algorithm
is of the form a3n+73[10g2n]+83 where o is smaller than a by more than two

orders-of -magnitude. As a result, while the algorithm is asymptotically faster
than the serial O(n) algorithms and their parallel versions by a high constant
factor, it is also more efficient for small n. The price to be paid for this

efficlency, of course, is an architecture with 0(n°) processors. However, the
efficiency of the parallel algorithm and the suitability of the architecture

for VLSI and WSI implementation strongly support the choice of O(n3)
algorithms for parallel computing.

I1I. PARALLEL COMPUTATION OF INERTIA MATRIX
A. Basic Algorithms for computation of inertia matrix

From Eq. (3) the elements of the inertia matrix can be computed as

a =a =T (5)
1) N J

for the condition given by

Ql = 1 and thl =0 For k =1, 2, ..., n (6)

Two physical interpretations can be thought for the above condition, with each
interpretation leading to a distinct class of algorithms as

1) The first i-1 links do not have any motion, that 'is, they are statlc, and
the accelerations and the forces/torques of the last n-i+l1 links result from
the unit acceleration of link 1. This interpretation leads to the first class
of algorithms, designated as the class of Newton-Euler Based (NEB) algorithms,
in which the diagonal and lower off-diagonal elements of the inertia matrix
are computed. In [7] an algorithm of this class is presented, designated as
the Original NEB (ONEB) algorithm, which computes the inertia matrix by
successive applications of the N-E formulation.

2) The last n-i+1 links can be considered as a single composite rigid
system, since they do not have any relative motion, which is accelerating in
space, leading to the exertion of forces and moments on the first i-1 static
links. This interpretation leads to the second class of algorithms, designated
as the class of Composite-Rigid Body (CRB) algorithms, in which the diagonal
and upper off-diagonal elements of the inertia matrix are computed. In [7] an
algorithm of this class, designated as the Original CRB (OCRB) algorithm, is
presented in which the center of mass and the first and the second moment of
mass with respect to the center of mass of a set of composite systems are
computed.

The comparative study in [7] shows that the OCRB algorithm achieves a
significantly greater efficiency over the ONEB algorithm. In [8]-[9], we have
developed an algorithm, designated as the Variant of CRB (VCRB) algorithm,
which avoids the redundancies in the OCRB algorithm and represents the most
efficient algorithm (to date) for computing the inertia matrix. Note that,
however, due to the symmetry of the problem, both interpretations and hence
both classes of algorithms should lead to the same results and computational

205

Redundancy

—_—
® ® ® ® ® ®
VCRB OCRB VNEB ONEB

Serial Efficiency

&
<

Fig. 1. Comparison of different algorithms for computation of inertia matrix

efficiency. In [8]-[9], we have shown that, by introducing or reducing the
redundancy in the computation, the algorithms of the two classes can be
transformed to one another and, particularly, to the most efficient one, the
VCRB algorithm. Figure 1 shows the relative serial efficiency of and
redundancy in different algorithms.

Although the results presented in Fig. 1 answer the question of the
serial efficiency of different algorithms, it does not indicate which
algorithm provides the most suitable features for parallelization. For serial
processing, removing any redundancy increases the computational efficiency.
For parallel processing, however, depending on its impact on the data
dependency in the computation, this may increase or decrease the efficiency.
The fact that arbitrary algorithms can be developed by introducing or removing
different types of redundancy in the computation represents an additional
degree-of -freedom that can be exploited to derive an algorithm which, though
perhaps not efficient for serial computing, is the most suitable for
parallelization. In (8], [12], we have shown that the NEB algorithms are more
suitable for parallel computing than the CRB algorithms. In fact, they not
only achieve a better computational complexity (in the parallel sense) but
also require a less complex communication and synchronization mechanism. This
better efficlency for parallelization mainly results from the fact that the
evaluation of the columns of the inertia matrix by the NEB algorithms is order
independent and hence can be done in parallel.

B. A Variant of Newton-Euler Based (VNEB) Algorithm

Four different types of redundancy can be recognized in the ONEB algorithm,
which can be eliminated, respectively, by (8], [9], [13]):

1) Choosing a more suitable coordinate frame for projection of the equations.
2) Optimizing the N-E formulation for the condition given by Eq. (6).

3) Using a more efficient variant of the optimized N-E formulation.

4) Introducing a two-dimensional recursion in the computation.

Note that the first redundancy resides in the extrinsic equations and
results from the choice of coordinate frame for projection of the intrinsic
equations while the second, the third, and the fourth redundancies reside in
the intrinsic equations and are inherent in the formulation. As stated before,
by removing all redundancies in the intrinsic equations, the ONEB algorithm
can be transformed to the VCRB algorithm. However, removing any type of
redundancy in the NEB algorithms, as far as the order independence property

206

is preserved, will also increase the efficiency of their parallel verslons.

In this regard, only the removal of the fourth redundancy, which leads to the
introduction of a two-dimensional recursion in the computation, results in the
loss of the order independence property of the algorithm. In the following, a
Variant of the NEB algorithm, designated as the VNEB algorithm, is presented
which is developed by removing the first three redundancies.

The derivation of the Variant of N-E Based (VNEB) algorithm is fully
discussed in [81, [91,{12),[13]. Here, for the sake of completeness, a brief
description of the algorithm is given. The algorithm is presented by the
intrinsic equations. In this paper, according to the Gibbs notation, vectors
are underlined once and tensors (tensors of order 2) twice. Also, in order to
simplify and, particularly, unify the derlvation of the serial and parallel
algorithms, a set of notations, given in Table I and Fig. 3, are used. The
VNEB algorithm is then written as

For i =1, 2, ..., n

For j =1, i+1, ..., n
(3, 1) = 2(1) | (7)
V3, 1) = Y(J-1,1) + &(J, 1)xP(J, J-1) = &(J, 1IxP(J, 1) (8)
F(J+1,3,1) = M(JIV(J, 1) + &(J, 1)xH(J) (9)
N(j+1, 3,1) = K(J)ael(y, 1) (10)

For j=n, n-1, ..., 1
F(n+1, J,1) = F(Jj+1, j,1) + F(n+1, j+1,1) (11)
N(n+1, J,1) = N(J+1,j,1) + N(n+1, j+1,1) + P(j+1, J)xF(n+1, j+1,1) (12)

with F(n+1,n+1,1) = N(n+1,n+1,1) =0
ajl = Z(j).N(n+1, j+1,1) (13)

C. Parallel Algorithm for Computation of Inertia Matrix

The serial computational complexity of evaluating the inertia matrix is
of O(nz). No serial algorithm can achieve a better asymptotic complexity
since, given n inputs (joint positions), the evaluation of the 0(n?) outputs,

the elements of the inertia matrix, requires 0(n?) distinct steps in the
computation. Based on the VCRB algorithm, we have already shown that the

inertia matrix can be computed in O(logzn)+0(1) steps with 0(n®) processors

[8], [11). It is interesting to note that not only the same bounds on time and
processors can be much more easlily derived by parallelization of the VNEB
algorithm but also the resulting parallel algorithm, compared to the parallel
VCRB algorithm, reduces the coefficients on the polynomial complexity.

For the implementation of the parallel algorithm achieving the time lower

bound, we consider a two-dimensional array of n(n+1)/2 processor-memory
modules represented as PRU , for 1 =1, 2, ..., nand jJ =1, i+1, ..., n

207

(Fig. 3 shows the array for n = 6). For the parallel algorithm, the equations
are projected onto the EE coordinate frame, coordinate frame n+l. An n DOF all
revolute joints manipulator is considered for which the joint variables are

the joint angles, that is, QJ = 9). It is assumed that the joint variables 9J

Jj* j+1

P(j+1,3), H(j),

{or SeJ and Cej) and constant parameters Saj. Caj,
J+1K(J), and M(Jj) reside in the memory of all processors of Row j. The
analysis of the mapping the algorithm onto the architecture of Fig. 3 is fully
presented in [12]). Here, due to the lack of space, we only give the a brief
description of the algorithm in terms of its computational steps and cost.

For the parallel algorithm, the ith column of the inertia matrix is
computed by the processors of the ith column of the processor array. The fact
that o(j,1) = 2(i) for j =1, i+1, ..., n, implies that global communication
of Z(i) among the processors of the ith column is required. This requirement
can be avoided by introducing two recurrences as

w(j,1) = o(J-1,1) = 2(1) (14)
P(jJ,1) = P(J-1,1) + P(j, j-1) (15)

Equation (14) does not need any computation while, for the parallel algorithm,
the computation of Eq. (15) is required. By computing Eqs. (14)-(15) as a set
of coupled recurrences, the terms w(j-1,1i) can be considered as the data
associated with Eq. (15). Using such a scheme increases the communication
complexity of parallel evaluation of Eq. (15) but will result in the global
distribution of 2(i) among the processors of the ith column. The computation
of the parallel algorithm is then performed as follows.

]

Step 1:
1) Parallel compute R(j+1, j) by all processors of the jth row.
For =1, 2,..., n
For 1 =1, 2, ...,]
PRJl : R(j+1,J) (16)
2) Parallel compute R(n+1, J) by processors of the ith column.
Fori=1, 2, ..., n
For j =1, i+1, ..., n
For n = 1 step 1 until flogz(n+1-J)]. Do (17)
R(j+2", J) = R(n+1, J) 342 3421 12
R(j+2", J) = R(n+1,) = R(n+1, j+2"HR(§+2"7, 5 j+2"=2n+1> 342"
R(J+2", §) = R(J+2", 342" HR(y+2", 5) n+1>j+2"> j+2" !
End_Do
3) Rotate R(n+1, j) by processors of Row j to the processors of Row j-1.
For j =1, 2, ..., n
For 1 =1, 2, ..., J »
PR“: R(n+1, j+1) (18)

208

with R(n+1,n+1) = U (Unit Matrix)

Note that, as the result of the above data transfer, both the terms R(n+l, j)
and R(n+1, j+1) reside in the memory of all the processors of the jth row.

n+1

4) Parallel compute mlZ(j), n’IP(j+1,,j). n“H(J). and
processors of the jth row.

K(j) by all the

For j=1, 2 ,..., n
For i = 1, 2, « vy J
a) PR ™172(3) = R(n+1, §)32(J) (19)

with Jz(j) = 0o o 11*

b) PR : ™'P(j+1,J)

" R(n+1, j+1) " IP(4+1, J) (20)

with J'P(j+1,)

l[a dS« dcCalt
i i i i i

n+1
c) Pij H(]j)

d) PR :
)

i

R(n+1, J+1) T H() (21)

n+1

K(j) = R(n+1, J+DKHR(J+1, n+1) (22)

Note that for the processors of the nth row Egs. (21)-(22) do not need any

computation since the terms *'4(n) and K(n) are given constant parameters.
As the result of the computation of Step 1, all the vectors and the tensors
are projected onto the coordinate frame n+1. In the following, the absence of
superscripts denotes that the computations are performed in this frame.

n n+1

Step 2:
1) Parallel compute P(J,i) and w(Jj,1) by processors of the ith column.
For i =1, 2, ..., n
For j =1, i+1, ..., n
For n = 1 step 1 until [logz(n+1—j)], Do

6(3+2", 1) = &(3-2" 1) = 2(1) (23)

P(j+2",) = P(4,J) 342> 342" 124

P(j+2",§) = P(1,J) = P(1, 3+2" 1) + P(3+2™,) 3+2M2i> 2" (24)

p(j+2", §) = p(g+2", 3+2™ 1) + P(g+2™ N,) 1> j+2"> j+2"!
End_Do

2) Parallel compute V(j,1), F(j+1,J,1), N(j+1, J,1) by processors of the ith

column.
For i =1, 2, ..., n
For j =1, i+1, ...n
PR : V(J,1) = 6(J,1)xP(J, 1) (25)

3
209

O(3, 1)XH(F) + M(J)V(, 1) (26)

PRJI: F(j+1,j,1)

K(J)&(4, 1) + H(PxV(S, 1) (27)

Pij: N(j+1,J,1)

Step 3:
1) Parallel compute F(n+1, j,i) and N{(n+1, j, 1) by processors of the ith column.
For i =1, 2, ..., n

For j =1, i+#1, ..., n
For n = 1 step 1 until flogz(n+l-j)], Do (28)
F(3+2", 3,1) = F(n+1, j,1) : 32 542" Y2n et
F(J+2", 3,1) = F(n+1, 3, 1) = F(j+2", 342" 1)0F (342770, 5, 1) ge2Mone1> ge2™!
F(j+2", 5, 1) = Fg+2", 342 1)+F (342772, 5, 1) n+1>j+2M> j+2" !
End_Do
For » = 1 step 1 until [log (n+1-§)], Do (29)
N(j+2", 5, 1) = N(n+1, J, 1) 3#2™ 342" 2ne
N(J+27, 3,1) = N(n+1, §,1) = N(n+1, 3+27 1 1)+ (g+2", 5, 1)+
P(3+2™", $IxF(n+1, j+271, 1) J+2M2n+1> j+27 !
N2, 5, 1) = N(g+2™, 3+2™70 1) aN (g2 5, 1)+
P(g+2"L, JIxF(g+2", 3421 1) n+1>J+2"> j+217!
End_Do

2) Parallel compute aj‘ by PRJF

Fori=1, 2, ceey D
For J =1, i+1, ...n
PR : a_ = 2(j).N(n+1,j,1) (30)

n "

As stated before, the time lower bound in, as well as the computational
cost of, parallel evaluation of the inertia matrix, using the VNEB algorithm,
is determined by that of the parallel evaluation of the first column of the
inertia matrix. In other words, the computational cost of the n recurrences in
Eqs. (17), (23), (24), (28), and (29) is determined by that of the largest
ones, l.e., for 1 =1, which are of size n. Furthermore, the computational

cost of all the O(nz) terms in Egqs. (16), (19)-(22), (25)-(27), and (30) is
determined by the cost of one term since for each column n terms are computed
in parallel and the computation for n columns, as will be discussed later, is
overlapped. Let m and a denote the cost of multiplication and addition,
respectively. The computational cost of the parallel algorithm is then
evaluated as follows:

210

Step 1: The cost of Eq. (16) is 4m; The cost of Eq. (17) is (27m+18a)[logzn];

Eq. (18) represents a simple data rotation; Eq. (19) does not need any
computation; The cost of Egs. (20), (21), and (22) is (9m+6a), (9m+6a), and
(5am+36a), respectively. The cost of this step is (27m+18a)[logzn]+(76m+48a).

Step 2: Eq. (23) does not need any computation; The cost of Eq. (24) is
(3a)[log2n]; The cost of Eqs. (25), (26), and (26) is (ém+3a), (9m+6a), and

(15m+12a), respectively. The cost of this step is (3a)[log2n]+(30m+21a).
Step 3: The cost of Eqs. (28) and (29) is (3a)[1og2n] and (6m+9a)flog2n],

respectively; The cost of Eq. (30) is (3m+2a). The cost of this step is
(6m+12a)[log2n]+(3m+2a).

Adding the cost of Steps 1-3, the computation cost of the algorithm is
obtained as (33m+33a)[logzn]+(109m+71a). As stated before, mapping the

developed parallel algorithm onto the processor array is fully presented in
{12] where it is shown that, even using a simple nearest neighbor
interconnection structure, a communication complexity of O(n) can be achleved.
Also, the mechanisms for global and local synchronization for the processor
array are presented. Figure 4 shows the resulting distribution of the
elements of the inertia matrix among the processors.

IV. PARALLEL COMPUTATION OF N-E FORMULATION AND SOLUTION OF LINEAR SYSTEM

As stated before, the bias vector can be computed by evaluating the N-E
formulation while setting the vector of joint accelerations to zero. We use
the parallel algorithm presented in [15] for computing the bias vector. This
computation is performed by the processors of the first column with the
equations being projected onto the frame n+l. Therefore, the results of the
computation of the first step except Eqs. (21)-(22) can be used while, similar

to the terms n”K(J) in Eq. (22), the terms n’1.l(j), for j =1, 2, ..., n, are

also needed to be computed by the processors of the first column. The cost of
evaluation of the vector I' is then obtained as 15a[10g2n]+(141m+101a). With

the nearest neighbor interconnection among the processors of the first column
a communication complexity of 0(n) is achieved. In order to achieve the proper
sequencing of the computation of the inertia matrix, the bias vector, and the
linear system solution, a data-driven mechanism can be employed. That is, the
processors of all columns, except the processors of the first column, by
completion of the computation of their corresponding column of the inertia
matrix enter the wait state while the processors of the first column start the
computation of the bias vector and the vector I'. The activity of the
processors of column 2 through column n in linear system solution is triggered

by receiving the corresponding data and by the completion of the computation
of the vector T.

Figure 4 shows the organization of the data resulting from the computation
of the inertia matrix and the vector I'. Given this data organization, we have
developed synchronous data-flow parallel algorithms for the full solution of
Eq. (3), that is, for decomposition of the inertia matrix, using the square-
root-free variant of the Cholesky factorization, and the solution of the

211

resulting lower and upper triangular linear systems, which are presented in
detail in [12). The computation cost of the solution of Eq. (3) is obtained as
(n-1)(3m+2a)+(1m+1a), where the cost of division and multiplication is taken
to be the same. A communication complexity of O(n) is also achieved.

Adding the cost of evaluation of the inertia matrix, the bias vector and
the vector I', and the linear system solution, the computational cost of the
forward dynamics problem is obtained as (3m+2a)n+(33m+48a)[logzn]+(238m+17la).

The computational cost of the best serial O(n) algorithm, the Articulated-Body
algorithm [3]-[4], is evaluated as (380m+302a)n-(198m+173a) [15]. If the time
of multiplication and addition is taken to be the same, then, for n = 6, the
developed parallel algorithms achieve a speedup of 6 compared to the best
serial O(n) algorithm. Note, however, that as n increases, e.g., for redundant
manipulators, the speedup also significantly increases. To see this, let us
write the computational cost of the serial 0(n) algorithm and the parallel
algorithms as 682n+0(1) and 5n+0(log2n)+0(1), with the time of multiplication

and addition taken to be the same. It can be seen that, asymptotically, the
parallel algorithms achleve a speedup of more than two orders-of-magnitude.
For small n, the computational cost of the parallel algorithms is dominated by
the flogzn]-dependent and constant terms on the polynomial complexity. Hence,

for small n, the computational complexity of the developed parallel algorithms
can be practically considered as 0(log2n)+0(1).

V. CONCLUSION

We developed a set of parallel algorithms for computing the forward
dynamics problem. These algorithms exploit a high degree of parallelism in
the problem and achieve a significant speedup in the computation. Furthermore,
they can be efficiently implemented on a two-dimensional array of processors
with a nearest neighbor interconnection. This architecture is particularly
suitable for practical implementation using VLSI and WSI technologies. Due to
their simple architectural requirements, these algorithms, with some
modifications, can also be efficiently implemented on rather more
general-purpose architectures, e.g., a two-dimensional array of Transputers.

A key factor in our approach to the parallel computation of the forward
dynamics is the minimization of the resulting overhead. The overall
communication complexity is of O(n). The overhead is further minimized since
there is no need for any data alignment between the computation of different
algorithms and the intermediate data resulting from the different algorithms
are generated and consumed within the array. Also, the final result of the
computation, that is, the vector of joint accelerations, is computed by the
processors of the first column. Therefore, they can be output using the same
channels for Ilnputting the data to the array (Fig. 5). This is particularly
critical for VLSI and WSI implementation since, by using only n bidirectional
Input/Output channels, the number of required pins is kept small.

ACKNOWLEDGEMENT

The research described in this paper was carried out by the Jet Propulsion
Laboratory, California Institute of Technology, under contract with the
National Aeronautics and Space Administration (NASA).

212

References

(1]
(2]

(3]
(4]
(5]

(6]

(7]

(8]

(91

(10]

(11]

[12]

[13]

[14]

{15]

[16]

(17]
{18]

(191

(20]

M.H. Milman and G. Rodriguez, "Cooperative Dual Arm Manipulator Issues and
Task Approach," Jet Propulsion Lab., Eng. Memorandum 347, Nov. 1987.
J.Y.S. Luh, M.W. Walker, and R.P. Paul,"On-line Computation Scheme for
Mechanical Manipulator," Trans. ASME J. Dyn. Syst., Meas., and Control,
Vol. 102, pp. 69-76, June 1980.

R. Featherstone, "The Calculation of Robot Dynamics Using Articulated-Body
Inertia,"” Int. J. Robotics Research, Vol.2(2), 1983.

R. Featherstone, Robot Dynamics Algorithms. Ph.D. Dissertation, Univ. of
Edinburgh, 1984.

G. Rodriguez,"Kalman Filtering, Smooting and Recursive Robot Arm Forward
and Inverse Dynamics," IEEE J. Robotics and Automation, Vol. RA-S,

Dec. 1987. Also in Jet Propulsion Lab. Publication 86-48, Dec. 1986.

G. Rodriguez and K. Kreutz, "Recursive Mass Matrix Factorization and
Inversion: An Operator Approach to Open- and Closed-Chain Multibody
Dynamics," Jet Propulsion Lab. Publication 88-11, May 1988.

M.W. Walker and D.E. Orin,"Efficient Dynamic Computer Simulation of
Robotics Mechanisms," Trans. ASME J. Dyn. Syst., Meas., and Contr.,

vol. 104, pp. 205-211, 1982.

A. Fijany, Parallel Algorithms and Architectures in Robotics. Ph.D.
Dissertation, Univ. of Paris XI (Orsay), Sept. 1988.

A. Fijany and A.K. Bejczy,"An Efficient Algorithm for Computation of the
Manipulator Inertia Matrix,"” To appear in J. of Robotic Systenms,

Feb. 1990.

A. Fijany and R.E. Scheid,"Efficient Conjugate Gradient Algorithms for
Computation of the Manipulator Forward Dynamics," Proc. of NASA Conf. on
Space Telerobotics, Pasadena, CA, Jan. 1989.

A. Fijany and A.K. Bejczy,"A Class of Parallel Algorithms for Computation
of the Manipulator Inertia Matrix," IEEE Trans. Robotics and Automation,
Vol. RA-5, No. 5, pp. 600-615, Oct. 1989.

A. Fljany and A.K. Bejczy," Parallel Algorithms and Architecture for
Computation of the Manipulator Forward Dynamics," Submitted to IEEE
Trans. Robotics and Automation.

A. Fijany,"A New Class of Parallel and Pipeline Algorithms for
Computation of the Manipulator Inertia Matrix," In preparation.

A. Fijany and J.G. Pontnau, "Parallel Computation of the Jacoblan for
Robot Manipulators,”" Proc. IASTED Int. Conf. on Robotics & Automation,
Santa Barbara, May 1987.

C.S.G. Lee and P.R. Chang,"Efficient Parallel Algorithms for Robot
Forward Dynamics Computation," IEEE Trans. Syst. Man Cybern.,

Vol. SMC-18, no. 2, pp. 238-251, March/April 1988.

C.S.G. Lee and P.R. Chang, "Efficient Parallel Algorithm for Robot Inverse
Dynamics Computations," IEEE Trans. Syst. Man Cybern., Vol. SMC-16(4),
pp. 532-542, July/Aug. 1986.

L.H. Lathrop, "Parallelism in Manipulator Dynamics," Int. J. Robotics
Res., Vol. 4(2), Summer 198S5.

S.A. Cook, "An Overview of Computational Complexity," Com. ACM, Vol. 26,
June 1983.

J.S. Vitter and R.A. Simons, "New Classes of Parallel Complexity: A Study

of Unification and other Complete Problems for P," IEEE Trans. Computer,
Vol. C-35(5), May 1986.

H.T. Kung, "New Algorithms and Lower Bounds for the Parallel Evaluation of

213

Certain Rational Expressions and Recurrences," J. of ACM, Vol. 23, No. 2,
pp. 252-261, April 1976.

[21] J. Miklosko and V.E. Kotov (Eds.), Algorithms, Software and Hardware of
Parallel Computers. New York: Springer-Verlag, 1984.

[22] L. Hyafil and H.T. Kung, "The Complexity of Parallel Evaluation of Linear
Recurrences," J. ACM, Vol. 24, No. 3, pp. 513-521, July 1977.

[23] L. Csanky, "Fast Parallel Matrix Inversion Algorithms," SIAM J. of
Computing, Vol. 5, No. 4, pp. 618-623, Dec. 1976.

[24] A.H. Sameh and D.J. Kuck, "On Stable Parallel Linear System Solvers,"
J. of ACM, Vol. 25, No. 1, pp. 81-91, Jan. 1978.

[25] A. Bojanczyk, R.P. Brent, and H.T. Kung, "Numerically Stable Solution of
Dense Systems of Linear Equations Using Mesh-Connected Processors,"” SIAM
J. of Stat. Comput., Vol. 5, No. 1, March 1984.

z

i+1

Fig. 2. Link, Frames, and Kinematic and Dynamic Parameters.
a, d, & a Length, Distance, and Twist Angle of link i, respectively.

Ql, 6 , & Q Position, Velocity, and Acceleration of joint i, respectively.

M(1i) Mass of link i.

J(1) Second moment of mass of link i1 about its center of mass (Cll

H(1) First moment of mass of link i about point OV

K(1) Second moment of mass of link i about point Of

Z(1) Axis of joint i

P(i, j) Position vector from point 0j to point OF

R(i, j) A 3x3 matrix representing the orientation of coordinate frame j
with respect to coordinate frame 1i.

o(i, J) Angular acceleration of link i resulting from the unit

. acceleration of joint j.

V(i, j) Linear acceleration of link i (point 01) resulting from the unit

acceleration of joint j.
F(k+1,1, j) Force exerted on point 01 due to the acceleration of links i

through k, i.e., the links contained between points Ox and Ok’v

resulting from the unit acceleration of joint j.
N(k+1,1, j) Moment exerted on point 0‘ due to the acceleration of 1link i

through k, resulting from the unit acceleration of joint j.
Table I. Notation used in derivation of serial and parallel‘algorithms

214

ORIGINAL PAGE 1S
(") S OF POOR QUALITY

e 20
o000
oo Qe 02020

(n) ‘ (8)

Ficure 3. A Two-DIMENSIONAL PROCESSOR ARRAY (A) DATA INPUT TO
PROCESSOR ARRAY, (B) DisTRIBUTION OF INPUT DATA AMONG PROCESSORS.

FiIcurRe 4. ORGANIZATION OF DATA
RESULTING FROM COMPUTATION OF THE FIGURE 5. DATA OutpPut FROM
INERTIA MATRIX AND THE BIAS VECTOR. PROCESSOR ARRAY.

215

N90-23011

COMPUTATIONAL DYNAMICS FOR ROBOTICS SYSTEMS
USING A NON-STRICT COMPUTATIONAL APPROACH

David E. Orin and Ho-Cheung Wong P. Sadayappan
Dept. of Electrical Engineering Dept. of Computer & Information Science
The Ohio State University The Ohio State University
Columbus, OH 43210 Columbus, OH 43210
Abstract

This paper proposes a Non-Strict computational approach for real-time robotics control com-
putations. In contrast to the traditional approach to scheduling such computations, based
strictly on task dependence relations, the proposed approach relaxes precedence constraints
and scheduling is guided instead by the relative sensitivity of the outputs with respect to the
various paths in the task graph. An example of the computation of the Inverse Dynamics of
a simple inverted pendulum is used to demonstrate the reduction in effective computational
latency through use of the Non-Strict approach. A speedup of 5 has been obtained when
the processes of the task graph are scheduled to reduce the latency along the crucial path of
the computation. While error is introduced by the relaxation of precedence constraints, the
Non-Strict approach has a smaller error than the conventional Strict approach for a wide
range of input conditions.

I. Introduction

Complex robot dynamics computations have typically been represented using directed
task precedence graphs, in order to facilitate the exploitation of parallelism in their exe-
cution [1,2,3]. The nodes of such a task graph represent computational modules, with the
directed edges imposing a strict partial order on their execution sequence. While such a
computational approach is faithfully accurate to the underlying physical model of the robot
system if executed instantaneously, in practice the computational latency can be significant
even with state-of-the-art computers. The use of pipelining also does not reduce this latency,
even though it increases computational throughput.

The Non-Strict computational approach is motivated by a need to reduce the “effective
latency” from input to output for complex robotics computations. The terms Strict and
Non-Strict are derived from the manner in which precedence is treated in scheduling the
tasks of a task graph such as the one shown in Fig. 1. The approach proposed here has the

216

same motivation as the “Imprecise Results” approach recently proposed in [4], but uses a
different model. The key concept behind our Non-Strict approach is that of relaxing the strict
precedence constraints imposed by a conventional task-graph model, to facilitate trading off
accuracy for timeliness in real-time computation over sampled, continuously varying inputs.
Rather than sample all inputs simultaneously and then schedule tasks in strict adherence
to the precedence constraints dictated by the edges of the task graph, tasks are scheduled
so as to minimize delay between input and output along paths in the task graph that most
strongly affect the output, perhaps using some previously computed values along less crucial
paths.

Consider the task graph shown in Fig. 1. The circles represent computational tasks
to be performed and the arcs represent data flow and thus precedence. According to the
conventional Strict model of computation, the input, ¢, should first be sampled. Then it
should proceed through the sequence of 1-2-3-4-5, completing the computation by furnishing
the output, 7. The latency between input and output is just the total computation time; it
represents a lag in the real-time control implementation and tends to destabilize the system.

If the output of process 5 is more strongly affected by the output of process 4 and further,
if process 4 is strongly affected by the output of process 1 and only weakly dependent on
process 3, then a better schedule, which does not strictly adhere to the natural precedence
relationships, may be developed. In particular, it may be best to sample the input, compute
process 1, resample the input, compute process 4 using the last computed value of process 3,
and compute process 5 to generate the output. After process 5 is complete, then processes
2 and 3 may be scheduled which gives the following ordering on the computations 1-4-5-2-3
which does not follow strict precedence. However, if the 1-4-5 path from input to output is
the most crucial to the computation, then the effective latency has been reduced. This is
especially true if the computation times of processes 2 and 3 are long as compared to the
others.

From the above example, several important characteristics of the Non-Strict computa-
tional approach may be noted:

1. It is appropriate to the case of real-time control in which the same computation is to
be repeated over successive time samples of the inputs.

2. The main objective is to relax the precedence so as to reduce the effective latency from
input to output. Rather than sampling the inputs once for a computation so that the
results are strictly correct, albeit delayed, before each process which requires an input,
a fresh sample of the input is taken so that the effects of delay are minimized. Also,
computation generally proceeds along the crucial paths using the freshest (but past)
values generated by the other less crucial processes. While this is often not according
to precedence, again it can have the effect of reducing the latency.

3. While the Non-Strict approach does introduce error into the computation by violating
task-graph precedence constraints, and can therefore only be an approximation of the

217

1
Output
t

Figure 1: Example Task Graph to Illustrate Non-Strict Computation.

ideal output, the maximum instantaneous error and average error are often much less
when compared to that resulting from the use of a Strict approach (which produces
an output with the same shape as the ideal, but delayed in time).

4. By relaxing precedence constraints, potential parallelism may be increased. That is,
the task precedence relationships constrain the flow of computation to certain se-
quences/orderings. With these relaxed, a greater amount of parallel scheduling of
processes may proceed.

In order to further develop the basic concepts, an example of the dynamics of a simple
inverted pendulum will be given. A description of the system, including its dynamic equation
of motion and task graph for its evaluation, will be given in the next section. Following that,
results using the Non-Strict computational approach will be given and will be compared with
the Strict approach. Finally, the paper ends with a summary of the results, and conclusions
on which to base further investigations.

218

II. Simple Inverted Pendulum Example

The computation of the dynamics of the simple inverted pendulum system shown in
Fig. 2 is to be considered. The system consists of a single link which is connected through a
one-degree-of-freedom revolute joint to a fixed base. Gravity acts in the vertical direction,
and an actuator is mounted at the joint to power the pendulum movement. While the model
is quite simple, it has been used in the past to study the dynamics of biped walking in the
single support phase of locomotion [5].

The basic computational task is to solve the Inverse Dynamics problem [6] in real time.
The dynamic equation of motion for the pendulum may be written as follows:

7 = I§+ B¢ — mgl sin(q) (1)

where

Actuator torque,

4,4,4 = Joint position (as referenced to the vertical),
velocity, and acceleration

= Moment of inertia of the link about the joint axis,

Joint actuator damping coefficient,

Mass of the link, and

= Position of the center of gravity of the link

from the joint axis.

ﬂ
I

-3 W~
I

Note that values for the system parameters are also given in Fig. 2.

For Inverse Dynamics, the joint position, velocity, and acceleration are given and the
joint torque is to be computed. Inverse Dynamics is used in advanced control schemes for
robotic systems to determine the torque required for a desired motion trajectory and must
be computed at real-time rates of up to a few hundred hertz [7].

A task graph for the Inverse Dynamics computation is shown in Fig. 3. There are 6
processes with the top number in the circle giving the process number. The operation
performed is given in the middle section of the circle while the computation time is given in
the bottom part and is normalized to units of a basic computation time, A. Note that it is
assumed that adds and multiplies take a single unit of time and that the sine computation
takes ten times as long. For the purposes of this example, it is assumed that the input
position, ¢, is a simple sinusoid:

g(t) = sin(wt). (2)

219

mg

7
m = 20bm
I = 15ft
I = 186ft-Ib-s?
B = 30ft-Ib-s

Figure 2: Simple Inverted Pendulum System.

T(e)

Figure 3: Task Graph for Inverse Dynamics Computation.

220

where w is the frequency.

III. Computational Results

In this section, using the Inverse Dynamics of an inverted pendulum as an example,
a number of results will be given which illustrate the Non-Strict computational approach
and compare it with the Strict approach. The output of the computation under the Strict
and Non-Strict approach are contrasted for a simple sinusoidal input to the system. If the
computational delays in evaluating the component operations in the task graph were zero,
then both the Strict and Non-Strict approaches would yield identical results. With the Strict
approach, the generated output is identical in shape to the ideal output, but shifted in time
by the sum of the computational delays of the tasks in the task graph. With the Non-Strict
approach, the output (in general) approximates the shape of the ideal output but is not
identical in form. However, the overall error (including the effects of time delay) can often
be significantly less than the error with the Strict computation.

In this section, the two approaches are compared using two measures — 1) mean square
error, and 2) effective latency. The mean square error over a period is defined as:

mean square error = 1 /T[T~(t) — 7(t))? dt (3)
TJ '

where T is the period of the input and 7;(t) is the ideal output. The effective latency At sy
is defined in the following way:

1 T
Aty = At @ Min T/o [ri(t — At) — r(¢)]? dt. (4)

Thus a best fit is attempted between a delayed version of the ideal output and the Non-
Strict output, and the shift in the delayed version of the ideal output is interpreted as an
effective latency of the computation. As long as the mean square error between the output
and the shifted ideal output is sufficiently small, the error in output may be related to that
arising from a time delay of the ideal output. Thus, the outputs of the Strict and Non-Strict
approaches may be compared in terms of effective computational latencies, where the scheme
with the lower effective latency is preferable.

In the following, speedup through reduction in the effective latency of the computation
will be shown. The relationship of the error in both the Strict and Non-Strict cases will
be given as a function of the input frequency. The objective is to determine a range of
frequencies for which the Non-Strict approach will give speedup while maintaining reasonable
limits on the error. Finally, the relationship between the effective latency and the input
frequency will be investigated and will provide motivation for adaptive scheduling strategies.

221

ORIGINAL FAEY 15
OF POOR QUALITY

TORQUE VS TIME

0s

N /
o N\ i
A /)
AN ¥/

0.0

A //
.3 \\ é/
o5 _ \\\z/

00 005 01 015 02 025 €3 03 04 048 05 0S5

TORQUE (-0 ° 1E+3}
& o
=
S
— ~

TIME (aec)

Figure 4: Plot of the Torque for the Ideal, Strict, and Non-Strict Cases Over a Period
(w=12.5rad/s and A = 7 /1500 s).

A. Reduction in the Effective Latency

Fig. 4 compares the outputs of Strict and Non-Strict evaluations of the task graph of Fig. 3
against the ideal output obtained with zero computational delay. Results for w = 12.5 rad/s
and A = 7 /1500 s are given. If the tasks are scheduled in the order 1-2-3-4-5-6 instead of
an order dictated by strict adherence to task precedence constraints, then speedup should
result by a reduction of the effective latency of the computation. In particular, at high
frequencies when the inertial term dominates the torque computation, it is anticipated that
the computational delay may be as little as 3A since this is the most crucial path in that
case. Of course, the schedule is not according to strict precedence and some amount of error
will be introduced.

Note that the Strict curve is an exact form of the ideal but delayed in time by 15A. While
the Non-Strict curve is not an exact form of the ideal, it gives the least amount of error for
almost the entire period. For the present results, little difference can be seen between the
shape of the ideal and Non-Strict curves. In fact, the Non-Strict curve does not quite reach
the desired peak and the slopes are slightly different along the trajectory. However, the
effective latency has been reduced considerably to as little as 20-30% of the Strict case.

222

CRIGINAL PAGE IS
OF POOR QUALITY

———— STRICT

MEAN SQUARE ERROR VS FREQUENCY

m b

noe ‘ i
2 m | [J
- E IR
£ T /
£ e | l /
b o 7
§ o i
i v Ao

i !/

" T 1T 7 AR

o — 7 17N

° (__/7 1

Figure 5: Mean Square Error for the Strict and Non-Strict Cases as a Function of the
Frequency (A = x /1500 s).

B. Error Vs. Frequency

If the frequency is increased such that the period is exactly 15A, then the Strict approach
will give perfect results. The question becomes: is there a range of frequencies over which
the Non-Strict approach will give the best results (least error)? Toward this end, the error
of the Strict and Non-Strict approaches with respect to the ideal have been evaluated as a
function of the frequency. Typical results are given in Fig. 5.

The results indicate that the Non-Strict approach has a smaller error up to a frequency
of approximately w = 168 rad/s when A = 7/1500. As might be expected, this crossover
frequency varies with the value of A chosen. As the value of A increases, the crossover value
of frequency decreases. In fact, as long as the value for A is less than a certain fraction of
the period, then the Non-Strict approach will be better. For the example system, this ratio
has been determined as:

g

= < 0.056. (5)

~

For this example, if the Strict computation delay (15A) is less than approximately 80% of

223

EFFECTIVE LATENCY VS FREQUENCY SxIGINAL PAGE IS

1 OF POOR QUALITY
. X
2 \
" \\
i
> I A
£ \\
g s \
s N\
. ~
3 \
FREQUENCY (nx¥s)}

Figure 6: Effective Latency as a Function of Frequency for the Schedule (1-2-3-4-5-6).

the period, then the Non-Strict approach will give better results.

C. Effective Latency Vs. Frequency

The schedule assumed for the previous results tends to work well for high input frequen-
cies, since in this region the crucial path is 1-2-3 and is scheduled first. Then for very high
frequencies, it is anticipated that the overall effective latency will be approximately 3A which
is the computational delay along this particular path. At low frequencies, the gravitational
term will dominate the inertial term. With the same schedule, then, it is anticipated that
the effective latency will be longer. In fact, the delay from the input ¢ to the output 7 is
seen to be 15A. Therefore, the effective latency of the computation should be in the range
of 3 — 15A and will vary with the frequency.

Results have been obtained for the effective latency as a function of the frequency and are
shown in Fig. 6. As expected, the effective delay is 15A at low frequencies and decreases to
3A at high frequencies. The crossover takes place in the region between w = 0.1 to w = 10.0
during which the significance of the inertial, damping, and gravitational terms changes.

If operation of the inverted pendulum is at lower frequencies, then an alternate schedule
may be more appropriate. In particular, the schedule 4-5-3-1-6-2 should have an effective
latency of 12A at low frequencies — better than the previous schedule. Results for this case
are given in Fig. 7. The results are as expected. Note that the delay at high frequencies is
15A because of the long delay from sampling ¢ to the output. Also note that the damping

224

ORIGINAL PAGE IS
OF POOR QUALITY

EFFECTIVE LATENCY VS FREQUENCY

18 .
14 E A/f
13 /
.2 _~
" !‘
§ 10 i
2
S
E 7)
£ !
b s !
4
3
2
1
0
(Y]] [X] 10 "o 100.0
PREQUENCY (ds)

Figure 7: Effective Latency as a Function of Frequency for the Schedule (4-5-3-1-6-2).

term with ¢ appears to dominate at approximate w = 4 so that the effective delay is 14A.

In fact, in general, the schedule should vary depending upon the rate of change of the
inputs, and their effect on the output. For low frequencies, the path 4-5-3 should be favored
while for high frequencies, the path 1-2-3 should be favored. This gives rise to a need for an
adaptive scheduling scheme and will be considered in future investigations.

IV. Summary and Conclusions

This paper has proposed a Non-Strict computational approach attractive for real-time
applications such as robotics control. In this approach, the precedence set in a task graph
model of the computation is relaxed so as to reduce the effective latency from input to
output. This is achieved by appropriately ordering the execution of the processes so that
the most crucial path from input to output is given priority. While some amount of error
is introduced since the precedence relationships are not strictly adhered to, there are many
cases in which the overall error is less than that introduced by the sheer delay of the Strict
case.

The Non-Strict approach has been applied to compute Inverse Dynamics [6] for a simple
inverted pendulum. At high frequencies of motion, the effective latency was reduced from
15A to 3A, giving a speedup of 5. For a simple sinusoidal input on the joint angle, the
error for the Non-Strict case was better than the Strict case as long as the Strict compu-
tational delay was less than approximately 80% of the period. This is the case in practical

25

applications. The effective latency for the Non-Strict case was shown to be a function of the
frequency of the sinusoidal input. This results from a change in the crucial path through the
task graph as the frequency varies. Two different schedules showed the range of possibilities
for reducing the effective latency and motivated the need for an adaptive scheduling scheme.

There are a number of avenues for further work which are presently being explored. First
of all, speedup has been obtained here for the case of a serial machine. The use of a Non-
Strict computational approach can clearly be expected to have an impact on exploitation of
parallelism. The strict precedence constraints imposed by a conventional task-graph model
tend to limit parallelism. The relaxation of precedence constraints with the Non-Strict
approach should thus be conducive to the better exploitation of parallelism. However, in the
parallel context, the determination of an optimal scheduling order becomes more difficult,
with the two inter-related criteria of 1) task ordering for minimization of “effective latency”
through use of a measure of “task crucialness”, and 2) minimization of computational latency
through maximization of processor utilization.

A second issue is that of adaptive scheduling. Based on the rate of change of a process
output and its significance to the computation, a constantly adapting schedule should give
better results than one which is fixed. Also, processes need not be scheduled at the same
rate and such multi-rate schemes may be especially important in effectively utilizing the
resources of a parallel processor system. Further work in scheduling strategies is needed.

Another area in which the work may be extended involves the use of prediction to reduce
the effective latency and computational error. In particular, if prediction is made on the
inputs before use by a process, then it may be possible to reduce the effective process
latency and therefore the overall latency. Investigations into appropriate schemes for using
the prediction are needed.

Finally, the applicability of the Non-Strict computational approach to a wider class of
real-time control problems should be investigated. The preliminary results presented in this
paper show much promise for speedup and should be applied to other difficult real-time
computational problems.

The Non-Strict computational approach seems promising as a first step towards a frame-
work for specifying real-time robot dynamics computations in a machine-independent man-
ner. It is current practice to choose the model/algorithm with a view to what is imple-
mentable to provide real-time response when executed on a given target machine. The
flexible and adaptive scheduling of tasks inherent with the Non-Strict approach suggests
that a single algorithmic representation can be adequate for slow and fast processors alike,
for single as well as multi-processors. This seems quite feasible especially if computation-
ally inexpensive predictors/extrapolators are used as alternatives in conjunction with more
accurate but computationally demanding task blocks. A powerful target machine might
schedule the computationally demanding blocks every time needed and thus obtain great
accuracy, whereas a weaker target machine might schedule those computationally intensive
blocks relatively infrequently and use the predictors in between, thereby trading off accuracy

226

for timeliness.

Work is currently in progress in evaluating the Non-Strict approach with more complex
robot dynamics computations, and in investigating the use of predictors and multi-rate task
scheduling strategies. A testbed is also under development on a BBN Butterfly multiproces-
sor to investigate Non-Strict scheduling in a parallel setting. It is hoped that with further
work the Non-Strict approach can be established as an effective approach for complex real-
time domains such as robotics control.

Acknowledgements

This work was supported by the National Science Foundation under Computational
Engineering Grant No. EET-8718434.

References

[1] J. Barhen, “Robot Inverse Dynamics on a Concurrent Computation Ensemble,” in Proc.
of 1985 ASME International Conference on Computers in Engineering, pp. 415429,
Boston, MA, August 1985.

[2] J. Y. S. Luh and C. S. Lin, “Scheduling of Parallel Computation for a Computer-
Controlled Mechanical Manipulator,” IEEE Transactions on Systems, Man, and Cy-
bernetics, vol. SMC-12, no. 2, pp. 214-234, March 1982.

(3] D. E. Orin, K. W. Olson, and H. H. Chao, “Systolic Architectures for Computation
of the Jacobian for Robot Manipulators,” in Computer Architectures for Robotics and
Automation, J. H. Graham, Ed., pp. 39-67, New York: Gordon and Breach Science
Publishers, 1987.

[4] K. J. Lin, S. Natarajan, and J. W. S. Liu, “Imprecise Results: Utilizing Partial Com-
putations in Real-Time Systems,” in Proc. of 8§th IEEE Real-Time Systems Symposium,
pp- 210-217, December 1987.

(5] H. Hemami, I. C. Wall, F. O. Black, and G. L. Golliday, “Single Inverted Pendulum Biped
Experiments,” Journal of Interdis. Model. & Simulation, vol. 2, no. 3, pp. 211-227, 1985.

[6] J.Y.S. Luh, M. W. Walker, and R. P. C. Paul, “On-line Computational Scheme for Me-
chanical Manipulator,” ASME Journal of Dynamic Systems, Measurement, and Control,
vol. 102, pp. 69-76, June 1980.

(7] C. H. An, C. G. Atkeson, and J. M. Hollerbach, Model- Based Control of a Robot Manip-
ulator. Cambridge, MA: The MIT Press, 1988.

227

N90-23012

"Computational Chaos” in Massively Parallel Neural Networks

Jacob Barhen and Sandeep Gulati
Jet Propulsion Laboratory/California Institute of Technology

Abstract

A fundamental issue which directly impacts the scalability of current
theoretical neural network models to massively parallel embodiments, in
both software as well as hardware, is the inherent and unavoidable
concurrent asynchronicity of emerging f[ine-grained computational
ensembles and the possible emergence of chaotic manifestations. Previous
analyses attributed dynamical instability to the topology of the
interconnection matrix, to parasitic components or to propagation delays.
However, we have observed the existence of "emergent” computational
chaos in a "concurrently asynchronous” framework, independent of the
network topology. In this paper we present a methodology enabling the
effective asynchronous operation of large-scale neural networks. Necessary
and sufficient conditions guaranteeing concurrent asynchronous
convergence are established in terms of contracting operators. Lyapunov
exponents are computed formally to characterize the underlying nonlinear
dynamics. Simulation results are presented to illustrate network
convergence to the correct results, even in the presence of "large” delays.

228

N90-23013

Multi-Flexible-Body Dynamics Capturing Motion-Induced
Stiffness

Arun K. Banerjee”, Mark E. Lemak"®, and John M. Dickens™ ™"
Lockheed Missiles & Space Co.

Abstract

This paper presents a multi-flexible-body dynamics formulation
incorporating a recently developed theory for capturing motion induced
stiffness for an arbitrary structure undergoing large rotation and
translation accompanied by small vibrations. In essence, the method
consists of correcting prematurely linearized dynamical equations for an
arbitrary flexible body with generalized active forces due to geometric
stiffness corresponding to a system of twelve inertia forces and nine inertia
couples distributed over the body. Equations of motion are derived by
means of Kane's method. A useful feature of the formulation is its
treatment of prescribed motions and interaction forces. Results of
simulations of motions of three flexible spacecraft, involving stiffening
during spinup motion, dynamic buckling, and a repositioning maneuver,
demonstrate the validity and generality of the theory.

* Senior Staff Engineer
** senior Research Engineer
X¥* staff Engineer

229

N90" 23014

NONLINEAR STRAIN-DISPLACEMENT RELATIONS AND FLEXIBLE
MULTIBODY DYNAMICS

Carlos E. Padilla
Andreas H. von Flotow
Massachusetts Institute of Technology
Cambridge, Massachusetts

ABSTRACT

This paper considers dynamics of chains of flexible bodies undergoing large rigid body
motions, but small elastic deflections. The role of nonlinear strain-displacement relations in the
development of the motion equations correct to first order in elastic deflections is investigated. The
general form of these equations linearized only in the small elastic deflections is presented, and the
relative significance of various nonlinear terms is studied both analytically and through the use of
numerical simulations. Numerical simulations are performed for a two link chain constrained to
move in the plane, subject to hinge torques. Each link is modeled as a thin beam. Slew maneuver
simulation results are compared for models with and without properly modeled kinematics of
deformation. The goal of this case study is to quantify the importance of the terms in the equations
of motion which arise from the inclusion of nonlinear strain-displacement relations. It is concluded
that unless the consistently linearized equations in elastic deflections and speeds are available and
necessary, the inconsistently (prematurely) linearized equations should be replaced in all cases by
“ruthlessly" linearized equations: equations in which all nonlinear terms involving the elastic
deflections and speeds are ignored.

1 INTRODUCTION

In recent years a fundamental limitation of the finite element formulation of flexible
deformations in flexible multibody simulation programs such as TREETOPS[1], DISCOS[2], etc.
has been pointed out [3,4,5]. This limitation could be characterized as a premature linearization of
velocity expressions that is implicit in a linear finite element or modal formulation of the motion
equations for flexible bodies [4]. Kane et al. [6] demonstrated this flaw of such an approach
numerically by simulating a simple system consisting of a flexible beam attached to a rigid base
spinning in the plane. This simulation yielded the surprising and intuitively wrong result of the beam
diverging during a spin up maneuver [3]. Probably because of this simple example the “"prematurely
linearized" equations of motion are said to lack the "spin-stiffening effect.” Further study of this
simple system showed that this limitation of the traditional approach does not significantly affect
simulation results for some maneuvers typical of space dynamical systems, such as repositioning
slewing maneuvers and station keeping [4].

This paper presents a general discussion of the equations of motion of a flexible multibody
system undergoing motion with large rigid body rates (not just angular velocities) and rigid body
configuration changes, but with infinitesimal elastic deformations. The generic equations of motion
for such systems are presented; linearized only in elastic deformation amplitudes. The implicit
assumption here is that this is a useful set of motion equations: nonlinear in rigid body rates and
coordinates but linear in flexible coordinates and rates. Some of the terms in these motion equations
cannot be obtained with linear kinematics of elastic deformation (i.e., the traditional linear finite
element or modal formulation). This paper illuminates the form of these practically unobtainable (in
the general case) terms, evaluates their relative importance and examines the possible consistent
simplifications of the motion equations.

230

The practical impact of these simplifications is investigated with the use of two case studies.
The consistent equations of motion, derived with nonlinear strain-displacement relations, are
explicitly given for two systems: 1) a single Bernoulli-Euler beam cantilevered to a rigid base
undergoing large rigid body, but small flexible motions in the plane; and, 2) a two-link, revolute,
planar, flexible manipulator consisting of three rigid bodies (shoulder, elbow and end effector)
connected by two Bernoulli-Euler beams. These two examples will serve to emphasize the general
discussion and to quantify the magnitudes of the neglected and retained terms in the equations of
motion. This will be done both analytically and through comparison of simulation results.

Before proceeding to a more general discussion of the "correct” linearized equations of
motion, a brief explanation of how these equations are obtained through proper linearization, and of
the role of nonlinear strain-displacement relations is in order.

2 NONLINEAR STRAIN-DISPLACEMENT AND PROPER LINEARIZATION

The problem that concerns us is that of obtaining the correctly linearized equations of motion
for an important class of systems which exhibit large rigid body motions but small elastic deflections.
By far the most common practice to date is to handle the flexibility through discretization of the
desired continuous system. This is achieved by representing the solution as a finite series of time-
dependent generalized elastic coordinates multiplied by space-dependent functions, as in an assumed
modes approach, or in a finite element formulation [7]. Whichever formulation one uses, in light of
the class of systems under study, the next step is to assume that these elastic coordinates, together
with the generalized elastic speeds, are infinitesimally small. In other words, we assume these
coordinates and speeds to be small enough so that only terms linear in them are kept in the equations
of motion, as terms of second order or higher are negligible.

Now that our goal is clearly stated, it should be an easy matter to obtain the linearized
equations of motion as long as we consistently drop all terms nonlinear in the elastic coordinates and
the corresponding generalized elastic speeds. Of course, the word "consistently” is the catch. When
do we linearize? That is to say: Does it matter at what step in our derivation of the equations of
motion we start to linearize? To answer this question we have to consider the process by which we
derive these equations.

Let us consider two of the more widely known methods to derive motion equations for
complex systems: Lagrange's equations of motion [8] and Kane's dynamical equations [9].
Lagrange's equations for a holonomic system with n generalized coordinates g:

d(dlL_ oL _ =
dt(aqk) aqk Qk’ (k bewo) (1)
L=T-V

where the Lagrangian L is a function of the system kinetic and potential energies (T and V
respectively). Qy are n generalized non-potential forces. The important thing to note is that using
this method to derive motion equations requires differentiating both the potential and kinetic energies
of the system with respect to the generalized coordinates and speeds. If these ¢; and u; (=dgqi/dr)
were to represent our generalized elastic coordinates, we see that the above differentiations imply that
some terms linear in g; and y; in the energy expressions become terms of zeroth order in ¢; and u;.
More importantly, we see that terms of second order in the generalized coordinates and speeds in the
energy expressions become terms of first order in the resulting equations of motion. Clearly then in
order to obtain equations of motion correct to first order in ¢; and u; we need to have energy
expressions for our system that are correct to second order in these same elastic generalized
coordinates and speeds. More specifically the requirement demands in general that the expressions
for displacements and velocities used in determining potential and kinetic energies be correct to
second order in the elastic coordinates and speeds. Only by doing this can we ensure consistent
linearization.

231

Kane's dynamical equations for a holonomic system of n particles with n generalized speeds

ui:
F,+F =0 (r=1,...,n)
F T v R’ R®
r_iglvr ¢ i ’ i ma
P R P
| s =
vi=ZXv i u+v, , u=q

@

where F, is the generalized active force, F,* is the generalized inertia force, R;* is the inertia force for
particle P; in an inertial reference frame, and vPi is the velocity of this particle in the same frame. v,Pi
is the r-th partial velocity of particle P; in the inertial frame. Using a similar argument as above, it is
easy to see that since the partial velocity has to be correct to first order in the generalized coordinates
and speeds, and again this term is obtained through differentiation of the velocity with respect to the
generalized speeds, the velocity has to be correct to second order in g; and u; until we form the partial
velocities. This is necessary if we want our equations of motion to be consistently linear in the
generalized coordinates and speeds.

3 FORM OF THE EQUATIONS OF MOTION FOR A CHAIN OF ELASTIC
BODIES
The equations of motion of an open chain of elastic bodies can be expressed quite generally

as [10]:
[MRR(x’q) Mpg x. @)][i] [TC,R] [rexr,k]
. 1= +
M(x,g) Mg(x,q) JLY Tek -y
[Fk(x.q,i,u)}
+

Fy(x,q %, u) “=a

(N

where x is a vector of rigid body generalized coordinates; q is a vector of the elastic generalized
coordinates; Mgr, Mpg, Mgr, Mg form the configuration-dependent mass matrix; T¢ is a vector of
control forces (as in joint-torque actuators in a manipulator); T, is a vector of other generalized
external forces; Kgg is a constant stiffness matrix (see equation (2) below) and F is a vector of
nonlinear inertial (coriolis and centripetal) forces.

We are often interested in the important class of systems for which the elastic deformations
remain small so we can ignore terms of second order in ¢ and u. Strictly speaking this requires that
ligll and lluli be infinitesimally small. However we know that if, for example, our flexible body is
modelled as a beam, it is sufficient that the elastic deformations do not exceed one tenth of the length
of the beam in order to use linear Bernoulli-Euler beam theory. At any rate, given this assumption of
small elastic deflections, we could expand the previous equation in order to show more explicitly the
form of the nonlinear terms:

Mpp(x.q) Mpp (x,9) [i] [TC.R] rext.R:l
- = +
Mg (x.q) Mg (x,q) |L4 Tee | Tenk

00 x n .2 182 =2 . .
_[0 K][q]+ Elfm.(x it EE: jz:a.'f“f(x %i%

232

1 n .2 1 n n L.
+ g Zhu (e + 72 ,-Z:f fri; 6)ax; %;
n M, (x,q)
. RR -
* 2O, _[My (x, @)]’

(Mar(x. @) i m(x)q, (Mg, q))ij = m,.(x)q

)

where n above is the number of rigid body coordinates; fi; is a column matrix, but f2;; and f3; are
n+m by m matrices, where m is the number of elastic coordinates.

In light of the discussion in the previous section, we could further write:
1 2, .
f2ij(x) = f2ij(x) + f2‘-j(x)
my,(x)= m}ij(x) + mfl.j(x)

— ol 2
mzij(x)= mw(x)+ may;; (x) 3)
where the superscript 2 terms can only be obtained through the use of displacement and velocity
expressions, in the development of the equations of motion, that are accurate to second order in the
elastic generalized coordinates and speeds (¢ and u). This requires the use of nonlinear strain-
displacement relations [11,12], nonlinear kinematic constraints [6,4], or the use of a nonlinear

"geometric stiffening” term appended to the incorrectly linearized equations of motion [5,13].

The complexity of equations (2) and the difficulty involved in obtaining the nonlinear terms
have prompted attempts at simplification. It is common [10] for example to assume small velocities
and drop all terms nonlinear in rates. This results in rate-linear motion equations that greatly simplify
the dynamicist's task. It has been pointed out [14], however, that in the case of n-link rigid
manipulators in any configuration, the velocity and acceleration terms of the dynamic equations have
the same relative significance at any speed of movement. The fact that the omission of these terms
does not significantly affect simulation results is attributed to the fact that gravity and joint friction
usually overpower inertial terms. These results have not been extended to chains of flexible bodies.
One might argue that in some limit (i.., vanishingly small ¢) the equations of motion of the flexible
multibody system should reduce to those of the rigid multibody system. Then it seems that a good
case could be made for the inclusion of at least nonlinear terms in the rigid body rates in our rate-
linear equations (i.e., f1;j(x)), particularly considering the fact that future, fast, space manipulators
with low joint frictions are part of the class of systems under consideration.

Faced with this, we can proceed in two ways with respect to the equations of motion: we can
be consistent, or we can be selective. To be consistent requires keeping all terms of order ligll and llull
in equation (2), i.e., no simplification. We also encounter the problem that the superscript 2 terms in
equations (3) are not readily available in the general case since they depend on nonlinear elastic
theory or nonlinear kinematics of deformation for their derivation. We could just make do with the
superscript ! terms in equations (3) (standard approach) but this would not be consistent nor
justifiable since there is no a priori reason to guarantee lif;;!ll >> lIf2i2Hl, for example.

We are forced then to be selective, at least in the general case. Now we have to rely mostly
on experience and simulation to determine which terms are important and which negligible under
given conditions. Using the simple example of a beam radially cantilevered to a spinning hub, an
empirical speed limit has been proposed beyond which the standard linear finite element or modal
formulations of the model give erroneous results [5]. This limit is specified as follows: the
magnitude of the spinning rate of the system has to be one order of magnitude less than the
fundamental bending frequency of the beam. We use this simulation result to claim the following:

233

ORIGINAL PAGE IS
OF POOR QUALITY

unless the equations of motion exact to first order in elastic generalized coordinates and speeds are
available, we are limited to rigid body angular rates less than an order of magnitude lower than the
lowest fundamental bending frequency of our system. In view of this, we might be able to model
our system accurately enough by just keeping the rate-linear equations together with terms f; ij- In
other words, we might as well drop all nonlinear terms involving elastic coordinates and speeds. We
further claim that speed or acceleration limits also exist in translational rates or accelerations, arising
from those mass matrix terms that depend on ¢ and cannot be obtained through the standard
approaches. In the next section we investigate these claims analytically and through simulation.

In what follows we shall refer to three types of models for a flexible multibody system under
study. The "consistent” model will be that which retains all terms to first order in ¢ and u, that is, the
consistently linearized model. The "inconsistent” model shall be that obtained through linear
kinematics of deformation, that is, one whose equations omit the superscript 2 terms mentioned
above. Finally, a "ruthlessly linearized," or simply "ruthless" model, shall be one in which the
nonlinear terms which include elastic coordinates and speeds are ignored, including those terms in
the mass matrix which depend on elastic coordinates. In other words, in our "ruthless” model
equations we ignore terms f;; and f3;, and we assume the mass matrix depends on rigid body

configuration only.

1.2
A CONSBTENT]
» ! ~——

3 L
z L \ RUTHLESS
»
3 L ~
4 ~~
n.n A= \._\
[~ P ...
[*] S
z -
2 Bf T
i S ~..
a ..
2 \'-.
o8 ..
g «F INCONSISTENT -
3
€
2

K-35

=
° ! 1 1 Lol "] 1 !
° 1 2 3 . K] ¥4 8 9 1

Fig. 1: Single Beam Attached Fig. 2: Fundamental Bending
to a Moving Base Frequency of Spinning Beam vs Spin Rate

4 TwO CASE STUDIES
4.1 One flexible body example

Consider a simple, slender, uniform beam cantilevered to a rigid body free to move in the
plane (see Fig. 1). The frame N, defined by the unit vectors nj, nz, n3, is inertial, and we
introduce the rotating frame A defined by the unit vectors a;, a3, a3, attached to body A and whose
a; axis lies along the undeformed neutral axis of the beam B initially. The consistently linearized
equations of motion for this system have been derived using Kane's dynamical equations together
with nonlinear strain-displacement relations. Shear and rotary inertia effects have been ignored (i.c.,
slender beam assumption). The equations of motion, exact to first-order in generalized elastic

coordinates and speeds are [15]:

234

- n -
m, + my 0 -YE.q e 0
| =1 [v' 7
0 m, + mp bmy + e E, Vi
n
2 . :
—ZlEiql. bmy +e bmy+2eb+Ip+1, .. bE,+F, .| v, |_
t= :
" 9
_; H;i4; Ej bEj + Fj ij .
_ n -
2 .
(m, + myWyv, + vZ(bmy + €) +2v32:1Ei q;
1=
n
~(m, + mg vy, + v322Ei q;
i=1
n
w2v3zlEiqi - vy (bmy + €) +
n n n
2 2
— v E; + v ZlGijqi V3 Zl(b“ij + 1,09, — Vs El-uijqi
1= 1= =
i : |
_ 0 -
0 - .
0 :
: q;
~H, .|}
ij
[- J

where following Kane et al. [16] we have defined:
L L
mp = J pdx, e = jopdx, I, EJ x2pdx
0 0 0
L . L
Hy= [B0, 600, 00, E; = [6,)pdx

L
F,= IOLx¢2‘. (x)pdx, G= [, (x)8,,(x)pdx
0

GJ =1...,n)
and we have further defined:

235

(D

L x
uy=| P 608, (0)oas,

L x) .
n;= onp Io¢2i (0)9,, (0)dodx

In deriving the above equations, we have assumed no external forces act on the beam for simplicity.
my is the mass of the rigid body A; v; and v; are translational speeds of body A in the directions of
a; and aj respectively; v3 is the rotational speed of body A; g; are the n generalized elastic
coordinates, where we have discretized the transverse elastic deformation of the beam using assumed
modes.

Specializing equation (1) to the prescribed motion of uniform rotation of the base,
vi=v2=0, v3=£2=constant
we get:
n n
- 2
P ‘)::1[11,.]. + Qb+ — G‘.j)]qi =0
(j =1,...,n) (2)

Note that the terms u;; and 1;; cannot be obtained using linear kinematics of deformation but are
obtained through the use of nonlinear strain-displacement relations. The term

2
Qb + M)

is known as the geometric stiffness matrix for this specialized rigid body motion (rotation). It is easy
to observe from just this analytical study that in the absence of these terms our equations lose

stiffness with increasing angular rates {2, since:

2 L " "
(K) = Hy- 2G;=['EIg;, (x)9) (x)dx

2. L
-Q {) p¢2,' (x)¢21 (x)dx 3)
We note that for a variety of mode shapes [17]:
L)) 2 2
0 08,0 = L5000, (1) (%]—) dx
L, i=j
={ 0 i=xj
P=wr? L
“ENH @

SO

236

and it is clear that as long as {2 << @; the incorrect de-stiffening effect will not be apparent. This
clearly evidences the angular speed limit mentioned at the end of the previous section. As shall be
seen, this rotational rigid body rate limit is the most restrictive on the validity of other than the
correctly linearized equations for the maneuvers considered. Figure 2 shows the first bending
eigenfrequency as a function of £2, as predicted by the three modelling approaches, each using the
same assumed modes.

If we now specialize equation (1) to the prescribed motion of constant translational
acceleration:

dui/dt = g = constant, vy=v3=0
we obtain:

1

n
2G.q. +
i=1 Y

nLeae

(Hy = &) q, =0
1,...,n) (5)

Hij is in this case the operative geometric stiffness matrix. Now we can see that for g large enough,
we again obtain de-stiffening. Another way of looking at it is to realize that for g large enough the
stiffness matrix becomes non-positive definite which implies that the beam buckles due to its own
weight. The predicted buckling is correct, and would have been lost with the inconsistently or the
ruthlessly linearized approaches. This suggests that a translational rate or acceleration limit also
exists heyond which our model is again grossly incorrect if we do not use equations exact to first
order. Inspection of equation (1) suggests that another rate limit exists, this one on the product of
rigid body rotational and translational rates, vov3. Banerjee's recent work [13] suggests that as many
as 12 such independent limits on rigid body motion exist and must be considered for general three-
dimensional motion. It is doubtful that for typical stop-to stop slew and repositioning maneuvers
these limits become operative, since the magnitude of the applied forces is limited by the requirement
that the flexible body not deform excessively. This anticipation motivates the case study of the next
section.

(J

4.2 Two-link flexible arm example

Consider a two-link flexible, revolute arm composed of three rigid bodies connected by two
slender uniform beams (see Fig. 3). The equations of motion for this system were derived using
Kane's dynamical equations together with nonlinear strain-displacement relations. The equations are
thus exact to first order in the beams' elastic generalized coordinates and speeds. We ignore
independent axial extensions of the beams (i.e., the axial strain at the neutral axis is assumed zero for
each beam). The elbow joint is actually modelled as two bodies: one attached to link 1 in a
cantilevered way and the other, free to rotate with respect to the first, with link 2 attached to it in a
cantilevered way also. Both elbow bodies are rigid and share the hinge point but their mass centers
are allowed to be offset from the hinge point. As in the previous examples, the continuous
transverse displacements of the beams are discretized using an assumed modes approach. One
percent modal damping is added to the model to represent structural damping. Actuation is assumed
in the form of shoulder and elbow torques. The equations of motion for this system, which are quite
extensive, are available in [12].

An examination of the equations of motion for this system makes it clear that the complexity
of the mass matrix and nonlinear inertial terms could be diminished immensely by dropping most
terms involving the generalized elastic coordinates and speeds (i.e., the "ruthless” case). It would be
advantageous to know, then, if these terms have a significant effect on the dynamics of a chain of
elastic bodies if we are limited to the low rotational speeds and translational accelerations encountered
during slew maneuvers with joint torques limited by the requirement that flexible deflections remain
small. In order to investigate this, we propose to examine the three models mentioned at the end of
section three, to note, consistent, inconsistent, and ruthless, as applied to the two link arm. The

237

complexity of the motion equations precludes an analytical study akin to the one presented in the
previous section. We will therefore rely entirely on numerical simulation and compare the
performance of the three "models” of the arm when it is subjected to a smooth slew maneuver.

5 NUMERICAL SIMULATION

The motion equations for the two-link, flexible, planar manipulator, consistently linearized in
small elastic deflections and speeds, were programmed in FORTRAN and implemented in a
vV AXstation 2000. The code allows for a maximum of four cantilevered modes per beam. The mass
matrix is inverted using LU decomposition and a Runge-Kutta fourth-order scheme with adaptive
time step is utilized for the time integration [18]. Energy and angular momentum checks are built into
the simulation. Table 1 shows the physical properties assumed for the arm (see also Fig. 3). These
numbers were chosen to mimic an actual experimental testbed built at Martin Marietta by Dr. Eric
Schmitz [19].

Physical Properties of Planar Manipulator with Two Flexible Links

Mass of shoulder body (kg) 20.0 Length of link 1 (m) 0.9144

Mass density of link 1 (kg/m) 1.33937 Length of link 2 (m) 0.9144

Mass of elbow body (kg) 14.0

Mass density of link 2 (kg/m) 0.669685 Other lengths (see Fig. 3):

Mass of tip body (kg) 2.0 b; (m) 0.0762

b2 (m) 0.0762

Moments of Inertia (about axis perpendicular to plane): bz (m) 0.0127

Shoulder body (kgm?) 0.01 b, (m) 0.0508

Elbow body (kgm?) 0.03

Tip body (kgm?) 0.01

Table 1: Physical Properties of the Two-link Manipulator

All the trajectories presented below were run in open loop after the torques had been
computed from the inverse dynamics problem (given the desired angular trajectories) assuming rigid
links for the manipulator. For all simulation runs, only two assumed modes per link were used,
since this gave adequate results and was computationally much cheaper than running the full four
modes per link. With two modes per link, the first two system vibration frequencies were obtained
to within three percent of the value obtained using four modes per link.

In the following, reference is made to time-scaled trajectories. Time-scaling of nominal
trajectories [20] is achieved by replacing time as the independent variable by the new variable

r=o¢, a>0

where o is a constant. When ¢ is greater than one, the trajectory is sped up, while if a is less than
one it is slowed down. From this it is apparent that rates scale like a, while accelerations, and thus

torques, scale like the square of a. These relations are used in the following sections to select a
scaling factor that yields a desired maximum value of angular rate, or a given maximum value of
torque to obtain desired maximum link tip deflections.

5.1 A Smooth Slew Maneuver

In section 4.1 it was predicted that the more severe limit on the validity of other than
consistently linearized equations would be the limit on rigid body angular rates. In the case of chains
of flexible bodies, as exemplified by the two-link manipulator in this simulation, the nonlinearity
arising from dependence on configuration makes it difficult to select a "characteristic" angular rate in

238

ORIGINAL PAGE IS
OF POOR QUALITY

the general case. This suggests a case by case approach. Several different slews were compared in
reference [12]. We report here only one, perhaps the most interesting.

The smooth trajectory is obtained by assuming a form of the joint angular time histories of the
equivalent rigid manipulator that is quintic in time. This allows the specification of angle, angular
rate and angular acceleration at the initial and final times of the trajectories [21]. This trajectory is a
deployment maneuver. Both links undergo significant rotational motion, and the outboard link
translates. Fig. 4 shows the computed torques for the nominal trajectory.

[
o o
R180W TORQUE:
o -
Y

SUOULDER TORQUE
Lo
e oo o
'

e L 2 3 ¢ s e 1 2z 3 ¢« 3
TIME IN SECONDS TIME [N SECONDS
Fig. 3: Schematic of two-link Fig. 4: Computed Torques for
Planar Manipulator Second Smooth Trajectory (Nm)

Figure 5 shows the nominal trajectory. In this figure, plots for both the ruthless and the
consistent models have been overlaid. The inconsistent model fails for this case. The failure is a
numerical divergence during time integration. This is perhaps related to the fact that the angular rates
for the nominal maneuver are as large as thirty percent of the "fundamental vibration frequency.”
The system frequencies for the manipulator with locked joints are seen to fluctuate from 3 rad/sec to
4 rad/sec for corresponding elbow relative angles of zero to 135 degrees [12]. For this reason, in the
case at hand reference is made to "one" fundamental frequency, and it is assumed that it lies in the
range specified above and is about 3.5 rad/sec. For the two models shown, the agreement is again
excellent for the shoulder angle and tip deflections, with the elbow angular position being off by only
a maximum of ten percent relative error.

Convergence of all three models is achieved if the nominal maneuver is slowed down

(@=0.1685). Figure 6 shows that for this case, all three models yield identical results. This
confirms the predictions in section 4.1, and further suggests that within the limit of validity of the
inconsistent model, the ruthless is as good as the inconsistent, and actually better since it is much
easier to obtain. Note that the angular rates are well within ten percent of the fundamental.

The last case considered consists of the nominal trajectory scaled upwards in time (a=1.2).
As in the previous section, it was desired to reach the "hard" simulation limit of link tip deflections of
about ten percent of the link lengths. As Figure 7 shows, only the ruthless model did not fail under
the given speed-up of the trajectory, even though tip deflections should only be about four percent of
link lengths. This divergence is traceable to a near singularity of the mass matrix, related to the fact
that the links are modeled with distributed mass, while they are in fact nearly "massless springs.”
The manipulator mass distribution is dominated by the elbow and the tip mass. Reference [12]
reports that the ratio of the largest to smallest mass matrix singular values is on the order of 106, and
that this range is configuration dependent. It is not known why this numerical ill-conditioning of the

239

0°']=0 Y4 JaAnauej MIS yjooms :5 ‘Jig

SANOJ3IS NI INIL

SANOJIS NI INILL

) 4 £ e k¢

ELBOW ANGULAR
RATE IN DEG/SEC

J
)
(=]

SHOULDER ANGULAR

RATE IN DEG/SEC

|
= [N
o O [=] Q

[} |

[«] » (2] [+ »
(o] o [~] o o o
s /

y '-i} ==

(2
o

IN SYSTEM ANGULAR

RELATIVE ERROR

MOMENTUM

RELATIVE ERROR

IN SYSTEM ENERGY

1 S$00°

10°

vy

vy

Y

ELBOW ANGLE
IN DEGREES

OUTBOARD TIP

DEFLECTION IN CM

SHOULDER ANGLE
IN DEGREES

SSATHLNE -
INTLSISNOD

INBOARD TIP

iz
ie

DEFLECTION IN CM

Yy

Ive

D UNA JIARIUBIN MIS Ylooms :9 “Big

S$891°0

SANOJIS NI IWILL-

SANOJIS NI IMLL

oz

0

o1

oz

og

0T

ELBOW ANGULAR
RATE IN DEG/SEC

SHOULDER ANGULAR
RATE IN DEG/SEC

o
& & O

o o o N O Wb N o N »
YT rYY Y YT YTy (= e S NARS AR RAS SR as e s
- H-

o

N
» orl

(4]

o

RELATIVE ERROR
IN SYSTEM ANGULAR

RELATIVE ERROR
IN SYSTEM ENERGY

MOMENTUM

! .] .' .
-l (=] [=] . . (=] o .
o [=] [=] Q [] o Q
- [3] (2] [[(3] o []
\EM AR S i ot o moe e o o Q vy v -y
b ph

o

o g"

ELBOW ANGLE SHOULDER ANGLE
IN DEGREES IN DEGREES
[< T T SO)‘-) |
e O O O N » O O o o] [« N N
o © ©0 © o © © © (=] [=] o Q o o
O T © (1 v e
-1 |
o Qo
i
st 8t 24 \
"o
cCOoz
oS 2Z:n
Ega
g §—8dn
agz
-
OUTBOARD TIP INBOARD TIP
DEFLECTION IN CM DEFLECTION IN CM
|) ! |
R o =} . © o o © o o
[o] (4] o 2] [] © [] [*] (X] [} (]
| o >m) ~ i |
[gl B
(=] o

(174

ot

—

oz

oe

wi

Z°1=D [PIA JAnauely Mals Yooms :L 314

4 ¥

€

SONODIS NI JAWILL

4 T

SANODJIS NI JIWILL
€

INBOARD TIP
DEFLECTION IN CM

OUTBOARD TIP
DEFLECTION IN CM

[
N O N » O

[- T 5
eTYrrTTYY \ALS RAS
L ¥ ‘L‘ L]
\‘l
3
-
L4
- -
-
‘—’
-
-
{
NG
-~
-
\\
\-\
,
A Y
L)
’/
.

ELBOW ANGLE

SHOULDER ANGLE

IN DEGREES IN DEGREES
|
e e e pe - | | | |
> O B O N » O O o [} =] » N N
©O 0O O ©0 O 0 0 o Q o o o o o o
O v prTYrTYY YT TTYYTTEYTTYYTY O ryryrrrrrvYerYTYY vy
[} \
4 \
/’ \\
Ll od /’ Ll od \\
P ~
/’ s
P S
P s
N ’,’ N \\\
I” ! \\\
1
/ [} \\
Wi | (T3 3 ! \
\
. ” \
S
N 'S = '
;)
n
ELBOW ANGULAR SHOULDER ANGULAR
RATE IN DEG/SEC RATE IN DEG/SEC
[} |]) I .
[+] [» N N g » N D
[«] o Q Q [-] [+ o 0 0 6 0 © o ©
(=] vy o ‘W
fay %
i =
T’:. ,‘““m
[o o :._ b -.‘_‘
l}) a;:?
{.
[~ N o 0 [o Jn"
“_‘ ‘,r’—
u L ~\‘P\ u L "/
1o I
> >

mass matrix appears to be exacerbated by including dependence upon elastic deformation, as in the
consistent model.

In summary, the above results again show a strong correlation between the limit of validity of
the inconsistent model and the maximum values of angular rates. In this case, however, no
"characteristic" rigid body rate is apparent. The limit at which the inconsistent model fails seems to
be even before any of the two angular rates (shoulder or elbow) reach ten percent of the fundamental
vibration frequency. A strong point can still be made, nevertheless, in that the ruthless model is as
good as the inconsistent whenever the inconsistent is valid, and more conservative since the ruthless
model does not fail. Even at high angular rates the ruthless model yields results that are
quantitatively very close to the consistent model results.

Finally, it is worth pointing out the excellent agreement in the tip deflections for both links, in
all cases. This is probably due to the fact that the equations of motion (see [12]) are elastically
decoupled, and, while inertially coupled, the elastic degrees of freedom mass matrix (Mg of section
3) does not depend on elastic nonlinear terms due to linearization. Also, the agreement in shoulder
angle and angular rates is remarkable. This indicates that, depending on what state variable is of
interest in a given trajectory, the ruthless model will be as good as the more cumbersome consistent
model. In all cases, the ruthless is more conservative and better conditioned than the inconsistent
model.

5.2 Other Trajectories

The above qualitative results for the smooth slew maneuver have also been confirmed for two
other maneuvers: a smooth maneuver in which the elbow motion is kept to a minimum and the two-
link manipulator is slewed in extended configuration like a "beam"; and a time-optimal, bang-bang
control slew maneuver where joint torques were assumed limited. Details of these results, together
with an analysis of numerical considerations, can be found in [12].

6 SUMMARY AND CONCLUSIONS

Having looked into the general form of the linearized dynamics equations for chains of
flexible bodies undergoing large rigid body motions, but small elastic deflections, we concluded that
some terms cannot be obtained through the use of linear strain-displacement relations. These terms
were seen to be critical in the simple rotating beam example as they provide the geometric stiffness
terms necessary to obtain physical results. The absence of these terms in inconsistently linearized
equations limits their validity to relatively gentle rigid body motions. The fact that these terms are
unobtainable for the general case of an arbitrary flexible body led us to consider possible
simplifications of the general motion equations, consistent with such restrictions on their
applicability.

The two alternative models studied, the ruthlessly linearized model and the inconsistent
model, are subject to several limits in applicability. While the consistent model requires we keep
elastic coordinates and speeds small, the two alternative models will only be accurate if we further
maintain low rigid body angular rates. There also exists some translational acceleration or speed limit
that needs to be considered, although for the cases studied this limit was of no consequence. Within
the domain of validity of both simplified models, it appears the ruthless model yields results as
accurate as the correct consistently linearized model. In addition, preliminary results promise that the
ruthless model will result in large reductions in computational time in the simulation of large flexible
multibody systems. This coupled to the simplification of the dynamicist's task inherent in the
adoption of ruthlessly linearized models makes this option an attractive alternative.

From the above it is clear that the inconsistent model should never be used. Further, the
more cumbersome and hard to obtain consistent model should only be used when necessary (i.e.,
when the domain of validity of the simplified models is exceeded). Finally, it is our strong belief that
the ruthless model deserves widespread use.

Simulation misbehavior at certain trajectories for relatively high rigid body angular rates was
tracked down to numerical ill-conditioning of the configuration dependent mass matrix. This
problem was attributed to modelling error inherent in choosing cantilever (clamped-free) modes to

243

model the flexible deflections of the manipulator links. In ref. [12] it is suggested that this results in
effectively modelling one (or more) massless degrees of freedom. Thus it became apparent that
physical modelling of bodies, and adequate selection of assumed modes and numerical procedures,
can be as important as sensible simplifications of the motion equations.

ACKNOWLEDGEMENT

This research work was supported in part by a National Science Foundation Graduate
Fellowship.

REFERENCES

[1] User's Manual for TREETOPS, "A Control System Simulation for Structures with a Tree

Topology," Singh, Likins, et al., NASA contract no. NAS8-34588, Rev. B, November 1984.

[2] Bodley, C. S., et al., "A Digital Computer Program for the Dynamic Interaction Simulation of

Controls and Structure (DISCOS)," Vols. 1 & 2, NASA Technical Paper 1219, May 1978.

[3] Ryan, R. R., "Flexible Multibody Dynamics: Problems and Solutions," JPL D-5190, Vol. I,

Proceedings of the Workshop on Multibody Simulation, April 15, 1988, pp. 103-190.

[4] Ryan, R. R., "Flexibility Modeling Methods in Multibody Dynamics," Paper no. AAS 87-431,

AAS/AIAA Astrodynamics Specialist Conference, Kalispell, Montana, August 10-13, 1987.

[5] Spanos, J., Laskin, R. A., "Geometric Nonlinear Effects in Simple Rotating Systems," JPL D-

5190, Vol. I, Proceedings of the Workshop on Multibody Simulation, April 15, 1988, pp. 191-218.

[6] Kane, T. R, Ryan, R. R,, Banerjee, A. K., "Dynamics of a Cantilever Beam Attached to a

Moving Base," Journal of Guidance, Control, and Dynamics, Vol. 10, No. 2, March-April 1987,

pp. 139-151.

[7]1 Meirovitch, L., Elements of Vibration Analysis, 2nd ed., McGraw-Hill Book Company, 1986.

[8] Pars, L. A., A Treatise on Analytical Dynamics, John Wiley & Sons, Inc., New York, N.Y.,

1965.

[9] Kane, T. R,, Levinson, D. A., Dynamics: Theory and Applications, McGraw -Hill Book

Company, 1985.

[10] Hughes, P. C., "Multibody Dynamics for Space Station Manipulators: Dynamics of a Chain of

Elastic Bodies," DYNACON Report SS-2, DYNACON Enterprises Ltd., Feb. 1985.

[11] Laskin, R. A., Likins, P. W., Longman, R. W., "Dynamical Equations of a Free-Free Beam

Subject to Large Overall Motions,” AAS/AIAA Astrodynamics Conference, Lake Tahoe, NV,

August 3-5, 1981.

[12] Padilla, C.E., "Nonlinear Strain-Displacement Relations in the Dynamics of a Two-link

Flexible Manipulator," M.S. Thesis, Dept. of Aeronautics and Astronautics, Massachusetts Institute

of Technology, May 1989.

[13] Banerjee, A.K., Dickens, J.M., "Dynamics of an Arbitrary Flexible Body Undergoing Large

Rotation and Translation with Small Vibration," AIAA Structures, Structural Dynamics and Materials

Conference, Mobile, AL, April 3-5, 1989.

[14] Brady, M., Hollerbach, J. M,, et al., Robot Motion: Planning and Control, MIT Press,

Cambridge, MA, 1982, pp 55-60.

[81%] 8vcz);n Flotow, A. H., Lecture Notes, MIT Aeronautics and Astronautics Dept., April 1988, pp.
50-858.

[16] Kane, T. R., Likins, P. W., Levinson, D. A., Spacecraft Dynamics, McGraw-Hill Book

Company, 1983, pp. 318-326.

[17] Blevins, R.D., Formulas for Natural Frequency and Mode Shape, Robert E. Krieger

Publishing Company, Malabar, Florida, 1979.

[18] Press, W.H., Flanner, B.P., Teukolsky, S.A., Vetterling, W.T., Numerical Recipes: The Art

of Scientific Computing, Cambridge University Press, Cambridge, London, 1986, pp. 550-559.

[19] Schmitz, E., “Dynamics and Control of a Planar Manipulator with Elastic Links,"” AAS 87-047,
pp. 445-456.

[20] Hollerbach, J.M., "Dynamic Scaling of Manipulator Trajectories,” Journal of Dynamic
Systems, Measurement, and Control, Vol. 106, March 1984, pp. 102-106.

[21] Craig, J.J., Introduction to Robotics Mechanics and Control, Addison-Wesley Publishing
Company, 1986, pp.191-219.

245

N90-23015

Nonlinear Finite Element Formulation for the
Large Displacement Analysis in
Multibody System Dynamics

J.- Rismantab-Sany
B. Chang
A. A Shabana
Department of Mechanical Engineering
University of Illinois at Chicago

Abstract

A total Lagrangian finite element formulation for the deformable bodies
in multibody mechanical systems that undergo finite relative rotations is
developed. The deformable bodies are discretized using finite element
methods. The shape functions that are used to describe the displacement
field are required to include the rigid body modes that describe only large
transiational displacements. This does not impose any limitations on the
technique because most commonly used shape functions satisfy this
requirement. The configuration of an element is defined using four sets of
coordinate systems: Body, Element, Intermediate element, Global. The
body coordinate system serves as a unique standard for the assembly of
the elements forming the deformable body. The element coordinate system
is rigidly attached to the element and therefore it translates and rotates
with the element. The intermediate element coordinate system, whose axes
are initially paralle! to the element axes, has an origin which is rigidly
attached to the origin of the body coordinate system and is used to
conveniently describe the configuration of the element in undeformed state
with respect to the body coordinate system. A mixed sets of Cartesian
translational and rotational coordinates are used in order to define the
location and orientation of the deformable body coordinate system with
respect to global inertial frame of reference. The nonlinear dynamic
equations of motion developed, for deformable multibody systems that
undergo large relative displacements, are expressed in terms of a unique
set of time-used. These invariants can be generated for each finite element
prior to dynamic analysis. The invariants of the deformable body can be
obtained by assembling the invariants of the elements using a standard
finite element processor. The nonlinear formulation presented in this paper
has been implemented in the general purpose computer program DAMS
(Dynamic Analysis of Multibody Systems) that automatically constructs and
numerically solves the nonlinear equations of motion of multibody systems
consisting of interconnected rigid and deformable bodies. The linearization
used in other finite element methods (such as the updated Lagrangian
formulation) for describing the large displacements of deformable bodies is
also discussed.

N90-23016

Optimum Control Forces for Multibody Systems
with Intermittent Motion

S.K.Ider and F. M. L. Amirouche’
Department of Mechanical Engineering
University of Illinois at Chicago

Abstract

It is common practice in the analysis of constrained multibody systems
to apply the constraints as a set of separate algebraic equations and embed
them into the governing equations for the specified time of the simulation.
However more realistic systems are those where different constraints could
be applied at different times, and hence the multibody system must be able
to accommodate for the sudden changes. If the multibody system doesn't
develop the appropriate initial conditions to satisfy the constraints
whenever they are applied, the system performance will then be hampered
and it will fail to accomplish its tasks.

If a multibody system is subjected to constraint equations that are
released and applied at different times during the motion they characterize
the so-called intermittent constraints. This paper objective is to address
the continuity of motion when a dynamical system is suddenly subjected to
constraint conditions. Motion discontinuity due to the initial constraint
violation is avoided by prior control forces that adjust the motion and yield
velocity and acceleration consistent at the point of application of the
constraint. The optimum control forces are determined for a specified
control interval. The method proposed provides an optimum adjustment of
the system's motion and assures that the stresses developed at the system
components are kept within acceptable limits. The procedures developed
will be illustrated making use of inequality constraints applied to obstacle
avoidance problems in robotics.

*PhD, Member ASME
"Assistant Professor, Member ASME, AIAA

247

N9O-23017

Development of Efficient Computer Program for Dynamic Simulation of
Telerobotic Manipulation

J. Chen & Y. J. Ou

Department of Mechanical Engineering
University of Maryland
College Park, MD 20742

Abstract

Research in robot control has generated interests in computationally
efficient forms of dynamic equations for multi-body systems. For a simply
connected open-loop linkage, dynamic equations arranged in recursive form has
been found to be particularly efficient. A general computer program capable of
simulating open-loop manipulator with arbitrary number of links has been
developed based on an efficient recursive form of Kane's dynamic equations.
Also included in the program is some of the important dynamics of the Joint
drive system, i.e., the rotational effect of the motor rotors. Further
efficiency 1s achieved by the use of symbolic manipulation program to generate
the Fortran simulation program tailored for a specific manipulator based on
the parameter values given. This paper describes the formulations and the
validation of the program, and it also shows some results.

Introduction

In the development of a robotic manipulator, simulation program can be an
important design tool. It can be used to support detailed mechanical design by
revealing the constraint forces and torques at different locations during
certain maneuvers. It can also be applied to test different control laws
without concerns of damaging the actual manipulators. If real time simulation
can be developed, training of telerobot operators and testing of actual
control hardware and software can become possible.

The success of a simulation in providing the useful and accurate
information depends on the model fidelity, the formulation of equations of
motion and the numerical solution of the equations. There is no such thing as
"the" simulation of a dynamical system because the fidelity of the model
determines what the results are like. There is always room for higher fidelity
and so there is no end to it. But quite often, a modest increase of model
fidelity is accompanied by a significant increase in equation complexity and
numerical difficulty, and thus computation time. To achieve reasonable
efficiency in the computation, one has to investigate the merits of different
solution algorithms, different dynamical formulations and different levels of
model fidelity. Additionally, one has to validate that the program is
correctly representing the model.

Many researchers have worked on efficient formulations of dynamic
equations for robot manipulators[2-9]. Most of them model robot as consisting
of rigid bodies connected together with revolute or translational joints.
Details of the joint drive systems have been mostly ignored. It is shown in
[7] that joint drive systems have potentially significant effects on robot
dynamics and hence should be included in the model. Also shown in [7] is a
procedure to obtain the dynamical equations of a robot with a speed-reduction
drive system from the equations of a direct drive robot. This procedure will
be followed to develop a more comprehensive robot simulation program.

It has been known [2,5,6] that the important aspect of efficient
formulations is the recursive development of kinematic and dynamic quantities
to reduce the number of transformations among vector bases. It is also known
that recursive Lagrange’s formulation is still less efficient than the
recursive Newton-Euler’'s formulations. However, Newton-Euler’s formulation
will not be advantageous if more complicated model of the system is analyzed.
Since the program under development is anticipated to be expanded for more
comprehensive modeling of manipulator systems, Kane’s method is chosen because
of its systematic features. An efficient formulation has been developed by
applying recursive schemes in Kane's equations for a general manipulator
system. The forward and backward recursions are established based on the
bounds on the summation signs in the equations.

If properly developed, it is expected that a customized simulation
program for a particular manipulator should be more efficlent than a general
purpose simulation program. For the development of simulation program, there
is always a trade-off between generality and efficiency. But through the
application of symbolic manipulation to eliminate unnecessary computations
that occur for a particular model, it is possible to improve simultaneously
the generality and the efficiency of a simulation program. Symbolic
manipulation language MACSYMA has been used to develop a program called MSP
(Manipulator Simulation Program) for manipulators that are made up of a single
chain of any number of rigid bodies connected by revolute joints. Gear
reduction effects of some simple joint drive systems are also efficiently
incorporated in the program following the procedure in [71.

Independent formulation and programming of the system kinetic energy and
the system angular momentum about a base-fixed point on the 1st joint axis are
developed for validation purposes. Test cases which involve conservation of
these quantities have been selected to validate the simulation programs. The
objective of this paper is to present the formulation involved in the
development of this program. Computation efficiency and significance of gear
reduction effect are also to be discussed.

Mathematic Model

An open chain manipulator with N degrees of freedom as shown in Fig. 1 is
analyzed for the development of MSP. Each link is driven with a motor and a
gear reduction mechanism, an example of which is shown in Fig. 2. The base is
considered fixed in the earth E (assumed to be an inertial reference frame).
Couples are generated at motors through electromagnetic interactions, and gear
reductions amplify the resulted moments on the links about the joints. It is
assumed that the motor rotor and its rigidly attached part is the only massive
element in a joint drive system that will contribute to the modifications of
the equations of motion from that of a multibody direct drive system.

The links are labeled consecutively B1 to Bu starting from the link
connected to the base. The base is referred to as link Bo. The ideal revolute
Jjoints between links are numbered such that joint i connects link Bi to link

B. .. An orthogonal unit vector basis x_, Y, and z, fixed in Bi is defined in

i-1 =i
such a way that the unit vector z. (i =1,..., N) is directed along the axis

of joint i. A particular configuration called the null configuration of a
manipulator is one in which relative joint angles between links are all equal
to zeros. The joint angles q, {1t =1,..., N) are positive when right-handed

rotation from the null configuration about z, occurs. In this paper, the motor
driving link B, is assumed to be mounted on link B, . and unit vector e, is
defined to be parallei to the rotation axis of the motor rotor.

49

Fig. 1. Multi-Link System

Motor Rotor zi
. L\——y.]
&l

5
B

\W/

Bi.
! N ,

Fig. 2. Motor Rotor and Gear Reduction Mechanism

250

Formulation of Dynamical Equation

The following presentation of the formulations will be in terms of
vectors and dyadics which are quantities independent of unit vector bases and
can be represented by column and square matrices, respectively, when expressed
in a particular basis.

Kane’s dynamical equations[1] are
F +F =0 (r=1,...,N) (1)

where Fr and F: are the generalized active and inertia forces associated with

the r-th generalized speed, respectively. Since the system is holonomic, the
number of generalized speeds are equal to the number of degrees of freedom.
Here the generalized speeds are chosen to be simply the derivatives of the
generalized coordinates. Assuming that the only contributing active forces are
the motor torques Trgr, the gravitational forces and the external load on the

last link, represented by a force Ee acting through the mass center and a
torque Ie, one can write
= L] . e * e —
F‘r' - “rTr * i§1 Mi(\—li,r G) + Mﬂ,r E o+ 9N,r I (r 1,....N) (2)
where [is the gear ratio for the r-th joint, Mi is the mass of i-th link, G

is the gravitational acceleration vector, and Mir and w, . are the r-th
partial velocity of B:, mass center of Bi’ and tﬁe r-th ﬁartial angular
velocity of Bi, in E, respectively. The generalized inertia forces are due to

the inertia force and torque associated with each link, and they are
N

* N .
Foo= - @MY g & o (L oaF o

o ow.) (r=1,...,N) (3)

1 =

i—>

where a. and «. are the acceleration of B: and the angular acceleration of B,
in E, respectively, and ii is the central inertia dyadic of Bi' Therefore,

the dynamic equations become
N N

& MY) v g e o (L g+ ex L)
N
= “rTr M iZ1 Mi((—; : \—,i r) * !N e Ee * QN . Ie (r=1,....N) (4)
From Fig. 1, we can obtain the following kinematic equations.
i
Q‘ = jz'l qj ZJ (i = 1, .,N) (5)
i
_ * C =
v, = jz1 qj(gjx gj” (t =1,...,N) (6)
= i =
W = z Er (i =1,...,N) (7)
= ¢ i =
!Lr— (grx gﬁ) Er (i =1,...,N) (8)
where g?i is the position vector from Qj to B: and
i_ 1 if i=zr _
e={6 if +31% (Lr=1,...,0) (9)
The angular and linear accelerations can be derived as
i
a, = jZ1 q; z; + & (1=1,...,N) (10)
i
_ .. ¢ » _
a, = 181 q; (gjx gji) + a) (1=1,...,N) (11)
251

o, = };1 a;(e; x z;) (12)

= c
a; = ;1 ,?F(ijzji) 4 .
» c * d L
) a) x g” t W, x(g_:i x 3”)+ 181 qujX(_HE Lﬁ) (13)
and g“ is the position vector from Qj to Qi' A left superscript on a time
differentiation symbol represents the reference frame in which the
differentiation is to be performed[1]. With equations (5-13) substituted, the
equations of motion can be rewritten as
N

oA d =nT - T (r=1,...,N) (14)
where
A=z - f . (15)
r T ™
N
= T . c c
£..= j;i[;j z, + Mj £, % (z,x gij)] (izr) (16)
T =2z -1 (17)
r r r
N
T . _ e e
Ir—(‘ZIM‘(r xa)+T]} T (r“xf'_) (18)
a. = a’ -G (19)
i i
I, = 1;» o) +exl- e (20)

Because of symmetry, only upper triangular terms of matrix [A;i] need to be
evaluated. The following formulations are used to evaluate the vector quantity

f ..
=ri

gii= Li *Z, (i=1,...,N) (21)
y T L IRY
L= il - o e 0
_ L _ t * L
= Lt B+ 2(n 0, —m)u —um)—m LinBicisn
(1 = N-1,...,1) (22)
- 2 - 2 _ L L
K, = L; + M) oy £hl 2,”M YUES) Y = TigaEician]
" (i =1,...,N) (23)
* c
L, =& M L
o oL - N
=), + M S+ (zm D Eheieny (1 =N-1,...,2) (24)

The dyadic quantity §‘ is a constant in Bi’ i.e, if gi is expressed in terms
of Xx. i X Z basis, the coefficients are constants. Equations (22) and (24)

are backward recursive formulas that can be evaluated by establishing the
following:

T €42 c c
Iy = Ly * MI(eg))Y - py oy
8 /0
=;”/" (25)
r, = M, &, (26)
8 /0

where 1 is the inertia dyadic of B, relative to Q.. For the off-diagonal
terms of [Aﬁ], a backward recursive formula involving r, i.e.,

252

- L * i N,..., 2
iri— £(r+1)i M Er(|'+1)x (Zix I:i) (r i-1,..., l)

can be used with gﬁ being the starting vector that should have been evaluated

(27)

from equation {(21).

For ir, the following forward recursive formulations can be used to
evaluate the necessary quantities.

W, = W, .+ q.2, (1 =1,...,N) (28)
i i-1 i=i

@ =o' +q(wxz) (1 =1,...,N) (29)

=i =i-1 i =i i

- A -— . c = . L =

U, =3, " AL S U YAt Dy (1 =1,....N) (30)
where

A = g}x U+ (gix g)'(gix U) (1 =1,...,N) (31)
The starting values for equations (28-30) are

w, =0 (32)

ay =0 (33)

u, =G (34)

The introduction of dyadic quantity éi is to reduce the overall computation by

reusing it in two equations in the remaining formulations. The dyadic obtained
by cross multiplying a vector with a unit dyadic can be represented by a
skewsymmetric square matrix when it is expressed in a particular unit vector
basis. This skew symmetric square matrix is commonly encountered when a cross
multiplication of column matrices is replaced with a matrix multiplication.

The following backward recursive formulation can be used to evaluate the

A

kinetic quantities I#

N

— . L c i = -

R, = Ry, * A [(J.;i”Mj) Cicienyt M. giil (1 = N-1,...,1) (36)
N
& _ & L c L
T = T Ciey Ryt Ly v DM+ (3 M om0 oy,
(i = N-1,...,1) (37)
where

_ . _1 . _

L= A+ [~ 5 (6:0) Ul (1=1,...,N (38)

and a subscript v next to a dyadic in equation (38) denotes the vector of the
dyadic, which is formed by summing the cross products of the prefactors and
the postfactors of all the dyads in the dyadic. The reason for using the
expression in equation (38) is to reduce computation counts. In fact, Li can

be expressed in a form identical to equation (20). Conversely, equation (20)
can be replaced by

.o R - _
T, = { A (- 5 (1) uD, (1=1,...,N) (39)

where the expression in brackets [] is the dyadic whose representation in a
particular unit vector basis is the inertia matrix with half its trace
subtracted from each diagonal element. The dyadic operations used above follow
the convention introduced by Gibbs[10] in late eighteen hundreds.

The starting values for the recursive equations, equations (36) and (37),

are
By = MN 8, E:N (40)
s c _ re® _ xe
Ty = My oy (EN E /MN) *+L,-IL (41)

253

Equations (14) represent the equations of motion of a direct drive
open-chain system. The modifications to equations (14) for an open-chain
system with motors and gear reduction mechanisms shown in Fig. 2 are based on
the difference between generalized inertia forces contributing to these two
systems. They are[7]

® n *

(Fr)s = (Fr)s, + Gr (r=1,...,N) (42)
where subscript s represents a manipulator system S which has a motor and gear
reduction mechanism in each link similar to that shown in Fig. 2, while
subscript s’ represents the manipulator system S' which has the same mass and
inertia distribution as system S, but the motor rotors and gear reduction
mechanisms are considered to be fixed in the links on which they are mounted.
Here and throughout this paper, the motor driving i-th jJoint is assumed to be

mounted on link B,._1 (i=1,...,N). System S’, therefore, represents a direct-
drive system. The difference terms between these two systems are
0 (r> 1)
Gr = N —“rJr(urqr+ gr-1. e—r) (r= 1) (43)
iCray M3z) - g e x 2z) e,] (r< 1)
With the additional terms added, the dynamic equations for S become
N A
i§1 Ari q; = urTr - Tr + Gr (r=1,...,N) (44)
where
pJ.(z ce.) (if r=1)
A = A’. + L | ; 1 (45)
rnooon ueJ, (ifr=1)
N *
Gr = - “rJr gr-‘l.'e'r + i§r+1 “iJiqi(gi%x gr).e—i (46)

It can be noticed that matrix [Aﬁ] is still symmetric. Hence, only those
difference terms in the upper triangle of matrix [Aﬁ] need to be evaluated.

Symbolic Manipulation

Direct numerical approach in evaluating the above equations can be
inefficient if there are terms involving multiplication with 0 or 1, or
addition with 0. The use of multi-dimensional arrays in a general purpose
program further reduces the computational efficlency. These are some of the
reasons why a general simulation program cannot achieve the highest possible
efficiency. Symbolic language such as MACSYMA can be applied to eliminate
these inefficliencies. Theoretically, one can use MACSYMA to derive equations
explicitly in terms of all joint angles and their derivatives and then to
reorganize the equations for efficient computation. But for a manipulator with
high number of degrees of freedom, this requires enormous memory space and CPU
time, and cannot be optimally simplified because the simplification is limited
by the capability of MACSYMA. It has been found that the recursive formulation
as presented above is particularly advantageous because computation is already
optimized. Only simple symbolic operations need to be applied to generate the
recursive equations of motion in FORTRAN coding, and hence the computer time
required for this process is not excessively long.

Program Validation

Complete validation of a simulation program is next to impossible. But
without belng subject to some forms of validation, a program cannot be
trusted. When a program is applied on a reasonably complicated system, one
cannot rely on simple statements like "the results make sense" as validation.

254

For a manipulator system with 3 or more links, intuition as to its motion when
subject to certain inputs does not work well at all. A more systematic
approach need to be adopted. This is a very important subject for the dynamic
simulation of robots, but it does not seem to attract much attention. The
approach taken by the authors was to select some conditions under which the
system will have some scalar quantities, such as energy or measure numbers of
an angular momentum vector, that are conserved throughout the motion. Since
there exists a slight possibility that chance may cause errors not to be
detected, an independently developed program is used to evaluate the
validation quantities. Formulation of the system kinetic energy, potential
energy and the system angular momentum about a base-fixed point on the first
joint axis for validation purposes will be described next followed by the
description of test cases chosen.

The kinetic energy formulation for a direct-drive manipulator S’ is
R N .

K =3 3 3 Ay 9 (47)
For a manipulator with gear reduction in its drive system, slight modification
is required. Consider two manipulator system S and S’ as described before. If
they have the same motion, then the kinetic energies K and K' of systems S and
S', respectively, are related by(7]

N

K =K + iz1(% “?Ji‘ﬁ g e gy (48)

The potential energy V of the system are due to gravity only, and it 1is

N
V =-% MG -] (49)

= =i
There is no difference between the potential energy expressions for S and s’
because they have the same mass distribution. The angular momentum vector H’

of a direct-drive manipulator S’ about Q1 is
N
v P E P
H = jg1 ;j r, X (m, “V) (50)
where P is a generic particle in Bj, ; represent the summing over all the
i

particles in Bj, g:

respectively, the mass and the velocity in E of P. Only the measure number of
H' in z, direction is used in the validation process. Comparing the kinetic

is the position vector from Q1 to P, and m, and E!? are,

energy formulation with that of H', one can obtain
N
H'» 2y = & Ay 9 (51)

]
where A1i can be found in Eq. (15) with r = 1. The angular momenta H and H’

about Q1 of systems S and S’, respectively, are related by
N
H =H + i§1 nJ.q.e (52)

= i it
Hence, equations (48-52) provide the necessary formulas for the evaluation of
the conservation quantities.

The validation cases used are
I. Conservation of total energy, K+V :
Tr =0 (r=1,...,N)
I1. Conservation of H - Zy
a. g =0, T1 = 0, K, = 1,
b. g # 0, T1 = 0, By = 1, 1
where g is the gravitational constant.

o jo
IN N

255

Under conditions described above, many simulation runs of manipulators
have been performed to validate the program. The results of these runs show
that numerical variations of the conservation quantities are of the order of
magnitude that is appropriately correlated to the absolute integration error
tolerances. Here integration subroutines using Adams-Bashforth-Moulton
predictor-corrector scheme and using Runge-Kutta-Verner method have been
separately applied for numerical integration.

Discussions

For a general manipulator, the total numbers of operations to obtain Ari
and nT- fr (r,i=1,...,N) in Eq. (14) for a direct drive manipulator are

1IN(N-1)+150(N-1)-15 multiplications and 7N(N-1)+119(N-1)-14 additions.
Table 1 lists the numbers of operations required for each of the equations in

the evaluation of matrix [Ari] and fr. The counting of operations follows that

presented in [6]. Notice that unit vector basis transformation has to be
performed in each recursion step. Here external force and torque applied on
the last link are not included. Therefore, for a general 6 link manipulator,
1075 multiplications and 791 additions are required. This is much lower than
the 1541 multiplications and 1196 additions needed in Method 3 of [2]). For the
six dof PUMA 600 presented in [9], Our MSP program generates FORTRAN code that
requires 351 multiplications and 281 additions to perform the computation that
takes 392 multiplications and 294 additions in [8].

Table 1. Number of Operations

equations multiplications additions
(22) 57(N-17-33 36(N-17-25
(24) 8(N-1) 7(N-1)-3
(27) 11IN(N-1)-8(N-1) TN(N-1)-4(N-1)
(28) 8(N-1) 5(N-1)
(29) 10(N-1) 6(N-1)
(30) 17(N-1) 13(N-1)
(31) 6(N-1) 9(N-1)+1
(38) 17(N-1) 13(N-1)
(37) 20(N-1) 19(N-1)
(38) 15(N-1)+3 15(N-1)+1
(40) 9 6
(41) 6 5

Total TIN(R-1)+150(N-1)-15 7N(N-T1J+118(N-1)-14

Adding aizi to the right hand side of equation (29), equations (28-41)

together with equation (17) become inverse dynamic formulation for a direct
drive robot. This inverse dynamic evaluation is similar to algorithm 3 in (6].
By applying MACSYMA to the formula, some unnecessary computations can be
removed. For instance, if N is 6, the number of computation for the
manipulator with twist angles equal to 0° or 90° is 340 multiplications and
290 additions compared to 388 multipl{pations and 370 additions in [B]. For

the simpler manipulator with g; and Eiﬁ+n having only one nonzero element,

the numbers of computation are 245 multiplications and 204 additions compared
to 277 multiplications and 255 additions in [6]. The reductions are due to
some additional multiplications and additions with zero quantities that are
counted in [B] because the authors of [6] did not actually expand the
equations for the counting.

In order to give additional indication of efficiency, the 7 link Robot
Research Corporation [11] manipulator shown in Fig. 3 with parameters listed

256

in the Appendix is considered. The numbers of operations for the system in the
form of Eq. (14) are 651 multiplications and 505 additions with effects of
motor rotors included. The numbers for direct-drive system are 548
multiplications and 439 additions. Therefore, adding the effects of motor
rotors requires 103 multiplications and 66 additions, which is about 17% of
the total computation needed for the direct-drive system.

In the interest of demonstrating the effect of motor rotors, a constant
motor torque (T1= 0.625 N-m) is applied on the first joint of the 7 link

manipulator shown in Fig. 3. Two sets of equations are solved for comparison.
Set 1 is equation (14), which represents the direct drive system S’ and set 2
is equation (44), which is the complete equations of system S. The results
from set 1 are shown in Figs. 4 and 5 while those from set 2 are in Figs. 6
and 7. The differences of the results are so substantial that it is clear that
set 1 is not representative of the actual system.

Among all the additional terms due to motor rotor, the terms “?Jiai
(i=1,..., N) are most significant due to the large values of B, Another set
of equations, set 3, established by adding only u?Ji to diagonal elements
A.. of [A;i] matrix in equations (14}, is also solved for comparison. A

sinusoidal motor torque (T1= 3.125 cos 0.80t kg-m) is applied on the first

Joint of the manipulator. Some of the results from set 2 are shown in Fig. 8
while the differences of the results between set 2 and set 3 are shown in
Fig. 9. It is clear that the differences are relatively small in the duration
of § seconds.

=t i o
|| Y /L‘.
/

¥ J3 J2

J1

Fig. 3. A 7 Link Manipulator

257

Conclusions

The initial development of an efficient simulation program for
telerobotic manipulators is described. An efficient recursive formulation of
Kane’s dynamic equations for a class of manipulators which are made up of
links connected with revolute joints and driven by motors with reduction
mechanisms is presented. The recursions are established according to the
summation bounds in the equations. Comparison of operation counts with other
published formalisms shows advantages of the present approach. Furthermore,
effects of rotor inertia and speed reduction are included in the formulation
to yield a more faithful model of the actual system. Symbollic manipulation is
also applied to generate customized simulation program for additional
improvement of the computational efficiency. Aside from the discussions on
efficiency, steps taken to validate the simulation program are presented.
Finally, simulation results show that effects of rotors in drive system with
high speed reduction cannot be ignored in the simulation of a manipulator.

Acknowledgement

The funding support from NASA Goddard Space Flight Center (Grant NAGS-
1019) for this work is greatly appreciated. The authors also like to thank
Mark Routson for his help in developing the program for validation and Win-bin
Shieh for testing the simulation program MSP.

Reference

[1] Kane, T. R. and D. A. Levinson , Dynamics: Theory and applications,
McGraw-Hill Book Company, 1885.

{2] Walker, M. W. and D. E. Orin, "Efficient Dynamic Computer Simulation of
Robotic Mechanisms", Journal of Dynamic Systems, Measurement, and Control,
vol. 104, Sep. 1982.

[3] Rosenthal, D. E. and M. A. Sherman, “Symbolic Multibody Equations via
Kane's Method (SD/EXACT)" AAS/AIAA Astrodynamics Speclialist Conference, New
York, Aug. 22-25, 1983

(4] Kane, T. and D. Levinson, "The Use of Kane’s Dynamical Equations in
Robotics", the Int. J. of Robotics Research Vol. 2, No. 3, 1983.

[5] Hollerbach, J. M., "A recursive Largrangian Formulation of Manipulator
Dynamics and a Comparative Study of Dynamics Formulation Complexity",
IEEE, Vol. SMC-10, No. 11, Nov. 18980.

[6] Balafoutis, C. A., R. V. Patel and P. Misra, "Efficient Modeling and
Computation of Manipulator Dynamics Using Orthogonal Cartesian Tensors”,
IEEE J. of Robotics and Automation, Vol. 4, NO. 6. Dec. 1988.

(7] Chen, J., "The Effects of Gear Reduction on Robot Dynamics". Submitted to
ASME Journal of Dynamic System, Measurement and Control.

[8] Neuman C. P. and J. J. Murray, "Customized Computational Robot Dynamics”,
Journal of Robotic Systems, Vol. 4, No. 4, 1987, pp. 503-526.

[{9] Paul, R. P., M. Rong and H. Zhang, "The Dynamics of the PUMA Manipulator",
in Proceedings of 1883 American Control Conference, San Francisco,
California.

[10]Gibbs, J. W. and E. B. Wilson, Vector Analysis, Yale University Press,
New Haven, 1931 (seventh printing).

[11}Karlen, J. P., J. M. Thompson and J. D. Farrell, "Design and Control of
Modular, Kinematically-Redundant Manipulators", Second AIAA/NASA/USAF
Symposium on Automation, Robotics and Advanced Computing for the National
Space Program, March 9-11, 1987.

258

joint angles (degrees)

joint angles (degrees)

400

300

200

100

-100

-200

200

100

-100

-200

-300

-400

-500

Fig. 4. Solution of Equations Set 1
(joints 1-3)

time (seconds)

Fig. 5. Solution of Equations Set 1
(joints 4-7)

JOINT 4
JOINT 5
JOINT 6
JOINT 7

> O + &

0.25 0.5 0.75 1 1.25

time (seconds)

259

joint angles (degrees)

joint angles (degrees)

Fig. 6. Solution of Equations Set 2
(joints 1-3)

26
24

& JOINT 1
22 + JOINT 2
20 o JOINT 3

time (seconds)

Fig. 7. Solution of Equations Set 2
(joints 4-7)

0.2

0.1

g

T
B 0AA A

-0.1

-0.2

® JOINT 4
03 4 + JOINT 5
o JOINT 6
& JOINT 7
0.4
—0.5 st S — S — Tt -
0 0.25 0.5 0.75 1 125

time (seconds)

260

joint angles (degrees)

joint angles (degrees)

15 times reduction in joint 1 angle

3.5

25

0.05
0.04
0.03
0.02
0.01
0
~-0.01
-0.02
-0.03
-0.04
-0.05
-0.06
-0.07
-0.08
-0.09
-0.1

Fig. 8. Solution of Equations Set 2
(joints 1,5,6,7)

joint 1
joint 5
joint 6
joint 7

Do+ B

time (seconds)

Fig. 9. Difference of Solutions of Set 2 & 3
(joints 1,5.6,7)

joint 1
Jjoint S
joint 6
joint 7

o+ 8

time (seconds)

261

Appendix

The parameters of a 7 link Robot Research Corporation manipulator used in the
simulation from which results are presented in this paper are in the
following.

Mass (including motor and speed reduction mechanism): (kg)

ink T 2 3 4 5 6 7
mass 104.2 55.4 28.8 20.4 11.1 4.7 4.7

Moment of inertia (including motor and speed reduction mechanism):(kg—mz)

Txx Tyy Tzz
Tink 1 2.05 2.05 0.7
link 2 0.4 0.4 0.3
link 3 0.6 0.6 0.2
link 4 0.2 0.2 0.2
link 5 0.1 0.1 0.04
link 6 0.03 0.03 0.03
link 7 0.03 0.03 0.03

Speed reduction ratio, rotor inertia (including attachment) and rotor axis (in
link fixed unit vector basis):

speed ratio rot?igigsgtia rotor axis
ase 160 0,003 [0, 0, 11
link 1 160 0.003 {1, 0, 1]
link 2 200 0.0003 {o, 1, 0]
link 3 200 0.0003 {1, 0, 0]
link 4 200 0.0002 [o, 1, 0
link 5 200 0.0002 [1, 0, O]
link 6 160 0.0002 {0, 1, 0]
Joint to mass center position vector (m) P:i. i=t,..., 7 :
Y Y4
1ink 1 0] 0 0
link 2 0] 0 0
link 3 0 0] 0
link 4 0 o o
link 5 0 0 0
link 6 0 o 0]
link 7 0 0 0
Joint to joint position vector (m) rt(m) , i=1,..., 6
X Y 4
Iink 1 0.0 0.0 0.5
link 2 0.3 0.1 0.0
link 3 0.1 0.0 0.3
link 4 0.3 -0.1 0.0
link 5 0.08 0.0 0.4
link 6 0.19 -0.08 0.0

262

N90-23018

The Coupling Effects of Kinematics and Flexibility on the
Lagrangian Dynamic Formulation of Open Chain Deformable Links

Koorosh Changizi
Department of Mechanical Engineering
University of Iilinois at Chicago

Abstract

In this paper a nonlinear Lagrangian formulation for the spatial
kinematic and dynamic analysis of open chain deformable links consisting
of cylindrical joints that connects pair of flexible links is developed. The
special cases of revolute or prismatic joint can also be obtained form the
kinematic equations. The kinematic equations are described using 4x4
matrix method. The configuration of each deformable link in the open loop
kinematic chain is identified using a coupled set of relative joint variables,
costant geometric parameters, and elastic coordinates. The elastic
coordinates define the link deformation with respect to a selected joint
coordinate system that is consistent with the kinematic constraints on the
boundary of the deformable link. These coordinates can be introduced
using approximation techniques such as Rayleigh-Ritz method, [inite
element technique or any other desired approach. The large relative
motion between neighboring links are defined by a set of joint coordinates
which describes the large relative translational and rotational motion
between two neighboring joint coordinate systems. The origin of these
coordinate systems are rigidly attached to the neighboring links at the joint
definition points along the axis of motion. The geometry of the deformable
links are included in the formulation by two costant parameters which
accounts for the length and twist of the deformable link in tis undefor med
state. The kinematic equations that define the global position and velocity
of an arbitrary point on a deformable link is developed in terms of the
relative joint variable, constant geometric parameters, and elastic
coordinates of deformable links. These kinematic equations are then used
to develop the energy expression of the deformable link. The nonlinear
terms that represent the dynamic coupling between the large relative
motion and the mall elastic deformations is identified and presented in
terms of a set of time-invariant quantities that depend on the assumed
displacement field and provide a systematic approach to study the spatial
dynamics of open loop kinematic chains. The system differential equations
are then developed and expressed in terms of these set of invariant
quantities using Lagrange's equation of motion.

263

N90-23019

Explicit Modeling of Composite Plates and Beams
in the Dynamics of Multibody Systems

F. M. L. Amirouche” , S. K. Ider’ ,and M. Moumene'
Department of Mechanical Engineering
University of Illinois at Chicago

Abstract

The state of the art dynamic response analysis of flexible multibody
systems is currently restricted to elastic bodies with homogeneous
materials. The requirements for high speed operation has made it
necessary to use lightweight multi layered composite bodies in robotic
systems and space structure applications. Dynamic modeling and analysis
of such systems are particularly important since the effects of body
flexibility to the performance are likely to be more pronounced.

In this paper first the eight-noded isoperimetric quadrilateral element
with independent rotational and displacement degrees of freedom is
extended to laminated composite elements. The element includes an
arbitrary number of bonded layers, each of which may have a different
thickness. The transverse shear deformation which is a predominant factor
in the analysis of laminated composite structures is taken into account in
developing the stiffness and mass matrices. The corresponding 3-D mode
shapes are then incorporated to the multibody system dynamical equations.
Floating body reference frames allow the selection of different boundary
conditions, and the dynamical equations contain all the nonlinear
interactions between the rigid and elastic motion. Example simulations are
presented to illustrate the methods proposed.

*Assistant Professor, Member ASME, AIAA
"PhD, Member ASME

N90-23020

EXPERIMENTAL VERIFICATION OF DYNAMIC SIMULATION

K. Harold Yae, Howyoung Hwang, and Su-Tai Chern
Center for Simulation and Design Optimization
Department of Mechanical Engineering
The University of Iowa
Iowa City, Iowa 52242
(319) 335-5683

ABSTRACT

The dynamics model here is a backhoe, which is a four degree of freedom
manipulator from the dynamics standpoint. Two types of experiment are chosen that can
also be simulated by a multibody dynamics simulation program. In the experiment,
recorded were the configuration and force histories; that is, velocity and position, and force
output and differential pressure change from the hydraulic cylinder, in the time domain.

When the experimental force history is used as driving force in the simulation
model, the forward dynamics simulation produces a corresponding configuration history.
Then, the experimental configuration history is used in the inverse dynamics analysis to
generate a corresponding force history. Therefore, two sets of configuration and force
histories--one set from experiment, and the other from the simulation that is driven forward
and backward with the experimental data--are compared in the time domain. More
comparisons are made in regard to the effects of initial conditions, friction and viscous

damping.
INTRODUCTION

With recent developments in dynamic simulation software, there have been steady
improvements in analysis and design of multibody mechanical systems. The performance
of a software package has been frequently compared with that of another, but rarely with
experimental data. In this research, dynamic simulation is compared with experimental data
in time domain.

Through the dynamic simulation, the rigid-body (or flexible-body) equations of
motion generate the positions, velocities and accelerations of the components of a given
system, and the reaction forces at the system’s joints. The equations of motion are usually
idealized by not including Coulomb friction and viscous damping, and by simplifying
actuating force elements. These idealizations manifest the limitations in the mathematical
modelling of a dynamic system. There are also limitations in experimentation. The
experiments provide the factual data of the actual system. But such data are not completely
reliable because of errors in measurements and subsequent data analysis and interpretation.

The system chosen for the research is J.I. Case 580K backhoe. From a dynamics’
standpoint, it is a manipulator of four degrees of freedom (dof) with an operator in the
loop. Three dofs are controlled by hand levers for digging, scooping up, and dumping
operations, and one dof by a pair of foot pedals for left and right swing motion. These
four dofs are individually controlled by hydraulic cylinders that comprise a complicated

circuit.
APPROACHES

The approach taken here was to divide the simulation task into multibody dynamics
and control element modeling, each of which was separately validated and then later

265

combined together. In this paper, only the validation of the multibody dynamics is
presented. The multibody dynamics includes the modeling of each component and its
joints, with the assumption that applied forces or torques are supplied by the control
elements. The validation of will thus enable unbiased evaluation of the multibody dynamic
simulation, without being influenced by the modeling technique of the controller, i.e., in
this case, the hydraulic cylinders and circuitry.

The verification effort started with defining a set of static and dynamic quantities
that were both measurable in the experiment and obtainable from the simulation, and that
were capable of describing the system status at any specified time. Such quantities were
identified as positions and velocities of the system components, and forces acting on the
system’s joints. In the simulation, the post-processing analysis recovered these quantities
easily. In the experiment, however, each quantity demands its own transducer with signal
conditioning and data analysis. As a result, experiments were carefully orchestrated with
the available equipments, so that the mathematical model could simulate the same operation
as in the experiment.

Although there is no established method of validating dynamic simulation in the
time domain, the strategy adopted here makes use of the forward and backward (inverse)
dynamic analyses, with experimentally known time histories of position and joint forces.
The position history that had been measured in the experiment was input into inverse
dynamic analysis, which generates a force history that would have driven the simulation
model along the input position history. Under the ideal condition such that the dynamic
simulation describes the exactly same behavior of the actual system, the two force histories
— one from the experiment, the other from the inverse dynamic analysis — should be the
same. But, in reality, there inevitably exists a discrepancy between these two. This
discrepancy is viewed as a measure of the validation. Similarly, the force history that had
been obtained in the experiment was fed into forward dynamic analysis, which generates
position history that would have been exactly the same as measured under the ideal
condition. Again this position history was compared with the experimental position
history.

EXPERIMENTS

Since the boom carries most of the load, its static and dynamic stress analysis is the
major concern in design and analysis. Once the dynamic model is validated, it should
generate reliable joint reaction forces for dynamics and stress analysis. The experimental
effort was thus concentrated on the boom and its hydraulic cylinder. The transducers were
attached to boom are a load cell that measures the boom cylinder force output, a differential
pressure transducer between the supply and drain sides of the boom cylinder, and a
position/velocity transducer for the boom cylinder piston movement. The experiments
were conducted by actuating the boom cylinder with various fixed configurations of the
dipper and bucket assembly. Among those various configurations, two of them were
selected for experimentation and simulation. First, the bucket and the dipper were tucked
in under the boom, as shown in Fig. 1. Second, the bucket and the dipper were stretched
out, as shown in Fig.3 .

Experimental data were digitized, inspected, and recorded in the IBM PC/AT at the
experimental site. Later in the lab, the PC was connected to the local network to unload the
data to an Apollo workstation. The data were then retrieved, filtered, interpreted, and
supplied for comparisons of experimental with theoretical results in static stress analysis
and dynamic behavior, and verification of hydraulic actuator models.

Two types of experimental data are used in the dynamic simulations: force and
relative displacement histories of the boom cylinder for the forward and backward
simulation. Both quantities were measured while the backhoe was being operated through
a predefined trajectory. The relative displacement was measured by a position transducer

266

with one end attached to the piston and the other end to the cylinder housing. The cylinder
force was measured by a load cell placed at the piston end of the cylinder.

Experiment I

In the first experiment, the backhoe is in folded-up configuration; that is, the dipper
and bucket cylinders are fully extended, so the dipper and bucket are tucked in under the
boom. The angle between the boom and the dipper is about 42 degrees. The only degree of
freedom allowed is the rotation around the revolute joint between the boom and the swing
tower. At the beginning of an experiment, the boom was in upright position, making an
angle of 4 degrees with the vertical (Fig. 1). The boom was slowly lowered from the
upright position until it reached 38 degrees of boom angle, then stood still a few seconds,
and was brought back up to the original position. The duration of this operation was about
30 seconds.

A typical relative cylinder displacement history measured by the position transducer
is shown in Fig. 2. Since the boom cylinder extends while the boom drops downward, the

rising trend of the displacement history should be interpreted as the downward motion of
the boom.

™~ boom angle

up and down motion
no side swing

Figure 1 Configuration of experiment I

267

: g is retracting
is extending

the boom stand still at
38 degree boom angle
the boom cylinder
the boom cylinder

relative cylinder displacement (m)

time (sec)

The motion of the backhoe can be divided into three stages
Figure 2 Position history of experiment I

Experiment II

In the second experiment, the dipper and bucket cylinders were fully retracted so
that the backhoe stretched out to its longest reach (Fig. 3). The bucket initially rested on
the ground. The boom slowly lifted the bucket up until the bucket reached about 2 m above
the ground. Then it brought the bucket back to its original position. This time the whole
operation took about 8 seconds. Figure 4 shows a typical relative cylinder displacement
history measured in experiment II.

Figure 3 Initial configuration of backhoe in experiment II

the boom cylinder
is extending

the boom cylinder
is retracting

relative cylinder displacement (m)

the boom stand sﬁ& time (sec)

Figure 4 Position history of experiment II

DYNAMIC SIMULATION

Modelling

The dynamic modelling of the backhoe started with a relatively simple model
including only the major components, and then added more components such as pins until
every single component was accounted for. Table 1 lists the major components and the
types of joint used in the model (also see Fig. 6). One of the most significant changes
made in model refinements is the addition of the weights of pins and hydraulic fluid. These
masses have been regarded insignificant until we found that the simulation model was
lacking in the total inertia.

these two active joints are modelled
as frictionless and no damping

this is the only joint modelled
considering friction and damping

Figure 5 Active joints of backhoe

Among the joints, three of them are active during the experimentation, the locations
of these active joints are shown in Fig. 5. There evidently exist viscous and Coulomb
friction damping forces at these joints. Since the revolute joint between the tower and the
boom is the biggest joint among them, the complexity of the analysis is reduced by
modelling that joint as the only joint with viscous and friction damping.

269

Table 1 Bodies and Joint Types

Body name] Joint Type Body 1 Body 2
Boom " revolute Tower Boom
Dipper revolute Boom Dipper
Bucket revolute Dipper Bucket

Coupler I of bucket revolute Coupler I Coupler I
Coupler II of bucket | cylindrical Bucket Coupler II
Boom cylinder cylindnical Boom cylinder Tower

Boom piston cylindrical Dipper cylinder boom
Dipper cylinder cyhndrncal Bucket cylinder Dipper
Dipper piston spherical Dipper Coupler 1
Bucket cylinder spherical Boom Piston Boom
Bucket piston spherical Dipper Piston Dipper
spherical Bucket piston Coupler I
Y
actp3
actc3 TF3 drd

Tower

Figure 6 Joint Definition

In the time-domain validation, the initial conditions of the simulation must first and
foremost equal those of the experiment. This requires static equilibrium analysis in the
simulation and accurate measurements of position and reaction forces in the experiment. In
fact, some initial configurations had to be excluded on the grounds that they were statically
indeterminate.

At the beginning of experiment I when the system is in static equilibrium, the force
measured at that moment was used to calculate the exact initial position of the backhoe in
the experiment. The position measurements were also available from the experiment, but
were much less accurate than the force measurement, because a little error in position
measurement resulted in a huge error in the corresponding equilibrium force at the initial
configuration, which was almost vertical.

In experiment II, a different approach was taken to determine the initial
configuration. Since the initial position of the tip of bucket was precisely known, the
initial configuration was determined by using this fact. The mass center of the swing tower
is defined as the reference coordinate center of a simulation, so the vertical distance from

270

the reference center to the ground has to be measured. This distance was measured to be
about 0.8m. The initial configuration of experiment II is thus obtained based this
information and the kinematic relations between bodies of the backhoe model.

SIMULATION AND COMPARISON

In comparison with experiment I, several viscous damping ratios have been tested
in the dynamic simulations. Figure 7 shows force comparison in which viscous damping
does not play a significant role. Indeed, it was a slow operation, so the viscous damping
force was expected to be small. However, the effect of viscous damping is pronouncedly
exhibited in the displacement comparison. In Fig. 8, the viscous damping coefficients of
10 and 15 (KN/m/sec) make the simulation close to the experimental data.

In Fig. 9, the simulation with the viscous damping coefficient of 15 (kN/m/sec)
continues to move upward (actual motion downward) even when the actual system stopped
and stood still, thus exposing the absence of Coulomb friction in the simulation model.
The existence of Coulomb friction is also observed in Fig. 7. The force from the
simulation is not reduced by the amount of Coulomb friction force, whereas the applied
force has already reflected loss from Coulomb friction. Therefore, the simulation force
would be equal to the sum of the Coulomb friction and applied forces if the simulation
exactly matched with the experiment. In the first half where the friction force is in the same
direction with the applied force, the simulation force appears above the actual applied force.
In the second half where the friction force is in the opposite direction to the applied force,
the simulation force appears below the actual applied force.

In experiment I1, the long stretch of the backhoe in combination with a faster
maneuver induced vibrations that are visible in Fig. 10. But the simulation shows no
vibration but follows the general trend, because the system is modelled with rigid body
dynamics. Figure 11 shows a good agreement between the simulation and experiment in
position history.

DISCUSSION

When the experimental position history was input to inverse dynamic analysis, it
was differentiated twice to obtain velocity and acceleration. Along with this digitized
position history, however, noises and discontinuities were also differentiated twice,
thereby creating quite a few “jerks”, which in turn made the simulation force fluctuate
spuriously. To correct this problem, three smooth curves of first and third order
polynomials were pieced together to approximate the experimental position history. At the
two junction points, spurious peaks are still observed in Fig. 7 and 10.

Experimental estimation of viscous and Coulomb friction damping should
accompany the analytical effort in which several dynamic simulations were performed with
different damping coefficients. These damping forces were not so significant in Fig. 7.
But their effect on the displacement is quite noticeable as shown in Fig. 8.

The validation in the time domain requires that the initial condition of the simulation
should equal that of the experiment. This requirement is most of times very difficult to
satisfy, because it involves static equilibrium analysis in the simulation and accurate
measurements of position and reaction forces in the experiment.

271

e

(kN) 62.5

54.9

Sthadte 46.9

= vy el

Cylinder Force (kN)
w
N

FIG. 7 EXPERIMENT I: FORCE COMPARISON

Gmﬂy Motien

Positren Hatery

= Experiment
es desecce Sim/D-SkN/ﬂVScc
- == Sim/D=10
—s = SimyD=15

5.6 8.4 11.2

14

Time (sec)

16.8

196 224 25.2

28

(o0s) oun,

Ao \ / AT 5% o
\ ~oos g
| :
. \ -1 529 3

\
/ \ - o'sL

g o\
SOSAU/N § SCAUIS o vvvevennen S S'L8

ocQuig —ee——
wawyadxy —

001 (wd)

NOSIdVdINOD NOILISOd ‘I INHAI¥AdXd 8 "OId

273

vz

(cm) 29

Cylinder Distance (cm)

26

20

17

14

11

FIG. 9 EXPERIMENT I: POSITION COMPARISON

e Experiment
—+e=- == Simulation

| |] i]

4 6.5 9 11.5 14

Time (sec)

165 19 21.5

24

26.5

(09s) awy,

STL $9 YAY Y STy St SLT 07 sT1

T :~ _ I 31__ _ _ _ I
il __ . G e

|

S0
0
- §T1
0'sT
e £
SLE =
8
11
o Q
00 3
$'29 m
=1 0sL
-1 §°L8
001 (N

NOSIRIVAINOD TDY0d ‘II INFWIYAIXA 01 "DId

275

9LT

(cm) 100

FIG. 11 EXPERIMENT

II: POSITION COMPARISON

- Gra vT{y
!

T = SinD=

t
10 kN/m/sec

4 5

Time (sec)

10

N90-23021

Frequency Response Modeling and Control
of Flexible Structures: Computational Methods!

Wilham H. Bennett

TECHNO-SCIENCES, INC.
7833 Walker Dr. — Suite 620
Greenbelt, MD 20770

ABSTRACT

The dynamics of vibrations in flexible structures can be conveniently modeled in terms of
frequency response models. For structural control such models capture the distributed param-
eter dynamics of the elastic structural response as an irrational transfer function. For most
flexible structures arising in aerospace applications the irrational transfer functions which
arise are of a special class of pseudo-meromorphic functions which have only a finite num-
ber of right half plane poles. In this paper, we demonstrate computational algorithms for
design of multiloop control laws for such models based on optimal Wiener-Hopf control of
the frequency responses. The algorithms employ a sampled-data representation of irrational
transfer functions which is novel and particularly attractive for numerical computation. One
key algorithm for the solution of the optimal control problem is the spectral factorization of
an irrational transfer function. We highlight the basis for the spectral factorization algorithm
together with associated computational issues arising in optimal regulator design. We also
highlight options for implementation of wide band vibration control for flexible structures
based on the sampled-data frequency response models. A simple flexible structure control
example is considered to demonstrate the combined frequency response modeling and control
algorithms.

1 Introduction

Frequency response methods offer several advantages for modeling the dynamics of small
amplitude vibrations in flexible structures. Such models capture the distributed parameter
dynamics of the elastic structural response as an irrational transfer function from localized
actuation to localized deformation measurements. Interest in frequency response models can
arise from a desire to predict modal frequencies with increased accuracy over that obtainable
from finite element methods. The frequency domain approach is well suited to optimal control
law synthesis with specific requirements for precision vibration supression and isolation. Most
computational methods for optimal control synthesis available to design engineers focus on
the manipulation of state space models. For flexible structure control, state space models
are problematic since the question of model order required must be resolved as part of the
optimal control computation. This paper reports progress in the development and testing of
computational methods for design of precision control systems for mechanical structures with

1Work supported by SDIO and Air Force Wright Research and Development Center under contract F33615-
88-C-3215.

277

C, open right half complex s-plane, Re s > 0

H, Hardy space of complex functions, analytic and essentially
bounded in C,

H, Hardy space of complex functions, f(s), analytic in C,and such
that; ;Tj[fij; 1 £(3)]]? ds]*/? < oo for s € C,.

RH,, | rational functions in H_,

Table 1.1: Notation

elastic effects based on direct frequency response models. The frequency response models
can arise from finite element analysis, transfer function methods, wave propagation models,
and/or empirical measurements. Moreover, the computational approach offers a framework for
integration of frequency response data from various modeling approachs which offer varying
precision in different frequency bands. The current paper extends the efforts reported in [1].

We will use the following notation and conventions in this paper. The transpose of a
column vector will be denoted as T, Tr X is the trace of the square matrix X, and j =
v/—1. A Laplace (resp. z) transform will normally be indicated by dependent variable; z(s)
(resp. x(z)), however, we often drop the explicit dependence where the meaning is clear
from the context. The notation u.(s) = uT(—s) will be frequently used. E{xz(t)} indicates
the expectation of the random process z(t). In this work all random processes are assumed
wide sense stationary and ergodic so that expectation can be replaced with ensemble average
where convenient. The notation contained in Table 1.1 specifies the classes of transfer function
models considered at various points. A rational function has a (partial fraction) expansion
A(s) = {A(s)}+ + {A(s)}- + {A(3)} where {.}; (resp. {.}_) is analytic in Res > O-the
causal part (Res < O-the anti-causal part) and {.} is the part associated with poles at
infinity. Thus the operation {A(s)} is causal projection of the frequency response model.

In section 2 we provide an overview of frequency domain models and modern Wiener-Hopf
design of multiloop control systems. We motivate the role of frequency response modeling and
optimal control and identify critical computational steps required for the method. Section 3
discusses a new approach to the required computations for Wiener-Hopf control which extend
the algebraic constructions for rational transfer functions to certain irrational cases. We
highlight the role of coprime factorization in design of distributed systems. Section 4 considers
a simple, but nontrivial distributed parameter system design. Finally, in section 5 we discuss
new options for real time control implementation suggested by the computational approach
of section 3.

2 Optimal Control of Frequency Response Models: Wiener-Hopf
Design

Frequency domain models have been used to articulate the full range of opportunities for
feedback compensation for internal model stabilization. Algebraic constructions based on
Laplace transform models of linear, time-invariant system dynamics have been used to describe
alternatives for standard control computations and realizations for stabilizing controllers |2,

278

3]. This together with Wiener-Hopf optimization provides a general approach for resolving
tradeoffs in regulator design where natural, frequency domain specifications for model-based,
control performance are available. We remark that restricting attention to rational transfer
function models in computational approachs to flexible structure control has been primarily
motivated by convenience [1]. Specific results which extend the constructions of coprime
factorization and internal stabilization to a certain class of irrational transfer functions have
been obtained [4]. In the present effort we restrict attention to transfer functions in Hyand
meromorphic with the exception of a small number of right half plane poles.

Optimal regulator design via Wiener-Hopf methods. Techniques for the solution of
H, optimization problems in multiloop feedback systems have received considerable attention
in the control theory literature for a number of years. A comprehensive approach to Wiener-
Hopf design using transfer function models is given by Youla et al [5].

A general framework for resolution of tradeoffs in multiloop control design was recently
outlined by Park and Bongiorno {6]. In general, control design involves the resolution of
choices in the use of dynamic (feedback) compensation with respect to a nominal dynamic
model of the system response to an n-vector control, u and an m-vector of exogenous system
disturbances, e, as seen by p available sensors, y and ¢ (possibly nonmeasurable) regulated
variables. A frequency domain model for the control design problem (shown in Figure 2.1)
can be expressed using Laplace transforms as,

W _ g (4
(z(s)) = ¢ ’(e(s))
_ Gy Gye u(s)
= [G. G.](s) (e(s)) . (2.1)

The control architecture is assumed to involve feedback,

u(s) = C(s)y(s). (2.2)

Then the closed loop compensation will alter the response of the system to disturbances as
seen in terms of the regulated variables as?,

z = [quCS,I][gy']e

ze

= GuCSGyee + Gree (2.3)

where the system closed loop sensitivity operatoris S = [I + G, C]™".

A major consideration in the classical methods of frequency domain design is closed loop
stability. In such methods stability considerations must be continually evaluated (using root
locus or Nyquist plots) as performance tradeoffs are evaluated. For single loop designs of rel-
atively low order systems, classical frequency domain methods focus attention on the tradeoff
between stability margins and performance. The modern approach is to use optimization to

?Suppressing dependence on the Laplace variable s.

279

C

Figure 2.1: General Multiloop Control System Design Problem

resolve complicated engineering tradeoffs in multiloop design—subject to the constraint of
system internal stability.

The well known Youla parametrization of all stabilizing feedback controllers ' which
stabilize a given plant model was orginally derived for rational matrix transfer functions
which have coprime factorizations over the ring of polynomials in the Laplace s-variable (5].
It is now understood that the construction goes through without modification for the ring of
stable rational functions, RH, which includes all rational transfer functions analytic in the
closed right half plane including the point at infinity [7]. Thus under the assumption that the
plant transfer function has right and left factorizations,

Gy = ND™' = D;'N,, (2.4)
coprime over RH, then there exist X,Y, X,,Y; € RH,, such that
DX+ NY, =1, XD+YN=1, (2.5)

and each controller, C, which obtains R = CS with R € RH,, can be parametrized by the
factorization formulae,

C = (X-KN)(Y+ KD, (2.6)
= (Y2+ KD)(X, - KN)™ (2.7)

for some K € RH,,. The importance of this construction is that optimization procedures can
be applied directly to the choice of K € RH,, without concern for closed loop stability. This
fact was first exploited by Youla et al[5] in the description of Wiener-Hopf optimal control for
frequency response models. More recently, the parametrization has been utilized by Desoer
and his students [8].

Our concern here is with H; optimization for a certain class of irrational transfer func-
tions which are “pseudo-meromorphic” in the sense stable coprime factorizations exist; i.e.,
the constructions in (2.4)—(2.7) obtain closed loop stability with N, D, N,, D, X,Y, X,, Y, K €
H[1, 4]. In the research reported herein we avoid algebraic constructions related to stable,
coprime factorization of irrational transfer functions as considered by Desoer [7] and instead,
focus on the development of numerical algorthims for approximating the frequency response

of the required objects. Such transfer functions can be adequately approximated over fi-
nite frequency ranges by (rather high order) rational transfer functions. Models of this type
arise in the study of vibrations of multibody systems with flexible interactions [9] and wave
propagation in flexible mechanical structures {10, 11].

PSD modeling of control processes for performance specification. A wide class of
standard control design problems including symultaneous requirements for tracking, distur-
bance rejection and accomodation, etc. can be represented in the form of the general linear,
time-invariant regulator problem of Fig. 2.1 and (2.1)-(2.2) where the objective is to choose
a controller which stabilizes the closed loop system and minimizes a performance criterion in
the form, .)
joo

T= 5 /_ _TrQa)P(s)) ds, (2.8)
where P, is an effective Power Spectral Density (PSD) of the regulated variables, 2.

The representation of regulation performance in terms of PSD is quite practical for a va-
riety of design problems arising in multiloop systems and provides a frequency dependent
specification of control performance consistent with design requirements for vibration rejec-
tion. One can extend the significance of PSD modeling to include a wide range of practical
design considerations. The regulation PSD, P,, can be related to modeling assumptions on
the exogenous inputs in terms of the closed loop transfer functions;

ze

P, = [Gu:R, I (g”) Pe (Gyeas Gren). (2.9)

PSD models of exogenous inputs may include deterministic transient effects together with
steady state stochastic PSD, ®.; viz.,

P.(s) = M E{e(s)e.(s)} + A2®.e(s), (2.10)

Formulation of the performance objective, J, may include real, positive, \;, i = 1,2 which
permit scaling relative importance of steady state and transient considerations to the com-
posite performance and Q(s) is included to permit frequency weighting. PSD modeling has
recently received increased emphasis in the study of vibration control in acoustic regimes {11].

Park and Bongiorno [6] also highlight the use of PSD models for minimizing closed loop
system sensitivity to model uncertainty. Let the system model uncertainty be given as a
frequency dependent, additive perturbation, G := G+A, which can be expressed in partitioned

form as,
| A Ay
A - [AZU AZC] .

Following (6] an effective model uncertainty PSD, P = E{AA.}, can be reflected to the
system regulated outputs, and via superposition, a composite performance objective of the

form,
R 2y
=53 /_ T {Q[G’u,R, 1) [My]} ds

281

is obtained for optimal regulator design, where the system model uncertainty can be obtained
commensurate with the performance specifications as an effective disturbance PSD,

Py PByz | _ (Cre
[3., ..] = (Gzc P.(Gyesx, Gzex) + tPa. (2.11)
Here the partitioned terms can be expressed in terms of a priori modeling assumptions; (6]
by = GuePeGpe. + HE{Dyu(Dyu)- Y E{Dye(Dye)-}), (2.12)
B, = GyeP.Cu + M E{Ap(B)}E(Dy(Brc).}) = Buye, (2.13)
D,, = GoP.Goow + t(E{AL(AL)JE{A(A).}) (2.14)

It is by now widely recognized that frequency domain response considerations are ex-
tremely important for robust control design and that performance objectives formulated in
the frequency domain are important tools for resolving design tradeofts of relevance to prac-
tical design problems. However, the common wisdom is that state space modeling offers the
most reliable numerical framework for the computational problems which arise in optimal
regulator design. The Wiener-Hopf approach identifies the solution for the optimal controller
in an explicit form which highlights the role of the algebraic constructions generic to stabiliza-
tion and the quantitative computations required for identifying an optimal controller. Thus
given the system architecture (2.1)-(2.2), appropriately chosen stable coprime factors for the
plant (2.4), a nominal stabilizing controller given in terms of its coprime factors as solutions of
the Diophantine relations (2.5), and performance PSD’s (2.12)-(2.14), then an optimal closed
loop system response is obtained (assuming a solution exists) by the formula,

R=DA ({AD7'YQ}_ - {AT'D.G.u. Q3. D001},) Q7D (2.15)

The explicit form given here depends on operations of causal projection and the solution of
two causal, spectral factorizations;

D.G..QG.uD = AA (2.16)
De®,D.. = Q. (2.17)

with A,A"1,Q,Q°! € Hy,. The required controller can then be obtained in the explicit form,
C =(I - RG,.) 'R.

The computational steps required to identify candidate optimal control solutions for the
regulator problem include: 1) stable coprime factorization (as in (2.4), 2) identify candidate
solution to Diophantine relations (2.5), 3) causal spectral factorization, and 4) causal pro-
jection. We contend that such computations can be effectively supported (in finite precision
arithmetic) by obtaining state space realizations (3] only for relatively low order, rational trans-
fer functions. In the sequel, we specifically avoid such an approach since we are ultimately
concerned with the approximate solution of large (or even infinite) dimensional models.

3 Frequency Response Computations for Optimal Control.

Our approach to optimal control computation is motivated by distributed parameter models
which arise in flexible structure control. The approach we have in mind is based on sampling

282

and interpolation of the frequency response models for the system. The choice of sampling and
the resulting high order, rational approximations are obtained in the context of the optimal
control problem as summarized above.

A computational approach to spectral factorization. Recall that a transfer function
H(s) € Hy N Hy has a unique spectral factorization H(s) = F(s)F.(s) with F € Hq if:

1. H(s) = H(3); i.e., H(s) is the transform of a real-valued function h(t).
2. H(s) = H.(s); e, H(s)1is “para-hermittian”.

3. H(s) is of normal rank; i.e., full rank almost everywhere in C.

>

. H(iw) is positive, semi-definite and bounded for w € R.

To see that causal projection is a closely related problem consider the following. If H(s) is
scalar, then with ®(s) = In H(s) we obtain

®(s) = {B(s)}+ +{2(s)}-, (3.1)
= In F(s)+In F.(s), (3.2)

so that the causal, spectral factorization is related to causal projection via the logarithmic
transformation; F(s) = exp{ln H(s)},.

Our goal is to obtain numerically stable approximations to these related problems for
transfer functions in Ho,. For application to precision control of flexible structures we require
wide band frequency domain models so that even rational approximations will be of relatively
high order. An approach to model order reduction which has recently received attention in the
literature is based on Fourier series approximation of irrational frequency responses [12] in Ho.
Our approach to computations for such models is also based on sampling and interpolation of
the spectrum, but is motivated by computational requirements for Wiener-Hopf optimization.
From the above discussion of causal projection we motivate a class of algorithms of interest
from basic properties of the Hilbert transforms applied to the frequency response ®(jw). Recall
that the Hilbert transform of a time signal f(t) is defined as a convolution; ft)y= 1=, ;zig)rj dr

and it’s Fourier transform has the property,

<) —ifw), w>0
f(“’)‘{ iflw), w>0"

The inverse Fourier transform of ® is —jsgn(t)@(t) where $(t) is the inverse Fourier transform
of ®(w). A consequence is that the casual projection can be obtained as

1 .
{®(w)}s = S[E(w) + 7B(w)].
In previous studies we reported computational algorithms for causal projection and scalar

spectral factorization by numerical evaluation of the Hilbert transform integral. Computa-
tional cost was high due to the fact that the Hilbert transform integral is convergent only in

283

the Cauchy principal value sense [13]. An alternate method for causal projection and spectral
factorization was considered in [14] based on sampling and interpolation of the system fre-
quency response. The algorithm developed in [14] employs results of Stenger [15] on numerical
solution of Wiener-Hopf integrals by sampling and interpolation. Details of the algorithm used
for the current studies and computer implementation are given in [14].

In the multiloop, optimal regulator design problem we require the solution of two matrix
spectral factorization problems (analogous to the solution of control and filtering Riccati
equations for time domain models). The computational approach exploited in the current
study is based on a Newton-Raphson iteration for the matrix causal spectral factor;

Frp(iw) := {[F:(iw)]“H(iw)[Fn(iw)]‘1}+ Fo(iw). (3.3)

The recursion (3.3) can be replaced with a numerically well conditioned problem by iteration
on the inverse spectral factor;

Frn) ™ s= (R (14 (R IR - 1)) (34)

By initializing with Fy (an m xm diagonal matrix) with diagonal elements equal to the spectral
factors of the diagonal elements of H the second term of (3.4) remains a perturbation of the
identity (since [F;]"'H[F,]™' — I — 0) which regularizes the computations. The algorithm
used in this work is based on that reported in [14] and is a modified form of the method
reported in [16].

Computation of stable coprime factorizations for flexible structure models. Simple
models of structural components with elastic effects typically lead to transfer functions in
Honce realistic damping models are included. Linear vibration models of more complex
structures arising in aerospace applications usually will have transfer function models with
only a finite number of poles in the closed right half plane. Restricting attention to such
transfer functions we indicate a simple procedure for coprime factorization over H.

Let S C Hy be a set of transfer functions analytic in a half plane including C,. Under
the above assumption any such transfer function P(s) can be expressed in the form,

P(s) = Ps(s) + Ps(s) (3.5)

where Ps € § C H,, and P; is rational and analytic in the complement of S with (a finite
number of) poles outside S. A stable coprime factorization can be readily obtained for the
(typically low order) transfer function as, Py = N,Dr‘l, by well known state space construc-
tions [3]. Then P has stable coprime factorization,

P=N,D;' =[N, — PsD,|D] ", (3.6)

where N,, D, are S-stable. The separation of terms in (3.5) is readily carried out given P(s)
by computing the residues of the finite number of unstable poles contributing to Pjs.

284

4 Control Computations for an Elastic Structure

To illustrate the computational approach for a simple elastic structure we consider the simply
supported Euler beam with torque control at one end. The beam lateral deformation is given
by y(t, z) with 0 < z < L and has dynamics described by the dimensionless PDE;

dy? 8y 3y

32 X502 o (4.1)

with boundary conditions at z =0,

0%y
y(t,O) = Oa ﬁ = 0,
=0
and at z = L,
0%y
y(t, L) =0, 322 . =,

with the control moment, r, applied at the right hand end of the beam. The transfer function
(r — y) for beam control is

_ e sin Ay sinh A2 £ — sin AI% sinh A,
B (A2 + A2)sin(Ar) sinh(Az)

where A2 = (= + iv/1—(2)sL?, A} = (¢ +iv/1—(?)sL? L is the beam length, { is the
damping factor, and z is the observation point to be regulated on the beam. The transfer
function is meromorphic, and G,.(s,2) € Hy for any 0 < z < L.

The regulator problem considered arises from a requirement for asymptotic rejection of
constant load disturbances at a point £ = 0.7. For the current numerical studies we take
L = 10., and the effective damping ratio, (= 0.01. Stable coprime factorization is trivial
and we take N, = Ny = G,,, D, = D, = 1. Exogenous inputs here include the output
load disturbance d and measurement noise model n and are described by their effective PSD
models representing constant (step) load disturbance and narrowband sensor noise as shown in
Figure 4.2. The frequency response of G, is shown in Figure 4.1 with 1024 uniform frequency
samples over a bandwidth of 0 < w < 100. Clearly, the frequency response is irrational and
no obvious rational approximation is evident.

The optimal control design is regulation of the beam deflection at z/L = .7 and the
performance objective is given as,

Gyu(s, 2) (4.2)

1 /Jw Tr{®, + u®,} ds

where the tracking cost is modeled by PSD, ®,, and the control saturation PSD is &, =
E{uu.}. Then given a constraint on the control power the scalar ¢ > 0 plays the role of a
Lagrange multiplier for the optimal design. In this case the required spectral factors;

(GyuuGu + 1) = AA (4.3)
(Gya®4Ppa. + &,) = OO, (4.4)

285

50—
M .
a - ——
g 0 7 7 \/‘
.] VHAN
B _so y
-100- T] T T TV 1 H LU REA T ‘[Firriad ¥ T TTTVYHIT
1072 107! 1 10 102
Frequency
200
P
h
a =
s J
e
0
d
e -
g g
-200 T T T T TTTT T T T =TT T 777
1072 107! 1 10 102
Frequency

Figure 4.1: Frequency response for pinned-pinned beam control.

were obtained for 4 = .1 by the frequency sampled procedure and are displayed in Figure 4.3.
We remark that the computations of the indicated spectral factors effectively replace the com-
putational step of solving a pair Riccati matrix equation for the control (resp. filter) problem
typically encountered in state-space methods for control design. For distributed parameter
systems, solution of the Riccati equation (a PDE) requires discretization which is accom-
plished using the current algorithms by sampling and interpolation of the frequency response.
Thus numerical precision is concentrated over frequency bands significant for the given control
problem and with sampling under direct control of the designer. The solution obtained is ef-
fectively a high order rational approximation of the optimal solution with frequency response
interpolation points chosen by the design engineer. The optimal controller frequency response
thus obtained is shown for 4 = .1 in Figure 4.4.

5 Frequency Sampling Filters for Real Time Control Implemen-
tation

The frequency response computations for Wiener-Hopf control outlined and illustrated in the
previous sections identify various frequency sampled approximations to the ideal, possible
irrational frequency response for the desired optimal controller. Bandwidth and sampling can
be chosen by the design engineer to represent specific concerns based on models and/or control
performance. The frequency sampled computations obtain a specification for the frequency
response of the ideal (optimal) controller via its sampled representation. The design engineer
now has several options for implementing the controller depending on available hardware. In
contrast to the state space approach for finite dimensional systems, several new realization
opportunities are suggested by the frequency sampling approach.

286

10 104
102 102
[3 []
; !
= 1 .é
2 [}
£ 2
1072 10
10.! LR lm'l] T 11 f]l”l i III"' 1 l_fll”l' 10 | L] I”"‘ Tt T[llnl T 11 llllll LR L lll"'
1072 1072 1 10 102 1072 107t 1 10 10
Fraquency Frequency

Figure 4.2: PSD for disturbance and sensor noise inputs for beam control.

A principal concern in implementation of high precision control laws for flexible structure
control is the order of the realization required for the online controller. The controller or-
der is usually taken to mean the dimension of the state variable realization of the transfer
function C/(s) which will be implemented for realtime control. Implementation using analog
components of high order models is limited by circuit complexity, reliability and cost. As
a result considerable effort has been expended in methods for model order reduction. One
approach to controller realization which follows from the frequency sampled computations of
the previous section is to compute reduced order, continuous time, state space realizations for
the controller by techniques such as in {12].

Digital computer implementations are primarily limited by computational speed and al-
gorithm complexity effecting the ultimate obtainable sampling rate and considerations for
reduced order realization of the controller may be required. However, the emergence of special-
ized computer hardware implemented in VLSI single chip circuits for digital signal processing
opens new opportunities for realization of realtime control for flexible structures. We prefer
to consider realization options for the optimal controller in discrete time for implemenation
on a digital computer. Realization of the controller specified by its frequency samples can be
obtained using a FIR digital filter implementation.

Given the specified frequency samples obtained for the optimal controller,

Cr = C(jwr),

at frequencies, wy = kwpw /N, where wpw is bandwidth and N the number of uniformly
spaced frequency samples we describe the digital filter realization using z-transforms. With
discrete time sampling rate w, > 2wpw the frequency samples correspond to interpolation
points in the z-plane given by®, z, = e*2=/M for k = 0,...,N — 1. The z transform which

3Bandwidth and sampling requirements would typically require padding the sequence of frequency samples
of length N with Ny — N zero values to avoid aliasing.

287

oa uaox

aea ouee v

@oaQa oo x

Q0 LT

OMEGA(1,1)

50
25 ——
o i T T T TTHEY] T T T 1TFY 1] LR LRI T T F 1Tl
1073 1072 107} 1 10
Frequency
100
i . f\
i . :
50 \\ "
. \
0 1 T T V1T TTT) 1 T T 1T1TTF T 1 T T 1T 1T 1 §] LSRRI
1073 102 1071 1 10
Frequency
LAMBOA(1,1)
50
25 -
] S i . :
0 7 - s \ 3 H
- NS \ -
-25 1 3 L LR LA 1 | LR AL | 4 F vV TTTwy | 1 T T 1T
1073 1072 107! 1 10
Frequency
100
]
0 = "’i :: A "
-100] // ‘/
—200— T 1 LERBLRAR 1 1] LB T 1 I S LA} T LR R
1073 10°2 o-1 1 10

1
Frequency

Figure 4.3: Spectral Factors for pinned-pinned beam control.

288

50
M i
a -
g - e
d 0 e
2] ' \"—__\/"\1\._,\1~~
-50 |4 1 T 1T 11171 T T I T T1¢F§7] | T T 1107 1 r T VY iid0
1073 1072 1071 1 10
frequency
200
P (O \/
h] %
\’ -
a - i :
s \\ /1'
e A 3 i
0 o L :-\ v 1
d 2
e
9
. .. e .. : A AR
-200 T T T T 1171 1 T P T TViT 1 ' T T 1187 L T T T V10T
1073 1072 10”1 1 10
Frequency

Figure 4.4: Optimal Controller Frequency Response for p = .1.

realizes the frequency sampling filter is
N-1
C(Z) = Z C;.F;.(z)
=0
where the interpolating functions are,

_ 1-2z7V
z) = N(1 — eta=/N z-1)’

Fi(

with k = 0,..., N — 1. A standard computation shows that the frequency sampling filter has
transfer function

1- z—N N-1 Cx N-1 ‘ .
C(z) = — 3 T = 3z (5.1)
k=0 {=0
where the coeflicients,
1 N-1 .
Cct = —ﬁ Z C}.CJ(h’IN)”‘ (5.2)
k=0

for £ = 0,...,N — 1, are the Inverse Discrete Fourier Transform (IDFT) of the sequence
Co,...,Cn-1. The final form in (5.1) shows that the realization is a FIR realization. Such
realizations are nonrecursive and are efficiently implemented using high speed, single chip DSP
processors which utilize highly pipelined architectures to achieve high throughput.

6 Conclusions and Directions

Wiener-Hopf optimization of frequency domain models has been shown to offer significant
advantages for computation of precision controllers for irrational transfer functions arising
in control of flexible structures. Computational algorithms for causal spectral factorization

289

and causal projection can be implemented based on frequency sampled representation of the
model response. Such models can be obtained from transfer function models or from frequency
response measurements of the controlled structure. Computations based on frequency response
sampling have been demonstrated for irrational transfer function models arising in the control
of flexible structures.

Requirements for precision control will involve frequency response models which are char-
acterized by a large number of flexible modes within the control bandwidth. However, for
control of relatively large, flexible space structures control bandwidth and resulting sampling
requirements for discrete time control implementations are well within the state-of-the-art for
high speed digital computers. Frequency sampling filters based on nonrecursive implementa-
tions can be efficiently implemented in modern DSP single chip processors for realtime control
of such systems.

Application of FIR realizations for realtime, closed loop control have not received much
consideration in the literature primarily due to increased phase lag by comparison with a
recursive realization. However, the rapidly developing technology for realtime DSP using
special purpose architectures offers throughput capabilities which may reduce the achievable
computational delay to within acceptable limits for certain applications. In such cases, high
order realizations may be feasible using nonrecursive implemenations which cannot be realized
by recursive methods.

References

[1] W. H. Bennett, “Computation and implementation of precision control for flexible struc-

tures,” in Proc. Com Con 88, Oct. 1988.

[2] C. Desoer, R.-W. Liu, J. Murray, and R. Saeks, “Feedback systems design: The fractional
representation approach to analysis and synthesis,” IEEE Trans. on Auto. Cntrl., vol. AC-
25, no. 3, pp. 399-412, 1980.

[3] M. Vidyasagar, Control System Synthesis: A Factorization Approach. MIT Press, 1985.

[4] J. S. Baras, “Complex variable methods in the control of distributed systems,” 1985.
Presented at NSF, SIAM, AFOSR Workshop on Control of Distributed Systems.

(5] D. Youla, H. Jabr, and J. J.J. Bongiorno, “Modern Wiener-Hopf design of optimal
controllers-parts I and I1,” IEEE Trans. on Auto. Cntrl.,, vol. AC-30, no. 7, pp. 3-13
and 319-338, 1976.

(6] K. Park and J. J.J. Bongiorno, “A general theory for the Wiener-Hopf design of multi-
variable control systems,” IEEE Trans. on Auto. Cntrl., vol. AC-34, no. 6, pp. 619-626,
1989.

[7] C. Desoer, R.-W. Liu, J. Murray, and R. Saeks, “Feedback system design: The fractional
representation approach,” IEEE Trans. on Auto. Control, vol. AC-25, pp. 399-412, 1980.

[8] C. Desoer and C. L. Gustafson, “Algebraic theory of linear multivariable feedback sys-
tems,” IEEE Trans. Auto. Cnirl., vol. AC-29, no. 10, pp. 909-917, 1984.

290

[9] W. Bennett and H. Kwatny, “Continuum modeling of flexible structures with application
to vibration control,” AIAA J., September 1989. to appear.

[10] A. von Flotow, “Traveling wave control for large spacecraft structures,” AIAA J. Guid-
ance, vol. 9, no. 4, pp. 462-468, 1986.

(11] D. Miller, A. von Flotow, and S. R. Hall, “Active modification of wave reflection and
transmission in flexible structures,” in Proc. 1987 Amer. Cntrl. Conf., pp. 13128-1324,
1987.

(12] G. Gu and P. Khargonekar, “Approximation of infinite-dimensional systems,” IEEE Tran.
on Auto. Cntrl., vol. AC-34, no. 6, pp. 610-618, 1989.

(13] W. Bennett and N. Barkakati, “FlexCAD: Prototype software for modeling and control
of flexible structures,” in Proc. IEEE CACSD Symp., Sept. 1986.

[14) W. Bennett and I. Yan, “A computer algorithm for causal spectral factorization,” in

Proc. 1988 NAECON, May 1988.

[15] F. Stenger, “The approximate solution of Wiener-Hopf integral equations,” J. Math.
Analysis and Applic., vol. 37, pp. 687-724, 1979.

[16] J. Davis and R. Dickinson, “Spectral factorization by optimal gain iteration,” J. Appl.
Math., vol. 43, pp- 389-301, 1983.

291

N90-23022

Efficient Computer Algebra Algorithms
for
Polynomial Matrices in Control Design

J. S. Baras
D. C. MacEnany
R. Munach

Abstract

The theory of polynomial matrices plays a key role in the design
and analysis of multi-input multi-output control and com munications
systems using frequency domain methods. Examples include coprime
factorizations of transfer functions, canonical realizations from matrix
fraction descriptions, and the transfer function design of feedback
compensators. Typically, such problems abstract in a natural way to
the need to solve systems of Diophantine equations (the so-called
generalized Bezout equations) or systems of linear equations over
polynomials. These and other problems involving polynomial
matrices can in turn be reduced to polynomial matrix
triangularization procedures, a result which is not surprising given
the importance of matrix triangularization techniques in numerical
linear algebra. There, we deal with matrices with entries from a field
and Gaussian elimination plays a fundamental role in understanding
the triangularization process. In the case of polynomial matrices we
are dealing with matrices with entries from a ring for which Gaussian
elimination is not defined and triangularization is accomplished by
what is quite properly called Euclidean elimination.

Unfortunately, the nmerical stability and sensitivity issues which
accompany floating point approaches to Euclidean elimination are not
very well understood at present. In this paper we present new
algorithms which circumvent entirely such numerical issues through
the use of exact, symbolic methods in computer algebra. The use of
such error-free algorithms guarantees that the results are accurate to
within the precision of the model data—the best that can be hoped.
Care must be taken in the design of such algorithms due to the
phenomenon of intermediate expression swell, the price paid for

292

N90-23023

Integrated Control-System Design
via
Generalized LQG (GLQG) Theory
Dr. Dennis 3. Bernstein
Dr. David C. Hyland
DOr. Stephen Richter
Harris Corporation

Prof. Wassim M. Haddad
Department of Mechanical and
Aerospace Engineering
Florida Institute of Technotogy

Abstract

Thirty years of control systems research has produced an
enormous body of theoretical results in feedback synthesis. Yet such
results see relatively little practical application, and there remains
an unsettliing gap between classical single-loop techniques (Nyquist,
Bode, root locus, pole placement) and modern multivariable
approaches (LQG and Hee theory). Large scale, complex systems, such
as high performance aircraft and flexible space structures, now
demand efficient, reliable design of multivariable feedback
controllers which optimaily tradeoff performance against modeling
accuracy, bandwidth, sensor noise, actuator power, and control law
complexity. This presentation will describe a methodology which
encompasses numerous practical design constraints within a single
unified formulation. The approach, which is based upon coupled
systems of modified Riccati and Lyapunov equations, encompasses
time-domain linear-quadratic-Gaussian theory and frequency-domain
H theory, as well as classical objectives such as gain and phase
margin via the Nyquist circle criterion. In addition, this approach
encompasses the optimal projection approach to reduced-order
controller design. The current status of the overall theory will be
reviewed including both continuous-time and discrete-time
(sampled-data) formulations. The presentation will focus on the

293

Modern CACSD using the Robust-Control
Toolbox

Richard Y. Chiang and Michael G. Safonov
Department of Electrical Engineering - Systems

University of Southern California
Los Angeles, CA. 90089-0781

Abstract

The Robust-Control Toolboz [1] is a collection of 40 “M-files” which ex-
tend the capability of PC/PRO-MATLAB to do modern multivariable robust
control system design. Included are robust analysis tools like singular values
and structured singular values, robust synthesis tools like continuous/discrete
H2/H* synthesis and LQG Loop Transfer Recovery methods and a variety of
robust model reduction tools such as Hankel approximation, balanced trunca-
tion and balanced stochastic truncation, etc.

In this paper, we will describe the capabilities of our toolbox and illustrate
them with examples to show how easily they can be used in practice. Examples
include structured singular value analysis, H™ loop-shaping and large space
structure model reduction.

1 Introduction

The fundamental issue in robust control theory - to find a stabilizing controller that
achieves feedback performance despite the plant uncertainty, is still the same issue
addressed by the classical 1930’s feedback theory of Black, Bode and Nyquist (ref.
Fig. 1.1). Modern robust control theory has resolved many of the issues concerning
the “gap” between the theory and practice that had grown to troublesome proportions
in the 1970’s. One key to bridging the “gap” has been the singular value Bode plat.
Recent progress in Structured Singular Value (SSV), H* optimal control theory and
the model reduction techniques utilizing singular values have made the modern robust
control theory highly practical.

The inavailability of quality software implementing the techniques of robust con-
trol theory has, until very recently, significantly limited the access of both researchers
and engineering practitioners to these techniques.

294

T
yu

Fig. 1.1 Robust Control Problem.

Our Robust-Control Toolboz implements the most up-to-date robust control theory
like Perron SSV, optimal descriptor 2-Riccati H* formulae, LQG/LTR and singular
value based model reduction techniques, ..., etc. The toolbox consists of a library
of 40 functions which extend the capabilities of PC/PRO — MATLABT™ and the
PC/PRO—~MATLAB Control Toolboz. The toolbox itself represents four man years
research work done at USC.

These 40-functions can be catalogued into 3 major areas:

¢ Robust Analysis

— Singular Values
— Characteristic Gain Loci

— Structured Singular Values

¢ Robust Synthesis

— LQG/LTR, Frequency-Weighted LQG
_ H2, He

¢ Robust Model Reduction

— Optimal Descriptor Hankel (with Additive Error Bound)
— Schur Balanced Truncation (with Additive Error Bound)

295

— Schur Balanced Stochastic Truncation (with Multiplicative Error Bound)

In this paper, we will highlight the most important functions in the toolbox,
demonstrate how easily they can be used and show what kind of results can be
achieved with practical problems. As for the details of the modern robust control
theory, they can be found in [7], [2] and the references therein.

2 Robust Analysis

The objective of robust analysis is to find a proper measure of the multivariable
stability margin (MSM) against uncertainty. Uncertainty may take many forms,
but among the most significant ones are noise/disturbance signals, transfer function
modeling errors and unmodeled nonlinear dynamics, etc. Uncertainty in any form is
no doubt the major issue in most control system designs.

Several tools to measure MSM are available: [1], (8]

e Singular values (Safonov, 1977; Doyle, 1978)
o Perron eigenvalues (Safonov, 1982)

e Diagonal scaling via nonlinear programming (Doyle, 1982; Tekawy et al., 1989)
Let’s define the MSM first:
Definition 1 Multivariable Stability Margin (MSM)K,., p(-)*
Kn(Tp) 2 p(T) ™ = inf{z(A)|det(I — T, A) = 0}.

In other words, it’s the smallest 7(A) that can make the determinant (I — T}, A)
singular (or the closed-loop system unstable). See Fig. 1.1.
A theorem summarizes the whole MSM idea:

Theorem 1 The system is stable for all stable A; with | Al < 1, if the MSM
Kn(T,u)> 1.
Unfortunately, exact computation of K., (or #~') would require solution of a non-

convex optimization problem and is therefore impractical. Fortunately, computable
upper bounds on K, are available, viz.,

K;;I(Tw) = I‘(Tw) < IiJ%g ”DTWD"IHO‘, < Ii)lg, ”Dab"(Tvu)D_lnoo < Tl
where D := {diag(d;1,...,d.I)|d; > 0}.

Then using these upper bounds (some may be more conservative than others), one
can assure that the system is stable against the norm-bounded uncertainty ||A|l <

K,..

296

A comparison of the available upper bounds reveals that some are much easier to
compute than others. See table 2.1.

Table 2.1

Method Property Computation | Reference
Optimal Diagonal | n = 3, exact K, demanding Doyle, 1982
Scaling n>3,315 % gap Tekawy et al., 1989
Perron Eigenvector | very close to optimal | easy Safonov, 1982
Diagonal Scaling diagonal scaling
Singular Value can be very easy Safonov, 1977

conservative Doyle, 1978

Let’s see the following example.
Example: Given a system G(s) with multiplicative uncertianty at its input. Find

the MSM.
" 0
G(s) = [PR T]
s+4 48 48
Theorem 1 implies ||A]lo < (J|G(I + G) M oo) -
. Singular Valoe vs. Pexrron Eigeavalue
= L rrrrrwe—— mntai.
2}
* * + o 10F 6[6 (116)-']
; ol
8 o} T
20} T\‘\‘-
e(meyl~,
aof "-_‘
-40} .\‘1
.50 saan a
109 102 107 10 108 100 100

Fig. 2.2 Singular Value vs. K,, (upper bound).

This example reveals that the singular value upper bound is too conservative in
“robust analysis”. Whereas, Perron SSV is much simpler to compute than diagonally
scaled nonlinear programming u.

3 Robust Synthesis

Classical control system designers often do “loop-shaping” to meet design specifi-
cations. So do modern robust control system designers. “Loop-shaping” for mul-

297

tivariable systems is done via the singular-value Bode plot. However, to shape the
loop transfer function L(s) is nothing but to shape the sensitivity function S(s) =
(I + L(s))™" and the complementary sensitivity function T(s) = L(s)(I + L(s))™ .
See Fig. 3.1

: 403)

F —0O—*u» -

Fig. 3.1 SISO & MIMO Loop-Shaping.

There are several loop-shaping methods available in the Robust-Control Toolboz
(see Table 3.1), but H*™ is one of our favorites.

Table 3.1
Methods Advantages Disadvantages
LQR e guaranteed stability margin o need full-state feedback
(lqr.m) e pure gain controller o need accurate model
o possibly many iterations
LQG ¢ use available noise data o no stability margin guaranteed
(lqg.m) o need accurate model
o possibly many iterations
LQG/LTR e guaranteed stability margin o high gain controller
(Itru.m,ltry.m) | o systematic design procedure o possibly many iterations
o design focus on one point
H* o address stability and sensitivity | o possibly many iterations
(h2lqg.m) ¢ almost exact loop shaping
e closed-loop always stable
H*> e address stability and sensitivity
(hinf.m) o exact loop shaping
¢ direct one-step procedure

Example: Classical loop shaping vs. H® for 2nd order low-damped system.

Given a plant G(s) which is 2nd order with damping 0.05 at 20 rad/sec, find a
controller to meet frequency response Bode plot (see Fig. 3.2)

298

PLANT OPEN LOOP & SPECIFICATION
40 ”v T ! rT ¥ T ¥
77 S8 T

»

DB
8

: : ‘ : N
: : ; .~
: : : : o
7T) PO S OO SRR IO 0 08 ONUOTOOPOR SOOI SRR UL SOV 005 SO IO
: : : M

.80 ; . H R ; . HIH
100 101 102 103

Frequency - Rad/Sec

Fig. 3.2 2nd order plant open loop ({ : 0.05,0.5) and the L(s) spec.

A classical design might be decomposed into the following: (see Fig. 3.3)
Step 1: Rate feedback to improve damping.
Step 2: Design high frequency (phase margin, BW, roll-off..).
Step 3: Design low frequency (DC gain, disturbance rejection..).

The classical result is shown in Fig. 3.4. Now, let’s see how H* approaches the
problem.

H> Problem Formulation

We are solving the so-called H® Small-Gain Problem ([3]) using the numerically
robust “optimal” descriptor 2-Riccati formulae of Safonov, Limebeer and Chiang [4]
(5]

H* Small-Gain Problem:

Given a plant P(s) (ref. Fig. 3.5), find a stabilizing controller F(s) such that
the closed-loop transfer function T,,,, is internally stable and its infinity-norm is less
than or equal to one.

But what makes H® work is its unique and remarkable “all-pass” property:

At H*™ optimal, the frequency response of T,, ., is all-pass and equal to one (i.e.,
1Ty | = 1)1

This means that designers can achieve EXACT frequency domain loop-shaping via
suitable weighting strategies. For example, one may augment the plant with frequency

00t

-3urdeys-dooj [eotsse]) F'¢ "3t
Jag/pey - Aousnbary

08-

01 z01 101 001

(e

~ 0%

wullT

0
ONIdVHS-dOOT TVIISSVTID

‘ureaBerp yoorq Surdeys-dooj redsser) ¢'¢ ‘g

(8T=%
}oeqpasy arel
> S
(G6s+)@s)
(Or+S)OT+5)SET
(/107 @ S0°0) _

[]

()0)0 4————@1——
¥ T

erd Sel-peo]

P(s)

F(s)

Fig. 3.5 H® Small-Gain Problem.

AUGMENTED PLANT P(s)
'1 yla
. L] Y2a
: +
[u y
—-?__- G ‘l3 Y3a
AN
[d Y,
CONTROLLER
F(s

Fig. 3.6 Weighting strategy block diagram.

301

dependent weights W;, W, and W; as shown in Fig. 3.6. Then, the Robust-Control
Toolboz functions augtf.m and augss.m will perform the augmentation and create a
state-space for function hinf.m to find an H*® controller. Of course, these frequency
weighting functions have to be chosen so that a stabilizing solution satisfying the H*

norm constraint exists.
In a typical application, either W;(s) or W;(s) would be absent, leading to weighted

H® costs of the forms
w.S w.S
W,T WLFS

In our example, the frequency domain spec. can be split into W; and Wi:

<1

min <
F(s)

'oo

<1 or min
oo F(s)

40000

82

2
Wt = p (025 +1)

. -1 _
= P100(0.005s + 1 5 =

as shown in Fig. 3.7.

SPECIFICATION > WEIGHTING STRATEGY
100 T T ; TTT

40 : £ R O e

DB
O
N7

Piad

of i <,
7
204 ? P ;
BRI B
40 [/ . L
100 10! 102 108

Frequency - Rad/Sec

Fig. 3.7 Weighting strategy for 2nd order problem spec.
The results are shown in Fig. 3.8 for different p’s. Clearly, in the limit (as p
goes to 3.16) the cost function becomes “all-pass”. The parameter p of W, is the

only parameter on which we iterate for design; the Robust-Control Toolboz script-file
hinfgama.m automates this iteration.

302

db

db

H-inf Design A (tho = 1)

T TTTT YT T Y

/4

-50

W, &
o

100

10! 102 . 108
Rad/Sec
H-inf Design B (tho = 3.16)

50 T
N

T

10! . 102 103
Rad/Sec
H-inf Cost Function (Design A & B)

T Ty \ T YT T T T vTY

DESIGN 8 (OPTIMAL)

st

<15}

q

DESIGN A
(SvBDOPTIMAL)

100

104 102 108

Fig. 3.8 H* results for 2nd order system

303

3.1 H®> Software Execution and Sample Run

To do an H*® control design with the Robust-Control Toolboz is relatively simple.
Table 3.2.1 shows the complete user inputs for our sample problem.

Table 3.2.1

>> nug = [0 0 400}; dng = [1 2 400];
>> |[ag,bg,cg,dg] = tf2ss(nug,dng);
| >> sysg = [ag bg;cg dg]; 2zg=2;

>> wl=[25e—-5 l.e—-21;
0.01 x[4.e — 2 4.e -1 1]];

>> w2=][];
>> w3=[10 0;0 0 40000];
>> [A,B1,B2,C1,C2,D11,D12,D21,D22] = augtf(sysg,zg,wl,w2,w3);

>> hinf

Table 3.2.2 shows the output which appears on the screen for a successful run of
hinf.m.

Table 3.2.2

<< H-inf Optimal Control Synthesis >>

Computing the 4-block H-inf optimal controller
using the S-L-C loop-shifting/descriptor formulae

- - - Solving for the H-inf controller F(s) using U(s) = 0 (default) - - -

Solving riccati equations and performing H-infinity
existence tests:

1. Is D11 small enough? 0K
2. Solving state-feedback (P) riccati ...
a. No Hamiltonian jw-axis roots? OK
b. A-B2«F stable (P >= 0)? 0K
3. Solving output-injection (S) riccati ...
a. No Hamiltonian jw-axis roots? 0K
b. A-G#C2 stable (S >= 0)? 0K
4. max eig(P*s) < 1 ? 0K

—— - D T = - P - =D G ED D e e D D M G S S D e e e e e

all tests passed -- computing H-inf controller ...
DONE! !!

- A - A S W . = D D G R WP D R D W S YR D P o - A D e e e

304

4 Robust Model Reduction via Basis-Free Tech-
niques

In the design of controllers for complicated systems, model reduction arises in several
places: 1). Plant model reduction, 2). Controller model reduction, 3). Simulation of
large size problem.

However, naive implementations of model reduction methods such as Rosenbrock’s
stair-case algorithm, Moore’s balanced truncation, optimal Hankel approximation and
balanced stochastic truncation, etc., can fail on even relatively simple problems due
to numerical instability.

The Robust- Control Toolboz implements the “basis-free” version of the latter three
of the model reduction techniques, which are not only numerically robust but also
tend to achieve the ultimate result for practical problems. In particular, they all
possess the following special features:

1. They bypass the ill-conditioned balancing transformation, so that they can eas-
ily deal with the “non-minimal” systems.

2. They employ Schur decomposition to robustly compute the orthogonal bases
for eigenspaces required in intermediate steps.

These methods all enjoy attractive L™ error bounds — either an additive error
bound or a multiplicative error bound.

e Additive Methods:
~ Optimal descriptor Hankel MDA (ohkimr.m).
— Schur balanced truncation (balmr.m, schmr.m).
e Multiplicative Method:

— Schur balanced stochastic truncation (reschmr.m).

4.1 Robust Model Reduction Theorems

For robust control system design, it is desirable that the reduced order model satisfies
the conditions of one of the following two theorems (ref. [1] {2]). Otherwise, the
controller design based on the “blind”reduced order plant model can be unstable !

Theorem 2 Additive Robustness Theorem: (see Fig. 4.1)

If 3(A4) < o(G) for w < w, (with A and G open loop stable), then the closed-
loop system will be stable provided that the control bandwidth is less than w,, where
w, :=maz{w | g(G(jw)) 2 7(Aa(jw))}-

TRUE PLANT G(s)

Fig. 4.1 Additive modeling error.

Theorem 3 Multiplicative Robustness Theorem: (see Fig. 4.2)

If5(Ay) < 1 for w < w, (with Ay and G open loop stable), then the closed-loop
system will be stable provided that the control bandwidth is less than w,, where w, :=
maz{w | 5(Ap(jw)) < 1}.

TRUE PLANT G(s)

Fig. 4.2 Multiplicative modeling error.

4.2 Examples of Model Reduction

Example 1: Find a 3-state reduced order model for the transfer function

G(s) = 0.05(s” + 801s° + 10245 + 599s* + 4515 + 11952 + 49s + 5.55)
87 4+ 12,658 + 53.485% + 90.94s* + 71.8333 + 27.225% + 4.755 + 0.3

with Hankel singular values of the phase matrix

o o3 o3 o4 O T a7
0.9959 | 0.9972 { 0.9734 | 0.7166 | 0.5635] 0.0021 | O

306

Schur BST-REM vs. Schur BT and Des. Hankel (7-statc --> 3-state)
20 T T J

Gain - db

BST-REM

103 102 101 100 10t 102 103 104
Frequency - Rad/Sec

Schur BST-REM vs. Schur BT and Des. Hankel (7-state > 3-state)
200 r .

(1) P SIS

100 e b

Phase - deg

| solid : originalmodel
- :Scdur-BT
... : Optimal Des. Hankel MDA RN
-.~.-.: Schur BST-REM b

L T I

-S00)
02 102 101 100 10 102 103 104
Frequency - Rad/Sec

Fig. 4.3 Schur BST-REM vs. Schur BT and Descriptor Hankel.

307

The results produced by the Robust-Control Toolboz functions — ohklmr.m, schmr.m,
reschmr.m, are shown in Fig. 4.3. Clearly, the Schur BST-REM method that keeps
the reduced model staying inside a prescribed relative error bound produces the ul-
timate result in model reduction. Note that o7 = 0 indicates only the “basis-free”
methods can handel the problem without numerical difficulty.

Example 2: Model reduction for a large space structure [6] (see Fig. 4.4).

Our design reequirement is to find a controller to track LOS loops in 300 Hz BW
and to reduce plant disturbance response by a factor of 100.

The Hankel singular values after the inner loops are closed indicate that the system
is non-minimal. Therfore, only the “basis-free” methods such as — Schur BT (schmr.m)
or Schur BST-REM (reschmr.m) can be used. Again, only the Schur BST-REM can
match the original model up to a “robust frequency” which is high enough so that
the required BW of 300 Hz can be satisfied (see Fig. 4.5 & Fig. 4.6).

Disturbances
Secondary o= (25-30)
Mirror <y

(7-12)

(1‘6) &

Disturbances

X T (19-24)

Fig. 4.4 Large space structure.

308

SV (db)

SV (db)

LSS 4-state Schur-Bt model vs. 116-stase original 2
p-] T Y T T
0 ; oF 1
: 20k 4
A0}
~ 40 < 4
B0 s
>
80+ “ ot
-100} ol
120} .
-100
-140}-
: S 1205 :1 1 i|
AT T 10t 10 100 1 100 104 100 103 10 10 10010 102 10 10¢ 10°
RadfSec RadfSec
Fig. 4.5 Model reduction using Schur Balanced Truncation.
LSS 4etate Schur BST-REM model vs. 116-staie orig, o LSS 4-stase Schur BST-REM model va. soral erroe
20, T Y =T \g T T
i %(%4)
20} p . \&\
40} K : ..
o/
“ 3 G(6n-84) T N
80} H : L \\
-100} 150+ A .t?,\,: —
c i
20 f e - Y,
200k . (‘df > lo /S
-140f
-160 : ! " . . 250 . ; .
109 102 10 10 100 12 100 100 10 105 107 100 10° 100 103 108 1ot 10

Fig. 4.6 Model reduction using Schur Balanced Stochastic Truncation.

309

5 Importance to the Control Community

If the ultimate goal of research is to apply the theory to reality, then the contribution
of Robust-Control Toolboz is clear:

It provides a vital bridge between modern robust control theory and real control appli-
cations.

The following diagram (Fig. 5.1) shows how different groups of people with dif-
ferent backgrounds can utilize the Robust-Control Toolboz to achieve their personal
goals. For example classical control designers can use the toolbox to understand the
theory or to apply on a design. Non-robust control researchers can study the code pro-
vided by the toolbox together with the papers referenced therein to become familiar
with the robust control theory. Students can use the toolbox either for robust control
research or for realistic design studies. It seems that the Robust-Control Toolboz can
serve people from a variety of backgrounds.

Robust Robust
Control Controt
Toolbox Toolbox

Robust Robust
Robust-Control Toolbox
Control Control
Researcher Designer
4
Robust Robust
Control Control
Toolbox Toolbox
Robust
Control
Toolbox
Non-robust Classical
Control Control
Researcher Designer

Fig. 5.1 The importance of the Robust-Control Toolboz.

310

6

Summary

The Robust-Control Toolbox

o Provides a bridge between modern robust control theory and the real-world
applications.

Has the most up-to-date Robust-Control theories and algorithms.

Is in readable M-files, so it’s educational.

e Contains the tools one needs to do robust control system design, analysis and
model reduction.

Is direct, powerful and easy-to-use.

References

[1]

2]
(3]

[4]

R. Y. Chiang and M. G. Safonov, Robust-Control Toolboz. So. Natick, MA: Math-
Works, 1988.

R. Y. Chiang, Modern Robust Control Theory. Ph.D. dissertation, USC, 1988.

M. G. Safonov and R. Y. Chiang, “CACSD using the State-Space L* Theory
- A Design Example”, IEEE Trans. on Automat. Contr, vol. AC-33, no. 5, pp.
477-479, 1988.

M. G. Safonov and D. J. N. Limebeer, “Simplifying the H>™ Theory via Loop-
Shifting”, Proc. IEEE Conf. on Decision and Control, Austin, TX, Dec. 7-9,
1988.

M. G. Safonov, D. J. N. Limebeer and R. Y. Chiang, “Simplifying the H>
Theory via Loop-Shifting, Matrix Pencil and Descriptor Concepts”, to appear
Int. J. Conirol 1989.

M. G. Safonov, R. Y. Chiang and H. Flashner, “H*> Control Synthesis for a
Large Space Structure,” Proc. of American Contr. Conf., Atlanta, GA. June
15-17, 1988. Submitted to J. of Guidance and Control, June, 1989.

M. G. Safonov, Robustness and Stability Aspects of Stochastic Multivariable Feed-
back System Design, Ph.D. dissertation, MIT, 1977. Also, M. G. Safonov, Sta-
bility and Robustness of Multivariable Feedback Systems. Cambridge, MA: MIT
Press, 1980.

J. Tekawy, M. G. Safonov and R. Y. Chiang, “Computer Algorithms for Multi-
variable Stability Margin”, Proc. of 8rd Annual Conference on Aerospace Com-
putational Control, Oxnard, CA, Aug. 28-30, 1989.

31

N9O-23025

H2- and H>-Design Tools for Linear Time-Invariant Systems

Uy-Loi Ly
Department of Aeronautics and Astronautics FS-10
University of Washington
Seattle, Washington 98195

Abstract
Recent advances in optimal control have brought design techniques based on optimization of H2

and H= norm criteria, closer to be attractive alternatives to single-loop design methods for linear
time-invariant systems. Significant steps forward in this technology are the deeper understanding of
performance and robustness issues of these design procedures and means to perform design trade-
offs. However acceptance of the technology has been hindered by the lack of convenient design tools
to exercise these powerful multivariable techniques, while still allowing single-loop design
formulation. Presented in this paper is a unique computer tool for designing arbitrary low-order
linear time-invariant controllers that encompasses both performance and robustness issues via the
familiar H2 and H> norm optimization. Application to disturbance rejection design for a commercial
transport is demonstrated.

I. Introduction

Past three decades have laid a foundation on the theory of optimal control. Issues have been
actively pursued in algorithms for numerical solution of optimum designs, feedback properties of
optimal linear feedback (and feedforward) controllers and associated theoretical results of existence
and uniqueness. Filtering of these wealth of technology down to current practitioners have been
agonizingly slow. Demonstration and acceptance of these design techniques in typical flight systems
such as SAS (stability augmentation systems), manual controls and autopilot designs, are almost
non-existent. Hindrances in this effort are related to concerns raised in the following areas: design
simplicity, ease-of-modification during flight-test and incorporation of designers' intuition and
experiences in these "optimum" systems. Presented in this paper is the development of a design tool
that covers much of the advances in multivariable controls and its potential application to flight
controls.

II. Background and Motivation

Historically multivariable controls have been extensively developed based on optimal control of
linear time-invariant systems. Class of design problems addressed in the past are optimal linear
regulator using full-state feedback or estimate-state output feedback. Research efforts to extend the
usefulness of multivariable control designs within the reach of experienced control designers are

concentrated in the following areas:
« Measures of design robustness in the presence of modeling uncertaintiest1-21,

T Numbers indicate references.

312

« Synthesis methods to achieve trade-offs in performance and robustness’+22-35,

+ Model and controller order reduction36-39,

« Direct synthesis of reduced-order controllers of given structure to achieve trade-off in
closed-loop performance and robustness, and at the same time facilitate design integration
over different operating conditions23.

A well-known property of feedback concept is its ability to regulate in the presence of plant
uncertainties. Measures of robustness are traditionally based on loop stability margins* (i.c. phase
and gain margins of individual control loops while maintaining other loops closed at nominal gains).
These single-loop robustness tests provide useful design criteria for the evaluation of current flight
control systems. Recent development in robustness analysis techniques allow designers to examine
design sensitivity in the multiloop and multivariable settings. To detect conditions for design
sensitivity, one makes use of the singular values of loop return-difference matrix at appropriate plant
input/output locations. In addition p-measure is defined to characterize design robustness to
uncertainties that are expressed in terms of plant parameter variations or those that have a
predetermined structure. The latter robustness measure, y-measure, is difficult to evaluate exactly;
but it provides the most accurate description of design robustness in the presence of structured
uncertainties. Current research direction is to devise numerical schemes that approximate closely!?
(i.e. providing "least” conservative upper and lower bounds) or, exactly calculate the p-function for
some specific types of structured uncertainties!3-2!. Synthesis methods to improve design
robustness based on a general u-measure are not available.

Guaranteed robustness of (-6dB,e) in gain margins and (-60°,60°) in phase margins from
optimal linear regulator have motivated researchers in developing design procedures to retain or
recover these robustness properties for state-estimate feedback controllers’ (i.e. as in optimal linear
quadratic gaussian (LQG) designs). Fundamental understanding in the robustness recovery process
resulted in design methods classified under the category of LQG/LTR where, for example, loop
properties of a full-state feedback regulator are asymptotically recovered with appropriate selection of
process noise models4., or in the framework of "asymptotic” pole assignment*2. One possible
drawback of these procedures is the tendency of having unnecessarily high gains in the estimator
design during the loop transfer recovery.

Controllers obtained from a LQG/LTR design procedure are usually of high order (i.e. order of
the controlled plant model augmented with models for actuation, sensor and design-shaping filter
dynamics). Implementation of these controllers in digital flight processors may be feasible with
anticipated advances in computing technology; but will undoubtedly be challenging from the point of
view of design traceability, reliability and maintainability. However it is often possible to reduce the
controller order using standard model reduction techniques such as modal residualization43, balanced
truncation? and optimal Hankel norm approximation3. Careful considerations must be made
especially in the reduction of controllers so that closed-loop stability, performance and robustness are
preserved. Frequency-weighted reduction schemes have been developed to address these issues with
some success3?.

A remaining problem is the final integration of "suboptimal" reduced-order controllers to operate
over a wide range of flight conditions. This is usually achieved in an ad-hoc manner (e.g. curve-
fitting gain parameters optimized at individual flight conditions as a function of some physical
quantities such as calibrated airspeed, aircraft weight, aircraft center of gravity and dynamic
pressure).

With some of the above outstanding issues unresolved, it is evident that wide acceptance of these
design techniques has been difficult. Additional reason behind this difficulty in technology transfer is

313

the lack of intuitiveness in the design approach to handle low-order controllers of given (i.e.
predetermined) structures (e.g. washout filter in the yaw damper design of a lateral control system
for turn-coordination, simple a-priori gain scheduling according to physical quantities such as aircraft
weights, dynamic pressure and calibrated airspeed, synthesis of dedicated structural filters for
control of lightly passively damped elastic modes, etc...).

Research in direct synthesis of reduced-order controllers for multivariable controls are being
actively pursued and have resulted in some promising design algorithms both in the continuous-
time?-32 and discrete-time#546 domains. Although theoretical development of the design techniques
have made significant strive, insights in applying them to the synthesis of practical flight control
systems are yet to be established. To facilitate the evaluation and technology transfer of multivariable
control design concepts, there is a need for an efficient and versatile design tool that is able to resolve
the above issues related to design implementation, performance, robustness and integration (i.e. gain
schedule) over a wide range of operating conditions.

IIL. Design Tool Development

The objective of the design tool is to provide a unified framework for applying recent advances in
robust multivariable controls to flight systems. To achieve this goal, development of efficient and
versatile computational algorithms is needed. Scope of the design concept and procedure will
hopefully enable and motivate experienced designers to appreciate the importance and value of
multivariable controls. Steps taken to accomplish the stated objectives are as follows:

* Formulation of control design problems and solution algorithms for the synthesis of robust

low-order controllers,

* Implementation of design algorithms in useful CAD tools for ease in obtaining design

solutions to a wide class of linear feedback/feedforward controllers,

* Ability to formulate other design specifications using linear and nonlinear equality and

inequality constraints.

Control Design Problem: Multivariable controls have primarily focused on applying
optimization to the design of control systems. Extensive work conducted to-date are on control of
linear time-invariant systems. The problem is the synthesis of linear controllers that meet specific
closed-loop performance and robustness over a range of linearized plant conditions. Surprisingly this
problem is identical to the one that experienced designers have to confront in their daily design work
where traditional single-input single-output (SISO) methods prevail. Inadequacies of these SISO
design techniques are well-known: neglect of cross-coupling effects, difficulty to satisfy multiple
design requirements, highly dependent on the designers' experience, trial-and-error. On the other
hand, advantages behind SISO design procedures are: the simplicity of its final controller structure,
the ease-of-incorporating designers' experience into the design process and design flexibility for
post-flight test modification. A useful design tool would combine these existing SISO design
features into multivariable control synthesis.

Design Procedure Based on H2 and H=-Optimization : Design methods for multivariable
controls can be categorized into two general classes depending on whether the control-laws are
synthesized based on minimizing a performance measure while satisfying other design constraints,
or just simply meeting design constraints (e.g. eigenstructure assignment).

In the category of performance-oriented methods, control algorithms are generally developed
from optimization of some weighted norms of the plant outputs and control inputs in a closed-loop

314

system subject to deterministic or stochastic disturbances. Two commonly used measures are H2
and H-norms with interpretation in both frequency and time-domains. Until recently, and mostly
for mathematical convenience, majority of feedback and feedforward control-law synthesis are based
on H2-norm. Associated design schemes are classified under the following methods: linear quadratic
regulator (LQR), linear quadratic gaussian (LQG) design and, linear quadratic gaussian design with
loop transfer recovery (LQG/LTR).

Over the past decade, practitioners of these techniques have gathered valuable experiences in
applying these techniques to flight controls. Iterative procedures have been developed to achieve
trade-offs between performance and control bandwidths54.55. However implementation of these
designs remains an area of concern and need further research development. Often these designs with
full-state feedback structure are implemented using a state estimator or observer. Procedures to
obtain design robustness in state-estimate feedback are done through the mechanism of Riccati
equation*! or eigenvalue placement*? starting from sufficient conditions for loop transfer recovery.

These procedures offer valuable insights into the design feasibility based on requirements of
closed-loop stability, performance and robustness. Unfortunately, difficulty in extending these
results to encompass traditional design philosophy (e.g. output feedback, low-order controller with
structure intuitive to designers, gain scheduling,...) remains. Attempts to fit these multiloop high-
order controllers into low-order and conceptually simple designs using, for example, controller order
reduction are not trivial and have been partially successful3%43, This remains to be an area of
continued research interests.

A completely different, direct and practical approach to multivariable controls would be via the
route of parameter optimization. The control design procedure described in this paper is one of such
methods. It is based on the optimization of an objective function using any pre-defined controller
structure and subject to additional linear and nonlinear design constraints36. The formulation allows
direct intervention of control designers through the set-up of the design objective function, the
controller structure and constraints on closed-loop stability, performance and robustness to plant
uncertainties. This design concept was originally developed in reference 23 for linear time-invariant
systems using objective function based on H2-norm. The design algorithm was efficiently
implemented into the computer-aided-design package SANDY. Evaluation of the objective function
and its gradients with respect to the controller parameters are performed analytically for a
diagonalizable closed-loop system. Subsequent improvement have been made in the area of
numerical optimization (e.g. found in the constrained optimization code NPSOL56), and in the
development of typical constraints encountered in flight control systems such as closed-loop
damping, covariance bounds on output and control variables. Encouraging results have been
obtained in a variety of control design applications2226-28.31.48

Reference 23 has also demonstrated the early application of such a technique in simple design
situations. Later applications have been in the design of missile autopilot?’, design of a reliable
stability and command augmentation system for a commercial transport22.26, design of an improved
lateral ride quality control system?8:49. Usefulness of such a design tool has been further
investigated in the control of a remotely-piloted vehicle305! and nonrigid manipulators5253,
Reference 53 actually applied and verified in experiments results achieved using the design
algorithm?3 to the synthesis of robust compensators for flexible structures with uncertain parameters.

This research has led to the development of a unified multivariable control design concept that
addresses virtually all flight control design problems such as stability augmentation systems, gust
load alleviation, manual and automatic control modes. Typical flight control systems can be
formulated exactly in the same situation as designers would when conducting designs using single-

315

loop frequency-domain techniques. However, in the design solution, multivariable control methods
based on H2 and H=-optimization will be used instead to derive the appropriate design gains. Section
V illustrates briefly the design philosophy in the synthesis of a longitudinal control system of a
commercial transport.

With this unique design concept developed for solution of optimal H2-norm type of problems,
the work is later extended to address control issues related to H=-norm*’. The overall scope is to
provide a unified design algorithm for low-order controller synthesis that utilizes criteria based on
both H2 and H*-norms>7-38, To achieve this objective an efficient numerical algorithm has been
developed to solve the following optimal control problems:

(a) Mixed H? and H=-Design Objective; Synthesis of feedback/feedforward controllers of fixed

(i.. arbitrary) order and structure is based on the minimization of the objective function J given by
N oiehi call 2 . o2/ G || 2
=Y (wi || TG w'z' Q rew()
P R! V2 Hw(O) || e R "“H j(j®)

2 (1.a)
or

te
f [ZT()Qiz(t)+uT()Riu(t)]dt

N,
J= Lim Y, (Wi Sup 22 + Wi E[ZT(t9Qz(t)+uT (t)Ru(tp)]}
tp—yoo i=1 wi(t) Itf

0

wiT()wi(t)]dt

(1.b)
Note that H_,(s) and H,,,,(s) are the transfer matrices between the disturbance inputs w(s) and the
performance outputs z(s) and controls u(s) of the closed-loop system respectively.

This formulation covers design criteria that are expressible either in terms of H2-norm or H~-
norm, or a combination of the two. Another feature of this set-up is its ability to address design
robustness to plant uncertainties (e.g. structured and unstructured uncertainties at both the plant
inputs and plant outputs, plant parameter variations) through the use of aggregated closed-loop
responses over a set of plant conditions, signified by the summation index i (i=1,Np) and Ny, is the
total number of design conditions. An objective function that spans multiple plant conditions further
provides a means to establish gain scheduling across the entire design envelope.

Reference 23 demonstrated the usefulness of this design formulation in controlling an 8™-order
flexible mechanical system under a non-collocated sensor/control configuration. A second-order
controller has been designed that is robust to large variation in moment of inertia of one of the disks
in a four-disk system?23-33, The resulting robust controller turns out to be non-minimum phase. This
result agrees with the SISO control synthesis procedure for active vibration control.

The design algorithms for evaluating both H2 and H*-norms use an equivalent time-domain
characterization. The equivalence is established using the familiar Parseval theorem®0.

(b) H2 Design Objective with H=-Bound Constraints: Alternatively one can define the control

problem being the minimization of an objective function J based on H2-norm,

N,) it2ai g 2
J= 2 w12 Q H?w(]m)
i=1 R! lnHuw(im) 2 (2)
subject to additional constraints

316

R Y2H () || 0 3)
for some positive scalar ¥; (i=1,Np). Recent work in H>-optimization33 follow similar past
development in optimal control for H2-norm problems to a single plant model. Algorithms have
been developed for state-feedback and output-feedback controllers (of the same order as the plant
model) that satisfy given H=-bounds (e.g. equation (3)). These methods can be applied iteratively to
yield solution of an H=-optimal control problem.

The resulting LQG-like controllers that are solutions to the H=-optimal control problems suffer
the same drawbacks associated with traditional LQG controllers. Moreover, solutions of low-order
controllers (i.e. strictly less than the order of the plant model) for H=-optimization are still not
available. Our method provides a convenient framework for H=-optimization using the early design
concept developed in reference 23 for low-order controllers. The outcome is a unified design
procedure that allows control practitioners to examine requirements based on current findings in H-
bounds or other related measures (e.g. u-measure, worst-case perturbations in parametric
uncertainties) for performance and robustness.

Finite-Time Quadratic Performance Index : One unique feature of the design algorithms for
H2 and H=-norm calculation is the usage of a finite-time quadratic performance index. The objective
function J(t;) (with a finite terminal time t;) for both L2 and L> norms is given by the following
equations,
+ For H2-norm :

+ Random Initial Conditions:

Np 3
Jig) = Z Wp, I e2ot E[ZT(t)Qiz(t)+uT(t)Riu(t)]dt < J(tg—ro0)
=t Jo (4.2)
* Random Forcing Inputs:
N,
J(t) = Y, wp; Bol2T(t)Q2(t+uT ()R u(t)] < J(tg—)
i=1 (4.b)
or
Np tf
Ja) =13 wy, f €20t E[2T()Qz()+uTORu(]dt < J(tr—oc)
=t J0 (4.c)

+ For H=-norm:

ty
f [ZT()Q'z()+uT(HRiu(t)]dt

& 0
I(te) = ‘; Wi .
f wi T()wi(t)dt
0)

with wi(t)=w,! exp(juoit) where w,! and w,! are respectively the direction vector and frequency of
the "worst-case" inputs w(t) in the H*-norm evaluation at the ith plant condition.

317

The formulation based on a finite-time horizon provides not only appropriate lower bounds to
these exact norms, but also an indication on internal stability for disturbable and detectable systems.
It is well-known that, if treated entirely in frequency domain, synthesis procedure that minimizes
either the L2 or L=-norms of plant outputs would not necessarily guarantee closed-loop stability.
With the proposed formulation, if an optimum solution exists from the minimization of J(t;) for
sufficiently large t;, then closed-loop stability will be achieved for a detectable, disturbable and
stabilizable system.

Another design concern in multivariable controls is the effect of input directionality5! upon the
closed-loop performance. Sensitivity of closed-loop responses to command inputs in the presence of
plant uncertainties is often neglected or not explicitly defined in design techniques such as LQ, LQG,
LQG/LTR. The design procedure described herein is based on parameter optimization of design
objective that incorporates directly responses to specific commands. In this manner, effects of input
directionality are obviously captured in the design objective through appropriately chosen input
directions and with the usage of multiple plant conditions. It is envisioned that the ill-conditioned
problemb! of multivariable controls would no longer be a design issue.

Iv. i
Figure 1 shows a schematics of the CAD design tool SANDY. The design tool is innovative and
will serve a useful medium for the introduction of multivariable control concepts to a vast number of

traditional control designers.
SANDY Program
(Object Code)

Summary of Design Results
« Controller Gains
¢ Closed-Loop Analysis
- System Eigenvalues
- Output and Control Covariances
« Design Constraints

NPSOL Optimization
Library

Executable Code

Figure 1 Schematics of the Design Tool Implementation SANDY

A procedure is set up to link the design code SANDY with the optimization library NPSOL and
any user-defined Fortran subroutines defining nonlinear inequality constraints for the control design
problem. This capability provides great flexibility to incorporate any additional design specifications
to the problem without affecting the core program. An executable code is then generated to run the

318

design optimization. This version of the executable code can be run repetitively without the need to
relink when the designers switch between design conditions, alter the design parameters while
keeping the same design constraints as defined in the user-defined Fortran subroutines.

Characteristics of the disturbance model, weighting parameters in the design objective, selection
of the controller design parameters and options in built-in design constraints are entered in one single
data file. State matrices for the plant models and the controller model are defined in separate data
files. Printout of the design results will be provided at the end of the program execution. Future
development will include the generation of design data files for the plant models, optimized controller
model and the respective closed-loop systems in compatible formats for the analysis packages such
as Matlab, Matrixx and Curlc.

V. Design Example

Preliminary development of the above design algorithm for mixed H2 and H> -optimization has
been applied to the disturbance rejection problem for a B767 aircraft (Figure 2). The design objective
is to synthesize a low-order feedback controller that minimizes the aircraft normal acceleration ngcg(t)
responses to vertical gust turbulence w(t). The performance relates to both peak responses (i.c.
worst-case) and mean-square responses to Dryden spectra.

B-767 Longitudinal Aircraft Model: Weight = 184,000 1bs, Mach = 0.80,
Altitude = 35,000 ft, c.g. Location = 0.18MAC

Z($) = Naep(s)
w(s) 0.9431a, -
®|s+0.4247 [| Longitudinal a©
Aircraft y(s) =[]
Bec(s) T Dynamics Nzcg(S)
s+15 .
Feedback
Controller -
- K, |- 2
ancg(52+bls+bo) Nzcg(S)
s2+a;s+a, Bl
Second-Order Controller

Figure 2 Disturbance Rejection Design for a B-767 Aircraft
Using Mixed H? and H™-Optimization

319

Mixed H2 and H=- performance objective is given by

te
f [10nZcg(t)+5ee(t)]dt
J=Lim (W, Sup 2 + W E[10n3e,(t)+82(t9)])

ti—oo w(t) tr
f w2(t)dt

0 (6)
where 8, (t) is the elevator control. State matrices of the design model are given in the appendix.

The controller is set up to have output feedback (Figure 2) on pitch rate q(t) and a second-order
lead-lag feedback compensation on the normal acceleration n,cg(t). Figure 3 summarizes three
controller designs illustrating trade-off achieved in mixed H2 and H=-norm optimization:

(a) H2-norm optimization: With W,=1.0 and W_=0.0, this design simply solves the minimiza-
tion of the mean square responses to Dryden turbulence using the controller structure shown in
Figure 2.

g‘zb) Mixed HZ and H=-norm ion: With W,=1.0 and W_=1.0, this design is a
predominantly H*-norm problem yielding results similar to those achieved with algorithms described
in Reference 33. In this design the mean-square responses of n,.(t) is roughly 16 percent higher
than the H2-norm optimized design (Case a) while the H=-norm is reduced by 20 percent. To recover
the performance of H2-optimized design (Case a), we simply increase the penalty W, on the H2-
norm performance.The following improvement is achieved with small degradation in H*-norm as
seen in the next design case.

(c) Improved mixed H2 and H=-norm optimization; With W,=10.0 and W_=1.0, this design
provides proper balance between H2 and H*-norm performance. The resulting H2-norm is almost
the same as that of the H2-optimized design (~ 1.3 percent higher) and the H*-norm is about 2.4
percent higher than that achieved in case (b).

Sigma_Max [G(s)]

101 100 10!

o (Rad/Sec)

0.03 Design Parameters

S 0.0l W,=1.0 , W_=00
§_’ H2-Nom = 0.011672
: oot H=Norm = 0.026687

102 101 100 10!
_om _
% - S W,=10 , Wo=10
= DI H2 Nosm = 0.013501
o 0. vetatiizl H=-Norm =0.021446
é 0 NN e e R

102 101 100 10!

W2 =100 , Wa=1.0

| H2Norm=0.011825

H"-Nom = 0.021960

Figure 3 Comparison B etween Mixed HZ and H*-Norm Optimized Designs

320

Results of the H=-norm optimization are similar to those achieved by state-feedback or full-order
output feedback designs using methods described in Reference 33 as indicated in Figure 4. Advanta-
ge of the current design approach is its simplicity and low order structure.

0.025 R R ERERS -7 . 11| DesignParameters
gC4-Order Controller SRS ROy 352006 o 7-9)

: ()yl&(-lncr\ H2-Nom = 0.01247
H>=-Nom = 0.021208

0.02

1 Wy =100 , Wa=1.0
. '] H2-Nomm =0.011825

..................................

. 11} H*-Nom =0.021960

Sigma_Max [(G(s)]

1 ((_)nlmllcr Dl
‘\j:l” o

: “r':‘-ZI(.U .

0 T Do Dot

102 101 100 101
Frequency ® (rad/sec)

Figure 4 Comparison with Existing H>-Optimization Method

VI. Future Directions

Recent work have provided several useful mathematical measures for robustness characterization
of multivariable feedback control design, numerical algorithms for their "exact” calculation and their
usage in robust control-law synthesis. Basically there are two kinds of robustness measures
depending on whether they are defined based on frequency-domain (i.e. Nyquist stability) or time-
domain (i.e. Lyapunov stability) criteria.

Methods in frequency domain have made significant strive since the early work!?2 initiated by
Doyle. Analysis techniques to determine the p-measure for structured uncertainty are still emerging
and are most likely computationally intensivel3-18.20-21, Complexity of these algorithms is partly the
result of the wide variety of possibilities in the modeling of the uncertainty block A (Figure 5).

A(s) jetl——————y
@ [—

M(P(3), K,(s),8) L %(s)

Figure S Robust Control Synthesis Based on Worst-Casc Uncertainties of A(s)

Generally, the more structure (i.e. information) one assigns to the uncertainty block A, the more
difficult it is to determine the necessary and sufficient bounds on p-measure33,

321

One approach in robust control-law synthesis is to make use of recent methods for "exact"
calculation of u or related measures to define the worst-case uncertainty model, say A*, and
incorporate this condition into a closed-loop model [I-A*M(s,K ,(5))] for re-optimization of the
controller K (s) embedded in the transfer matrix M(s).

For robustness measures based on time-domain approach!!, bounds on plant uncertainties
(4A,AB,AC,AD) in the state matrices (A,B,C,D) are determined (Figure 6) providing sufficient
conditions for closed-loop stability. These analysis procedures can be elaborated to obtain specific
worst-case plant conditions. As before once established, these conditions can be implemented into
the design procedure SANDY where one of the plant conditions represents the worst-case plant
model from which appropriate design constraints for robustness can be defined.

Uncertainty Block
(AA,ABACAD)
(AA,AB, ACAD) fegp——
& L_

MA,Bo.Co.Du Kol _—

Figure 6 Robust Control Synthesis Based on Worst-Case
Plant Perturbation (AA*,AB*,AC*,AD*)

Future work will also examine theoretical development of these robust design algorithms and
their numerical implementation. These methods will be applied to the synthesis of flight control
problems (e.g. SAS, autopilots, ride quality control, modal suppression, etc...) that include
robustness issues such as multiloop stability margins, plant parameter variation and unmodelled
high-frequency dynamics. Specifically we address the set-up of objective function and relevant
design constraints (e.g. closed-loop damping, handling qualities in terms of short-period frequency,
overshoots, command and control bandwidths, stability margins, limited control activities, etc...) for
the following flight control problems,

(a) Stability Augmentation Systems:

* Pitch augmentation system

* Yaw damper design

» Disturbance rejection: ride quality, load factor reduction

» Structural mode stabilization: control of lightly damped structural modes
(b) Command Augmentation Systems;

* Integral Controls

+ Autopilots: airspeed, altitude, flight path control

* Manual control with handling qualities

* Target tracking

As one might envision, the control synthesis depends strongly on the design objectives (e.g.
inclusion of integral control, washout filters for decoupling in steady-state control, anti-aliasing
filters, time delay, etc...) regardless of the methods used in the determination of feedback and
feedforward control gains. One of our research goals is to identify components in the synthesis

322

model essential to the design problems stated in (a) and (b) based on common knowledge of the
design requirements in each particular situation.

References
[1] Doyle,J.C.,"Robustness of Multiloop Linear Feedback Systems,"” Proceedings of the 17th-

IEEE Conference on Decision and Control, January 1979, San Diego, CA, pp.12-18.

[2] Lehtomaki,N.A.,Sandell,N.R.,Athans,M.,"Robustness Results in Linear Quadratic Gaussian
Based Multivariable Control Designs,” IEEE Transactions on Automatic Controls, Vol.AC-26,
No.1, February 1981,pp.75-92.

[3] Mukhopadhyay,V.,Newsome,J.R.,"A Multiloop System Stability Margin Study Using Matrix
Singular Values," Journal of Guidance Control and Dynamics, Vol.7, September-October
1984, pp.582-587.

[4] Mukhopadhyay,V. Newsome,J.R.,"Application of Matrix Singular Value Properties for
Evaluating Gain and Phase Margins of Multiloop Systems," AIAA Guidance and Control
Conference, August 9-11 1982, San Diego, CA, pp.420-428.

[5] Ly, U., "Robustness Analysis of a Multiloop Flight Control System," AIAA Guidance and
Control Conference, Gatlinburg, Tennessee, August 1983, pp. 155-165.

[6] Barrett, M.F.,"Conservatism with Robustness Tests for Linear Feedback Control Systems,”
19%-IEEE Control and Decision Conference, December 1980, pp.885-890.

[7] Ridgely,D.B.,Banda,S.S.,"Introduction to Robust Multivariable Control," AFWAL-TR-85-
3102.

[8] Yeh,H.,Banda,S.S.,Ridgely,D.B.,"Stability Robustness Measures Utilizing Structural
Information,” International Journal of Control, Vol.41, No.2, February 1985, pp.365-387.

[91 Yeh,H.,Banda,S.S.,Ridgely,D.B.,"Nonconservative Evaluation of Uniform Stability Margins
of Multivariable Feedback Systems,” Journal of Guidance, Control and Dynamics, Vol.8,
No.2, March-April 1985, pp.165-172.

[10] Yeh,H.,Banda,S.S. Ridgely,D.B.,"Regions of Stability for Gain or Phase Variations in
Multivariable Systems," Proceedings of the 23rd Conference on Decision and Control, Las
Vegas, Nevada, December 1984, pp.1409-1422.

[11] Yedavalli,R.K.,Banda,S.S. Ridgely,D.B.,"Time-Domain Stability Robustness Measures for
Linear Regulators,"” Journal of Guidance, Control and Dynamics, Vol.8, No.4, July-August
1985, pp.520-525.

[12] DoyleJ.C.,"Analysis of Feedback Systems with Structured Uncertainty," IEE Proceedings,
Part D, No.6, November 1982.

[13] Sideris,A., De Gaston, R.R.E.,"Multivariable Stability Margin Calculation with Uncertain
Correlated Parameters," Proceedings of the 25t Conference on Decision and Control, Athens,
Greece, December 1986.

[14] Safonov,M.G.,"Stability Margins of Diagonally Perturbed Multivariable Feedback Systems,"
IEE Proceedings, Vol.129, Pt. D, No.6, November 1982, pp.251-256.

[15] Sideris,A., Sanchez Pena,R.S.,"A General Program 1o Compute the Multivariable Stability
Margin for Systems with Parametric Uncertainty," Proceedings of the American Control
Conference, June 1988.

[16] De Gaston,R.R.E., Safonov,M.G.,"Exact Calculation of the Multiloop Stability Margin,"
IEEE Transactions on Automatic control, Vol.33, No.2, February 1988.

[17] Packard,A., Fan,M.K.H., Doyle,J.C.,"A Power Method for the Structured Singular Value,"
Proceedings of the 27t Conference on Decision and Control, Austin, Texas, December 1988.

323

(18]
[19]
[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]
(29]
(30]
(31]

(32]

(33]

[34]

(35]

Fan,M.K.H., Tits,A.L.,"Characterization and Efficient Computation of the Structured
Singular Value," IEEE Trans. Auto. Control, Vol.AC-31, No.8, pp.734-743, August 1986.
Freudenberg,J.S., Looze,D.P., Cruz,J.B.,"Robustness Analysis Using Singular Value
Sensitivities,” Int. J. Control, Vol.35, No.1, pp.95-116, 1982.

Helton,W.,"A Numerical Method for Computing the Structured Singular Value," Systems and
Control Letters, pp.21-26, 1988.

Dailey,R L., Gangsaas,D.,"Worst-Case Analysis of Flight Control Systems Using Structural
Singular Values,” AIAA/AHS/ASEE Aircraft Design, Systems and Operations Meeting,
Seattle, WA. July 31-August 2,1989.

Gangsaas,D., Bruce,K.R., Blight,J.D. and Ly,U., "Application of Modern Synthesis to
Aircraft Control; Three Case Studies," IEEE Trans. on Automatic Control, Vol. AC-31,
No.11, November 1986.

Ly,U.,"A Design Algorithm for Robust Low-Order Controller," Ph.D. Dissertation,
Department of Aeronautics and Astronautics, Stanford University, November 1982.

Ly,U. and Cannon,R.H., "A Direct Method for Designing Robust Optimal Control Systems,"
AIAA Guidance and Control Conference, Palo Alto, California, August 1978, pp. 440-448.
Vinkler,A.P., Wood,L.J., Ly,U. and Cannon,R.H., "Minimum Expected Cost Control of
Linear Systems with Uncertain Parameters - Applications to Remotely Piloted Vehicle Flight
Control Systems," AIAA Guidance and Control Conference, Boulder, Colorado, August 6-8,
1979.

Ly,U., "Optimal Low-Order Flight Critical Pitch Augmentation Control Law for a Transport
Airplane," AIAA Guidance and Control Conference, Seattle, Washington, August 1984, pp.
743-751.

Jones,R.D., Bossi,J. and Ly,U., "Multivariable Regulator Design for Robustness and
Performance: A Realistic Example," American Control Conference, Seattle, Washington, June
1986, pp. 285-288.

Ly,U., Bryson,A.E. and Cannon,R.H., "Design of Low-Order Compensators Using
Parameter Optimization,” Automatica, Vol.21, No.3, pp.315-318, 1985.

Francis,B.A.,"A Course in H* Control Theory," Volume 88 of Lecture Notes in Control and
Information Sciences, Springer-Verlag, 1987.

Halyo,N.,"A Combined Stochastic Feedforward and Feedback Control Design Methodology
with Application to Autoland Design,” NASA Contractor Report 4078, July 1987.

Ly,U. and Ho,J.K.,"Fault Tolerant Control Laws," NASA CR-NAS1-17635 Task No. 10,
1986.

Bemstein,D., Haddad,W.,"LQG Control with an H=-Performance Bound: A Riccati Equation
Approach," Proceedings of the American Control Conference, Atlanta, Georgia, June 1988,
pp. 796-802.

Doyle,J.C., Glover,K.,"State-Space Formulae for All Stabilizing Controllers that Satisfy an
H=-Norm Bound and Relations to Risk Sensitivity," Systems and Control Letters 11, 1988,
pp. 167-172, North Holland.

Doyle,J.C., Lenz,K., Packard,A.,"Design Examples Using pu-Synthesis Space Shuttle Lateral
Axis FCS During Reentry," Proceedings of the 25% Conference on Decision and Control,
Athens, Greece, December 1986.

Valavani,L., Voulgaris,P.,"High Performance H2 and H* Designs for the Supermaneuverable
F18/HARY Fighter Aircraft," submitted for publication.

324

[36]
(37]

[38]

[39]
(401
[41)
[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]

(50]
[51]

[52]

[53]

[54]

Moore, J.B., Telford, A. and Ly, U., "Controller Reduction Methods Maintaining
Performance and Robustness", to be presented at the 27th CDC Conference, December 1988.
K. Glover,"All Optimal Hankel-Norm Approximation of Linear Multivariable Systems and
their L*°-Error Bounds," Internat. J. Control, 1984, Vol.39, No.6, pp.1115-1193.

Liu, Y., Anderson, B.D.O. and Ly, U., "Coprime Factorization Controller Reduction with
Bezout Identity Induced Frequency-Weighting," submitted for publication in Automatica,
1988.

Ly,U.,"Model Reduction Techniques and Their Applications to Controller Reduction,” Boeing
Document D180-30802-1, March 1988.

Military Specifications, "Flying Qualities of Piloted Airplanes," MIL-F-8785C, November
1980.

Doyle,J.C.,Stein,G.,"Robustness with Observers," presented at the 1978 Conference on
Decision and Control.

Saberi,A.,Sannuti,P.,"Observer Design for Loop Transfer Recovery and for Uncertain
Dynamical Systems," to appear in IEEE Transactions on Automatic Control.
Gangsaas,D.,Ly,U.,Norman,D.C.,"Practical Gust Load Alleviation and Flutter Suppression
Control-Laws Based on a LQG Methodology," AIAA 19t Aerospace Sciences Meeting,
January 12-15 1981, St. Louis, Missouri.

Pernebo,L.,Silverman,L..M.,"Model Reduction via Balanced State Space Representations,"
IEEE Trans. Automat. Control, Vol.27, No.2, pp.382-387, April 1982.

M.C. Berg, "The Design of Multirate Digital Control Systems," Ph.D. Thesis, Stanford
University, Department of Aeronautics and Astronautics, Stanford, California, NSG-4002,
March 1986.

M.C. Berg and G. Yang, "A New Algorithm for Multirate Digital Control Law Synthesis",
Proc. of the 27th Conference on Decision and Control, Austin, Texas, December 1988.
Ly,U.,"A Design Algorithm for H=-Optimization Based on a Quadratic Cost Function," in
preparation.

Ho,J.K.,Cooper,S.R.,Tran,C.B.,Chakravarty,A.,"On the Design of Robust Compensators
for Airplane Modal Control,"” 1987 American Control Conference, Minneapolis, Minnesota,
June 1987.

Chakravarty,A.,"In-Flight Evaluation of a Modal Suppression Yaw Damper," Proceedings of
the AIAA Guidance, Navigation and Control Conference, August 17-19, 1987, Monterey,
California, pp.163-169.

Gardner,B.E.,"Feedforward/Feedback Control Logic for Robust Target-Tracking,” Ph.D
Thesis, Dept. of Aeronautics and Astronautics, Stanford University, December 1984.
Gardner,B.E.,"Time-Invariant Controllers for Target Tracking," J. Guidance and Control,
pp-330-337, Vol.10, No.4, July-August 1987.

Hollars,M.G.,Cannon,R.H.Jr.,"Experiments on the End-Point Control of a Two-Link Robot
with Elastic Drives," presented at the AIAA Guidance,Navigation and Control Conference,
August 18-20 1986.

Rosenthal, D.E.,"Experiments in Control of Flexible Structures with Uncertain Parameters,"
SUDAAR 542, Stanford University, Stanford, March 1984.
Blight,J.D.,Gangsaas,D.,Richardson,T.M.,"Control-Law Synthesis for an Airplane with
Relaxed Static Stability," J. Guidance, Control, and Dynamics, Vol.9, No.5, September-
October 1985, pp.546-554.

325

[55] Thompson,C.M.,Coleman,E.E.,Blight,J.D.,"Integral LQG Controller Design for a Fighter

[56]

[57]

(58]

[59]

[60]

[61]

a

Aircraft," Proceedings of the ATAA Guidance, Navigation and Control Conference, August 17-
19, 1987, Monterey, California, pp.866-895.

Gill,P.E., Murray,W., Saunders,M.A. and Wright M.H.,"User's Guide for NPSOL (Version
4.0): A Fortran Package for Nonlinear Programming,” Technical Report SOL 86-2, January
1986.

Robel,G.,"On Computing the Infinity Norm," to appear in IEEE Transaction on Automatic

Controls.

Boyd,S., Balakrishnan,V. and Kabamba,P.,"On Computing the H~ Norm of a Transfer

Matrix,” 1988 American Control Conference, Atlanta, Georgia; also to appear in Mathematics
of Controls, Signals, and Systems, 1988.

Wie,B.,Byun,K.,"New Generalized Structural Filtering Concept for Active Vibration Control

Synthesis,” J. Guidance, Control, and Dynamics, Vol.12, No.2, March-April 1989, pp.147-

154.

Addison Wesley Publishing Company, Inc., 1966.

Kreider,D.L.,Kuller,R.G.,Ostberg,D.R.,Perkins,F.W.," An Introduction to Linear Analysis,"

Skogestad,S.,Morari,M.,Doyle,J.C.,"Robust Control of Ill-Conditioned Plants: High-Purity

Distillation,” IEEE Transactions on Automatic Controls, Vol.33, No.12, December 1988.

Appendix
The following are state matrices of the synthesis model with states {1,0,9,9,xw,5¢)}, inputs
{8ec,w) and outputs {q,Nzcg},

326

=-1.6750e-02 1.1214e-01 2.8000e-04 -5.6083e-01 1.6750e-02 -2.4320e-02
-1.6400e-02 -7.7705e-01 9.9453e-01 1.4700e-03 1.6400e-02 -6.3390e-02
-4.1670e-02 -3.6595e+00 -9.5443e-01 0 4.1670e-02 -3.6942e+00
0 0 1.0000e+00 0 0 0
0 0 0 0 -4.4470e-01 0
0 0 0 0 0 -1.5000e+01
= 0 0
0 0
0 0
0 0
0 9.4310e-01
1.5000e+01 0
= 0 0 1.0000e+00 0 0 0
6.9400e-03 3.2795e-01 2.3100e-03 0 -6.9400e-03 2.6790e-02
= 0 0
0 0

N90-23026
An Algorithm for the Solution of Dynamic Linear Programs

Mark L. Psiakit
Comell University, Ithaca, New York

Abstract

The algorithm’s objective is to efficiently solve Dynamic Linear Programs (DLP) by taking advantage of their
special staircase structure. This algorithm constitutes a stepping stone to an improved algorithm for solving Dynamic
Quadratic Programs, which, in turn, would make the nonlinear programming method of Successive Quadratic
Programs more practical for solving trajectory optimization problems. The ultimate goal is to bring trajectory
optimization solution speeds into the reaim of real-time control.

The algorithm exploits the staircase nature of the large constraint matrix of the equality-constrained DLPs
encountered when solving inequality-constrained DLPs by an active set approach. A numerically-stable, staircase QL
factorization of the staircase constraint matrix is carried out starting from its last rows and columns. The resulting
recursion is like the time-varying Riccati equation from multi-stage LQR theory. The resulting factorization increases
the efficiency of all of the typical LP solution operations over that of a dense matrix LP code. At the same time
numerical stability is ensured. The algorithm also takes advantage of dynamic programming ideas about the cost-to-go
by relaxing active pseudo constraints in a backwards sweeping process. This further decreases the cost per update of
the LP rank-1 updating procedure, although it may result in more changes of the active set than if pseudo constraints
were relaxed in a non-stagewise fashion. The usual stability of "closed-loop” Linear/Quadratic optimally-controlled
systems, if it carries over to strictly linear cost functions, implies that the savings due to reduced factor update effort
may outweigh the cost of an increased number of updates.

An aerospace example is presented in which a ground-to-ground rocket's distance is maximized. This example
demonstrates the applicability of this class of algorithms to acrospace guidance. It also sheds light on the efficacy of
the proposed pseudo constraint relaxation scheme.

Introduction

The objective of the present work is to develop and test a special-purpose algorithm for the solution of
Dynamic Linear Programs (DLP). The general form of a DLP is as follows:

T T T 1 T
find: x = ["0 Xy . XN (13
[%
a » -« T T T xl
to minimize: J= [Co € ... CN] (1b)
L %N
Ago Ao X9 bo
ApAp 0 Xy b, -
subject to:) -1 { g} 0 (1)
0 ANN xN, bN

where the % vectors constitute the decision vector time history, the ¢; vectors are linear cost coefficients, and the A
and A;,, matrix blocks and the b; vectors define the linear problem constraints. The bracketed equality and inequality

t Assistant Professor, Mechanical and Aerospace Engineering.

327

signs in eq. 1c indicate that both forms of constraints may be present; some rows may be equalities while others are
inequalities. The problem in eq. 1a-1c is also known as a staircase LP.,

A reason for interest in this problem from an aerospace controls point of view comes from its relationship to
the following multi-stage trajectory optimization problem:

T

T T T T T T ,

find: X = [“o X3 U; X2 ... UNg XN] (2a)
N-1

to minimize: J =) L(xu k) +6(xy) (2b)
k=0

subject to: X, given (20)

X, = f(x.u k) fork=0..N-1 2d)

a(x,,u, k) { < } 0 fork=0..N-1 ()

a(xy,N) {Z} 0 20

where the u; and x;,; vectors constitute the control and state vector time histories, the L) and ¢() functions define the
nonlinear stagewise and terminal costs, eq. 2c defines the initial conditions, eq. 2d is the discrete-time dynamics
difference equation, and constraints such as 2e and 2f may be present to restrict the states, or the control inputs, or
both.

The current paper is part of a research program that seeks a fast and reliable way to solve the problem in eq. 2a-
2f. The ultimate goal is to do real-time aerospace guidance by repeatedly solving this problem. The program is
taking a two-pronged approach, algorithm improvement and parallelization of computations. This paper relates to the
first prong, algorithm improvement. Fletcher's L, penalty function, trust region adaptation of the method of
successive quadratic programs (SQP) [1] is one algorithm for solving such a nonlinear program (NP). This algorithm
has fast local convergence properties, it ensures global convergence (1o a local minimum), and it is good at handling
inequality constraints. The application of this algorithm to the nonlinear trajectory optimization problem results in
Quadratic Programming (QP) sub-problems with a special structure, the dynamic programming structure. Efficient
solution of the NP requires efficient solution of the dynamic QP (DQP). Special-purpose algorithms for efficient
solution of a DLP can be similar to special-purpose algorithms for efficient solution of a DQP. Thus, the present
paper, in concentrating on DLP, constitutes a sort of warm-up exercise for later development of a DQP algorithm.

In addition to providing a warm-up, the present work provides a point of comparison with other research efforts
in the field. Little or no work has been done on special-purpose DQP algorithms [2,3], but much attention and effort
has been devoted to special-purpose DLP algorithms (e.g., Refs. 4-7). Fourer provides a useful overview of different
avenues of approach that have been tried [7]. He groups algorithms for problem 1a-1c into three categories: Compact
Basis, Nested Decomposition, and Transformation. All get the correct answer, but none have proved particularly
successful in that none consistently out-perform the general sparse simplex method with regard to computation time.

The present algorithm is in the compact basis category; it works with a staircase factorization of the active
constraints. The factorization used, a staircase QL factorization, is consistent with the plan for subsequent upgrading
to handle the quadratic cost case. It has numerical stability, and there is no trade-off between numerical stability and
factor compactness; general sparse matrix LP codes must deal with such trade-offs. The focus of the entire project is
on aerospace guidance problems, hence the submatrices of the problem, the A; and A, blocks, are relatively dense.
Therefore, there is hope that the current algorithm will out-perform general sparse matrix LP algorithms on these
problems (e.g., algorithms such as MINOS [8]).

The body of this paper concentrates on explanation of the algorithm, with an example and conclusions at the
end. Before describing the algorithm, problem 1a-1c is related to a general LP on the one hand and to a control-type
LP on the other hand. The algorithm description begins with a review of the application of the L; penalty function

method to a general LP. The staircase QL factorization then gets presented along with methods for multiplier

328

solution, decision vector solution, and rank-1 update. The algorithm explanation concludes with the presentation of a
specialized order for problem solution that could further reduce the computational burden. The example at the end of
the paper demonstrates the algorithm's applicability to aerospace trajectory optimization and examines whether the
special solution ordering yields increased computational efficiency.

Equivalent Problem Forms

The problem in eq. 1a-1c is a special case of the following general LP form:

find: %x (3a)
to minimize: J=c¢Tx (3b)
subject to: Ax-b {;} 0 (3o

where % is defined in eq. 1a and A, b, and c are defined as:

Ago Ag bo o
AjA, O by)

A= . s b= . , €= . (4)
0 ANN bN CN

Form 3a-3c is fully general. It is the LP form used in developing general active constraint algorithms [1].

A more specialized DLP problem statement clarifies the relationship of these problems to controls:

find: u fork=0..N-landx, fork=1..N (5a)

N-1
T T xk T

to minimize;)= { [Cx, Cuk] } + Cxy Xy (5b)
k=0

subject o: X, given ¢

X, =F x, +G u +h fork=0..N-1 (5d)

Ax Xt Ay Wby {;} 0 fork=0..N-1 (5e)

Ax b {z}o)

where there is a direct correspondence between eq. 2a-2f and eq. Sa-5f, all functions having only linear and constant
terms in the latter problem. The following definitions put problem S5a-5f in the format of problem la-1c:

Xo=u, Ag = [A%} bo = [b“"] - [Ax°]x and ¢o = ¢ (6a)
0 00 Gk ’] ™ F, 0 0= tu,

x, = [x"], Ay = [A, Au“], by = [b“"], and ¢, = cx"} fork=1...N-1 (6b)
u, F, G -h, Cu,

Apat =[?1 g] fork=0..N-1 (6)

XN=Xy, ANN=Ax., by=by, anden=cy &

Thus, the problem in eq. 1a-1c is related to controls.

329

Algorithm

The L; Exact Penalty Function and an Active Set LP Method!

The L, exact penalty function method enforces equality and inequality constraints as in 3c by adding a penalty
cost to the problem cost that is a weighted L, norm of the constraint violations. The penalty function reformulation
of problem 3a-3c becomes

find: x (7a)
to minimize: J=¢T % + po, (1A, % - bll, + I[A;, % - by,]*Hl } (Th)

where J,,,, is a large positive constant, where constraints [A,b] in eq. 3¢ have been split into the equality constraints,
[A.b.], and the inequality constraints, [A;,,b;,], and where [a]* = max(a,0). This technique is actually very similar to
the adjoining of constraints in Lagrange and Kuhn-Tucker formulations. The only difference is that the constraint
multipliers are effectively limited in magnitude by p,,,. If 1., is greater than the magnitude of the largest multiplier

in the solution of problem 3a-3c, then problem 7a-7b has the same solution. The advantage of this technique is that it
solves the problem in a single phase, optimizing while achieving feasibility. It is a variant of the LP technique
known as the big M method. The primary reason for using it in the current paper is to make the algorithm
compatible with the proposed method for eventually solving the NP in eq. 2a-2f.

Active constraints refer to those constraints that are satisfied as strict equalities. The active set method for
solving problem 7a,7b consists of the following steps.
Main Algorithm:

1. Guess solution, %, and split [A,b] into active and inactive rows:

Ald'bld
] ran

where P is a permutation matrix, and where the active constraints at the guessed solution must
yield an A, that is square and nonsingular.

2. Compute A,,!

3. Compute ph,o = - (A;L)T (c + AT, ol .) Where the elements Of [in,q are either -l,.,, 0, OF Hipe,
depending on whether the comresponding inactive constraint is an equality or an inequality and
depending on whether it is positive or negative at the guessed solution, x.

4. Find the element, i, of Yy, that is furthest out of the allowable range for the penalty function,
(Hacd)i € [“Hmax» +Mmax) fOr equality constraints, ()i € [0, +imax] for inequality constraints. Stop
if no elements are out of range; the current % is optimum.

5. Compute the search direction, &% = A;lmei, where e is the unit vector with all zeros except for a 1
in row i.

6. Compute the new guessed solution, X =% + a %, where a has the same sign as (,_,); and where

its magnitude is chosen to be the smallest value that makes one of the inactive constraints active,
min lol such that [A,__(x+ o §%) - b, «l; = 0, for some row j.

1nNact mna

t The discussion of this section deals with the problem form in eq. 3a-3c. The discussion is based
on algorithms presented in Ref. 1.

330

7. Interchange rows i and j between [A, b, and [A;,, D], update A;lw and go to step 3.

The equation in step 3 results from differentiation with respect to % of the augmented cost in eq. 7b. Despite the
nondifferentiability of eq. 7b for some values of x, differentiation can be done if the active constraints are treated as
adjoined equality constraints with unknown multipliers W, rather than as L, penalty terms. Steps 4 and 5 determine a

descent direction. The step length is determined in step 6. The step length rule ensures that the entire step is in a
descent direction of the piecewise-linear augmented cost. Because of the step length rule, the new active set changes
by only one row. Step 7 takes advantage of this fact in the recomputation of A,'s inverse.

The algorithm used in this paper starts out by assuming that a set of pseudo constraints are active. This yields
the identity matrix for the initial A,c,, and step 2 is trivial. The allowable range for the pseudo constraint multipliers

is different than for the actual problem constraints, W4, € [0,0]. They get dropped from the active set in the course
of the algorithm unless the problem solution is not unique.

For each constraint addition/deletion the algorithm cycles through steps 3-7. Most of the computational load
per cycle is caused by manipulations with the inverse of the A, matrix, multiplication by it in steps 3 and S and

rank-1 updating of it in step 7. The main idea of this paper -- indeed the main idea of all compact basis schemes -- is
to compactly represent factors of A, that are suitable for carrying out multiplications by A,'s inverse and that are

easy to update when A, undergoes a rank-1 row change.

Staircase QL Factorization for Staircase LP

A, inherits a staircase structure from A as in eq. 4. The compact QL factorization used here performs a stage-
wise backwards sweep to factor the nonzero blocks of A,.. The following recursion yields matrices that constitute a
staircase QL factorization of A,.:

Dy = ANN.m (9a)
Apiil,, Aklk,, Dijgqr O
Q = fork=N,..,1 (9b)
0 Dy Dy L
QooPo0 = Loo)

where the Ay 1y.1,., and Ay, Matrices are the nonzero blocks of the staircase A,y matrix, and where the Qyy are
orthonormal and the Ly, are lower triangular. The QL factorization is stored in the matrices Qy, Lix, and Dy, fork =
N....,0 and the matrices Dy, for k = N,...,1. The D;; matrices have no special properties. Equations 9b and 9¢c are
only implicit relations for these factors, but the factors can be explicitly evaluated via Householder transformations.
At stage k, the factorization begins with the data Ay 1.1, Ak-1kgeer and Dy, and it computes Quy, Ly, Dy.jx-1, and
Dy;. The result Dy ;, ; then completes the necessary data for stage k-1.

Numerical stability of the factorization is ensured by the use of orthogonal transformations only. The
computational complexity of the factorization algorithm is linear in the number of stages and cubic in the
dimension(s) of the blocks, which is as efficient as can be expected if the blocks are dense. The factor storage is linear
in the number of stages and quadratic in the dimension(s) of the blocks, which again is the best that can be achieved
with dense blocks.

Equations 9a-9b are a DLP equivalent to the matrix Riccati equation of time-varying, multi-stage Linear
Quadratic Regulator theory. The lower blocks of the right hand side of eq. 9b act as a closed-loop dynamic difference
equation as will be shown in the next section. The upper block on the right hand side, [Dy.j;.1, 0], propagates active
constraint effects backwards in time; it summarizes the constraints that %, , must satisfy in order to make possible the
satisfaction of all constraints from stage k-1 onwards. Note that the number of rows in [Dy. .1, 0] does not
necessarily equal the number of rows in [Ag.ix.14c0 Ax-1kger)-

331

Staircase QL Solution for the Multiplier and Decision Vector Time Histories

The basic operations involved to do steps 3 and 5 of the LP algorithm presented above involve solution of a
linear system by orthogonal transformation and forward or backward substitution. This is similar to the forward and
backward substitutions of the simplex method and its variants. The transformations and substitutions are done in
stage-wise recursions using the stagewise factors. Performing the following backward recursion then forward recursion
yields the active constraint multipliers.

Backward recursion for intermediate multipliers A through A

T T T

LanAy=-¢y- ANNinmuNgnm - An.mmnuu_lw (10a)
T T T T

Ly Lk =-Drx Akﬂ -C - Akkinlctukima - Ak'lhmc(uk'lima fork=N-1, ...,1 (10b)
T T T

Forward recursion for intermediate multipliers 3y through By and for active constraint multipliers L, “ through y, o

Bo=Qumw2o (11a)

[?]:Q{Hm [f] fork=0..N-1 (11b)
+1 +1

My =By (11¢c)

act

Step 5 of the LP algorithm is accomplished by solving the system of equations A, 5% = e,. To illustrate how

the staircase QL factorization does this, the following equations present its use in solving the alternate system A,
= b, Again, a backward recursion followed by a forward recursion yields the solution.

Backward recursion for intermediate nonhomogeneous constraint terms dy through d,, and g, through g

dy= by (12a)
d. bk-l.

[eQu| fork=N, .., 1 (12b)
8k d

8= Qoo do (120)

Forward recursion for the decision vectors %, through %¢,:
Lo %Xo=8 (13a)
Ly %, =-Dy %, + 8 fork=1..N (13b)

As stated earlier, eq. 13b is like the closed-loop dynamic difference equation of multi-stage LQR theory. The matrix
Ly is lower triangular and allows for easy solution for x, in terms of x, , and g,.

Rank-1 Update of Staircase QL Factorization

This section explains how to efficiently update the staircase QL factorization after a single constraint
addition/deletion. This procedure must be carried out every time step 7 of the main algorithm is encountered. One
could recompute the entire factorization, but the practicality of all LP codes hinges on their ability to update the
factors for much less work than would be required to recompute them from scratch.

332

The general add/drop updating scheme for the staircase QL factorization must update the results of eq. 9a-9b
when an arbitrary row j at stage kadd gets added to the active constraint set and another arbitrary row i at stage kdrop
gets deleted from the active constraint set. Thus, [Agkaerr Axicr14c)lk=kadd BELS 3 NEW TOW and [Ayy, .» Akk+1acd k=kdrop

loses a row. The stages kadd and kdrop can have any relationship to each other, and the update algorithm must be able
to handle all possible cases. Three different cases can occur, kadd > kdrop, kadd = kdrop, and kadd < kdrop.

Efficient rank-1 update can be accomplished by a scries of stage-wise rank-1 updates linked together in an
appropriate manner. Three different stagewise rank-1 updating algorithms are needed to do this. The first algorithm
updates the factors computed in eq. 9b when a new row has been added 1o the bracketed expression on the left-hand side
of that equation. The second algorithm updates these same factors in the case of a row deletion from the bracketed
expression on the left-hand side. This second algorithm also modifies Q.11 by 2 single Householder transformation.

The third stagewise algorithm updates these same factors when Dy, has undergone an arbitrary rank-1 change. Recall
that the bracketed matrix on the left-hand side of eq. 9b represents the input data for a given stage and the Qy, matrix

together with the bracketed expression on the right-hand side represents the result of the stagewise factorization. The
following discussion explains each of these three algorithms and the way in which they work together to accomplish
the multi-stage rank-1 update.

First, consider what happens to the stage k factorization when a new row gets added to either [Ay 1y, Ayl
or D,,. The algorithm begins by adding a row and a column to Qyy with all Os except for a 1 at the intersection of the
new row and the new column. Thus, Qy, remains orthonormal. Suppose the new constraint row is (pTy;, PTiy), then
the new row and column of Qy, are added so that eq. 9b temporarily becomes:

Quiy 0 Quyp | Akl Akl Digxr 0
0T 1 07 Py Py, = Pu P (14)
Quiy; 0 Quyy 0 Dy D1 L

where the Qyy; matrix blocks are just the blocks of the original Qy, matrix. Suppose ny is the dimension of the %,
decision vector. Then it is also the dimension of the square lower-triangular matrix Ly,. A series of n, Givens
rotations can be performed to zero out pTy, while preserving the lower-triangular structure of Ly. The first Givens
rotation uses the last row of L, as the pivot row and zeros out the last element of pTy,, and successive rotations use
successively higher rows of Ly, as the pivot and zero out successive elements of pTy, going from right to left.
Suppose these rotations are G; 10 G,,. Then the new stage k factorization becomes:

Quyy 0 Quz
Qu,,, =Gn*Gy 0T 1 0T (15a)
Quz 0 Qux
) PRI | Dy O
dq 0T | = GpetG{ P PTia (15b)
D, Laken Dy L
D [Dk-lk-l] 15c
ktkelpew =| - gr, (15¢)

where the last equation has been included to emphasize the fact that the new Dy ., differs from the old Dy, , by only
a single new row. This fact sets the stage for the use of this same algorithm at stage k-1. The new Qyy is

orthonormal because the augmented matrix is orthonormal and because all Givens rotations are orthonormal. Thus,
the new factors have all of the required properties for use in the LP algorithm described above.

333

Next, consider what happens to the stage k factorization when a row gets deleted from either [A, 1, 1,0 Ai-1xae)
or Dy,. The following development is based on ideas for QP from Ref. 9. Write Q,, in the form

Querr Gz Quigs
Qu = Qs Gan 9o (16)
Qkk31 Quxso Qkk33

where the middle column conforms in matrix multiplication with the constraint row that is getting deleted -- rows of
Dy, can be referred to as constraints; they are propagated active constraints. The bottom blocks, [Qus;Qxi32-Quxssls

have n, rows, the same as in the bottom blocks on the right hand side of eq. 9b, [Dyy.1, L.

The stagewise deletion algorithm starts with a Householder transformation in which the q,,,, row in the above
representation is used as the pivot row to zero out qyy, in the first rows. Next, a series of n, Givens rotations is used
to zero out successive elements of qyy,, starting with the topmost element and working downwards. Again, the gy,

row in the above representation is used as the pivot. If the Householder transformation is H and the Givens rotations
are G, to G, then the following changes to the stage k factorization result;

Qi1 1pew 0 Quirzge Quiery gz Quags
0T 1 0T [=G,eGrH] QT Qux 9wz (17a)
Quztpen 0 Quizzgene Quucsy Gy Quis
Qi tpew Qikizpew
Quiipew = (17b)
n [Qkkzlncw Qunen,

Dititpew 0
Py Pl = G,,k-...-Gl-Hv[

Dy new kancw

Doy O
k-1k-1] 179

Dkk~ 1 ka

where [pTy;,p”y,] corresponds to the constraint that is getting dropped. Orthonormality of the original Q,, matrix
ensures the form of the result on the left-hand side of eq. 17a. Note that the matrix Dy 1k-1,,,, 1S @ function only of
D, .1x.; and H; the Givens rotations do not affect it. Therefore, another Houscholder transformation, H", can be
constructed based on the same Householder vector. It yields:

[Dy 110w

i1] = H' Doy (18)

where dy1,.,, is not necessarily equal to p,,. This sets the stage for propagation of the constraint deletion process
backwards to stage k-1. If Q,.;,.; gets transformed according to

10
Q- 1k-linterim = Qk-lk-l[0 H'] 19

then Q. 1x-1;nerm 1S Still orthonormal because H" is orthonormal, and because H" is equal to its transpose, constraint

[OT,di-ldmp] is the constraint that must get dropped at stage k-1. The foregoing algorithm can accomplish the deletion
at this next preceding stage.

334

The algorithm that performs the multi-stage rank-1 update of the staircase QL factorization starts with the
highest stage at which either a constraint addition or deletion occurs. It uses whichever of the two foregoing stagewise
updating algorithms is appropriate to propagate the addition or deletion backwards. It continues until it reaches a stage
at which both an addition and a deletion must take place. One, but not both, of the changes at this stage may be the
result of a backwards propagation. At this stage of the concurrent add/drop, the multi-stage algorithm first does a
single-stage constraint addition followed by a single-stage constraint deletion with no change of stage in between.

If the index of this stage is k, then D,_;,.; will differ from its pre-update value by a rank-1 change at most.

This can be shown by recognizing that the result on the left-hand side of eq. 15¢ becomes the input data on the right-
hand side of eq. 18 when an add followed by a drop both occur at the same stage:

Dy i1y Dy 1x
]] -
dk-ldmp k1

H" is a Houscholder transformation; it differs from the identity matrix by a rank-1 matrix, hence the conclusion about
the change in Dy _1;.,. Define this rank-1 change in terms of the vectors ry.; and s; ;:

Dyixty,, = Dictker + TS 2D

If either r,_; or s_; is the 0 vector, then the multi-stage rank-1 update is complete. If not, then another stagewise
updating algorithm is needed.

The final stagewise updating algorithm must update the stagewise factors for an arbitrary rank-1 change in the
data Dy,. Itis allowed to produce at most a rank-1 change in Dy_;,,. This restriction on its effect on D, ;,., makes it

self recursive for all subsequent stagewise faclorizations in the backwards chain. It can be used for updating the
factorizations of all stages that precede the concurrent constraint addition/deletion stage. It can be used recursively
until no more updating is needed.

One might suppose that the necessary algorithm has already been developed in a work such as Ref. 10. That
paper is a good reference for rank-1 modifications, and it defines the general methodology used in the algorithm below,
but the relevant algorithm from [10] would result in a rank-2 change to Dy ;,.;. This would destroy the stagewise
recursive applicability of the algorithm, hence the modified algorithm presented below.

Suppose there has been a rank-1 modification to Dy, as in eq. 21 (except at stage k instead of stage k-1). Then,
eq. 9b gets modified:

Agik-1, Apix, D 0 v _
o e e 1B 0] P -
0 [Dkk+rksTk] Dkk-l ka Wy ’

where

Vi1 0
Lo =l] @

and where v,_, and Dy _;y.; have the same number of rows, ny _,. The algorithm starts by reducing the v-w vector to a

vector with zeros in all of its entries except the last two. This is done by first applying a Householder transformation,
H;, to the first ng,_,+1 rows to zero out the first ng, , rows. Then a series of Givens rotations, G, 0 Gy, 1, is applied

to successive pairs of rows of the resulting vector to zero out successive elements until only the last two elements are
left nonzero. These same transformations are applied to all terms on both sides of eq. 22, and the two terms on the
right hand side of the equation are added together with the following (partial) result:

335

*x %
* ok ok 0
0 Vi1
Gnk-l.""Gl'Hl{]:ka] + [w]sTk}= * * k& (24)

* ok ok %k ok

bk ke ok ko

where o is a scalar and where asterisks (*) indicate nonzero scalar elements of the matrix. The top row of vector
entries in the right hand matrix corresponds to the upper right-hand 0 block in the bracketed expression on the right
side of eq. 9b. The bottom rows constitute a matrix with nonzero elements on the first diagonal above the main, on
the main diagonal, and below the main diagonal. All elements on diagonals that are 2 or more above the main

diagonal are zero. The nonzero entry in the first column of the top block, av,_;, results from application of the H,
Householder transformation to matrix [0T,LT,,]T.

The remaining transformations are applied in order to restore lower triangularity to the matrix on the right hand
side of eq. 24. First, a series of n,-1 Givens rotations, G, to Gy, .2, is applied to successive pairs of rows of the

matrix starting from the last two rows and working up to the first two rows in the lower block. Each rotation zeros
out one of the above-diagonal elements. At the end of this operation the matrix has the form

AR 00 ..0
%*

* * 0

* * %

(25)

* * ¥ x

SR T B R R

so that the lower block is lower triangular. The final part of the algorithm is to apply a last Householder
transformation, H,, to zero out the first column of the top block. These operations result in the following factor

updates:

Quipew = H2*Gong-2%..2G1*H°Qyy (26a)
D1k 0 Dy 0 Vi1

new = ® ® _® L] OT T
[Dkk'lnew kancw:] H2 GTnk'Z Gl Hl-{[Dkk-l ka] * [Wi][T]} (26b)

In both of the Householder transformations, the first ny, , elements of the transformation vector are parallel to v, ;, and
none of the Givens rotations affect the first ny_, rows of the bracketed expression on the right of eq. 26b. Therefore,
Dy, differs from Dy j, only by a rank-1 matrix:

Dytptyy = Dietiel # Vie1Y et ¢4))

where the vector y;.; can be determined from the algorithm presented above. Thus, the algorithm updates stage k
according to the rank-1 change in the stage's input data, and it produces a similar rank-1 change in the input data for
stage k-1. The multi-stage rank-1 updating algorithm propagates these rank-1 changes backwards until at some stage
one or both of the vectors in the rank-1 change are zero. This occurs at least by the time stage k = 0 is reached
because D.y.y has zero dimension.

336

Numerical stability of the factorization update is ensured by the use of orthogonal transformations only. The
computational complexity of the multi-stage update algorithm is linear in the number of stages affected and quadratic
in the dimension(s) of the blocks, which is as efficient as can be expected if the blocks are dense. If the number of
stages affected by a particular row interchange of active and inactive constraints can kept small, then the cost of the
update will be small. This fact provides the motivation for the solution scheme presented in a later section.

Possible Improvements to Banded Staircase QL Factorization

Several issues come to mind in considering the forgoing use of a QL factorization for an LP basis factorization.
They all revolve around a single question: is the entire factorization needed to implement the LP algorithm? For
instance, a general LP method has been developed that uses LQ factorization but does not store Q [11]. Not storing
the Q factors would yield a great savings in memory and computation time if it carried over to the present multi-stage
algorithm. This presents no difficulty to the procedures for solving for the multiplier and decision vectors, steps 3 and
5 of the main LP algorithm. The problem with not storing Q occurs in the factor update, step 7. There is no
apparent way to do the single-stage constraint deletion or the single-stage rank-1 modification without storing at least
some of the Q,, matrix. Reference 9 has some ideas in its section on quadratic programming that could be used to

climinate storage of the lower part of Q,,. Alternatively, storage of Dy, and D, ; could be eliminated. Savings in

computation time and memory would be about the same for either scheme, about 30% savings. These issues may be
cxplored in a later work.

Backwards-Sweeping Pseudo Constraint Relaxation and an Alternate Method of Selecting the
Active Constraint to Drop

In theory, all dynamic programming problems can be solved by first computing the cost-to-go at each stage,
then solving a single stage optimization at each stage. Part of the cost for each of these single stage problems is the
cost-to-go that results from the stage’s decisions. For DLPs and for their associated L, penalty function problems, the

cost-to-go at a given stage is a piecewise-linear convex function of the decisions at that stage. This convexity
property gives rise to a hope that DLPs may have a property like the stability property of their quadratic-cost
counterparts, multi-stage LQR problems. In the DLP context, this property might mean that a small change in the
decisions at a given stage would give rise to even smaller changes in the state at subsequent stages. This might
translate into a grouping of constraint additions and deletions at stages nearly following the stage at which the decision
variations are taking place.

If this property exists, it can be exploited without the necessity of computing the entire cost-to-go function. If
all of the active constraint multipliers for constraints following a given stage are within their allowable range, then the
guessed solution is an optimal trajectory for all stages following that stage. Also, the local linear piece of the cost-to-
go function is known. Suppose the given stage can be optimized without causing any of the multipliers at subsequent
stages to exceed their L, penalty function bounds. Suppose also that all of the original pseudo constraints are active
for the preceding stages. Then, the rank-1 updates that would have to be done during the optimization of that stage
might involve changes to very few stages. The assumption about the the pseudo constraints ensures that the updates
will not affect any of the stages preceding stage k-1 if stage k is being optimized. The possibility of stability implies
that max(kadd kdrop) might, in most cases, not be much larger than k.

A change is needed to the main LP procedure presented above. It allows the multipliers at stages subsequent to
the stage being optimized to vary outside of their L; penalty function bounds. The modification needs to be in the
selection of the active constraint that gets dropped on each cycle. In the main algorithm, the dropped constraint is the
same as the non-optimal constraint that gets relaxed in steps 4-6. This could cause an active constraint multiplier that
was within its bounds to go out of its bounds. If the multiplier corresponded to a constraint at a subsequent stage,
then the optimality of the subsequent stages would break down.

This situation can be avoided by performing a search in the active constraint multiplier space for the active
constraint to be dropped. This search is the dual of that carried out in steps 5 and 6 of the main algorithm, and the
search direction is defined by relaxing the L, penalty function constraint on the multiplier associated with inactive

constraint j, the inactive constraint that is becoming active. The size of the step in multiplier space is c!\osen to be
the smallest that brings one of the active constraint multipliers to a bound which lhe.multiplier yvould violate 1f lpe
step size were larger; the new active constraint must be included in this test. The active constraint whose multiplier

337

bound limits this step size is the active constraint that gets dropped. It is not necessarily the constraint whose
relaxation was dictated in step 3 of the main algorithm.

With this scheme in place, only pseudo constraints will have multipliers that are out of bounds in the step 3
optimality test. The number of non-optimal active constraints will never increase. In turn, each pseudo constraint

will eventually be the constraint that gets chosen for dropping, though this may happen while another pseudo
constraint is being relaxed.

A special order has been chosen for relaxing pseudo constraints to take advantage of the possibility of savings
from "stability”. The modified main algorithm starts by testing and relaxing only stage-N pseudo constraints in steps
3-6. This continues until all of the stage-N pseudo constraints have dropped from the active list or have zero
multipliers. Then the algorithm switches to exclusive consideration of the stage-(IN-1) pseudo constraints in steps 3-6.
It performs add/drop cycles until all of these pseudo constraints get dropped or have zero multipliers. It continues this
stagewise pseudo constraint relaxation scheme in a backwards sweep all the way to stage 0. The guessed solution is
optimal after the last stage-0 pseudo constraint has been dropped or has had its multiplier go to zero. The trajectory
from stage k to stage N is an optimal trajectory once all of the stage-k pseudo constraints have been dropped or have
had their multipliers go to zero (although it probably will not be the final optimal trajectory associated with the
solution to the overall problem).

Comparison of Algorithm Complexity with Matrix Riccati Equation

Table 1 compares the present algorithm's computational complexity with that of related algorithms for a typical
acrospace controls problem. The time-varying multi-stage Matrix Riccati equation actually does not compute an A_
because it solves a different optimization problem. It has been included because control engineers are more familiar
with it. The three QL factorization entries assume that the factors are built up from initial pseudo constraints via 900
rank-1 updates. In the last two entries, assumptions are made about the average number of stages affected per rank-1
update. The table clearly indicates that the staircase QL factorization makes a tremendous improvement in comparison
to the dense factorization; the improvement will not be nearly so great in comparison to a general sparse matrix code.
Also, large improvements are expected from the special ordering of the pseudo constraint relaxation. Note that all of

the algorithms are far more costly than the implementation of a time-varying LQR solution. Inequality constraints are
difficult to handle.

Table 1.
A Comparison of Effort for Factorization of A, , for a Typical Aerospace Control Example
(100 stages, 6 state vector elements, 3 control vector elements)

Solution Method Effort
(No. of Mult., Div., & Sqrt.)

Matrix Riccati Equation 112,000
Dense Matrix QL, Not storing Q 2,920,000,000
Staircase QL, Arbitrary order of pseudo constraint relaxation 90,700,000
Staircase QL, Special order of pseudo constraint relaxation 4,400,000

Aerospace Example

A simple aerospace control problem has been solved with the algorithm in order to demonstrate the usefulness
of this class of algorithms on aerospace problems and in order to study the algorithm's behavior. The problem is one
of fixed-time maximization of the distance travelled by a thrust- and impulse-limited ground-to-ground rocket. The
continuous-time problem is:

find: ut) for 0 <t <t =12 sec (28a)
to minimize: J=-[1000]x(%) (28b)
subject to: x(0)=0 (28¢c)

338

0100 0 0 0
ax | 0000 322 0 0
a - {ooot T o o ["T] o (@8
0000 0 322 322
o, < 5S¢ (28¢)
t
Jl|u(t)ll2d‘t < 10 g-sec (289)
_[0010]x(< Oft. (28h)

which is a point-mass model of motion in the vertical plane. The acceleration (thrust) limit is 5 gs and the impulse
limit is 10 g-sec. The first two state vector elements are horizontal position and velocity; the last two elements are
vertical position and velocity. Only thrust and a uniform gravity field act on the rocket. The first control vector
element is horizontal acceleration; the second element is vertical acceleration. Constraint 28h keeps the rocket above
the ground.

In order solve this problem with this paper's algorithm, the control time history has been approximated by a
24-stage zero-order hold. Additionally, the norms in constraints 28¢ and 28f have been approximated by functions
with octagonally-shaped contours. The 2-norm's contours are spherical; so, this approximation introduces some
modelling error. Fixing the end time seems unnatural, but it is necessary in order to be able to model the problem as
an LP. An NP model is needed to handle the free-end-time case.

The LP code solved this problem in 55 min. on an IBM PC-AT with an 80287 coprocessor. It started from a
first guess that violated inequality constraint 28h at every stage and that foolishly tried to maintain a constant thrust
for the entire trajectory. Figures 1-3 compare the multi-stage LP solution with the exact continuous-time solution.
In Fig. 1, the LP solution does better than the exact solution because of mis-modeling; it takes advantage of some
extra thrust available at some points of the octagon norm. The thrust magnitude and angle time histories, Fig. 2 & 3,
are both close to the exact solution, and the discrepancies are due to the same modeling error.

Figure 4 gives a 2-dimensional histogram of the constraint addition/deletion frequency. The left-hand horizontal
axis indicates the stage at which the pseudo constraints are being relaxed in the special backwards-chaining process.
The right-hand horizontal axis indicates the stage at which constraint additions and deletions are occurring during that
relaxation process. The vertical axis gives the frequency of additions/deletions at the given right-hand-axis stage during
pseudo-constraint relaxation at the given left-hand-axis stage. The extreme left-hand side of the figure shows no
constraint addition or deletions -- none can occur at any stage before stage k-1 when the pseudo constraints at stage k
are the ones being relaxed. The peaks on and near the center diagonal of the graph lend support to the conjecture that
most of the constraint additions/deletions will happen at stages near the pseudo-constraint-relaxation stage. Note,
however, that a moderate amount of constraint addition/deletion activity occurred near the terminal stage throughout
the optimization. Nevertheless, the average factor update was relatively cheap. Altogether, about 800 rank-1 updates
occur during the optimization. The total number of decision vectors in the time history is 312 -- 9 extra states are
needed to model the impulse constraint in eq. 28f.

Conclusions

An algorithm has been presented for solving Dynamic Linear Programs. It takes advantage of the staircase
structure of the active constraint matrix by factorizing it into staircase QL factors. These are derived in a stagewise
fashion and play a role similar to that played by the time-varying matrix Riccati equation in multi-stage LQR theory.
All of the usual linear programming functions have been implemented with the staircase QL factorization: decision
vector solution, multiplier solution, and rank-1 updating. Each function has a computational complexity of O(n2N) or
less, where n is a block dimension and N is the number of stages. This is the best that can be expected for dense
blocks. Numerical stability is assured via the exclusive use of QL factors and is independent of pivoting strategies.

The algorithm is a modified active set implementation of the big M method with pseudo-constraint

initialization. The modification restricts the set of non-optimal constraints that can be relaxed at one time (o a single
stage. This restriction gets iterated through all the stages in a backwards chain. Also, the modification chooses the

339
G

constraint that gets dropped in a way that assures optimality of the final portion of the solution time history. The
modified strategy's goal is to reduce the average complexity of the rank-1 updates.

A 24-siage example problem has been solved. The algorithm solves the 312-dimensional problem in about 800
add/drop cycles, requiring 55 min. on an IBM PC-AT. The average update complexity is significantly reduced by the
modified active set strategy.

Acknowledgement

This research was supported in part by the National Aeronautics and Space Administration under Grant No.
NAG-1-1009.

References
. Fletcher, R., Practical Methods of Optimization, 2nd Edition, J. Wiley & Sons, (New York 1987).
. Dantzig, G.B., Personal Communication, Aug. 1989.
. Fourer, R., Personal Communication, Aug. 1989.

. Dantzig. G.B., "Programming of Interdependent Activities II: Mathematical Model,” Econometrica, Vol. 17,
1949, pp. 200-211.

5. Dantzig, G.B., and Wolfe, P., "Decomposition Principle for Linear Programs," Operations Research, Vol. 8,
Jan.-Feb. 1960, pp. 101-111.

6. Propoi, A., and Krivonozhko, V., "The Simplex Method for Dynamic Linear Programs,” Proceedings of the [IASA
Workshop on Large-Scale Linear Programming, June 2-6, 1980, (Laxenburg, Austria, 1981), pp. 299-363.

7. Fourer, R., "Solving Staircase Linear Programs by the Simplex Method,"” Proceedings of the IIASA Workshop on
Large-Scale Linear Programming, June 2-6, 1980, (Laxenburg, Austria, 1981), pp. 179-259.

8. Murtaugh, B.A_, and Saunders, M.A., "MINOS 5.0 Users Guide," Report SOL 83-20, Department of Operations
Research, Stanford U., (Stanford, California, 1983).

9. Coleman, T.F., Large Sparse Numerical Optimization, Springer-Verlag, (New York, 1984)

10. Gill, P.E., Golub, G.H., Murray, W., and Saunders, M.A., "Methods for Modifying Matrix Factorizations,"
Mathematics of Computation, Vol. 28, April 1974, pp. 505-535.

11. Saunders, M., "Large-Scale Linear Programming Using the Cholesky Factorization,” Ph.D. Dissertation, Stanford
University, (Stanford, California, 1972).

£ W RN e

500 v v +

450 4

400}

350 | 4
= 300}
=
v
'g 250}
p<d
e
< 200} p

150} A 4

f Dashed Line: LP Approx.
100} !/ E
'l
sol // Solid Line: Exact Solution \
/
\
0 n L n " " \
0 500 1000 1500 2000 2500 3000
Range (ft)

Fig. 1 Altitude vs. Range Trajectory for Ground-to-Ground Missile
Range Maximization

340

| £43

Thrust Magnitude (G's)

Dashed Line: LP Approximation

Solid Line: Exact Solution

45

T u T T \

40 Dashed Line: LP Approximation

sk Solid Line: Exact Solution

30}

et e e e — 4 —

25}

Thrust Angle (deg)

15}

10+

Fig. 2

Thrust (Acceleration) Maﬁnitude Time History for Ground-
to-Ground Missile

Time (sec)

ange Maximization

10

12

Time (sec)

Fig. 3 Thrust Angle Time History for Ground-to-Ground Missile
Range Maximization

Frequency of Additions/Deletions

Fig. 4 Two-Dimensional Histogram of Frequency of Constraint
Additions and Deletions at a Given Stage for a Given Pseudo-

Constraint Relaxation Stage

12

N90-23027

A Finite Element Based Method for
Solution of Optimal Control Problems

Robert R. Bless !, Dewey H. Hodges 2, and Anthony J. Calise 3

School of Aerospace Engineering
Georgia Institute of Technology, Atlanta, GA 30332

Abstract

A temporal finite element based on a mixed form of the Hamiltonian weak principle is presented for optimal
control problems. The mixed form of this principle contains both states and costates as primary variables that
are expanded in terms of elemental values and simple shape functions. Unlike other variational approaches to
optimal control problems, however, time derivatives of the states and costates do not appear in the governing
variational equation. Instead, the only quantities whose time derivatives appear therein are virtual states and
virtual costates. Also noteworthy among characteristics of the finite element formulation is the fact that in the
algebraic equations which contain costates, they appear linearly. Thus, the remaining equations can be solved
iteratively without initial guesses for the costates; this reduces the size of the problem by about a factor of two.
Numerical results are presented herein for an elementary trajectory optimization problem which show very good
agreement with the exact solution along with excellent computational efficiency and self-starting capability. The
goal of this work is to evaluate the feasibility of this approach for real-time guidance applications. To this end, a
simplified two-stage, four-state model for an advanced launch vehicle application is presented which is suitable
for finite element solution. ‘

Introduction

Future space transportation and deployment needs are critically dependent on the development of reliable
and economical launch vehicles that will provide flexible, routine access to orbit. A particular requirement now
receiving attention is that for an advanced technology heavy-lift vehicle. Future space transportation systems
will need to place large payloads ~ 100,000 to 150,000 pounds — into low Earth orbit at an order of magnitude
lower cost per pound. Such systems will also require on-board algorithms that maximize system performance
as measured by autonomy, mission flexibility, in-flight adaptability, reliability, accuracy and payload capability.
They must be computationally efficient, robust, self-starting, and capable of functioning independently of ground
control. Also, the algorithms must be designed with the anticipation that the launch vehicle will undergo
evolutionary growth [1].

One approach to optimal guidance consists of repeatedly solving a two-point boundary-value problem that
results from the traditional necessary conditions for optimality in an optimal control problem formulation. The
vehicle state at discrete instants of time along a trajectory can be viewed as a new starting condition, and the
remainder of the trajectory is reoptimized for that condition. The open loop optimal control is applied for a
short interval of time, and feedback is introduced by reoptimization at the next time instant. This process
presupposes that the two-point boundary-value problem can be reliably solved in a time interval that is small
compared to the control update interval. Knowledge of the previous solution helps in providing a good starting
point for the optimization process; however, no method has been demonstrated that can operate reliably in a
real time environment.

This paper examines a finite element approach to addressing this problem. Hamilton’s principle has tra-
ditionally been used in analytical mechanics as a method of obtaining the governing equations of motion for

1 Graduate Research Assistant. Student Member, AIAA.
2 Professor. Associate Fellow, ATAA.
3 Professor. Member, AIAA.

342

continuous systems. In the 1970’s a form of Hamilton’s principle called Hamilton’s law of varying action was
first used by Bailey (see, for example, [2]) to obtain direct solutions to dynamics problems in the time domain,
thus introducing Hamilton’s principle into computational mechanics. During the last decade, it was shown by
Borri ef al. [3] and by Peters and Izadpanah [4] that these direct methods, when expressed in a weak form,
could be competitive with numerical solution of the corresponding ordinary differential equations. Later work
by Borri et al. [5] has shown that a mixed form of the weak principle has further computational advantages,
namely that shape functions can be chosen from a far less restrictive class of functions.

In [6], Hodges and Bless have shown that optimal control problems can be solved in a virtually identical
way to that of the mixed form of Hamilton’s weak principle. Hence, the method as used in [6) and the present
paper has been called the weak Hamiltonian method for optimal control problems. Finite element methods
have some advantages over other solution procedures; one advantage is that finite element methods provide
the possibility for development of algorithms which converge reliably. The present method, at least for the
problems investigated to date, is essentially self-starting. This meets a key operational requirement for on-
board algorithms. However, application of the finite element method to optimal control problems is rather
new. For example, Patten [7] used a Ritz-Galerkin technique with Lagragean interpolation polynomials. One
advantage of the present formulation is the allowance for a simpler choice of shape functions. The computational
savings which may stem from this are now under investigation.

In this paper, a weak form governing optimal control problems is derived, and a finite element procedure is
outlined for the solution of such problems. Numerical results for the solution of a simple trajectory optimization
problem are presented and compared with the exact solution to demonstrate the accuracy and efficiency of
the weak Hamiltonian finite element formulation. In anticipation of applying the present method to optimal
guidance of a rocket booster, a simplified two-stage model suitable for this problem is presented. In [6] a
one-stage model was analyzed and finite element results were compared to a numerical solution obtained using
a multiple shooting method [8]. Of particular interest are the self-starting operation and the performance in
terms of execution time and accuracy versus the number of elements used to represent the time span of the
trajectory.

Weak Principle for Optimal Control

A definite analogy exists between the mixed formulation of Hamilton’s weak principle in dynamics and the
first variation of the performance index in optimal control theory. Specifically, there is an analogy between the
generalized coordinates and generalized momenta in dynamics and the states and co-states in optimal control
theory. Only a brief development of the weak Hamiltonian method for optimal control problems is presented
herein. More details on the development and the analogy with dynamics problems may be found in [6).

General Development

We start with a performance index taken from Eq. (2.8.4) of Bryson and Ho [9]. Its first variation will be
taken in a standard manner, except that states, costates, and controls will have arbitrary variations. Rather
than setting its first variation equal to zero, however, it will be set equal to an expression which contains the
terms that are necessary to transform all boundary conditions to the natural or “weak” type. The final weak
form is then obtained by integration of this equation by parts in such a way that no derivatives of states or
costates appear.

It should be noted that the fundamental relationships are not being changed. To make certain of this,
we will ensure that the resulting formulation produces the Euler-Lagrange equations and boundary conditions
which have already been established in optimal control theory (see, for example, [9], Eqs. 2.8.15 - 2.8.21).

In order to clearly understand what is meant by a “weak” formulation and the derivation of the weak
formulation that is to follow, we first study a more simple problem. Let us start with a functional of the form

B
J = / F(y,y,z)dz (D)
A
where A and B are fixed numbers. The necessary conditions for an extremal are defined by

343

B roF oF
6J = —by+ —by) dz =
/A (03/ y+3y’ y) =0 @)

Introducing 8F /8y’ = f for notational convenience and integrating by parts we obtain

BroF
/A(a—y—f)éydz+f6y

The integrand in the above equation is the familiar Euler-Lagrange equation. The trailing term leads to the
boundary conditions. If y is specified at z = A or £ = B, then §y = 0 at z = A or z = B respectively. This
is referred to as a strong boundary condition. If y is not specified at one of the endpoints, then f = 0 at that
endpoint. This is referred to as a natural or weak boundary condition. The key points to remember are that
the trailing term itself is zero at each endpoint and that specifying y requires that éy = 0 at a point.

B
=0 (3)
A

In our weak formulation, we want all the boundary conditions to be of the weak type. Thus, even if
y(A) = 0 then sy(A) # 0. To allow for this mathematically, we introduce a new variable f which represents the

discrete value of f at an endpoint. The variation of J is now set equal to f&ylﬁ yielding

B B
§J =/ (-a—F&y+f6y') dz = féy
A Ay

(4)

A

This is referred to as a weak form. If we integrate by parts, we obtain

B -
[(G-r)svde=ti-nsy

A

B

(5)

A

Note that the Euler-Lagrange equation is the same as before and that the two boundary conditions are that
f = [at the two endpoints; thus, the trailing terms are still constrained to be zero, but in a weak sense and éy
need not ever vanish.

The advantages of the weak formulation are not apparent from the above discussion. However, when we
apply this type of formulation to problems in dynamics (see, for example [6]), or optimal control theory [6], and
use finite elements, then we have a powerful problem-solving tool.

Consider a system defined by a set of n states z and a set of m controls u. Furthermore, let the system
be governed by a set of state equations of the form z = f(z,u,t). We may denote elements of the performance
index, J, with an integrand L(z, u,t) and a discrete function of the final states and time ¢[z(t;),t;]. In addition,
any terminal constraints placed on the states may be placed in the set of ¢ functions ¥[z(t;),¢;] and adjoined to
the performance index by a set of ¢ discrete Lagrange multipliers v. Finally, we will adjoin the state equations
to the performance index with a set of Lagrange multiplier functions A(t) which are referred to as costates. This
yields a performance index of the form

t
J= I(AT:E—L—,\Tf)dt—dzL —uT¢| (6)
i)

to ty

Taking the first variation of J and setting it equal to an expression chosen so that all boundary conditions are
of the weak type, one obtains

344

ty
6J = / [6AT (2 — £y + 627X — 6L — 6fT)] dt
to

. 8¢ oY
+ 8t (/\ t—L-Xf o "V)

ty (7)
~b6zf Ay — 6Ty,

= 6ty (AT2)|,, — 825 %0 — 6T (2 ~ 2)

ty
to
where

E [(g‘g)T + (g—f)T.,] ’ (8)

The right hand side of Eq. (7) contains terms necessary to form all of the proper boundary conditions as natural
ones. The quantities # and A are discrete values of the states and co-states at the initial (with subscript 0)
and final times (with subscript f). Depending on the problem, these values will either be specified or left as
unknowns.

From Eq. (7), we can directly write down a weak formulation. Before this is done, however, let us examine
this expression to ensure that it produces the correct Euler-Lagrange equations and boundary conditions.
Integrating the 6zT term in Eq. (7) by parts and expanding the variation of L, one obtains

/,:I{“T(i -)= b [(«;_DT . (g_ﬁ)TA]
o (G () >+

9
— 6Tyl - Ty, 9% T‘_"i)
sv ¢L! 5t (L+A [+ .

+6Z'f (/\j - i;) - 61:3’ (z\o - ;\o)
+6XT (27 — x4) — 6A] (20— z0) = 0

where zg, Ag, 7, and Xy represent the values of those functions at the initial and final times, respectively. The
coefficients of AT, §z7, and §uT in the integrand are the three correct Euler-Lagrange equations, Egs. 2.8.15
~ 2.8.17 from [9]). There are also six trailing terms in Eq. (9) from which the boundary conditions can be
determined. The equations corresponding to the first four and the sixth of these terms correspond to the correct
boundary conditions in [9). Namely, the requirement for the coefficient of §v7 to vanish yields Eq. (2.8.21). The
requirement for the coefficient of 6ty to vanish is equivalent to Eq. (2.8.20). The requirement for the coefficient
of 62}' to vanish shows that the final value of A equals A, as given in Eq.(8), which corresponds to Eq. (2.8.19).
If)o is chosen as zero, the requirement for the coefficient of 6zJ to vanish requires the initial value of A to equal
zero; on the other hand, the requirement for the coefficient of 6/\'{ to vanish requires the initial value of z to
equal £, in accordance with Eq. (2.8.18). Finally, the requirement for the coefficient of 5AT to vanish demands
that the final value of z equal the discrete value Z;; this has no counterpart in [9] since the elements of £; are
usually unknown.

Having satisfied our requirement that none of the fundamental equations are altered, we may now derive
our weak formulation from Eq. (7). In order to allow for the simplest possible shape functions when we introduce
a finite element discretization, we do not want time derivatives of z and A to appear in the weak formulation.
Therefore, we integrate the = term by parts in Eq. (7) yielding

345

/: {6;&TA —6zT [(g—f)T + (g)T ,\]

\T T r | (LT af)T
-6z =6\ f—bu [(a—u) + (b‘; A dt (10)
8¢ 0y
—6t! (L+/\Tf+ 5{+VTE)I‘I—6VT1/)IU

— 627 Ay + 620 ho + AT 2y — 6ATE0 =0

This is the governing equation for the weak Hamiltonian method for optimal control problems. It will serve as the
basis for the finite element discretization described below. It should be noted that normally one will encounter
various types of inequality constraints in problems that deal with optimal control. Inequality constraints will
be the subject of future research.

Finite Element Solution

Note in Eq. (10) that time derivatives of 6z and 8\ are present. However, no time derivatives of z, A, u
or éu exist. Therefore, it is possible to implement linear shape functions for 6z and 6\ within elements and
constant shape functions for z, A, u, and §u within elements.

For simplicity, let us break up the time interval into N segments of equal length At = 5-552 Let the values
of time be given by ¢; for i = 1,2,..., N +1 at the points where the time interval is broken, the so-called nodes.
Here top = t; and t; = tny41. Then, introduce a nondimensional elemental time 7 such that

t—t; t—t
= = 0<r<l1 11
T tig1 — At O<r<1) (11)
Now, in accordance with the above guidelines, and letting i = 1,2,..., N, we can choose simple linear shape

functions

bz = bx(iy(1 — 1) + bz i1y

(12)
6 = 6)(,)(1 - T) + 6/\(“,1)1'

where the arbitrary, discrete virtual states and virtual costates are defined at every node point. (The nodal
indices are enclosed in parentheses to avoid confusion with the state column matrix index.) For the states and
costates, we can choose even simpler shape functions

Z() ifr=0;
r = i(,‘) fo<r<l,; (13)
Zig1) fr=1
and
Aoy ifr=0
A= A(,‘) ifO(T(l; (14)
A(i+l) ifr=1

where in both cases, i = 1,2,..., N. For u and §u, since their time derivatives do not appear in the formulation,
we let

346

u =)

15
bu = b1y (15)
wherez1=1,2,...,N.
Substitution of Eqs. (12) - (15) into Eq. (10) along with Eq. (11) and
t=1t; + TAt
16
dt = Atdr (16)

yields a set of nonlinear algebraic equations which can be assembled in accordance with standard finite element
practice. For the sake of brevity, these rather lengthy equations for the general case are not written out explicitly
here. They are, however, written out in [6] wherein it is noted that there are 2n(N + 1) equations for the states
and costates, mN equations for the controls, ¢ equations for the end-point constraints, and 1 equation for the
unknown time equation. In the assembly process, Z(;) and A(,) drop out of the equations for i = 2,..., N (i.e.,
for all but the ends of the time interval to = t; and t; = tN+1) Thus, the total number of unknowns is 2n(N+2)
for the states and costates, mN for the controls, ¢ for the v’s, and 1 for the unknown time ¢ N+1- Thus, there are
2n more unknowns than there are equations, which allows for one to choose, say, , in accordance w1th physical
constraints and A 7 in accordance with Eq. (8) and solve for the rest. The resultmg equations may be explicitly
perturbed to obtain the Jacobian and solved iteratively by a Newton-Raphson method or by any method that
is suitable for nonlinear algebraic equations with very sparse Jacobians.

It is also pointed out in [6] that n(N + 1) of these algebraic equations contain the n(N + 1) unknown
costates and that these equations are linear in the costates. Thus, the costates can be solved for symbolically
in terms of the other unknowns, and the remaining equations can be solved circumventing the need for initial
estimates of the costates. This decreases the size of the problem by approximately a factor of two.

Example: A Free-Final-Time Problem

In this section a relatively simple optimal control problem is solved by means of the Hamiltonian weak
formulation, and the results are compared with the exact solution. Of particular interest is the computational
effort for varying numbers of elements, the ability of the method to converge for various values of the system
parameters without needing new initial estimates of the unknowns, and, most important, the accuracy of the
method versus the number of elements.

i

Fig. 1: Nomenclature for planar motion
with thrust acceleration = a

Problem Statement

The problem is taken from [9], article 2.7, problem 9. A particle of mass m is acted upon by a thrust force
of magnitude ma. Assuming planar motion and making use of an inertial coordinate system z, and z; as shown
in Fig. 1, we may write the dynamical equations as

347

0010 0
_10 0 01 0
=10 0 0 0|**{acosu (17)
00 00 asinu

where z; is the horizontal component of position, z2 is the vertical component of position, z3 is the horizontal
component of velocity, and z4 is the vertical component of velocity. The control is the thrust angle u, and
z(0)=2o=10 0 0 0|T. We want to obtain given values A of the final vertical component of position and U
of the horizontal component of velocity. The final value of the vertical component of the velocity, must vanish,
but we do not care what the final value of the horizontal component of position is. For the optimal control
problem, the initial time is taken to be zero, and the final time T is to be minimized so that ¢ =0 and L =1
which yields J = T. The elements of the end-point constraint function ¢ must vanish where

Ty — h

1/) = I3 — U (18)

T4

In accordance with Eq. (8)

0
i =" 19
1=, (19)

V3

Substitution of these equations into the weak form, Eq. (10), yields a system of algebraic equations whose
size depends on N.

Results and Discussion

These equations are solved by a Newton-Raphson algorithm with trivial initial guesses (that are never
changed regardless of input parameters) for N = 2. These results are then used to obtain the initial guesses for
arbitrary N by simple interpolation. In all results obtained to date for this problem, no additional steps are
necessary to obtain results as accurate as desired.

Representative numerical results for z,/h versus z;/h are presented in Fig. 2 for a case with {7'} = 0.75.
Also, the control angle u versus dimensionless time ¢/T is presented in Fig. 3. Based on other results, not shown
due to space limitations, accuracy for the costates is comparable to that for the states and for u. It can easily
be seen that N = 8 gives acceptable results for all variables.

It should be noted that the computer time on a Cyber 990 is only about 2 seconds for N =2, N =4, and
N = 8 and 3 seconds for N = 16. Thus, it is relatively insensitive to N.

Overall, the method provides very accurate results for this problem with only a few elements and for
minimal computational effort. Furthermore, in results that are not presented herein, the Hamiltonian is seen
to converge nicely to zero all along the trajectory as the number of elements increases.

348

Vertical Position/h

0.0 v v T v r
0.0 0.2 04 0.6 0.8 1.0 12 14

Horizontal Position/h

Fig. 2: Dimensionless vertical position
z3/h versus horizontal position z,/h

Thrust Angte, deg.

'9G T L] L1
0.0 0.2 04 0.6 0.8 1.0

Dimensionless Time

Fig. 3: Control angle u versus t/T

An Advanced Launch System Model

In this section, a model is presented which is suitable for evaluating the potential usefulness of the weak
Hamiltonian finite element approach in real time guidance of an advanced launch system. A two-stage vehicle
is considered that is simplified by not allowing for any inequality constraints.

We confine our attention to vertical plane dynamics of a vehicle flying over a spherical, non-rotating earth
as depicted in Fig. 4. This results in the following state model for the states m (mass), h (height), E (energy
per unit mass), and ¥ (flight-path angle):

349

T

: : .. (T-D
=T 981, h=Vsiny; E“(T)V

._(T+qSCLa ot (Y _ £ (20)
Y= mV i 17 cos Yy

where T is the thrust, D is the drag, and V is the velocity. Here a, the angle of attack, has been adopted as a
control variable.

h

Earth’s Surface

Fig. 4: Vertical plane dynamic model

The aerodynamic, propulsion, and atmospheric models are given by the following equations:

T =Tyac — Aep
P =po(1 — 0.00002255h)%2%¢ for h < 11000m
P =P11€xp (—h——é-;-;g-og) for h > 11000m
r=R.+h; V= 2(E+g); q=pTV2
A v (21)

p =poexp (—‘W) ; M=—

D =q$' [CDQ(M) + QZCNQ(M)]

CLa(M) =Cno(M) — Cpo(M)
a =a0\/1‘——0.06(m2—255ﬁ for h < 11000m
a =295.03ms~? for h > 11000m

The vehicle parameters chosen for this model are based on a Saturn IB launch vehicle SA-217 [10] and are

Ip, =263.4s; I,p, = 430.4s
Tyae, =8155800N; T4, = 1186200N

(22)
A, =84Tm? A, =529m? S =33.468m?

where subscripts “1” and “2” refer to the first and second stages respectively. The aerodynamic coefficient data
Cpo and Cpnq are presented as functions of the Mach number M in Tables 1 and 2. The physical constants

350

used in the above model are the earth’s gravitational constant y = 3.9906 x 10'*m®s~2, the earth’s mean
radius R, = 6.378 x 10%m, the sea-level atmospheric pressure py = 101320Nm™2, the atmospheric pressure at
11km p;; = 22637Nm™2, the sea-level density of air po = 1.225kg m~2, and the sea-level speed of sound in air
ag = 340.3ms™ 1.

M Cpo
0.20 1.00
0.75 0.45
0.98* 0.80
1.00 0.80
1.02* 0.80
3.50 0.20
6.00 0.02

Table 1: Aerodynamic coefficient Cpy versus Mach number
(* denotes a common end point of two quadratic polynomial curves)

M CNa
0.00 6.20
050 6.35
0.98* 17.70
1.00 7.70
1.02* 7.70
250 5.20
440" 4.70
500 5.50
6.00 6.00

Table 2: Aerodynamic coefficient Cn, versus Mach number
(* denotes a common end point of two quadratic polynomial curves)

The performance index is

J= ¢, =ml, (23)

and the final time t; is open. The initial conditions specified are m(0) = 5.2 x 10%kg, h(0) = 1800m, E(0) =
—6.25 x 107m?s~2, and ¥(0) = 75°. The final energy is specified as E(t;) = —1.25 x 10’m2s~2. The burnout
mass of the first stage is 192000 kg and the drop-mass of the booster is 51000 kg.

For this two-stage model, we must modify our formulation somewhat. We must accomodate for the unknown
staging time ¢,, the constraint on the mass at t, (as opposed to a constraint on the states at the final time),
the jump in the mass at t,, the jump in the mass costate at t,, the condition for a continuous Hamiltonian at
t, (continuous since ¢ and ¥ are not explicit functions of time), and finally the change in state equations at
t, (due to the change in thrust). We further point out that the control u is discontinuous at the staging time.
However, since only discrete mid-point values of u are solved for, the jumps are allowed to occur automatically
at the nodes.

The new performance index (with L = 0) is

—V2¢2 (24)

ty

J= /o - fyd+ ’[A"(i—fz)dt—wll ¢

t,

ty

351

where fi and f; represent the state equations before and after t, respectively, ¥ = ra(t;) — 192000 and
Y2 = E(t;) + 12500000.

The weak formulation is derived exactly as before and the same shape functions can be employed. This
time, however, we will discretize the time from 0 to ¢, with N; elements and the time from ¢, to t; with N,
elements. The algebraic equations shown in [6] for the weak formulation are readily modified to account for the
various jumps and state equation discontinuities. The resulting equations are

T
+62) [;‘ -5 (?3_1) A'] ~ H [" +3 0,]

i
i) -
—éaTl [Atl (6’;1)] } st, [H(t+) — A(t7)] - b1 (g, 4, — 192000)
+5”T30 - 6'\{50 - 6"’N1+1 (’\;J +1 '\p,“) + 6’\%&1 (5’1_\’14-1 - ‘EIJ,-H)

Ni+N; - Aty (3fs < (- Aty -
+‘=§;+1{ l: A — T (-a—:{)l As' + 6), [zi - T (fg)']
5, Atz (0F Aty -
+oaih [)‘ B % (6i)] - 8M1 |2 [- + % (fz).-]
e [Atz (aaf)] }—“1 [A1(¢9)] - 6v2 (&, + 12500000)

+6’\£1+N;+1(£!) - 62%._,,”2“(3;) =0

(25)

From Eqgs. (8) and (23) it is seen that A is given by [I 0 w 0JT. Also, we note that the only jumps
are in the mass state and the mass costate and these jumps are

m(t]) — m(t}) = 51000

Sm(5) = Am(tF) = 11 (26)

The finite element equations are solved using the method of Levenberg-Marquardt as coded in the IMSL
subroutine ZXSSQ [11]. Running a case for a few elements generates a good approximation for larger numbers
of elements. Initial guesses do not need to be very accurate, but the method is not nearly as computationally
efficient as a Newton-Raphson procedure where sparsity in the Jacobian could be exploited.

In Figs. 5 and 6 numerical results for the ALS model are given for 4 and 8 elements in each time interval.
(The number of elements in each interval is completely arbitrary.) In Fig. 5 the altitude profile is shown and
the control history is shown in Fig. 6. From past experience with the one-stage model, we believe the Ny = 8
and N, = 8 to be a converged result. Furthermore, we see that even the Ny = 4 and N; = 4 result gives a
reasonable approximation to the solution. It should be noted that these results are not realistic because of the
absence of state constraints, and because we have large angles of attack (more than 30° at some points) even
though we assumed small angles in the state equations. However, they do suffice to illistrate the power of the
method.

352

Altitude (m)

Control (deg.)

80000 7

40000 1

20000 1

A Altitude (4:4)
—o Altitude (8:8)

L] A L] b L v L] L4 v L

100 200 300 400 500 600
Time (s)

Fig. 5: Altitude profile versus time

A Control (4:4)
—o- Control (8:8)

T v L] v T v 1 v L * L}

100 200 300 400 500 600
Time (s)

Fig. 6: Angle of attack profile versus time

353

As an indication of the accuracy of the method in a global sense, the Hamiltonian was observed to converge
to zero (the exact answer) all along the trajectory. The finite element results are converging to the exact solution
as N increases.

Conclusion

In this paper we present a weak Hamiltonian formulation for optimal control problems. Results are pre-
sented based on the weak Hamiltonian finite element formulation for a simple optimal control problem which
show the method is reliable, efficient, and accurate. For this and other problems it is easily programmed with
a self-starting algorithm.

To address the future needs of real-time guidance for future space transportation systems, we present a
four-state model for the dynamics of mass, altitude, energy, and flight-path angle. The angle of attack is
the control. The results show the power and efficacy of the present approach. It has several advantages for
applications in real-time guidance. It is not only reliable and efficient but has excellent self-starting capability.
Furthermore, initial guesses of the costates are not needed, and the method exhibits a graceful degradation in
performance with reduction in number of elements.

For future research we intend to concentrate on improving computational efficiency by exploitation of the
relatively significant level of sparsity in the Jacobian. We also will incorporate inequality constraints, and begin
to address the avoidance of atmospheric anomalies.

Acknowledgement
This work was supported by NASA Grant NAG-1-939 of which Dr. D. D. Moerder is the technical monitor.

References

1. Hardtla, J. W., Piehler, M. J., and Bradt, J. E., “Guidance Requirements for Future Launch Vehicles,”
Proceedings of the AIAA Guidance, Navigation, and Control Conference, Paper No. 87-2462, August, 1987.

2. Bailey, C. D., “Application of Hamilton’s Law of Varying Action,” AJAA Journal, Vol. 13, 1975, pp. 433 -
451.

3. Borri, M, et al., “Dynamic Response of Mechanical Systems by a Weak Hamiltonian Formulation,” Com-
puiers and Structures, Vol. 20, No. 1 - 3, 1985, pp. 495 — 508.

4. Peters, David A., and Izadpanah, Amir, “kp-Version Finite Elements for the Space-Time Domain,” Com-
putational Mechanics, Vol. 3, pp. 73 - 88, 1988.

5. Borri, M., et al., “Primal and Mixed Forms of Hamilton’s Principle for Constrained and Flexible Dynam-
ical Systems: Numerical Studies,” ARO/AFOSR Workshop on Nonlinear Dynamics, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia, June 1 - 3, 1988.

6. Hodges, Dewey H., and Bless, Robert R., “A Weak Hamiltonian Finite Element Method for Optimal
Control Problems,” Journal of Guidance, Control, and Dynamics, submitted for publication, 1989.

7. Patten, William Neff, “Near Optimal Feedback Control for Nonlinear Aerodynamic Systems with an Ap-
plication to the High-Angle-of-Attack Wing Rock Problem,” AIAA Paper 88-4052-CP, 1988.

8. Bulirsch, R., “The Multiple Shooting Method for Numerical Solution of Nonlinear Boundary Value Prob-
lems and Optimal Control Problems (in German),” Carl-Cranz-Gesellschaft, Tech. Rpt., Heidelberg, 1971.

9. Bryson, Arthur E. Jr., and Ho, Yu-Chi, Applied Optimal Control, Blaisdell Publishing Company, Waltham,
Massachusetts, 1969, Chapter 2.

10. Anon., “Saturn IB SA-217 Reference Launch Vehicle,” NASA TM X-53686, 1968.
11. Anon., The International Mathematical and Statistical Library, IMSL Inc., Houston, Texas, Ch. Z, 1984.

354

N9O-23028

A Methodology For Formulating A Minimal Uncertainty
Model For Robust Control System Design and Analysis

Christine M. Belcastro B.-C. Chang Robert Fischl

MS 489 ME&M Dept. ECE Dept.

NASA Langley Research Center Drexel University Drexel University

Hampton, VA. 23665 Philadelphia, PA. 19104 Philadelphia, PA. 19104
Abstract

In the design and analysis of robust control systems for uncertain plants, the technique of formulating what
is termed an "M-A model" has become widely accepted and applied in the robust control literature. The "M" represents
the transfer function matrix M(s) of the nominal system, and "A" represents an uncertainty matrix acting on M(s). The
uncertainty can arise from various sources, such as structured uncertainty from parameter variations or multiple
unstructured uncertainties from unmodeled dynamics and other neglected phenomena. In general, A is a block diagonal
matrix, and for real parameter variations the diagonal elements are real. As stated in the literature, this structure can
always be formed for any linear interconnection of inputs, outputs, transfer functions, parameter variations, and
perturbations, However, very little of the literature addresses methods for obtaining this structure, and none of this
literature (to the authors' knowledge) addresses a general methodology for obtaining a minimal M-A model for a wide
class of uncertainty. Since having a A matrix of minimum order would improve the efficiency of structured singular
value (or multivariable stability margin) computations, a method of obtaining a minimal M-A model would be useful.
This paper presents a generalized method of obtaining a minimal M-A structure for systems with real parameter
variations.

1. Introduction

Robust control theory for both analysis and design has been the subject of a vast amount of research in this
decade [1-35]. In particular, robust stability and performance have been emphasized in much of this work, as, for
example, in the development of H* control theory [10-15, 19-23]. Moreover, the development of robust control
system design and analysis techniques for unstructured {1-9, 13, 19, 21] as well as structured [16-35] plant uncertainty
continues to be the subject of much research - particularly the latter. Unstructured plant uncertainty arises from
unmodeled dynamics and other neglected phenomena, and is complex in form. This uncertainty is called "unstructured”
because it is represented as a norm-bounded perturbation with no particular assumed structure. Plant uncertainty is
called "structured” when there is real parameter uncertainty in the plant model, or when there is unstructured complex
uncertainty occurring in the system at multiple points simultaneously. Plant parameter uncertainty can arise from
modeling errors (which usually result from assumptions and simplifications made during the modeling process and/or
from the unavailability of dynamic data on which the model is based), or from parameter variations that occur during
system operation.

Robust control design and analysis methods for systems with unstructured uncertainty is accomplished via
singular value techniques [1-9, 21]. For systems with structured plant uncertainty, however, the structured singular
value (SSV) [16-27] or multivariable stability margin (MSM) [28-33] must be used. In order to compute the
SSV or MSM, the system is usually represented in terms of an M-A model. The "M" represents the transfer function
matrix M(s) of the nominal system, and "A" represents an uncertainty matrix acting on M(s). In general, A is a block
diagonal matrix, and for real parameter uncertainites the diagonal elements are real. As indicated in the literature
[17,18,20,28 1, this structure can always be formed for any linear interconnection of inputs, outputs, transfer
functions, parameter variations, and perturbations. However, very litte of the literature discusses methods for
obtaining an M-A model. For unstructured uncertainites, this model is very easy to obtain. However, for real
parameter variations, forming an M-A model can be very difficult. In [29], De Gaston and Safonov present an M-A
model for a third-order transfer function with uncertainty in the location of its two real poles and in its gain factor.
Although the given M-A model is easily obtained for this simple example, other examples do not yield such a

355

straight-forward result. A general state model of M(s) for additive real perturbations in the system A matrix (where A
is assumed to be closed-loop) is discussed in [34]. Unfortunately, this model is not general enough for many
examples, since system uncertainty is restricted to the A matrix and the uncertainty class is restricted to be linear.
Morton and McAfoos [26 1 present a general method for obtaining an M-A model for linear (affine) real perturbations
in the system matrices (A,B,C,D) of the open-loop plant state model. In this model, an interconnection matrix P(s) is
constucted first for separating the uncertainties from the nominal plant, and then M(s) is formed by closing the
feedback loop. The M-A model thus formed can be used in performing robustness analysis of a previously determined
control system. If the feedback loop is not closed, p-synthesis techniques [19-21] can be applied to the M-A model for
robust control system design. Morton's result essentially reduces to that of [34] when the perturbations occur only in
the A matrix (and the A matrix of [34] is assumed to be open-loop). An algorithm for easily computing M(s) based
on Morton's result is presented in [35). Although this method of constructing an M-A model is general for linear
uncertainties, many realistic problems require a more general class of uncertainties. Furthermore, no consideration is
given to obtaining a minimal M-A model, where "minimal” refers to the dimension of the A (or M) matrix. Since the
M-A model is a nonunique representation, it would be prudent to obtain one of minimal dimension so that the
complexity of the SSV or MSM computations during robust control system design or analysis could be minimized.
However, none of the literature (to the authors' knowledge) addresses the issue of minimality.

This paper presents a methodology for constructing a minimal M-A model for systems with rcal parametric
multilinear uncertainties, where the term "multilinear” is defined as follows:

Definition: A function is multilinear if the functional form is linear (affine) when any variable is allowed to vary
while the others remain fixed. For example, f(ab,c) = a + ab + bc + abc isa multilinear
function.

Thus, the allowance of multilinear functions of the uncertain parameters provides a means of handling cross-terms in
the transfer function coefficients. A procedure is proposed for obtaining this model in state-space form for uncertain
single-input single-output (SISO) systems, given the system transfer function in terms of the uncertain parameters.
An extension of this result to multiple-input multiple-output (MIMQ) systems will be given in a subsequent
publication. In this development, M(s) will represent the nominal open-loop plant, so that the resulting M-A model
may be used for robust control system analysis or design. The state-space form used in modeling M(s) is an extension
of Morton's result for real parametric linear (affine) uncertainties [26]. The paper is divided into the following
sections. A formal statement of the problem to be solved in this paper is presented in Section 2, followed by a
discussion of minimality considerations in Section 3. The approach is presented in Section 4, a proposed solution to
the problem is presented in Section 5, and the proposed procedure for finding a minimal M-A model is summarized in
Section 6. Several examples demonstraing the proposed solution are given next in Section 7, followed by some
concluding remarks in Section 8.

2. Problem Statement

Given the transfer function of an uncertain system, G(s,8), in either factored or unfactored form, as a
function of the uncertain real parameters, §, find a minimal M-A model of the form depicted below in Figure 1:

G(s, 8)
| Rttt adied et h
' p q \
1 A(S) ['
: \
] \
] \
]
u, B M) v Y
: > —>
\ A

W W W OV W R W M M M W W W W W W W W m

Figure 1. Block diagram of the General M - A Model

such that: 1. The diagonal uncertainty matrix, A, is of minimal dimension.
2. The model of the nominal plant, M(s), is in state-space form.

356

The model must handle multilinear uncertainty functions in any or all of the transfer function coefficients. In
order to construct a minimal M-A model, the dimension of the A matrix must be minimized. Hence, factors which
have been found to affect the dimension of the M-A model will be discussed next, followed by the approach used in
forming a solution to this problem.

3. Minimality _Censiderati

In constructing an M-A model of an uncertain system, the A matrix can become unnecessarily large due to
repeated uncertain parameters on its main diagonal. It is therefore of interest to examine the factors which can cause
this repetition, so that the number of repeated uncertain parameters can be minimized. A factor which can be shown to
cause unnecessary repetition in the A matrix is the particular realization used in representing the system. Examples
can be constructed which demonstrate this effect, and it appears that a cascade realization (and, in particular, cascaded
uncertain real poles and zeros) is a desirable form for obtaining a minimal M-A model. Thus, a general cascade-form
realization will be part of the approach taken in constructing a minimal M-A model. A problem arises, however, in
that some transfer functions have a form which precludes cascading uncertain real poles or zeros, such as:

G(s) = bis® + bps + by GGO) = _(_SLO(S_L@Q

(s+01)(s+62) , s+ ars + az
where 0, and 8, are assumed here to be uncertain (and hence a function of). Cascading the poles and zeros for either
case would result in improper transfer function blocks to be realized. For these cases, it is unavoidable for the
minimal A matrix to have repeated uncertain parameters on the main diagonal. However, for each inseparable pole or
zero pair it is only necessary to repeat one uncertain parameter. This issue will be addressed in the proposed solution,
and a minimal M-A model for the first transfer function above will be given as an example.

Another factor which affects the dimension of the M-A model is the form of the coefficients in the system
transfer function. If any of the coefficients is a nonlinear function of the uncertain parameters instead of a multilinear
function (e.g., there are squared uncertain terms in any of the coefficients), then extra dependent uncertain parameters
must be defined in order to represent these terms in a multilinear form. For example, 812 would be represented as
8,8, where 8, = 8,, and both 8, and 8, would appear in the A matrix. Thus, for this case, it is again necessary that
the minimal A matrix contain repeated uncertain parameters on its main diagonal. An example illustrating this
situation will be presented later.

These issues are addressed in the proposed solution for constructing a minimal M-A model. The approach
taken in forming this solution is described in the next section.

4. Approach

Based on the problem definition and the minimality considerations outlined above, several issues will be
addressed in forming a solution to the problem of constructing a minimal M-A model given the transfer function of an
uncertain system. First, a general cascade-form realization will be found which can be used to obtain a minimal M-A
model. Second, the minimal A matrix will be determined for any uncertain system such that extra dependent
parameters are assigned to account for inseparable pairs of uncertain real poles or zeros as well as non-multilinear (e.g.,
squared) terms. Third, a method of obtaining a state-space realization of M(s) for any uncertain system will be found.
Therefore, the proposed approach for constructing a minimal M-A model is given as follows:

1. Obtain a cascade-form realization of the system so that the state-space uncertain model can be written as:

x= AX + Bu 1)
y=Cx + Du
where: A = A0+ [AA], B = Bo+ [AB], C = C0+ [AC], D = D0+ [AD] (0}

The terms with the "0” subscript (Ao, Bo’ Co’ Do) represent the nominal matrix componenits, and the "A™ terms

(AA, AB, AC, AD) represent the uncertain matrix components. To eliminate confusion of the A notation, the
diagonal uncertainty matrix, A, of the M-A model will be represented as [A], and the AA, AB, AC, and AD matrices
will be represented as [AA], [AB], [AC], and [AD] wherever clarification is required.

357

2. Obtain a minimal M-A model as described in the problem definition and pictured in Figure 1, where:

a. The minimal uncertainty matrix, A, is defined as:
A= ding[8),8,8,....8 1= dig[8,8;) = dig [3])
where: Ae R™M & e RM, §pe R™, §e R™

and: m = the minimal number of uncertain parameters

my = the number of independent parameters given in G(s,5)

mp = the minimal number of dependent (or repeated) parameters
Also: p = [Alq @
where: p = the uncertain parameters input to M(s), p € R™

q = the uncertain variables output from M¢s), 4 € R™
Since an M-A model is minimal if the dimension of the A matrix, m, is minimal, where m depends

on my and mp, with mp being given and fixed, a formal definition of a minimal M-A model can be
stated as follows:

Definition: An M-A model is minimal if mp - i.e., the number of dependent (or repeated) parameters in the A matrix -
is minimal (or zero, if possible).

b. The state-space model of the nominal plant, M(s), is an extension of Morton's result [26] and has
the following form:

k= Ax o+ [Bp B][P]

HEE N3 H

where Byp, Cgx, Dgp» Dqu. and Dy, are constant matrices. Thus, M(s) can also be written in the
equivalent shorthand notation defined as follows:

®

A B B
M) M@ 0 xp o
M(s) = r= C D D ©
My) My () * » @
21 22 c, D,, Do

where: Mjj(s) = q(s)/Ps) = Cgx (sI- Aoyl Byy + Doy
Mi2(s) = ¥ /p(s) = Cgx(SI- A1 By + Dgy D
Myi(s) = qs)/u(s) = Co(sI-Ag) !By + Dyp
Maa(s) = y(s)/u(s) = Co(sI-Ag) 1B, + D,

It should be noted that in [26] the qu matrix was required to be zero. In this paper, however, Dgp is
allowed to be nonzero in order to model the multilinear (cross-product) uncertain terms.

The results for constructing a minimal M-A model via this approach are presented in the next section.

358

5. Proposed Solution

The proposed solution will be presented in two parts: the results for obtaining a cascade-form realization of
the uncertain system will be summarized first, followed by the results for obtaining the state-space realization of a
minimal M-A model.

5.1 Cascade-Form Realization

Given the transfer function of an uncertain system in terms of its uncertain parameters, G(s,d), it is desired to
realize the system in a cascade form of first- and second-order subsystems. Thus, if the transfer function is given in
unfactored form, the numerator and denominator polynomials must be factored into first- and second-order terms. The
given transfer function will then be represented as follows:

G(s.d) = Ky(S) Gc(s.9) Gr(s.9) Ky(d) ®

where K, and Ky represent input and output gain terms, respectively, and Gg and G represent the real (first-order) and
complex (second-order) transfer function components, respectively. Then :

GR(s:3) = GR,(58) OR,_{(5.8) - GR,(:8) GR,(5:8) ©)
Ge(s:d) = Gey(s8) Gy (58 - Gy(s8) Ge, (58) (10)
GRi (5,8) = EZi—l S + EZi
S + O (11)

G, (s,9) = buzzs” +baias + by

2 . .
s + axas + ai 12)
and: k = number of real (first-order) blocks
1 = number of complex (second-order) blocks.

Any or all of these transfer function coefficients may be uncertain. The uncertainty may arise from either the
coefficient itself being uncertain, or from the coefficient being a function of one or more uncertain variables.
Therefore, for either case, any of the coefficients may be a function of 8. Furthermore, the uncertain variables may
have either an additive or multiplicative form:

e=eo+8e , e=a°(1+8£) (13)

The following cascade-form state-space realization of this system is proposed:

AR 0 Br K
u
GG) = BcCRr AC Bc LR K, (14)
| KyDcCr KyCo | ¥yBePr®a

where:

359

AR, 0 0 0
A
B, D, C B C 0 0
Rj3 R2 R1 R Ra
B, D, D Br Dp_ Cr 0 0
R, Pr_ "R, (R, Rg7R3 72 (15)
BRk DRk.2"'DR C Br, DR ..D Cr R 0
-1 27R k-1 R “RyR2 k-1
BEg DR,DR,C D, .D C, ...
| "Ry Rial 2Ry BRyURy " PR3Ry BRCRk: A R
BR,
Br D
Ry7Ry
D
BR3 RZDRI a6)
By =
R Dp D
Bry, R3 Ry Dg
B D ..D
Ryg Ry “Ralp
D
= D D C C
CR [DRk Rya DR2CR1 DRk Rk—l DRBCRZ DRk Ry Rk] a7
D = D D]
R [R,PR, ,""DR7Dg; (18)

The Ac, Be, Ce, and D¢ matrices have the exact same form as (15) - (18), except that the subscripts "R" and "k" are
replaced by "C” and "1", respectively. The submatrices are defined as follows:

Ar, = -o4 Bg, = 1
19
Cr; = B2 —oiBai1 Dr; = Bai1
0 1 0
= Be. =
Ac -a2; -a2i-1 G [1]
(20)
[(b3i- a2i b3i2) (b3j1 - azi1 b3i2)] D¢, = bsiz

The realizations { AR, BR;» CRi’ DR,) and { ACi’ B¢, Cc; De; } represent the ith real (first-order) and complex
(second-order) systems GRi(s,S) and Gci(s,S), respectively. Thus, for the real subsystems, i =1, 2, ..., k, and for the

complex subsystems,i=1,2,..,1L

360

The resulting cascade-form realization of the uncertain system is therefore given from (14) as:

- AR 0 { BrK }
A = B = u
BcCr Ac Bc DrKy ,
21
C = KyDcCr Ky Cc] D = KyDcDrKy

The above model is a general cascade-form realization for any uncertain open-loop SISO transfer function.
The model does not, however, handle nonmonic denominator polynomials with uncertain leading coefficients. This
would result in fractional (i.e., rational) matrix elements in the realization with uncertain parameters in the
denominator of these elements. For real uncertain poles or zeros, two factors determine whether the real (first-order) or
complex (second-order) block form should be used. The first is the nature of the uncertainty associated with these
terms, and the second is the form of the transfer function. If the real pole or zero locations are the uncertain parameters
and the transfer function form allows these poles or zeros to be separated out, then the real block form should be used.
If the transfer function form does not allow this separation, then the complex block form must be used. Furthermore,
if there is a pair of uncertain poles or zeros that cannot be cascaded, then the resulting minimum A matrix will have a
repeating parameter on the main diagonal for each inseparable pole or zero pair. Alternatively, if the coefficients of the
second-order polynomial associated with the real poles are the uncertain parameters, then the complex block form
should be used. These cases will be illustrated in the Examples section of this paper. The formulation of the
minimal M-A model will be presented next.

5.2 Minimal M-A Model

In formulating the minimal M-A model, the minimal A matrix must be determined first, followed by the
state-space realization of M(s). Thus, the results for formulating this model will be presented in this order.

5.2.1 Minimal 4 Matrix
The minimal A matrix is defined as in (3) with:
m = my + mpy 22)

where my is the number of independent uncertain parameters, and mp is the number of dependent uncertain parameters
that must be added. The uncertain independent parameters are those defined in G(s,5). However, as discussed
previously, the dependent uncertain parameters are those independent parameters that must be repeated due to non-
multilinear terms in the transfer function coefficients and/or pairs of uncertain real poles or zeros that cannot be
cascaded. Thus, for A to be minimal, mp (or 8p) should be minimized. It can be shown that if the system transfer
function is formed from a given minimal M-A model of an uncertain system, the coefficients of the numerator and
denominator polynomials will be multilinear functions of the uncertain parameters. Unfortunately, the converse is not
necessarily true in general because of the dependence of the M-A model on the realization used for the plant. If the
general cascade-form realization posed in this paper is used, however, the multilinear form of the transfer function
coefficients can be used to establish that m = my (i.c., mp = 0), unless there are real uncertain pairs of poles or zeros
that cannot be cascaded. Furthermore, it can be shown that if the coefficients of all the factors of the numerator and
denominator polynomials are multilinear functions, then the coefficients of the expanded polynomials will also be
multilinear. However, if there are non-multilinear uncertain terms in the transfer function, then dependent parameters
must be defined (and added to A) to represent the non-multilinear term in a multilinear form. Moreover, if the non-
multilinear term is of the form 8™, then n-1 dependent parameters must be defined. If there are pairs of real uncertain
poles or zeros that cannot be cascaded, then one additional dependent parameter must be added for each pair, and the
dependent parameter can be either of the uncertain real parameters in the pair. Therefore, the number m, as determined
by these rules, is the minimal dimension of the A matrix for the uncertainty class considered in this paper. Once this
minimal dimension is determined, the A matrix can be defined as a diagonal matrix, as in (3), with the specified
uncertain parameters on the main diagonal. Examples which illustrate these cases will be presented later in Section 6.

5.2.2 State-Space Realization of M(s)

Once the cascade-form realization has been determined, the system can be modeled as in (1) and (2), where
[AA], [AB], [AC], and [AD] are known functions of the uncertain parameters. Since any non-multilinear terms have

361

been redefined in a multilinear form when the minimal A matrix is determined, these matrices are multilinear functions
of the parameters. In order to obtain a state-space model for M(s) as defined in (5), expressions for these uncertainty
matrices must be determined in terms of the matrices Bxp, Cgx, Dgp, Dqy, and Dy, from the model. Using (4) and

(5), these expressions are determined as follows:

[AA] = Byp [AN(1-Dgp [1)1 Cgx = Byp (1-1A1Dgp) ! [A) Cyy

[AB] = By, [A1(1-Dgp (A1) Dy = By (1-18]1Dgp)1 [A]1Dg, 23)
[AC] = Dyp[A1(1-Dgp A1) Cgx = Dyp(1-181Dgp)1 [A]Cyx

[AD] = Dyp [A1(1-Dgp [A1)1Dgy = Dyp (1-[41Dgp)1 [A] Dy,

The inverse term makes computation of qu very difficult. Furthermore, the matrix inversion can cause [AA], [AB],

[AC], and [AD] to have fractional (i.e., rational) elements with uncertain parameters in the denominator, which is not
allowed in the uncertainty class being considered. Thus, it is desirable to represent this term in expanded form as
follows:

(I-[A]qu)‘l =1+ [A]Dg + ([A]qu)2 + ([A]qu)3 + ... 24

where the latter form in (23) has been assumed. Then the above equations can be rewritten as:

[AA] = By [A]Cqyx +Byp ([A1Dgp +([A1Dgp)2 +([A1Dgp)3 + ...) [A]1Cgy
[AB] = Byp [A1Dgy +Byp ([A1Dgp+([A1Dgp)? +([A1Dgp)3 + ... }[A1Dg, @25
[AC] = Dyp [A]1Cqx + Dyp ([81Dgp+([A1Dgp)? +([A1Dgp)3 + ...) [A]Cqx
[AD] = Dyp [8]Dgy + Dyp ([A1Dgp+([41Dgp)? +([A1Dgp)3 + ... } [A]1Dgy

The second group of terms add in the cross-terms of the multilinear uncertainty functions. Each term in the series adds
a higher-order cross-product term. Since [AA], [AB], [AC], and [AD] are multilinear functions with a finite number of
terms, the qu matrix can be defined to have a special nilpotent structure such that:

qur+l =0 (26)

and: (I-[A]qu)'l=I+[A]qu+([A]qu)2+... (IA1Dgp) @n
where r is the order of the highest cross-term occuring in [AA], {AB], [AC], and [AD}, i.e.:

r = max(0p,0g,0Oc,Op) (28)

where Op, O, Oc, and Op) represent the order of the highest-order cross-product term in {AA], [AB], [AC], and [AD],
respectively. Cross-product term order is defined as:

order (81 8263...8;) =i-1 (29)

wherei=1,2,..., m. Thus, the maximum value of r is ryax = m-1, where m is the dimension of the A matrix.
The required structure for qu to satisfy (26) and (27) is given as follows:

1.) di; = 0; i=1,2,...,m
2) If dij;tO. thenfor i=1,2,...,mand j=1,2,...,m: 30)
a.) dji=0;

b) dig1jo1 = 0 or digrje2 = 0 or ... or dig(m-1)j®(m-1) = O

where the symbol "@®" represents "modulo m" addition. The desired equations can therefore be written as:

362

[AA] = By, [A]Cgx +Byp ([81Dgp + ([A1Dgp)2 + ... (141Dgp)) [A1Cqx
[AB] = Byp[A)Dgy +Byp ([A1Dgp + ([41Dgp)? + ... ([A1Dgp) }[A1Dgy (D
[AC] = Dy [A]Cqx +Dyp { [A1Dgp + ([A1Dgp)2 + ... (IA1Dgp) 1 [A1Cq
[AD] = Dyp[A]1Dgy + Dyp { [A1Dgp + ([41Dgp)? + ... ([A1Dgp) }[A]Dgy

where "r" is defined in (28). Since the [AA], [AB], [AC], and [AD] matrices are known for the given system, the
equations in (31) are used to determine Byp, Cgx, Dqus Dyp, and Dgp. Once these matrices are obtained, the state-
space model of M(s) is found. Hence, a minimal M-A model has been formed.

A procedure which summarizes the necessary steps in obtaining a minimal M-A model using these results is

presented next.

6. Summary of Procedure

The following is a summary of the procedure implied by the above proposed approach for forming a minimal

M-A model of a given uncertain system:

i)

vii.)

viii.)

Obtain the system transfer function in factored form. The coefficients of each factor should be a multilinear
function of the uncertain parameters. If necessary, define new dependent parameters to represent any non-
multilinear terms in a multilinear form.

Define the number of parameters in the A matrix, m, using (22). In so doing, determine if any new parameters
are required to model inseparable uncertain real pole or zero pairs. If there are inseparable real pairs, either
uncertain parameter in the pair may be repeated.

Define the minimal A matrix as in (3), using the independent parameters defined in the given transfer function
as well as those defined in steps i.) and ii.) above.

Obtain a cascade-form realization for the system as a function of the uncertain parameters.
Express the system matrices as in (2).

Determine the maximum order of cross-product terms, r, in {AA], [AB], [AC], and [AD] as defined by (28) and
(29). Then [AA], [AB], [AC], and [AD] have the form represented in (31), where qu has the special

(nilpotent) structure summarized by (30).

Express [AA], [AB], {AC], and [AD] as:

[AA] = [AAg] + [AA]] + [AAg] + ... + [AA[]
[AB] = [AB,] + [ABq] + [ABg] + ... + [AB/] 32)
[AC] = [ACg] + [AC1] + [ACa] + ... + [AC]
[AD] = [ADg) + [ADq] + [ADg] + ... + [ADy]

where the subscript i represents the cross-terms of ith order in each uncertainty matrix.

The Byp, Cqx» Dyp, and Dgy matrices are found using the expansion described in [26] for the uncertainty
matrices having zero-order cross-product terms; i.e. define:

AA, AB,
AC, AD,

M = = M8 + M28 +--- + M 8y

(33)

where the M; matrices are appropriately partitioned. For the case of repeated parameters due to inseparable real
poles or zeros, the M matrix associated with the repeated parameter must be ponzero. These matrices can be
decomposed into the product of appropriately partitioned column and row matrices as follows:

363

Mp;
Mi = | e | Mo, Mo,
Dui 34
where MBi forms the ith column of Bxp’ MDli forms the ith column of Dyp’ MCi forms the ith column of

Cqx» and Mp,,. forms the ith column of Dqu- Thus:

Byp = [Ms Mg, - MBm]

Dy, = [Mpy, Mp, --- Mp,] (35)
T

quT = [MC1T MCZT M%]
T

D' = [Mp,T Mp,T Mps,]

ix.) Use the higher-order cross-terms of [AA], [AB], [AC], and [AD], as in (32), to determine the elements of the
qu matrix. Begin with the first-order terms and specify as many elements as possible. Continue with the

second-order terms, and proceed until all elements of qu are specified. Check qu to ensure that the required
special structure of (30) and, hence, (26) is satisfied.

x.) Form the minimal M-A model as given in (3), (5) and (6), and as pictured in Figure 1.

It should be noted that the matrices MBi’ Mci’ MD“, and MD2i’ obtained in decomposing the M; matrices
in (34), are not necessarily unique. A method of formalizing this decomposition for computer implementation will

not be addressed in this paper. However, an algorithm is presented in [35] which accomplishes this decomposition for
a more restrictive uncertainty class. Some examples will be given next to illustrate these results.
7. Examples

The following examples illustrate the proposed procedure presented above. Due to space limitations, details

of each step will not be included. However, the results that are presented for each example should be fairly easily
obtained.

Example 7.1

Consider the following uncertain system:

G(,8) = (B1s +B2)Bas+Pa)bis? + bys + by)

(s +oy)(s + a)(s2 + a; s +ap)

where: o) = a10+8al , 09 = a2°+8a2 , a1 = a10+831 , 4 = 3204.532
Br =B1,+8p, . B2 =Bp +8p, . B3 =PB3 +8s, . By =Py +3p,
by = b10+8b1 , by = b20+5b2 , by = b30+5b3

The cascade-form realization of this example is found in a straight-forward manner to be:

-y 0 0 0 B,
A = P2-a1fy -02 0 0 B =
0 0 0 1 0
B3(B2-c1B1) Bs-a2B3 -a -ay B1B3

364

C = [byB3B2-ouP1) byBa-c2B3) (bz-azbp) (bz-ajby)] D = [B1Psb1]

This system has eleven independent uncertain parameters. There are no non-multilinear terms in the transfer function
coefficients, and there are no inseparable uncertain real pole or zero pairs. Thus, m = 11 and the minimal A matrix is
defined as:

A = diag[8y, 8p, 8ay: Bay 34 B8, muw, 884 S+ Oby mcw]
For this example, uncertainty arises in the A, B, C, and D matrices. The AA, AB, AC, and AD matrices are

fairly complicated for this example, and the order of the highest cross-product term is three, i.e. r = 3. Following the
procedure outlined in Section 6, the results are determined to be:

1 0 0 0 0 0 0 0 0 0 0
Bo=| Po 1 0 0 1 1 0 0 0 0 0
P 0 6o 0 0 0O 0 O 0 o0 o0 o
BioBso B 1 1 B P30 1 1 0 0 0
Dyp = ﬁc_om_o?o biofi3c bio bio biofse biofise bio bie 1 1 :
1 0 0 0 -am 1 FOD o Bulbwada o,
Cef=| 0 1 0 0 0 0 20 1 Beof) o o
0 0 0 -1 0 0 0 0 -2, 0 1
0 0 1 0 0 0 0 0 -a10 1 0
D’ = [000 0 1 0 Bio 0 BioPso 0 O]
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
Ue =
Bio 1 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
BioPo B0 1 1 B B 1 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Equations (5) and (6) can now be used to obtain the state-space model of M(s).

365

©C OO0 © ©O © © O O ©

(=

Ex 1

This example illustrates the case of an inseparable uncertain real pole pair. Consider the following system:

G(s,5) = b;s2 + bys + bs
(s+ 061G +02)

where: b; = b10+8b1 , by = b20+8b2 . b3 = b3o+5b3
0; = 910+591 , 0 = 920+892
Since the numerator is second order with uncertain coefficients, the uncertain real poles in the denominator cannot be

separated into the real cascade form. The denominator must therefore be expanded, and the complex (second-order)
block used in the realization, which is given as follows:

S RN B
-0,6; (8 +6y) 1

C=[(b3-0:00b)) (b2- ©,+62)by) | » D = [b{]

Since there is one inseparable uncertain pair of poles, either 891 or 892 must be repeated in the A matrix. (It can be

shown that if this is not done, qu will not have the required structure and hence the higher-order cross-product terms

will not be modeled correctly.) Since there are no non-multilinear terms in any of the transfer function coefficients,
m = 6 (i.e., five given independent uncertain parameters plus one dependent parameter for the inseparable pole pair).
The resulting A matrix can therefore be defined as follows:

A = diag [8g,, 89, 80, 8+ Sb,- 5b3]
where 891 was arbitrarily chosen to be repeated. Using the proposed procedure, the following results are obtained:
By =[0 0900 01, Dy = [bio bio bro -1 1 1]

-1-1-1 000
i e20 0 i
0 1 0]
0
0 1
qu = lo » un = _(1)
910920 (910+920) 0
0 1 L 0 J
1
[0 0 0 0 0 0 i
0 0 0 0 0 0
Do = 1/620 0 0 0 0 0
P 1 1 1 0 0 0
0 0 0 0 0 0
L 0 0 0 0 0 0 J

366

Ex 1

This example illustrates the case of non-multilinear terms in the transfer function. Consider the second-order
uncertain system:

G(s,5) = 1
s + 20s + 0? , where: °=Go+80 , m=mo+8m

This is a second-order system with uncertain complex poles. The uncertainty appears in the real and imaginary
components of the complex poles. The constant coefficient, ®2, is not a multilinear function of the uncertain

parameters. Substituting for ¢ and @ in the above transfer function yields the following equation:
2y =y - cw 2y - . 2
§%y = u 2oosy O 2SGsy (2m08m+8m)y
In forming an M-A model, the problematic term is 8(02 because it is not multilinear. In order to represent this
equation in multilinear form, the following dependent variable is defined:

83 = 8(0
. 2y~ u - s 2y - .
so that: s¢y = u 2cosy .Y 250 sy (2m08m+ 8m83)y
Then the following equations can be defined:
9 = -2sy Py =59
Q=7 Py = 8,9
93 = -20,Y + Py Py = 334,
) 2y =y - - 2
Thus: s°y = u 20'o sy (oo y+ P +Py

The realization of M(s) for the resulting M-A model can be depicted as follows:

M A R IR HE

'(0(2) '200 pP3
q1 0 -2 X1 000} (P2
Q2| = -1 0 [XZ] + 1000|(P2
a3 20, 0 010JLP3

y = [101[}]

X2

The A matrix is given by A = diag | 80_ , 8(0 . 83 1, where 83 = 60)'

These examples illustrate the proposed procedure for forming a minimal M-A model of an uncertain system.
Although all the steps involved in obtaining these results have not been included, the stated results should provide a
guide in performing the steps of the proposed procedure. It should be noted that, for ease of hand computation, the
examples included only the simplistic (and less realistic) case in which the coefficients themselves are the uncertain
parameters. However, it is emphasized that the proposed procedure does handle the more realistic case in which the
uncertain transfer function coefficients are multilinear functions of the uncertain parameters.

367

8. Concluding Remarks

This paper has presented a proposed procedure for forming a minimal M-A model of an uncertain system
given its transfer function in terms of the uncertain parameters. The uncertainty class considered in this paper allows
the transfer function coefficients to be multilinear functions of the uncertain parameters, and the uncertainties may arise
in the A, B, C, and D matrices of the system model. The proposed procedure involves realizing the system in a
cascade form, determining the minimal A matrix of uncertain parameters, and obtaining a state-space model for the
nominal system, M(s). Three examples were given to illustrate the proposed procedure. The first example had eleven
independent uncertain parameters, which arose in the A, B, C, and D matrices of the system realization. The second
example had uncertain parameters arising in the A, C, and D matrices only. This example illustrated the formulation
of a minimal M-A model for a system with inseparable real uncertain poles, and involved repeating an uncertain
parameter in the A matrix. The last example had uncertainty in the A matrix only, and illustrated a method for
handling non-multilinear terms.

Further work on the proposed procedure will be to include systems having a nonmonic characteristic
polynomial with an uncertain leading coefficient, as well as systems having an inner feedback loop which may or may
not have uncertainties. The latter case may require a modification in the formulation of the cascade realization.
Although the procedure presented in this paper is for SISO systems, an extension to MIMO systems will be
forthcoming, and should primarily involve modifying the cascade-form realization. Other areas of future work include
development of a simple means of verifying the minimality of a given M-A model, and development of a method of
reducing a nonminimal M-A model to a minimal form.,

REFERENCE LIST

[1.] J. C. Doyle and G. Stein, "Multivariable Feedback Design: Concepts for a Classical/Modern
Synthesis”, IEEE Trans. on Aut. Contr., Vol. AC-26, pp.4-16, Feb. 1981.

[2.] M. J. Chen and C. A. Desoer, "Necessary and Sufficient Condition for Robust Stability of Linear
Distributed Feedback Systems”, Int. J. Control,Vol. 35, No. 2, pp. 255-267, 1982.

[3] N. A, Lehtomaki, N. R. Sandell, and M. Athans, "Robustness Results in Linear-Quadratic-Gaussian Based
Multivariable Control Design", IEEE Trans. on Aut. Contr., Vol. AC-26, pp. 75-92, Feb. 1981.

[4.] N. A. Lehtomaki, D. A. Castanon, B.C. Levy, G. Stein, N. R. Sandell Jr., and M. Athans,
"Robustness and Modeling Error Characterization", IEEE Trans. on Aut. Contr., Vol. AC-29, No. 3,
March 1984.

is.] 1. Postelthwaite, J. M. Edmunds, and A. G. J. MacFarlane, "Principal Gains and Principal Phases In The
Analysis of Linear Multivariable Feedback Systems", IEEE Trans. on Aut. Contr., Vol. AC-26, pp. 32-46,
1981.

[6.] M. G. Safonov, A. J. Laub, and G. L. Hartmann, "Feedback Properties of Multivariable Systems: The Role
and Use of the Return Difference Matrix”, IEEE Trans. on Aut. Contr., Vol. AC-26, pp. 47-65, 1981.

[7.] J. B. Cruz, J. S. Freudenberg, and D. P. Looze, "A Relationship Between Sensitivity and Stability of
Multivariable Feedback Systems”, IEEE Trans. on Aut. Contr., Vol. AC-26, pp. 66-74, 1981.

8.1 J. C. Doyle, "Robustness of Multiloop Linear Feedback Systems”, 17th IEEE Conf, on Decision and
Control, San Diego, USA, Jan. 1979.

[9.] J. 8. Freudenberg, D. P. Looze, and J. B. Cruz, "Robustness Analysis Using Singular Value Sensitivities",
Int. J. Control, Vol. 35, pp. 95-116, 1982,

[10.] B. A. Francis, J. W. Helton, and G. Zames, "H*°- Optimal Feedback Controllers for Linear Multivariable
Systems", IEEE Trans. on Aut. Contr., Vol. AC-29, pp. 888-900, Oct. 1984. '

[11] B.-C.Chang and J. B. Pearson, "Optimal Disturbance Reduction in Linear Multivariable Systems”, IEEE
Trans. on Aut. Contr., Vol. AC-29, pp. 880-887, Oct. 1984,

{12] B.-C.Chang, "A Stable State-Space Realization in the Formulation of H*> Norm Computation”, IEEE
Trans. Aut. Contr., Vol. AC-32, pp. 811-815, Sept. 1987.

[13.] B.-C.Chang, S. S. Banda, and T. E. McQuade, "Fast lierative Computation of Optimal Two-Block H*-
Norm", IEEE Trans. on Aut. Contr., Vol. AC-34, pp. 738-743, July 1989.

[14] B.-C.Chang, "Size Reduction in Four-Block H* Formulation", Proceedings of 26th IEEE Conf. on
Decision and Control, Dec. 1987.

[15] 1. C. Doyle, K. Glover, P. Khargonekar, and B. A. Francis, "State-Space Solutions to Standard H9 and H,,,
Control Problems”, 1988 American Control Conference, Atlanta, GA, June 1988.

{160 M. G. Safonov and J. Doyle, "Minimizing Conservativeness of Robustness Singular Values”, in
S. G. Tzefestas (ed.), Multivariable Control, D. Reidel Publishing Company, 1984,

368

[17.] . Doyle, "Analysis of Feedback Systems with Structured Uncertainties”, IEE Proc. Part D, Vol. 129, No.
6, pp. 242-250, 1982.

(18.] J. C.Doyle, J. E. Wall, and G. Stein, "Performance and Robustness Analysis with Structured Uncertainty”,
Proceedings of the 21st IEEE Conference on Decision and Control, 1982,

[19.1 J. Doyle, "Synthesis of Robust Controllers and Filters”, Proc. of 22nd IEEE Conf. on Decision and
Control, Dec. 1983.

{20.) J. Doyle, "Structured Uncertainty in Control System Design", Proc. of the 24th IEEE Conf. on Decision
and Control, Dec. 1985.

(21.] J. Doyle, Lecture Notes, ONR/Honeywell Workshop on Advances in Multivariable Control, Minneapolis,
MN, Oct. 1984.

22] M. G. Safonov, "Optimal H* Synthesis of Robust Controllers For Systems with Structured Uncertainty",
Proc. of 25th IEEE Conf. on Decision and Control, pp. 1822-1825, Dec. 1986.

(23] J. C. Doyle, "A Review of u For Case Studies in Robust Control", IFAC 10th Triennial World Congress,
Munich, FRG, 1987. .

(24] M.K. H.Fanand A. L. Tits, "Characterization and Efficient Computation of the Structured Singular
Value", IEEE Trans. Aut. Contr.,, Vol. AC-31, pp. 734-743, Aug. 1986.

[25] M.K.H.Fanand A. L. Tits, "m-Form Numerical Range and the Computation of the Structured Singular
Value”, IEEE Trans. Aut. Contr., Vol. AC-33, pp. 284-289, 1988.

[26.] B. G. Morton and R. M. McAfoos, "A Mu-Test for Real Parameter Variations", Proc. of the1985
American Control Conference.

[27.] R.D.Jones, "Structured Singular Value Analysis for Real Parameter Variations”, 1987 AIAA Conference on
Guidance and Control.

[28] M.G. Safonov, "Stability Margins of Diagonally Perturbed Multivariable Feedback Systems", Proc. of the
20th IEEE Conf. on Decision and Control, Dec. 1981.

(291 R.E.De Gaston and M. G. Safonov, "Exact Calculation of the Multiloop Stability Margin", IEEE Trans.
on Aut. Contr.,, Vol. AC-33, pp. 156-171, 1988. .

[30] R.S.S.Penaand A. Sideris, "A General Program to Compute the Multivariable Stability Margin for
Systems with Parametric Uncertainty”, Proc. of the 1988 American Control Conference.

(310 A. Sideris and R. S. S. Pena, "Fast Computation of the Multivariable Stability Margin for Real Interrelated
Uncertain Parameters”, Proc. of the 1988 American Control Conference.

[32.] B.-C. Chang, O. Ekdal, H. H. Yeh, and S. S. Banda, "Computation of the Real Structured Singular Value
via Polytopic Polynomials”, Proc. of the 1989 AIAA Guidance, Navigation and Control Conference.

(33] H.Bouguerra, B.-C. Chang, H. H. Yeh, and S. Banda, "A Fast Algorithm for Checking the Stability of
Convex Combinations of Stable Polynomials”, Technical Report, Dept. of Mechanical Engineering, Drexel
University, Jan. 1989.

(34] G. A. Hewer, C. Kenney, and R. Klabunde, "A State Space Model of Structured Singular Values", Proc. of
the 27th IEEE Conf. on Decision and Control, Dec. 1988.

(350 M. K. Manning and S. S. Banda, "Algorithm to Obtain M-A Form for Robust Control", Proc. of IEEE
Conf. on Systems Engineering, Aug. 24-26, 1989, Dayton, Ohio.

369

N90-23029

Space Station Dynamics, Attitude Control
and Momentum Management

John W. Sunkel
NASA-Johnson Space Center
Ramen P. Singh and Ravi Vengopal
Dynacs Engineering Co.

Abstract

The Space Station Attitude Control System software test-bed provides a
rigorous environment for the design, development and functional
verification of GN & C algorithms and software. All Space Station systems
and sub-systems that are controlled or monitored by the GN & C software
are simulated. The simulation presents a major computational challenge,
starting from the simulation of full nonlinear flexible body dynamics
including the orbital environment and Mobile Servicing System (MSS)
operations, to task scheduling, sensor dynamics and inter-module
communication. In addition, the complex tasks of providing flight algorithm
sequencing and control and input command validation needs to be
addressed.

This paper describes the approach taken for the simulation of the
vehicle dynamics and environmental models using a computationally
efficient algorithm. The simulation includes capabilities for
docking/berthing dynamics, prescribed motion dynamics associated with
the Mobile Remote Manipulator System (MRMS) and microgravity
disturbances. The vehicle dynamics module interfaces with the test-bed
through the centroal Com municator facility which is in turn driven by the
Station Control Simulator (SCS) Executive. The Communicator addresses
issues such as the interface between the discrete flight software and the
continuous vehicle dynamics, and multi-programming aspects such as the
complex flow of control in real-time programs. Combined with the flight
software and redundancy mdnagement modules, the facility provides a
flexible, user-oriented simulation platform.

370

N90-23030

Approximate Minimum-Time Trajectories
for 2-link Flexible Manipulators

G.R. Eisler, D.J. Segalman, R.D. Robinett!
Sandia National Laboratories, Albuquerque, New Mezico

Abstract

Powell’s nonlinear programming code, VF02AD, has been used to generate approximate
minimum-time tip trajectories for 2-link semi-rigid and flexible manipulator movements in the
horizontal plane. The manipulator is modeled with an efficient finite-element scheme for an n-link,
m-joint system with horizontal-plane bending only. Constraints on the trajectory include bound-
ary conditions on position and energy for a rest-to-rest maneuver, straight-line tracking between
boundary positions, and motor torque limits. Trajectory comparisons utilize a change in the link
stiffness, E1, to transition from the semi-rigid to flexible case. Results show the level of compliance
necessary to excite significant modal behavior. Quiescence of the final configuration is examined
with the finite-element model.

Introduction

Trajectory planning is essential in budgeting a manipulator’s actuator efforts to maximize
productivity. For repetitive tasks, the minimum-time maneuver goes hand-in-hand with this goal.
A variety of approaches have been advanced for rigid manipulator control, taking advantage of the
fact that all or some of the controls take the form of switching functions between actuator bounds.
Bobrow [1] used an intuitive approach to generate optimal switching controls, as well as proving
the boundedness of the controls. Weinreb and Meier [2][3] used calculus of variations approaches
to incorporate control bounds in the problem formulation. In a second study, Bobrow [4] used
numerical optimization to generate spline fits to the switching controls.

Switching functions do not lend themselves to maintaining tip accuracy for non-rigid struc-
tures. One would hope that the applied controls do take advantage of the bounds to maximize
performance, but a clear analytical directive for this does not exist at the present.

In filling this void, parameter optimization techniques can provide approximate optimal perfor-
mance solutions for systems driven by complex, highly nonlinear dynamic models with arbitrary
equality or inequality constraints. Of these solution techniques, Powell’s Recursive Quadratic Pro-
gramming algorithm (5], embodied in the code VF02AD, has proven to be a robust tool for a variety
of aerospace applications [6][7](8], and will be used in this study. The primary drawback to this or
other numerical optimization methods is the dependancy on accurate gradient approximations of
the performance index and constraints with respect to the parameters.

The ensuing discussion initially describes the structural dynamics model of the manipulator,
followed by the optimal control problem and parameterization of the controls, and ends with the
results of a computational experiment.

The manipulator structure modeled in this study, and presently under fabrication, is a 2-link
cantilever arrangement constrained to slew in the horizontal plane. Tall, thin links are used to

tMembers of the Technical Staff, Engineering Analysis Department

3N

minimize vertical plane droop. The hub or joint-1 actuator slews both links, an interlink motor,
and tip payload. The interlink or joint-2 actuator located at the end of link-1 slews the second
link and the tip payload. The joint-1/joint-2 actuator torque ratio is about 4/1. The complete
manipulator is about 0.5 meters (m) tall and 1.2m long.

The Structural Model

There is a long literature discussing the difficulties of simulating the vibrations of rotating
structures(9] [10] [11]. The problem seems to arise from kinematics that are of second order impor-
tance in nonrotating problems, but become of first order importance in the presence of rotational
accelerations. Additonally, there are constraints inherent to the fAexible link problem which must
be satisfied: motions occur entirely in a horizontal plane; one end of the chain of links is attached
to a stationary hub; and each flexible link is inextensible. These considerations motivate the de-
velopment of a mathematical model that faithfully carries the full kinematics of the problem. It is
also necessary to devise such a model in a form that will lend itself to real-time calculations.

The need to meet these apparently conflicting demands motivated the development of a model
specialized to flexible, multilink structures. That apparently successful strategy is outlined below.
The full kinematics are retained by expressing the configuration as functions of convected coordi-
nates. This is a traditional approach in nonlinear elasticitity [12]. Further, the kinematic variables
are selected so that all geometric constraints (fixed hub, planar motion, and non-extension) are
automatically satisfied.

Since motions are assumed to occur entirely in a plane, it is also assumed that the elastic lines
of the links as well as the mass centers of the cross sections all lie in the same plane. Each cross
section is identified by its arc-length distance from the hub, so that the orientation of the center of
the cross section s at time ¢ is

B(s,) = cos(8(s,)i + sin(6(s, t))]

The location of the center of cross section s at time ¢ is obtained by integration of the above unit
tangent vector:

Z(s,t) = /;. B(s', t)ds'

Similarly, the velocity at the cross section s at time t is obtained by integration of the time derivative
of B(s,t):
» ‘ »
F(s,t) = / 6(s', t)7(o', t)ds"
0

where .
F(s,t) = —sin(0(s,t))i + cos(8(s, t))j

The above description of configuration - entirely in terms of (s, t) - causes all of the geometrical
constraints to be satisfied automatically. Additionally, the above description expresses the configu-
ration in terms of one unknown field (8), instead of the more conventional two or three fields (z,y,
& 0).

The governing equations of the dynamics are derived using those kinematics and a frame-
invariant variational method - Hamilton’s principle. A finite element discretization is used to cast
the resulting integro-differential equations for 0(s,t) and its first and second derivatives into a sys-
tem of fully-coupled, nonlinear algebraic equations. Particularly important for the application at
hand is the observation that since all spatial integrals are with respect to the convected coordinate,
8, those integrals are configuration-independent and need be done only once. The nonlinearities

372

remain, and a new nonlinear system must be solved at each time step, but the time consum-
ing quadrature process can be done in advance of the dynamics simulation. These features are
illuminated below through derivation.

Hamilton’s principle is that

5 / " (KE(¢) — SE(¥) + WE(#)] dt' = 0 (1)

where KFE is kinetic energy, SE is strain energy, and WE is external work. Quantities associated
with the end times, ¢; and t; have to do with initial and final conditions and the conservation
of momenta, but the governing equations necessary to model motion of the flexible structure are
obtained by consideration of the integrand alone:

SKE(t) — §SE(t) + WE(t) = 0 (2)

for all ty <t <t,.
The kinetic energy is that of the flexible links plus that of all concentrated masses and concen-
trated moments of inertia:

masses inertias

KE(:):lf o(3)(s,t) - (s, t)d3+1 E My 3(sx,t) - z(sk,t)+% S Lib(si,t) - 6(s,t)

=1

The strain energy is that of the flexible links:

SE(t) = % jo “xs) 2 é‘:’t) .9 ;:’ Dy,

Discretization of the above energy terms is obtained by discretizing the tangent vector ﬁ as:

nodes

Bls,t) = Z Bu(t)pa(s)

where the shape functions, p,,, have support over intervals that are small relative to the anticipated
radii of curvature. The above condition on the support of the basis functions is necessary to assure
compliance with the condition of nonextension. The resulting energies are:

nodeunodu
KE Z Z 0 (t)0 (t)¥m(2) - *Tn(t)Mmn (3)
m_.l n=1
and .
SE(t)— Y D Bm(t) Bult) Kmpn (4)
m_l n=1
where
M= [L8 am(3) aa(s + S Migm(on)an(on) £ S Tudxc(lym)xc(lym)
k=1 =1
in(0) = [[pnld)ds s Kma= [(o) pie)Phla)ds

8k is the Kronecker delta function, 3 is a dummy variable, and Pin,» are spatial derivatives.

373

After appropriate integration by parts, the integrand of equation 2 becomes:

nodes -
Z 607"(__‘?"1(”) ﬂ-'n(t)M‘m,n - 7m(t) * ﬁn(t)Km,n + ;fm(t) . ?n(t)él((m, ﬂ)) =0 (5)

n=1

for all nodes m. In the above equation, 7, is the external torque applied at node n. After ﬁn(t) is
expanded:

Ba(t) = Ba(t)Tn(t) + (8a(t))*Bn(t)
and Equation 5 is invoked for all §8,,, a complete set of nodes second order equations in the nodes
unknowns, @,,, results as follows:

nodes
S Fmlt) - Fn(8)(t) Mo — T (£) - Brn(£)(0n())* Minn + Fin(t) - Bru(t) Kmin = Fom(t) - Fm(t) (6)

n=1

The above problem formulation, involving only one unknown field, automatically satisfying all
constraints, and requiring only one evaluation of element mass and stiffness matrices, lends itself
to rapid numerical calculation. A computer code to generate and solve the above described system
of equations for each time step has been written, tested and used by VF02AD. Both the derivation
and code mentioned above are described more fully in Ref. {13].

One particularly interesting calculation, discussed in the literature as being difficult to solve, is
that of a beam accelerated around a hub to an angular frequency above the first bending frequency
of the beam. This is a particularly stringent test of flexible-dynamics codes, testing numerical
robustness, as well as the correctness of the physics. Figure 1 shows the motion of the tip of such a
flexible beam relative to the tip of a rigid beam rotating at the hub velocity. Initially, the flexible
beam lags its rigid counterpart; it then overtakes and oscillates about the rigid beam. These results
are in near exact agreement with the results presented in [9], obtained from a much more complex
model.

Optimal Trajectory Shaping

The principle goal in this study is to combine the physics of the structure with optimiza-
tion techniques to generate actuator torque histories for accomplishing a useful task with minimal
degradation in performance. A secondary objective is to shortcut the work of an eventual feedback
controller, which will be needed to compensate for modeling errors.

Looking towards maximizing productivity in some repetitive task, a minimum-time tip tra-
jectory was chosen for investigation. Constraints on such a trajectory include: completing a
rest-to-rest maneuver, tracking a specified path (z(t), y(t))eip, slewing between specified endpoints
[(2(to), ¥(to))s (2(ts), y(ts))]eip, and not exceeding actuator torque limits 71,3 .

The configuration initially starts at rest. Driving a flexible structure to rest at the final time,
t;, necessitates end constraints on both kinetic and potential or strain energies (KE(tys), SE(ty)).
The chosen path is a straight line and actuator torques limits are constants. The problem can be

374

restated as
minimize: J =1

- finite element model
subject to: - input actuator torques, Ty 2(t)
- known initial conditions
constrained by:

Zeip(ty) — Topecified(ty)
Yeip(t1) — Yepecified(ls)
Cjlty) Jot (Weip(@eip(t)) — Ytine (zeip(t))] dt
= KE(tf)

SE(tf)
o (1T (8)] = [T1pmaa])elt
. bime L ()] - gt -

Note that the equality tracking constraint, C3, and inequality torque constraints, Cs, C7, are for-
mulated as integrals. In addition, equality constraints on energy are point constraints. Both of
these items will have profound effects on the example trajectories to be generated.

I
=)

IANIA N

Parameterization of the Controls

To approximate optimum system performance from the aforementioned structural model, a
suitable parameterization of the controls, 71 3(t), is necessary. The choice of “parameterizable ”
torque functions is essentially limitless. For this study, the simplest case of using tabular values of
torque, T;, as parameters at equal-spaced fixed times, {;, for both joints was chosen, or

Tl(ti),‘rg(tg), i=1,n 0<t; <ty,

which results in 2n control parameters.

However, since the final time is changing due to minimization, the loss of control history def-
inition would result if the times at which the control parameters are defined remain fixed in an
absolute sense. To correct this, 71,3 were specified at equally-spaced, nondimensional node points,
(i = t;/ty, where

Tl((i)a'rZ(Ci)v t=1,n 0<¢G <1,

This allows the torque histories to “stretch” naturally over the trajectory length. Using this mod-
ification, it is necessary to add t; as a parameter also, resulting in 2n + 1 control parameters to be
found.

Numerical derivatives of the performance index, 7, and the constraints, C;j(t;), provided to
VF02AD are central finite-difference approximations. To generate derivatives with respect to a
torque parameter, 71,3, = 71,2(%:), the parameter is perturbed equidistant about its nominal value,
and complete trajectories (or integrations of the structural equations) are computed to the current
nominal ¢ to produce perturbed C;(ty) values. Since derivatives are computed over the current
fized t;, the derivatives, 8t;/81y 5, = 0, and only the derivatives, 8C;(t;)/d71,3, # 0. Naturally
both &g, C;(ts) gradients with respect to tg, evaluated over the current nominal torque histories,
are nonzero, (where 3t;/3t; = 1.).

Results

The following finite-element structural model was used for the manipulator to produce the

375

sample trajectories.

ITEM COMPOSITION | LENGTH | MASS | STIFFNESS, EI
(m) (kg) (newton-m?)
joint-1 bracket 1 element .0635 .545 10°
link-1 3 elements .5040 .640 102,103
1st joint-2 bracket + | 1 element + .1070 | 5.415 108
joint-2 1 point mass
2nd joint-2 bracket | 1 element .1040 .830 105
link 2 3 elements .4890 .313 102,103
Totals: 9 elements 1.2675 | 7.743

The two values of stiffness, EI, for links 1,2 represent the trajectory comparison for this study.
The brackets, modeled with a stiffness of 105, are considered rigid. Point moments of inertia were
used to define mass distribution for the brackets. No payload was used in this comparison. The
joints were assumed to have no compliance or damping.

The two trajectories, computed on a CRAY-XMP, were integrated for 100 time steps, where
At = .01t;. Trajectory evaluations for gradient computations executed in 0.75 secs. The torque
histories for each joint were composed of 21 tabular values, where A{ = .05. Torque bounds were
chosen as £16, +4 newton-m (n-m) for joints 1 and 2. The path to be tracked for this study was
the line connecting (z,y) pairs, (0.0,1.13) and (1.13,0.0). A composite of the slew motion for the
“flexible” case (EIjink, = 100 newtons-m?) is given in Fig.2. The parameterized torque histories
that created this slew represent 100 iterations of VF02AD after initialization with the parameter
solution values from the “semi-rigid” case (EIj;nk, = 1000 n-m?). The tip path traced is reasonably
straight, but does contain soine small ripples - a result of the integral statement of the tracking
constraint, Cs(ty).

Figure 3 graphically depicts the difference between the semi-rigid and flexible links. Shown
is the angular velocity of the finite-element node adjacent to joint 1. The frequency of vibration
for Elj;ne, = 100 is about 19 hz. From examination of Fast Fourier transforms (FFTs) of the
finite-element output of the system disturbed about the initial, midtime, and final positions, this
appears to be one of the lower modes. Note the low angular velocity of the semi-rigid system after
t/ty = 0.9, implying that a significant amount of time is being expended in order to bring the
system to “rest”. This phenomena is definitely at odds with purely rigid system behavior. The
KE(ts) = 0 constraint imposes a zero final angular velocity in both cases. Also, note that ¢t; for the
flexible case is slightly greater than the serni-rigid one. This demonstrates the approximate nature
of the solutions, insofar as the semi-rigid solution not converging as well.

Fig.4 shows the m; profiles. These still retain some of the boundedness qualities of purely rigid
configurations. However, they begin and end near zero instead of the bounds (+16 n-m), and the
transition between bounds is comparitively gradual. The oscillatory behavior in the Eljne, = 100
torque is probably counteracting the excitement of the lowest structural modes, which would have
the greatest impact on the position constraints. Note the abruptness of the controls near the end
in an attempt to quiet the structure. The 73 torques in Fig.5 show minimal activity for most of
the trajectory, except close to the end in order to accomplish the rest state. Note that this closing
maneuver starts sooner with the more flexible link structure.

The straight-line tracking error in millimeters (mm) is shown in Fig.6. Both torque histories
appear to limit the error to 5 mm except near the end of the Elj;., = 1000 trajectory, where
the error momentarily “escapes” before returning to zero to satisfy the end position constraints,
(C1(ty), Ca(ty)). One drawback to the integral formulation is that it can relax tracking performance
in isolated parts of the trajectory, yet yield a reasonably low residual (= 0) for C3(ts). It may be

376

necessary to add interior point constraints to significantly decrease this error. A less complex
alternative is to reduce the EIj;., more gradually between solutions, in the fashion of a homotopy
scheme, until the desired value is reached.

The kinetic energy of the flexible structure at peak rates (t/t; = 0.45) is, not surprisingly,
higher than the semi-rigid one as shown in Fig.7. It is interesting that KE appears to be devoid of
oscillatory behavior in both cases. Note again, the rest phase of the trajectories above t/t; = 0.9.
Strain energy is shown in Fig.8. This again displays the contrast first seen in Fig.3. The semi-rigid
structure produces relatively little strain, while the flexible-link configuration again contains the
19 hz mode with a sizable increase in energy magnitude. Note the peaks in both cases, mirroring
the sharp 73 changes in Fig.4. Also, note the enforcement of the SE(t;) = 0 point constraint at the
end. The SE “floor” in both cases corresponds to the KE peaks in Fig.7.

The finite-element model was also able to examine the quiescence of the final state. At ¢y, joint
node accelerations can be zeroed and joint node positions fixed at their nominal final values. The
corresponding torques applied to maintain these values can then be computed. Fig.9 shows the
residual 7, being applied after the approximate optimal t; = 1.505 secs for Elj;,,, = 100 has been
reached. The oscillations in this residual appear to contain frequencies in the vicinity of 2.5 and 35
hz. The lower appears to correspond to a fixed-free mode of the first link with the remainder of the
system mass concentrated at the end. This mode was not seen during the optimized part of this
trajectory. The second frequency may be a higher harmonic of the mode seen earlier, or possibly
a numerical artifact. The small magnitude of this residual coupled with the spacing of the modes
may be ideal targets for attack by a linear feedback control scheme. As an open-loop alternative,
augmenting the tabular torque controls with frequency-based, parameterized functionals may be
sufficient to suppress these oscillations.

Conclusions

A robust, parameter optimization tool has been able to generate actuator torque histories
for approximate, minimum-time slewing maneuvers containing a variety of continuous and point
constraints for a 2-link flexible manipulator. The parameters, or actuator torques, for each link
were tabular values at fixed node points during the maneuver. Perturbations were made to each
parameter to approximate final time and constraint gradients. The efficient formulation of the
finite-element model made the numerical optimization procedure a realistic endeavor.

The accuracy of the straight-line tip tracking was good. Additional interior constraints and/or
a more gradual change in the stiffness should yield further improvements. For the trajectory used
in this study, joint-1 applied most of the input, which included cancelling lower-mode vibrations
for the structural as a whole. Energy constraints were effective in bringing the structure to rest at
ty. It was also demonstrated that final energy constraints do not preclude vibrations during the
slew. The intended production use of the manipulator will dictate whether this is a hindrance or
not. Finally, the secondary goal of providing enough vibration control to maximize the success of
a linear feedback controller in treating residual oscillations appears feasible.

References

(1] J.E. Bobrow, S. Dubowksy and J.S. Gibson, “Time-Optimal Control of Robotic Manipulators
along Specified Paths”, Int. J. Robotics Res., Vol 4.,n0.3, Fall 1985.

[2] Weinreb, A., Bryson, A.E., “Optimal Control of Systems with Hard Control Bounds”, IEEE
Transactions on Automatic Control, Vol.AC-30, No.11, Nov. 1985, pp.1135-1138.

377

[3] E.B. Meier and A.E. Bryson, “An efficient algorithm for time-optimal control of a two-link
manipulator,”, in AIAA conference on Guidance, Navigation, and Control, Monterey, CA, Aug
1987, pp 204-212.

[4] Bobrow, J.E., “Optimal Robot Path Planning Using the Minimum-Time Criterion”, IEEE J.
Robotics and Automation, Vol.4, No.4, August 1988.

[5] Powell, M.J.D., “A Fast Algorithm for Nonlinearly Constrained Optimization Calculations”,
Proceedings of the Biennnial Conference on Numerical Analysis, Springer- Verlag, Berlin, 1978,
pp.144-157.

(6] Eisler, G.R., Hull, D.G., “Maximum Terminal Velocity Turns at Nearly Constant Altitude”,
Journal of Guidance, Control, and Dynamics, Vol.11, No.2, March-April 1988, pp.131-136.

[7] Outka, D.E., “Parameter Optimization Capability in the Trajectory Code PMAST”, SANDS86-
2917, Sandia National Laboratories, Albuquerque, 1987.

[8] Robinett, R.D., “A Unified Approach to Vehicle Design, Control, and Flight Path Optimiza-
tion”, The Center for Strategic Technology, Texas A&M University, S587-1, 1987.

[9] J. C. Simo and L. Vu-Quoc ‘The role of non-linear theories in transient dynamic analysis of
flexible structures’, Journal of Sound and Vibration, Vol. 119, 1987, pp 487-508.

[10] T. R. Kane, R. R. Ryan, and A. K. Banerjee, ‘Dynamics of a cantilever beam attached to a
moving base’, Journal of Guidance, Control and Dynamics, Vol. 10, 1987, pp 139-151.

(11] S. Hanagud and S. Sarkar, ‘Problem of the dynamics of a cantilever beam attached to a moving
base’, Journal of Guidance, Control and Dynamics, Vol. 12, 1989, pp 438-441.

[12] A. E. Green and W. Zerna, Theoretical Elasticity, Clarendon Press, Oxford, 1954.

[13] D. J. Segalman, ‘A Mathematical Formulation for the Rapid Simulation of a Flexible Multilink
Manipulator’ SAND89-2308, Sandia National Laboratories, Albuquerque, New Mexico.

378

- -
a.lmnunlulnn = o . © P u.
.................. PRI SO T-3-duduy » F o - m . B M w
o *
£ 3 S
H o
olos ‘63 & | ©
| F 3 : °Z
n - olot
kit 8 3 i 3
—4
Wl ,.MM 9 mmm TMM
_...". ki W g Wyt M
8l S = b e &
i bt I Slgi | L3 Z
it S o|ot
e [
o M ' g o
0ol 0S 0 06— 00— Qs - & vZ 9 8 0 8- 9i—-
03S/93Q ALDOT3IA ¥VINONY I—INIOr B W-N 3NDdO0L I—INIOr
0
2 2
o B
[} -
) 0
: S
— -~
Lo O " Q
-~ /wvlg\ .m .om
) .m. -~ 8
£ I
o k& 3
SO Q
&
..M &)
8 he
|- @0 80
=
-
I T T T T T © @ o
- o — o ™ - 0 © 5
S & © 6 o o o o 50 4 - pid °© o
i 0 i | [I []

qjuawade[dsi(diy, asasasuedy, (u1) ayeuIp.roo) A

Figure 4: 7 joint torque histories
379

Figure 2: Composite motion for Eljink, = 100

N-N 3NDHOL Z—-INIOF

m mm 'Mﬁ-.r
38! =
i ©
l
m. Gl 8
il °Z
. 3
o
NZ
K=}
(@]
o 8 9 4 Z 0
A—N ASH3INI JLWINDI
: «
o
AL s
h 4
5(% . 2y
H M \w m
ol : 8
8lgi [,wm
8] z
: o)
.. NZ
K=l
” o
9 rA 0 - -

Figure 7: Kinetic energy histories

t torque histories

join

Figure 5: 7,

|L jaang

.-

T iititee-

||||| oTe
vvvvvvvv g

E=1000. TF = 1.5M4 SEC

TF = 1505 SEC _

EE=100.

—~aaa NI

1
0.4 0.6 0.8

NORMALIZED TME T/T;

02

Ty

17 ALY)

90 00 00
NN ADHINI NIVALS

)

P o
llllllllll
-

0.8

E=1000. TF = 1.514 SEC

E=100. TF = 1505 SEC

0.6

5
o louv
consebeon®®
.
Sdaay

0.4
NORMALIZED TME /T,

02

St

(-5 =%

-] 0
AN 3OHA3 ONDIOVAL

Q-

0

Figure 8: Strain energy histories

Figure 6: Straight-line tracking error

380

Joint 1 Torque (N—M)

20

10—

—-10

-20 T T
1 2

time (sec)

Figure 9: Residual 7y for Eljn, = 100

381

N90-23031

MODELING OF CONTROL FORCES FOR KINEMATICAL CONSTRAINTS
IN THE DYNAMICS OF MULTIBODY SYSTEMS-A NEW APPROACH

SITKI KEMAL IDER
Assistant Professor
Department of Mechanical Engineering
Middle East Technical University, Ankara, Turkey

ABSTRACT

Conventionally kinematical constraints in multibody systems are treated
similar to geometrical constraints and are modeled by constraint reaction
forces which are perpendicular to constraint surfaces. However, 1in
reality, one may want to achieve the desired kinematical conditions by
control forces having different directions in relation to the constraint
surfaces. In this paper the conventional equations of motion for multibody
systems subject to kinematical constraints are generalized by introducing
general direction control forces. Conditions for the selections of the
control force directions are also discussed. A redundant robotic system
subject to prescribed end-effector motion is analyzed to illustrate the
methods proposed.

1. INTRODUCTION

In many applications of multibody systems certain points are desired to
follow prescribed paths, such as the end-effector in a robotic system.
Such kinematical conditions are treated constraint equations to
determine the system motion and the control forces.

In this paper those constraints which arise from geometrical
restrictions such as closed 1loops and physical guides are termed
geometrical constraints. On the other hand, kinematical constraints are
defined as those conditions which represent desired motions or desired
paths of certain points or bodies.

In the conventional methods of analysis, regardless of the
fundamental dynamic equations (Newton-Euler, Lagrange, Kane, etc.) used,
the constraints are modeled by constraint reaction forces which are
perpendicular to the constraint surfaces. (See Arnold [1], Hemami and
Weimer [2], Kamman and Huston [3], Wehage and Haug [4], Nikravesh [5],
Kim and Vanderploeg [13], Amirouche and Jia [6].)

However kinematical constraints do not have to be satisfied by
constraint reaction forces, and usually have to be realized by control
forces applied by the actuators in the system. Hence the conventional

382

solution procedure imposes an arbitrary restriction to the directions of
the control forces. Depending on the places of the actuators in the system
one may want to achieve the desired kinematical conditions by control
forces having different directions in relation to the constraint surfaces.

In this paper the conventional equations of motion are generalized by
inroducing general direction control forces for kinematical constraints,
that replaces the constraint force representation. And the dynamic
equations for multibody systems subject to geometrical and kinematical
constraints are developed. By the proposed method of solution the control
forces and the system motion are solved simultaneously.

This paper is divided into five sections. After the introduction, the
second section outlines the conventional equations of motion for
constrained multibody systems. In the third section the general direction
control forces for kinematical constraints are introduced and the
conditions for the control force directions are discussed. In section four
simulations of a redundant manipulator by the conventional and the
proposed methods are presented.Conclusions form the last section.

2. CONVENTIONAL EQUATIONS OF MOTION

Consider a mechanical system where qi1,...,an are a set of generalized
coordinates chosen for convenience to specify the configuration of the
system. Let the system be subject to ¢ constraints. Kane’s equations for
an arbitrary system of particles and rigid bodies can be expressed as
(Kamman and Huston [3], Baumgarte [7]),

F* + F+ Fc =0 M
where
af. . .
FS = Aj s;i- i=1,...,¢ , p=1,...,n (2)

F*, F and Fc are the vectors of generalized inertia, external and
constraint forces respectively. 1In equation (2) fi=0, 1i=1,...,c are the
constraint equations in the acceleration level, Ai are undetermined
multipliers, and y1,...,¥n are the generalized speeds of the system chosen
for convenience as independent 1linear combinations of @p. The
tranformation between Qp and yp, e.g. Euler angle derivatives and relative
angular velocity components can be expressed as

dh = Thp Yo hlp:11"'!n (3)
where Thp are functions of gp (Kane and Levinson [8]).

The generalized inertia forces can be expressed in the following form
(Huston and Passarello [9]),

383

FE =My +Q (4)

where M is the generalized mass matrix of the unconstrained system being
functions of gp, and Q@ contains the quadratic velocity terms.

The holonomic and nonholonomic constraint equations can be expressed
in the acceleration level as below

Bip S/p = hi i-'-1,...,C (5)
In eq. (5) B is cxn constraint matrix, and Bip and hi are 1in general
functions of qp and yp.

Note that for holonomic constraints @i (qgp,t)=0,

Bip = g—g'- Thp

9h
and for velocity level nonholonomic constraints wi(dp,Yp,t)=0,
oW
Bip - —_—
Ayp

Then, using eq. (2), the generalized constraint forces are
Fc = BT) (6)

The undetermined multipliers Ai represent the restraining constraint
forcas and moments generated by the constraints at the points of
application (Ider and Amirouche [11]).

Equations (1) and (5) represent the governing dynamical equations.
Combining these and making use of equations (4) and (6), we have

NN

The accelerations obtained from eq. (7) are then used for numerical
integration for the time history of yp and, through the use of eq. (3),
the generalized coordinates qp.

Lagrange multipliers could be eliminated to reduce the equations for
computational efficiency. To this end let C represent a nx(n-¢) matrix
which 1is orthogonal complement to B, obtained either by Singular value
decomposition (Singh and Likins [12]), Zero eigenvalue method (Kamman and
Huston [3]), Q-R decomposition (Kim and Vanderploeg [13], Amirouche and
Jia [6]), or row equivalence transformation (Ider and Amirouche [10]).
Premultiplying eq. (1) by CT yields

CT(F*-F) = 0 (8)

Combining equations (8) and (5) and utilizing eq. (4), we obtain the
reduced equations

384

[CTM CT(F-Q)
-—=ly =|--=-- (9)
B

Equations (9) and (3) form a set of 2n first order ordinary differential
equations that can be numerically integrated to obtain the time history of
yp and gp.

When relative joint coordinates are selected as the generalized
coordinates and the corresponding partial velocity vectors are developed
using recursive multibody kinematics (Huston and Passarello [9], Ider and
Amirouche {10]), constraint equations for Joint connections are
automatically eliminated. Hence, 1in this paper an open tree-like system
represents an unconstrained system where n is the total number ofthe free
joint degrees of freedom.

3. CONTROL FORCES FOR KINEMATICAL CONSTRAINTS

Now consider that a tree~like multobody system is subject to geometrical
and kinematical constraints. Kinematical constraints represent desired
motions or desired paths of certain points or bodies. They are the
conditions that have to be realized by the actuators in the system. The
desired motions could be specified at position, velocity or acceleration
levels and could be holonomic or nonholonomic.

Whether one uses Newton-Euler, Lagrange or Kane's equations or other
variations of these, in the conventional approach the constraints in the
system are modeled by constraint reaction forces which are perpendicular
to the constraint surfaces. In the case of geometrical constraints
perpendicular reaction forces at the application points are generated,
hence the above approach is necessary. On the other hand kinematical
constraints could be achieved by a number of alternative control forces
whose directions in the generalized space can be be selected by physical
considerations. Therefore the conventional equations of motion should be
generalized by considering general direction control forces for
kinematical constraints.

Consider ¢ constraint equations (5), and let c¢i1 of the constraints in
the system be geometrical and the remaining cz2 (cz2=c-c1) be Kinematical.
The constraint matrix B and the vector of constraint force magnitudes)\
can be partitioned such that

B =[BT Bk"]T (10)
and
X o= [T aT1T (11)

where BS 1is a cixn matrix, BK is a cz matrix, A% is a c¢1 dimensional
vector and \K is a cz dimensional vector.

385

Addition of control forces to the equations of motion yields
My + Q+ BSTAG + BKTAK + AT = F (12)
where A 1is a czxn control force matrix where each row represents the
direction of the control force for each kinematical constraint in the
generalized space, and M is c¢2 dimensional vector of control force
magnitudes. Now assume that the control force directions and magnitudes

are selected such that the restraining constraint forces)\% become zero.
This leads to

My+Q+BST)\G +ATp =F (13)

Eq. (13) can be written in the following form
My+Q+2ZTv =F (14)

where Z is the augmented matrix of constraint and control force directions
z = [B8T AT]T (15)

and is the vector of constraint and control force magnitudes,
v = N&T uTIT (16)
Once the control force direétions A are selected by physical
considerations eq. (14) needs to be solved together with eq. (5) to

determine the control force magnitudes simultaneously with the generalized
accelerations. Hence the augmented equations of motion are

IR

Alternatively the equations could be reduced in a manner similar to
Section 2. To this end, let T be a nx(n-c) matrix orthogonal complement to
Z. Premultiplying eq. (14) by &7 and augmenting with eq. (5) leads to

MY &7 (F-Q)
ol A R (18)
B h

In the case when the reduced equations are used v can be obtained from eq.
(14) utilizing the computed accelerations, as

v = (ZZ27)' Z (F-My-Q) (19)

386

Note that A should be selected such that rank Z=c, because otherwise there
will be less than c2 control forces to control cz kinematical conditions.

The augmented equations have a solution if and only if the augmented
mass matrix is nonsingular, 1in which case the prescribed conditions are
achieved with the corresponding control forces. On the other hand if it is
not physically possible to realize the kinematical constraints with the
selected control force directions, this reveals itself as a singular (or
near singular) augmented mass matrix. Therefore the condition for the
existence of solution could be expressed as follows: Directions A should
be chosen such that a linear combination of the rows of CTM should not be
a linear combination of the rows of B. 1In other words the vector space
spanned by the rows of ETM and the vector space spanned by the rows of B
should be nonintersecting (except the zero vector). Since the dimension of
the vector space spanned by the rows of B is ¢, and that of TTM is n-c,
the possibilities for CTM are infinitely many (provided that n-c>0). Hence
one can construct various vector spaces for CTM by different selections of
the control force directions A. CTM that correspond to directions B 1is
only one of them.

For redundant systems, 1i.e. when c<n, it has been observed that one
usually has several physically meaningful control force directions to
satisfy the given kinematical conditions.

In the special case when A is selected such that its rows are linear
combinations of the rows of BX, then since C is the same as C 1in the
conventional model, y becomes the same as the conventional case and ZW
becomes equal to BTA. However vi may be different than Ai depending on A.

Similarly for nonredundant systems, i.e. n=c, B is nxn, and rows of 2
are necessarily linear combinations of the rows of B. 1In this case C is
null matrix and the above procedure reduces to the conventional method
where ZTv is equal to BTA.

It should be noted that C'M and B may form nonintersecting vector
spaces even if CT and B do not. Hence realization of the prescribed
motions 1is possible even in the extreme case when a control force
direction is tangent to the corresponding constraint surface. This is due
to the inertia coupling between the generalized coordinates.

4. SIMULATIONS OF A REDUNDANT ROBOTIC SYSTEM

In the three link manipulator shown in Figure 1, the configuration of the
system can be described by three generalized coordinates 61, 62, 6s. The
generalized speeds yp are defined as

y1 =61 , y2 =62, y3 = 63

The data used are Li=L2=L3=1.0m, mi=30kg, mz2-ma=18kg, I1=10 kg.m?2,
12=13=8.64 kg.m?2.

The end-effector (point A) is desired to move in the horizontal
direction with a constant velocity vA. Hence the constraint equations 1in
the system are

387

Figure 1. Three link manipulator

Lici + Laci2z + Lacis = vRt + 1.9088
(20)
0.9893

Lisy + L2st12 + Lasi3

where c1=cos81, c12-cos(61+482), Cc13=cos(01+62+03), and similarly si=sin8,
st2=sin{©1+02), $13=51n(81+62+03). At the acceleration level the
constraint equations are given by eq. (5) where B and h are

Lis1+l2s12+L3S13 Lzs1z2+L3st13 Lasti3
B = (21)
Lici+lzci2+Licra Lzci2+L3cis Licis
and
“Lis1y12-Lzst12(y1+y2)2-Last3a(y1+yz2+ys)?
h = (22)
-Liciy12-Lac12(y1+y2)2-L3c13(y1+yz+y3)2

Initially the system is at the configuration €1:=60°, B82z-10°,
83=-90°. The initial generalized speeds are yi1=0.386 rad/sec, yz2=0,
y3=-0.9618 rad/sec, which correspond to vA= -1 m/sec.

388

First the system is simulated using the conventional method. The
generalized constraint forces can be expressed from equations (6) and (21)
as,

Fi M (Lisi+Lzsiz+lasia) + Az (Lici+Lz2ciz+l3cia)
F$ | = | N1 (Lzs12+L3st13) + A2 (Lzci2+L3ci3) (23)
F3 A1 L3siz + Az Lscis

In particular we wish to determine joint moments denoted as Mi, i
that would achieve the desired kinematical conditions. F$, i
represent the required joint moments. It is seen from eq. (23) that
three joint moments are nonzero, i.e. motors are required at all three
joints.

Ao
(deg) 4

20

-20 1

Figure 2. Displacements.
Conventional method : 1. A91, 2. AB2, 3. AG3
Control force method: 4. A©1, 5. AB2, 6. AB3

389

rad/s

e Y
———

e e

-0.5

«1.0 -

Figure 3. Velocities. .))
Conventional method : 1. 61, 2. 82, 3. O3
Control force method: 4. 63, 5. 82, 6. 63

The simulation is performed for 1 sec., until the end effector moves
im in -~x direction. A6+ and 63, 1i=1,2,3 are plotted in Figures 2 and 3
respectively. The joint moments Mi required to obtain the desired motion
of the end effector as obtained by the conventional method are shown in
Figure 4.

Second the system 1is resimulated by the proposed control force
approach. As an illustration the control force directions are selected
such that no moments are needed at the lower joint of 1link 1. The
corresponding control force directions are

0 1 0
A= [} (24)
0 0 1

Note that since there are no geometrical constraints in this system, the

390

Time (sec)

Joint -

yd
Moment
Nom s

10 - /

Figure 4. Joint moments.
Conventional method : 1. M1, 2. M2, 3. Ms
Control force method: 4. M2, 5. Ma

matrix 2Z is identical to A, and the vector v is identical to M. The
contral forces 2%v are

0 0 0
ZTv = va| 1 |+ Vv2]0 = Vi (25)
0 1 Va

Hence, in this case, the required joint moments for the prescribed end
effector motion are Mi1=0, M2=zvy, Ma=vz,

The augmented mass matrix was observed to be full rank as expected.
©; and 6i, i=1,2,3 for a simulation of 1 sec. are plotted in Figures 2 and
3. The joint moments are plotted in Figure 4. Note that in this case a
motor is not needed at the lower joint of link 1.

391

Initial configuration

Figure 5. Final configurations: 1. Conventional
method; 2. Control force method.

The system’s motion differ in the above two approaches although in
both cases the end effector performs the same motion. The configurations
at t=1 sec. corresponding to the conventional model and the control force
model are shown in Figure 5.

5. CONCLUSIONS

This paper presented a general procedure for the dynamic modeling of
multibody systems subject to kinematical constraints. General direction
control forces have been introduced that replace the conventional
constraint reaction forces, hence increasing the ways of realization of
the prescribed motions. It 1is shown that the possible conrol force
directions are more than one, and the criteria for the existence of
solution have been presented.

The method proposed in this paper involves selecting the control
force directions in the generalized space by physical considerations, and
then solving their magnitudes simultaneously with the corresponding system
motion. As a result one can design alternative control forces that can be
applied by the actuators in the system. The method is expected to be
especially useful to control the extra degrees of freedom in systems that
have joint flexibility or joint clearance.

392

REFERENCES

1.

10.

11.

12.

13.

Arnold, V. I., 1978, Mathematical Methods in Classical Mechanics,
Springer-Verlag, New York.

Hemami, H., Weimer, F. C., 1981, "Modelling of Nonholonomic Dynamic
Systems with Applications”, ASME Journal of Applied Mechanics, Vol.
48, No.1, pp. 177-182.

Kamman, J. W., Huston, R. L., 1984, "Dynamics of Constrained Multibody
Systems”, ASME Journal of Applied Mechanicsg, Vol. 51, No. 4,
pp. 899-903

Wehage, R. A., Haug, E. J., 1982, "Generalized Coordinate Pertitioning
for Coordinate Reduction in Analysis of Constrained Dynamic Systems”,

ASME Journal of Mechanical Desian, Vol. 104, pp. 247-255.

Nikravesh, P. E., 1984, "Some Methods for Dynamics of Constrained
Mechanical Systems: A Survey”, NATO ASI Series, Vol. F9, Springer-
Verlag, Berlin, pp. 351-368.

Amirouche, F. M. L., Jia, T., 1987, "Automatic Elimination of the Un-
determined Multipliers in Kane’s Equations using a Pseudo-Uptriangular

Decomposition Method", Computers and Structures, Vol.27, p. 203.

Baumgarte, J., 1972, “"Stabilization of Constraints and Integrals of
Motion in Dynamical Systems”, Computational Methods in Applied
Mechanical Engineering, vol. 1, pp. 1-16.

Kane, T. R., Levinson, D. A., 1985, Dynamics: Theory and Applications,
McGraw-Hill, New York.

Huston, R. L., Passarello, C. E., 1980, "Multibody Structural Dynamics

Including Translation between the Bodies”, Computers and Structures,
Vol. 12, pp. 713-720.

Ider, S. K., Amirouche, F. M. L., 1988, "Coordinate Reduction in the
Dynamics of Constrained Multibody Systems”, ASME Journal of Applied
Mechanics, Vol. 55, No. 2, pp. 899-905.

Ider, S. K., Amirouche, F. M. L., 1989, "Numerical Stability of the
Constraints Near Singular Positions in the Dynamics of Multibody

Systems”, Computers and Structures, Vol. 32, No.5.

Singh, R. P., Likins, P. W., 1985, "Singular Value Decomposition for
Constrained Dynamical Systems”, ASME Journal of Applied Mechanics,
Vol. 52, pp. 943-948.

Kim, 8. S., Vanderploeg, M. J., 1986, "QR Decomposition for State

Space Representation of Constrained Mechanical Dynamic Systems”,
ASME J.of Mech.. Trans. and Auto. in Desiagn”, Vol.108, pp.183-188.

393

NOO-23032

APPLICATION OF NUMERICAL OPTIMIZATION TECHNIQUES TO CONTROL
SYSTEM DESIGN FOR NONLINEAR DYNAMIC MODELS OF AIRCRAFT

C. Edward Lan and Fuying Ge
Department of Aerospace Engineering
The University of Kansas, Lawrence, Kansas 66045

ABSTRACT

Control system design for general nonlinear flight dynamic models is con-
sidered through numerical simulation. The design is accomplished through a
numerical optimizer coupled with analysis of flight dynamic equations. In the
analysis, the general flight dynamic equations are numerically integrated and
dynamic characteristics are then identified from the dynamic response. The
design variables are determined iteratively by the optimizer to optimize a
prescribed objective function which is related to desired dynamic character-
istics. Generality of the method allows nonlinear effects of aerodynamics and
dynamic coupling to be considered in the design process. To demonstrate the
method, nonlinear simulation models for an F~5A and an F-16 configurations are
used to design dampers to satisfy specifications on flying qualities and con-
trol systems to prevent departure. The results indicate that the present
method is simple in formulation and effective in satisfying the design objec-
tives.

INTRODUCTION

At high angles of attack, the aerodynamic forces and moments are, in
general, time-dependent and nonlinear functions of motion variables. There-
fore, the traditional control system design method based on a linearized
dynamic system are not appropriate. In addition, the aerodynamic, kinematic,
and inertial coupling phenomena are important to the high angle-of-attack
flight dynamics of modern aircraft. As a result, a number of high angle-of-
attack control concepts have emerged (refs. 1-4). Therefore, a suitable
control system design method must be capable of incorporating these coupling
phenomena with considerations of time-dependent, nonlinear aerodynamic forces
and moments. A control system designed without comsidering these coupling
phenomena often has a detrimental effect on the departure/spin resistance (ref.
5). Another feature of high—-alpha control system is the simultaneous utili-
zation of several control surfaces or devices. Therefore, a design method
capable of handling multiple input and output is necessary. A current approach
to solving this problem is by extensive piloted simulation (ref. 5).

Methods in optimal control theory represent possible approaches to solving
these problems under consideration. These methods are derived through calculus
of variation. However, computational methods in existence require lineari-
zation of dynamic equations and aerodynamics about trimmed conditions (ref.

6). Another alternative is to apply numerical optimization techniques without
linearization as they are frequently used in structural and aerodynamic designs
of large systems. A similar approach has also been used in other control
applications in ref. 7.

394

In the present method, a numerical optimization technique based on conju-
gate gradients and feasible directions (ref. 8) is coupled with an analysis
method which is to obtain numerical solutions of the nonlinear six degree—of -
freedom dynamic equations. This analysis method is to provide information
needed in the design process, such as damping ratios, frequencies, motion vari-
ables involved in dynamic instabilities, etc. Since the analysis method can
deal with nonlinearities in the dynamics and the aerodynamics and with any
general constraints on the control system configuration, the control system
designed with a numerical optimization technique can be very realistic and
effective.

NUMERICAL APPROACHES

Typically, a control system may be designed to enhance flying qualities,
to prevent flight departure, and to have an effective maneuver control
system. To demonstrate the present method, only the first two objectives will
be considered. That is, one is to design dampers at a moderate angle of attack
to satisfy specifications on flying qualities and the other to design a control
system to prevent flight departure at high angles of attack in a maneuver.
Numerical formulations to solve these problems are described in the following.

Design to Satisfy Flying Qualities Specificatioms

The general system of equations can be written as

m(u - vr +wq) =mg +F, + Fo. (la)
X x

m(v + ur - wp) =mg +F, +Fp (1b)
y y

m(w - uq + vp) = mg, + FA + FT (1le)
z z

Ixxp - Ixzr - Ixzpq + (Izz - Iyy)rq = LA + LT (1d)

1 a + (1 -1 JYpr+1 (p2 - r2) =M + (le)

vy XX zZZ Xz A MT

Izzr - Ixzp + (Iyy - Ixx)pq + Ixzqr = NA + NT (1f)

& =p + q sin¢ tanb + r ‘cos¢ tanb (1g)

§ = q cosp - r sing (1h)

¢ = (q sing + r cos¢)sechd (11)

a= tan-l(w/u) 14)

B = sin-l(v//u2 + v2 + wz) (1k)

395

where (u, v, w) are the three linear velocity components of the aircraft; (p,
q, r) are the angular velocity components; and (¢, 6, ¢) are the Euler angles
in bank, pitch, and yaw, respectively. The subscripts (x, y, z) appearing on
the right-hand side of Eqs. (la) - (lc) denote components in the corresponding
coordinate directions; and (A, T) denote aerodynamic and thrust components,
respectively. g is the gravitational acceleration, and F's are the external
forces, while (L, M, N) are the moments about the (x-, y-, z-) axes. 1In

addition, m is the mass and Ixx’ Ixz’ etc., are the moments of inertia. The

aerodynamic forces and moments (FA, Las My, NA), including the control effects,

are represented in dimensionless coefficients in a tabulated form as functions
of motion variables in this study. The motion variables are (u, v, w, p, q,
r.

This system of equations is numerically integrated from an initial state
(usually a trimmed level flight condition) after disturbances (such as
impulsive control-surface deflections) are imposed to generate time-history
data of motion variables.

For demonstrative purposes, it is assumed that dampers to provide flight
characteristics satisfying flying-qualities specifications are to be deter-
mined. This problem has been solved in the past by conventional methods, such
as the root—locus method, by using linearized equations of motion. It is con-
sidered here mainly to show the generality of the present method even without
linearizing the equations of motion. In the present method, the necessary
design information includes damping ratios, natural frequencies, and time con-
stants of the vehicle motions. These characteristics are identified from
calculated time-history results of motion variables after multiple-axis distur-
bances are imposed. The numerical method used for parameter identification is
the method of differential corrections described in the following.

A general discretized system output in the time domain is assumed to be of
the form:

S, ty

n m —Ojtk
f(tk) = iile (Aicoswitk + Bisinwitk) + jElcje + Dt +E (2)

where £ = Atk - 1), k=1, 2, ..., K, w, =W /1 - Cf is the damped frequency
i

of the 1P mode. The objective is to use Eq. (2) to fit the dynamic response

data [Q, = x(tk)] through the method of least squares to determine the damping

ratios (Ci) natural frequencies (wni) and time constants (l/cj), i=1, «e., nj
j=1, .¢., m« These parameters appear nonlinearly in Eq. (2). Other un-
knowns, Ai’ Bi’ Cj’ D, and E, are linear parameters in Eq. (2). Because of

nonlinearity, finding a solution of the resulting nonlinear algebraic equations
from the least-square formulatfon is difficult. The best approach, as it has
been determined in the present investigation, is the method of differential
corrections. In other words, the unknown parameters are expressed as

396

k
w =W +Aw , etc., 1 =1, ¢ee, n, j =1, oo, m
N My
k
th th
where Ci y W » s+« are the initial approximations of the i or j un
koM
knowns. Using Taylor series expansions, it is obtained that
n
of of of of
= + — + — ¢ —_t ——
R LR C I T M 3a T By EE)
i=1 i i n i i
k i k k
k
- df of df df
+ I (AC, m/&—— + Ao, =—) + AD — + AE — + ... (3)
: j oC, j do, oD OE
j=1 I APl k k

where Ex is the residual. The least-square method 1is then applied to Eq. (3)
in such a way that
K 2
G= I & = minimum
k=1
The differential corrections (ACi , etc.) which minimize the G-function are
determined by setting the first derivatives, ac/a(aci) , etc, to zero. Once

the differential corrections are determined, they are added to the initial
estimates of the unknowns and the process is repeated to determine a new set of
differential corrections until G is a minimum or until there is no significant

change in the unknowns. Typically, convergence is assumed if G < 10_7 .

After the necessary design information is obtained from the analysis part
of the algorithm, the optimizer 1s called to perform the design process.

The damper design problem here may be formulated as follows: find the
pitch rate feedback gain Kq, the roll rate feedback gain Kp, the yaw rate feed-
back gain K., the lateral acceleration feedback gain Kay’ and the aileron-to-

rudder interconnect gain Kpr1» such that the following objective function is

minimized:
-B1 -B2
OBJ = +
+ El x - e + E2 x -
: Tap, ~ apl Ty = 5]
+ -B3 + -B4
e +E3 x [g - ¢] €+ E4x [wn o |
1 D D
1
-B5 -B6
T e T ES [T - T‘T’+ e+ E6 x [T ~T_] (4)
rl r S1 8

397

where Csp s Cp , CD I Tr , and Ts are specified values to satisfy MIL-

1 1 1 D1 1 1

F-87 .
8785B Csp’ Cp’ CD’ wnD, Tt’ and Ts are values obtained in the analysis
part. In Eq. (4), Bi and Ei are some weighting factors. ¢ in the denominator

of the objective function is a small number used to prevent the objective func-

tion from being infinite and is set to 10714 in the present algorithm. The
optimization problem is subject to constraints on magnitudes of damping ratios,
frequencies, time constants, overshoot, etc. In the optimization process, the
design variables are varied systematically by the optimizer to obtain numeri-
cally the gradients of the objective function and constraints. These gradients
are then used through the methods of conjugate gradients and feasible direc-
tions to determine the appropriate design variables to minimize the objective
function. The process continues until the objective function does not change
and the constraints are all satisfied.

Design to Prevent Flight Departure

Again, Eqs. (1) are numerically integrated. During time integration, a
certain maneuver flight is imposed to induce departure of the airplane. One
example of the maneuver flight is to pull up the airplane (i.e., to increase
the angle of attack) and then induce a high roll rate afterwards. The present
algorithm is constructed on the assumption that a departure condition is
identifiable from the magnitude of the state vector, or motion variables.
Since the latter are directly obtained from time integration of Eqs. (1), no
further data manipulation is needed to calculate the necessary design infor-
mation.

The design objective 1is achieved by first assuming a control system struc-
ture. Then the design problem may be formulated for the demonstration cases to
be presented as follows.

Determine the aileron-rudder interconnect gain (K,pp), the side acceler-—

ation feedback gain (Kay), and the yaw damper gain (Kr)’ etc., to

minimize the following objective function:

C C c C
OBJ = -C.p - Ca - 2 = 4 - > - i
1P max 2 trim {dmaxl +¢€ I¢maxr +¢€ TBmaxr +¢€ Irmaxl + €
i IGT7+ e Te C? e)
trim

subject to various constraints depending on applications. Note that Eq. (5)
indicates that p (the roll rate) is to be maximized and X nax in the transient

motion, ¢ .. (yaw angle), B .. (sideslip) and r (yaw rate) are to be mini-

max

mized. i8 calculated as the average angle of attack over the whole time

a

trim
period and may be used to define the limiting angle of attack to be discussed
later for the F-16. Specific applications are discussed in the next section.

398

Two fighter configurations will be used to demonstrate the algorithm, one
being an F-5A and the other an F-16. A pitch damper design for the F-5A will
be considered first. Control to prevent flight departure will be discussed
next. For illustrative purposes, all system gains in the following consider-
ation are assumed constant.

A Pitch Damper Design for am F-5A

The algorithm has been tested and found to work well at different flight
conditions to design dampers under multiple input conditions. At low angles of
attack, calculated results are found to be consistent with existing systems.

To demonstrate this computational tool, consider designing a pitch damper at a
Mach number of 0.3 and at an altitude of 10,000 ft. The corresponding Cprim 18

determined to be 11.7 deg. Assume that a damping ratio of 0.65 (g) is re-
8P

quired in the longitudinal dynamic response of the short-period mode. The
optimization problem may then be formulated as follows:

Determine the pitch damper gain constant (Kq) to
minimize the difference in the actual (Csp) and desired (Cspl) damping

ratios; and
subject to the constraints that

0 < Csp <1

0 < w < 10 rad/sec.
nsp
Limitations on the control system are that
the pitch rate feedback be limited to 4 deg/sec,
the elevator deflection limits are +5.5 deg to -17 deg., and
the elevator actuator rate limits are -26 to +26 deg/sec.

Fig. 1 shows that the pitch damper gain constant to satisfy this design problem
is 4.36. The existing system with Kq = 0.2 is not adequate to provide a

damping ratio of 0.65. Note that during the design process, motions along all
axes have been imposed to provide any possible effect of inertial coupling.

Control System to Prevent Yaw Divergence of an F-5A

The second example i1s to design a control system to prevent yaw divergence
of an F-5A during roll maneuver at high angles of attack. The aircraft is
placed in a departure condition by a maximum constant elevator deflection to
increase the angle of attack, followed by a constant roll control deflection of
2 deg. The optimal control problem 1s formulated as follows.

Determine the aileron—rudder interconnect gain (KARI)’ the side acceler-

ation feedback gain (Kay), and the yaw damper gain (Kr)’ to

maximize the roll rate, and
minimize the sideslip angle (B), the yaw rate (r), and the change in
heading angle (¢).

399

In other words, in Eq. (5) the terms associated with Xy rip and I“max' are not

used. Some results for the time variation of motion variables are shown in
Fig. 2. It is seen that the present method is effective in satisfying the
design objective by reducing both the change in yaw and bank angles.

Control System to Prevent Pitch Departure of an F-16

The aerodynamic data are obtained from ref. 9. Since the F-16 is unstable
in pitch, design of a pitch control system is of major concern. The system
includes an angle-of-attack and normal-acceleration feedback control. The
airplane is first pulled up by applying the full stabilator deflection command
(-25°). The objective is to minimize Eq. (5) with

Cl = 0.01, C2 =0.03, C, =1, C, = 12, C5 = 0.01

0.008, C, =1, C, =1

¢ 7

6

These weighting factors are chosen so that various terms in Eq. (5) have the
same order of magnitude. The design variables are the various gain con-
stants. Note that the a-feedback system is defined such that

5 due to a-feedback = K a - K (6)
e a c

Two flight conditions are examined, one without imposing a roll maneuver
after pull-up and the other with a roll maneuver. Results for the first case
are presented in Fig. 3. It is seen that if there is no angle-of-attack
limiting system (Ka = 0, Kc = 0), the airplane will trim at an angle of attack

equal to about 66 deg, which is the deep-stall condition. On the other hand,
the limiting system would limit the trim angle of attack to about 25 deg.

For the second case, a roll control of -10 deg 1s applied between t = 22
and 34 sec. Note that roll should induce pitch—~up due to inertial coupling.

The results shown in Fig. 4 indicate that no departure has occurred and erim

is determined to be 24.7 deg. By changing the initial time at which the roll
control is applied, @prim €30 still be determined to be about 25 deg. There-

fore, it may be concluded that maximizing ¢ rim is to define approximately the
limiting angle of attack.

CONCLUSIONS

Application of numerical optimization techniques to control system design
was demonstrated for F-5A and F-16 configurations at high angles of attack.
The methodology accounted for nonlinearities in aerodynamics and dynamics.
Specific examples were presented to design control systems to satisfy flying
qualities requirements and to prevent flight departure. The results indicated
that the present method was effective in satisfying design objectives.

400

REFERENCES

l.

Gilbert, W. P.; Nguyen, L. T.; and Van Gunst, R. W. "Simulator Study of
Applications of Automatic Departure-and-Spin Prevention Concepts to
Variable-Sweep Fighter Airplane." NASA TM X-2928, 1973.

Nguyen, L. T.; Gilbert, W. P.; and Van Gunst, R. W. "Simulator Study of
the Departure Resistance of Lightweight Fighter Airplane with Twin
Vertical Tails.'" NASA TM X-3510, 1977.

Gilbert, W. P.; Nguyen, L. T.; and Van Gunst, R. W. "Simulator Study of
the Effectiveness of an Automatic Control System Designed to Improve the
High-Angle-of-Attack Characteristics of a Fighter Airplane." NASA TND-
8176, 1976.

Gilbert, W. P.; and Libbey, C. E. '"Investigation of an Automatic Spin
Prevention System for Fighter Airplanes." NASA TND-6670, 1972.

Nguyen, L. T.; Gilbert, W. P.; and Ogburn, M. E. "Control System
Techniques for Improved Departure/Spin Resistance for Fighter Aircraft."”
NASA TP-1689, 1989.

Linse, D. J.; and Downing, D. R. '"The Design and Analysis of a High Angle
of Attack Flight Control System." KU-FRL-776-1, The University of Kansas
Center for Research, Inc., July 1987.

Fan, M. K. H.; Wang, L. S.; Koninckx, J.; and Tits, A. L. "“"CONSOLE: A
CAD Tandem for Optimization-Based Design Interacting with User-Supplied
Simulators." Workshop on Computational Aspects in the Control of Flexible
Systems, NASA TM-101578, 1988, pp. 89-108.

Vanderplaats, G. N. "COPES/ADS——-A FORTORN Control Program for Engineering
Synthesis Using the ADS Optimization Program." Engineering Design
Optimization, Inc., June 1985.

Nguyen, L. T., et al. "Simulator Study of Stall/Post-Stall
Characteristics of a Fighter Airplane with Relaxed Longitudinal Static
Stability." NASA TP-1538, December 1979.

401

ANGLE OF ATTACK (a), deg

12.0

11.9

11.5

1.3

1.2

. ————-- Kg=0. (no domper)
al Kq=4.38 (design with domping ratio ¢ =0.65)
sp
T'I:' — - Kq=0.2 (exlsting)
———
- \\,/ CALCULATED RESULTS:
— K Cs “n
K} Zsp o
B 0. 0.227 1.682
- 0.2 0.327 1.514
4.36 0.65 0.566
v e b e bvvg bov e by b o bey o by a g
0 4 8 12 18 20 24 28
TIME t (sec)

Figure 1 Time History of the Angle of Attack Responding
to Impulsive Elevator, Aileron and Rudder
Deflections for an F-5A with Pitch Damper
(M=0.3, h=10,000 ft.).

Yaw Angle (¢), deg

180.0 A
7|
s
- |
120.0 d |
d |
e
- |
60.0 /
7 |
7~
- |
_d/ (1
0 — |
- |
KaRI 0.2851, Kay 13.7383 |
-60.0 Kr-1'0156 I
— . —— KARI'O-, Kay’ls I /
Kr-l' S
-120.0 I //
L
| ~
_180_0lLLILLllllllll[lll/Jlllll_l
0 25 50 75 100 125
Time (sec)
24.0
//.\\—_//—'~_\\\
20.0 / — —
/
16.0 /
0 - -
@ / —— Kurr 0.2851, Kay 13.7383
- Kr'l.OISB
£ o / °
% / — — — K10 Kay-ls.
g A Ij Kr-l'
8.0
E N
a | V|
s.0 [\/\[
Yy
0
Ve, U WS TN T NN SR SN T YU T TOU YU YN A NUNY SO TR Y SN SN TS TN S T
25 50 75 100 125

Time (sec)

Figure 2 Effect of Control System on Yaw Divergence
for an F-5A Configuration at M = 0.5 and
h = 10,000 ft. in a Pull-up and Roll Maneuver

403

ANGLE OF ATIACK (a), deg

90

80

70

80

50

—--—--- 0.9717 18.2344 4.9608 5.022 2.0404 0.0000 0.0000 O.1
0.9717 18.2344 40608 5.022 2.0404 1.8534 17.8344 0.1

i Septlot

'!‘\. \ 'zp 62.5 ,

.’ .‘, ’.'I ||\ ,f\\ \ —25‘."

R T A U A U A

B A A A AW AN AN ANN

a’ ‘ : \ S A N \ ,/ \ / ./ _/ s

HE T N SN AR N AR W AR VA

." ‘- " \ .'\ / v

j ‘ , vV
WY
3‘ i : / Kerd Kay Kr Kq Kaz Ka Ke Kp
\

10 15 20 25 30 35 40 45 50 55 60 85
TIME (eec)
Figure 3 Control System Design to Prevent Pitch Departure of an

F-16 Configuration in a Pull-up Maneuver without Roll
at M = 0.5 and h = 30,000 ft.

Angle of Attack (a), deg

Pitch Angle (8), deg

Ge(pilot). deg Ga(pllot), deg

2 62.5 22 34

t, sec -10° I l t, sec

o

-25

B Kari Kay Kr Kq Kaz Ka Ke Kp
0.49 19.11 1,78 122 212 1.71 17.30 0.10

lIIlITT‘

lllllllll

Figure 4 Control System Design to Prevent Pitch Departure
of an F-16 Configuration in a Pull-up and Roll
Maneuver at M = 0.5 and h=30,000 ft.
Thrust = constant

405

'

-

|

10

—

ol badadadald

R R ®
°

o
-
'

L 1
R B
1 |

8ap ‘(g) d18uy dITSIPIS

23

b el 1

ad

e

g3 °3¢2388
J

- -
!

8ap ‘(¢) °18uy Jueg

1 1
g RS2 R
- - R i

3ap ‘(4) o18uy me)

TIME (sec)

Figure 4 Concluded.

N9 0- 23053

An Inverse Kinematics Algorithm For A Highly Redundant
Variable-Geometry-Truss Manipulator

Frank Naccarato
Peter Hughes

University of Toronto Institute for Aerospace Studies
4925 Dufferin St., Downview, Ontario, Canada M3H 5T6

Abstract

A new class of robotic arm consists of a periodic sequence of truss substructures, each
of which has several variable-length members. Such variable-geometry-truss manipu-
lators (VGTMs) are inherently highly redundant and promise a significant increase in
dexterity over conventional anthropomorphic manipulators. This dexterity may be ex-
ploited for both obstacle avoidance and controlled deployment in complex workspaces.
The inverse kinematics problem for such unorthodox manipulators, however, becomes
complex because of the large number of degrees of freedom, and conventional solu-
tions to the inverse kinematics problem become inefficient because of the high degree
of redundancy. This paper presents a solution to this problem based on a spline-like
reference curve for the manipulator’s shape. Such an approach has a number of advan-
tages: (a) direct, intuitive manipulation of shape; (b) reduced calculation time; and
(c) direct control over the effective degree of redundancy of the manipulator. Further-
more, although the algorithm has been developed primarily for variable-geometry-truss
manipulators, it is general enough for application to a number of manipulator designs.

1 Introduction

A new class of robotic arm consists of a periodic sequence of truss substructures containing variable-
length members. Variable-geometry-truss manipulators (VGTMs) have emerged from various de-
signs for deployable/controllable trusses for space-based applications [10,12,16]. An example of
a VGTM is illustrated in Figure 1. The manipulator is a statically determinate truss comprised
of linear members hinged together at joints. Some members are actuated and can change their
length; control of these lengths determines the manipulator’s shape as well as the position and
orientation of the end effector.

Truss manipulators promise a number of advantages over conventional anthropomorphic
robot arms and space cranes, not the least of which is a significant increase in dexterity. This
increased dexterity, however, has a price: a complex and unorthodox kinematic description. This
paper will outline a kinematic methodology for VGTMs and set up a solution to the general

407

, Fb_ced
Member

T

Actuated
Member

Joint

Figure 1: Example of a VGTM

inverse kinematics problem. Furthermore, a new inverse kinematics algorithm — based on spline-
like reference shape curves — will be presented and compared with the more conventional solution.

2 Background to the Inverse Kinematics Problem

The purpose of any robotic arm is to manipulate an end effector along a desired trajectory; this
motion depends on the combined action of the manipulator’s actuators. The task of determining
the correct actuator motion for a given end effector trajectory is the inverse kinematics problem.

2.1 Direct Kinematics

The end effector is defined by a set of n. coordinates, x.(t). This vector may contain up to six
elements: three position and three orientation coordinates. The manipulator’s configuration is
defined by the vector q(t) containing n, elements representing the manipulator’s internal degrees
of freedom. In general, we may state the direct kinematics relationship in the form

x. = f(q) (1)
ne < ng (2)

The inequality represents the possibility of redundancy.

2.2 Differential Kinematics

In general, the direct kinematics relationship (1) cannot be inverted directly to give the inverse
kinematics solution. Instead, we resort to differential kinematics [1,15], whereby we arrive at a

Figure 2: Geometric Representation of a VGTM

rate-linear system by expanding the time derivative of x.(t):

X(t) = JgI)Q(t) 3)
f
I =37 (4)

The Jacobian matriz J has dimensions n, X n,.

2.3 Inverse Kinematics Solution with Redundancy

For a redundant manipulator, the Jacobian is not square and a solution to (3) is not straightfor-
ward. A common formulation of a solution takes the form [6,7]

q = I*x.+(1-JtI)q, (5)
Jjt = 1 (6)

The Moore-Penrose pseudoinverse [13], J*, represents a least-squares solution to (3); alternative
solutions have used weighted pseudoinverses [5). The vector q, is an arbitrary configuration velocity
that may be used to minimize a cost function, avoid obstacles or fulfil some other objective [3,8,11}.
The operator (1 — J*J) projects this velocity onto the null space of J so that the desired motion
of the end effector is not affected.

3 Kinematic Description of VGTMs

Generalized techniques exist to develop kinematic descriptions for conventional anthropomorphic
manipulators [2]. These techniques, however, are not well suited to truss manipulators. In this
section, a general kinematic methodology for VGTMs will be developed.

409

3.1 VGTM Geometry

Figure 2 shows a geometric representation of a truss manipulator. The linear members of the truss
(actuated and nonactuated) are represented by straight lines having lengths £;. Embedded in the
joint mechanisms are the member endpoints, represented by the position vectors r;. Associated
with each joint — or truss node — is a node coordinate vector, p;; each node vector represents a
fixed point within the joint mechanism that defines the joint’s position in space. Since the truss
structures are assumed to be statically determinate, we may calculate the orientation of each joint
given the set of node vectors [py, p3,° ‘-, Pn], where N is the number of joints in the truss.

3.2 Configuration Variables

For conventional robotic arms, the configuration variables are identical to the actuator variables,
i.e., revolute joint angles and prismatic joint lengths. For VGTMs, however, the actuator variables
— the nonfixed member lengths — are unsuitable when writing the direct kinematics; an inter-
mediate set of variables must be used. The most appropriate choice for configuration variables
are the node coordinate vectors p;, (i = 1,2,..., N). These variables have the following properties
that make them suitable:

1. Relationships may be found between the node vectors and useful external parameters. For
instance, we may be interested in the position and orientation of a particular triangular face
of the truss (where an instrument platform may be attached); these coordinates may be
found if the node vectors describing the vertices of the triangle are known.

2. Since the truss is statically determinate, we may calculate the endpoint vectors ry; given
pi, (1 = 1,2,--- N); once the endpoints are known, we may determine the length of each
actuator. Hence, the actuator coordinates for the truss may be arrived at through this set
of configuration variables.

3.3 Kinematic Relationships

There are three kinematic relationships by which we may determine the node coordinate vectors:

Explicit External Constraints. This kinematic relationship involves node vectors that are
known, explicit functions of time; these functions are defined independently of the truss configu-
ration and hence are ‘external.’ If there are N, such constrained nodes, we may group them into
the vector p, such that

pe col[p;(¢)] (7)
i = 1,2,...,N, (8)

Typically, these form the base nodes of a VGTM. For completeness, we also group the uncon-
strained node vectors into p:

p = colp] 9
i = N.+1, No+2,...,N (10)

410

Implicit External Constraints. This type of constraint describes the relationship of truss
nodes to a set of external coordinates — such as the end effector coordinates x, — and takes the
form

f(p,pc) = (1) (11)

where f(p, p,) is a set of functions in the node coordinate vectors.

Internal Constraints. The n; nonactuated members of a truss manipulator serve as hard con-
straints to the motion of the nodes. These internal constraints take the implicit form

(rix —r6) T (rix — %) = & (12)
ric = rik(p,pc) (13)

k= 1,2,...,n1 (14)

ij = 1,2,...,N (15)

The length of fixed member k is expressed in terms of its endpoint vectors, ri. If the truss nodes
are perfect pin joints, the endpoint vectors become identical to the node vectors.

3.4 Inverse Kinematics

A unique solution for p may be impossible to determine because of redundancy. To resolve this
redundancy, we first find rate-linear expressions based on the constraint equations. From the
implicit external constraints (11), we form

Ju(p,p)p + Ic(P, PP = e (16)
where
of
Jy = —=
o7 a7
of
J. = m . (18)
From the internal constraints we get a set of n; equations, (k = 1,2, ... ,n1), that take the form
ik = Tik)T [(Tinu = Tikw)? + Tike = Ijke)p] =0 (19)
61"/,
Jiku = 5’,% (20)
Ori
Jite = -aT'g- (21)

(N.B. If the nodes are ideal pin joints, the nonzero portions of these Jacobians reduce to identity
matrices, and we are left with a much simpler set of expressions [18]). We may group these n,
equations into a system:

Jo(pP)P = *4(ps Pc) (22)

411

Figure 3: VGTMs Approach Continuum

where

%5(pyp.) = coll—(rik — rik)T (Tike = k)bl (23)
I, (p,p.) coll(rie — k)T (Fiku — Tjk)k (24)

Combining (16) and (22), and defining

& = [x‘_.JC”°] (25)
Xg
J
J = “ 26
5] &
we arrive at the following system:
I(prpo)b =& (27)

The inverse kinematic solution of (27) takes the conventional form

p=JYrz+(1-3%])p, (28)

4 Inverse Kinematics Using Reference Shape Curves

In the previous section, a solution to the inverse kinematics problem for VGTMs was found using
the conventional methods outlined in §2. An alternative solution will now be presented, and a
comparison will be made to the previous solution to illustrate some advantages associated with
the new technique.

412

-

\
A

< ~
PI/// —= /// |
/_\\93' - {
¢ /b |
0 P
2 fo 37|
\ P N
\ ’ \IP
P 2
P ‘~~—_XP /42
0 | / /
/

o
/)
/
/(
o
N
~

/
/
&

Figure 4: Space curves (Bezier)

4.1 Basic Concept

A distinctive feature of the VGTM design is its ability to assume curvilinear shapes [9]. Further-
more, as illustrated in figure 3, the shape of a truss manipulator may be made to conform ezactly
to an arbitrary space curve in the limit as the number of bays gets large. It is this serpentine
property of VGTMs that has inspired an inverse kinematics technique based on the modelling of
the manipulator’s shape using reference shape curves.

The proposed solution algorithm is as follows:

When solving the inverse kinematics problem, replace the manipulator by a continuous space
curve that satisfies the same external constraints.

Force the manipulator to track this new desired shape.

The reference shape curve may be thought of as the next dimensional extension of the end

effector coordinates, x.: while the latter is defined at a point, the reference curve is a continuous
coordinate distribution over a line. The second-order case will be a reference shape surface that
may be used to model plate-like variable geometry trusses.

The primary reasons for pursuing such a technique are

A simplified, analytic expression for the manipulator’s shape will help in modelling interac-
tions with the robot’s environment (e.g., collision detection, obstacle avoidance, controlled
deployment).

Less complex kinematic relations, resulting from the simplified shape model, will improve
the computational efficiency of the inverse kinematics solution.

413

r(s,p)

x(s,p)

x(0, p)

Figure 5: Coordinate Distribution Associated with Space Curve

4.2 Type of Curve

A certain class of space curve, found in computer graphics applications [17], has a number of
properties that are desirable for this application. These spline-like curves — parameterized by s
(0 < 8 £ 1) — have the form

N

r(s,t) = Y wi(s)pi(t) (29)
=0
N

1 = Zw;(s) (30)
=0

@31)

Example of such curves are Bezier curves, B-splines and Beta-splines. Because the weighting
functions w;(s) are a partition of unity, a point on the curve r is a weighted average of the
control vertices p;. Joining the control verticies sequentially forms an open control polygon that
approximates the actual shape of the curve; closeness of fit between the control polygon and the
curve depends on the form of the weighting functions. Figure 4 illustrates this relationship for a
Bezier curve.

4.3 Coordinate Distribution

Associated with the curve is a distribution of position and orientation coordinates, x(s,p):

x(s,p) = [;EZ?)))] (32)

p = colpi (33)

414

|
SN

Figure 6: Partitioning of VGTM

Figure 5 shows that x(s,p) describes a frame of reference F(s,t) that has two properties:
1. Its origin intersects the curve at r(s,p).
2. One of its axes is tangent to the curve at the origin.

Since the tangent is a function of p, two of the three attitude coordinates are explicit functions
of the control vertices. The third attitude coordinate — representing a torsion about the tangent
— may be specified independently of the control vertices, and hence depends on the parameter s
alone.

4.4 Kinematics of a Curve

The relationship between the control verticies and the overall curve shape allows direct, intuitive
manipulation of the curve. Hence, the control vertices p will be defined as the configuraton
variables for the curve. The direct kinematics relation follows from the fact that the coordinate
distribution, x, is an extension of the original end effector coordinates, i.e.,

Xe(t) = x(1,1) (34)
The rate-linear kinematic expression for any point on the curve is
3. (s,P) P = x(s,1) (35)

where J, — the curve Jacobian — is defined as

8r§s,P)

l

3u(s:0) = | aftep) (36)
ap

415

il

Figure 7: Tracking the Curve

To impose the implicit external constraint expressed in (34), we set

3. (1,p) b = %e(2) (37)
Following (5), the solution for the curve kinematics becomes
p= Jt*e +(1- J.:Js)l.’a (38)

As was the case for the general manipulator in §2 and for a VGTM in §3, the vector p, may be
formulated to achieve a variety of objectives including obstacle avoidance.

4.5 Tracking the Reference Curve

The second step in the algorithm is to force the manipulator to track the reference curve. To
do this, the manipulator is partitioned into smaller VGTMs (see figure 6); each segment may be
described kinematically in the same manner as the whole VGTM. The implicit external constraints
x;(t) corresponding to each segment are then read off the reference curve at discrete points —
[30,81,.--,8Nn] — called curve nodes, i.e.

xi(t) = x(si, p) (39)
The VGTM segments may be solved in one of two ways:

1. Recursively, whereby the implicit constraints for the kth bay are given by x(si,p), and the
explicit constraints are provided by the (k — 1)st bay, or,

2. In parallel, whereby each bay is solve independantly using only the implicit information
provided by the curve.

Figure 7 shows a manipulator segment tracking a curve that is executing a maneuver.

416

Figure 8: Example Maneuver

4.6 Example Maneuver

Figure 8 shows sample frames from a 50-step maneuver involving a five-bay VGTM. The arm is
directed to avoid two cube-shaped obstacles. The inverse kinematics has been solved using the
reference curve technique; clearly, the technique works adequately in that the desired end effector
trajectory is tracked, and a safe clearance is maintained between the robot arm and the obstacles.

4.7 Advantages to the Reference Curve Technique

Some of the advantages of the reference curve technique are summarized below:

Improved Computational Efficiency To evaluate any improvement in computation time,
a test trajectory was designed and both techniques — conventional and reference shape curve
(recursive) — were used to solve the inverse kinematics for VGTMs of different lengths. The
maneuver was partitioned into 50 time-steps, and the runs were carried out on an ApoLrLoT™
DN 4000 workstation. Figure 9 shows a comparison of the run-times for both methods; clearly,
there is a marked improvement in computational efficiency when using the reference shape curve
technique. This improvement may be attributed to the recursive nature of the tracking problem,
as discussed in §4.5.

Parallel Structure of Problem As stated earlier, the tracking problem may be solved in
parallel as well. This natural parallel structure makes the reference curve technique conducive to
a multiprocessing environment [14]; in such an architecture, dedicated processors may be used to
solve the inverse kinematics of the VGTM segments concurrently, thereby providing a quantum
improvement in efficiency.

417

RN NN

B 8 &8 B

~~
G
g W
[5] 7z
o U ref. curve
7] ’l Z
— f /~
[} ?: ?'
£ A v
. W,
B 0
B ma
= Yy
o e conventional
(O 1) A Y
| A 7
| AV
77
A
Z
Z
Z
7

RIS
ORI
RN RN RN RN
v) N

IENNNNNAN

s | N

Number of Bays

Figure 9: Run-time Comparison

Analytical Description of Manipulator Shape An analytical expression for the manipu-
lator’s shape is helpful when describing robot/environment interactions. An important part of
many obstacle avoidance routines involves finding the closest point to the obstacle on the manip-
ulator [4,5,11]. Using the shape curve equation and quickly-converging iterative solvers, we may
readily solve for these critical points. An analytical description may also be incorporated into a
mathematical model of the manipulator’s workspace to predict collisions.

Variable Degree of Redundancy Since the global inverse kinematics problem has been shifted
from the manipulator to the reference curve, we may specify the degree of redundancy a priori
by choosing the number of control vertices used to describe the space curve. For instance, if it
is known that the VGTM is to operate in a very simple, obstacle-free workspace, then only a
minimum number of degrees of freedom — enough to satisfy the external constraints — need be
included; conversely, a complex workspace will demand the use of more control vertices. There is
a limit, of course: it will be impossible for the manipulator to track a shape curve that has more
degrees of freedom than itself. Yet, this flexiblity in choosing the degree of redundancy may be
used to reduce computational overhead.

4.8 Generality

While developed for application to truss manipulators, the reference curve method is general
enough to find use as a redundancy resolution technique with more conventional robotic arms.
The first step in the algorithm remains the same since the kinematics of the reference curve is
independant of the manipulator. The second step — the tracking problem — may be applied to
any robotic arm that can be easily segmented into smaller manipulators.

418

5 Conclusions

A generalized kinematic description has been presented for variable-geometry-truss manipulators.
From this description, a solution to the inverse kinematics problem was found by conventional
means. An alternative technique — based on reference shape curves — was developed and applied
to VGTMs in the hopes of improving the efficiency of the straightforward approach, as well to
inject some geometric insight in the description of the manipulator’s shape. The new technique
succeeded in solving the inverse kinematics problem with a significantly decreased computation
time. Further advantages were noted:

e Technique is attractive to obstacle avoidance and collision detection applications;
e Problem structure is applicable to parallel processing;

e Variable degree of redundancy

e Generality

The preliminary success of this new method is encouraging for the development of real-time-control
robotic facilities based on truss manipulators.

6 Acknowledgements

The authors would like to acknowledge research support from The Natural Sciences and Engineer-
ing Research Council of Canada, and would like to thank the following for their help: V. Pugliese,
members of the Space Dynamics and Control Group, and Dynacon Enterprises Ltd.

7 References

1. CraiG, J. Introduction to Robotics, Mechanics and Conirol, Addison-Wesley, 1986.

2. GOLDENBERG, A. ET AL. “A Complete Generalized Solution to the Inverse Kinematics of Robots”
IEEFE Journal of Robotics and Automation, Vol. Ra, No.1, March 1985.

3. HoLLERBACH, J.M. & SuH, K.C. “Redundancy Resolution of Manipulators Through Torque Opti-
mization,” IEEE Journal of Robotics and Automation, Vol. RA-3, No. 4, August 1987.

4. KHATIB, O. “Real-Time Obstacle Avoidance for Manipulators and Mobile Robots,” International Jour-
nal of Robotics Research, Vol. 5, No. 1, Spring 1986.

5. KIrRcaNskl, M. & VUukoBRrRATOVIC, M. “Contribution to Control of Redundant Robotic Manipulators
in an Environment with Obstacles,” Intl. Journal of Robotlics Research, Vol.5, No. 4, Winter 1986.

6. KLEIN, C.A. & Huang, C.-H. “Review of Pseudoinverse Control for Use With Kinematically Redun-
dant Manipulators,” IEEFE Transactlions on Systems, Man and Cybernetics, Vol. SMC-13, No. 3,
March/April 1983.

7. LIEGEOIs, A. “Automatic Supervisory Control of the Configuration and Behavior of Multibody Me-
chanics,” IEEE Transactions on Systems, Man and Cybernetics, Vol. SMC-7, No. 12, Dec. 1977.

419

8. MACIEJEWSKI, A.A. & KLEIN, C.A. “Obstacle Avoidance for Kinematically Redundant Manipulators

in Dynamically Varying Environments,” International Journal of Robotics Research, Vol. 4, No. 3,
Fall 1985.

9. Miura, K. & Furuva, H. “Variable Geometry Truss and Its Application to Deployable Truss and

10.

11.

12.
13.
14.
15.
16.

17.

18.

Space Crane Arms,” 35th Congress of the International Astronautical Federation, Lausanne, Switzer-
land, Oct. 7-13, 1984 [IAF-84-394].

Miura, K. & Furuya, H. “An Adaptive Structure Concept for Future Space Applications,” 36th
Congress of the International Astronautical Federation, Stockholm, Sweden, Oct. 7-12, 1985 [IAF-
85-211].

NAKAMURA, Y. & HaNarFusa, H. “Optimal Redundancy Control of Robot Manipulators,” Interna-
tional Journal of Robotics Research, Vol. 6, No. 1, Spring 1987.

NAYFEH, A.H. “Kinematics of Foldable Discrete Space Cranes,” NASA CR176360, 1985.
NOBLE, B. & DANIEL, J.W. Applied Linear Algebra, 2nd Ed., Prentice-Hall, New Jersey 1977.
OSTERHAUG, A. Guide to Parallel Programming, Sequent Computer Systems, Oregon, 1987.
PauL, R. Robot Manipulators, MIT Press, Cambridge, 1981.

RHODES, M.D. & MikuLas, M.M. “Deployable Controllable Geometry Truss Beam,” NASA TM-
86366, 1985.

RoGERs, D.F. & ApaMs, J.A. Mathematical Elements for Computer Graphics, McGraw-Hill, New
York, 1976.

SINCARSIN, W.G. & HuGHES, P.C. Trussarm: Candidate Geometries, Dynacon Enterprises Ltd.,
Toronto, 1987.

420

N90-23034
DETERMINATION OF JOINT DRIVES FOR STABLE END-EFFECTOR MOTION
IN FLEXIBLE ROBOTIC SYSTEMS

SITKI KEMAL IDER
Assistant Professor
Department of Mechanical Engineering
Middle East Technical University, Ankara, Turkey

ABSTRACT

The prescribed tasks in high speed robotic systems are severely
deteriorated because of their manipulator dynamic deflections. On the
other hand conventional dynamic modeling techniques fail to reveal
appopriate control forces in flexible systems. In this paper the
conventional dynamic equations of motion for systems subject to
kinematical constraints are modified by a new concept of control force
representation. The directions of the control forces are selected such
that they correspond to the joint degrees of freedom. Then the joint
control forces and torques that yield unperturbed prescribed motions are
solved simultaneously with the system motion. A flexible manipulator is
presented to illustrate the methods proposed.

1. INTRODUCTION

The operation of high speed robots 1is severely limited by their
manipulator dynamic defliection. The vibrations deteriorate the accuracies
of the prescribed tasks assigned to certain points and significantly
reduce the robot arm production rate. Hence determination of the
appropriate control forces and torques at the joints that yield stable
prescribed motions is an important control praoblem.

In this paper geometrical constraints represent geometrical
restrictions such as closed loops and physical guides. On the other hand
kinematical constraints represent prescribed desired paths or prescribed
motions of certain points or bodies. Such prescribed motions are to be
realized by control forces applied by the actuators in the system which
are usually placed at the joints.

In the conventional approach, constraints in the system are modeled
by constraint reaction forces whose directions are perpendicular to the
constraint surfaces. (See Yoo and Haug [1], Shabana [2], Kamman and Huston
[3], Hemami and Weimer [4], Nikravesh [5].) Using conventional methods,
when the prescribed motions are treated as constraint equations and
embedded into the governing equations of motion, the corresponding
generalized constraint reaction forces can be determined. However these
forces cannot be utilized as physically possible control forces due to the

421

presence of components that correspond to the elastic coordinates. For
this reason previous solution procedures involved feedback and adaptive
control algorithms which in turn increase the complexity of the problem
considerably.

In this paper the kinematical constraints are modeled by general
direction control forces. The modified equations of motion for flexible
multibody and robotic systems subject to geometrical and kinematical cons-
traints are developed. The directions of the control forces are selected
such that they correspond to the joint degrees of freedom. By this way
joint control forces and torques that achieve the unperturbed prescribed
motions are solved simultaneocusly with the corresponding system motion.
The modeling of flexible multibody systems in joint space based on finite
element method and component mode synthesis, as developed in references
Ider [6], Ider and Amirouche [7] is also outlined. In the equations of
motion all nonlinear 1interactions between the rigid body and elastic
coordinates are automatically incorporated.

This paper is divided into seven sections. The first section provided
an introduction. In the second section kinematics and constraint equations
in flexible multibody systems are outlined. The conventional equations of
motion for constrained systems are presented in the third section. 1In
section four the problems with the conventional approach are discussed. In
the fifth section the modified equations of motion with general direction
control forces are developed. Sixth section presents the simulations of a
flexible manipulator by the proposed method. Conclusions form the last
section.

2. FLEXIBLE MULTIBODY KINEMATICS AND CONSTRAINT EQUATIONS

In a multibody system each joint connection can be described by a total of
six degrees of freedom. The constrained joint coordinates are eliminated
in the analysis, hence all possible joint types are allowed. The system
may contain closed loops and any selected points may have prescribed
motions. First the recursive dynamical equations are developed for a tree
configuration which 1is obtained by cutting the closed loops open (using
any arbitrary joint in the loop). Closed loops and prescribed motions are
then imposed as a set of constraint equations.

In Figure 1, a typical deformable body Bk and its lower connecting
body Bj; are shown. The joint between Bk and B;j is the lower joint of Bk
and 1s defined by points Qk and Qk and axis frames n* and nk* fixed at
these points. The elastic deformations are modeled by finite element
method with respect to a body reference axis frame denoted by Nk. Nk, in
general, is not fixed to a point on the body. It follows the rigid body
motion of Bk in a manner consistent with the specified boundary
conditions [6,7].

The position of the system can be described by the relative joint
coordinates of each body and the modal coordinates of the flexible bodies.
Translation of nk with respect to nk* is denoted by vector zk. For the
relative rigid body rotation degrees of freedom, successive Euler angles
in transforming n* to nk* can be used. The modal coordinates nk, j=1,..,mk

422

element 4

local position
vector

u

lower body
vector

Figure 1. A multibody system

of each body Bk represent the normal modes of deformation obtained by
component mode synthesis and mk is the number of the modes considered.

Let vector wk represent the angular velocity of nk with respect to
nk*, Then the generalized speeds of the system can be conveniently
selected as the relative angular velocity components, the relative
trarslational velocity components and the modal coordinate derivatives.
The vector of the system generalized speeds y can be defined as

y = [Wh, 27,q7]7 (1)
where

W= (W, Wi, Wh,..., WY, WY, Wit (2)

z=1[2), 23, 2},..., 2%, 2, 417 (3)
and

A= DAL Al ey AT ARLTT (4)

For the dynamical equations we need the velocity, in fixed frame R,
of an arbitrary point P in finite element i of body Bk. To this end, the
angular velocity of Nk in R, wk, 1is obtained by summing successive
relative angular velocites and can be compactly expressed as

423

wk = vk iy + pkp (5)

where vk and pk are the partial angular velocity matrices composed of the
coeffficients of the generalized speeds w and i, respectively.

It can be shown [6,7] that the velocity of point P in R could be
written as

vkiz aki @ + bk z + ckin (6)

where aki, bk and cki are the partial velocity arrays associated with W, 2
and R, and are functions of displacements only.

Depending on each joint type, the constrained joint coordinates are
then eliminated in the generalized speed vectors w and z (equations (2),
(3)). When the corresponding columns of the partial velocity matrices are
eliminated, vk and aki are 3xni1 matrices, and bk is a 3xnz matrix, where
ni is the total number of the free joint rotation degrees of freedom and
nz 1is the total number of the free joint translation degrees of freedom.
The remaining arrays mk and cki are 3xm (m=m'+...+mV).

Let the tree structure have n degrees of freedom (n=n: + nz2 + m), and
let the total number of closed loop and prescribed motion type of
constraints be c¢. Then the system’s degrees of freedom reduce to n-c.

The constraint equations can be generated using the partial velocity
matrices., For example, if a point say A in Br has a prescribed motion, and
the prescribed velocity vector of that point is given by g(t) with respect
to R, then denoting the local undeformed vector from Or to A by §",the
resulting three constraint equations are

ari W+ brz+crin =g ¢

where a"? and cri correspond to sr.
Similarly 1if the refence axis frame of Br has a prescribed angular

velocity h(t), we have
v W+pMri = h (8)
For a closed loop type of constraint, let Br and Bs connect with each
other to form a closed loop in 3-D. Differentiation of the position vector

equation expressing 1loop closure Jleads to the three velocity level
constraint equations,

(ari-ast) W + (br-bs) z + (cri-csi)pn =0 (9)

The holonomic and nonholonomic constraint equations can be compactly
written as

424

By-=g (10)

where B is a cxn constraint matrix and g contains prescribed velocities.

3. CONSTRAINT REACTION FORCES AND EQUATIONS OF MOTION

Kane's equations for the constrained system can be written as

F+F*+S8+F =0 (11)
where F, F*, S and Fc are respectively the vectors of generalized
external, inertia, stiffness and constraint forces.

The generalized inertia forces F* can be written in the following
form,

F*F =My +Q (12)

where individual submatrices of M and Q can be expressed in terms of the
partial velocity matrices [7] as,

akiT aki sym.
M=X% akiT pk bkT pk pdv (13)
K1 Vi
akiT cki bkT cki ckiTgki
and
akiT(aki w + bk z + ckif)
Q=£% akiT (aki W + bk 2 + ckifg) |pdV (14)
kT Vi

akiT(aki w + bk 2 + ckip)

The stiffness vector S is obtained from the structural and
geometrical stiffness matrices of each body expressed in modal
coordinates.

The generalized constraint forces F¢ can be expressed as

Fc = BT A (15)

where)\ is the vector of undetermined multipliers. Since the rows of B are
the partial velocity vectors, M\i, 1i=1,...,c represent the constraint
reaction forces generated at the application of the constraints. A row of

425

B can also be viewed as the direction of that constraint in the

generalized space.
Substitution of equations (12) and (15) into eq. (11) leads to

My+S+Q+BT \=F (16)

Our purpose is to find the accelerations for numerical integration.
To this end the constraint equations in the acceleration level are

By=9g-By (17)

Equations (16) and (17) constitute n+c equations from which the
accelerations and the undetermined multipliers can be obtained.

The multipliers could be eliminated for computational efficiency. To
this end, let C denote a nx(n-c) matrix which is orthogonal complement to
B [8]. Premultiplying eq. (16) by C7, and combining the resulting equation
with eq. (17), we obtain the augmented equations for the constrained
system as below.

cTM] CT(F-$-Q)
[-—-—] y =|-------] (18)
B

4. PROBLEMS WITH THE CONVENTIONAL APPROACH

In the conventional approach the constraints in the system are modeled by
constraint reaction forces which are perpendicular to constraint surfaces.
They represent the reactions of the environment. However kinematical cons-
traints represent desired motions and are meant to be realized by internal
control forces. Kinematical constraints are particularly important in
robotic systems where certain points are assigned specific tasks that
should be realized by joint actuators.

let c¢1 of the constraints in the system be geometric and the
remaining c2 (c2zc-c1) be kinematical. The matrix of the constraint force
directions B and the vector of constraint force magnitudes A\ can be
partitioned such that

B = [BsT BK"}T (19)
and

A o= ST N\KT] (20)
where the dimensions of BG, BK, X6 and \K are cixn, c2xn, c¢1 and c2
respectively.

Then eq. (16) can be written in the following form

426

My+Q+S+FS +FK=zF (21)
where the generalized constraint forces FS and FX corresponding
respectively to geometrical and kinematical constraints are

FG = BG®)G (22)
and

FK = BKT)X (23)

[k}

The constrained system as given by eq. (18) could be simulated to
determine the generalized constraint forces. 1In view of eq. (21), then
control forces numerically equal to FX would yield the same motion of the
system ensuring the realization of the desired motions.

However, 1in flexible systems FK contains components that correspond
to the elastic coordinates in addition to the components that correspond
to the joint coordinates. While the latter can be applied by the joint
actuators as control forces, the former cannot be produced by a physical
means as control forces. That FK has components in the direction of the
elastic coordinates is apparent from eqgs. (7) and (8) where the
coefficients of the generalized speeds form the vectors of BX in eg. (23).
Hence, with the conventional approach it is not possible to design a set
of control forces that can achieve unperturbed prescribed motions in
flexible robotic and multibody systems.

5. CONTROL FORCES FOR KINEMATICAL CONSTRAINTS AND MODIFIED EQUATION OF
MOTION :

Since kinematical constraints are to be realized by control forces in the
system, general direction control forces are introduced to the equations
of motion, so that

My+Q+ S+ BS)\GT+ BT \K + ATm = F (24)
where A 1is a czxn matrix of control force directions and M is a c2
dimensional vector of control force magnitudes. Let the control force
directions are selected such that the constraint reaction forces

corresponding to the kinematical constraints become zero. Then eq. (24)
can be written as follows, as shown in accompanying paper (Ider [9]).

My +Q+S+ 2Ty = F (25)

where

ZT = [BST AT] (26)

427

and
vT = [N uT] (27)

The directions A need to be selected from physical considerations and then
equations (25) and (17) can be solved together to compute the control
force magnitudes and the corresponding generalized accelerations. A should
be chosen such that rank of Z is ¢, so that cz kinematical conditions
could be controlled.

Let T be a cx(n-c) matrix orthogonal complement to Z. Premultiplying
eq. (25) by TT and augmenting with eq. (17), we obtain reduced equations

o7 & (F-5-Q)
B O et (28)
B

The selected control force directions can realize the prescribed
motions if and only if the augmented mass matrix in eq. (28) 1is non
singular. Hence singularity of the augmented mass matrix represents a
condition to test the solution. In other words, the directions A should be
such that the vector space spanned by the rows of B and the vector space
spanned by the rows of CT are nonintersecting [9].

It has been observed that for flexible robotic systems if the control
forces are selected 1in the directions along the corresponding joint
degrees of freedom the augmented mass matrix becomes full rank and hence
it i1s possible to realize the kinematical constraints by actuators at the
joints., This will be 1illustrated by the simulations of a flexible
manipulator in the next section.

6. SIMULATIONS OF A FLEXIBLE MANIPULATOR

In the planar manipulator shown in Figure 2, 1link 2 is a flexible 1link,
while 1ink 1 is treated rigid. The data used for link t are Li=1m, m1=30kg
and I1=10 kg.m2. Link 2 is modeled by beam elements with deformation
displacement and rotation nodal coordinates [10], and L2=2.7m, a=1.8m,
mz2=15kg, E=68.95x109 N/m?2 and area A=0.0005 m2. The 1longitudinal
deformation 1is neglected due to the axial stiffness and the transverse
deflection is described by the first two modes since higher modes were
observed to be negligible. Therefore the generalized coordinates of the
system are 81, 82, and modal coordinates fq1 and nz2. The generalized speed
vector

Yy = [é‘: éz;':“vr-lle-
Initially the system is at rest, and 61=80° and 82=-160°¢, Point A on

link 2 is required to deploy from the given position 1.5m horizontally.
The prescribed motion of point A is given as

428

Figure 2. Flexible manipulator

XA = 1.5 = (t ——Z%sinz—“i') + 0.4862
(29)
ya = -0.7878
The constraint equations in the system can be expressed as
Lict + L2c12 - s12(@1n1 + P2n2) = xa
(30)
List + Lzs12z + ¢c12(Q1n1 + Q2n2) = ya

where 01 and 92 are the values that correspond to the location of point A
in the first and second eigenvectors respectively. €1=C0s61,
G12=c0s(01+02), s1=sinB1 and s12=sin(81+82).

At the acceleration level the constraints are given by eq. (17) where B
and g are

List+l2st12+ci2(Qin1+02n2) Lzst12+ci2(¢in1+02n2) 01s12 923512
B =
Lici+l2ci12-s12(Q1n1+02n2) Lzc12-s12(91N1+92n2) f1c12 ¢z2c12
and
g=[xa, 0]T. (31)

429

First the system is simulated using the conventional method. Notice
that both constraints in the system are kinematical. Our objective is to
determine joint moments M1 and Mz that would produce unperturbed desired
motion of point A. The generalized constraint forces in eq. (15) are

F1] [M{Lis1+Llzsiz+ci2(01n1+0202)]1}+ A2 {Lic1+L2ct12-812(01n1+02n2)}]
FS| I a1 {lzs12+cr12(01n1+0202)} + Az2{L2ciz-s12(Q1n1+02n2)}

- (32)
FS| | M@1s12 + A201Ci2

[Fi] [A102s12 + A20z2c12

The system is simulated for the deployment motion period T=1sec. The
generalized constraint forces obtained are plotted in Figure 3. Notice
that if one considers F$ and F$ as joint control moments, F3 and Fi will
be left unaccounted. They cannot be converted to any set of physically
applicable control forces or moments, and a simulation only with F1 and F2
as control moments My and M2 produces perturbations for point A.

Time (sec)
0.75 1.0

L

=100 -

Figure 3. Generalized constraigt force§ using conventional
method: 1. Fi , 2. Fz , 3. F3 , F4

430

Figure 4. Joint moments for unperturbed motion of A.
Flexible system: 1. M1 , 2. M2
Rigid system: 3. M1 , 4. M2

The system 1is then resimulated by the control force approach
presented 1in this paper. The control force directions are selected such
that they correspond to the joint coordinates 81 and 62, i.e.

1 0 0 0
S

The control forces ZTyv become

1 07 [V 1
0 1 Va2
2Ty = v + V2 = (34)
0 0 0
OJ 4] | O

This means that the required joint moments for unperturbed motion of point
A are Mi=vi and Mz=v2.

431

With the above control force directions, the augmented mass matrix
was observed to be full rank, i.e. singularity (or near singularity) did
not occur, conforming with physical expectations. The joint control
moments Mi and M2 that produce unperturbed motion of point A are plotted
in Figure 4.

For comparison, the system is resimulated with both bodies considered
rigid, and the joint moments corresponding to the rigid system are also
shown in Figure 4. The difference in the control moments for the flexible
system accounts for the effects of the elastic deformations.

7. CONCLUSIONS

This paper presented a general procedure to determine the joint control
forces and torques in flexible robotic systems, that realize prescribed
motions in an unperturbed manner. The method is based on a new approach
for modeling kinematical constraints by general direction control forces.
The control forces have been selected along the directions of the joint
degrees of freedom in the generalized space, and the control force
magnitudes are solved simultaneously with the corresponding system motion.

It has been shown that with the conventional approach of
perpendicular constraint forces a solution to the problem cannot be
obtained.

In the analysis the flexible bodies have been modeled by finite
element method and all interactions between the rigid and elastic motion
have been included. By the procedures presented in this paper the body
flexibilities can be controlled by applying forces and torques at the
Jjoints.

REFERENCES

1. Yoo, W. S., Haug, E. J., 1986, "Dynamics of Articulated Structures.

Part I. Theory", Joyrnal of Structural Mechanics, Vol. 14, pp.
105-126.

2. Shabana, A. A., 1985, "Automated Analysis of Constrained Systems of
Rigid and Flexible Bodies”, ASME Journal of Vibrations, Acoustigs.
Stress and Reliability in Desian, Vol. 107, pp. 431-439.

3. Kamman, J. W., Huston. R. L.. 1984, "Dynamics of Constrained Multibody

Systems”, ASME Journal of Applied Mechani¢s. Vol. 51, No. 4,
pp. 899-903.

4. Hemami, H., Weimer, F. C., 1981, "Modeling of Nonholonomic Dynamic

Systems with Applications”, ASME Journal of Applied Mechanics,
vol. 48, No. 1, pp. 177-182.

432

10.

11.

12.

Nikravesh, P. E., 1984, "Some Methods for Dynamics of Constrained
Mechanical Systems: A Survey", NATQ ASI Series, Vol. F9, Springer-
Verlag, Berlin, pp. 351-368.

Ider, S. K., 1988, "Stability and Dynamics of Constrained Flexible
Multibody Systems”, PhD Thesis, University of I1linois at Chicago.

Ider, S. K., Amirouche, F. M. L., 1989, "Nonlinear Modeling of
Flexible Multibody Systems Dynamics Subjected to Variable Constraints”

ASME Journal of Applied Mechanig¢s, Vol. 56, No. 2, pp. 444-450.

Ider, S. K., Amirouche, F. M. L., 1988, “Coordinate Reduction in the
Dynamics of Constrained Multibody Systems”, ASME Journal of Applied
Mechanics, Vol. 55, No. 4, pp. 899-905.

Ider, S. K., 1989, "Modeling of Control Forces for Kinematical Cons-
traints in the Dynamics of Multibody Systems-A New Approach”, 3rd

Annual Conf, on Aerospace Computational Control, Oxnard, CA, Sept.

Przemientecki, J. S., 1968, Theory of Matrix Structural Analysis,
McGraw-Hill, New York.

Naganathan, G., Soni, A. H., 1986, “Nonlinear Modeling of Kinematic
and Flexibility Effects in Manipulator Design”, ASME Paper, 86-DET-88.

Kane, T. R., Ryan, R. R., Banerjee, A. K., 1987, "Dynamics of a

Cantilever Beam Attached to a Moving Base”, Journal of Guidance,
Control and Dynamigs, Vol. 10, No.2, pp. 139-151.

433

N90-23035

CONTROL OF A FLEXIBLE PLANAR TRUSS
USING PROOF MASS ACTUATORS

Constantinos Minas*
Ephrahim Garcia
Daniel J. Inman

Department of Mechanical and Aerospace Engineering
State University of New York at Buffalo
Buffalo, N.Y. 14260

Abstract

A flexible structure was modelled and actively controlled by using a single space realizable
linear proof mass actuator. The NASA/UVA/UB actuator was attached to a flexible planar truss
structure at an “optimal” location and it was considered as both passive and active device. The
placement of the actuator was specified by examining the eigenvalues of the modified model that
included the actuator dynamics, and the frequency response functions of the modified system. The
electronic stiffness of the actuator was specified, such that the proof mass actuator system was
tuned to the fourth structural mode of the truss by using traditional vibration absorber design. The
active control law was limited to velocity feedback by integrating of the signals of two
accelerometers attached to the structure. The two lower modes of the closed-loop structure were
placed further in the LHS of the complex plane. The theoretically predicted passive and active
control law was experimentally verified.

1. Introduction

Large continuous structures, like space structures tend to have tight restrictions on the
actual response of the structure. A passive or active control design is often necessary for the
structure to satisfy the desired response restrictions. The success of the passive and active control
design is based on the accuracy of the model that describes the dynamic characteristics of the
structure. Flexible distributed parameter systems can be successfully modelled by finite element
analysis 1. This categorzy of structures is lightly damped and tends to have most of its mass
concentrated at the joints 2. Their natural frequencies are low and appear in closely spaced groups.
The finite element model of the structure that consists of a mass and a stiffness matrix, can be
reduced by traditional model reduction techniques by eliminating the insignificant displacements at
the nodal points 3. The dissipation energy of the system can be modelled by constructing a system
damping matrix, by assuming a normal mode system 4 and by using the damping ratios obtained
experimentally from modal parameter estimation methods 3,6 7. In the case where the
discrepancy between the analytical model and the experimentally obtained modal model is
significant, the reduced order analytical damped model can be further modified 8, such that it is in
agreement with the experimental natural frequencies, damping ratios and mode shapes
8,9,10,11,12,13, 1t is important to realize that the design of the "optima ” control is based on the
modified reduced order model, but it is actually applied to the real structure. Therefore, the model
improvement mentioned above, becomes very important and its accuracy is vital in the success of
the design of the control law.

The structure used here, is a planar truss constructed with space realizable links and joints
in the configuration presented in fig.1. The truss is lightly damped and has the behavior of a large

--------------------------- - - RSP P R LT S £ 1 bl Dl b bttt bbbt

*Currently with G.E. Corporate Research and Development Center, Advanced Projects
Laboratory, Schenectady, N.Y. 12301.

434

space structure, with most of its mass concentrated at the joints 2 1t possesses low resonant
frequencies that appear in closely spaced groups and has both translational and rotational modes of
vibration.

The structure is passively and actively controlled by a single actuator. The actuator used in
this experiment is the NASA/UVA/UB proof mass actuator system. The actuator dynamics are
taken into consideration and a global model is constructed which includes both the structure and the
actuator dynamics 14,15, The location of the actuator is specified 16,17 by examining the
eigenvalues of the uncontrolled global model and the frequency response functions of the global
system. The actuator is considered as both a passive and an active device with two design
variables, its electronic stiffness and the generated force. The electronic stiffness is specified such
that the actuator proof-mass-electronic-spring system is tuned to one of the structural modes of the

truss by using traditional vibration absorber design 18,19,20, The generated force of the actuator
is specified by using output feedback techniques. Here, the active control law was limited to
velocity feedback by integrating the signals of two accelerometers attached to the structure. The
objective is to move the two lower modes of the closed-loop structure further in the LHS of the

complex plane and at the same time maintain stability of the closed-loop system 21,22, The
theoretically predicted passive and active control law are experimentally implemented and the
results are evaluated.

2. Modeling
2.1 Construction of the Finite Element Model

The finite element model of the structure was constructed by using the commercially
available MSC/PAL package for dynamic modeling. The structure weighed 7.335 Kg and was
constructed with links and joints, mainly made of aluminum alloy. The density of the material was
measured experimentally by using standard techniques. The Young’s modulus of aluminum alloy
was used, since the links and joints are mainly constructed with this material. The nodal points of
the finite element model coincide with the location of the joints of the structure. Every nodal point
was allowed to have three degrees of freedom, that is translation in the z-axis and rotations about
the x and y-axis resulting in a 48-degree-of-freedom model (see Fig.1). The boundary conditions
were assumed to be clamped for nodes 15 and 16 and free for the rest of the nodes, since the
structure was supported as illustrated in fig.1. After the boundary conditions were applied the final
model was a 42-degree-of-freedom model.

2.2 Mass Distribution

The mass distribution of a non-uniform structure is a problem, that should by no means be
ignored. Here, two approaches were used. The first approach was to calculate an equivalent
internal diameter of the hollow links, such that the links had the measured mass. The links were
treated as uniform hollow tubes constructed with aluminum alloy with an equivalent length of
0.5m. The joints were modelled as a concentrated mass at the particular location and are treated as
rigid. The natural frequencies of this model were calculated and are presented in table 1. The
results were considered unsatisfactory and one of the links was disassembled for more insight to
the mass distribution of the link. In the second approach, the real inteal diameter of the links was
used and the excessive mass was distributed to the nodes accordingly. The resulting natural
frequencies of the model are compared to the experimental results in table 1. The finite element
model was constructed using a finer grid which include more nodal points, specifically an
additional nodal point at the mid-point of each link. The resulting model after the boundary
conditions were applied was a 126-degree-of-freedom model.

It can be concluded that the 45-node(126-dof) model is not significantly better than the 16-
node(42-dof) model in predicting the first fourteen natural frequencies. Therefore, it was found
unnecessary to use the 45-node(126-dof) model in the determination of the control design of the
structure, since the 16-node(42-dof) model was as accurate.

435

Table 1 : Comparison of the theoretical and experimental natural frequencies of
the structure.

FEM TEST I (rot accel)
Uniform mass distribution Corrected mass distribution
42dof 42doft 126dof 14dof SDOF analysis

Frequency in Hz

1 1.38 1.045 1.048 1.039 1.07

2 4.56 3.467 3.468 3.469 3.54

3 10.88 8.050 8.050 8.051 7.94

4 26.98 19.894 19.894 19.902 -

5 29.68 21.746 21.748 21.750 .

6 30.94 22.077 22.074 22.087 22.54

7 42.63 30.468 30.472 30.477 32.61

8 53.79 39.268 39.252 39.326 40.35

9 68.46 48.524 48.521 48.552 -

10 72.61 51.746 51.704 51.842 52.51

11 82.93 58.645 58.629 58.718 61.41

12 101.93 71.169 71.116 71.275 65.62

13 102.88 72.090 72.039 72.285 78.24

14 116.52 80.741 80.610 80.920 91.74

15 236.64 219.856 183.903 - 187.13

2.3 Model Reduction

Most of the control algorithms are designed for first order systems. Transforming the 16-
node(42-dof) model in the state space results in a 84-dof state space matrix. This matrix is quite
large, and it was found that it is difficult to manipulate in vibration prediction, and control
algorithms. Therefore, it was necessary to reduce the order of the model before performing control
analysis and designing a control law. From the configuration of the model the rotational degrees of
freedom can be considered as less significant than the translational ones, and can be eliminated
from the model by using the Guyan reduction method 3. The resulting reduced order model is a
14-dof model. Eigenvalue analysis of this model showed that this model maintained the first
fourteen natural frequencies of the larger model quite accurately. The damping ratios determined
from the modal test were used in the construction of the system’s damping matrix, by assuming
that the system exhibited normal mode behavior. The damping matrix is calculated by the
following equation:

D = MUgdiag(2{;w;)Ug! (1)
where Ugis the eigenvector matrix of M-1K, and {,are the experimentally obtained damping
ratios. The final reduced order model is described by the following equation:

Mq(t) +Dq(t) + Kq(1) = 0 (2)
This equation describes only the dynamic characteristics of the structure. The actuator dynamics
were considered important and they were included in the dynamic model.

2.4 Actuator Dynamics

The actuator that was used in this experiment was the NASA/UVA/UB proof mass
actuator, presented in fig.2. The actuator system is comprised of a movable proof mass (m, =
0.225Kg), a fixed coil that applies an electromagnetic force on the proof mass, an analog interface
board, a power amplifier and a linear variable differential transformer (LVDT) sensor. The LVDT
transducer is an electromechanical transducer that measures the relative position of the proof mass
with respect to the actuator housing. The actuator can be modelled as single degree of freedom
mass-spring system, with a variable electronic stiffness and the ability to apply a force on the

436

structure at the attachment point. An equal and opposite force is applied on the proof mass of the
actuator. The actuator is space-realizable in the sense that it does not have to be attached to the
ground. The equations of motion are written by taking into account the actuator dynamicslS.
Let’s assume that the actuator is attached to the structure at the ith nodal point. The global system
that includes both the structure and the actuator dynamics, is of higher order, equal to the order of
the original system plus the order of the actuator dynamics, and it is described by:

D, 0 . K, 0 0

M 0] -C q -k, q1_1{1
[Ol mprr] [qprf] * o || |* 0 [qprr] “lolfs G2

0 'cacto Cac Yprt 0 'kact 0 kac -1

where g, is the displacement of the proof mass (my,q), the scalars k, and c, are the stiffness and
damping of the electronic spring of the actuator, m,,, is the parasitic mass of the actuator, g is
force generated by the actuator, and the matrices M, ,D, and K, are the following matrices:

M, =M+ mpardiaglo,...,o,1,0,...,0] (3b)
K, = K + k,diag[0,...,0,1,0,...,0] (3¢)
D, = D + ¢,,diag[o,...,0,1,0,...,0] (3d)

This is referred to as the open-loop system and the mass, damping and stiffness matrices are
denoted by subscript (o) for convenience. Note that the non-zero elements correspond to the ith
row or/and column of the particular matrix or vector of the previous set of equations. The force f,
is the actuator-generated force applied on the structure. The electronic stiffness of the actuator can
be selected in a variety of ways for various design approaches.

3. Passive Control Design
3.1 Structural Modification Design

The parasitic mass of the actuator housing has the same effect as adding a dead parasitic
mass at the point of attachment. Increasing the mass of the structure is a structural modification,
with the direct effect of reducing the lower natural frequencies of the system. The natural
frequencies of the new model with the dead mass were examined both theoretically and
experimentally, and the results are tabulated in table 2. The experimental results are presented in
the form of point and transfer inertance (transfer function) plots. The transfer function of nodes 1
and 8, of both the original structure and the modified structure are presented in fig.3 and fig.4
respectively. The effect of attaching the PMA (inactive) was also examined. This configuration is
equivalent of having a dead mass equal to the parasitic mass of the actuator housing plus the proof
mass. However, when the actuator’s electronic stiffness is activated, the proof mass becomes an
additional degree of freedom, and it is not part of the parasitic mass any longer.

The results indicate that the modified structure has lower natural frequencies than the
original structure. This is true for the first five structural modes as indicated in the table above.
The experimental frequency response plots show that the level of the vibration response was
reduced considerably, especially in the lower frequency region.

If the design methodology was limited to structural modification, it will be considered
necessary to examine the effect of adding the dead mass at different nodal points. The results are
presented in table 3. The design criterion that was used to place the actuator was to reduce the
overall vibration level at node 1, because a sensitive device will be attached at that point. The
actuator cannot be placed at node 1 because there is no room. Note that different design criterion
results in different locations of the actuator. Placing the actuator at node 10 doesn’t reduce the
vibration at node 1 at all. Nodes 2, 3, and 4 have the same effect in reducing the vibration level of
node 1. But the first structural mode is shifted at 0.92 Hz. This was considered undesirable
because it is hard to control the low frequencies by active control. Placing the actuator at nodes 6,7
and 8 has the same effect in reducing the vibration level of node 1 and the first structural mode is
not shifted considerably. Therefore, any of nodes 6,7, and 8 can be used as an "optimal” location
of the actuator. The results that follow are for placing the actuator at node 8.

437

Table 2 : Comparison of the theoretical and experimental natural frequencies of
the structure with and without the parasitic mass.

FEM TEST I ~
w/o w w/o w dead mass w PMA inactive
Frequency in Hz

1 1.04 0.97 1.07 1.01 1.02
2 3.47 2.94 3.54 3.09 2.96
3 8.05 8.00 7.94 7.69 7.88
4 19.90 16.42 - 17.01 16.03
5 21.75 21.44 - 22.39
6 22.09 22.06 22.54 22.02 23.50
7 30.48 28.53 32.61 30.08 29.50
8 39.33 39.12 40.35 39.78 39.33
9 48.55 46.40 - - -

10 51.84 51.45 52.51 49.31 50.68
11 58.72 58.52 61.41 54.57 57.36
12 71.27 70.71 65.62 65.02 66.29
13 72.28 72.28 78.24 77.73 78.41
14 80.92 80.74 91.74 84.8 -

Table 3 : Comparison of the theoretical natural frequencies of the structure with
the parasitic mass at various nodal points.

FEM

W/0 8 2 3 4 5 6 1 10
Frequency in Hz
1.04 0.97 0.93 0.93 0.92 0.98 0.98 0.98 1.01
3.47 2.94 3.39 3.40 2.94 2.96 3.41 3.40 3.42
8.05 8.00 7.71 7.66 7.65 7.95 7.93 7.95 7.28
19.90 16.42 18.25 18.41 17.47 15.54 19.84 19.88 19.52
21.75 21.44 21.74 21.45 20.17 21.75 20.52 20.24 20.52
22.09 22.06 21.98 22.07 21.77 21.96 21.94 21.75 22.00
30.48 28.53 30.09 30.02 29.60 27.79 30.07 30.43 29.83
39.33 39.12 39.17 38.15 37.87 36.87 39.30 38.92 37.06
48.55 46.40 45.12 46.65 48.35 4835 43.27 45.40 43.03
10 51.84 51.45 51.67 49.02 49.76 50.89 49.56 51.40 51.83
11 58.72 58.52 54.15 57.71 5847 58.54 58.60 56.68 56.07
12 71.27 70.71 68.85 68.34 70.27 70.62 67.91 68.31 68.53
13 7228 7228 71.87 7226 7226 72.09 71.67 72.23 71.34
14 80.92 80.74 80.44 80.13 80.69 80.67 79.27 79.27 77.81

O 00 ~I NN B DD

3.2 Vibration absorber design
There are several criteria for tuning the absorber to a MDOF structure. The simplest
criterion is to tune the natural frequency of the absorber to exactly one of the natural frequencies of

the stmcturels, that is:

Wy ™ W (4a)
The design of the damped absorber results in an optimal tuned frequency given by 18,
-9
" (4b)

438

where y, is the ratio of the mass of the absorber (here, the proof mass) over the mass of the SDOF

structure (here, the modal mass at mode w). The ratio , or the modal mass can be calculated in a
trial and error procedure. The difficulty of applying the second method is the fact that it is difficult

to determine the optimal value for p for the higher modes 22,
An optimal tuning criterion for MDOF systems was presented in reference [19]. The

absorber frequency (w,) and damping coefficient (c,) are given by:

1+
(l+pt+“)?
¢,2 = m 202 O (5b)
* S ETENTIN
where,
p,=md? and p,= mad;]? (5¢)

The scalars m, and m, are the parasitic mass and the mass of the absorber, respectively, and the
scalar ¢, is the jth entry of the associated eigenvector of the ith mode, where j is the degree of

freedom corresponding to the location of the absorber. Note that the eigenvectors derived form the
finite element model, are normalized with respect to the mass matrix.

3.2.2 Experimental implementation of the passive control design

The stiffness of the PMA can be electronically varied, such that the actuator system can be
tuned to different frequencies. The PMA was attached to ground, and the LVDT signal was
examined for random signal input that generates an electromagnetic force on the proof mass. The
LVDT signal gives the relative position of the proof mass with respect to the housing of the
actuator. As it can be clearly seen in the experimental bode plot in fig.5, the PMA system is well
modelled by a SDOF system, with a natural frequency depending on the gain that determines the

electronic stiffness. The stiffness is a function of the external gain (a), and other electromagnetic
constants of the coil and the amplifier (included in the factor K) . The natural frequency of the
system is given by:

w, =121 \j aK/m, (6)

The damping in the actuator was identified as Coulomb damping due to the friction in the
bearings. An equivalent viscous coefficient was calculated from the frequency response functions
of the LVDT signal at particular tuning frequencies. It was found that the lower the tuning
frequency becomes, the higher the equivalent damping becomes. This is actually due to the fact
that at low frequencies the proof mass of the actuator cannot overcome the friction. As a
consequence, the natural frequency of the SDOF model of the actuator dynamics cannot go lower
than a certain frequency, since the stiffness is electronically determined and it depends on the
relative motion of the proof mass with respect to the housing of the actuator. It was found that the
actuator system behaves like an overdamped system when tuned to frequencies below 8 Hz.
Therefore, it was practically impossible to tune the actuator to frequencies lower than 8 Hz. Note
that, this range includes the three lower natural frequencies of the modified structure. Therefore,
the PMA is tuned to the fourth mode, by using the criteria described above. The results from only
the second criterion are presented here in the top part of fig.6, due to the fact that the plots from the
simple criterion (equation 4a) and the optimal tuning criterion (equation 5) were very similar. It can
be clearly seen that the vibration response is clearly reduced.

4. Active Control design

The active control law is implemented, by using one actuator and two sensors. The force
generator signal of the actuator was then given by:

439

f, = FCy(t) (7)

where F the feedback gain matrix and C the output matrix. The sensors were placed at node 1 and
node 4 as indicated in fig.1. Node 1 was chosen because this is the possible point of attachment of
a sensitive device, where the vibration level is required to be reduced. Node 4 was chosen,
because it moves in the opposite direction of node 1, when the structure is excited at one of its
rotational modes. Here, accelerometers were used and their signals were integrated once by an
analog computer, to give the corresponding velocity signals. The output position matrix was
therefore zero, and the velocity output matrix was of the form:

- 1 01x14
Cl [lea 1 len] ®)
The gain matrix is therefore given by:

F= [81 : 82] 9
where g; and g, are the two gains to be determined. Substituting into the previous equation results
in:

= 1 0l x14}
fy F[les 1 0yy14]q(t) (10)
The closed-loop system written in physical coordinate system, is given by the following equation:
Mg d(t) +D0L‘.l(t) + Ko q(t) = BoLFclf'l(t) (11)

The objective here is to calculate the gain matrix F such that the system has poles at the desired
locations. The right hand side of the previous equation is expanded as:

0 . 0 0 007)(15 0
_ 1) 1x14]_| & & Yixil
Bo FC, [0][31.&][01“ 1 01:11]_ O6x1s ’ 2
-1 800 -g 0,

Note that this is a square sparse asymmetric matrix with only four non-zero elements. This results
ina closed-loop system damping matrix of the form:

D, 0 0 (;)7x15 o
= “Cact g 29} 1x11
D¢ o | Ogris (13)
O'cact0 Cac 'glo 0 -8 lell

where c,, corresponds to the equivalent viscous damping coefficient of the actuator system.

The objective here, was to decrease the amplitude of the vibration response at the low
modes that have high participation factors. Note that, direct pole placement design could not be
applied since with one actuator and two sensors, only one closed-loop pole can be placed. The
gains were determined in an ad hoc design, from an algorithm that covered a broad region of
values, with the main objective to move the lower two poles further in the LHS complex plane.
The results are presented in table 6. It can be clearly seen that the closed-loop system is stable
when the two gains g, and g;, are in the region -10 to 10 and 0 to 15 respectively. A finer grid
that covered the part of the stable region, where the damping of the first two modes was increased

(g, from 0 to 10 and g, from 10 to 20) was also examined 22,

It was discovered that the “optimal ” gain of F= [5 : 15] increases the damping on modes
1,2, 4,5, 6 and decreases the damping at mode 3. Note that, further increase of the gains towards
the “optimal” direction, resulted in an unstable closed-loop system. The experimentally obtained
transfer functions of nodes 1 and 8, are presented in fig.6, and they are compared directly with the
open-loop system, tuned to the fourth structural mode. The results show clearly, a decrease in the
response at modes 1 and 2. The decrease of the vibration response is not very large as desired,
because of the following reasons:
(i) By using only one actuator and two sensors, we can only affect 4 elements of the 15x15 closed-
loop damping matrix.
(ii) Further increase in the gains towards the "optimal ” direction drives the third mode unstable.

440

(iii) We are trying to control a flexible structure with many significant modes that cannot be

ignored.
(iv) We are only using velocity feedback

It was also illustrated experimentally that by increasing the gains at higher values drove the
proof mass system unstable.

Table 6 : Determination of the feedback gain matrix

2 g
20 -15 -10 -5 0 5 10 15 20 25 30
20 U U U U U U U U U U U
-15 U U U U U U U U U U U
-10 U U U U U U U U U U U
-5 U U U U U U U U U U U
0 U U U S S U U U U U U
5 U U S S S S U U U U U
10 U U U S S S S U U U U
15 U U U U S S U U U U U
20 U U U U U 8] U U U U U
U = unstable, S = stable.

5. Closing Remarks

An experimental flexible planar truss structure was modelled and successfully controlled in
a passive and active way by using a space realizable linear proof mass actuator system. The PMA
was attached to the truss at a desired location, and tuned as traditional vibration absorber to one of
the structural modes of the truss by using several criteria. The actuator dynamics were
successfully modelled and taken into consideration in the design of the passive and active control
law. The active control design was adopted in the form of output velocity feedback by integrating
the signals of two accelerometers, attached to the structure. The limitations of this method were
indicated and difficulties of applying output feedback on large flexible structures with several
significant modes are identified and pointed out.

6. Acknowledgements

This work was supported in part by AFOSR grants no F49620-88-00018 and F49620-86-
6-0111. Much of the equipment used was funded through instrumatation grants numbers AFOSR-
85-0119 and AFOSR-88-450-0390.

7. References

(1) Shames, I.H. and Dym, C.L., 1985, Energy and Finite Element Methods in Structural
Mechanics, Hemisphere Publishing Corp., Chapter 16, pp.643-657.

(2) Balas, M. J., 1982, "Trends in Large Space Structure Control Theory: Fondest hopes, Wildest
Dreams,” IEEE Transactions on Automatic Control, Vol. AC-27, No. 3, June, pp. 522-535.

(3) Guyan, R.J., 1965, "Reduction of Stiffness and Mass Matrices,” AIAA Journal, Vol. 14,
pp.1627-1628.

(4) Caughey, T.K. and O’Kelly, M.E., 1965, "Classical Normal Modes in Damped Linear
Dynamic Systems,” ASME Joumal of Applied Mechanics, Vo. 32, pp.583-588.

(5) Ewins, D.J., 1986, Modal Testing: Theory and Practice, Research Studies Press Ltd.,
England.

(6) Ibrahim, S.R. and Mikulcik, E.C., 1976, "The Experimental Determination of Vibration
Parameters from Time Responses,” Shock and Vibration Bulletin, No. 46, pt.5, pp.187-196.

(7) Juang, J.N. and Pappa, R.S., 1985, ”An Eigensystem Realization Algorithm (ERA) for Modal
Parameter Identification and Model Reduction,” AIAA Journal of Guidance, Control and
Dynamics, vol.8, 5, Sept-Oct, pp.620-627.

441

(8) Kammer, D.C., 1987, ”An Optimum Approximation for Residual Stiffness in Linear System
Identification,” Proceedings of the 28th SDM Conference, Monterey, California, pp.277-287.

(9) Berman, A., 1984, "System Identification of Structural Dynamic Models-Theoretical and
Practical Bounds,” Proceedings of the 25th SDM Conference, Palm Springs, California, May,
pp.123-129.

(10) Berman, A. and Nagy, E.Y., 1983, "Improvement of a Large Analytical Model Using Test
Data,” AIAA Joumal, Vol.21, Aug., pp.1168-1173.

(11) Minas, C. and Inman, D.J., 1988, "Correcting Finite Element Models with Measured Modal
Results using Eigenstructure Assignment Methods,” Proceedings of the 6th International Modal
Analysis Conference, Orlando, Florida, February, pp.583-587. ‘

(12) Minas, C. and Inman, D.J., 1989, "Matching Finite Element Models to Modal Data,” ASME
Journal of V)ibration, Acoustics, Stress, and Reliability in Design, (accepted for publication, paper
No. 88-487). ‘

(13) Minas, C. and Inman, D.J., 1989, "Model Improvement by using Pole Placement Methods,”
Proceedings of the 12th Biennial ASME Conference in Vibration and Noise, Sept., Montreal,
Canada.

(14) Zimmerman, D. C., Homer, G. C., and Inman, D. J., 1988, "Microprocessor Controlled
Force Actuator,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 11, No. 3, May-June,
pp-230-236.

(15) Harokopos, E. G. and Mayne, R. W., 1986, "Motor Characteristics in the Control of a
Compliant Load,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 9, No. 1, Jan.-Feb.,
pp. 113-118.

(16) Chiang,H.D., Thorp, J.S., Wang, J.C., and Lu, J., 1989, "Optimal Controller Placements in
Large Scale Linear Systems,” Proceedings of the American Control Conference, pp.1615-1620.
(17) Min, 1.J., Chang, and Soong,T.T., 1980, "Optimal Controller Placement in Modal Control of
Complex Systems,” Journal of Mathematical Analysis and Applications, Vol.75, pp.340-358.

(18) Den Hartog, 1956, Mechanical Vibrations, 4th edition, McGraw-Hill, New York.

(19) Juang, J.N., 1984, Optimal Design of a Passive Vibration Absorber for a Truss Beam,”
AIAA Joumal of Guidance, Control and Dynamics, vol.7, 6, Nov.-Dec., pp.733-739.

(20) Miller, D.W. and Crawley, E.F., 1988, "Theoretical and Experimental Investigation of
Space-Realizable Inertial Actuation for Passive and Active Structural Control,” AIAA Journal of
Guidance, Control and Dynamics, vol.11, 5, Sept-Oct, pp.449-458.

(21) Andry, A.N., Shapiro, E.Y., and Chung, J.C., 1983, "Eigenstructure Assignment for Linear
Systems, "IEEE Transactions on Aerospace and Electronic Systems, ” Vol. AES-19, no.§,
September, pp.711-729.

(22) Minas, C., 1989, "Modeling and Active Control of Large Flexible Structures,” Ph.d.
dissertation, State University of New York at Buffalo .

442

1344

Outer

Shell Proof Mass Coil
LVDT
LVDT
Core
Acoelerometer./ L
near
Ba
Bearing se
aft
8
Actutor i the mass actuator tem
Fig 2 : Configuration of proof actuator sys
) LVDBT/FORCE
i 1 " A X i i i i
Sensor 2 8.8 L
4 PHASE 1 s
DEGREES 1 N
.)) -360.0 T
Fig.1 : Structure configuration with " T ' 7 T T ?
locations of sensors and actuator 1.000 EE— At . : :
AvY TF LIN |
CH 2/CH 1
152+ ,82- - L
VLTS/VLTS
— N
9.8
T T T T T T v T Al
e.2 LIN FREQ(H2) 64.00
FREQ(HZ): 14.375 MAG: ©8.5394 PHASE: -261.2

Fig.5 : Frequency Response function of the LVDT

signal of the Proof-mass-actuator tuned to 14.4 Hz

ALITVND ¥00d 40
SI 39vd TYNIDIHO

ACCELERATION-FORCE 8Z-

! l ACCELERATION/FORCE 8Z-
. " — " L A " n i N N . 1 n " " " " n
1088 7 | 2680 " g
- r
AV TF LIN AV TF LIN - -
CH 2/CH 1 | CH 3/CH 1 -
1z+ r82- i . 8Z+ /8Z- L
VLTS/VLTS VLTS/VLTS - ! r
MAG MAG L
- | o
I |

Al T Al a'a
8.0 LIN FREQ(HZ) 128.@

B-“fw /u . ,J\,_A'A, — LMIJM ;

T T T T T T T T

e.a LIN FREQ(HZ) 128.@

Fig.3 : Transfer function of the uncontrolled structure

ACCELERATION/FORCE 82~ ACCELERATION/FORCE 82Z-

| N 1 N N { . R R R N
19088 ' | 1890@ '
l
- | v |
|
Ay TF LIN — AY TF LIN
CH 2/7CH 1 [CH 3/CH 1
1z+ 82~ sz+ /82~
VLTS/VLTS VLTS/VLTS
MAG) MAG) i

T \ T T T A\ T T Y

a.e_ﬁ\.&«j\'LLJm'L‘ . . a.e_mJ@.“L -

8.e : FREQ(HZ) 120.8 0.0 LIN FREQ(HZ) 128.0

Fig.4 : Transfer function of the uncontrolled structure with parasitic mass

ALITYNO ¥00d 40
S| 39vd TVNIOIHO

Y44

ACCELERATION/FORCE 82- ACCELERATION/FORCE 8Z-

con.0 A N R — , —— 00.0 . . N R . N . N
Aav TF LIN av TF LIN
CH 2/CH 1 CH 3-CH 1
12+ /8Z- J BZ+ 82— |
VLTS/VLTS VLTS/VLTS
MAG 1 MAG . 3
]
)
-.N w -
2.0 8.8 L\.\ A
T L v T L§ T T T T T T T 1 Y T Y T Y T T T T Y
0.0 LIN FREQ(HZ) 128.¢ 2.0 LIN FREQUHZ) 129.9
ACCELERATION/FORCE 82- ACCELERATION/FORCE 82-
" A A " A i i " " " 4 " i " L A " A A " "
500.0 T 500.8 ;
av TF LIN av TF LIN
CH 2/CH 1 CH 3-CH 1
1Z+ /82— 82+ 82—~
VLTS/VLTS VLTS/VLTS
MAG 1 - MAG 1 L

L 4 -

T T T T T T T T T T T T T T T T T Y

9.0 LIN FREQ(HZ) 128.0

Fig.6 : Response of the passively controlled structure (top) and the actively controlled structure (bottom)

5
- W | a-B-BIExJ. e A |

LIN FREQ(HZ) 128.@

N90;23036

Simulation Studies Using Multibody Dynamics Code DART

James E. Keat
Photon Research Associates, Inc.

Abstract

DART is a multibody dynamics code developed by Photon Research
Associates for the Air Force Astronautics Laboratory (AFAL). The
code is intended primarily to simulate the dynamics of large space
structures, particularly during the deployment phase of their
missions. DART integrates nonlinear equations of motion
numerically. The number of bodies in the system being simulated is
arbitrary. The bodies’ interconnection joints can have an arbitrary
number of degrees of freedom between 0 and 6. Motions across the
joints can be large. Provision for simulating on-board control
systems is provided. Conservation of energy and momentum, when
applicable, are used to evaluate DART's performance.

After a brief description of DART, the paper describes studies
made to test the program prior to its delivery to AFAL. Three
studies are described. The first is a large angle reorientating of a
flexible spacecraft consisting of a rigid central hub and four flexible
booms. Reorientation was accomplished by a single-cycle sine wave
shape torque input. In the second study, an appendage, mounted on a
spacecraft, was slewed through a large angle. Four closed-loop
control systems provided control of this appendage and of the
spacecraft's attitude. The third study simulated the deployment of
the rim of a bicycle wheel configuration large space structure. This
system contained 18 bodies. An interesting and unexpected feature
of the dynamics was a pulsing phenomena experienced by the stays
whose playout was used to control the deployment.

The paper concludes with a short description of the current
status of DART.

N9642303?

On Trajectory Generation for Flexible Space Crane:
Inverse Dynamics Analysis by LATDYN

G-S. Chen
Jet Propulsion Laboratory/California Institute of Technology
J. M. Housner
NASA Langley Research Center
S$-C. Wu and C-W. Chang
The COMTEK Company

Abstract

For future in-space construction facility, one or more space
cranes capable of manipulating and positioning large and massive
spacecraft components will be needed. Because the space systems
being constructed are relatively large and massive, the space cranes
must have a reach on the order of 100-meter and be made of truss-
type construction for structural efficiency. In order to optimize space
crane’'s performance, an operational strategy consisting of gross-
motion and fine-motion phases was proposed. Under this strategy, a
space crane is commanded into position in a relatively fast pre-
planned trajectory with relaxed requirements, and then 'rigidized”
by bracing against either the workpiece or an auxiliary support
structure. After bracing, the subsequent fine motion will not involve
the major crane bodies, and the precision movements between the
workpieces can be performed without the adverse flexible crane
body effect.

Inverse dynamics has been extensively studied as a basis for
trajectory generation and control of robot manipulators. This paper
will focus on trajectory generation in the gross-motion phase of space
crane operation. Inverse dynamics of the flexible crane body is much
more complex and intricate as compared with a rigid robot link. To
model and solve the space crane's inverse dynamics problem,
LATDYN program which employs a three-dimensional finite element
formulation for the multibody truss-type structures will be used.
The formulation is oriented toward a joint dominated structure which
is suitable for the proposed space crane concept. To track a planned

447

trajectory, procedures will be developed to obtain the actuation
profile and dynamics envelope which are pertinent to the design and
performance requirements of the space crane concept.

448

N90-23038

MINIMUM ATTAINABLE RMS ATTITUDE ERROR
USING CO-LOCATED RATE SENSORS

A. V. Balakrishnant

Abstract

In this paper we announce a closed form analytical expression for the minimum attain-
able attitude error (as well as the error rate) in a flexible beam by feedback control using
co-located rate sensors. For simplicity, we consider a beam clamped at one end with an
offset mass (antenna) at the other end where the controls and sensors are located. Both
control moment generators and force actuators are provided. The results apply to any beam-
like lattice-type truss, and provide the kind of performance criteria needed under CSI —

Controls-Structures-Integrated optimization.

1 Research Supported in part under NAS1-18585 Task Assignment 49.

449

1. Introduction

One of the challenges in the Design Challenge For Flexible Flight Structure Control
System Design formulated in the inaugural paper on SCOLE [1] was to hold the antenna
pointing error within £0.02 degrees after slewing by appropriate feedback control. In this
paper we derive a closed form expression for the minimal achievable mean square pointing
error using co-located rate sensors. A slightly simplified form of the SCOLE article (which
eliminates rigid-body modes) is used: a cantilevered beam with an offset mass where the
controls — both c.m.g.'s and force actuators — and the rate sensors are located. Our results
are in terms of continuum model parameters — the uniform Bemoulli version is used. The
beam dynamics are given in Section 2. The main results are in Section 3. We note that a
technique for deriving equivalent Bernoulli beam parameters for various types of trusses is
described by Noor and Anderson in [4]. Recently Noor and Russell [5] presented equivalent
anisotropic Timoshenko beam models for beam-like lattice trusses with an arbitrary degree of
modal coupling, which appear to yield excellent agreement with modal frequencies derived
from finite element models. Our theory is able to handle these Timoshenko models, and
moreover we can also use it for rigid-body modes, although they are not included here. Thus

our results can be used for any beam-like lattice truss structure.

450

2. The Model

We consider a uniform Bernoulli beam clamped at one end with an offset mass (antenna)
at the other end which also houses the sensors and actuators. See Figure 1. We allow for both
force actuators and moment actuators. The sensors are rate gyros. Because of the clamping at
one end, no rigid-body modes are involved and hence no attitude sensors are needed.

We allow bending in two mutually perpendicular planes containing the beam axis, as
well as torsion in the plane perpendicular to the beam axis, all uncoupled. The continuum
model (uniform Beroulli beam) dynamics can then be described by the following partial differ-
ential equations (similar to those in [2, 3]). Let the beam extend along the z-axis, 0 < s < L,
and let uy(s, 1), ug(s, 0, denote the bending displacements and uv(s, t) the torsion angle
about the beam axis. Let in the usual notation (cf. [1]), El, , Ely denote the flexural stiffness
and GI,, the torsional rigidity. Let p denote the mass per unit area a}ld A the cross-sectional

area. Then we have:

O%uy (s, u, (s,
pA—u%—S-—t) +EI¢—“%§;—O-O, O<s<L; O0<t

FPuy (s, ug (s,

A-—-‘%%;—Q +E19—‘-"§—{)-=0, O<s<L; O0<t¢
Puy, (s, 1)
plv—‘ﬂt-%z—--GIvu,;(s,t)so, O<s<L; 0<t

with the clamped boundary conditions at s = 0:
uy(0,) = ug(0, 8 = u, (0,0 =0
ug(0,7) = ug(0, 1) = 0.
The antenna center of gravity is located at
(rysry, L) .

The distance from the beam tip to antenna center of gravity is denoted by

451

Figure 1: Shuttle/Antenna Configuration

452

The force balance equation at s = L yields

ity (L,?)

l:) (1’ AN ?8 - Z’ u’g: 2
U y
Y e, ? 0%

where m is the antenna mass and fi(*), fa(-) are the applied control forces. The torque

balance equations yield

El,uy (L, 0 H)
0 = | ElgugL,) | + I,o + M(t) +r® | f2(9
Gl uy (L, 1) 0

iy (L, 1) + rpity (L, 1)
iig(L,#) + ryiay,(L,0)

where the superdots indicate time derivatives and the primes the derivatives with respect to
the spatial variable s; ® denotes the vector cross-product and ® the angular rate vector

ity (L, 1)

o = i, |,

iny (L, 1)
ia denotes the moment of inertia of the antenna about the beam tip (s = L) and finally, M(r)
denotes the applied control moment.

It is convenient to denote by b(¢) the boundary vector:

Uy {L,»n
ug(L,)
b() = | uy(L,?)
ug (L, 1)
uy (L, 0

The boundary rate vector would thus be b(t). Hence our sensor model is:
w(t) = b(r) + Ny(1)

where we assume that N, (r) is white Gaussian noise with spectral density matrix d,/, where

I is the identity (5%x5) matrix. Similarly we assume that the control actuators are also

453

characterized by additive white Gaussian noise. Denoting the applied control vector by u(z):

uy(L,?)
ua(L, 1)
u(t) = {uy(L,9
ug(L, 1)
us(L, 9
we have
F1()
fa | = u() + Ny
M)

where N,(r) is white Gaussian with spectral density d;. We shall also use M, to denote the

actuator mass/inertia matrix

m 0 0 0 mr,
0 0 0 mr
Mb - 0 A
0 o0 I,
mry, mr,
where
r§ —Ty7y 0
i, =1, + =TTy r? 0
0 0 r+r

where I, is the antenna moment of inertia about its center of gravity. For any control input
u(*) (which must perforce be a “feedback” control, based on the sensor data v(-)) the mean

square pointing error is then expressed by:

T T T
;{j uy(L, 0 dt + of ug(L, 1y dr + |ri2 of uy (L, 9 d:}

lim =%
T e 0

and the mean square pointing rate is given by

454

T T T
lim %{bf iy (L, 0t de + f ig(L, 0 de o+ |r? bf iy, (L, 1? dt} .

Tae 0
From the results in [6] it follows that the minimal attainable mean square pointing error is
given by
aM;la“‘
where
a = row vector (1, 1,0, 0, |r)

a* = transpose of a

3. Main Results

We need some notation first. The mean square attitude response, whatever the feed-
back control used is defined by

. l{ T 2 g 2 2 ! 2 }
lim 7 0fu¢(r, 02 dr + ofue(:, 22 dr + I ‘!uv(t, 02def. 3.1)

This is recognized as the mean square displacement of the center of gravity of the antenna
which is then also proportional to the mean square “pointing” error — see [1] for the
relationships.

Next let u denote any (vector) of control inputs — a constant “step” input:

u;
u
u = us | . 3.1)

Uy

us

Solve the equations
Elyuy"(s) = 0
Elgug”(s) = 0 O<s<L, (3.2)

Glyuy(s) = 0

455

subject to the end conditions
Elyuy'(L) = wu]
Elgug (L) = u
Elyuj(L) + w3 = 0 [. 3.3)

Elgug(L) + ug = 0

Glyug(L) + us = 0

Note that the solution can be recognized as the steady-state response of the system to the
step-input u, assuming that there is some.damping. We only need to calculate the response to
three specialized inputs:

Calculate the response to 44 (L) to the special case, Case 1, where:
U = 1

u;

=0, 2<isSs.
Calculate the response ug(L) to the special case, Case 2, where:
u =0
w =1
u3 = ug = us = 0.
Calculate the response i, (L) to the special case, Case 3, where
Uy = Uy = Uy = ug = 0
ug = 1.

Then the minimal achievable mean-square response whatever the choice of the feedback and

whatever the mean-square control effort, is given by
Vd,d, (uy(L)* + ug(L)* + Puy (L) . (3.4)

This is our main result. Unfortunately the derivation is beyond the scope of this report and

456

will be published elsewhere. To proceed further with (3.4) we calculate the solution of (3.2),
(3.3) explicitly. Thus for any u, the solution is of the form

u¢(8)=d333+02.\'2, O<s<L
ue(s)=b353+b2.\l, O<s<L

uy(s) = as, O<s<L
where
) U
“ 6El,
- 2
by = - &1,

S B WY 1 4
@ = 2[151, * El,

1w . wyl
”"2[151,*

Elg
. 1
) = .
GI,'
Thus for Case 1 we have
3
2 L
u.(L) - 3E”
and for Case 2 we have
2 L
(LY = 3,
and for Case 3:
L
(L)2 - —
“ GI,
Hence the mean-square attitude error
L} L3 |r|2L]
= Vdid, [351, * 31, *GI,)- 33)

Note the appearance of the noise parameters in (3.5) in product form.
The technique for calculating the minimal mean square atttiude error in more complex

models than that illustrated is the same: calculate the mean square step response (assuming

457

some damping) to unit step inputs.

In conclusion we suggest this result (3.5) can be the basis for combined structures-
controls optimization — CSI, since the required structural parameters can be calculated for a
lattice truss from the material gage and physical dimensions as in [4, 5]. We omit the details

of these calculations.

458

References

L

L. W. Taylor and A. V. Balakrishnan. “A Mathematical Problem and a Spacecraft Control
Laboratory Experiment (SCOLE): NASA/IEEE Design Challenge.” Proceedings of the
NASA SCOLE Workshop, Langley Research Center, December 1984.

A. V. Balakrishnan. “A Mathematical Formulation of the SCOLE Control Problem,
Part 1.” NASA CR 172581. May 198S.

A. V. Balakrishnan. “Control of Flexible Flight Structures.” In: Analyse mathematique et
applications. Paris: Gauthier-Villars, 1988.

A. K. Noor and C. M. Anderson. “Analysis of Beam-like Trusses.” Computer Methods in
Applied Mechanics and Engineering, Vol. 20 (1979).

A. K. Noor and W. C. Russell. “Anisotropic Continuum Models for Beam-like Lattice
Structures.” Computer Methods in Applied Mechanics and Engineering, Vol. 57 (1986).

A. V. Balakrishnan. “A Mathematical Formulation of the SCOLE Control Problem,
Part II: Optimal Compensator Design.” NASA CR 181720. December 1988.

459

N90-23039

Characterization of Robotics Parallel Algorithms and
Mapping onto a Reconfigurable SIMD Machine

C.S5.G.Leeand C.T. Lin

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

ABSTRACT

The kinematics, dynamics, Jacobian, and their corresponding inverse computations are six essential problems
in the control of robot manipulators. Efficient parallel algorithms for these computations are discussed and
analyzed. Their characteristics are identified and a scheme on the mapping of these algorithms to a reconfigurable
parallel architecture is presented. Based on the characteristics including type of parallelism, degree of parallelism,
uniformity of the operations, fundamental operations, data dependencies, and communication requirement, it is
shown that most of the algorithms for robotic computations possess highly regular properties and some common
structures, especially the linear recursive structure. Moreover, they are well-suited to be implemented on a single-
instruction-stream multiple-data-stream (SIMD) computer with reconfigurable interconnection network. The model
of a reconfigurable dual network SIMD machine with internal direct feedback is introduced. A systematic pro-
cedure to map these computations to the proposed machine is presented. A new scheduling problem for SIMD
machines is investigated and a heuristic algorithm, called neighborhood scheduling, that reorders the processing
sequence of subtasks to reduce the communication time is described. Mapping results of a benchmark algorithm are
illustrated and discussed.

1. Introduction

Robot manipulators are highly nonlinear systems and their dynamic performance is directly dependent on the
efficiency of the kinematic and dynamic models, the control schemes/algorithms, and the computer architecture for
computing the control schemes. In general, robot manipulators are usually servoed in the joint-variable space while
the objects to be manipulated are usually expressed in the world (or Cartesian) coordinate system. In order to con-
trol the position and orientation of the manipulator end-effector, the robot controller is required to compute, at a
sufficient rate, such tasks as coordinate transformation between the joint-variable space and the Cartesian space,
generalized forces/torques to drive the joint motors, the manipulator inertia matrix for model-based control schemes,
and the Jacobian matrix which relates the joint velocity in the joint-variable space to the Cartesian space. These are
the basic robotic computations for the control of robot manipulators. They are equivalent to the computations of
kinematics, dynamics, Jacobian, and their corresponding inverses. These six basic robotics computations are
required at various stages of robot arm control and computer simulation of robot motion, and reveal a basic charac-
teristic and common problem in robot manipulator control — intensive compulations with a high level of data
dependency. They have become major computational bottlenecks in the control of robot manipulators. Despite
their impressive speed, conventional general-purpose uniprocessor computers cannot efficiently handle the kinemat-
ics and dynamics computations at the required computation rate because their architectures limit them to a mostly
serial approach to computation. Furthermore, less efficient, serial computational algorithms must be used to com-
pute these robotics computations on a uniprocessor computer. Consequently, the quest for real-time robot arm con-
trol and motion simulation rests on the study and development of parallel algorithms of lower computational com-
plexity with faster computational structures. The ultimate goal is to achieve an order-of-magnitude and/or an
order-of-complexity improvement in computational efficiency in these robotics computations by taking advantage of
parallelism, pipelining, and architectures.

A common feature of today’s research on robotic computational problems is that a specific problem, mostly
the inverse dynamics or the inverse kinematics, is studied at a time, and usually an algorithmically-specialized
architecture or processor is developed for that particular algorithm. Obviously, this specialized architecture can
make the most use of the parallel properties of the algorithm. However, most advanced robot control schemes
always require to solve a combination of some or all of the six basic robotic computations. One solution for this
problem is to wire these specialized architectures or processors together. This method is inflexible because the com-
bination of these components is dedicated to a particular control scheme and cannot be used efficiently for another
scheme. Another solution is to connect the architectures or processors to a bus as peripherals of a general-purpose
computer. This is more flexible, but the bus becomes a bottleneck and time is wasted in data movements between
different computational processes. Another possible solution is focussed on partitioning the original algorithm/task
into a set of subtasks with precedence relationship and then developing efficient scheduling algorithms to map these

460

subtasks onto a general-purpose multiprocessor system. This solution is much more flexible because most computa-
tional algorithms can be represented by directed task graphs. However, this approach may result in ignoring some
inherent parallelism in robotics algorithms.

In this paper, we shall address these robotic computational problems, and major effort is focussed on finding a
scheme which provides the flexibility needed to solve robotic computational problems on the same architecture
while maintaining high efficiency by taking into account the inherent parallelism of robotics algorithms. To exploit
the inherent parallelism of these robotics algorithms, our approach is first to characterize the set of parallel robotic
algorithms based on the six specified characteristics and features, including type of parallelism, degree of parallel-
ism, uniformity of the operations, fundamental operations, data dependency, and communication requirement. Our
analysis shows that machines operating in the single-instruction-stream multiple-data-stream (SIMD) mode are the
most efficient and suitable for our robotic algorithms. By fully considering the common characteristics and inherent
parallelism of the robotics algorithms, a prototype of a medium-grained, reconfigurable, dual-network, SIMD
machine with internal direct feedback has been designed for the computation of these kinematic and dynamic com-
putational tasks. A systematic mapping procedure has been developed for scheduling these robotic computational
tasks onto the proposed SIMD machine. This procedure builds a task table which contains the subtask assignment
from the original parallel algorithm. Then a simplified task table and an input table are produced through the nota-
tion simplification. These two tables are then used as inputs to the neighborhood scheduling algorithm which reord-
ers the processing sequence of the subtasks into a rescheduled task table to reduce the communication time. Finally,
the subtasks in this rescheduled task table are mapped onto the proposed SIMD machine and a control table which
describes the control sequence in the machine is produced. A benchmark algorithm which contains the characteris-
tics of the six basic robotic computations has been implemented on the proposed SIMD machine, and the mapping
results are included for discussion.

2. Characteristics of Parallel Algorithms

A key factor to the design of a parallel architecture for a group of algorithms is the understanding of their
architectural requirements, and this requires us to identify the characteristics of these algorithms. This identification
is usually helpful because the algorithms from a given application area such as robotics often possess an identifiable
structure. In order to examine the characteristics of the six basic robotics parallel algorithms, a set of features which
have the greatest effects on the execution of parallel algorithms is defined for robotics application [1].

B Type of parallelism. Two levels of parallelism can be identified.

(a) Job-level parallelism. The original algorithm is reformulated to a parallel processable form. In this level,
the variables carrying the same kind of information but with different indices (e.g., for different links or
joints of a manipulator) are processed parallelly. Due to the nature of the robot’s serial link structure, vari-
ables representing the same physical meaning are defined for each link such as joint velocities, joint
accelerations, and joint torques. Usually, the same class of variables are produced through an identical
computational procedure but with different set of data. This property is called uniformity of operations as
defined below. So the job-level parallelism will often be amenable to the SIMD implementation and usu-
ally the required number of processors depends on the number of degrees of freedom of the manipulator
(i.e., one processor for each joint).

(b) Task-level parallelism. The original algorithm is decomposed into multiple subtasks. While the computa-
tion within a subtask is serial, the number of subtasks that can be processed concurrently is maximized by
using some scheduling techniques. Obviously, this implies multiple-instruction-stream multiple-data-
stream (MIMD) operations. Furthermore, for this level of parallelism, a subtask usually performs the same
computation for different set of data, and hence the operation can be pipelined. An advantage of this task-
level parallelism is that the required number of processors is independent of the number of degrees of free-
dom of the manipulator.

W Degree of paralielism (Granularity). Three levels of granularity are distinguished. In the large grain granular-
ity, the parallelism is performed at the algorithmic level. That is, only the parallelism between different seg-
ments or subtasks is considered. For the medium grain granularity, the concurrency is considered at the opera-
tion level and the parallelism is performed based on some basic mathematical operations such as vector cross
product and matrix-vector multiplication. If we consider the implementation of parallelism within the basic
arithmetic operations, then the fine grain granularity is achieved. Different degrees of parallelism often imply
different synchronization requirements. The finer the granularity is, the more frequent synchronization is
required.

B Uniformity of operations. A robotics algorithm is said to possess uniformity of operations if the required com-
putations for some set of variables, especially the joint variables, are uniform. An algorithm with operation uni-
formity can be implemented on an SIMD machine with higher efficiency.

461

B Fundamental operations. Algorithms in an application area usually perform similar mathematical operations.
The identification of basic operations performed in the algorithm will dictate the processor capabilities needed.

B Data dependency. Three kinds of data dependency are classified for robotics algorithms: local neighborhood
dependency, special type dependency, and global dependency. The local dependency means that the required
operands in an operation come from its neighborhood; for example, from the results of last operation or using
the same operands of last operation. The special type dependency is defined for some special equation or prob-
lem. There are some special types of data dependency that are peculiar and inherent to the robotics algorithms.
Among them, the homogeneous (or hetero-homogeneous) linear recursive type of dependency which describes
the data dependency in a homogeneous (or hetero-homogeneous) linear recursive equation appears most fre-
quently. This linear recurrence structure plays a major role in the robotics algorithms because the variables of a
joint are usually related to the corresponding variables of its adjacent joint due to the robot’s serial link structure.
Other special types of data dependency are defined for some well-known problems; for example, system of
linear equations and Column-Sweeping algorithm for a triangular linear system. The global dependency means
that the results of some operations may be required by other operations or equations that may appear in other
places of the algorithm. Since few algorithms possess absolutely one kind of data dependency, we can just iden-
tify whether an algorithm is local data dependency oriented or not. The data dependency in an algorithm usually
dictates memory organization, data allocation, and communication requirements.

B Communication requirement. The communication requirement decides the required interconnection type
between processor and processor or between processor and memory. Three types of interconnection are con-
sidered: one-to-one connection, permutation and broadcast connections. Of course, the exact required inter-
connection type for each computation in an algorithm depends on many factors such as task assignment of each
processor, data allocation in the memories, and data dependency of each computation. Hence, the exact
required interconnection type can only be decided at the time of the algorithm-architecture mapping process. In
examining the features of robotics parallel algorithms, only rough connection requirements can be observed.

3. Characterization of Basic Robotics Parallel Algorithms

Based on the above set of features, each of the six basic robotics algorithms have been carefully examined
and analyzed to find the common features and characteristics among them [2]. Only the final results are presented
here, which are useful for better understanding of the robotics computations and for designing a suitable parallel
architecture for their computations.

inverse Dynamics Problem. Among various methods for computing the inverse dynamics problem, the one based
on the Newton-Euler (NE) equations of motion is the most efficient (3). Since this method has been shown to pos-
sess the time lower bound of O(n) running on uniprocessor computers, where n is the number of degrees-of-
freedom of the manipulator, further substantial improvements in computational efficiency appear unlikely.
Nevertheless, some improvements could be achieved by taking advantage of particular computation structures [4],
customized algorithms/architectures for specific manipulators [5], parallel computations [6,7], and scheduling algo-
rithms for multiprocessor systems [8-11].

Forward Dynamics Problem. Among various methods for solving the forward dynamics problem [12-14], the
composite rigid-body method [12], based on the computation of the NE equations of motion, is widely used to
develop efficient parallel algorithms [14-16]. The composite rigid-body method is suitable for parallel processing
because efficient parallel algorithms for the inverse dynamics computation have been well developed and can be
used to speed up the computation time.

Forward Kinematics Problem. Using the Denavit-Hartenberg matrix representation for establishing the link coor-
dinate frames [17,18], the solution to the forward kinematics problem is the successive multiplication of the 4x4
homogeneous link transformation matrices for an n-link manipulator

T=A}ATAZ -+ Al - AL 1)

where Aé_, is the D-H link transformation matrix which relates the ith coordinate frame to the (i—1)th coordinate
frame [17,18). The above successive matrix multiplication equation can be reformulated in a homogeneous linear
recursive form

Ti=A)} and Th=Ti'Al, fori=2,--,n, V)
from which the configuration of all the coordinate frames can be obtained at the time lower bound [7,19,20].

Forward Jacoblan Problem. Existing methods in computing the Jacobian are mostly confined to uniprocessor
computers. In particular, Orin/Schrader [21], and Yeung/Lee [22] exploited the linear recurrence characteristics of
the Jacobian equations. These methods differed from each other only by a different selection of the reference

462

coordinate frame for computation. The reference coordinate frame is selected such that all the vectors and matrices
and the Jacobian computed are referred to that reference coordinate system. They all have the computational order
of O (n) for an n-jointed manipulator.

Inverse Jacoblan Problem. The inverse Jacobian algorithms for a general manipulator can be divided into two
categories. One is to calculate the inverse or the generalized inverse Jacobian explicitly [23]. The other is to con-
sider the inverse Jacobian problem as a system of linear equations and solve the joint rate from the Cartesian velo-
city implicitly [24]. For practical purposes, the latter approach is easier to be parallelized due to the use of some
standard techniques to solve a system of linear equations such as the Gaussian elimination method.

Inverse Kinematics Problem. In general, the inverse kinematic position solution can be obtained by various tech-
niques [18], among which the inverse transform [25] and the iterative method [26] are widely discussed. The
inverse transform technique yields a set of explicit, non-iterative joint angle equations which involve multiplica-
tions, additions, square root, and transcendental function operations. The iterative methods can obtain robot
independent joint solution, but they usually have some disadvantages: more computations than the closed-form
solution, variable computation time and, more important, convergence problem, especially in the singular and
degenerate cases. We shall examine the characteristics of the inverse transform technique and the iterative methods.

The equations for closed-form solution appear highly non-uniform [27]. To achieve higher parallelism for the
inverse kinematics problem, the iterative method provides a better approach, since nearly every presented iterative
method contains the computations of forward kinematics, forward Jacobian, and inverse Jacobian [26], which have
been shown to be highly parallclized.

If we consider these six basic robotics computations as a set of tasks that we need to compute for the control
of robot manipulators, then we need to find their common features and characteristics so that a parallel architecture
can be designed to efficiently compute these tasks. The characteristics of the six basic robotics algorithms are tabu-
lated in Table 1 and it shows that these algorithms do possess some important common features and characteristics.
This is especially true for the inverse dynamics, the forward dynamics, the forward kinematics, and the forward
Jacobian computations for the following three reasons. First, they are all suitable to be parallelized at the job-level
and the parallelization can be performed at the large, medium, and fine grain granularities simultaneously, although
different granularities are emphasized in each individual algorithm. Second, their operations are all uniform for the
variables corresponding to each joint, and the most important fundamental operation is the matrix-vector operation.
Finally, the strongest common feature is that they are all in homogeneous linear recursive form, for which the recur-
sive doubling technique can be applied to achieve the time lower bound of O([logyn]). The communication
requirement indicates that one-to-one and some regular or irregular permutation capabilities are required for these
four computational problems and the broadcast capability is necessary for the forward dynamics and the forward
Jacobian algorithms. This indicates that some efficient, versatile network is required in the parallel architecture for
their computations.

The inverse Jacobian and the inverse kinematics computations may seem less common to the above four algo-
rithms. However, if less efficient methods to solve these two problems are chosen individually, then these two algo-
rithms may possess some common features to the other four algorithms, and a common parallel architecture can be
designed to match all these common characteristics for their computations. From previous discussions, we found
that either the direct method or the iterative method for the inverse Jacobian is a proper candidate for parallel pro-
cessing, while the direct method is more efficient with somewhat complex data dependencies. For the inverse
kinematics problem, only the iterative method possesses regular properties similar to the other four computations.

With all the characteristics listed in Table 1, we shall next examine how to reformulate and parallelize these
robotics algorithms from their original serial algorithms by complying to their common features {2]. The paralleli-
zation process is performed at the job level; that is, we try to express the original algorithms as a sequence of serial
steps (jobs). Each individual step is accomplished through the cooperation of all the processors and for each step,
the operations of each processor are almost identical by using one of their common features: the uniformity of
operations. Hence, each step can be considered to be a single instruction in a serial program. Two different steps
(or jobs) are identified after the parallelization process: single steps and macro steps. The notion of *“single instruc-
tion’’ and ‘‘subroutine’’ of a serial program can be used to distinguish between these two steps. A single step
corresponds to a single instruction in a serial program, while a macro step corresponds to a subroutine in a serial
program. The macro steps require more complex parallel computations for all the processors, for example, the
homogeneous linear recursive equation, the hetero-homogeneous linear recursive equation, and the system of linear
equations are all macro steps. These macro steps are identified by their completeness and repeatity. The complete-
ness means that the step can be treated as an individual problem. The technique to process these macro steps paral-
lelly needs special consideration and the algorithm to solve these steps is so well-structured that finer decomposition
is not helpful or even impossible, for example, the parallel recursive doubling technique for solving the homogene-
ous linear recursive equation, or the parallel Cholesky factorization technique for solving the system linear

463

equations with a symmetric-positive-definite square matrix. The repeatity means that the problem which can be
solved in the step is so important and common that it appears repetitively at many other places; for example, many
equations of robotics algorithms are in homogeneous linear recursive form, then the procedure for parallelly solving
this problem can be applied to all these places. The method to parallelize each of these macro steps is designed
separately.

Instead of computing all the six basic robotics algorithms, we synthesize a benchmark algorithm (see Table 2)
which represents the general structure of the basic robotics parallel algorithms. This benchmark algorithm consists
of six serial steps, and each step needs the cooperation of n processors. This benchmark algorithm will be used to
demonstrate the whole process of mapping the "scrial type” parallel algorithms onto a proposed paratlel architecture
in the following sections.

4. Design of Algorithmically-Specialized Paraliel Architecture

In this section, an appropriate parallel architecture with the attributes that best match the common features of
the six basic robotics parallel algorithms is designed. The important parallel architecture attributes include the type
of machine (e.g., SIMD or MIMD mode), number of processors, synchronization requirement, processor capabili-
ties, memory organization, and network requirement. Each of these attributes is affected by one or more features of
the six basic robotics algorithms discussed in section 3. Detailed consideration for the design of this machine can be
found in [2]. With all these requirements and attributes, the appropriate parallel architecture is a reconfigurable,
dual-network, SIMD (DN-SIMD) machine for the computation of robotic algorithms.

The structure of the proposed DN-SIMD machine, as shown in Fig. 1, consists of multiple processing ele-
ments, two reconfigurable interconnection networks (RIN1 and RIN2), a set of global data registers (GDRs), three
data buffers including register output buffer, PE output buffer and input data buffer (IDB), and a set of multiplexers.
All of these are coordinated by a central control unit (CU) which is not shown in Fig. 1. The functions of each ele-
ment are briefly described here.

1. Processing Element (PE). There are n identical PEs. Each PE is essentially an arithmetic logic unit (ALU)
with attached working registers (see Fig. 1). All the ALUs perform the same programmable function synchro-
nously in a lock-step fashion under the command of the CU. Some of the PEs can be masked (disabled) for
some computation period, while other unmasked or enabled PEs perform computations. Each PE has two input
working registers (IWRs) which are used to store two operands for each computation, and one output working
register (OWR) which is used to store the current result of each computation. The operands in the IWRs are
kept there until they are replaced. Thus, they can be used repetitively if one or two operands are common for a
series of continuous computations. An inner loop connection within a PE is designed, which connects the
OWR to one of the two IWRs. This provides an immediate inner-PE forwarding path such that the current
result can be used as an operand for the next computation immediately.

2. Global data registers (GDRs). There are n groups of data registers which correspond to the n global memory
modules. In each computation period, the registers with the same relative position in each group can be
accessed under the control of the CU. The result of each computation from each PE will be stored in the GDRs
only when either the result is the final output or the result will be used in later computations but not the
immediate following one, which can make use of the internal forwarding path for data exchange among PEs or
inner loop within PEs.

3. Reconfigurable interconnection networks. There are two sets of identical interconnection networks: RIN1 and
RIN2. They are assumed to have full connectivity including one-to-one, permutation, and broadcast capabili-
ties (e.g., the crossbar network). The RIN1 connects the GDRs to the PEs. This provides the paths for sending
required operands to the appropriate PEs. The RIN2 makes the connection from the outputs of PEs to the
inputs of PEs; this provides the direct paths for intemal forwarding data exchange among PEs. It should be
noted that, if necessary, the output of PE i can be stored into its corresponding memory module i. This is not
affected by the RIN2.

4. Data buffers. There are three sets of data buffers. The register output buffer allows the ‘‘current computa-
tion’’ and the ‘‘RIN1 reconfiguration and operand fetch for the next computation’’ be processed at the same
time. The PE output buffer allows the ‘‘current computation’’ and the ‘‘RIN2 reconfiguration and output data
storing’’ be processed simultaneously. The input data buffer (IDB) is the buffer for operands directly from
external input data.

5. Muliiplexer. The n multiplexers in advance of the n PEs are used to select proper operands to enter PEs from
three possible sources: GDR, IDB, and IFD exchange. They are also under the control of the control unit.

With the functions of these elements described above, the basic mathematical operations performed by each
PE of the DN-SIMD machine involve at most two operands,

464

T=A.B &)

where A and B are two arbitrary operands and they can be scalar, vector or matrix, and ‘‘o™ indicates the operation
performed by the PE. When either A or B is null, the computation only involves one operand such as the transpose
of a matrix. The operands A or B may come from five different sources. They are GDRs through RIN1, IFD
exchange through RIN2, IDB, IWR within PE, and OWR within PE through inner loop connection. The result 7
may be sent to two possible destinations: GDRs directly, or PEs through RIN2 via IFD exchange. The possible
input operands and output result transfer path diagrams are illustrated in Figs. 2(a) and 2(b) respectively. In Fig.
2(a), we demonstrate all the possible source combinations except the case that the operands come from the IWR
within the PE. We assume that the time to transfer one operand from the GDR or the IDB to a PE (i.e., operand
fetching) is the same as the time to transfer the output result from a PE to the GDR (i.e., result storing) and equals to
the computation time of one basic PE operation. This time interval is called a cycle. Since operands fetching, com-
putation, and result storing can be performed simultancously due to the data buffers designed in this system, a
three-stage pipelined operation can be performed on our DN-SIMD machine. Since a computation usually needs
two operands A and B, and if A and B come from different sources, then they can be transferred to a PE simuliane-
ously in one period. In this case, the three-stage pipelined operation proceeds normally. However, if A and B come
from the same source (c.g., GDR or IDB), then it will take 2 cycles to transfer them. This situation is called the
double transmission required (DTR) computation. In this case, a delay period must be added to the pipeline opera-
tion to synchronize the operation. This DTR computation obviously will slow down the system speed. Hence, we
need to minimize the number of DTR computations in a computational task.

5. Mapping of Parallel Robotic Algorithms onto the Dual-Network SIMD Machine

Since our DN-SIMD machine was designed to best match the common characteristics of the six basic robotics
parallel algorithms, the scheduling of their computations in our system is more straightforward with less difficulties
as compared with other general mapping problems. Based on this characteristics matching, a systematic and
efficient mapping procedure is developed to map the parallel robotic algorithms onto the proposed medium-grained
DN-SIMD machine.

The proposed mapping procedure consists of three stages [2]. In the first stage, each of the single steps of
these parallel robotic algorithms is further decomposed to a set of **subtasks’* and each subtask possesses the basic
mathematical form of consisting at most two operands. On the other hand, each of the macro steps in these algo-
rithms is viewed as a subtask and is not decomposed at this stage. The first stage results in a series of parallel sub-
tasks. In the second stage, these subtasks are reordered to reduce the number of DTR operations through a neigh-
borhood scheduling algorithm. The reordered subtasks will be mapped onto the DN-SIMD machine directly in the
third stage. In the final stage, the actual implementation of the macro steps in the parallel algorithms on the DN-
SIMD machine is performed. Using the benchmark algorithm in Table 2 as an example, the details of these three
stages of our mapping procedure are discussed in the following subsections.

5.1. Subtask Assignment

Since the proposed DN-SIMD is a medium-grained machine and is synchronized at each basic mathematical
operation, each parallel algorithm must be decomposed into a series of subtasks. Each subtask is either in the basic
mathematical form which involves at most two operands or in a well-defined macro step. Although this functional
decomposition can be easily performed on the single steps, it is not the case for the macro steps, in which the data
dependencies are so complex that the decomposition based on basic computational unit is not obviously feasible. So
the macro step will be viewed as a single subtask in this stage. Consider the decomposition of the following equa-
tion

K=Lx(C+E)+GxC. &)

Here we use three temporary variables, Ty, T,, and T; to rewrite Eq. (4) into four simple equations in the basic
mathematical form:

Ty=C+E , T;=LxT; ,T3=GxC ,and K=T,+T, (5)

This same technique is applied to our decomposition process for single steps. For clarity, the benchmark
algorithm is used as an example to demonstrate the technique. The decomposition result and the original algorithm
are shown in Table 2. Here, two sets of variables are introduced: T;’s represent the immediate results (temporary
variables) or the final outputs. If T; is a macro subtask, then it is specially denoted as T;. I,’s represent the external
input variables; that is, the variables that do not come from the outputs of other computations.

To ease the subtask scheduling in the second stage, notation simplification is performed on the above task
table to produce a simplified task table as shown in Table 3. In this table, two arrays are defined: TB(i] contains the

465

identification of subtasks T;'s and OP[{] represents the corresponding operation for subtask TB[i]. Each element of

OPIi] is either a macro subtask or in the form of A o B, where A and B may be T; (T;) or I;. Moreover, the super-

scnpt on A or B indicates the difference between the index i of the result, T; [i], and the index k or [of its operand

[k] orT; [I] where T; [i] =T, [k] oT; [/]. For example, the subtask T1 [i] = T,[i+2] oT4[i—1] is denoted as

=T%, T‘ If their indices are equal, that is, i = k or i =/, then the superscript is omitted. For example, the sub-

task T4lil= Ts [] o Teli] is denoted simply as T4 = T5 o T¢. The simplified task table is the final result of this stage
and will be used as the input for the next stage.

5.2. Subtask Scheduling

To schedule the subtasks for computation, we first observe all the possible operand sources and their combi-
nations for each computation. The operand may be one of the four possible types denoted as S, So;, S7, and Sor
which correspond to four kinds of different sources. S; denotes the operand from the IDB and it needs one period of
transmission time. Sp; denotes the operand which is fetched by the previous computation (subtask) from the IDB
and is still in the IWR within the PE, so no transmission is required for this operand. Sr denotes the operand from
the GDR and this operand requires one cycle of transmission time via the network RIN1. Sor denotes the opcrand
from other sources including the followmg three possibilities: (i) The operand which is fetched by the previous
computation from the GDR and is still in the TWR within the PE, so no transmission time is required; (ii) Current
computation result through the inner loop; (iii) Current computamn result through the internal forwarding path with
data exchange provided by the network RIN2. The transmission time for the last two cases is ignored when com-
pared to the system cycle time. Using these notations, all the possible combinations of operand sources including
the situation of only one operand are listed below:

S1, 8 S, S) Sor » S1) (Sor » Son (6))
;. Son Sor » Sor) St.87) (Sor » Sor) Sor)
(S, Sor) (Sor , S1) 7,89 (87, 87) 1), Sor)

where the prime superscripts are used to distinguish different operands from the same kind of source. Among these
situations, the combinations (S , S,) and (St , S7) are DTR operations and reqmre two cycles to transmit two
operands through the same transmission path. It is possible to eliminate DTR operations, if we reorder the process-
ing sequence without violating the constraint of precedence relation. That is, in these two situations, one operand Sy
(or S7) can become the type Sor, or S;(or S;) can become the type So;. Then, the DTR operation phenomena can be
avoided and the unnecessary transmission can also be avoided for the efficient use of the same data repetitively and
instantly.

A neighborhood scheduling algorithm for scheduling and reordering the execution of these subtasks to minim-
ize the total number of DTR operations has been developed and is considered here.

Definition 1. For two subtasks in the kth and /th rows of the simplified task table, TB[k] and TB[/], assume
orP [Ic] AoB and OP[l]=C oD, where A, B, C, and D are operands, each with one of these possible types:
{;, T;, ,] Then the subtask TB[k] is called a neighborhood of TB[I] if all the following conditions are satisfied:

) k<l

(ii) C=TBlklorC= TB[k]orC AorC=Bor
D =TB[klortD =TB'(klotD=AorD=B.

From the above definition, we know that if subtask 7B[/] has a previous subtask 7B[k] as its neighborhood
(k < 1) and moreover, if these two subtasks are next to each other; i.e., / = k + 1, then at least one operand of subtask
TBI!] comes directly from the result or operand of subtask TB[k] without accessing the GDR or the IDB. This obvi-
ously will save the communication time to access global memories, and the subtask TB[!] will never be a DTR sub-
task, thus minimizing the number of DTR subtasks.

Definition 2. A subtask in the kth row of the simplified task table 7B[k] is called a double transmission
required (DTR) subtask if the following two conditions are satisfied:

(i) Its operand is one of these types:
OPlk] = TB[m] o TB[n] forsomem, n <kandm#n.
OPlk}=TB'[m) o TB[n] for somem, n <kandm #n.
OP[k] =TB[m)] o TB/[n] for some m, n <kandm #n.
OP[k]l =TB*[m) o TB’{n] forsomem, n <kandm #n.
OPlk)l=I[m] oI[n} form #n.

(i) k=1 orTB[k—1] is not a neighborhood of TBlk] fork > 1.

Notice that for OP[k] = TB{m)] o I[n} and OP[k] = TB'[m] o I[n], the subtask OP[k] is not a DTR subtask because its
two operands can be transmitted simultanecusly through two different set of connection lines. Moreover, a subtask
involves only one operand is obviously a non-DTR subtask. For example, in the simplified task tabie of the bench-
mark algorithm, subtasks T4, Ty, T3, T3, Tys, and T, are all DTR subtasks as indicated in Table 3.

From the above definition, whether a subtask is a DTR subtask depends on its “‘position’’ in the simplified
task table. A DTR subtask can become a non-DTR subtask if it is moved to the place exactly behind its neighbor-
hood. Since it is possible that the movement of a DTR subtask may introduce another new DTR subtask, this reord-
ering process is desirable only when it complies with the precedence constraint of the original algorithm and the
number of DTR subtasks in the reordered task table is less than that in the original table. This forms the scheduling
problem; that is, to reorder the processing sequence of subtasks to reduce the number of DTR subtasks as far as pos-
sible without violating the precedence constraint of the original algorithm. This reordering process can be per-
formed by the following efficient neighborhood scheduling algorithm.,

Algorithm N-Scheduling (Neighborhood Scheduling Algorithm).
Input: Simplified Task Table with n rows (i.e., n subtasks).
Output: Reordered Task Table.

N1. [Main Loop] Check each subtask to see if it is a DTR subtask. If yes, try to change its position.
For k =1 step 1 until n do

N2. [Check DTR]
Check if TB[k] is a DTR subtask according to definition 2? If not, go to step N4.

N3. [Main Body] Try to change the position of a DTR subtask to make it into a non-DTR subtask.
If OP[k] = (TB[m) or TB®[m]) o (TB(n] or TB®[n)),

then let i « max(m, n);

elseleti « 1; (* OP[k] = 1[m] o I[n] *}
End (If}
Whilei <k-1do

If TB[i] is a neighborhood of TB[k], then

If {TB[i +1] is a DTR subtask) or (the insertion of TB[k] between TB[i] and
TB{i+1] will not make TB{i+1] a DTR subtask],

then insert 7B[k] behind TB[i] to make TB[k] the new (i +1)th subtask;
£0 to step N4
End (If)
End (If)
Leti «i+1;
End {While)
N4. Continue {main loop)
End (For)

END. {N-Scheduling)
As an example, the N-Scheduling algorithm is applied to the benchmark algorittm. The input is the
simplified task table in Table 3, which has a total of 18 subtasks and six of them are DTR subtasks. After applying

the N-Scheduling algorithm to this simplified task table, the reordered task table is produced as shown in Table 3, in
which all the DTR subtasks in the simplified task table have been removed.

5.3. Mapping Procedure

The reordered task table produced by the N-Scheduling algorithm can be mapped onto the proposed DN-
SIMD machine in a rather straightforward way because these subtasks are all single-step, simple subtasks. If the
subtasks are macro steps, then their mapping requires further consideration. Our mapping procedure at this final
stage consists of two phases. In the first phase, the subtasks including single steps and macro steps which are
viewed as single steps temporarily are mapped onto the DN-SIMD machine in a row directly. The actual mapping
of the macro steps is considered in the second phase. The output of the mapping procedure is a control table as
shown in Table 4. This table consists of ten columns and indicates the exact movement of the central control unit.
The first column represents the identification of subtasks appearing in processing order. It also represents the result
of the corresponding subtask. The second column indicates the first operand; it may be T; (T;,T;,T;) or I; for
some i. The third column indicates the source of the first operand, and there are five possibilities: the GDR, the
IDB, the IFD, the IWR and the OWR within the PE. The fourth column describes which network is used (RIN1 or
RIN2) and the required connection type on it to transmit the first operand if necessary. Columns 5 to 7 contain the

467

same information as the previous three columns, but for the second operand if it exists. Column 8 indicates the
operation performed in this subtask. Column 9 indicates the destination of the result; it may be the GDR, the IFD,
or both. If the IFD is needed, the connection type of network RIN2 is specified. Column 10 contains some com-
ment on this subtask. For a macro subtask, these columns possess somewhat different meanings. Columns 2-7 indi-
cate the corresponding information for the initial conditions of the macro subtask (similar to the parameters for a
subroutine in a serial program). Columns 9-10 indicate the corresponding information for the final result of the
macro subtask (similar to the return values of a subroutine in a serial program).

At the end of phase 1 of the mapping procedure, the control table of the benchmark algorithm is obtained as
shown in Table 4. Since there are three macro subtasks in the control table, further mapping must be performed in
phase 2. Among these macro subtasks, T and T’ are the HLR equations, and T, is the HHLR equation. The map-
ping of HLR equations are demonstrated next.

The first-order homogeneous linear recurrence equation is defined as: Given x(0)=a(0)= null, and
a(i), 1<i <n,findall the x(i) for 1 <i < n from the following recursive equation

x()=x(-Doa(). ©)

An efficient technique called the recursive doubling technique has been found to solve this recursive equation
efficiently on an SIMD machine [7,19]. Using this technique, the parallel algorithm to solve Eq. (6) and the map-
ping diagram of this algorithm onto the proposed DN-SIMD machine are shown in Fig. 3. This diagram possesses
the same information as a control table including the sources of operands, destination of result, network used and
required connection types for each iteration. It takes an order of O([log,(n+1)]) iterations to produce the final
results. Also notice that, in Fig. 3, we assume that the initial conditions a (i)’s come from the IDB. In fact, they
may also come from the GDR depending on whether a (i)’s are external input variables or not. In that case, its map-
ping diagram is exactly the same except that the a (i)’s are from the GDR through the network RIN1 at the begin-
ning. Similarly, the final results x (i)’s can be stored in the GDR or directly fedback to PEs depending on the neces-
sity of the next subtask. Using the similar techniques, the mapping of HHLR equations can also be performed [2].

6. Concluslons

To design a global architecture for a set of parallel robotics algorithms, the characteristics of these algorithms
are identified according to six fundamental features: degree of parallelism, uniformity of operations, fundamental
operations, data dependency, and communication requirements. Considering the characteristics matching between
the common features of the robotics algorithms and the architecture features. a medium-grained, DN-SIMD
machine is designed. It consists of two sets of reconfigurable interconnection networks. One provides the commun-
ication between the PEs and the GDRs. The other provides the internal direct feedback paths among PEs to avoid
unnecessary data storing and routing time. This machine performs three-stage pipelined operations and is synchron-
jzed at each basic mathematical calculation.

With the parallel robotics algorithms and the proposed DN-SIMD parallel machine, a systematic mapping
procedure to schedule the subtasks of the parallel algorithms onto the parallel architecture is developed. This map-
ping procedure consists of three stages. At the first stage, mathematical decomposition is performed on the parallel
algorithms to achieve a series of subtasks and each subtask is either in the basic mathematical form which involves
at most two operands, or a well-structured macro subtask such as the linear recurrence equations. At the second
stage, to shorten the communication time, the processing sequence of subtasks is reordered to minimize the total
number of DTR subtasks using the Neighborhood Scheduling algorithm. At the final stage, the reordered subtasks
are mapped onto the DN-SIMD machine. In this process, the single-step subtasks can be mapped directly, while the
macro-step subtasks need further design and special technique such as the recursive doubling technique for solving
the linear recurrence equations. A benchmark algorithm was used throughout as an example to illustrate the map-

ping procedure.
7. References
{11 L. H. Jamieson, ‘‘Characterizing Parallel Algorithms,”” in The Characteristics of Parallel Algorithms, L. H.

Jamieson et al. (Eds.), The MIT Press, 1987,

[2] C.T.Lin, “‘Parallel Algorithms and Reconfigurable Architecture for Robotics Computations,”” MSEE Thesis,
School of Electrical Engineering, Purdue University, West Lafayette, IN, August 1989.

(3] J.Y.S.Luh, M. W. Walker, and R. P. C. Paul, ‘‘On-linc Computational Scheme for Mechanical Manipulator,”’
Trans. ASME J. Dynam. Syst., Meas. Contr., Vol. 102, pp. 69-76, June 1980.

[4] C.S.G.Lee, T.N. Mudge, and J. L. Tumey, *‘Hierarchical Control Structure Using Special Purpose Processor
for the Control of Robot Arm,’’ Proc. 1982 Conf. Patt. Recog. and Image Processing, Las Vegas, Nevada, pp.

468

634-640, June 14-17, 1982,

[5] R.Nigam, C. S. G. Lee, “‘A Multiprocessor-Based Controller for the Control of Mechanical Manipulators,’’
{EEE J. of Robotics and Automation, Vol. RA-1, No. 4, pp. 173-182, Dec. 1985.

[6] L. Lathrop, ‘‘Parallelism in Manipulator Dynamics,"” Int'l J. of Robotics Res., Vol. 4, No. 2, pp. 80-102, Sum-
mer 1985.

[7} C.S.G.Lee and P. R. Chang, *‘Efficient Parallel Algorithm for Robot Inverse Dynamics Computation,”” IEEE
Trans. on Syst. Man. Cybern., Vol. SMC-16, No. 4, pp. 532-542, July/Aug. 1986.

(8] J.Y.S.Luhand C.S. Lin, “‘Scheduling of Parallel Computation for a Computer-controlled Mechanical Mani-
pulator,”” IEEE Trans. on Syst. Man. Cybern., Vol. SMC-12, No. 2, pp. 214-234, March 1982.

[9] H. Kasahara, and S. Narita, *‘Parallel Processing of Robot-arm Control Computation on a Multimicroprocessor
System,’” IEEE J. of Robotics and Awtomation, Vol. RA-1, No. 2, pp. 104-113, June 1985.

[10] C. L. Chen, C. S. G. Lee, and E. S. H. Hou, *‘Efficient Scheduling Algorithms for Robot Inverse Dynamics
Computation on a Multiprocessor System,”” IEEE Trans. on Syst. Man. Cybern., Vol. SMC-18, No. 5, pp.
729-743, September/October 1988.

{11] C. S. G. Lee and C. L. Chen, ‘‘Efficient Mapping Algorithms for Scheduling Robot Inverse Dynamics Compu-
tation on a Multiprocessor System,”” to appear in JEEE Trans. on Syst. Man. Cybern.

(12] M. W. Walker and D. E. Orin, ‘‘Efficient Dynamic Computer Simulation of Robot Mechanisms,’’ Trans.
ASME J. Dynam. Syst. Meas. and Conir., Vol. 104, pp. 205-211, Sept. 1982,

[13] R. Featherstone, ‘‘The Calculation of Robot Dynamics Using Articulated-body Inertia,’” Int. J. Robotics Res.,
Vol. 2, No. 1, pp. 13-30, Spring 1983.

(14] C. S. G. Lee and P. R. Chang, “‘Efficient Parallel Algorithms for Robot Forward Dynamics Computation,”’
IEEE Trans. on Syst. Man. Cybern., Vol. SMC-18, No. 2, pp. 238-251, Mar./Apr. 1988.

[15] M. Amin-Javaheri and D. E. Orin, ‘‘A Systolic Architecture for Computation of the Manipulator Inertia
Matrix,”” Proc. of 1987 IEEE Int'l Conf. on Robotics and Automation, Raleigh, North Carolina, pp. 647-653,
March 30-April 3, 1987.

[16] A. Fijany and A. K. Bejczy, *‘An Efficient Method for Computing the Manipulator Inertia Matrix,”’ 2nd Int.
Symp. on Robotics and Manufacturing Research, Albuqurque, Nov., 1988.

[17] J. Denavit and R. B. Hartenberg, *‘A Kinematic Notation for Lower-pair Mechanisms based on Matrices,’’

(18] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, Robotics: Control, Sensing, Vision, and Intelligence, New York:
McGraw-Hill, 1987.

(191 P. M. Kogge and H. S. Stone, “‘A Parallel Algorithm for the Efficient Solution of a General Class of
Recurrence Equations,”” IEEE Trans. on Computer, Vol. c-22, pp. 789-793, Aug. 1973.

[20] A. Fijany and J. G. Pontnau, ‘‘Parallel Computation of the Jacobian for Robot Manipulators,”” Proc. IASTED,
Santa Barbara, May 1987.

{21] D. E. Orin and W. W. Schrader, ‘‘Efficient Computation of the Jacobian for Robot Manipulators,”’ the Int. J. of
Robotics Research, Vol. 3, No. 4, pp. 66-75, Winter 1984,

{22] T. B. Yeung and C. S. G. Lee, *‘Efficient Paralle} Algorithms and VLSI Architectures for Manipulator Jaco-
bian Computation,” IEEE Trans. on Syst. Man. Cybern., Vol. SMC-19, No. 5, September/October 1989.

[23] P. R. Chang and C. S. G. Lee, *‘Residue Arithmetic VLSI Array Architecture for Manipulator Pseudo-Inverse
Jacobian Computation,”’ IEEE Trans. on Robotics and Automation, Vol. RA-5, No. 5, October 1989.

[24] R. Featherstone, *‘Position and Velocity Transformations Between Robot End-effector Coordinates and Joint
Angles,”” the Int. J. of Robotics Research, Vol. 2, No. 2, Summer 1983, pp. 3545,

[25] R. P. Paul, B. E. Shimano, and G. Mayer, *‘Kinematic Control Equations for Simple Manipulators,”’ IEEE
Trans. on Syst. Man. Cybern., Vol. SMC-11, pp. 494-455, 1981.

[26] Y. T. Tsai and D. E. Orin, ‘A Strictly Convergent Real-time Solution for Inverse Kinematics of Robot Mani-
pulators,”” J. of Robotic Systems, Vol. 4, No. 4, pp. 477-501, 1987.

[27] C. S. G. Lee and P. R. Chang, ‘A Maximum Pipelined CORDIC Architecture for Robot Inverse Kinematic
Position Computation,’* IEEE J. Robotics and Automation, Vol. RA-3, No. 5, pp. 445-458, Oct. 1987.

469

oLy

Table 1. Characteristics of Basic Robotics Algorithms.

CHARACTERISTICS
Algorithms | Typeof | Degree of | Uniformity of | Fundamental Data Communication
Parallelism | Parallelism | Operations | Operations Dependency Requirement

Inverse Job level Large grain Yes Matrix-Vector HLR (Regular)
Dynamics Permutation
Forward Job level Large grain Yes Scalar ops. HLR HHLR one-to-one
Dynamics Reciprocal SHLR, PNE Permutation

Matrix-Vector | System of Linear Egs. Broadcast

Forward Job level Medium or Yes Matrix Mult. HLR (Regular)

Kinematics Fine grain Trigonometric Permutation

Forward Job level Medium or Yes Matrix-Vector HLR (Forward (Irregular)

Jacobian Fine grain & Backward) Permutation
Broadcast

Inverse Job level Medium or Yes Scalar ops. Global Permutation
Jacobian Fine grain Reciprocal Broadcast
(Direct) Vector ops.

Inverse Job level Medium or Yes Scalar ops. Local Permutation
Jacobian Fine grain Reciprocal Broadcast
(iterative) Vector ops.

Inverse Task level Fine grain No Scalar ops. Global one-to-one

Kinematics Reciprocal Broadcast

(Direct) Square root

Trigonometric
Inverse Job level Medium or Yes Scalar ops. Local one-to-one
Kinematics Fine grain Reciprocal Permutation
(iterative) Matrix-Vector Broadcast
Trigonometric

1Ly

Table 2. Robotics Benchmark Algorithm and Subtask Assignment.

G; Equations : T; Subtasks
G, | Ali1=A[i-11xB[i],2<isnA[1]=B[1) | T; | Tylil=T li-11xI;[i},2<i<n T (11=1{1]
G, | Clil=Ali]-D[i] Ty | Tolil=Tli] 1]
G3 | Elil=Ali]-Fli] Ty | T3lil=Tli] 140i)
Gs | Glil=Gli-11+(EGIHIViL,2Sisn | T4 | Talil=Talillsli]
G[l]=(E[1]H[1]V 1] Ts | Tsli]=Talillsli]
Te | Telil=Teli-11+Tslil,2<i<n, Tg[1]=Ts[1]
Gs | KE]=LLGNCLI+EGD+Gi]+Cli] Ty | T1li]=Tyli}+T3[i]
Mi]=N[iMI[i-1]+K[i],2<i<n Ts | Tslil=T7lilli]
M[1]=K{1] Ty | Tolil=Teli]+T,i]
Ty | Trolil=Tsli]+ Tyli]
Ty | Tuli)=110i Tyli-1]+Tioli), 1 Si <n, Tyy[nl=Tyoln]
Ge | OLil=EL-1]+M[D+GLI+K[i+2]) Tiz | Tialil=Telil+ Tyoli+2]
Pli]=A[i)*G i) Ty3 | Tyslil=Tli-1]+Tyli]
QUil=M[i]C[i+1]+ O[i+1]-P[i] T4 | Talil=Tr2li]+Tysli]
Tys | Thslil=T[i]-Teli]
Tis | Tili]=T1ali+1]1-Tsli]
Ty7 | Tylil=Tali+1)-Tyli]
Tig | Tieli]=Tielil+Ty7li]

where in this table, except separate indication, i is from 1 to n.

B, D), Fli], H[i}, J{i], L[], N(i}; i =1,...,n; are assumed to be input variables.

B[i]is a 3x3 matrix. D[i], F[i] are 3x1 vectors.
HI[il,J[i], L[i], N[i] are all scalars.

Table 3. Simplified and Reordered Task Table of Benchmark Algorithm.

SIMPLIFIED TASK TABLE REORDERED TASK TABLE

ROW | TB[ROW] | OP[ROW] | DTR | TB[ROW] | OP[ROW] | DTR

1 T Ty xdy T, T,

2 T Ty, I, Ty,

3 T, Tids T, T3

4 T, Tol, T, T, +Ts

5 Ts Tals T, Tal,

6 T TZ' +Ts Ts Tyls

7 T, Ty+T, X Te 7 4T

8 Ts Tolg Tis T\ T

9 T, Te+T, X Ty Te+T,

10 Ty Te+To Ts Tole

11 T, LT +Tye Tyo Tg+Ty

12 Ty Te+Ti} X T2 Te+Ti5

13 Tis T3'+Ty, X Th 177_:1-: +T 1o

14 Tia T124T 15 Ty T3 Ty

15 Ts T, T X Tis T3 +T,

16 Ty6 T s T4 T\24Tys

17 Ty T$ Ty x T Ti4Ts

18 Tis T1+T17 Tys T6+T1y

where T, and T4 are HLR equations and T, is an HHLR equation.

472

tLy

Table 4. Control Table for Benchmark Algorithm.

1 2 3 4 5 6 7 8 9 10
T; Operand | Source | Network || Operand | Source | Network |[Operation Output Destination
Comment
1 1 Type 2 2 Type GDR | IFD | RIN2

T, 7! IFD * I IDB - MM X . * HLR Eqn.
T, T, OWR - Iz IDB - MV X -

T, T, IWR - I3 IDB - MV X -

T, T, OWR - T, GDR | RIN1-1 VA x -

T, T, IWR - 14 IDB - SV -

Ts T, OWR - Is IDB - SV .

Te Te IFD * Ts OWR - VA - * HLR Eqn.
Tys Te OWR - T, GDR | RIN1-1 MV .

Ty Te IWR - T, GDR | RIN1-1 VA .

Ty Tq GDR | RINI-1 Is IDB - SV -
Tio Tg OWR - Ty GDR | RINI-1 VA X 2
T2 T IFD | RIN2-2 T GDR | RINI-1 VA -
T I IDB - * * * * - * HHLR Eqn.
Ty T OWR . T3 GDR | RINI-3 VI X -
T3 T IWR . T3 GDR | RIN14 VA -
T T OWR - T, GDR | RINI-1 VA X 3
Ti6 T} IFD RIN2-3 Tis GDR | RIN1-1 VI -
Tis Tie OWR - Ty GDR | RINI1-1 SA % - Result

Connection type 1: straight connection;
Connection type 2: uniform module shift (d = 2);

Connection type 3: uniform module shift (d = 1)
Connection type 4: uniform module shift (d =-1)

GDR GDR| o o o GDR
Reconfigurable Interconnection Network (RIN1)
i ' e o0 {
Register Output Buffer
:
Y Y Y v y $ Input
. MPX Data <Z INPUT
> r LK) r Buffer,
Yy Yy Y Yy
PE PE}] e oo PE
/ i Y
PE Output Buffer
® o
/ Y Y
Reconfigurable interconnection Network (RIN2)
l INPUT INFUT
o o @

=i

* PE: Processing Element ()
* MPX: Multiplexer a
* GDR: Global Data Register AW
(b) [=]
OUTPUT

ALU : Arithmetic Logic Unit
IR : Input Working Register
OR : Output Working Register

Figure 1. (a) Structure of Dual Network SIMD Machine.
(b) The Structure of Processing Element.

474

[GDR | [mB] [GLR |
PE PE PE
PE —— PE T— 1.
IRLL O e U
IDB
! |
l PE PE | PE
PE T3
g I
(a) Input Operands Flow Diagrams
GOR GDR
PE PE PE
......... oo
PE ——i SRR, SO,
R LD
(b) Output Result Flow Diagrams

GDR

e]

Figure 2. Data Path Flow of Processing Element.

475

GDR

PE

Algorithm FOHRA (First-Order Homogeneous Recurrence Algorithm).

F1. [Initialization] Given the terms a;, 0<i <n, let X® () be the ith sequence at the kth splitting
and s ={logy(n+1)]. Set the sequence at the initial step, X®(i) —a;, 0<i<n.

F2. [Compute x; parallelly]
fork < 1tos, do

XEDG 21y w x¢-Dgy | fk-l<i<p
x®a) =
X®D () L if0gi <2

end ({for}
Set x; « X“i), 1<i<n.

END FOHRA.

DB |{OWR OWR OWR GDR
Y A
a(7) x(7)
a(6) x(6)
a(5) x(5)
a(4) x(4)
a(3) O x(3)
a(2) O x(2)
a(1) O x(1)
a(0) O— x(0)
{] 1 |]

RIN2 RIN2 RIN2

Figure 3. Mapping Diagram of First-Order Homogeneous Linear Recurrence Equations on
DN-SIMD Machine.

476

