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SUMMARY

Helicopters operating in high threat areas have to fly close to the earth surface to

minimize the risk of being detected by the adversaries. This report presents techniques for

low altitude helicopter trajectory planning. These methods are based on optimal control

theory and appear to be implementable onboard in realtime. Second order necessary

conditions are obtained to provide a criterion for finding the optimal trajectory when more

than one extremal passes through a given point. A second trajectory planning method

incorporating a quadratic performance index is also discussed. In a later part of the thesis,

trajectory planning problem is formulated as a differential game. The objective here is to

synthesize optimal trajectories in the presence of an actively maneuvering adversary.

Numerical methods for obtaining solutions to these problems are outlined. As an

alternative to numerical method, feedback linearizing transformations are combined with the

linear quadratic game results to synthesize explicit nonlinear feedback strategies for

helicopter pursuit-evasion. Some of the trajectories generated from this research axe

evaluated on a six-degree-of-freedom helicopter simulation incorporating an advanced

autopilot. The optimal trajectory planning methods presented here are also useful for

autonomous land vehicle guidance.





CHAPTER I

INTRODUCTION

1.1 Introduction

Recent years have seen an increased interest in helicopter operations near the ground as

evident in the literature [1-3]. In a high threat environment, helicopters have to fly close to

the earth surface to minimize the risk of being detected by the enemy [4-5]. The objective

here is to use terrain and surrounding objects to mask the helicopter during the mission.

Due to data processing limitations, a hierarchical system architecture is essential for

nap-of-the-earth flight guidance. This concept provides a natural way of decomposing a

complex control process into simpler and more manageable components. Thus, the

guidance functions are divided into three levels, namely, far-field, mid-field, and near-field

[6].

The far-field planning task involves off-line mission planning to generate mission

way-points and goals. Mission requirements, global threat information and vehicle

resources on-board are taken into account. The mid-field planning function generates the

flight route using the way-points data given by the far-field planner. High resolution digital

map, threat information, and vehicle limitations are included in performing real-time

guidance computations. The near-field guidance function provides a least expected

deviation path from the mid-field nominal path due to the vehicle dynamics limitations and
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obstacles detected by on-board sensors. The focus of this report will be on the mid-field

route planning problem.

Most route planning methods given in the literature [7-11] appear to use the terrain

altitude and lateral deviations from a nominal trajectory as the performance index. These

methods are based on the heuristic search techniques including variants of dynamic

programming such as the A*-algorithm. All these approaches employ the discretization of

the terrain spatial coordinates before carrying out a systematic search for optimal trajectory.

On a rough terrain, these approaches require an enormous amount of computation and

storage to generate sufficiently smooth trajectories [12].

An alternative formulation for the trajectory planning is based on Pontryagin's

maximum principle and was first outlined in Reference 13. State equations in this

formulation include the terrain constraint, incorporated via a coordinate transformation.

The performance index is a linear combination of flight time and terrain altitude. The

resulting nonlinear two-point boundary value problem is then converted to a one-

dimensional search process by incorporating a constant of motion and employing an

adjoint-control transformation. The solution is implementable in near real time and is

capable of detecting situations where more than one extremal passes through a given point.

The second-order necessary condition for this problem is studied in detail. This trajectory

planning method automatically accomplishes known-threat avoidance and is similar to the

classical Zermelo's navigation problem [14]. In this method, the computationifl algorithm

requires the second partial derivatives of the terrain profile to generate extremals. As a

result, the terrain prof'fle needs to be represented by quadratic or cubic splines lattices. This

feature can sometimes make the extremals sensitive to the error in the terrain data.

In an alternative formulation [15], the need for second partial derivatives is eliminated

by avoiding the coordinate transformation approach. The performance index in this

2.
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problem consists of a quadratic form in the terrain altitude, lateral deviation from the

nominal trajectory, and heading angle. By changing the independent variable from time to

down-range, the order of the problem is reduced. As in the first method, the extremals are

obtained using the optimal control theory and necessary conditions are tested along the

extremals. An approximate second variation test is developed for this problem using the

WKB method [16]. A special case that can result in singular arcs in this trajectory planning

problem is also outlined.

So far, the route planning problem for single vehicle has been discussed. As a natural

extension, the guidance for two or more vehicles that cooperate or compete against each

other is considered next. This results in a differential game formulation for the trajectory

planning problem. Since the publication of a book by Isaacs [17] on differential games in

1965, a body of research is available on differential games with kinematic models in a

plane. With such simple modeling, it is possible to obtain elegant results. The well-known

homicidal chauffeur problem is an example. On the other hand, the helicopter guidance

problem requires the use of a model in which the coefficients vary as a function of the

vehicle position on the terrain. The method proposed in this report uses the terrain profile

data to formulate a differential game between two helicopters.

In conjunction with the recent theory of nonlinear transformations, Menon [18]

showed that a class of differential games with nonlinear dyn_aics can be transformed into

the well known linear quadratic pursuit-evasion game form. Compared with the previous

derivations of pursuit-evasion guidance laws which completely ignore the dynamic

nonlinearities in the vehicle models, the nonlinear transformation approach continuously

compensates for the vehicle nonlinearities. In the present work, this formalism is used to

study a helicopter pursuit-evasion game at nap-of-the-earth flight altitudes.
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Finally, in order to verify whether the trajectories generated using various planning

schemes discussed in the foregoing satisfy the helicopter physical constraints, these need to

be evaluated on a detailed helicopter simulation. An advanced autopilot developed by

Heiges [19] together with a six-degree-of-freedom helicopter simulation is used in this

investigation. The helicopter simulation was originally developed at NASA Ames Research

Center for the study of Air-to-Air combat [20-21].

1.2 Contributions of the Reoort

In contrast with the existing literature, this report develops techniques for trajectory

planning based on the Calculus of Variation. Numerical algorithms are given for the

determination of optimal trajectories with various performance indices. Additionally, tests

are developed for verifying the optimality of the emerging trajectories.

Methods deveioped in the present research will aid in constructing an integrated

methodology for low altitude flight guidance of helicopters. The trajectory planning

solution is also useful for autonomous surface/underwater vehicle guidance, terrain

foUowing guidance for cruise missiles and aircraft [22-24] and optimal trajectory planning

for robots.

w

1.3 Organization of the Renort
v

This report is organized as follows:

Chapter II gives a brief description of previous research on helicopter low-altitude

flight trajectory planning and air-to-air combat. It was the work in this area that motivated

the present research topic. This chapter also covers a few well-known results in optimal

z
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control theory and differential game theory. Background on the nonlinear transformation

techniques to control nonlinear systems is also presented.

Two optimal trajectory planning schemes useful for the terrain-following/terrain-

avoidance guidance of helicopter are presented in Chapter 11I. This chapter illustrates how

the nonlinear two-point boundary value problem can be solved using a one-dimensional

searching method. To ensure that the extremals obtained by this approach are optimal,

second-order necessary conditions are also developed in this chapter.

In Chapter IV, research on the helicopter pursuit-evasion is discussed. A backward

integration method and a nonlinear transformation method are given in this chapter.

Chapter V discusses the implementation and test of the generated trajectories in a

realistic six degrees of freedom helicopter simulation. The helicopter physical variables

along the trajectories obtained from Chapter Ill are examined here.

Chapter VI evaluates the results obtained from present research. Suggestions for

future work are also outlined.

Finally, the appendices contain some of the analysis used in the main body of the

report. In Appendix A, the transformation from local tangent plane to inertial coordinates is

derived. This transformation is employed in developing the first trajectory planning

scheme (ORP #1). Various numerical conjugate point tests and their relationships are

discussed in Appendix B. These tests are used to verify the optimality of the synthesized

trajectories. In Appendix C, separability of the Hamiltonian and its consequence on

Differential Game solutions are discussed. A necessary condition for global minimum is

given in Appendix D.

All numerical results are obtained with VAX-11/750 TM. Contour maps are drawn by

DISSPLA TM graphics routine. Algebraic equations are derived by symbolic program
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MACSYMA TM. Unless otherwise mentioned, British Units, i.e., pound (Ib) - foot (ft) -

second (sec), arc the basic units used in this report.

w
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CHAPTER II

BACKGROUND

2.1 Introduction

In this chapter, previous research on the helicopter trajectory planning problem and air-

to-air combat are reviewed. An overview of Dynamic Programming used in several of

these research is given in Section 2.4. This section also provides an outline on optimal

control theory. Section 2.5 provides a review of several notions involved in differential

games. Finally, some recent results in nonlinear transformations for feedback control are

reviewed in Section 2.6.

2.2 Previous Research on Helicopter Trajectory Planning

p.

Historically, terrain information has been used for low altitude flight guidance of deep

penetration attack aircraft and cruise missiles. Since these vehicles fly a consiclerable time

over the opponent's territory, they are vulnerable to detection by the enemy. The objective

of low altitude flight guidance using terrain map is to minimize the influence of air defense

threats on the mission profile [25-26]. Trajectory generated by such a guidance scheme is

composed of a terrain-following path in the vertical plane. In the nap-of-the-earth guidance

of helicopters, on the other hand, both vertical and lateral maneuvers are employed.
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Reference 7 discusses the computation of vertical and lateral helicopter trajectories

using a combination of discrete dynamic programming [27] and tree searching [28]. They

considered the performance indices for the lateral and vertical planes as follows:

JL = _ [wD_i + (hcl + Hi) 2] (2.1)
i

Jv = _ (hcl + Hi) 2 (2.2)
i

where, w is the terrain-following/terrain-avoidance ratio, Di the lateral deviation from

reference path, Hi terrain altitude at location index i, and he1 helicopter clearance altitude.

Note that the two performance indices do not include control terms.

Reference 11 developed an algorithm to generate a low altitude threat penetration

trajectory which minimizes the performance index:

J - _ (Di + COAti (2.3)
i

<

Here, Di is the value of the danger array at the ith cell, Ati the transition time, and Ct the

cost of time. Danger arrays Di depends on the vehicle position (x,y,h), and the heading

angle Z. Ct is a coefficient including flight time and fuel. Decoupled vertical and lateral

threat penetration trajectories were obtained by dynamic progamming and tree search.
a.

Reference 29 describes a three-dimensional dynamic programming approach to

maximize the overall probability of survival Ps along any path defined by: ,

v.-- 1] P (x,y,zj)
path (2.4)

where, Ps(x,y,z,j) is the probability of survival through cell (x,y,z) in the jth direction to an

adjacent cell. In the actual implementation, the values assigned to each cell are negative

logarithms of the probabilities of survival. The problem is thereby transformed from one

W

]
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of maximizing the product of survival probabilities to minimizing the sum of negative

logarithmic probabilities. The probability is a function of terrain masking, fuel constraint,

or time constraint.

The investigators in artificial intelligence area [10] have suggested to use the heuristic

search to find a near-optimal routes for autonomous helicopter. Two of the most

commonly used heuristic search techniques for finding optimal path are the branch-and-

bound and the A*-algorithm, discussed in Reference 10. The branch-and-bound is an

exhaustive search method similar to both depth-f'urst and breadth-f'trst schemes. They

search all possible paths until the goal is found. A*-algorithm is the branch-and-bound

search in conjunction with the dynamic programming principle to reduce computations

[28].

All these approaches employ the discretization of the terrain spatial coordinates before

carrying out the search for the optimal trajectory. As a result, they assume that the route

consists of straight line segments. On an uneven terrain, this implies that a large number of

discretization intervals will be required to generate sufficiently smooth trajectories.

Unfortunately, this increase in the number of discretization intervals is accompanied by an

enormous increase in computational complexity. For example, in the case of discrete

dynamic programming, this is of order {(n+l):+I}, where n is the number of

discretization intervals in one spatial direction [12]. A solution advanced by some

researchers for handling this "curse of dimensionality" is the use of parallel-computing

architectures [30].

This report will propose alternative trajectory planning schemes based on the Euler-

Lagrange equations [12]. These approaches require a one-dimensional search to detemaine

optimal trajectories. Further details will be discussed in Chapter M.
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2.3 p rgvious Research on Heliconter Pursuit-Evasion

Unlike the one-sided trajectory planning problem, reported research on two-sided

trajectory planning has been very sparse. A previous research [31] employed a discrete

matrix game approach for generating maneuvering decisions for low altitude flying

helicopter during one-on-one air combat over a hilly terrain. Each player had seven

maneuvering strategies, and thus the game matrix consisted of 49 payoff elements. Each

element in this matrix represented the score evaluated using a scoring function. Under the

perfect information assumption, the scoring function was composed of an orientation, a

relative range, a velocity, and a terrain profile. The state variables required in evaluating

the scoring function were obtained by numerically integrating the equations of motion for

each of the seven strategies of the participants. After numerical integration, the saddle point

was searched and optimal maneuvering strategies for each player were obtained. This

procedure was repeated until terminal conditions are satisfied.

According to Von Neumann and Mongenstem [32], every finite and discrete game can

be cast in the matrix form. However, the dimensions of this matrix will be astronomical

except for very simple problems. Additionally, the computational effort in conducting a

search for the optimum can be prohibitive. R. Isaacs [17],provided the framework for

obtaining solutions to continuous games with differential constraints. This will be further

elaborated in Section 2.5.

In this report, the helicopter pursuit-evasion problem will be studied as two one-sided

optimal control problem using differential game theory. Two different formulations will be

discussed. The first one requires two-dimensional search to determine optimal strategies.

Another approach using nonlinear transformation techniques demands the specification of

the terminal time. Details of these approaches will be given in Chapter IV.

v
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2.4 A Review of The Ontimal Control Theory

In order to motivate subsequent development, this section will present a review of the

central results from optimal control theory [12].

Given the state equations:

_t= f(x,u,t), x(to)= x0 (2.5)

where, x(t):= statevectorof dimension n,x • X

u(t):= controlfunctionofdimension m, u ¢ U

Initial constraints:

R (X(to),t0 = 0

Terminal constraints:

(2.6)

P (x(tt),tf)= 0 and tfisfree (2.7)

Performance Index:

[u] = g(x(tf),tf)+ J L(x,u,t) dtJ

to
(2.8)

The optimal control problem is to pick u(t) to minimize J[u] while satisfying the state

equations and the boundary constraints.

The optimal control can be obtained using Dynamic Programming [27] or Pontryagin's

Minimum Principle [33]. For most problems encountered in applications, these two

approaches can be shown to be equivalent [12].



tim

12

2.4.1 Continuous D_,namic Programming

Define thecontinuousoptimalreturnfunctionas

J°[x(t),t] = rain J[x(t),u(t),t]
ueU

(2.9)

To simplify presentation, it is assumed here that the terminal cost is zero. Next, assuming

the optimal return function to be continuous, one can write [34]

t+_ _f

J°[x(t),t] = rain {f L(x,u,x)dx + f L(x,u,x)dx } (2.10)
ueU

t t+E

for sufficiendy small E. If the vector functions u(x) and L are both continuous at t, there

exist an E sufficiently small such that expression (2.10) can be approximated as:

|f

J°[x(t),t]= rain {eL(x,u,x) + S L(x,u,'c)dx } (2.11)
u_ U t+t_

w

From the definition of jo the optimal remm function (2.9), this amounts to

J°[x(t),t] = rain {eL(x,u,t) + J°[x(t+e),t+e] }. (2.12)
ueU 2

The state evolution may next be approximated by

x (t+e) = x(t) + lff(x,u,t) (2.13)

Substituting equation (2.13) into (2.12), for sufficiently small positive E, and retaining only

the first-order terms, one has
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o

J°[x(t),t] = rain {eJ.,(x,u,t) + J [x(t)+ef(x,u,t),t+e] } (2.14)
uCO

Taking a Taylor's series expansion of J°[x(t)+ef(x,u,t), t+E], and retaining only the first

order terms,

j°[x(t)+ef(x,u,t),t+e] = J°[x(t),t] + r_x[x(t),t ] f(x,u,t) + e _[x(t),t] (2.15)

Next, substituting (2.15) into (2.14), and cancelling the J°[x(t),t] term and dividing by e,

one has

o
Jt[x(t),t] = - rain { L(x(t),u(t),t) + fx[x(t),t] f(x,u,t)} (2.16)

u_U

Let u ° (x,t) denote the optimal control given x and t. This control must yield a minimum

for the fight hand side of equation (2.16). Thus,

[x,t] = - L(x,u*,t) - _ [x,t] f(x,u*,t) (2.17)

Equation (2.17) is known as the Hamilton-Jacobi-Bellman (I-IJB) equation. This is a first

order nonlinear partial differential equation.

This equation is difficult to solve if the functions L and'f are highly nonlinear. As a

result, this equation is often solved using the method of characteristics. The characteristics

of the HJB equation are called the Euler-Lagrange (E-L) equations [12]. The E-L equations

are first order nonlinear ordinary differential equations with prescribed boundary

conditions. In the following we will indicate the derivation of E-L equations using the HJB

equation.
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Differentiating the expression (2.17) partially with respect to x, and noting that the

control variables are independent of the state variables results in the expression

J*,.[x,t] = - L_(x,u*,t) - J*n[x,t] f(x,u*,t) - f_(x,u*,t) _[x,t] (2.18)

Now, the total derivative to J*x[x,t] is given by

d._[x,t] = _,[x,t] + _,[x,t]f(x,u*,t)
dt (2.19)

Substituting (2.18) into (2.19), one has

d_[x,t] =- Lx(x ' uO' t)-
dt fx(x, u°, t) _x[x,t] (2.20)

O

This set of fh'st-order ordinary differential equations for Jx [x,t] can be solved if x and u °

were known for all t and initial conditions for o oJx [x,t] areJx [x,t] were given, called the

costatesof the systems, often den0ted by the variable _ .......

2.4.2 Pontrva_in's Minimum Principle

Introducing a new variable called the Hamiltonian [12],

H (x,u,_.,t) = L (x,u,t) + XT f (x,u,t) (2.21)

3,

The Euler-Lagrange equations (2.5), (2.20) can be written as

= f(x,u,t), (2.22a)

_. = - H x (2.22b)
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The fact that optimal control u has to minimize the quantities within braces in (2.16) leads

to the so called optimality condition

Hu = 0 (2.23)

Equations (2.22) must satisfy the given boundary conditions. For additional details on this

problem, see Reference 12.

While the satisfaction of HIB is sufficient for optimality, additional conditions must be

imposed while solving the optimal control problem using the E-L equations. In this case,

the optimal controls emerging from (2.22), (2.23) should additionally satisfy the following

condition [ 12]:

(i) Legendre-Clebsch condition

Huu>_0 (2.24)

(ii) Weierstrass condition

_H (x, _.o, uo, u, t) > 0 (2.25)

Off) Jacobi condition

Nonexistence of conjugate point in (t0,tf)

Conditions (i) and (iii) are necessary for weak local minimum, while condition (ii) is

necessary for strong local minimum. Strengthening conditions (i) and (ii) and closing the

interval in condition (iii) constitute the sufficient condition [12]. In some situations,

normality condition [12] has to be verified before testing the conditions (i) - (iii).
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Additional conditions can be obtained using various combinations of these necessary

conditions [35].

2.5 A Review of Differential Games

If optimal control theory briefly reviewed in the previous section can be considered a

theory for one-sided control problems, differential game theory may be identified as a

theory for two-sided control problems. It has been shown [36] that the problem definitions

and solution methods used in optimal control theory can be extended into the game theory.

The theory of differential games is a subject concerned with the optimization of

dynamic systems involving two or more players with conflicting interests. The study of

differential games was initiated by Isaacs in 1954. In 1965, Isaacs published a book which

details various aspects of differential games [17]. In 1957, Berkovitz and Fleming [37]

solved a simple differential game using the calculus of variations. In a later research,

Berkovitz treated a wider class of differential games using the calculus of variations [38].

Friedrnan's book [39] discusses the necessary conditions in differential games in terms of

the more familiar optimal control theory notation.

The aforementioned differential games mostly dealt with problems of the pursuit-

evasion type having the zero-sum property, i.e., one player's losses.being the other player's

gain. Dropping_the zero-sum hypothesis a_s both conceptual and analytic complexity, but

it may extend the utility of the theory of differential games to a much wider class of

applications. Two typical non-zero-sum games are the Nash game and Stackelberg game,

in which each participant has its own performance criterion.
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Assuming that the players have perfect information of the current states and that their

respective roles are determined before the game begins, a differential game may be stated as

follows: -

Given differential constraints:

- f (x,¢,V,t), x(t0)=x o (2.26)

where, x(t) : = state vector of dimension n, x • X

¢(0 : = control of Player 1 of dimension e, ¢ e •

ag(t) : - control of Player 2 of dimension m, _ •

Initial constraints:

R (xCto),to) = 0

and terminal constraints:

(2.27)

P (x(tf),tf) = 0, tf is free (2.28)

The terminal constraints define the stopping condition for the game. For example, if the

participants have a "capture set", the game terminates at the instant the adversary enters the

capture set.

The performance index or payoff for the i th player may be defined as

F

Ji[x,_,¥,t] - gi(x(tf),tf ) + Li(x,_,lg, t) lit (2.29)

Each player involved in the game attempts to optimize its own performance index with due

attention to the other player's state-control variable evolution. Once the differential

constraints, initial and terminal constraints and the performance index are defined, one may

describe three different game scenarios.
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2.5.1 Nash Non-Zer0-Sum Game

If an optimal solution exists, optimal closed loop control pair ($o, vo) must satisfy the

Nash incqua_ties condition [40]:

J2(_°,'¥ °) g J2(_,'¥°), V Ce ¢I)

(2.30)

(2.31)

Inequalities (2.30) and (2.3 I) imply that optimal strategies for each player should yield the

smallest cost for individual participants. Any deviation from the optimal su'atcgy will yield

a higher cost.

2.5.2 StackelberlL Non-Zero-Sum Game

Inthisgame, one assumes thatthesecondplayeristheleaderwhilethefirstplayeris

thefollower.As a result,thefirstplayerisoperatinga purelyreactivefashion.Ifthere

existsa mapping M:_ ---->_, and thefollowingconditionsarcsatisfied,thenthepair(_b*,

V*) • q)x _Piscalleda StakclbcrgstrategypairwithPlayer2 as a leaderand Playerl as

follower[41]:

JI(M_, _) -<Jl((_, V) (2.32)

J2((_*, _) -<J2(M_I/,V) (2.33)

_b*= M W* (2.34)

In otherwords,theStackelbergstrategyistheoptimalstrategyfortheleaderwhen the

followerreactsby playingoptimally.An interestingpropertyrelatingthe Nash and

Stakelbergstrategiescan be derivedfrom equations(2.30)-(2.34)asfollows[41]:
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* j oJ2({_ , _*) _ 2(_b , _o) (2.35)

which means that the leader in the Stackelberg solution achieves at least as good a cost

function as the corresponding Nash solution.

2.5,3 Zero-Sum Game

Zero-sum games resultwhen thetwo decision-makersareadversaries.One decision-

maker'slossistheotherdecision-maker'sgain.In thiscase,theequilibriumsolutionhas

thepropertythat

J1 -- -J2 - J (2.36)

The above Nash inequalities criterion (2.30) and (2.31) may be reduced to

o o o
J [x,¢°,V,t] ___J [x,¢ ,V ,t] _< J [x,¢,_ ,t] (2.37)

where, J [x,¢°,V°,t] -=V [Xo,to] is called the value of the game. In such a differential game

both players have the same performance index, with the first player minimizing it while the

second player attempts to maximize. Equation (2.37) suggests that if the minimizing player

deviates from his optimal strategy, the game will have a higher game value. Alternatively,

if maximizing player deviates from the optimal strategy, the game will have a lower value

than if the two were employing optimal strategies. This is the well-known saddle point

condition in the game theory [32]. A similar saddle point condition may also be derived

from the Stackelberg inequality conditions.

Introducing the variational Hamiltonian

H (x,¢,%X,t) = L + XT f (2.38)
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and define the terminal conditions as:

Q(xCtf),tf) = g(x(tf),tf) + v T P (x(tf),tf) (2.39)

Since _t = f(x,u,t), one may write the performance index as

firj t __Q(x(tr),tf) + (H - xT_t) dt

Jto

(2.40)

Since the control terms appear only in the function H, the saddle point condition (2.37) can

be written as [42].

H(x,t_ ,V,_L,t) dt < H(x,0 ,xlt°,_.,t) dt< H(x,¢,gt°,2L,t) dt (2.41)
--dll

If for all t, functions L and f arc continuous, the inequality (2.41) can be changed to

the pointwise form [42] by using the principle of optimality which requires that at every

instant controls should be chosen to make system optimal:

O O

H(x,¢ ,V,2L,t) < H(x,¢ 0g°,2k,t) < H(x,¢,q/°,_.,t) (2.42)

Equation (2.42) is a sufficient condition for the inequality (2.41) and a differential game

version of Weierstrass condition in the optimal control.

Generally, by the order of action it is known [35] that

max rain H(x,q,_,_t) = min max H(x,t),¥, X, t) (2.43)
¥ ¢ ¢ ¥

.I
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Additional conditions sufficient for satisfying the above equation (2.43) as equality for a

special case was given by Von Neumann and Morgenstem [32]. This is known in the

literature as the Isaacs principle.

If H is separable in 0 and _, i.e.,

f(x, ¢, V, t) = fl (x, t_, t) + f2(x, V, t) (2.44)

L(x,¢,_l/,t) = Ll(X, ¢, t) + L2(x, _,', t) (2.45)

it may be shown [39] that

max rain H(x,¢,V,X,t)= rain
V ¢ ¢

max H(x,0,¥,X,t) = H(x,¢°,V°,_.,t)
¥

(2.46)

Since the stationarity conditions (first-order necessary conditions) are the same for

minimization or maximization, the differential game can be def'med as a two-sided optimal

control problem with coupling appearing via the transversality conditions. In this case, the

necessary conditions for ¢(t) and V(t) to be optimal are:

1) Euler-Lagrange equations

x = f(x,¢,V,t)

_-- - Hx

2) Transversality conditions at tf

_,'r(tf) = Qx(x(tf),tf)

(2.47)

(2.48)

(2.49)

P (x(tf),tf)= 0 (2.50)
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H(tf) = 0, tf is free (2.51)

3) Optimality conditions

He=0 (2.52)

Hv= 0 (2.53)

4) Isaacs principle

max rain H(x, ¢, V, X, t) = rain max H(x, 0, _t, X, t)
¥ , ¢ ¥

(2.54)

It may be shown that this solution can be also obtained by solving a partial differential

equation similar to the HIB equation [39]. In the differential game context, this PDE is

called the Hamilton-Jacobi-Isaacs equation for the optimal J [39], viz,

O

Jt (x,t)=- rain max H(x,¢,_,J°,t) (2.55)
J

J°(x(tf),tf) = g(x(tf),tf) (2.56)

The similarity of the differential game and optimal control is apparent from the

foregoing. However, it is important to note that certain differences exist between optimal
F

control problems and differential games [43]. First, although feedback control is not

essential in the optimal control problems it becomes the central requirement in" differential

games. Secondly, the solution is characterized by regions where solutions exist and where

they do not. Moreover, verification of the second-order necessary conditions, while not

routinely employed in optimal control, becomes mandatory in differential game solutions.
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2.6 Transformation Qf Nonlinear Systems

Even though differential game theory has several potential applications in economics,

military, and engineering, it has not been employed to the same degree as optimal control

theory. However, linear-quadratic differential games have received considerable interest in

the differential games literature [40, 41, 43, 44]. These games have been important in

studying the local behavior of certain nonlinear differential games. Recently, it has been

shown that a class of nonlinear differential games may be solved in closed form using

transformations [18]. In that work it was shown that nonlinear transformation techniques

are useful for implementing linear-quadratic differential game solutions in nonlinear

differential games.

2.6.1 Kronecker lnflices and Brunpv_ky Fornl

Before tackling the nonlinear system control problem, a brief review of linear system

theory in the state space will be given. For a given multivariable system

r,(O = A x(O + B u(t), x e _n, u e ¢Xrn (2.57)

the first step in designing control laws is to test for controllability.

computation of a controllability matrix C{A, B } [45] as

Ibl,Abl, A2bl, ....Akrlbl, b2, Ab2, .......,Ak=-Ibml
I

This involves the

(2.58)

For the system to be controllable, this matrix must have a rank n [45]. Next, this matrix

may be normalized to determine a transformation matrix

T= {ell, el2, .... elkt, e21, ...... eml, .. emkm} (2.59)
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or,

Defining a new set of state variable x = Ty and substituting in (2.57), one has

y = T-1AT y + TqB u (2.60)

with

y = Ac y + Bc u (2.61)

Ac=TqAT , Bc =TqB

Under this transformation the matrices Ac and Bc will have mostly zero or one entries

together with a specific structure.

"0 • • @ • • • 00

10000

01 O0 000

O0O0O00

000
A =

c 000

000

000

.00 0

where symbol • means any

invariant parameters are

For example, n=lO, m=3, k1=3, k2=3, k3---4

• " "1 • •

o0000 0 0 0

O0 000

0. 01,

000

B© = 0 0 0 (2.62)
O01

000

000

.0 O0

numeric entry. In this controller canonical form, the canonical

0

1 000000

01 00000

@ • • • 0@ 0

0001000

0 0001 O0

0 000 01 O.

k i o[j} "
(2.63)

where, ki is called the controllability indices, or Kronecker indices and o_jeigenvalues of

system.

Using control law

u(t) = G v(t)- K y(t) (2.64)

the system (2.61) becomes
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3_= (A,-B.K) y + B,G v (2.65)

By suitable choice of input transformation G and state feedback gain K, the entries marked

* in the {lst, (kl+l)st, (kl+k2+l)st ..... } rows of Ac and Bc can be zeroed out to get the

special controller form as follows:

= A"y + B"v (2.66)

For the aforementioned

_ ...

example (2.62),

"0 00 00 0000 0-

1 0 0 0 000000

0 1 0 0 000000

00 0 0000000

00 0 1 000000

00 0 0 1 00000

00 0 0 000000

000 0 001 000

0000000100

O0 0 0 00001 0

1 00

000

000

0 10

000

000

00 1

000

000

000

(2.67)

As we can see in (2.67), all eigenvalues of system can be zeroed out. The only

remaining invariants are the Kronecker indices. This special controller canonical form is

called the Brunovsky canonical form [45] and exhibits a parallel array of m decoupled
D,

subsystems of dynamic order kl, k2, k3, .... ,km [46].

2.6.2 Nonlinear Transformation

In the differential geometry, the Brunovsky canonical form can be viewed as a group

acting on the space of linear systems. Each subsystem forms a single orbit under the group

action and new system pair {A*, B*} are cyclic (single-companion-matrix). Such

differential geometric concepts in linear control theory have been extended into nonlinear
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systems with control variables appearing linearly m the dynamics by Krener [47] and

Brockett [48]. An infinitesimal group theory and tangential transformations for nonlinear

differential equations studied by Marius Sophus Lie [49] forms the basis for transforming a

nonlinear system to linear system. Compared with the usual linearization using a Taylor

series expansion about a fixed equilibrium point, local tangential transformations expand

Taylor series continuously along the trajectory.

carries its convergence house with it [50].

Consider the nonlinear system

m

= f(x) + E gi(x)ui(t)
i=l

Thus, the approximation, like a turtle,

(2.68)

where x, fix), gi(x) are n vectors with the hypothesis that f(0) = 0, causality condition, and

u are the m control variables. This system may be transformed to Brunovsky's canonical

form using two distinct approaches. Each of these are discussed below.

2.6,2.1 Hunt & SuiS Afibroach

References 51 and 52 showed that the transformation T = (T 1, T2, .... , T n, "In+1......

Tn+m) is required to have the following properties

(i)

(ii)

f_)

(iv)

(v)

T (0) - 0.
,P

T 1, T 2, .... , T n axe functions of x l, x2...... xn.

Tn+l, Tn+2, .... , Tn+m, are functions of x 1, x2, .... , x_,u 1, u2..... , um.

T maps the open set U of _Rn into 9_n with a nonsingular Jacobian matrix.

T 1, T 2,.... , T n are the state variables and Tn+ 1, "In+2, .... , "In+m are the controls

for a linear time-invariant system in the Brunovsky form.

Reference 53 gives necessary and sufficient conditions to map to the Brunovsky form

with m Kronecker indices _q, _:2...... r,_m. Because the Lie bracket operation on pairs of
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vectors keeps invariant characteristics independent of the choice of coordinate systems

used, introduce the Lie brackets

If'g] - f - _x g (2.69)

where bg/_x and 3ff0x are n x n Jacobian matrix. One may define an alternative notation to

simplify the analysis. Thus, let

if, g] = (adlf, g) (2.70)

Successive Lie Brackets can then be expressed as

g = (ad°f,g)

[f,g]= (adlf,g)

[f,[f,g]]=(ad2f,g)

[f,(ad2f, g)] = (ad3f, g) (2.71)

[f,(ad"If,g)] = (adnf,g)

The transformation T = (T 1, T2...... T n, Tn+l, .... , Tn+m) exists if and only if
#-

(i) the set C = {(ad°f, gl), (adlf, gt), ..... (ad_llf, gl), (ad°f, g2), (adlf,g2) ..... ,

(adX2-1f, g2), .... , (ad°f, gm), (adtf, gm), .... , (adrm'lf, gm)} spans R n about the origin.

(ii) the sets Cj = {(ad°f, gl), (adlf, gl), ..... (adZj2f, gi), (ad°f, g2), (adlf, g2) ......

(ad_Cj-2f,g2) ...... (ad°f, gm), (adlf,gm) .... , (adtrj'2f, gm)} are involute for j = 1, 2 ...... m.

(iii) the span of each Cj is equal to the span of Cj n C.
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By def'mition, a linearly independent set of vector fields {x 1, x 2, ..... Xn} is involute ff and

only ffthereare scalarfunctionsoqjksuch that

II

[x i, x j] = 5". aij k x k for all i,j,k (2.72)
k=l

2.6.2.2 Mever's Avnroach

This approach is more intuitive. In this technique, the states to be controlled arc

successively differentiated until control terms appear in the equations. Various steps during

thesedifferentiationsform themapping.

2.6.2.3 Comnarison of Two Avnroaches

Although Hunt and Su's approach is more systematic than Meyer's, it is nearly

impossible to solve partial differential equations for T-transformations except in very

simple problems. Meycr's approach is a special case of Hunt and Su's approach.

If system equations arc derived by the classical dynamics with forces and moments as

control variables, then control terms will appear in the second-order kinematic equations.

In this case, Meyer's approach can be easily implemented and the transformed system is

always a double integrator system. This technique has been used in Robotics for several

years and called the Computed Torque Method.

For comparisons, a simple example is provided by the problem of a verticklly moving

vehicle of unit mass which has thrust u and drag being proportional to the square of the

speed. The equation of motion can bc written

= - G - K_2+ u (2.73)

with G denoting gravity. In state variable form, the system can be expressed as follows:
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_1 -- X2

_2 =- G- Kx_+ u

In the standard notation (2.68), it can be expressed as follows:

(2.74)

(2.75)

(2.76)

First, consider Hunt and Su's Method.

that rank {g, [f,g]} -2 and that {g, [f,g] } be involute. It is easy to check that

[f,g] = 0 - [

Ig, [f,g]l =[

The necessary and sufficient conditions are

0 1 1 (2.77)
. .2Kx 2 j

0 - 1 ]= I # 0 (2.78)
1 2Kx 2 I

which has rank 2 and the vector field { g, adf(g)} is involute.

with writing a Brunovsky form

Then, the method begins

(2.79)

where

Yl = Tl(Xl,X2)

Y2 = T2(xl,x2)

v = T3(xx,x2,u)

(2.80)

(2.81)

(2.82)

From Brunovsky form,
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Yl = "lh(xl,x2) =

Y2= T2(xl,x2) =

_T1 aT1

_tl + _ _-2 = <dTt,f> + <dTl,g>u = T2(xI,x2) (2.83)

_T2 _T2

_Xl _1 + _22 Y_2= <dT2,f> + <dT2,g>u = T3(xl,x2,u) (2.84)

with

<dT, f> = _-_Xlfl + f2 (2.85)

From (2.83) and (2.84), one has

<dTl, f> = T2, <dTl, g> = 0 (2.86)

<dT2,g> _e 0 (2.87)

Using Frobenius Theorem [54], i.e.,

<dh,[f,g]> = <d<dh,g>,f> - <d<dh,f>,g> (2.88)
v

one can get a following relation

<dTl,[f,g]> = <d<dTl,g>,f> - <d<dTl,f>,g> = 0 - <dT2,g> # 0 (2.89)

Therefore, from (2.86) and (2.89)

_T--k = 0
Ox2

<dTl,[f,g]> = _TI #o

(2.90)

(2.91)

2

The simplest solution is

Yl = T1 Xl (2.92)
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and from (2.86)

Y2 - T2 - <dT1,f> = x2 (2.93)

The feedback lincarization control u can be obtained from (2.84) as follows:

v - <dT2,f> v+G+Kx 2
u = = = v + G + Kx_ (2.94)

<dT2,g> 1

Second, considerMcyer's approach. Sincethemotion issingledegreeof motion,

changecoordinateby setting

Y = x (2.95)

After differentiating until control term u appears, the system can be expressed as follows:

_'=_ (2.96)

_'=_12 =- G- Kx_ + u (2.97)

Define

Y = v (2.98)

The Bmnovsky controUerform is

with the feedback l.inearization control

u ---v + G + Kx_ (2. I00)
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2.6°2.4 App|ieations

References 55, 56, and 57 designed an automatic flight controller for UH-1H

helicopter applying nonlinear transformation techniques and showed that the controller

exhibits good performance in all flight modes. As discussed in previous section, nonlinear

transformation technique based on Meyer approach needs to successively differentiate the

controlled states to get transformation map from nonlinear system to linear system. Meyer

presented a numerical approach for calculating these derivatives. A successive numerical

differentiation, however, requires formidable calculation, with attending numerical

difficulties.

To reduce the amount of computations, Menon [58] introduced singular perturbation

technique to simplify the nonlinear mapping for a flight test trajectory controller of high

performance airplane. The slow time scale controller follows path command and generates

steady state values for the body attitude. The fast time scale controller is designed to track

the commanded values for the body attitude. In Reference 18, the nonlinear

transformations have been used to derive pursuit-evasion guidance laws for high

performance aircraft.

Heiges [59] applied the above mentioned techniques to design a helicopter trajectory

controller and implemented it on the TMAN program. This controller has demonstrated

excellent performance in various tactical flight modes.

At
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CHAPTER HI

TRAJECTORY PLANNING AS A ONE-SIDED

OPTIMAL CONTROL PROBLEM

3.1 Introduction

This chapter discusses the problem formulation and optimal trajectory synthesis using

two different performance indices. Candidate trajectories are generated and their optimality

is tested using second-variation analysis. Numerical effort involved in the computations

are analyzed.

For the f'u'st Optimal Route Planning problem, the terrain constraint is embedded into

state equations via a coordinate transformation. The performance index is a linear

combination of flight time and terrain altitude. In this problem, the computational algorithm

requires the fast and second partial derivatives of the terrain pxof'de.

The second Optimal Route Planning problem uses a performance index consisting of a

quadratic form in the terrain altitude, lateral deviation from the nominal trajectory, and

heading angle. By changing the independent variable from time to down-range, the order

of the problem is reduced. Each of these trajectory planning schemes will be discussed in

greater detail in the ensuing.
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3.2 Optimal Route Plannin_ Problem No.!

3.2.1 Problem Formulation

A kinematic model of the helicopter will be employed in the ensuing analysis. Let the

terrain profile be specified by a function

ht = f (x,y) (3.1)

where ht is the altitude above a preselected datum at any specified position (x,y), x and y

being the down-range and cross-range measured in a chosen inertial frame. It is assumed

here that ht > 0 and that the terrain f(x,y) has continuous first and second partial

derivatives. This fact is important to ensure that the trajectories emerging from this optimal

trajectory planning problem are implementable. Additionally, this is consistent with the

proposed cubic spline parameterization of the digital terrain data. While executing nap-of-

the-earth flight, the helicopter altitude motion will follow the terrain profile (3.1) with a

specified altitude clearance. As a result, the helicopter altitude at any location (x,y) is given

by the equation

h - f (x,y) + he (3.2)

In (3.2), h is the helicopter altitude and 1_ is the specified terrain clearance. For NOE

flight, the clearance is between 5 and 120 feet [1].

A sample terrain profile with the x, y, h coordinate system is shown in Figure 3.1.

The local coordinate system x,, Ye, ze used in subsequent analysis is also defined in this

figure. This moving coordinate system has its origin on the terrain surface at the current x,

y position with x,-y, plane being the tangent plane. The principal direction of this system

is along the intersection of the x,-y e plane with the x-h plane. Accordingly, z, points in the

v
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direction of the normal vector to the local tangent plane. The transformation of vectorial

quantities from one system to the other can be accomplished using the terrain gradients: see

Appendix A for details. Since the helicopter is constrained to move on the surface defined

by equation (3.2), the velocity vector lies in the instantaneous xt-yt plane, with the angle Z

defining its orientation on this plane. The helicopter velocity components in the local frame

can be resolved as:

Xe = V cos Z (3.3)

S't = V sin Z (3.4)

The local heading angle Z and the airspeed V are assumed to be the control variables in the

present trajectory planning problem

Note that it is important to include velocity as a control variable in the present problem

to ensure hodograph convexity required for the existence of optimal controls [60]. In order

to ensure that the control emerging from this formulation are implementable, the helicopter

speed is next bounded as

0 < Vmin <_.V < Vmax (3.5)

Because a simple kinematic system is considered here, Vm_ corresponds to the speed at

which sufficient excess power is available for avoiding unknown obstacles.

The velocity components (3.3) and (3.4) may next be transformed to the down-range,

cross-range, altitude frame using the relations

V cos Z V fxfy sin Z

X= _ ' ql+f_'q fzxf§r'-'-="--l+-- +- (3.6)
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-v 14i7- sinZ
3>= (3.7)

The altitu_ rate on the terrain is given by:

fi=f_x+fyY (3.8)

These relations are derived in Appendix A. In the expressions (3.6)-(3.8), fx and fy are

local terrain gradients, assumed to be calculated from the given terrain profile (3.1).

In equations (3.6) and (3.7), the quantity 1/_/1+_+_ denotes the cosine of the angle

between the vertical z-axis in the inertial coordinate system and the direction of the normal

in the local tangent plane. And the quantity 1/l'_f_+_x denotes the cosine of angle between

the down-range x-axis in the inertial coordinate system and the x I axis in the local tangent

plane.

It is sometimes desirable to include ambient winds in the trajectory planning problem.

ff the winds aloft along down-range and cross-range directions are given by

u = Q(x,y), v = R(x,y) (3.9)

these may be added to the right-hand side of (3.6) and (3.7) to obtain the equations of

motion as

V cos X V fxfy sin= __ + _-u (3.10)

lqt_+f2x 1,_-_+_x_/l+f2xx+f 2

-V l"v_+_xsinZ+v3>= (3.11)

41+_+_
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The equations of motion (3.8), (3.10), (3.11) may be used whenever the helicopter is

flying in a terrain-following/terrain-avoidance mode.

Known threats and obstacles may be incorporated in the trajectory planning problem

by defining threat overlays of the form

Ah = P(x,y) (3.12)

and adding them to the basic terrain profile given by equation (3.1). The composite profile

may then be used to define the equations of motion (3.10) and (3.11). In that case, the

resulting trajectories will exhibit automatic threat and obstacle avoidance characteristics.

Additionally, it is possible to consider a formulation in which the specific energy of the

helicopter is maintained constant. This will occur whenever the throttle is set to maintain

thrust equal to drag while executing the nap-of-the-earth flight. In this case, the airspeed

will depend on the terrain profile as:

V = '/2g [E - fix,y) - 1%] (3.13)

In (3.13), g is the acceleration due to gravity and E = h + V2/2g is the specific energy.

3.2.20vtimal Route Planniw,
F.

The performance index considered in this problem is a linear combination of flight time

and a terrain masking function. Following the existing literature [7], trajectory masking

will be assumed to be accomplished if an integral proportional to the helicopter altitude is

minimized. Admittedly, this masking function is crude since it is based on the contention

that depressed terrain tends to provide a better masking. If improved terrain masking

functions given as a function of down-range x and cross-range y were available, they can

be included in the following analysis without difficulty. For simplicity, in all that follows,
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the terrain masking will be assumed to be accomplished if the integral of helicopter altitude

is minimized. A relative weighting factor is next introduced between the flight time and the

terrain masking function to control the trade-off between these two, often conflicting

requirements. Thus, a composite performance index of the form

J ---f [ (I-K) + K f (x,y) ] dt (3.14)

0

with

0<K_< 1 (3.15)

will be used in the following.

The initial conditions

x(to) = x0, Y(to)= Y0: given (3.16)

and the temainal conditions

x(tf) = xf, y(tf) = yf: given (3.17)

The variational Hamiltonian [12] may next be formed.by adjoining the differential

constraints (3.6), (3.7) to the performance index (3.14) to yield:: :

H 1 K+Kf(x,y)+Xx(VC°s_ .
V fxfysin_g

= . _- _____ _ )
_/i+_/1+_+_

+ _ (- V 1_+-_ sin Z) (3.18)

Note that the wind components have been dropped from (3.18).
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where

The Euler-Lagrange equations for this optimal control problem arc:

_,y= -Kfy

B1 sin X X7 + (B2 sin g + B3 cos Z) _,x V
3 3

AIA2

B4 sin X _ + (B5 sin X + B6 cos X) _.x V
3 3

A1A2

A_ =_+_

A:=41+q+ 

B 2 --- {fxfxx A2 + A2(fyfxy + fxfxx)}fxfy + A 2 A 2 (fxfxy + fyfxx)

B3 =- A_ fxfxx

B4 = {- A_ fxfxy + A 2 (fxfxy + fyfyy)} A_

B5 =- {fxfxyA_ + A_(fxfxy + fyf.)}fxfy + A] A_ (fyfxy + fxfyy)

B6 =- A_ fxfxy

withtheoptimality condition

_.xfxfy-_.y (I+_)

tan)c= gx41+_+fy2

(3.19)

(3.20)

(3.21)

The equations (3.6), (3.7), (3.19), and (3.20) together with (3.21) constitute a nonlinear

two point boundary value problem, which can be solved if the initial conditions on the two
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costates_.xand _.y were known. However, since the variational Hamiltonian is not

explicitly dependent on time and the final time is free, this optimal control problem has a

constant of motion, viz.,

H(t) = 0, 0 < t < tf (3.22)

i.e.,

0 = 1 - K + K fix,y) + _,x (V cosz

(3.23)

This constant of motion may be employed to eliminate one of the costates in the

problem. Using (3.21) and (3.23), one may solve for the costates kx and 7ty as

{1- K + K f(x,y)} _ + _ cos (3.24)=- Z
V

2ty - {1- K + K f(x,y) }(_/1 + fZx+ _ sin Z- fxf_ cos Z)
v4i+ 

(3.25)

Additionally, the costates can be completely eliminated from this problem by employing an

adjoint-control transformation as illustrated in the following.

The expressions (3.24) and (3.25) are next differentiated with respect to time and

equated to the right hand sides of the equations (3.19) or (3.20). This process yields a

differential equation for Z as:

• {(A 1K +A2) cos Z +A3(A4K +A 5) sin Z} V

Z = A6(AvK + 1) (3.26)
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where,

B 1 = (f-1)fm - (l+fx2),

B2 = (l-f)(l+fx2),

B3 = fx(l+fx2) 2,

A l = BIA3_,

A 2 = fxxfyA 3,

A4 = Blfxfy 2 + a2fxyfy- a3,

A 5 = fxfxxfy 2 - (l+fx2)fxyfy,

A 6 = {(I+fx2)(l+fx2+fy2)}3/2,

A 7 = if-l).

An implicit assumption made in deriving (3.26) is that X exists everywhere on the

terrain. This aspect will be verified while discussing the second variation analysis for this

problem. The expression (3.26) was obtained using the MACSYMA program [61].

With the foregoing analysis, the optimal route planning problem has been reduced to

that of solving a set of three nonlinear differential equations (3.6), (3.7), and (3.26) with

one unknown boundary condition X(0). The solution of this problem requires the

determination of the initial value of heading angle X. Since x(0) and y(0) are known, X(0)

must be selected such that the final conditions on x and y are the desired values x(tf) and
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y(tf). A simple iterative technique such as the method of bisections [62] may be set up to

solve this problem. Flow chart of such an iterative scheme is illustrated in Figure 3.2. If a

solution for the system (3.6), (3.7) and (3.26) satisfying the given boundary conditions

exists within the given _(0) range, then it can be shown that the scheme given in Figure 2

will find it in finite number of iterations [62]. Moreover, enforcing the conditions for the

existence of optimal controls can yield further guarantees on the convergence of this

numericalalgorithm.

Considernext,thesecondcontrolvariableinthisproblem,viz.,thehelicopterspeed.

SincethesecondcontrolvariableV appearslinearlyinthevariationalHarniltonianand is

bounded,theoptimalcontrolisgivenby

V = Vmax, ifS <0

V = Vm_,, ifS >0

V = Singular,S m 0 (3.27)

v

where S is the switching function obtained from

OH
S_=_

OV (3.28)

namely,

S = _'x (_/1 + _ + _ c°s X + fxfY sin Z)" gY(1 + f'2_)sin x (3.29)

4T+q 41+_+_

2

=

:I

Substituting 2tx and gy from (3.23) and (3.24) into (3.29)

S _,..

{(I- K) + K f}

V (3.30)
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Since V is always positive, the sign of the switch function is determined by the term within

the braces. This term is always less than zero by definition (0 < K _< 1, 0 < f). This

expression suggests that the maximum speed setting is optimal throughout the trajectory.

Euler solutions for the optimal trajectory planning problem may be generated by

numerically integrating the three fa'st order nonlinear differential equations (3.6), (3.7), and

(3.26). Starting from arbitrary initial conditions x(0) and y(0), Euler solutions to various

end conditions can be generated by changing the initial value of the heading angle. In the

present work, a sample terrain data from the U.S. Geological Survey [63] was used. The

terrain approximates a part of the Nassau Valley area in California shown in Figure 3.3.

The terrain data is stored at 1000 feet intervals and interpolated using Cubic Spline Lattices

[64]. This terrain data is given in Table 3.1. First and second gradients of the terrain

profile required in subsequent calculations are generated by differentiating the spline

polynominals analytically and substituting for down-range and cross-range values. The

nonlinear differential equations are integrated using a fixed-step fifth-order Runge-Kutta-

Merson technique and the method of bisections is used to carry out the one-dimensional

search. All computations were carried out on a VAX 11/750 computer system with double

precision arithmetic.

Figure 3.4 illustrates time-optimal trajectories starting at the point O and terminating at

several end points. These trajectories were obtained by setting K= 0 and varying the initial

value of the heading angle. This value of K corresponds to the case of time-optimal

control. The trajectories appear to be close to straight lines except in regions of large terrain

curvature. A family of Euler solutions starting at the point O with a large weight on the

terrain masking (K = 0.99) is given in Figure 3.5. These trajectories exhibit a more

significant curvature. An interesting feature of this solution family is that some of the

trajectories appear to intersect in certain regions of the given terrain. This implies the
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existence of more than one trajectory satisfying the stationary and boundary conditions. In

this situation, the selection of a particular path has to be based on second order necessary

conditions. Such an analysis will be presented in the Section 3.4. For a typical set of

boundary conditions, Figure 3.6 illustrates the difference between time optimal and

maximum terrain masking trajectories with initial heading angles 50 and 68 degrees,

respectively. It may be observedfrom this figure that the te_nmasking trajectory tends

to seek out lower elevations while time optimal trajectories appear to minimize the arc

length.

3.3 Ontimal Route Planning Problem No.2

In the trajectory planning scheme discussed in the foregoing, the computation of

extremals required first and second partial derivatives of the terrain profile. In some

situations, it may not be desirable to compute these derivatives due to the nature of terrain

data. A formulation of the trajectory problem that does not require these partial derivatives

will be discussed next.

3.3.1 Problem Formulation

,iw

Assuming that the helicopter has a speed of V, the flighi'path angle y and the heading

angle _, the velocity components in the defined inertial reference frame is given.by

_t = V cosy cos_ (3.31)

y = V cosy sin_ (3.32)

The heading angle is the control variable in the this problem, while the flight path angle is

defined by the terrain profile. This is due to the fact that the helicopter is executing terrain
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following flight. Thus, the kinematic model of the helicopter flight is given by the

differential equations (3.31), (3.32) and a nonlinear algebraic equation (3.2). In addition to

this, one can define three differential equations describing the point mass dynamics of the

helicopter. While it is desirable to include this in the formulation, the resulting trajectory

optimization problem becomes intractable. Note that it is possible to correct the present

results for neglected dynamics using singular perturbation theory [65 - 67]. The present

research will not address this aspect of the optimal trajectory synthesis problem.

In the ensuing formulation, time is not included in the performance index. Moreover,

since time does not appear explicitly on the right-hand side of equations (3.31) and (3.32),

the independent variable is next changed from time to down-range. This yields a dynamic

equation of the form

y'= tan _ (3.33)

Here, a prime over the variables represents differentiation with respect to down-range, the

independent variable in this problem. Note that this formulation is independent of the

vehicle velocity V. As a consequence, it is possible to impose an additional acceleration

constraint on the problem. It needs to be underscored that the vehicle velocity cannot be

permitted to be zero along the trajectory. Otherwise, the present modelling will lose its

P

validity.

3.3.2 Optimal Trajectory Planning

Assuming that the nominal trajectory to be flown by the helicopter is given by the

function yc(x), the objective of the second trajectory planning scheme is to maximize terrain

masking while minimizing deviations from the nominal trajectory. With this point of view,

the equation (3.33) may be modified as:



46

By'= tan W -yc'(x) (3.34)

Here, y¢'(x)isthe derivativeof the command yc(x) with respect to down-range x. The

heading angle _ is the control variable in thisproblem. The second optimal control

problem isthendefined as:

X

1 ff + _Sy 2 + CxV'2) dx (3.35)rain -_ (f2
¥(t) "X 0

subjecttothe differentialconstraint(3.34).The quantitiesE and a arc factorsthatcontrol

therelativeweight between deviationsfrom the specifiedpath and lateralacceleration.For

mathcmatic_l convenience' wc next replace the tcrrncorresponding to V 2 with tan2_.

Moreover, the nominal trajectoryisoftenspecifiedby straightlinesegments. In thiscase,

one can redefinethe originof the coordinate system atthe initialpoint with the abscissa

pointingin the directionof thedown-range directionwithout any lossof generality.In this

case,the quantity8y can be set equal to y.

With thesemodifications,the optimalcontrolproblem isredefinedas

X

miny, 1 j'x_(f2 + ¢y2+ ay,2)d x (3.36)

.P

The Eulcr'snecessaryconditionforthisproblem can be obtained [12]:

(Ey + fly)

cx (3.37)

Equation (3.37) is a nonlinear second order differential equation with a varying coefficient.

The initial condition y(x 0) and the final condition y(xf) are specified. As in the previous

section, the quantity fy is the gradient of the terrain profile in the cross-range direction. The

Eulcr's necessary conditions can be obtained via two distinct, although equivalent
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approaches. First, one may use the classical calculus of variations to derive (3.37).

Alternative approach is to let y" = U and proceed via modern optimal control theory [12].

Here, U is the control variable.

Numerical solutions to the differential equation (3.37) yield the extremals. To

construct an extremal joining a pair of x,y boundary conditions, the unknown initial

condition y'(0) needs to be determined.

Since just one unknown parameter is involved, it is possible to employ the method of

bisections to find the solution. Moreover, linear interpolation may be employed for terrain

interpolation since the method outlined here requires just the fast gradient of the terrain

profile.

Figure 3.14 shows a typical set of Euler solutions starting at the point O for 0t = 105, E

= 0.001. These trajectories were generated by changing the initial value of y' and

integrating the Euler's necessary condition forward. Note that the effect of increasing ot is

to produce trajectories that are closer to straight lines, while the influence of increasing E is

to introduce more features into the solution.

Figure 3.15 illustrates two trajectories with same boundary conditions, one being a

straight line joining the initial and final points and another being the extremal generated by

integrating equation (3.37). This trajectory corresponds to ot = 106, E = 0.01, and initial

heading angle --- -45 deg. Nature of the extremal agrees with general intuition that

helicopter should fly at lower altitudes and its path may zigzag around hills. Altitude

profiles along two trajectories in Figure 3.16 further iUustrate this fact.
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3.4 Second-Variation Analysis

It can be shown that a sufficient condition for the extremals obtained in the foregoing

to provide a weak local minimum for an oPtimal control problem is that the second variation

be strongly positive [68]. The second variation wiU be strongly positive if the Legendre-

Clebsch necessary condition is met in the strengthened form and the no-conjugate point test

is satisfied. In optimal control problems with unbounded controls, it can be shown that the

variational Hamihonian is equivalent to the Weicrstrass excess function [68]. As a result if

the second variation tests are satisfied, then the cxtremals provide a strong local minimum.

In addition to this, it is known [69] that if the integrand of the performance index satisfies a

convexity condition, the extremals affording strong local minimum also provide a global

minimum. In the following, each of these conditions will be examined for the two

previous problems.

3.4.1 Second-Variation Analysis for O.R.P. #1

3.4.1.1 Le_endre-Clebsch Necessary Condition
v

In an earlier section, it was shown that the optimal value of airspeed V = Vmax. Since

this control variable appears linearly in the Hamiltonian, the.Lcgendre-Clebsch condition

reduces to the scalar form

Hzz > 0 (3.38)

Taking second partial derivative of the Hamihonian (3.18) with respect to control Z,

- kx (41 + _ + _ cosx + fxfy sinz) + L¢(1 + f2x)sinz V (3.39)

HXZ= "V_+_ _/I +_+_

w

I



49

Next, substituting kx and 2_y from (3.24) and (3.25) into (3.39), one obtains

Hxz = (l-K)+ K f(x,y) (3.40)

The fight-hand side of (3.40) is strictly positive by definition. Thus, the Legendre-

Clebsch condition is satisfied in the strengthened form at every point on the terrain. The

implication of this is that the problem is regular. As a result, the extremals will be smooth

and provide a weak local minimum for sufficiently short intervals.

3.4.1.2 Wgierstrass Test

In the Calculus of Variations, strong variations only bound the magnitude of 5x, while

weak variations bound both the magnitude of 8x and the magnitude of the time derivative of

8x [35]. Weierstrass gave a test for verifying strong local minimum characteristics of

extremals. It can be shown that the Weierstrass's excess function [68] is equivalent to the

Variational Hamiltonian in optimal control theory [12].

• ,,. ..... ,.., cosx fxfysinz }-k V "*''xsinZH(x,_.,_,t) = l-h+ra+A.xVt -I

Substituting _.x and ky from (3.24) and (3.25) into (3.41), one has

H(x,_.,X,0= (I-K + K f)[I-cos (X° -X)}

Here, _o is the value of Z satisfying the optimal condition I-Iz--0.

and

(3.41)

(3.42)

H(x,_.,Z,t) > H(x,k,Z°,t) = 0 (3.43)
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In the foregoing it has been shown that the Weierstrass necessary condition is satisfied

along the extremal. Thus, the performance along the extremal is lower than along any other

trajectory.

3.4.1.3 Jacob| Test

For extremals of finite length, the task of ensuring that the=second variation is

nonnegative for admissible variations leads to the accessory-minimum problem in the

calculus of variations. This problem attempts to produce a system of admissible variations,

not identically zero, which offer the most severe competition in the sense of minimizing the

second variation. If a system of nonzero variations making the second variation zero can

be found, then a neighboring trajectory is competitive. In this case, Me test extremal

furnishes at best an improper minimum and at worst a merely stationary value [70]. First

value of the independent variable for which such a nontrivial system of variations can be

found defines a conjugate-point.

It has been shown in the references [i2][71][72] that the accessory _nimum problem

leads to the analysis of the nature of solutions to lincarized Euler-Lagrange equations. We

note here that this problem may be cast in the standard linear-quadratic format using the

backward sweep method [12]. However, algebraic linearization of the Euler-Lagrangc

equations (3.6), (3.7), (3.19), (3.20) can become excessively'involved. As an alternative,

a numerical conjugate point test will be employed in the present research. Reference 73

discusses several numerical methods available for conjugate-point testing. A direct

approach for conjugate point testing will be pursued in the following. This approach is

based on Theorem 12.1 -12.3 in Reference 70. This theorem is discussed in detail in

w --

Appendix B.
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From the existanc¢ theory of linear ordinary differential equations [74], it is known

that the solutions to the linearized Euler-Lagrange equations should be linearly independent.

More concisely, the Wronskian determinant should not be zero on an open interval. For

these fundamental solutions to be unique, they should be nontrivial and satisfy initial

conditions.

In the present problem, the fundamental solutions axe obtained by using the finite-

difference approximation

8xl (t) = x'(t) - xi(t),

dx2 (t) = x'(t) - xi(0,

8yl (t) = y*(t) - yi(t)

dy2 (0 = y*(t) - yJCt)
(3.44)

where (xi(0,yi(t)) and (xJ(t),yJ(t)) are neighboring extremals generated by perturbing the

initial value of heading angle. Note that this is equivalent to perturbing the initial value of

costates, while maintaining the appropriate state initial conditions.

The characteristic determinant A(0 is then formed as:

A(t) -] 8Xl(t) 8x2(t) ] (3.45)
8yl(t) 8y2(t)

From the theory of differential equations [74] it is known that this determinant cannot be
r

identically zero. If this characteristic determinant (3.45) after being zero at initial t = 0,

subsequently becomes zero at t = t*, with t* < tf, then the point t* is said to be conjugate to

the initial point t = 0.

This numerical conjugate point test is applied to the maximum masking extremals

given in Figure 3.5 with K--0.99. In this figure, the extremals A and B are of particular

interest since these are competing extremals satisfying the boundary condition pair (O, F).

The characteristic determinant (3.45) evaluated along these extremals is given in Figures
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3.8 and 3.9. From these figures it is clear that a conjugate point to point O occurs along the

extremal B, while none is encountered along extremal A. Thus, the extremal A affords a

strong local minimum if the desired end conditions were points O and F. On the other

hand, the extremal B provides merely a stationary value. This fact is confirmed by

computing the performance index along these trajectories and given in Figure 3.10. This

figure indirectly proves the princple of optimality by showing that the performance index

along optimal trajectory A between two points O and F is always lower than neithboring

extremal B. The point conjugate to the point O along extremal B is denoted by the point C

in Figure 3.5. A rule of thumb given in Reference 75 is that a conjugate point can be

expected to exist at point where the tangent to the extremal experiences a sudden change.

In the present case, it may be observed that the extremaI B experiences a sharp turn at the

point C.

In the minimum flight time problem' K = 0, the integrand of the performance index is

a constant, and it does satisfy the weak convex condition given in Reference 69. Thus the

extremals satisfying three second variation tests also provide a global optimum [69].

In Figure 3.11, two extremals satisfying the boundary condition pair (O, F) are given

for the rain-time criterion. Following the same procedure as for the maximum masking

problem, the characteristic determinant evaluated along these extremals is given in Figures

3.12 and 3.13. From these figures it is clear that a conjugate'point to point O occurs along

the extremal A, while none is encountered along extremal B. Thus, the extremal B affords

a global minimum if the desired end conditions were points O and F. On the other hand,

the extremal A provides merely a stationary value.

../,
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3.4.2 Second-Variation Analysis for O.R.P. #2

For the second trajectory planning problem, the Legendre-Clebsch condition will be

met in strengthened form ff ¢x> 0, since the Legendre-Clebsch necessary condition [76] is

_-_22 2]fff2 + _Sy 2 + a_g 2) = a > 0 (3.46)

Defining F(x,y,y') = f2 + ey2 + ay,2, the Weierstrass excess function for this problem

turns out to be

E (x,y,y',p) - F(x,y,y') - F(x,y,p) - (y'-p)Fp(x,y,p) = ¢x (y,.p)2 (3.47)

This is positive if y' is not equal to p.

The Jacobi's differential equation [76] for this problem turns out to be:

vi" =_ (E + t'Zy+ f fry) n (3.48)

Here aq is the solution to the linearized Euler-Lagrange equations or the second-variation. If

the coefficient 1 (E + _ + f fry) on the fight hand side is a slowly varying quantity with

respect to range, additional analytic results may be obtained using the WKB method [16].

Let

q(x) = _ (e + _ + f fry) (3.49)

where x is the stretched range x = I.t x, t.t > 0. Equation (3.48) can be rewritten

_" - q(x) T! = 0 (3.50)

The various derivatives in the above differential equation can now be written as
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dn dndx=

withchange ofvariableIx= _.-I

. _.2q(x)Tl= 0

(3.51)

(3.52)

(3.53)

(3.54)

The equation (3.54) with a large parameter X is referred to as Liouville's problem [74]. Its

approximate solution can be obtained using WKB method [16].

xf xf _A'_

11 = q-_C1 cos (JXo w/q'dx)+C2sin (fxo-v_dx)}, when

xf xf

(3.55)

(3.56)

T

z

where C1, (22 are arbitrary constants. It may be observed from the above solutions that if

q > 0 in the given interval, there are no conjugate points. Since f > 0 by definition, this

expression implies that q is always positive if fyy > 0. That is, if the vehicle is traveling in

a valley or along a saddle, the resulting extremal will not contain any conjugate points.

In the cases where q(x) changes sign along a given extremal, one has to carry out this

test numerically. The procedure employed in the previous trajectory planning technique

may once again be used. It may be verified that the integrand of the performance index
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satisfies the convexity condition given in [69]. As a result, ff a given extremal satisfies the

second order necessary conditions, it affords a global minimum.

3.5 Comnutational Effort

3.$.1 Comvutational Effort for O.R.P. #1

Studies using a VAX 11/750 computer have shown that an extremal requiring about 70

integration steps consumes between 1.5-2.1 seconds of CPU time. Given the desired

initial and f'mal conditions on down-range and cross-range, several Euler solutions need to

be evaluated to converge on the one satisfying the given boundary conditions. Using the

computational flow chart in Figure 3.2, between six and seven iterations were found

adequate to reduce the boundary condition error by an order of magnitude. Clearly, this

will depend on the given terrain profile. For example, ff the terrain gradients fx and fy were

small such that the boundary condition error depends approximately linearly on the initial

heading angle error, the number of iterations and boundary condition error may be related

as using the convergence formula for the method of bisections [62] as:

r = In (%/%,) (3.57)
In 2

In the expression (3.57), r is the number of iterations, ey 1is the initial boundary condition

error and %ris the boundary condition error after r iterations. It is important to stress here

that this relationship does not account for nonlinearities due to terrain profile. Its

usefulness is limited to generating a first order estimate on the number of iterations required

to satisfy a specified boundary condition error tolerance.
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In the present research the total computations for one step integration are about 626

multiplications and divisions and 240 additions and substractions.

3.5.2 Comnutational Effort for O.R.P. #2

Assuming that the stationary condition (3.37) is integrated using the Euler's method,

and that a linear interpolation is employed for computing the terrain altitude at various

down-range and cross-range locations, one can obtain a formula for the required number of

operations. In the following, it is assumed that multiplication, division, addition, and

subtraction each count as one operation. Each integration step is found to require 23

operations. The method of bisections requires two mathematical operations and one logical

operation per iteration. Thus, if there are n discretization intervals in the down-range

_tion and r bisections iterations, the _seni:_thbd would req_ approximately

m = 23 nr (3.58)

operations. Assuming that it is desired to decrease the interval of uncertainty by two orders

of magnitude, one requires about 7 iterations using the method of bisections. Thus, the

number of operations required for the method of bisections is m = 161n. Note that one can

reduce the interval of uncertainty by eight orders of magnitude by increasing the number of

iterations by about four times.

Next, assuming equal discretization of the down-range and cross-range directions, the

dynamic programming scheme is found to require 23 mathematical operations per node to

evaluate the performance index. In a typical computing scheme [12], this will have to be

evaluated at n 2- 1 nodes. After these computations, one has to execute 2n -1 logical
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operations. Thus, the total number of operations required in a full scale discrete dynamic

programming approach for the present route planning problem is approximately

m = 23 n 2 + 2n (3.59)

operations. Thus, to first order, the two methods are equal in terms of computational speed

whenever n = 7. Whenever the number of discretization intervals exceeds this figure, the

present approach provides a faster solution. In any case, note that the computational effort

in the present approach is a linear function of the number of discretization interval, while in

the dynamic programming approach, the computational effort is quadratic in the number of

discretization intervals.

On a rough terrain, one would require a large number of discretization intervals to

obtain results with sufficient fidelity. In that situation, the advantage of the present

approach will be even more significant. On the other hand, the dynamic programming

approach guarantees the optimality of the solution, while in the Euler solution method, this

has to be verified through second order necessary conditions.

3.6 Wind Effects

The magnitude and direction of winds are known to have a substantial effect on the

performance of most aircraft. This effect is accentuated on a conventiona_ helicopter

because of the low flight speeds, As mentioned in Section 3.2, the ambient winds can be

incorporated into the trajectory programming scheme with slight increase in complexity.

For the purposes of illustration, the effect of constant winds along x-axis in the first

trajectory planning problem will be considered. Using equations (3.8), (3.10), and (3.11),

and assuming the same performance index (3.14), one can obtain costate equations as



58

- {1 - K + K f(x,y)} "_ + _ cos Z
_.x = (3.60)

v +u4/+ _ cosz

_.y= {1- K + K f!x,y)}(_/1 + _ + _ sin Z- fxfy cos Z) (3.61)
4/+ c¢+u4"/+ cosz)

Following the same steps as in Subsection 3.3.1, the differential equation for heading

angle _ turns out to be

= V (C1 sin X + C2 cos X) + u A1 cos Z (D1 sin Z + D2 cos Z) (3.62)
(I-K+Kf)A A 

where,

A2=_/l+_+_

B I= {-A_ fxfxx+ A21(fyfxy+ fxfxx)}A1

v

B2 "- {fxfxxA2 + A21(fyfxy+ fxfxx)}fxfy+ A21A 2 (fxfxy+ fyfxx)

CI =- KfxA_ A_-(I- K + Kf) BIA2

C2 =- KfyA21A_ + (I- K + Kf) {B1fxfy+ B2 + A_fxfxx(fxfy-f.xyA2)}

M.

D: =- KfxA21A32+ (I- K + Kf) (- BIA2 + A_fxfxx)

2 3
D2 = - KA1A2 (1 + fy)2 + (1 - K + Kf) (Blfxfy + B2)

The accuracyof theseexpressionsmay bc verifiedby puttingthewind spccdu tozero.

In thiscase,the equation(3.62)exactlycorrespondsto (3.26).Figures3.17 and 3.18
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show several extremals for the minimum flight criterion and the maximum masking

criterion when wind to airspeed ratio u/V equals to 0.1 and all conditions being the same as

the Figures 3.4 and 3.5. An observation that may be made from these figures is that the

winds affect the maximum masking trajectory to a higher degree.

It is possible to include wind effects in the second route planning problem also.

However, this will not be pursued in the present research.

3.7 Conclusion

In this chapter, two systematic methodologies for optimal trajectory planning (ORP)

useful in the helicopter terrain-following/terrain-avoidance flight was presented.

For the ORP No.i, the terrain constraint was embedded into state equations via a

coordinate transformation. The performance index consisted of a linear combination of

flight time and terrain masking. Using an adjoint-control transformation, the optimal

control problem solution was reduced to a search for the initial value of heading angle. It

was shown that the optimal airspeed, a second control variable in the formulation, should

be chosen as the maximum permissible value. A simple computational scheme based on

the method of bisections and a fifth order Kutta-Merson numerical integration technique

was outlined for generating Euler solutions. Families of I_uler solutions for minimum

flight time and maximum terrain masking were presented.

It was shown that the Legendre-Clebsch necessary condition and Weierstrass excess

function are satisfied everywhere in the admissible region. Further, conjugate points have

been shown to occur in certain regions of the specified terrain. In the regions where

conjugate points do not occur, the Euler solutions for the maximum masking problem

provide a strong local minimum. The Euler solutions for the minimum time problem
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satisfying the second-order necessary conditions were shown to provide a global

minimum.

For the ORP No.2, the performance index consisted of a quadratic form in the terrain

altitude, lateral deviation from the nominal trajectory, and heading angle. By changing the

independent variable from time to down-range, the order of the problem was reduced.

The Legendre-Clebsch necessary condition and Weierstrass excess function were

satisfied everywhere in the admissible region. For this problem, an approximate conjugate

point test was developed using the WKB method.

The winds effects on the trajectories were briefly examined for ORP No. 1. It is found

that the winds affect the terrain masking trajectory to a higher degree.

l
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CHAPTER IV

TRAJECTORY PLANNING AS A TWO-SIDED

OPTIMAL CONTROL PROBLEM

4.1 Introdu_tiQn

Previous chapter dealt with the situation wherein we seek to determine the optimal

trajectory for a vehicle to fly from an initial position to a given final position. In this

chapter we will examine the same problem involving two vehicles with conflicting

objectives.

In such a situation, the trajectory planning problem will turn out to be a differential

game. An example is the case where one of the vehicles is attempting to intercept the other

while flying in a terrain following mode to avoid detection. Meanwhile, the second vehicle

may be executing a terrain following flight with the objective of avoiding capture.

Problems of this nature have received scant attention in the previous literature [77].

Next generation military helicopters such as the LHX must have capabilities to

automatically engage with ground and air targets. The avionics requirements'for the low

altitude air combat mission are complex, and reflect the problems brought about by

simultaneous air combat and terrain flight [78].

Since the publication of Isaac's famous book [17], the homicidal chauffeur problem

has became a model for vehicle pursuit-evasion. The solutions to this problem are very

intricate and have been discussed in References 79 and 80. Ciletti [77] indicated that the
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assumption of perfect information and role ambiguity [81] are some of the factors that have

prevented the application of differential games theory in realistic military situations.

Additionally, dynamics of the vehicles are highly nonlinear and of high order. These

factors have led to a situation wherein complete results are given only for a very limited

class of problems.

In this chapter, two different approaches are proposed for studying the helicopter

pursuit-evasion problem. A nonlinear pursuit-evasion game employing helicopter model

incorporating the terrain profile is discussed first. This model was used in Chapter III for

trajectory planning. This is followed by an approach based on the feedback linearization

technique motivated by the research in Reference 91. Each of these approaches will be

discussed in the following sections. In the ensuing, it will be assumed that each player has

complete information on the helicopter parameters and a noise free measurement of all the

state variables.

4,2 A Nonlinear Pursuit-Evasion Game

4.2.1 Problem Formulation

The helicopter pursuit-evasion problem is analyzed here _ a deterministic two-person

zero-sum differential game. The game begins at a certain set of initial conditions, when the

helicopters ftrst become aware of each other. In the present analysis the respective roles of

the players are assignedat the outset. It is assumed that this role definition remains

unchanged during the entire game. Although this formalism restricts the applicability of the

results, it is useful in revealing salient solution features. In real situations, the evader may

be a helicopter without offensive capabilities or with limited maneuvering capabilities.
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4.2.1.1 Eouations of Motion

When compared with high performance aircraft pursuit-evasion, one of the

characteristics of helicopter pursuit-evasion [82, 83] is that each participant attempts to

reduce its exposure to the opponent by avoiding high altitude flight throughout the

engagement. This is due to the fact that the vertical maneuvering above NOE altitudes may

make the helicopters more vulnerable to detection by ground and air based surveillance

system. The equations of motion developed in Chapter HI are used here to model the

helicopter flight in terrain-following mode. In the interest of clarity, these equations of

motion are repeated here.

v, f,,.fy.sin_ Ve cos _ + (4.1)

1,_-'f2_ 1_-_/1 +f2_+f_.

Ve l_ sin 7_

S'e =" _/i+f_ +_. (4.2)

;tp = VP cos Zp +
Vp fx,fy, sin Zp

14i;-  ,41
(4.3)

Vp l_xp sin Zp

YP = _/1 +_p+_y, (4.4)

The subscript e denotes the evader, while the subscript p denotes the pursuer. To make the

problem meaningful, it is assumed that the pursuer has a higher speed than the evader, i.e.,

Vp > Ve (4.5)
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Wheneverthe terrain gradients fx, fy are zero, it is possible to show that the condition (4.5)

is essential to guarantee capture. The initial conditions at t = 0 are

(x_,ye)ltffio specified

(Xp,yp)It__-0 specified

(4.6)

(4.7)

This problem is a terrain following version of simple motion illustrated graphically in

Reference 17. The participants select the direction of travel and may change it as fast as

desired. Thus, the control variables in this problem are the heading angles, gp and ge.

Note that this pursuit-evasion game has a very simple solution whenever the terrain

gradients are zero. However, the solution becomes quite complex in the general case; as

will be apparent in the ensuing.

4.2.1.2 Termination of Game

The game terminates at the first instant the pursuer succeeds in approaching the evader

within the fu-ing range of its weapon system. For the case of a circular weapon range

envelope, this condition can be expressed by the requiring that

(xe - Xp) 2 + (Ye- yp)2 ] tt S d2 ,. (4.8a)

d {(Xe- Xp) 2 + (Ye- yp)2} < O
dt (4.8b)

The quantity d is a specified number. The condition (4.8b) is required to ensure sufficient

time for weapon usage. The time of capture is determined from the requirement that

tf= rain {(Xe-Xp)2+(ye-yp )2-d2=0} (4.9)
t

w
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i.e., the instance that the condition (4.8a) is met as an equality.

It has been suggested in the literature [17] [84] that a fan-shaped capture set may be

more realistic. However, in all that follows, a circular envelope will only be considered.

4.2.1.3 Measure of Effectiveness

In the most planar games reported in the literature [80] [85], the performance index of

the game is the time of capture. The objective of the pursuer is to minimize the terminal

time tf, while the evader endeavors to maximize it. Additionally, in the present setting both

players also attempt to minimize their flight altitude to ensure adequate terrain masking. In

this case, the performance index can be expressed as

tf

J = rain max _(1+ W,f,-W,f.)& (4.10)
Zp Z_ t

I

where, Wp and We are weighting factors for the pursuer's altitude and evader's altitude,

respectively. The negative sign on the second term explicitly recognizes the fact that the

evader is attempting to maximize the performance index. In order to satisfy the terminal

constraint (4.8), it may be appended to the performance index in the form of a penalty

function [12]. In this case, the augmented performance indexis

tf

ja= min max Q(tf)+ _(l+Wpfp-Wefe) dt (4.11)
Z_ X, t

0

The terminal penalty function is given by

Q(tf) =_ {(xp- re) 2 + (yp- ye) 2- d2} It, (4.12)

and v is an undetermined multiplier in the game.
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4.2.2 Derivation_f Optimal Strategies

For convenience, define

rl--- Re, r2 -_ _'e, 1"3- _p, r4 --- yp (4.13)

The variational Hamiltonian [12] may be formulated as

4

H = 1+ Wp fp- We ire + X _,iri (4.14)
i=l

Expression (4.14) may be written in a more succinct form as:

H = 1 + H(Xp) + H(ZD (4.15)

with

H(Xp) = Wp fp + _,3 1"3 + _4 r4

H(Ze) " - We fe + Xl rl + X21"2

(4.16)

(4.17)

Since H is separable in terms of pursuer-evader controls gp and Xe, the saddle point

condition [39] is satisfied. As a result, the order of maximization and minimization does
r

not influence the outcome of the game. Thus, one has

min max H= max min H
• , z. z. t, (4.18)

The integrand of performance index (4.10) and system equations (4.1 - 4.4) are continuous

and satisfy the Lipschitz condition. Thus, the sufficient condition for the game to have the

value is also satisfied, see Appendix C for more details. Each player's goal is to reach the

value, i.e., saddle point of the performance index.
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where

Euler-Lagrange equations for the evader are given by

_,1 = Wefxe "
BI sin Ze k2 + (B2 sin Ze + B3 cos Ze) _-I Ve

3 3
AIA2

_.2 = Wefye B4 sin Z_ _.2 + (B5 sin Ze + B6 COS Ze) _,I We
3 3

AIA2

B2 =- {fxefxexeA_ + A21(fyefxee + fxefxexe) } fxefye

B3=- A_f_of_o

B, = {-A_f_/_y°+A_(f_of_o_°+f_.fyo_0)}A_

B5=- {f,_f_y_A_+ A_(f_of_yo+ fy0fyoy_)}f_;fyo

+A_A_(f_/_.o+f,.fyo_)

The Euler-Lagrange equations for the pursuer can be obtained as

DI sin Zp _L4 + (1)2 sin Zp + D3 cos Zp) _-3

_.3=- wpf_p- _c_
Wp

(4.19)

(4.20)

(4.21)
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= - W_yp D4 sin Zp 7,4 + (D5 sin ZV + D6 cos Zp) 2,3 Vp
(4.22)

C_-- _/1+ _p

D1 -- {- C22fxpfxpxp + C_1 (fypfxpyp + fxpfxpxp)} C2

D2---{fxpfXpXpC_2 + _ll(fypfxpyp + fxpfXpxp)}fxpfyp

+ C_1 C_ (fxpfxpyp + fypfxpxp) : :

D 3 --- C_2 fxpfxpXp

D4 - [-_2 fxpfXpyp + C_I (fxpfxpyp + fypfypyp)} C_I

D 5 --- {fxpfXpypC 2 4-C_l(fxpfxpy p + fypfypyp)} fxpfyp

+ C_l C_ (fypfxpyp + fxpfypyp)

D6 =- _2 fxpfxpyp

The optimality conditions for the two participants are given by-

tanZ, = X_f_dY*"X2(1 + f2)
2"1 _/1 +f2xe +_e

(4.23)

tan Xp = J_3fxvfYp - X4 (1 + _p)

_'3 41 +f2Xp +i¢2yp
(4.24)

Terminal conditions on costates can be obtained from the terminal penalty function as
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_.l(tf) - _ - - V(Xp-Xe)

___
_.2(tf) - _ - - V(yp-ye)

V(Xp-X )
_,3(tf) = o_x"_" =

D

;L4(tf) = _- v(yp-y=)

(4.25).

(4.26)

(4.27)

(4.28)

o-_ = 0 (4.29)
H(tf) =- o_t---_-

Since the f'mal time tf is unspecified and the Hamiltonian does not explicitly depend on t,

this problem has a constant of motion, viz.,

H(t) = 0,0 _<t _; tr (4.30)

Substituting equations (4.25) - (4.28) into (4.14) and invoking (4.29), it is possible to

obtain an expression for the undetermined multiplier v as:

V _ 1+ Wp fp- W= fe It=tf
(xv-xe)rl+(yp-ye)r2-(Xp-Xe)r3-(Yp-ye)r4

(4.31)

It may be verified that the denominator of equation (4.31) is simply the negative of the

product of range and range rate. Since the final value of the range is positive and the

terminal range rate is negative, the parameter v has a positive sign for the pure pursuit-

evasion game in which Wp = We -- 0. Moreover, expression (4.31) implies that at the final

time, if one requires the pursuer and evader's positions to match exactly, v would become

in/mite.
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4.2.3 Numerical Results

Most differential game solutions reported in the literature are obtained using numerical

methods. Among them, simple shooting in retrogressive time [86] [87], differential

dynamic programming [88], and gradient method [89] have been widely used. In certain

situations, the solutions obtained using reduced order modeling can be corrected for

neglected dynamics using singular perturbation techniques [90].

In the present research, retrogressive time integration is used to generate the extremals.

The trajectories are generated by first selecting the terminal position of the evader. The

terminal position of the pursuer is then selected from the specified capture set. This

corresponds to the expression (4.8a) being met as an equality. Substituting the final

costates into the optimality conditions (4.23) and (4.24) and noting that the unspecified

multiplier v exists in both numerator and denominator of these equations, the final values of

p_uer and evader*s_heading angle can be ca]cuiated. _e final values of rl, r2, r3, and r4

can be computed. Substituting these in equation (4.31) yields the unspecified multiplier v.

This enables the evaluation of the final value of the costates. The state-costate system is

then integrated backwards in time to obtain the pusuer-evader trajectories.

Figure 4.1 shows the pursuer and evader trajectories with terrain masking weights set

to zero. As in the one-sided trajectory optimization proble_n, the trajectories are nearly

straight lines. In Figure 4.2, the pursuit-evasion trajectories with Wp - 1,.We = 1 are

illustrated. The value of the parameter v is computed as v = 5.79E-3. With nonzero Wp

and We, the trajectories exhibit significant terrain masking features. Figure 4.3 illustrates

the altitude evolution as a function of time-to-go. Note that tgo = 0 corresponds to the game

termination instant. Pursuit-evasion trajectories for another set of initial and final

conditions with Wp = 1, We = 1 are given in Figure 4.4. The value of the parameter v is
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computed in this case as v = 2.03E-3. The corresponding altitude history is given in

Figure 4.5. Figure 4.6 illustrates trajectories for the pursuer and evader with Wp = 0.0,

We = 1.0. Note that in this case, the pursuer does not attempt any terrain masking. As a

result, its trajectory is nearly a straight line joining the initial and final conditions. The

value of the parameter v is computed as v = -.747E-3. For Wp = 0.5 and We = 1.0, Figure

4.7 shows the pursuit-evasion trajectories with v = -.375E-3. For the same weighting W,,

the trajectories become more curved as the weighting Wp is increased.

Le_,endre-Clebsch Condition

The optimality conditions (4.23-4.24) do not guarantee that the players maximize or

minimize the performance index according to their role. To determine the correct optimal

controls that make the pursuer minimize the performance index, while making the evader

maximize, the verification of Legendre-Clebsch condition is necessary.

For the present differential game, the Legendre-Clebsch condition requires that

Hx, x.. < 0 (4.32)

Hx,,_ > 0 (4.33)

where ,p,

- kl 41 + f'2xe+ _ cos Z_ + {k2 (1 + f2xe)- _,lfxcf_e) sin Ze Ve

41+ 41+fL+ o

- _.3 "_ 1 + _p + _p cos gp + {_L4 (1 + _p)- _,3fxpfyp} sin %p

41+ p 41+ p+ p

(4.34)

Vp (4.35)

The conditions (4.32),(4.33) may be strengthened by requiring strict inequality.
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Since these expressions are too difficult for hand computations, they are numerically

evaluated along the extrcmals. Figure 4.8 shows these quantities evaluated along the

trajectories in Figure 4.2. It may be seen that the Lcgendre-Clebsch necessary conditions

are satisfied in the strengthened form. Figure 4.9 illustrates the L-C test along the

extrcmals in Figure 4.4. In this c_, !tappcars that this test is satisfied in the strengthened
= ............. =_.... _ ::: :_ _:_: ..........

form every whereexcept a smaU region near the final region. It is important to emphasize

that the Jacobi test needs to be carried out along these trajectories before concluding the

optimality. This will not be pursued any further in this thesis.

4.3 Feedback Linearized Solution to a Pursuit-Evasion Game

As illustrated in the previous section,the numerical solution of even simple differential

games requires a tremendous amount of computational effort. An approach proposed

recently for solving a class of differential games [18] is to transform a nonlinear model into

linear timc-invariant form. A linear differential game is then solved and the results arc

transformed back to original coordinates to obtain a nonlinear feedback law suitable for real

time implementation. The advantage of this approach is that it can handle high-order

nonlinear vehicle models in th_ analysis. In the following, such a differential game will be

formulated and solved. The ensuing formulation will employ a high order m.odel of the

helicopter,

2,

4.3.1 Vehicle Model

The point-mass model for a high performance helicopter can be expressed by the following

nonlinear differential equations:
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= V cosy cos (4.36) "

y = V cosy sin (4.37)

fi=Vsin y

V = T sin 0m - g sin y

i

_/= g (T COSmgOcos

_t = T cos 0 sin ¢
mV cos y

- COS '_)

(4.38)

(4.39)

(4.40)

(4.41)

Here, x is the down-range, y the cross-range, h altitude, V the speed, y the flight path

angle, V the heading angle, T the main rotor thrust, m the vehicle mass and g is the

acceleration due to gravity. Figure 4.10 shows the definition of the axis system. The

control variables are the pitch attitude of the helicopter 0, roll attitude of the helicopter _,

and the main rotor thrust T. If desired, one may model T in terms of two components.

The fhst depending only on the vehicle states To and the second component ST that

depends purely on the collective control, i.e., T = To + _iT. The assumptions involved in

this model are stationary atmosphere and uniform gravitational acceleration. It is important

to note that this highly simplified helicopter model does not permit hovering.

4.3.2 Problem Formulation

The point mass helicopter model (4.36) - (4.41) will be transformed to a linear, time-

invariant form in this section. Various steps involved in this transformation will be

discussed in detail.
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In order to execute the terrain flight mode, admissible trajectories should satisfy the

terrain profile constraint, i.e., the vehicle altitude h should be:

h = hc + fix,y) (4.42)

This equality constraint can be absorbed into the state equations as witl be shown in the

foUowing. Differentiating the equation (4.42) with respect to time and noting that hc is a

constant, one has

fi = fx)t + fyy (4.43)

Equating (4.43) to (4.38), and substituting (4.36) and (4.37) for g and Y results in

tan 3'= fx cos ¥ + fy sin ¥ (4.44)

Differentiating once again with respect to time results in,

_t_t = fx_,_cosy + f_yycosy+fr_ sinv + f.y sinv- f, sinvff +fycosv_
(4.45)

Next, substituting from (4.36), (4.37), (4.40), and (4.41) for_t,y,_/and_, and

rearranging yields the following relation

a-

T cos0 cos_ = mV2cos37 {(fxx cos_ + fxy sin_) COS_ + (fxy COS_ + fyy sin_) sin_}

+ (- fx sinv + fy cos V) cosy T cos0 sine + mg cosy (4.46)

The expression (4.46) relates the vehicle states and control variables to the terrain profile.

It specifies the vertical force required to ensure that the vehicle trajectory satisfies the

terrain profile constraint. As a result, this expression dictates the altitude dynamics for the

two vehicles.
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Following Reference 18, the remaining components of the nonlinear helicopter models

for the pursuer and evader may be transformed into the Brunovsky canonical form by

differentiating the expressions (4.36) and (4.37) with respect to time and substituting for

X?, "_, V from the expressions (4.39) - (4.41). Defining four pseudo control variables, the

helicopter models can be put in the form

Rp =apl _p =_p2 (4.47)

= r_z Ye = _e2 (4.48)

where, _pI, _p2, _1 and _2 are the vehicle acceleration components in the earth-fixed

frame. These quantities may be related to the pursuer-evader states and controls as

_pl (Tp sin 0p Tp cos 0p sin _p sin Up
= mp - g Sin 7p) COS 7p COS Up " mp

cosOp cosOp
_ g (Tp mpg - cos Vp) sin _p COS Wp

(4.49)

sin 0p
ap2 -- (Tp mp

Tp cos Op sin _ cos Wp
- g sin yp) cos 7p sin Wp + mp

T_ COS Op COS %
. g (r . cos 7p) sin 7p sin Upmpg (4.50)

T sin 0_. Te c6s 0e sin _e sin
_I = C e g sin%) cos 7e cos We -

We
me me

(% cos 0=cos $=
-g meg -cos %) sin7e cos We

(4.51)

_.2 = _T_(._sin 0= _me g sin7e)cos % sinWe -t "recos ee sinSe cos We
me

f% cos e_ cos $=
g meg - cos %) sin % sin We

(4.52)
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Equations (4.47) and (4.48) are linear time-invariant form. If the pseudo control variables

_[pl, _[p2, gh:l and _.2 were known, the actual helicopter controls can be obtained using the

following equations:

_bp--tan"1(_p2cos_tp-aplsin_tp)
Fp (4.53)

Op = tan-1 (S in _ Cap1 cos Vp + gp2 sin Vp +Fp sin yp) )
('-ap2COS _p- _lpl sin _/p) COS '_p

(4.54)

Tp = _p2 cos Vp- ap1 sin Vp mp

cos 0v sin ep (4.55)

where. Fp = _p2 cos Vp - _pl sin Vp) cos yp (fix, sin Vp + fy, cos Vp) + g cos Tp

+ '_p cos3yp (fx_, cos 2 'tl/p + 2 fyx, Sin 't_/pCOS _/p + fyy, sin 2 Vp)

Note that the equations (4.53) - (4.55) used the vertical force component constraint

expressed in (4.46). A similar set of expressions may be obtained for the evader also.

4.3.3 Linear Ouadratic Pursuit-Evasion Game

With the definition of position vector

(xp)rpffi YP
(4.56)

the feedback linearized vehicle models (4.47), (4.48) may be expressed in the standard

state variable form as:

fp - Vp, rp(t0) given (4.57a)

.I

te = ve, r,(to) given (4.57b)
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_'v= ap, Vp(tO) given (4.57c)

% = ae , ve(to)given (4.57d)

Next, introducing the relative coordinates, one has

r = rv -re (4.58a)

v - Vp - v e (4.58b)

These dynamic equations can be written in a more succinct form as

0I]Cr]+[_ v (4.59)

Where 0 is a 2 x 2 zero matrix and I is a 2 x 2 identity matrix. The control variables in the

model are the acceleration components in the earth fixed coordinate system. The pursuer

uses the control ap to attempt to capture the evader, while the evader uses the control ae to

avoid capture.

To further simplify notation, write the above equation as

(4.60)

with

[0 i I o [0]  Irl= = = u=av-a eF 0 0 I v

The objective of the pursuer is to minimize the terminal miss, which the pursuer

attempts to maximize. The terminal miss is defined here as

21rT(tf)S fr(tf) (4.61)
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The superscript T denotes the transpose of the vector and Sf is a positive scmidcfinite

matrix. Integral quadratic acceleration constraints are next imposed on both the pursuer and

the evader to make this game meaningful, and also to enable the application of the well

known Linear-Quadratic game results [12]. These constraints are included using two

positive definite weighting matrices W v and We.

Adjoining these constraints to the performance index, one has

J= rain max
ap •

If

-_"rT(t f) S fr(t f) +-_- (a_Wpap- aTeWeae)dt (4.62)

The saddle-point solution to this problem is given by [12]

[r] (4.63)

-wjs[ r] (4.64)

The matrix S is the solution of the matrix Riccati equation

-- -SF - FTs + SG(Wp "1 - W¢'I)GTS (4.65)

with the temainal condition

S(tf) =[ Sf0o]
In order to obtain solutions in the general case, the matrix Riccati equation (4.65) has

be integrated backwards in time. To illustrate the present solution further,tO

simplifications will be introduced in this problem.

If Sf, Wp, and We were constant diagonal matrices with Sf(i,i) = oi, Wp(i,i) = 1/oti

and W¢(i,i) = 1/13i, i = 1, 2, the saddle point solution can be expressed in the form

d,.
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a_--kIr+ k2v (4.66)

ae= k3 ap (4.67)

In the expressions (4.66) and (4.67), kl, k2 and k3 are 2 x 2 diagonal feedback gain

matrices with

kl(i,i)= -ai tl_o , i= I,2
.3

(4.68)1 + (ai- 13i)_.°
.3

k2(i,i)= k1(i,i)tso , i= I,2

13i
k3(i,i)= _ii' i= I,2

(4.69)

(4.70)

The time-to-go required for the computation of feedback gains is defined as

tso = tf - t (4.71)

While implementing this guidance law, it is preferable to compute tgo using feedback

information. This is because the vehicle model is approximate. Consequently, the

specified final time will not be equal to the actual time for capture. In the following, a

method for computing the time-to-go will be discussed. .

4.3.4 Terminal Time Estimation

Guidance scheme discussed in the foregoing requires an accurate estimate of time-to-

go for satisfactory operation. Several methods for calculating this quantity are available in

the missile guidance literature [91, 92]. However, most of the reported time-to-go

calculation methods neglect the two-player nature of an engagement scenario. In Reference
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93, an exact method for calculating time-to-go was outlined. This approach is developed

for the present differential game in the ensuing.

Since the transformed rain-max problem in Subsection 4.3.2 does not explicitly

depend on time, the variational Hamiltonian is constant, i.e.,

H(to) - H (0 = H(tf) = constant (4.72)

If the desired conditions at the termination of the differential game can be defined in terms

of the final differential position and velocity components, it is possible to evaluate the

variational Hamiltonian at the final time. This is feasible in the present problem since the

control variables are available in state feedback form with time-to-go as the only unknown

parameter. Next, equating the numeficai value of the corresponding expression at the initial

time results in a polynomial in time-to-go. A positive real solution of this polynomial is

then the exact value of time-to-go. In case of multiple solutions, the smallest value may be

selected. For further details on the calculation of time-to-go, refer to Reference 93.

For the present application, assuming that the weighting matrices St, Wp, and We are

identity matrices multiplied by scalars o, 1/ct, and 1/13, respectively, the polynomial

equation for the terminal time is as follows [93]:

R 2 {_4 (or- [_)_ }2 = (Ax + A_t tf) 2 + (Ay + bY tf) 2 (4.73)3

where

R2=i(xp-x,)2+

Ax = (Xp - xc)lt,, A:t = (_p - Xe)lto

Jl

Ay = (yp - yc)lt,, A_ = (_,p- _c)lto
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Note that the quantity R defines the capture radius.

If the current time is assumed to be the initial time and set to zero, tso = tf. The roots

of this sixth order polynomial are the values of time-to-go. Since there are six possible

values, the smallest real positive value needs to be used. In the present work, the roots

were found using the method of golden section.

4.3.5 Numerical Results

Two scenarios are examined for the pursuer and evader starting at the coordinates

(4000, 4000) and (5000, 5000), respectively. In both engagements, the weighting factors

are chosen as follows: ff = 1.0, (x = 0.0007, and [3 = 0.00001.

Figure 4.11 shows the trajectories for the pursuer and evader both with zero initial

heading angles. The corresponding velocity histories axe shown in Figure 4.12. The

speed variations occurring due to the terrain profile can be seen to affect the pursuer to a

higher degree. This is because the pursuer is assumed to have a higher acceleration

capability when compared with the evader. Load factor histories for two helicopters are

given in Figure 4.13. The load factor is defined here as the ratio of main rotor thrust and

the helicopter weight. Evader's thrust appears to be smoother than the pursuer's. Figures

4.14 and 4.15 illustrate roll and pitch attitudes of helicopters. Various features appearing in

these figures arise from the terrain profiles. Altitude histories for two helicopters are

shown in Figure 4.16.

In the the second scenario the pursuer has an initial heading angle 90 angles and the

evader is at a 0 degree heading angle. The resulting trajectories are shown in Figure 4.17.

As may be observed in Figure 4.18, this game involves the typical turn-and-dash strategy.

To turn quickly, the pursuer first decelerates and then accelerates to catch the evader.

Figure 4.19 shows load factor histories. Figures 4.20 and 4.21 show the corresponding
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roll and pitch attitude histories. Altitude histories for two helicopters axe given in Figure

4.22.

4.4 Conclusion

The helicopter pursuit-evasion problem while executing the terrain-following/terrain-

avoidance mode was studied in this chapter. Numerical methods for obtaining solutions to

these problems were outlined. As an alternative to numerical method, feedback linearizing

transformations were combined with the linear quadratic game results to synthesize explicit

nonlinear feedback strategies for helicopter pursuit-evasion. Further investigation of these

solutions will be of future interest.
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CHAPTER V

PERFORMANCE VERIFICATION

5.1 Introduction

The one-sided optimal trajectory planning schemes of the helicopter discussed in

Chapter HI considered only the kinematic equations. The objective there was to make the

optimal control problem analytically tractable. To verify whether the generated trajectories

satisfy the physical constraints, these need to be evaluated on a detailed simulation of a

helicopter.

In this report, a six degree of freedom helicopter simulation program called the

"TMAN" [21] is used for evaluating the generated trajectory. This program was developed

from a more general helicopter simulation program called ARMCOP [94]. This computer

code is being used in the Vertical Motion Simulator to conduct piloted simulation of

helicopter flight including air combat at NOE flight levels. Previously, a path planning

scheme using dynamic programming [8] has been tested at the NASA Ames Research

Center using this program.

The TMAN program incorporates a six-degree-of-freedom rigid body vehicle model, a

fast order engine lag response, a simple closed form trim solution, and linearized quasi-

static aerodynamic force and moment equations. Originally, this program was designed to
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simulate a generic helicopter motion in response to a joy stick. As a result, a coarse

stability augmentation system is incorporated in the simulation. Recently, Heiges [19, 59]

developed a trajectory controller for this helicopter model using feedback linearization. The

TMAN program together with the controller developed in [59] is used in this report to

evaluate some of the trajectories generated in Chapter m.

5.2 Simulation Results

Trajectories given in Figure 3.6 are used for evaluating the helicopter performance.

Note that these trajectories were generated with the constant airspeed assumption. The

airspeed employed in the present investigation is extracted from the available helicopter

performance data. For example, Reference 82 has presented AH-1S data for both

maximum rate of climb and rate of descent over its entire speed regime. This data is

summarized in Table 5.1. It may be observed from this table that over the density altitude

1000 to 3000 feet range, the maximum rate of climb varies between 8 ft/sec to 36 ft/sec.

The best rate of climb appears to occur at an airspeed about 100 ft/sec. Since the TMAN

program uses an AH- 1S type helicopter data, all simulations were carried out at this speed.

Figures 5'1 through 518 illustrate the helicopter respo_es for the maximum terrain

masking trajectory while Figures 5.9 - 5.16 give the simulation results along the minimum
\= ....

flight time trajectory. Figures 5.1 and 5.9 show the altitude rate for both trajectories. The

maximum altitude rates axe about 35 ft/sec. The nonlinear controller [19] was designed on

an assumption that the cyclic stick and pedals are primarily moment generating controls and

do not make a significant contribution to the body forces. The collective is the only direct

force control. Since airspeed is constant in these simulations, altitude change primarily

v
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affects the collective control. Figures 5.5 and 5.13 give collective control histories for both

trajectories.

As pointed out in Reference 2, the flight along the maximum terrain masking requires

frequent and severe rolling and yawing motion than the flight along the minimum time

trajectory. This is because the helicopter seeks to fly at low altitudes to maximize terrain

masking. The maximum bank angles for the terrain masking and minimum time trajectories

are about 12 and 6 degrees as shown in Figures 5.7 and 5.15, respectively. The maximum

heading angle change in the case of maximum masking trajectory is nearly 40 degrees as

depicted in Figure 5.8. The maximum heading change in the case of minimum time is only

15 degrees (see Figure 5.16). From Figures 5.6 and 5.14, it is evident that the minimum

pitch angle is approximately -6.0 for both cases.

These simulations indicate that the synthesized trajectories are implementable in

helicopter simulations provided that the airspeeds along these paths are chosen carefully. It

may be necessary to synthesize an acceleration control loop in the helicopter model to

ensure adequate ride quality. Clearly, the man-machine interface issues have to be

sufficiently addressed before attempting a full scale piloted simulation. These issues will

be of future research interest.



_v
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CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH

This report systematically analyzed trajectory planning schemes for the helicopter

terrain-following/terrain-avoidance flight by employing optimal control theory and

differential game theory. Numerical algorithms for trajectory synthesis have been

developed and validated through simulation. With adequate computing resources,

trajectory planning methods developed here appear to be implementable on-board the

helicopter.

6.1 Concludin_ Remarks

For the first optimal route planning method, the terrain constraint was embedded into

state equations via a coordinate transformation. The performance index here consisted of a

linear combination of flight time and terrain masking.- Using an adjoint-control

transformation, the optimal control problem solution was reduced to a search for the initial

value of heading angle. It was shown that the optimal airspeed, a second control variable

in the formulation, should be chosen as the maximum permissible value. A simple

computational scheme based on the method of bisections and a fifth order Kutta-Merson

numerical integration technique was outlined for generating Euler solutions. Families of

Euler solutions for minimum flight time and maximum terrain masking were presented.
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It was shown that the Legendre-Clebsch necessary condition and Weierstrass excess

function are satisfied everywhere in the admissible region. Further, conjugate points have

been shown to occur in certain regions of the specified terrain. In the regions where

conjugate points do not occur, the Euler solutions for the maximum masking problem

provide a strong local minimum. The Euler solutions for the minimum time problem

satisfying the second-order necessary conditions were shown to provide a global

minimum.

For the second optimal route planning scheme, the performance index consisted of a

qua_tiCfo_ in-theten'_n altitude,lateraldeviationfr0m_a nominal traject_,_and the
m_

heading angle. By changing the independent variablefrom time to down-range, the order

of_c problcmw_r_uc__ _ce again,theEuler solutionsforthisproblem was shown

to requirea one dimensional search. The numerical flow chartdeveloped forthe previous

trajectoryplanning scheme was shown tobe usefulfor thisproblem.

The Lcgendre-Clebsch necessary condition and Weierstrass excess function were

shown to be satisfiedeverywhere in the admissible region. For this problem, an

approximate conjugate point test was developed using the WKB method.

The wind effects on the trajectories were briefly examined for the first optimal route

planning problem. It was found that the winds affect the terrain masking trajectory to a

higherdegree thanthe timeoptimalpath.

Trajectoryplanning problem was next formulated as a differentialgarnc to synthesize

optimal trajectoriesin the presence of an activelymaneuvering adversary. Numerical

methods for obtaining solutionsto these problems were outlined. As an alternativeto

numerical method, feedback lincarizingtransformationswere combined with the linear

quadraticgame resultsto synthesizeexplicitnonlinearfeedback strategiesfor helicopter

pursuit-evasion.

[

J
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The one-sided trajectory planning schemes were based on the kinematic equations of

the helicopter. To verify whether the generated trajectories satisfy the physical constraints,

these trajectories were tested on a 6 DOF helicopter simulation using a currently available

flight path controller. The results indicate that the synthesized trajectories are

implementable provided the airspeed along these paths is chosen carefully.

6.2 Future Research

Based on the results of this study, the following research areas are recommended for

further research into the NOE guidance problem

Real Time Simulation and Flight Testing

As mentioned in Chapter V, NASA Ames Research Center is testing a path planning

scheme based on the dynamic programming method. The present trajectory planning

scheme appears to be a viable alternative candidate, thus it needs to be evaluated on the

Vertical Motion Simulator. Such an investigation would reveal various issues relating to

both man-machine interface and helicopter physical constraints.

Use of Alternative Performance Indices

Use of performance indices other than minimum time and maximum masl_ing need to

be investigated. For example, a weighted combination of time, masking, and flight path

angle can be considered. Constraining the flight-path angle would have the effect of

limiting the helicopter climb/descent rate. Since the rate of climb for a helicopter is related

to the excess power, such a limit on the climb rate may be required in real applications.
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Heliconter Dynamics in NOE Flight

The NOE operation requires helicopter fly close to the ground to avoid detection and

operate at low speeds to avoid collisions with unknown obstacles. This low-altitude/low-

airspeed flight regime is unique to the helicopter, and yet the least studied out of all the

flight regimes. Operation in the close proximity of ground brings in the need for studying

this flight regime in greater detail.

Time.varvin_ Obstacle Avoidance

Known and stationary obstacles may be incorporated into the trajectory planning

problem by overlaying the artificial envelope on the terrain map as discussed in Chapter M.

However, there exist only few path planning schemes examining the problem of avoiding

the time-varying obstacles, such as schemes for thunder-storm avoidance. References 95

and 96 may be useful in understanding how the time-varying obstacle can be included in

the analysis.
w

i l

These and other research items will be of future interest.



90

APPENDIX A

TANGENT PLANE AND THE COORDINATE TRANSFORMATION

A.I Introduction

The purpose of this appendix is to define the tangent plane oriented coordinate system

used in the development of the route planning problem discussed in Chapters ll'I and IV.

Further, the development of a transformation relating vectorial quantifies in the tangent

plane coordinate system to an inertial frame will be developed.

A.2 Tangent Plane

Referring to Figure 3.1, let P(xo, Yo, zo) be any point on the surface z = fix,y). If

fix,y) is differentiable at (xo, Yo) then the surface has a tangent plane at P. If fx and fy are

the gradients of the surface along x and y directions, then the equation describing this plane

is given by [74]

"fx(Xo,Yo) (x- xo)-fy(xo,Yo) (Y" Yo) + (z- Zo)= 0 (A.I)

Moreover, thevector

is normal to the surface at point P.

(A.2)

A line which is normal to thc surface at P has
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parametric equations

x = Xo -fx((Xo,Yo)t

Y = Yo" fy((Xo,Yo)t

Z=Zo+ t

where t is an arbitrary parameter.

(A.3)

A.3 Coordinate Transformation

The following discusses the transformation of quantities in tangent plane coordinate system

to the inertial frame. From (A.2), unit normal vector is given by

_._ -fxi- fyj +k

'_i + fx 2 + fy2

Select a unit tangent vector as

(A.4)

v

(A.5)

This unit tangent vector direction is parallel to the plane containing the inertial coordinates x

and z. Next, the cross-product between the tangent and normal vectors may be used to

obtain a unit vector orthogonal to these two vectors using the cross-product as follows:

.=.o, ,===.O

t2 = tl x n (A.6)

ioe,,

_2- fxfY'_"(I + f2x)_" fY_

1__+ _x41 + _ + _y (A.7)
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On the tangent plane, the kinematic equations of motion of a particle can be described

as

Xt = V cos X

yt =Vsinx
(A.8)

Here, X is the angle made by the velocity vector V with the tangent vector h. Note that the

component of the velocity vector normal to the surface is zero• This is because of the fact

that the vehicle is executing a terrain following flight• The subscript e denotes the local

coordinate system.

The transformation of the velocity vector in the local coordinates system to the inertial

frame may be accomplished using the following:

[:]I ]I 0']x cos (x,,x) cos Lv,,x) cos (z,,x)
cos (xt,y) cos (y,,y) cos (zt,y)

cos (x_,h) cos (y,,h) cos (z_,h)
(A.9)

The direction cosines can be obtained as

[i]
.'7" <'_ .'7" _<t 1 , 1> 2, 1> <n, 1>

<t 1, j> <t 2, j> <n, j>

-"

(A.IO)

where <., • > denotes the inner product.

Thus, the kinematic equations of motion over the terrain profile becomes

= Vcos X
2

ql +fx

fxfyV sinX

2 +f_I_/_+ fx2_/1 +fx
(A.1 I)
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ql+_ Vsin X

1 + _ +fy2 (A.12)

z - f(x,y) (A. 13)

These equations were used in the trajectory planning schemos discussed in Chapters RI and

IV.

,i
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APPENDIX B

NUMERICAL CONJUGATE POINT TESTING

FOR FIXED END-POINTS PROBLEMS

B.1 Introduction

The need for conjugate point test in the calculus of variations arise from the

requirement that the second variation evaluated along an optimal path must be greater than

zero for all admissible variations of states and costates. A pointwise test for the sign of

second variation is the well known Legendre-Clebsch necessary condition. For extremals

of f'mite length, however, the task of ensuring that the second variation is positive for all

admissible neighboring paths is more involved [73]. The proposed Jacobi test [97] seeks

the minimum value of the second variation. This problem is called the accessory minimum

problem. The objective here is to find a system of variations which gives the value of zero

to the second variation. If this is possible, it implies that a neighboring path is competitive

and that the extremal furnishes at best an improper minimum of performance index and at

worst merely a stationary value.

Analytical conjugate point test is impossible in all but very simple optimal control

problems. However, a family of numerical methods are available in the literature. This

appendix examines three of these techniques. The first two are very general, while the

third approach is useful in more classical situations such as the optimal trajectory planning
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problem discussed in Chapter III. All these methods are equivalent, although some are

numerically more efficient than others.

B.2 Second Variation

Consider the general optimal control problem described in Chapter H.

)t = f(x,u,t) ,

Z, =-H x

x(tO = xc

Su -0

H (x,u,X,t) -- L (x,u,t) + _T f (x,u,t)

P (x(tt),t t) -- 0

Q(x(tt.),tf) = g(x(tf),tf) + vTp(x(tf),tf)

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

S

The augmented performance index is given by:

ja__ Q(x(tf),tf) + {H(x,u,X,t) - xT_} dt

Expanding the augmented performance index 03.8) to second order [12], one has

AJ t = _j a + __ _2j, + higher order terms

(B.8)
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= Q_x(tf) - _,T(tf)_x(tf) + [(X+Hx) _x+H u _u] dt + xT(t x(tf)

Jto

f' I+21 [_xT _uTI Hxx Hxu _x dt+h.o.t. (B.9)
J_ . Hux _ _u

Since the first variation terms vanish along every stationary trajectory, second-variation

becomes

82j a = 8xT(te x(tr)+ [ _ixr
Hux Huu 5u 03.10)

The differential constraints and boundary conditions in this problem are

= fxSx+ f u,

8x(0) = 0,

8P = [ Px _x]t, = 0

03.11)

03.12)

03.13)

The accessory minimum problem attempts m find the minimum value of the second

variation 03.10) subject to the differential constraints 03.11) and boundary conditions

(B.12), 03.13). The Euler-Lagrange equations for this acc6ssary minimum problem are

given by

5L = - Hr.xSX - fxTsx - Hxu_iu

Hux 8x + fTsx + Huu 8u = 0

_iX(tf) = {gxx + (vrPx)x} 8x [t_

03.14)

03.15)

(B.16)
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Ifone assumes thatcontrolis nonsingular (i.e.,Huu ;e0), the expression (B.15) may bc

put inthe form

T

8u =-H2_Hu,dSx + fuS_.) (B.17)

In this case, one may substitute for 8u in (B.14) and (B.11) resulting in

I j:EA t,B,t,lE xl8"_L -C(t) -AT(t) 82L (B.I8)

where,

A(t) = fx-fuH_Hux,

B(t) = fuH_u,

C(t) = Hxx- HxuH_I-Iux.

This set of linear differential equations must satisfy the boundary conditions (B. 12),

(B.13), and (B.16).

B.3 The Rieeati Eouation Method

Since the accessary minimum problem (B.18) is linear and the differential equations

and the terminal boundary conditions are homogeneous, both _ix(t) and 8_.(t) are

proportional to 8x(to), or proportional to _iX(tf). Using the backward sweep [41], where in

one assumes a solutionof theform

8_.(t) = S(t) 8x(t), S(tf) = Qxx (8.19)
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a matrix Riccati equation can be obtained as follows [71]:

_; = - SA -ATS + SBS - C, S(tr)=Qxx (B .20)

Existence of a bounded symmetric-matrix S to the matrix Riccati equation (B.20)

determines the existence of a conjugate point. In other words, if S becomes infinite at any

point t along a test extremal, then the second variation is zero in the interval [to, t]. In such

a case, a neighboring extremal may furnish a lower value of the performance index.

B.4 The Kel!v-Moyer Melhod

Regarding the linearized Euler equations (B. 18) as a mapping between the variations

of unspecified initial costates, 8_.i(0) (i = 1, 2, 3,---, n), and the variations of states, 8xi(t)

(i = 1, 2, 3,.--, n), the following can be written

_X2(t)

_ 8xJt) 8Ln(O)

(B.21)

where _.io m _.i(0), i = 1, 2,..., n.
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Setting

M(t) =

- ¢3xl o_xl _xl

8Xl0 8X2o 8X.o

_x. O_Xn _xn

m

(B.22)

Kelly [73], Cicala [75], and Moyer [98] showed that the rank of the matrix M(t)

provides the criterion for the existence of a C0njugate point. If the rank of the matrix M(t)

drops at any point along the extremal, it indicates the existence of a conjugate point. In

other words, neighboring extremals starting at to in n-dimensional state space must collapse

into a smaller dimension at a conjugate point

B.S The l_liss Methgd

In Reference 70, a numerical method for conjugate point testing was suggested. For a

two dimensional system, if four fundamental solutions (xi, yi) (i = 1,2,3,4) to the linearized

Euler-Lagrange equations can be obtained, then the determinant of the matrix

d(t) =

Xl x2 x3 x4

Yl Y2 Y3 Y4 (B.23)

£
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will be non-zero. Since (xi,yi) (i = 1,2,3,4) are the solutions of the two dimensional

accessory minimum problem, their linear combination is also a solution of the accessory

system. Thus,

X --- ClX1 + C2X2 + C3X3 + C4X4

y = clyl + c2Y2 + c3Y3 + c4y4

(B.24)

This fact is exploited in the following theorem. In (B.23), note that (xi.Yi) (i = 1,2,3,4)

can be computed from the linearized costate equations.

Theorem In a two dimensional variational problem, if four solutions (xiYi) (i =

12,3,4) of the accessory equations of a nonsingular extremal arc are formed as a matrix

and if the determinant of matrix

! l(t) X2(t)

1(t) Y2(t)
D(t,to) =

1(to) x2(t o)

1(to) Y2(to )

x3(t) x4(t) ]

y3(t) y4(t)./

x3(t 0) x4(to) /

y3(to ) y4(t o)J

(B.25)

is not identically zero, then the conjugate point topoint(x(to),y(to)) is the (x(t),y(t)) which

makes determinant of matrix D(t, to) zero.

Since the initial conditions on xl, x2, Yl, Y2 are arbitrary, matrix D(t,to)'can be re-

expressed as

Ix l(t)

D(t,t 0) = lYl (t) X2(t) X3(t) x4(t)) ]

Y2(t) Y3(t) Y4 (t

0 x3(t 0) X4(t 0)

0 y 3(t0) Y4(t 0)

(B.26)
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The determinant of this matrix D can be changed using Laplace Expansion as follows:

A(t,to)=l Xl(t) x2(t) x3(to)x4(to) 03.27)
I yl(t) y2(t) y3(to)y4(to)

The second determinant of right-hand side in above equation (B.27) is arbitrary. Hence,

for A(t, t0) to be zero, the characteristic determinant

i Xl(t) Xz(t)
A(t) = ] yl(t) yz(t)

should be zero at conjugate point t = t*, to < t* __<tf.

(B.28)

1

B.6 Relationshio

Jacobi's differential equation_s,or accessory system of differential equations, are

linear and homogeneous. There exist two well-known methods for solving linear two-

point boundary-value problems [12]: the backward sweep method and the transition

matrix method. The backward sweep method results in the Riccati equations. On the

other hand, Kelly-Moyer and Bliss Methods are based on the state transition matrix.

Relationshio of Rie¢ilfi .Eeuation Method and Kellv-'Mover Method

w

J

To test conjugate point by Kelly-Moyer method, the sign of determinant of'matrix M(t)

should be evaluated along the extremal. Equation lB.18) can be rewritten in terms of the

partitioned transition matrix @(t, to) as

@xx(t,t0) @xx(t,t0) ] [ _x(to) ]
• xa(t,to) Oxx(t, to) cSX(to)

(B.29)
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Using the expression (B.21), one can find out that

M(t) = OxX (t,to) (B.30)

From the forward sweep equation, one has [12]

8X,Cto) = S(to) 8X(to) (B.31)

From this,

M-l(t) = S(t,t0) (B.32)

Relationshi_n of Kel!v-Moyer Method and Bliss Method

The following corollary given by Bliss illustrates the relationship between the Kelly-

Moyer method and Bliss method.

Corollary In a two dimensional variational problem, if the accessory equations of

a nonsingular extremal arc are a trajectory of a four-parameter family

x(t,a,b,c,d), y(t,a,b,c,d) (B.33)

then the conjugate point to a point to is determined by the zeros t of the determinant of

matrix

D(t,to) =

x.(t) Xb(t) Xc(t) Xd(t)

y_(t) yb(t) y_(t) yd(t) JXa(lO) Xb(_) Xc(tO) Xd(tO)

ya(tO) yb(t0) yc(t0) yd(tO)

(B.34)

provided that the determinant of matrix D is not identically zero along trajectory.
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B.7 Numerical Effort

All matrices mentioned in the foregoing axe n by n. Thus, there is no difference in the

size of matrix. To find the existence of conjugate point, however, the first method based on

backward sweep checks the boundedness of a matrix, but the methods based on the

transition matrix, Kelly-Moyer method and Bliss method, check the sign of determinant of

the matrix. The latter approach is numerically better conditioned.

The matrix Riccati method requires the integration of n x n equations and thus

demands a formidable amount of calculations. Primary difficulty here is the requirement

for various partial derivatives. In the present case, this would mean the computation of

higher order terrain gradients.

The numerical evaluati0n 0fthe elements of Keiiy:Moyer method evidently requires

computer codes considerably more complex than those required for the calculation of Euler

solutions. As an alternative to partial derivatives, Menon [99] used a scheme in which the

partial derivatives with respect to the _.io are calculated approximately in terms of difference

quotients. Thus, small increments in the Xio are employed in the evaluation of neighboring

solutions of the extremal.

The numerical Bliss method is similar to the Kelly-Moyer method. Instead of partial

derivatives, fundamental solutions are obtained numerically. As an alternative to

fundamental solutions, in the present work a computer code was assembled based on the

finite differences. This code generates three trajectories corresponding to each heading

angle, the first being the nominal and next two, the neighboring trajectories obtained by

perturbing the initial value of the heading angle by a small amount in the positive and

negative sense. This is equivalent to perturbing the initial values of costates while

w
z
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enforcing the constant of motion. The required fundamental solutions are then computed

using a finite difference scheme.

The main difficulty encountered in both finite difference quotients computations [99]

and finite difference method is the errors arising from higher order effects. These errors

can be controlled to a certain extent by verifying the linearity of the x(t) and Y(0 differences

versus the magnitude of the corresponding increment in the initial heading angle. This

check can be incorporated in the computer program.

If the final end-point is not f'med, the matrix Riccati method requires additional matrix

calculation, see Reference 12 for further details.



w
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APPENDIX C

SEPARABILITY OF THE HAMILTONIAN AND ITS

CONSEQUENCE ON DIFFERENTIAL GAME SOLUTIONS

C.1 Introduction

While discussing the trajectory planning schemes in Chapter W, it was pointed out that

in order to ensure that the outcome of the game is not influenced by the order of action, the

value of the game should exist. The value exists only when the final performance index

has a saddle point. The conditions for the existence of the saddle point are the separability

of the variational Hamiltonian and continuous mapping. In the following, each of these

issues will be elaborated.

C.2 Separability of The Hamiltorlian

p.

Consider a system of differential equations written in vector form

= f (x,d_,W,t), x(t0)=x 0

where, x(t) : = state vector of dimension n, x e X

_(t) : = control of Player 1 of dimension e, _ a

V(t) : = control of Player 2 of dimension m, V _ _F

with terminal constraints:

(C.1)
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P (x(tf),tf) = 0, tf is free (C.2)

andtheperformanceindexbeingdef'medas

J[x,O,V,t] = g(x(tf),tf ) + L(x,_,V,t) dt (C.3)

The variational Hamiltonian for this problem is given by

H = L + _,T f + l.tiT P + I_2T g (C.4)

If the right-hand side of syStem dynamics (C.1) and the _te6al part of payoff (C.3) are in

the form .......................................... _....

f (x'¢'V't) = fl (x,¢,t) _- f2 (x,v,t) (C.5)

L (x,,,V,t) = L 1 (x,O,t) + L 2 (x,v,t) (C.6)
v

then the Hamiltonian is separable in the space of controls _ and O as follows:

H = H I + I-I2 + _tzT P + Ix2T g

H I = L I (x,¢,t) + _T fl (x,¢,t)

H2 = L2 (x,V,t) + _T f2 (x'V,t)

(C.7)

(C.8)

(C.9)

In this case, Friedman [39] showed that there exists a saddle point for the Hamiltonian.

The order of action is immaterial in this case, i.e.,

O O
max min H(x,¢,W,X,t) = rain max H(x,¢,¥,X,t)= H(x,¢ ,V ,X,t)

¥ ¢ ¢ ¥

(C.I0)
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Equation (C.10) is known as the Isaacs condition in differential game [39]. This condition

is also known as the saddle point condition.

C.3 Sufficient Condition for a Game to have Value

As discussed in the previous section, the Isaacs condition guarantees the existence of

the pointwise saddle point. If the final performance index in the game has a saddle point,

then one is guaranteed that the order of action is immaterial. This section treats how the

pointwise saddle point can be transformed to the global saddle point. The chief

requirement here is that the game must have a value.

Friedman [39] [100] proved that a sufficient condition for the game to have a value is

the Isaacs condition and the following requirements,:

(i) f(x,_,_,t) is continuous and satisfies the Lipschitz condition,

(ii) g(x(tr), tf) and L(x,¢,_g,t) are continuous.

Here, condition (i) is required so that the trajectory generated by integrating equations of

motion (C. 1) is unique and continuous, while condition (ii) is required to ensure that the

performance index is continuous. Under these conditions, if the variational Hamiltonian is

separable, the performance index will be a unique quantity regardless of the player's order

of action.

To show the existence of the value, Friedman [39] and Fleming [101] considered an

approximating upper and lower game for every partition of the time interval [to, tf] into K

equal sub-intervals. Using the requirement (i), the trajectory evolves according to
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f(x,_jJgj,x)dx
(C.11)

Two possibilities are next considered. The first one in which the minimizing player

plays first. In the second case, the maximizing player plays first. The performance index

ineachcaseis

+

V K --inf sup.-- inf sup J[x,_j,_l/j,t ] j=0,1,2,...,K-1
_0 00 O,t-t Vz-!

VK- =sup inf • .-sup inf J[x,0j, Wlt] j=0,1,2,.--,K-1
#0 "ll/O 'tj/r _I 1_ r--I

(C.12)

(C.13)

With the increment of K,

4- +

lim VK--V , lira V i V-
K--_ K---_

It can be shown [39] that in the general case,

(C.14)

V + >V" (C.15)

Note that the above expression will be an equality if the Isaac's condition is satisfied. In

such a case,

O O
max rain J[x,_,lg,t] - rain max J[xAb,lg,t ] = J[x,_) ,_ ,t] (C.16)

v # ¢ v



109

APPENDIX D

CONVEXITY CONDITION FOR GLOBAL MINIMUM

Convex functionals play a special role in optimal control theory because most of the

theory of local extrema for general nonlinear functionals can be strengthened to become

global theory when applied to convex functionals [69].

By def'mition in Reference 35, a real-valued functional J: Y ---> 9_ is convex if

J[ot Yl + (1 - tz) Y2] < a J[yl] + (1 - ¢z) J[y2], V yl,y2 _ Y, 0 < a < 1 (D.1)

The following theorem [35] asserts the global nature of results for minimization problems

with convex functionals such as those defined in (D. 1).

Theorem If J(Yo) is a weak local minimum of J(y) on Y and J is convex at Yo relative

to Y, then J(Yo) is a global minimum.

A sufficient condition for convexity of functionals is that the integrand be convex for

the integral interval. Thus the test of convexity for a functional can be reduced to a test of

the convexity of the integrand. Typical integrands that are convex appear in Linear

Quadratic Regulator theory and in the accessory minimum problem related to the Jacobi

condition in nonsingular cases.
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Table 5.1 Maximum Rate of Climb (ft/scc_ for AH-1S

Speed (ft/sec)

0

16.67

33.33

50

66.67

83.33

100

116.67

133.33

150

166.67

183.33
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233.33

250

DensityAltitude

sealevel I000 ft 2000 ft

22.2 21.25 20.22

25.21 24.65 24.02

29.08 28.63 28.13

32.25 31.9 31.52

34.43 34.2 33.92

35.6 35.43 35.25

35.91 35.82 35.7

35.42 35.43 35.37

34.23 34.27 34.28

2.27 32.38 32.47

29.52 29.7 29.87

25.9 26.18 26.43

21.38 21.78 22.12

15.9 16.42 16.67

8.77 8.72 8.58

0 0 0

3000 ft
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35.02
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Figure3.3SampleTerrainMapof theNassau-Valley,California
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Figure 4.4 Trajectories for the Pursuer and Evader
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Figure 4.17 Trajectories for the Pursuer and Evader

(a = 1.0, et = 0.0007, p = 0.00001)
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