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ABSTRACT

Decomposition of large problems into a hierarchic pyramid of subproblems was proposed in the literature
as a means for optimization of engineering systems too large for "all-in-one" optimization. This decompo-

sition was established heuristically. The paper shows that the dynamic programing (DP) method due to

Bellman when augmented with an optimum sensitivity analysis provides a mathematical basis for the above

decomposition, and overcomes the "curse of dimensionality" that limited the original formulation of DP.

Numerical examples are cited.

INTRODUCTION

Engineering optimization problems, e.g., maximization of aircraft performance, are usually computation-
ally expensive and depend o_ the correct simulation of interaction of many parts and disciplines, Therefore

these problems are natural candidates for optimization by decomposition that converts one large problem

into a set of coordinated sm_dler problems. This paper shows that the linear decomposition method, whose

applications recently appeared in the literature, may be viewed as an extension and generalization of the well-

established algorithm of D_amic Programing due to Bellman (ref. 1). In particular, this method alleviates

to a large extent the algorithm limitation known as "the curse of dimensionality".

DYNAMIC :?ROGRAMING AS OPTIMIZATION BY DECOMPOSITION

Dynamic Programing, originally due to Bellman (ref. 1), is perhaps the best mathematically established

method for optimization by decomposition. Briefly summarized, the method applies to a system that may

be represented by a train of the "black boxes" as in figure 1 (called the stages in ref. 1). The black boxes

are mathematical models o:_ the physical parts or conceptual aspects (engineering disciplines) of a large

problem, and they are unified by a flow of information from the n-th box through the intermediate boxes

ending with the 1-st box. _ i-th box receives an input vector Si+l from its predecessor, an input vector of
design variables X/, and outputs a vector S/ that b_omes an input to the successor box ]-l. The i-th box

also outputs a quantity/Q interpreted as a component of the objective function of the entire system. Each

{Si} must be reducible to a function of a single variable, .si, Si = f(s_), and, because 3i = f(Si+l, Ki) and
P_ = f(S_+l,Xi), it follows that Si = f(si+l,Xi), P_ = f(s_+l,Xi), and ._i = f(si+l,Xi).

The problem of finding a set of vectors -Yi, i = 1... n, that minimizes the sum of Ri, i = 1 ... n. is

solved by starting with the 1-st box at the end of the train. The variable s2 governing the input $2 is

assumed to vary within an interval of interest. Several values of s2 distributed over that interval are set and



an optimization problem, constrained or unconstrained, is solved to find {X1 } so as to minimize R1 at each

value. That solution yields {X1}opt = f(s2) and Rlmin = f(s2), either in a discrete (a look-up table) form
or in a continuous form interpolated between the al values assumed above, dependently on the nature of the

problem.

Moving up to the 2-nd box, one seeks for each of the several values of a3 in an interval of interest an

optimal { X2 } (denoted {X2 }opt) that minimizes the sum R2 + Rlmia. One must consider that s2 = f (._3, X2)

and that for each value of .s2, there are {X1}opt and Rlmia already known from the optimizations that have

been executed for box 1. This operation generates the values of {X2}opt =/(.s3) and (R2 + Rlmin)min.

The procedure continues recursively from box i to box i + 1, carrying forward {Xj }opt, and (Rj + (R j-1 +

(_1-2.-. + (R2 + Rlmin)mia)min)min...)rain, j = 1... i, through the initial box in the train, i -- n, whereby
the minimum sum of all R/'s and a complete set of {Xi}opt's gets established. The procedure rests on the

fundamental principle formulated by Bellman which asserts that the set of {Xj }, j = 1... n, is optimal when

its subset for j = 1...i taken for any i minimizes the sum of Rj, j = 1...i, for Si+l input _ven from the
remainder of the train.

The procedure computational cost heavily depends on the aforementioned assumptions of Si = f(ai)

where si is a single variable. Indeed, if ai were a vector of m elements, P_mia would grow from a line plot

into a hypersurface in m dimensions. Assuming a quadratic representation of that hypersurface (the lowest

order nonlinear approximation), the number of discrete points at which optimizations would have to be

performed would grow proportional to the square of m, thus quickly destroying advantages of the procedure

as a computational cost saver. Bellman called this the "curse of dimensionality" and regarded it as a barrier

limiting applicability of the method.

OVERCOMING THE CURSE OF DIMENSIONALITY

Optimum sensitivity analysis formulated in ref. 2 provides a means for generalization of the above

procedure to include ai defined as a vector of m elements. The optimum sensitivity analysis algorithm

yields derivatives of the optimal {X} and R with respect to the parameters of the optimization problem

(unconstrained or constrained). Taking box 1 as an example, {$2} may now be defined as {$2} = f({a2}),

where {a2} is a vector of elements S2k, k = 1... m. For {s2} given, one may find {X1}opt and minimum of
R1 and their derivatives with respect to each S2k , regarded as an optimization parameter. Using the notation

D(X1, a2k) and D(R1, S2k) for these derivatives, the linear part of the Taylor series enables one to express

{Xl}op t and Rlmm as continuous, albeit approximate, functions of {s2}:

{X1 }opt = fl({.s2}) = ({Xl }opt)o ÷ [D(X1, .S2k)lA{s2 } (1)

&mm = f({.'2}) = + (2)

The Bellman's Dynamic Programing procedure may now be executed using the above approximations

in place of {Xl}opt = f(s2) and Rlmin = f(s2), otherwise the procedure remains unchanged. The
new component in the modified procedure is the optimum sensitivity analysis to be executed after each

opt_mi_.ation involving boxes 1, (2 + 1), (3 + 2 + 1),... n, recursively. Because the linear relationships, eqs. 1

and 2, introduce errors whose control requires move limits on design variables in each optimization, the entire

procedure has to be repeated p times until satisfactory convergence is attained. In this case, the number p

depends on the nonlinearities of the problem at hand. Consequently, because there is only one optimization

in each box in one pass, the number of optimizations required to converge the procedure is pn. Ttfm is in
contrast to nmm, which is necessary for the original procedure. The curse of dimensionality with respect

to m is removed. The ratio tm/nmm = p/mm tends to be very small for large m and renders the modified

procedure usable where the original one would be prohibitively expensive.

However, unlike the original procedure, the modified procedure relies on the continuity of the approxi-

mation function in eqs. I and 2; hence, it cannot accommodate discrete design variables.



HIERARCHIC DECOMPOSITION

Furthergeneralizationofthe modified procedure ispossibleifthe boxes inthe trainmay be partitioned

internallyas shown in figure2. This figureshows the boxes splitinternallyinto smallerones. In this

scheme, the trainof boxes t_at was horizontalin figurei isdepicted verticallyto form a pyramid whose

levels correspond to the box_ in figure 1. A typical level is popuJated by several boxes that formed a single

box in figure 1. The pyramicLal arrangement emphasizes the hierarchic dependence of the boxes in level i

("children") on the information transmitted from a box located at the level above j > i ("parent"), with

the underlying assumption tb at the boxes at the same level ("siblings") do not exchange information with

each other directly. Similar tc the system shown in figure 1, the behavior information from each box flows in

figure 2 from the parent to the children, or from the top level n down to level 1. The optimization information
from each box flows in the opposite direction. This information includes the optimum sensitivity derivatives

that enable optimization in e_h parent box to be performed taking into account the effect of its {X} on the
optimization results in all boxes descendent from that parent.

Thus, the above decomposition scheme first developed heuristically in ref. 3 is shown to be a generalization

of the Bellman's Dynamic Pr_graming. The scheme became known a.s hierarchic, linear decomposition.

APPLICATION EXAMPLES

Since its introduction in ref. 3, optimization by hierarchic linear decomposition has been demonstrated

to be useful in several applicz.tions. For example, in ref. 4 it was used to develop structural optimization by

substructuring. This case is illustrated by a portal framework (figure 3a) shown decomposed in fig-_re 3b. The

procedure histogram in figure 3c exhibits satisfactory convergence characteristics. Analytical information

flowing down the pyramid consisted of the internal forces and cross-section stiffness properties as parameters
of optimization. Optimal cro;_s-sectional dimensions, minimal values of the cumulative constraints and their

sensitivity derivatives with respect to the above parameters were transmitted in the opposite direction.

An example of the procedure application to a multidisciplinary problem of optimization of a transport

aircraft for performance under constraints drawn from major contributing disciplines was described in ref. 5.

The aircraft, its decomposition scheme, and a histogram of the optimization procedure axe shown in figure 4,
a, b, and c, respectively. The case featured over 1000 design variables and constraints and demonstrated

a mathematical link from tae design detail (e.g., wing panel cross-sectional dimensions) to the system

performance (e.g., the mission fuel). The procedure convergence was smooth and rapid as seen in figure 4c.

CONCLUSIONS

It is shown that the Bellman's method for decomposition of large optimization problems known as

Dynamic Programing may b,._generalized to encompass the cases when the information transmitted between

the parts of the system is a f_mction of many variables. The key component of the modified procedure is the

derivatives of optimum with respect to the optimization parameters. Application examples illustrate and

verify the procedure.
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