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ABSTRACT

Decomposition of large problems into a hierarchic pyramid of subproblems was proposed in the literature
as a means for optimization of engineering systems too large for “all-in-one” optimization. This decompo-
sition was established heuristically. The paper shows that the dynamic programing (DP) method due to
Bellman when augmented with an optimum sensitivity analysis provides a mathematical basis for the above
decomposition, and overcomes the “curse of dimensionality” that limited the original formulation of DP.
Numerical examples are cited.

INTRODUCTION

Engineering optimization problems, e.g., maximization of aircraft performance, are usually computation-
ally expensive and depend on the correct simulation of interaction of many parts and disciplines. Therefore
these problems are natural candidates for optimization by decomposition that converts one large problem
into a set of coordinated smaller problems. This paper shows that the linear decomposition method, whose
applications recently appeared in the literature, may be viewed as an extension and generalization of the well-
established algorithm of Dyniamic Programing due to Bellman (ref. 1). In particular, this method alleviates
to a large extent the algorithm limitation known as “the curse of dimensionality”.

DYNAMIC ?ROGRAMING AS OPTIMIZATION BY DECOMPOSITION

Dynamic Programing, originally due to Bellman (ref. 1), is perhaps the best mathematically established
method for optimization by decomposition. Briefly summarized, the method applies to a system that may
be represented by a train of the “black boxes” as in figure 1 (called the stages in ref. 1). The black boxes
are mathematical models o the physical parts or conceptual aspects (engineering disciplines) of a large
problem, and they are unifizd by a flow of information from the n-th box through the intermediate boxes
ending with the 1-st box. Axa i-th box receives an input vector S;,1 from its predecessor, an input vector of
design variables X, and outputs a vector S; that becomes an input to the successor box i/-1. The i-th bhox
also outputs a quantity f; interpreted as a component of the objective function of the entire system. Each
{S;} must be reducible to a function of a single variable, 5;, S; = f(s;), and, because S; = f(Si41.-X;) and
R{ = f(SH-lv‘Yi)y it follows that Si = f(SH-la—Yi)v Rt = f(3i+1v-\_i)v and 5 = f(si-ﬁ—lv-\’i)'

The problem of finding a set of vectors X;, i = l...n, that minimizes the sum of R;,,i = 1l...n. is
solved by starting with the 1-st box at the end of the train. The variable sy governing the input S is
assumed to vary within an interval of interest. Several values of 39 distributed over that interval are set and



an optimization problem, constrained or unconstrained, is solved to find { X} so as to minimize R; at each
value. That solution yields {.X)}opt = f(s2) and Rimin = f(s2), either in a discrete (a lock-up table) form
or in a continuous form interpolated between the s values assumed above, dependently on the nature of the
problem.

Moving up to the 2-nd box, one seeks for each of the several values of s3 in an interval of interest an
optimal { X7} (denoted {X2}opt) that minimizes the sum A3+ Aymin. One must consider that sz = f(s3,.X2)
and that for each value of sg, there are {X1}opt and Rygin already known from the optimizations that have
been executed for box 1. This operation generates the values of { X2}opt = f(s33) and (R2 + Rimin)min-

The procedure continues recursively from box # to box i +1, carrying forward {.X;}opt, and (R; +(R;-1 +
(Rj-2...+ (R2 + Rimin)min)min)min - - -Jmin, J = 1...4, through the initial box in the train, i = n, whereby
the minimum sum of all R;’s and a complete set of {X;}opt’s gets established. The procedure rests on the
fundamental principle formulated by Bellman which asserts that the set of {.X;}, j = 1...n, is optimal when
its subset for j = 1...i taken for any i minimizes the sum of R;, j =1...i, for S;;; input given from the
remainder of the train.

The procedure computational cost heavily depends on the aforementioned assumptions of S; = f(s;)
where s3; is a single variable. Indeed, if s; were a vector of m elements, Ripi, would grow from a line plot
into a hypersurface in m dimensions. Assuming a quadratic representation of that hypersurface (the lowest
order nonlinear approximation), the number of discrete points at which optimizations would have to be
performed would grow proportional to the square of m, thus quickly destroying advantages of the procedure
as a computational cost saver. Bellman called this the “curse of dimensionality” and regarded it as a barrier
limiting applicability of the method.

OVERCOMING THE CURSE OF DIMENSIONALITY

Optimum sensitivity analysis formulated in ref. 2 provides a means for generalization of the above
procedure to include s; defined as a vector of m elements. The optimum sensitivity analysis algorithm
yields derivatives of the optimal {X} and R with respect to the parameters of the optimization problem
(unconstrained or constrained). Taking box 1 as an example, {S2} may now be defined as {S2} = f({s2}),
where {s,} is a vector of elements 39, k = 1...m. For {s2} given, one may find {.X)}opt and minimum of
Ry and their derivatives with respect to each sq;,, regarded as an optimization parameter. Using the notation
D(X\,s9;) and D(Ry, s9;) for these derivatives, the linear part of the Taylor series enables one to express
{X1}opt and Rymin as continuous, albeit approximate, functions of {s2}:

{X1}opt = f({32}) = ({X1}opt)o + [D(X1, 324)]A{s2} (1)

Rimin = f({32}) = (Rimin)o + {D(R1, 321)} A{s2} 2)

The Bellman’s Dynamic Programing procedure may now be executed using the above approximations
in place of {X1}opt = f(s2) and Rymin = f(s2), otherwise the procedure remains unchanged. The
new component in the modified procedure is the optimum sensitivity analysis to be executed after each
optimization involving boxes 1, (2+1), (3+2+1),...n, recursively. Because the linear relationships, eqs. 1
and 2, introduce errors whose control requires move limits on design variables in each optimization, the entire
procedure has to be repeated p times until satisfactory convergence is attained. In this case, the number p
depends on the nonlinearities of the problem at hand. Consequently, because there is only one optimization
in each box in one pass, the number of optimizations required to converge the procedure is pn. This is in
contrast to nmm, which is necessary for the original procedure. The curse of dimensionality with respect
to m is removed. The ratio pn/nmm = p/mm tends to be very small for large m and renders the modified
procedure usable where the original one would be prohibitively expensive.

However, unlike the original procedure, the modified procedure relies on the continuity of the approxi-
mation function in eqgs. 1 and 2; hence, it cannot accommodate discrete design variables.



HIERARCHIC DECOMPOSITION

Further generalization of the modified procedure is possible if the boxes in the train may be partitioned
internally as shown in figure 2. This figure shows the boxes split internally into smaller ones. In this
scheme, the train of boxes tkat was horizontal in figure 1 is depicted vertically to form a pyramid whose
levels correspond to the boxes in figure 1. A typical level is populated by several boxes that formed a single
box in figure 1. The pyramical arrangement empbasizes the hierarchic dependence of the boxes in level :
(“children”) on the information transmitted from a box located at the level above j > i (“parent”), with
the underlying assumption that the boxes at the same level (“siblings”) do not exchange information with
each other directly. Similar tc the system shown in figure 1, the behavior information from each box flows in
figure 2 from the parent to the children, or from the top level n down to level 1. The optimization information
from each box flows in the opposite direction. This information includes the optimum sensitivity derivatives
that enable optimization in each parent box to be performed taking into account the effect of its {.X'} on the
optimization results in all boxes descendent from that parent.

Thus, the above decomposition scheme first developed heuristically in ref. 3 is shown to be a generalization
of the Bellman’s Dynamic Programing. The scheme became known as hierarchic, linear decomposition.

APPLICATION EXAMPLES

Since its introduction in ref. 3, optimization by hierarchic linear decomposition has been demonstrated
to be useful in several applicetions. For example, in ref. 4 it was used to develop structural optimization by
substructuring. This case is illustrated by a portal framework (figure 3a) shown decomposed in figure 3b. The
procedure histogram in figure 3c exhibits satisfactory convergence characteristics. Analytical information
flowing down the pyramid consisted of the internal forces and cross-section stiffness properties as parameters
of optimization. Optimal cross-sectional dimensions, minimal values of the cumulative constraints and their
sensitivity derivatives with respect to the above parameters were transmitted in the opposite direction.

An example of the procedure application to a multidisciplinary problem of optimization of a transport
aircraft for performance under constraints drawn from major contributing disciplines was described in ref. 5.
The aircraft, its decompositicn scheme, and a histogram of the optimization procedure are shown in figure 4,
a, b, and c, respectively. The case featured over 1000 design variables and constraints and demonstrated
a mathematical link from the design detail (e.g., wing panel cross-sectional dimensions) to the system
performance (e.g., the mission fuel). The procedure convergence was smooth and rapid as seen in figure 4c.

CONCLUSIONS

It is shown that the Beilman’s method for decomposition of large optimization problems known as
Dynamic Programing may be generalized to encompass the cases when the information transmitted between
the parts of the system is a finction of many variables. The key component of the modified procedure is the
derivatives of optimum with respect to the optimization parameters. Application examples illustrate and
verify the procedure.
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