
NASA Technical Memorandum 102613

An Experimental Evaluation of Software

Redundancy As a Strategy for Improving

Reliability

Dave E. Eckhardt, Jr.

Aiper K. Caglayan

John C. Knight

Larry D. Lee

David F. McAIlister

Mladen A. Vouk

John P. J. Kelly

(NASA-TM-!O2613) AN EXPERIMENTAL EVALUATION

.OF SOFTWARE RFDtJNOANCY AS A ST_,ATEGY FOR

IMPROVING RELTA_ILITY (NASA) 26 p CSCL 003

May 1990

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

G31(>1

NqO-Z3958

Unclas

0267_40

r

L INTRODUCTION

The use of multiple versions of independently developed software has been advocated as a means

of coping with residual design faults in operational software. This approach is characterized by two

fault-tolerant software structures known as N-version programming [1] and recovery blocks [2] that are

modeled after hardware approaches to fault tolerance known respectively as N-modular redundancy and

stand-by sparing. Although redundant hardware structures can cope with independent hardware failures

resulting from physical wearout, the effectiveness of redundancy applied to software is unclear. Analyti-

cal arguments [3,4] and empirical evidence [5, 6,7] indicate that failures in redundant software com-

ponents are unlikely to be independent. The degree to which design faults manifest themselves as depen-

dent failures determines the effectiveness of redundancy as a strategy for improving software reliability.

An important question is whether the multi-version software structure can be depended on to pro-

vide a sufficient measure of increased reliability to warrant its use in critical applications. The magnitude

of reliability gain that can be achieved using software redundancy is generally unclear. Several studies

have concluded that reliability was improved although the conclusions were based on only a few versions

(e.g., two versions [8], three versions [9, 10] and six versions [11]). Other experiments have produced

mote versions but under less rigorous development methods [12, 6, 7, 13, 14] and in some studies rela-

tively low quality codes were produced. There are other issues that might influence the use of redundant

software. For example, multiple versions generally require more resources during development and they

pose new problems for maintenance personnel. However, the fundamental issue is reliability improve-

ment; none of these other issues need be addressed at all unless multi-version software can be depended

on to produce reliable systems for critical applications.

A key assumption is that design diversity will result in software versions that have sufficiently

different failure characteristics such that fault-tolerant structures can provide "continued service" [15] in

the presence of failures of the component versions. Although models of fault-tolerant software have been

proposed in the literature [3,4, 16, 17, 18, 19], Littlewood and Miller [4] point out that there does not

seem to exist any precise definition, much less measures of the "degree of diversity." Nevertheless, a

number of ways have been suggested to enhance the diversity of developed software; e.g., different pro-

gramming environments, programming languages, and algorithms [20,21]. Avizienis [11] suggests that

the use of independent programming teams is the "baseline dimension for design diversity". The present

study investigates the gain in reliability achieved under this baseline dimension. The approach taken is

to consider a large set of programs that have been developed and validated to a common specification

using independent programming teams. On average, these programs will fail with some probability p for

-1-

the given application, development process, and cost constraints. Based on a model of dependent

failures [3], we examine the change in the failure probability PN that can be obtained with N of these pro-

grams arranged in a redundant structure.

The development process by which the versions are produced is central to the issue of software

redundancy as a reliability enhancing technique. A basic question that arises is to what extent and over

what phases of the development are the programming teams isolated in order to increase the indepen-

dence of the resulting software? For example, are open discussions of software specifications allowed?

At what point are the versions in, grated into a redundant structure; after each version has been subjected

to an independent validation or at an earlier stage to take advantage of multi-version testing as a valida-

tion procedure? Any development process tailored to a fault-tolerant software project would likely pro-

duce feedback to all software developers based on information gained from individual development

teams. As a general rule. it would seem that the earlier the independent teams come into contact, with

the potential of directly or indirectly influencing each other, the greater the possibility that common

design faults would ultimately reside in the redundant software versions. For this experiment, as much

independence as possible was maintained between the programming teams. In addition, a separate and

independent validation was used for each version of software.

This paper describes a large-scale experimental evaluation of software redundancy. Forty program-

mers from four universities produced, in teams of two, twenty versions of software for a rather complex

aero-space application. An additional twenty programmers performed an independent certification of the

versions. The versions were then submitted to an independent organization for evaluation in an opera-

tional setting. In Section II, the phases of the experiment are described. The procedures used to evaluate

the results of the experiment are developed in Section III and the results are presented in Section IV.

H. EXPERIMENT PHASES

Application Selection

After establishing the objective and the protocol for the experiment, the application was selected.

An application was sought that could be programmed within time constraints, presented a programming

challenge that was neither too simple nor too ditficult, and was a realistic application requiring high relia-

bility so as to be a potential candidate for fault tolerance. The goal was to obtain a representative set of

high quality programs for such an application. Initially an applicati0n was sought for which a good

-2-

specification existed so that the investigation could focus on the effectiveness of redundancy, given a

high-quality specification from the outset. Because we chose, instead, what we felt to be a good applica-

tion that required a specification to be developed, the experiment required an additional certification

phase to correct deficiencies in the software resulting from inadequacies in the specification.

The selected application was the sensor management of a Redundant Strapped Down Inertial Meas-

urement Unit (RSDIMU) [22]. An RSDIMU is a component of a modem inertial navigation system and

provides acceleration data that is integrated to determine velocity and position. Acceleration is measured

by a set of eight accelemmeters that are mounted, in pairs, on four faces of a semioctahedron (Figure 1).

During flight the accelerometers are read and the vehicle acceleration computed at regular intervals. The

accelerometers have many sources of inaccuracy (e.g., temperature, noise, misalignment) and are subject

to mechanical failure. Accelerometer failures manifest themselves as inaccuracy beyond that expected

and deciding which of eight accelerometers has failed involves complex computations.

zi

side D

YI

side C side A

l
side B

X I

Figure 1. RSDIMU Geometry Showing Instrument Frame of Reference

-3-

The application involves calibration of the accelerometers with a known acceleration (gravity),

analysis of noise mixed in with the data from the accelerometers, sensor Fault Detection and Isolation

(FDI) and, using only those accelerometers deemed to be good, computation of the acceleration of the

vehicle in which the instrument is located. The acceleration computation is complicated by the existence

of many frames of reference, most of which are orthogonal but some are not. Each sensor operates in its

own frame of reference and there is a vehicle frame of reference, an instrument frame of reference, and a

frame of reference through which the vehicle is moving. For navigation purposes, this last frame of refer-

ence is the one in which the acceleration has to be computed. However, the accelerometers provide data

in their own frames of reference and a number of transformations are required. The application is further

complicated by a temperature sensitivity in the sensors, known errors in the positioning of the sensors on

the semioctahedron during manufacture, and sensor data being supplied in a form characteristic of the

sensor hardware rather than in engineering units that can be used for navigation.

In summary, the various attributes of this application are typical of flight instruments involving

physical vectors, transformation between various coordinate systems, operation in a noisy environment,

and discrete modes. A requirements specification (in [23]) was prepared jointly by staffat the Research

Triangle Institute who have conducted experiments in fault-tolerant software, and by the staffof Charles

River Analytics, a company with expertise in the development and analysis of flight-critical software for

aircraft applications. The specification was reviewed by researchers actively involved in fault-tolerant

software research at the four universities participating in this study: the University of Virginia, the

University of Illinois, North Carolina State University, and the University of California. Based on their

reviews, several revisions were made to the specification. The final form of the specification is sixty-five

pages in length. It is written in English and includes a considerable amount of mathematics.

Software Development

The four universities were involved in the software development phase of the experiment to obtain

as many software versions as possible, within budget constraints, and to enhance the prospect of achiev-

ing independent development of these versions. They provided a large population of programmers from

which to choose the development teams and also provided a population with diverse academic and cul-

tural backgrounds. Because the selected application required substantial mathematical knowledge, gra-

duate students were hired in both computer science and applied mathematics. Programming teams were

formed such that each team had at least one member with experience in each discipline.

-4-

Development started with a briefing to the programmers of the goals of the experiment, the protocol

to be followed, and the distribution of documents. The preparation of the versions for this experiment

followed a rigorous development schedule. Although not equivalent to an industrial process, it was as

close as can be reasonably achieved in a university environment. The development protocol required the

teams to generate several work products according to a set of deadlines. The development occurred over

a ten-week period during the summer so that the teams had full time to devote to the project. Two weeks

after receiving the specification the designs were due and design reviews had to be held. The reviews

were monitored unobtrusively by the researchers to ensure compliance with the protocol. After a further

two weeks, the source code was required and it too was the subject of a formal review. At the end of

eight weeks the tested programs had to be delivered and subjected to the acceptance procedure. This

procedure consisted of one hundred test cases, fifty of which were functional tests and the remaining ran-

domly generated. The final two weeks were provided to permit the teams to make any necessary changes

to complete the acceptance procedure.

During the development phase, as much independence as possible was maintained between the pro-

gramming teams. Direct communication between teams was forbidden, and this was ensured to some

extent by using four geographically-separate universities to supply and host the teams. There was also

the need, however, for all participants to have access to the same information base so as not to confound

the results of the experiment. No additional information was provided for questions from the program-

ming teams that suggested a particular design approach. However, for those questions that generated

corrections and clarifications to the specifications, both the questions and the responses were broadcast to

all development teams. These question/answer pairs were viewed as part of the specification.

Independent Certification

The versions produced during the development phase [24] proved to be insufficiently reliable and

contained common errors resulting from inadequacies in the software specifications. Since the study was

examining the redundancy issue, this was considered to be an unfair evaluation and, since there would be

no compromise of the independence of the development process, an additional certification phase was

initiated. During the certification phase, the original specification was restored to a single document by

incorporating clarifications and removing specification ambiguities revealed by the questions from the

original development teams. Based on this modified specification, an elaborate acceptance procedure

was developed for the certification phase. This acceptance procedure consisted of 1,196 input cases of

which 796 were systematic, functional tests based on the specification and 400 were randomly generated

-5-

tests. Three of the four universities supplied programmers who modified the versions to meet the criteria

oft he new acceptance procedure. One programmer was allocated to each version for certification and, to

maintain independence of the versions of software, none of the programmers involved in the original

development were involved in the certification. The twenty versions were allocated at random to the

certification sites and modified over an eight-week period. In total, seven man-months of effort were allo-

cated to the development and certification of each version.

Independent Operational Evaluation

The certification sites submitted the programs to Charles River Analytics for an independent

evaluation of the programs in an operational environment. This operational environment simulated the

motion of a commercial aircraft operating over short-hauls with a mean flight time of fifty minutes. The

simulated environment included an aircraft simulation with a guidance control law, an RSDIMU simula-

tion, and a means for asserting correctness of the submitted software.

The aircraft simulation, which implemented differential equations for translational dynamics, rota-

tional kinematics, and an aircraft guidance law, was required to generate specific force and aircraft atti-

tude variables from a feasible input space; that is, one that exlfibited both static and temporal physical

consistency. Flights included typical take-off, cruise, and landing patterns with wind gusts.

The RSDIMU simulation used the specific force and attitude information and generated the sensor

outputs for the versions of sensor redundancy management software being evaluated. Sensor errors were

introduced by misalignment, noise, and temperature effects.

The aircraft simulation was randomized over trajectory segments and maneuver parameters. To test

the software under a variety of operating conditions, the RSDIMU simulation parameters were randomly

changed from flight to flight. These parameters accounted for possible operational differences across

flights such as differences in instnmaent mounting geometry, alignment, ambient temperature, sensor

noise statistics, etc. At intervals in the flights the acceleration estimates and the state of the sensors

(failed or operational) were checked for correctness for each of the twenty versions of redundancy

management software. The results presented in Section IV were obtained after approximately 921,000 of

these interval checks from the simulated flights.

-6-

HI. ANALYSIS METHOD

Failure Probability

We define failure of an N-version system on a given input to be the event that a majority of the ver-

sions produce incorrect output. For this study, we do not distinguish between identical failures and dis-

similar failures of the versions. Although it is true that the latter type of failure could be detected by a

voter and an alarm raised, we were not investigating the error-detection capabilities of N-version sys-

tems. The viewpoim taken here is that if there is a requirement for fault tolerance, then there is also a

requirement for the system to provide a continuation of service in the presence of software failures.

In this section we present the basic ideas used to analyze the reliability improvement of multi-

version software. An intensity function 0(x) represents the probability that a program, randomly chosen

out of a population of versions that are developed according to a common set of requirements, will fail on

a particular input x. It is assumed that the versions are tested on a random input series selected according

to a usage distribution Q that reflects the actual operational use of the software. The usage distribution

gives the probabilities Q (A) that inputs occur in subsets A of the input set _. The simulated flight condi-

tions described previously provided this distribution. Although programs are not actually picked at ran-

dom from a large population of programs, the input sets on which the different versions fail will likely

vary. Thus, to evaluate a multi-version structure, one must either physically examine the failure proba-

bility of every possible system that can be formed from subsets of the available versions or make use of a

failure intensity distribution, which we describe next, to determine an average failure probability.

A general model for the probability PN that a majority m =(N+l)/2 of the components fail in a sys-

tem of N versions (N= 1,3,5,...) is given by [3]

PN = _ _ [N}[o(X)]I[1-O(X)]N-IdQ(x). (1)
[0.1] l=m

This can be written in the form

where

PN = _ I_ [N]z'(1-z)N-ldG(z)
[0,1] l=m

-7-

O(z) = f dO
{x tO(x)_z)

is the cumulative failure-intensity distribution on the interval [0,1]. G (z) gives the probability that an

input is chosen so that the proportion 0(x) of versions that fail is in the range 0<0(x)_.z where 0_.z<l.

The assumptions giving rise to (1) are that (a) corresponding to the different development processes,

the version failures are conditionally independent, given a particular input, and (b) the versions fail on

input x with the same probability, namely 0(x). Unconditionally, since inputs are not fixed quantities in

an operational situation, version failures are dependent whenever 0(x) varies for different inputs. These

and other aspects of this model have been discussed in some detail in [3] and [25].

Estimation of N-Version Failure Probability PN

Suppose that n software versions are tested on an input series Xl,X2,...O0: of length k. Let

uy (x)= 1 ify out of n versions fail on input x and uy (x)=O, otherwise. The quantity g (y), defined by

k

g(y) = k -1 _ uy(xi), y =0,1,2 ,n, (3)
i=1

gives the empirical proportion of inputs for which y out of n versions fail.

An unbiased estimator of PN can be constructed by considering all possible N-version systems that

can be formed by selecting subsets of size N out of the n available versions. Let tF denote all subsets of

size N. For J, an element of W, define the indicator function uj(x,l)=l if I versions in the set J fail on
k N

input x and uj(x,l)=O, otherwise. Then k -1 _ _ uj(xi,l) is the proportion of inputs on which the sys-
i=1 l=m

Averaging over all possible subsets gives the following unbiased estimator oftern of N versions fails.

eu

N _ uj(xi,l). (4)
l=m

For uy (xi) = 1, _,uj (xi, l)uy (xi) is the number of ways of selecting I versions out of y that fail on input xi
tF

and N-l versions out of n-y versions that do not fail on input xi. We have

X Uj(Xi'I) = _ _ Uj(xi,l)uy(x i) = Uy(Xi). (5)

y =0_ y =0

Substituting (5) into (4) and using the definition of g (y) given in (3) we obtain

-8-

where

y =0 1=m

(6)

The assumption that 0(x) does not vary with different inputs implies that the versions fall indepen-

dently. In this case (1) yields the classical estimator of P/v given by

eN=Z
1 =m

(7)

where/3 is an estimate of the failure probability of a single version obtained by setting N=I in (6).

Variation in the estimate of PN will occur when testing the versions on a different input series. To

obtain the theoretical variance of/5 N, let Yi be the number of versions out of n that fail on input xi so that

k n

Ply = k -1 _, _., anyl (Yi=y) (8)
i=l y=0

where

fnl-1 N

any= [NJ ,_m [_'} [_-$}

and I (Yi =Y) is the indicator function of the event (Yi =Y). Under the assumption that Y 1, Y2, ...,Yk are

independent random variables, the expression in (8) is a linear function of independent random variables

ui= _ anyl(Yi=y),i =1,2, k. Thus the variance of/_N is 't'21k where
y=O

?t rl

= _ (any)2_bo')-(_ anyt_o')) 2 (9)
y =0 y =0

and ¢?O') = P (Yi = Y),Y =0,1,2,...,n. This variance can be estimated by replacing t_(y) in (8) by gO').

Although the use of (9) requires the extra assumption that Y1 ,Y2 ,Yk are independent, we note that

this assumption is implicitly made in replicated software testing experiments [26]. It should also be

noted that (9) does not measure the variability due to the process of developing a different set of versions.

The latter source of variation is influenced by the number of versions and this is generally limited by the

development costs.

The significance of (6) and (7) to the present study is that they suggest different ways of analyzing

the effectiveness of the multi-version software approach. Comparing /3N with the estimated failure

-9-

probability/3 of a single version indicates the magnitude of the decrease in failure probability that can be

achieved using N versions rather than a single version. Additionally, since iON results from the general

model by making an assumption that versions fail independently, comparing PN with PN indicates how

close version failures are to being independent.

Partitioned Usage Distribution

Based on functional performance requirements, the RSDIMU's software reliability is measured

under various operating conditions. That is, the RSDIMU as a system, including all mechanical and elec-

tronic hardware and software, is required to remain operational for up to two sequential accelerometer

failures, and must provide the indication of three sequential accelerometer failures. This is known as

fail-op/fail-op/fail-safe operation. These cases are included in the following mutually exclusive condi-

tions defining six system states

Si, j = { i sensors previously failed and j of the remaining sensors fail I i =0,1,2 ; j =0,1).

The software failure probability under each case is defined as the conditional probability P (FISi.j)

where F is the event that a version's output is incorrect. The conditional probabilities are used rather

than the unconditioned failure probability

2 I

P(F) = Z ZP(F I&y)P(&y)
i=oj=o

since the latter would be misleading from a functional performance view. That is, a low hardware failure

rate reduces the significance of the software failure rate. For example, let PHI:__I__ _ _the hardware

failure rate for the RSDIMU accelerometers (typically, PHF<IO -4 failures/flight hour). Then, for the

prior probabilities P (So, o) = 1 and P (S o, 1) _z 1,__e software failure probability under a single sensor

failure P (F ISoA) would not significantly contribute to the overall failure probability even though it is

crucial that the sensor FDI software works correctly under this failure condition.

Correctness Determination

In fault-tolerant software experiments, a problem that arises is how to efficiently detect software

failures during the evaluation or simulated operational phase, typically involving many test cases.

Correctness can be determined using either (1) comparison of outputs of a large number of versions, (2) a

golden version, or (3) a consistency relationship between inputs and outputs that is necessary and

sufficient to assert correctness. The first approach requires an assumption that, for the number of versions

- 10 -

be!ngevaluated,identical and incorrect answers of all the versions is a remote possibility while the

second approach assumes that the golden version is not incorrect in the same way as the versions under

evaluation (presumably an error in the golden program that causes a conflict with the versions being

evaluated could be attributed to the golden program). For the present study, the correcmess of a software

version's acceleration estimate makes use of the third approach. Environmental information (i.e., noise

added to the sensor readings, quantization and misalignment induced errors, true vehicle state) is used to

compute a correctness criterion. This information is not available to the RSDIMU redundancy manage-

ment software. An acceleration estimate ._ for sensor measurement vector y is given by

=[crc]-lcry

where C is the transformation matrix from the instrument frame to the navigation frame of reference.

Since sensor measurements are related to the true acceleration by

y = Cx +_

where y is the sensor inaccuracy caused by noise, misalignment and quantization, then

crc d-x) : -cry

is a necessary and sufficient criterion to assert correctness for acceleration estimates. Note that x and

are not available to each version's estimation software. Also, this criterion is simplier to implement than

another version of the estimation software.

IV. EXPERIMENT RESULTS

Version Failures

The number of failures of each of the twenty versions is given in Table 1 for the six operating con-

ditions discussed in Section III. The programs were generally more reliable at filtering false alarm condi-

tions due to noise, temperature variations, etc.(i.e., states So, o, S 1,0 and $2,o) than cases where a sensor

failure occurred in the presence of these conditions (states S 0,1, S 1,1 and S 2,1). This was because of the

added complexity of processing the failed sensor and because some programs did not detect or identify

the failed sensor.

As stated previously, the goal of the present study was to obtain a representative set of high quality

programs for a realistic and complex application. Seven of the twenty versions did not exhibit any

failures over 920,746 test cases and an additional three versions exhibit only a single failure. At the other

- 11-

Version
Number

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Total number
of test cases

Number of failures under state Stj where i sensors
have previously failed and j of the remaining sensors fail

S0,0

0
0
0
1
0

196
187

0
14
0
0
0
2
0
0

53
0
0

309,442

S0,1

0
2
1
0
3

561
279

2
179

0
1
0

46
0
0

194
0
0

Sl,0

0
0
0
4
0
0
0

14
0

21
20

0
0

13
0
0

14
13
0
0

Sl,l

0
0
0

51
0
0

12360
128

0
80

155
0
0

45
0
0

47
55

0
0

S2,o

134,135 129,999 101,151

0
0
0
9
0
0

110
7
0

10
13
0
0
7
0
0
7
7
0
0

102,510

$2,1

0
0
0

63
0
0

41032
89

0
67

41662
0
0

36
0
0

42
40

0
0

143,509

Table 1. Version Failure Counts

extreme, however, versions :/in states S1A and S2A and version 11 in state $2,1 were substantially less

reliable than the other versions. The failure events of Table 1 result in the failure intensity distributions

shown in Table 2. This latter table represents the probabilities of versions failing on the same input. The

average of these distributions provides an estimate of the single version failure probability p.

Faults Causing Coincident Failures

Software faults that result in coincident failures of the program versions are given in Table 3. Fault

numbers 1 through 3 are due to a common and apparently inadequate understanding of the different pro-

perdes of nonorthogonal coordinate systems. In this application there were four nonorthogonal coordi-

nate systems, i.e., measurement frames of reference. Each of these measurement frames is defined by a

small misalignment transformation with respect to an orthogonal sensor frame of reference. The

- 12 -

ProbabilitiesofcoincidentfailuresunderstateSijwherei
Proportionof sensorshavepreviouslyfailedandjoftheremainingsensorsfail
versionsfailing

together So,o So,1 $1,o Sz,1 S2,o S2,z

0/20
1/20
2/20
3/20
4/20
5/20
6/20
7/20
8/'20
9/20

10/20
11/20
12/20
13/20
14/20
15/20
16/20
17/20
18/20
19/20
20/20

Average
Probability

.999364

.000032

.000433

.000126

.000039

.000006
0
0
0

.995707

.002214

.000626

.000171

.000939

.000343
0
0
0

.9997_

._1_
.000008
.000008
.000008
.000069
.000023
.000008

0

.875038
.124040
.000386
.000089
.000020
.000109
.000189
.000119
.000010

.998800
.001044
.000078
.000010
.000000
.000010
.000039
.000010
.000010

.000073 .000472 .000038 .006387 .000083

.568626
.285362
.145684
.000028
.000028
.000084
.000111
.000049
.000028

0
0
0
0
0
0
0
0
0
0
0
0

.028928

Table 2. Failure Intensity Distributions

specification explicitly highlights the nonorthogonality of the measurement frames and also supplies the

transformation matrices between the corresponding orthogonal and nonorthogonal frames. Although the

faults in these six programs are not all identical, they do result in coincident version failures. Since the

misalignment angles are small, these faults do not normally induce failures. Only for the rarely occurring

input conditions when the misalignment angles and sensor noises are large and the measured acceleration

is large and oriented along one of the misaligned axes do these faults induce coincident failures. The six

versions in this set were fairly evenly distributed across the development sites, two sites each producing

one version with these faults and the other two sites each producing two verstons with these faults.

Fault numbers 4 and 5 are logical faults producing most of the coincident failures in states So,o and

So,1. For the four faces (A, B, C, D) of the RSDIMU, there are six edge relations (AB, AC, AD, BC, BD,

- 13 -

Faultnumber Software Faults Version Numbers

2

A unit vector in an orthogonal coordinate system
was apparently assumed to remain a unit vector
after a nonorthogonal transformation

Failure isolation algorithm was implemented in a
coordinate system other than specified

Vector components were apparently assumed to remain
the same after a small angle transformation

Three edge out-of-tolerance edge relations were
apparently assumed to have a face common to all
of the out-of-tolerance edge relations

Four out-of-tolerance edge relations were
incorrectly processed

Test threshold computed incorrectly

Variable initialized incorrectly

4,10

8, 14, 18

17

8,9,18

8,9,11,15,18

11

7

Table 3. Fadts Causing Coincident Failures

CD) to be evaluated. The specification states that a face is failed if and only if all (three in this case)

edge relations involving that face are out of tolerance. Versions containing fault number 4 seem to have

incorrectly assumed that there will always be a face common to all the out-of-tolerance edge relations

whenever any three edge relations are out of tolerance. The specification also states that at most a single

face will fail on a given execution (i.e., five or six edge relations will not be out of tolerance in states

So, o and So, t). Five versions seem to be based on the incorrect assumption (fault number 5) that four

out-of-tolerance edge conditions wil/not occur on the same input.

Version 11 also contains a different type of fault in its FDI module, namely, in the computation of

the test threshold used in the FDI test. The specification calls for converting the units of the input sensor

noise standard deviation, from meters/see 2 to integer counts using the average of the working accelerom-

eter slopes. Version 11 performs the conversion using the slope of the particular sensor being tested, not

the average of all slopes__Given the noise distributions involve& the slope of a single sensor does not

greatly differ from the average of all sensors. Hence, this fault causes failures in eases when the noise

level of a suspect sensor is significantly different from the average. Although this fault is different from

- 14 -

the previously described faults, the failures resulting from this fault were coincident with other version

failures.

Version 7 exhibits erratic failures in its FDI module because of a failure to initialize a variable

before using it in a conditional statement. The fault leads to frequent failures in the FDI related outputs

in state $2,1-

In summary, six versions have mathematical faults arising from the same point in the specification,

although the specification indicated the proper course of action. The specification is judged to be clear

and this assessment is further justified by the fact that the remaining fourteen of the twenty versions did

not contain these faults. However, when the software developers departed from the specification either

through oversight or taking a more independent approach, their lack of depth in understanding this aspect

of the specification became apparent. Five versions contain logical faults causing coincident failures. Of

these, only two versions were in the set of six having the mathematical faults. Dissimilar (logically unre-

lated) faults causing coincident failures were also observed in this experiment. Such failure behavior has

been previously observed [27] and suggests that similar design faults are only part of the problem that

must be solved for redundant software systems. In total, these errors induce coincident failures with

failure intensities ranging from 2/20 through 8/20 as shown in Table 2.

Effectiveness of Redundancy

In Figures 2-4, N-versions systems are compared to single versions by plotting the ratio of the

estimated failure probability/5 N for an N-version system obtained under the general model to the esti-

mate/3 obtained for a single version system. The assumption of indepenclence is clearly not justified

under this model as is evident from the plot of PNI/3, also shown in these figures. The independence

assumption leads to predictions of a substantial improvement in failure probability when comparing an

N-version system with a single version. For example, in Figure 2(a) the plot of PN//3 indicates that P 3 is

only a small fraction (0.00022) of the failure probability of a single version. In comparison, estimates

based on the general model are far less favorable to N-version programming. For example, the failure

probability of a 3-version system is only about four times smaller (i.e., the fraction 0.23) than the failure

probability of a single version. This is typical of all the states except states SI,1 (Fig 3b) and S2A (Fig

4b) where the plots indicate that the failure probabilities of 3-version systems are twelve and sixty-four

times smaller, respectively, than the failure probability of single versions. This is due to the effect of pro-

gram version 7 in state $1,1 and program versions 7 and 11 in state S2A (see Table 1). For these cases,

- 15 -

the larger reductions are expected since not only is N-version a good technique to protect against the

effects of versions that fail infrequently when other versions do not fail but also to protect against a few

bad versions that fail often, as is the case here.

For the other four states, however, the programs are uniformly more reliable and, there are less sin-

gle program failures. When the programs did fail there was a high intensity (up to 8/20) of coincident

failures (Table 2). The multi-version approach is not as effective under these conditions; that is, the aver-

age failure probabilities of 3-version systems is only two to five times smaller than the average failure

probabilities of single version systems.

Ratio of
N-Version

to
Single Version

Failure
Probabilities

100:,

10-1

10-2

10-3 _ _ _

10-4

_ __. _-...

_ [] GeneralModel,/iN/P-- ^
, *Independence Moc'l_l',,PN/p

3 5 7 9

--r -''-'_" =S

I-IGeneral Model./;N//_-- .,,
• Independence Mode_ PNIP

3 5 7 9

Number of Versions, N

(a) State So,o, no additional sensors fail

Number of Versions, N

(b) State So.1,one additional sensor fails

Figure 2. Ratio of the failure probability of an N-Version system to the failure probability of a single

version estimated under the general model and the independence model. The RSDIMU initial

state is fail-op/fail-op/fail-safe (i.e., no failed sensors).

- 16 -

Ratio of
N-Version

to
Single Version

Failure
Probabilities

Figure 3.

100-' '__

t t

|0 -1

10-2

10 -3 __ _ _

10 -4
1

I

"T

' Mo ol, ^
_ •IndependenceModeI, PN/P

3 5 7 9 1

_k

3 5 7 9

Number of Versions, N

(a) State S1.o, no additional sensors fail

Number of Versions, N

Co) State St. v one additional sensor fails

Ratio of the failure probability of an N-Version system to the failure probability of a single

version estimated under the general model and the independence model. The RSDIMU initial

state is fail-op/fail-safe (i.e., one failed sensor).

Ratio of
N-Version

to
Single Version

Failure
Probabilities

Figure 4.

100_

i0 "I _2.

1n -2 __ ___

'I

10"3 __ _ _

10 -4

I

I}

[] General Model,/;NIl3- ^ I
, Independence ModiK, PN/p I

3 5 7 9 11 3 5 7 9

%
%

%

¢',

_- _t

__';_'_.,_ =2 _ _
[] General Model, PN/IL-- "_
* Independence MofleF, PNIp

Number of Versions, N

(a) State $2.0, no additional sensors fail

Number ofVersions, N

Co)State Saa, one additional sensor fails

Ratio of the failure probability of an N-Version system to the failure probability of a single

version estimated under the general model and the independence model. The RSDIMU initial

state is fail-safe (i.e., two failed sensors).

Variability

Table 4 shows the standard errors of the estimates of P 3 for each of the six operating conditions.

The standard errors measure variability across repetitions of an input sequence and indicate, for the par-

ticular set of twenty versions, that P 3 is estimated with high precision. The standard errors in Table 4 are

- 17-

System State So,o So. 1 $1, 0 S1,1 $2, 0 $2,1

Estimate,/_3

Standarderror,kIr2q;

1.7x I0-s

1.6x I0-6

1.4 x 10"3

1.0 x 10.4

1.8x I0s

4.8x I0"6

1.0 x 10.4

1.4 x 10s

1,7 x 10s

6.0 x 10"e

2.4 x 103

1.8 x 10s

Table 4. Standard Errors of Estimates

smaller than estimates of P3 suggesting that these estimates would change little if there were a larger

number of inputs.

In addition to the Variability across repetitions of the input sequence, the other source of variability

in this experiment is the variability across repetitions of the development process. This latter source of

variability is, of course, the primary motivation for this study. It is clear from the individual failure

events of Table 1 that the distribution of failure probability is highly skewed with the bulk of the proba-

bility mass at the origin because of the large number of versions that do not exhibit failures. Table 5

shows, for each of the twenty versions, the percentage of the 171 triples containing a particular version

that have fewer failures than the version itself. Thus, Table 5 indicates the frequency with which triples

improve on the failure characteristics of a single version while Figures 2-4 show the average magnitude

of the improvement.

The zero entries in_Table 5 reflect the factthatit_ isnot possible for a triple to improve upon a ver-

sion that does not fail. For a version that does exhibit failures, the percentage of triples having fewer

failures than the version itself ranges from 59.6% to 100% over the six system states. On the other hand,

if we do consider that a high number of versions do not fail. then: thei¢ is a less than even chance

(24.7%-42.4% over the six system states) that a randomly selected version from this set can be improved

by including it in a triple. However, not shown in Table 5 is the fact that there are a large number of tri-

ples made up entirely of versions that do not fail so that, in effect, there is also a high probability

(89.2%-95.3%) that the triple will not _ worse than the single version.

- 18 -

Percentageoftriplescontaining version number having fewer
failures than the version itself -- measured for system states S_i

Version

Number So,o Soj S_,o Sz,1 S2,o S2a

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

0
0
0
0
0

94.2
0

100.0
89.5

0
70.2

0
0
0

61A
0
0

79.5
0
0

0
0
0

94.2
68.4

0
94.2

100.0
89.5
94.2
98.2

0
68.4

0
61.4

0
0

79.5
0
0

0
0
0

91.2
0
0
0

78.4
0

100.0
100.0

0
0

61.4
0
0

78.4
61.4

0
0

Average 24.7 42.4 28.5

0
0
0

99.4
0
0

100.0
100.0

0
100.0
100.0

0
0

68.4
0
0

87.7
99.4

0
0

37.7

0
0
0

98.8
0
0

100.0
59.6
0

99.4
100.0

0
0

59.6
0
0

59.6
59.6
0
0

31.8

0
0
0

99.4
0
0

100.0
99.4

0
99.4

100.0
0
0

80.7
0
0

97.1
76.0

0
0

37.6

Table 5. Percentage of triples containing an individual version that have fewer failures than the version itself.

V. CONCLUSIONS

The results presented in this paper generally show a modest gain in reliability using redundant

software configured in a N-version structure. This observation is based on twenty versions of a complex

aerospace application developed using independent programming teams from four geographically-

separate development sites and subjected to an independent certification.

The results suggest that the N-version systems are effective at coping with the failures of a few bad

programs. However, under operating conditions where the programs were uniformly more reliable, the

failures that did occur tended to be coincident and have a magnitude that substantially decreased the

effectiveness of N-version systems. Indeed, the present study suggests that independent development

- 19 -

alone is not sufficient to achieve high reliability gains over using a single version. More is required to

reduce, if possible, the intensity of coincident failures. Coincident failures, as seen in this experiment

and which have been observed in other experiments, do not necessarily result from similar design faults[

Input domain related faults may prove to be much more difficult to prevent since there is not a logical

relationship between the faults. Rather, it is a matter of determining those rarely occurring input condi-

tions that trigger the coincident failures of the dissimilar faults.

While there are analytical arguments and strong empirical evidence that the failures of functionally

equivalent component versions Will be dependent, their nature, prevalence, and intensity is a matter of

considerable controversy. For the twenty versions in this experiment, coincident failures occurred at

rates that greatly exceed the rates expected by chance under the assumption of independence. The mag-

nitude of the intensity of coincident version failures and the absence of independent failure behavior

observed in this experiment is similar to that of the Knight and Leveson experiment [5].

Our results indicate that lack of understanding by the programmers of key points in the

specification was a major contributor to faults that caused coincident failures. This resulted in a diversity

of understanding by the programmers. It is not clear what form of diversity could have eliminated or

mitigated this problem.

If redundancy can routinely provide substantial improvement in reliability, then the technique is

worthy of further consideration. The present work was undertaken with the understanding that compar-

ing the failure probability of the individual versions with N-version systems built from them would not be

a complete test of separate development methods. We acknowledge that if equal resources were dedi-

cated to the development of a single version one obtains a better measure of the effectiveness of using N-

version software. In view of the modest gain in reliability that has been obtained with multiple versions

in this experiment, future experiments might well address the cost issue.

ACKNOWLEDGEMENT

Many individuals and organizations have contributed to the success of this experiment: specifically,

graduate student programmers at North Carolina State University, the University of Illinois, the Univer-

sity of Virginia, and the University of California at Los Angeles; John McHugh, Linda Lauterbach, Janet

Dunham, John Pierce, and other staff at the Research Triangle Institute; Paul Lorezak, Greg Zacharias,

Les Walker and other staff at Charles River Analytics; Roy Campbell at the University of Blinois, and

anonymous referees of this paper.

- 20 -

REFERENCES

,

,

.

.

o

.

o

.

9,

10.

11.

12.

13.

14.

15.

Avizienis, A. and Chen, L., "On the Implementation of N-Version Programming for Software Fault Toler-

ance During Program Execution," Proc. of COMPSAC 77, Chicago, IL (Nov. 1977).

Randell, B., "System Structure for Software Fault Tolerance," IEEE Trans. of Software Eng., SE-

1(2) (June 1975).

Eckhardt, D. E. and Lee, L. D., "A Theoretical Basis for the Analysis of Mulfiversion Software Subject to

Coincident Errors," IEEE Trans. Software Eng., 11(12), pp. 1511-1517 (December 1985).

Littlewood, B. and Miller, D.R., "A Conceptual Model of Multi-Version Software," Proc. of the 17th Sym-

posium on Fault-Tolerant Computing (June 1987).

Knight, J. C. and Leveson, N. O., "An Experimental Evaluation of the Assumption of Independence in

Multi-Version Programming," IEEE Trans. Software Eng., 12(1), pp. 96-109 (January 1986).

Scott, R.K., Gaalt, J.W., McAllister, D.F., and Wiggs, J., "Investigating Version Dependence in Fault-

Tolerant Software," AGARD 361, pp. 21.1-21.10 (1984).

Shimeall, TJ. and Leveson, N.G., "An Empirical Comparison of Software Fault Tolerance and Fault Elimi-

nation," Proceedings of the Second Workshop on Software Testing, Verification and Analysis, Banff,

Canada (July 1988).

Anderson, T., Barrel P.A., HalliweU, D.N., and Moulding, M.R., "Software Fault Tolerance: An Evalua-

tion," 1EEE Trans. Soft. Eng, SE-11(12), pp. 1502-1510 (1985).

P.G., Bishop, D.G., Esp, M., Barnes, P., Humphreys, G., Dalai, and J., Lahti, "PODS--A Project on Diverse

Software," IEEE Trans. of Software Eng., SE-12(9) (September 1986).

Bishop, P.G. and Pullen, F.D., "PODS Revisited--A Study of Software Failure Behaviour," Proc. of the

18th Symposium on Fault-Tolerant Computing, pp. 2-8 (june 1988).

Avizienis, A., R., Lyu, Michael, and Wemer, Schutz, "In Search of Effective Diversity: A Six-Language

Study of Fault-Tolerant Flight Control Software," Proc. of the 18th Symposium on Fault-Tolerant Comput-

ing (1988).

Kelly, J.PJ. and Avizienis, A., "A Specification-Oriented Multi-Version Software Experiment," Proc. of

the 13th Symposium on Fault-Tolerant Computing (June 1983).

Knightl J. C. and Leveson, N. G., "An Empirical Study of Failure Probabilities in Multi-Version

Software," Proc. of the 16th Symposium on Fault-Tolerant Computing, pp. 165-170 (July 1986).

Tso, K.S. and Avizienis, A., "Community Error Recovery in N-Version Software: A Design Study with

Experimentation," Proc. of the 17th Symposium on Fault-Tolerant Computing (July 1987).

Anderson, T. and Lee, P.A., in Fault Tolerance Principles and Practice, ed. Prentice Hall Interna-

tional (1981).

-21-

16.

17.

18.

19.

20.

21.

22.

23.

4.

25.

26.

27.

Hecht, H., "Fault-Tolerant Software for Real-Time Applications," ACM Computing Surveys, 8(4), pp.

391-407 (December 1976).

Gmarov, A., Arlat, J., and Avizienis, A., "On the Performance of Software Fault Tolerance Strategies,"

Proc. of the lOth Symposium on Fault-Tolerant Computing, pp. 251-253 (October 1980).

J.C., Laprie, "Dependability Evaluation of Software Systems in Operation," IEEE Trans. Software Eng.,

10(6), pp. 701-714 (November 1984).

Scott, R.K., Gault, J.W., and McAllister, D.F., "Fault Tolerant Software Reliability Modeling," IEEE

Trans. Software Eng., 13(5), pp. 582-592 (May 1987).

Fischler, M.A., Firschein, O., and Drew, D.L., "Distinct Software: An Approach to Reliable Computing,"

Proceeding 1975 USA-Japan Computer Conf., pp. 573-579.

Avizienis, A., "Design Diversity - The Challenge of the Eighties," Proc. of the 12th Symposium on Fault-

Tolerant Computing, pp. 44-45 (August 1984).

Systems, Litton Inc., "Preliminary Design of an RSD/MU Using T_vo-Degree-of-Freedom Taned- Gimbal

Gyroscopes," NASA CR-145035 (October 1976).

Lauterbach, L., "Development of N-Version Software Samples for an Experiment in Software Fault Toler-

ance," NASA Contractor Report 178363 (September 1987).

Kelly, J.P.I., Eckhardt, D.E., Vouk, M.A., McAllister, D.F., and Caglayan, A.K., "A Large Scale Second

Generation Experiment in Multi-Version Software: Description and Early Results," Proc. of the 18th Sym-

posium on Fault-Tolerant Computing (June 1988).

Eckhardt, D.E. and Lee, L.D., "Fundamental Differences in the Reliability of N-Modular Redundancy and

N-Version Programming," Journal of Systems and Software, 8, pp. 313-318 (1988),

Nagel, P. M. and Skrivan, J. A., "Software Reliability: Repetitive Run Experimentation and Modeling,"

NASA CR 165836, NASA Langley Research Center, Hampton, Virginia (February 1982).

Brilliant, S. S., Knight, J. C., and Leveson, N. G., "Analysis of Faults in an N-Version Software Experi-

ment," IEEE Trans. Software Eng., la(2) (February 1990).

- 22 -

k_31_i _6'rOr_uTC S and

1. Report No.

NASA TM- 102613

Report Documentation Page

2. Government Accession No.

4. Title and Subtitle

An Experimental Evaluation of Software Redundancy

As a Strategy for Improving Reliability

7. Author(s)

Dave E. Eckhardt, Jr, Alper K. Caglayan, John C. Knight,

Larry D. Lee, David F. McAllister, Mladen A. Vouk, John J. Kelly

3. Recipient's Catalog No.

9. Performing Organization Name and Address

NASA Langley Research Center

Hampton, Virginia23665

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, DC 20546

5. Report Date

May 1990

6, Performing Organization Code

8. Performing Organization Report No,

10. Work Unit No.

505-65-i I

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

D.E. Eekhardt, Jr: Langley Research Center, Hampton, Virginia. A.K. Caglayan: Charles River Analyt-

ies, Cambridge, Massachusetts. J.C. Knight: University of Virginia, Charlottesville, Virginia. L.D. Lee:
Old Dominion University, Norfolk, Virginia. D.F. McAllister & M.A. Vouk: North Carolina State

University, Raleigh, North Carolina. LPJ. Kelly: University of California, Santa Barbara, California.

16. Abstract

The strategy of using multiple versions of independently developed software as a means to tolerate resi-

dual software design faults is suggested by the success of hardware redundancy for tolerating hardware

failures. Although, as generally accepted, the independence of hardware failures resulting from physical
wearout can lead to substantial increases in reliability for redundant hardware structures, a similar con-
elusion is not immediate for software. The degree to which design faults are manifested as independent

failures determines the effectiveness of redundancy as a method for improving software reliability.

Interest in multi-version software centers on whether it provides an adequate measure of increased relia-

bility to warrant its use in critical applications. The effectiveness of multi-version software is studied by

comparing estimates of the failure probabilities of these systems with the failure probabilities of single

versions. The estimates are obtained under a model of dependent failures and compared with estimates

obtained when failures are assumed to be independent. The experimental results are based on twenty

versions of an aer0-space application developed and certified by sixty programmers from four universi-

ties. Descriptions of the application, development and certification processes, and operational evaluation

are given together with an analysis of the twenty versions.

17. Key Words (Suggested by Author(s))

N-version programming; multi-versionprogramming;
fault-tolerant soltware; software reliability

18. Distribution Statement

Unclassified - Unlimited

Subject Category 61

19. Security Classif. (of this report)

Unclassified

20. Security Classff. (of this page)

Unclassified

21. No. of pages

23

22. Price

A03

NASA FORM 1626 OCT 86

