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Summary

The concept of transmitting power in space by

laser beam has received a major stimulus from the

recent cmcrgence and rapid advance of laser diode

array technology. This technology, fcasiblc pro-

jections of it, and other space systems technology

are used to describe a generic system adaptable to
many missions. Two specific and very different mis-
sions were chosen as a basis for a more detailed

description.

The power system is composed of (1) a solar

collector/concentrator, (2) a solar photovoltaic array,

(3) a laser, (4) beam transmission optics, (5) heat

radiators, and (6) a receiver/converter. These com-
ponents are examined from a "systems" viewpoint.

Sizes, masses, powers, etc., are provided for the two

specific missions. Orbital information and critical

technologies are also discussed.

This study shows a feasible and very promising

implementation of space laser power transmission.

The specific systems described are probably opti-

mistic in that they postulate injection-locked laser

amplifiers and large-scale, coherent beam combina-

tion, but expected advances in these technologies
should make thcm realizable.

Introduction

The idea of transmitting power from central

power stations in space by using laser beams has

been pursued by NASA since the early 1980's (refs. 1

and 2). The basic idea is to use a power source (e.g.,

nuclear or solar) to generate a powerful laser beam

and transmit the beam, collimated and focused, to

user locations where its power can be used as is or
converted to other forms such as electrical or thermal

power. Conceivably, one such system could serve the

needs of many, as do central electric power stations

on Earth. But more than that, such systems may

provide the best means of accomplishing a scientific
mission or offer capabilities not otherwise available.

To assess these possibilities and to compare such sys-

tems with alternatives, one must describe the sys-

tem, its requirements, and its capabilities. System

description is the main objective here.

The availability of a number of power sources,

lasers, power conversion schemes, and reception sites

makes possible many implementations of a laser

power transmission system. Each, theoretically,

could be made to transmit a given amount of power,

but each would differ in size, components, and/or

transmission wavelength. The laser satellite de-

scribed here (fig. 1) uses solar power, laser diodes,

and photocells. (Satellites that use other lasers are
described by recent studies in refs. 3, 4, and 5.) A

reception site and missions have been chosen to pro-

vide a framework for the description of two particu-

lar systems that differ greatly in power requirements

and thus show the scalability and other attributes of

the basic system. The two missions are (1) the pro.

vision of 1 MW of power to a lunar habitat similar

to that described in reference 6 and (2) the provi-

sion of 75 kW to a large mobile hmar habitat/hearT-

equipment rover (ref. 7). The satellites for both

missions would circularly orbit the Moon 2000 km

above its surface, a distance compatible with current

pointing technology and the capability (if necessary)

to provide continuous power transmission with three

identical satellites to any point in view on the lu-
nar surface. Inclinations of the orbits to the lunar

pole assure almost continuous solar illumination of

the satellites and produce an orbital precession that
makes every point on the lunar surface accessible to

power transmission at some time. The transmitting

apertures of the satellites are large enough (8 m, or

less, diameter) to provide beam spot sizes 1 m, or
less, in diameter at the farthest transmission dis-

tance (lunar horizon). The apertures of parabolic

reception dishes at user locations are large enough to

encompass beam spots and the larger circular areas

into which they will bc transmitted due to pointing
errors.

The transmission of power to the rover is be-

lieved to be a new and enabling technology. Pow-

ering the habitat by laser beam, though new, is not

enabling and must be compared with other means of

power provision. Regardless, such discussions are not

within the main focus of this presentation, which is

to describe a power transmission system that can bc

implemented many ways (possibly simultaneously),

for many purposes, in many solar locations.

Laser Satellite

Solar Collector/Concentrator

The solar collector is integrated with heat radia-

tors and together they form the largest, most massive

structure of the satellite. It is a circular parabolic

dish. The aperture of the collector must remain per-

pendicular to the Sun's rays and provide enough area
to collect the power required by the satellite. The

concave surface facing the sun is coated with silver

and a protective layer of magnesium fluoride. The

coatings reflect about 98 percent of visible radiation
from the Sun. The outermost circular band of the

collector does not incorporate heat radiators, except

in a sector near the laser. (See fig. 1 and ref. 8. Fig. 1

shows this band and other bands for illustrative pur-

poses only. They would not normally be visible in



theviewshown.)Theouterreflectivebandisassem-
bledfromsmallerpanelsandhasa massdensityof
0.1kg/m2.

The wide middle band of the collector incorpo-

rates heat radiators oil the clark side for cooling the

solar photovoltaie array, at the center of the collector.

Oil the sunlit side, however, it forms a continuous re-
flective surface with the outer band. This reflective

surface need not be "optical" quality because a pre-

cise image of the Sun at the array is not required.

Solar rays incident oil the reflective surface of the

collector are reflected toward the focus. (The outer-

most central ray would intercept the parabolic axis

at a 60 ° angle.) Before arriving at the focal area,

however, the rays are again reflected by a parabolic
surface. This is a much smaller parabolic surface

the axis, focus, and convexity of which coincide with

those of the collector. Its shape and position cause

half of the incident radiant power to be reflected

back toward the center of the collector in a quasi-

collimated beam that is concentrated in power per

unit area. Only that band of radiation (about 450

to 900 nm) that produces electricity in the photo-
voltaic array is reflected. Most of the radiation at

other wavelengths is transmitted through the small

parabolic dish and lost (but could be partially con-

verted to electricity by several methods). To achieve

this filtering action, the small parabolic dish must

have a multilayer dielectric coating that faces the cot-

lector and a highly transmissive substrate.

Solar Photovoltaic Array

The solar photovoitaic array is located at the

center of the large parabolic reflector (collector). The
array is composed of GaA1As/GaAs cells and has a

conversion efficiency of 22.5 percent at 353 K and

a solar concentration of 300 (ref. 9). The diameter

of the array is about the same as that of the small

parabolic reflector. Light from the small parabolic

reflector enters the array through a light diffuser

designed to produce nearly uniform irradiance over
the surface of the array. Tile heat sink of the

array is thermally contacted to the radiator/collector
structure described above. Electrical power from the

array is transmitted through cables to the laser. The
cables are routed through conduits down tile back
side of the collector.

_aser

Oscillator/Ampiifler. The smallest laser emit-

ter is the "stripe," a single-quantum-well active re-

gion (typically 0.1 #m thick x 10 #m wide x 200 #m

long) inside a much largcr GaA1As/GaAs structure.
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Single stripes can emit as much as 0.1 W of single-

mode diffraction-limited power through the 0.1 jLm
x 10 Iml face. A large number of stripes can be com-
bined in a monolithic structure called a lapser diode

array (LDA) with the emitting faces lined up side by

side in the same plane. (The linear dimension across

all faces can approach i era.) The stripes of an LDA

are optically coupled to act as one powerfld laser.

The advantages of LDA's are short wavelengths

(0.7 0.9 #m), high electrical-to-optical conversion ef-

ficiencies (30 80 percent), compactness, long life-

time, high irradiance, and excellent beam quality

(refs. 10 12).

Further, LDA's can be stacked so that the emit-

ring faces line up in two directions. Feasibly, many

LDA's can be combined in any two-dimensional pat-

tern to form a large-scale array amplifier (LSAA)
that can serve as a transmitting aperture. The trans-

mitting aperture can approximate any shape and can
have the dimensions of rneters.

Beaming power to a spot in the far field requires
the coherent combination and control of the emis-

sions of many LDA's in an LSAA. The use of LDA's

in injection-locking or amplification configurations
can produce such nearly diffraction-limited beams

(refs. 13 15). Several amplifier or injection-locked

stages could be used for power scaling as shown in

figure 2 (ref. 16). Tile number of LDA's in each stage

is proportional to its input power so that each LDA

receives the same power. If n stages each have gain
G then

PO = P1G n

In = lOglo(Po/P1)/loglo G
(1)

where Pi and P0 are the output power of the master

oscillator and the output power of tile LSAA stage,

respectively. For a gain of 100 per stage, 3 stages
could produce a 1-MVV output from a 1-_V oscillator.

Since the LDA's are typically linear bars, as

shown in figure 3, the input beam is focused into the

LDA by a cylindrical lens, and the amplified output

beam is collimated by a cylindrical lens. The out-

put beam is Gaussian in the y-direction and nearly
uniform in the x-direction.

Far-fleld pattern. Comparing the far-field pat-
terns (FFP) of square and circular transmitting_aper -

tures of the same area and irradianee, there is more

power in an Airy disk than in the central spot of a

square aperture pattern. Heneel the overall shape of

the large-scale output array is chosen to be circular.

The far-field diffraction pattern of a uniformly il-

luminated circular aperture is the Airy disk (ref. 17).



The mainlobeof the patternhasa half-angleex-
pressedby

W 1.22A

Z 2Wo

where

W beam radius at Z where amplitude de-

creases by a factor of e

Wo beam radius

decreases by

Z transmission

A transmission

Therefore

at Z = 0 where amplitude
a factor of e

distance

wavelength

Wwo _ 0.61AZ

7r2_r2w2 ___Ala a _ (0.61)2,n-2A2Z 2

Alaa ,_ 3.67A2Z 2 (2)

where A1 is the aperture area of the Airy disk and

aa is the aperture area of the transmitter.

The half-angle that includes the first ring is given

by
2.23A

02 _ --
2Wo

Similarly,

A2aa _ 12.3iA2Z 2 (3)

where A2 is the area enclosed by the outer circum-

ference of the first ring.

However, the output array only approximates a

uniformly illuminated circular aperture. The LDA

elements are grouped inside the LSA as shown in

figure 4. Each element produces a truncated two-

dimensional Gaussian beam of rectangular symmetry

(rather than a uniform beam). Each beam is colli-

mated and coherent and each has dimensions of D,

and Dy. Only the detailed calculation that follows
can give the true FFP and how various parameters
affect it.

The full diffraction angles 0z and 0y of each beam
arc

2A 2A

O.r = _ and Ov = _ (4)

and are typically about 0.17 milliradian for 0 =

0.85 #m and D_. and D_ _ 1 cm.

Figure 5 illustrates tim far-field geometry in one

dimension. In two dimensions, the separation be-

tween the amplifiers is 5', and Sy along the x- and
y-axes, respectively, and the fill factors are given by

fz = Dx/S_-, fy = Dy/Sy.

The far-field amplitude produced at angles c_ and fl by a single element is

gij(ct, fl ) = jxl,_Dz/2 Jy°-Dy/2 go(z,g) eik(ax+/_y)eio°dxdy
(5)

where (x/G, !/G) is the center coordinate of LDA amplifier element (i, j), ¢ij is the phase error of the amplifier
element with reference to the average phase of all LDA amplifiers, Uo(x, 1/) is the amplitude distribution at the

output aperture of a single element, C is a constant, and k is 2rr/$. The total amplitude is the summation

over all LDA amplifiers:

Ut(a,_) = E E Uij(a, fl)= _i E c f z(i'+ D,/2 lUG + DU/2FijUo(x,y)eik(a z +3y)eiO:j(z,y)ei¢ d dx d1/ (6)
J x ° - Dx/2 ,]gO _ Dy/2i j " j

where O_j(x, y) and ¢d are the phase errors due to misorientation (tilt) and displacement of LDA amplifier

element (i,j), and Fij is the failure factor

{_ (Failed)Fij = (Good)
(7)

The calculation was performed for two distributions of Uo(x, 1/): (1) a one-dimensional Gaussian and (2) a

two-dimensional Gaussian, that is,
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x 2 y2 )UII(x, y) = Uo exp a2 p

where a and b are constants. Therefore, the FFP's of the LSAA are given by

gxo- D,/2 gy_ - D_/2i j

i j ,Ix °- Dx/2 JyO Dy/2

(9)

(10)

(11) _A

Equations (10) and (11) have been programmed

to produce the FFP of figure 6.

Figure 6 shows the central region of a typical FFP
of the LSAA. Power collection efficiency 1 (PC1) is

defined as the percent of total power inside the cen-

tral spot (Airy disk); PC2 is the percent of total
power in the central spot and its encircling ring. (The

actual spot size of the Airy disk is 3 m for a 3087-km
transmission distance and an LSAA diameter of 5 m.

This spot wanders within another circular area deter-

mined by pointing accuracy.) The far-field beam pat-
tern is affected by the number of LDA amplifiers, tilt

and displacement phase errors, and random failures

of the LDA amplifiers. Since the FFP is determined

by integration of phase and amplitude distribution
over the LSAA aperture, PC1 and PC2 are almost

independent of the number of LDA amplifiers. High-
order diffraction losses cause PC1 and PC2 of the

LSAA to be smaller than the corresponding efficien-

ties of a simple circular aperture.
When there are tilts of wave fronts among LDA

amplifiers, the power collection efficiencies are af-

fected. For the one-dimensional analysis, preliminary

calculations show that tilts as large as 25 percent of

the amplifier diffraction angle (eq. (2)) have little ef-

fect on PC1 and PC2. Because tilt phase errors are

cancelled out when integrating across the aperture in

the far field, their only effect is a shift in position of

peak intensity without any phase change. Therefore,

the required parallelism among the output beams of
the LDA amplifiers is less than 25 percent of the am-

plifier diffraction angle. Displacement phase errors

have a large influence on the FFP, PC1, and PC2
because these phase errors are cumulative when int_

grating over the LSAA. The displacement phase error

of amplifier (i, j) is

,i d = k Adij (12)

where Adij is the displacement of the wave front (i, j)
from the reference wave front. Random numbers

generate displacement phase errors for all LDA's

within a limit value. (Each error within the limit

is equally probable.) Figure 7 shows the decrease

of the power collection efficieneies PC1 and PC2 as
a function of the limit of displacement phase error.

Efficiencies PC1 and PC2 decrease significantly when

the displacement phase error limit is increased from
0 to 0.5A. The solid and dashed curves represent one-

dimensional (eq. (8)) and two-dimensional Gaussian
profiles (eq. (9)), respectively. They show almost

the same effects except for a small difference in the

power collection efficiencies. When random failures

of LDA amplifiers are allowed, the effect is almost the

same except for a few percent decrease in the power
collection efficieneies.

The maximum allowable limit of displacement

phase error is about 0.15A for an 80-percent power

collection efficiency (PC2). If phase matching among

the element amplifiers can be done within 0.1A, then

PC1 is 78 percent and PC2 is 88 percent. Power
reception efficiency is also dependent on the receiver

aperture size and transmitter pointing accuracy. A
value of 85 percent is used for system calculations.

The finite probabilities of failures of individual
LDA's cause a variation in power reception efficiency.

Power reception efficiency decreases about 4 percent

if 40 percent of the LDA's fail. This decrease is
small because the central part of the FFP is relatively

unaffected by failures of LDA amplifiers, but power
in the entire FFP decreases proportionately.

Beam Transmission Optics

Beam transmission optics consist of a fixed gas
lens and a low-mass flat director mirror. The beam

from the laser output array is collimated (flat wave

front) and intercepts the gas lens first. The gas lens
induces an extremely small radius of curvature in

the wave front, and the beam proceeds to the direc-

tor mirror, where it is reflected toward the receiver
location.
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Gas lens. The gas lens illustrated in figure 8

is a transparent vessel containing gas at a variable

pressure. It would probably best be implemented as

a piano-convex vessel containing helium. The piano-

convex configuration would provide ease of construc-

tion and nearly minimum aberration_ The entrance

and exit surfaces are coated with thin films to opti-
mize transmission and compensate for the small ra-

dial phase differences caused by the curvature of the

uniformly thick material. Neither the coating, the

vessel material, nor the gas absorb radiation at the
laser wavelength. Essentially all the wave front cur-

vature is caused by the gas inside the vessel. Varying

the gas pressure varies the amount of induced curva-

ture and the effective focal length of the lens. For ex-

ample, a lens with a 10-m convex radius of curvature

would focus laser radiation at 3310 km for a pressure

of approximately 1.9 mm of mercury. (The distance
to the horizon from 2000 km above the Moon's sur-

face is 3310 km.)

Director mirror. The director mirror rotates

about two axes: one perpendicular to the orbital

plane of the satellite, the other perpendicular to the

first. Rotation about each axis must provide horizon-
to-horizon coverage of the surface below. The direc-

tor mirror is circular. Its diameter is large enough
to intercept the entire laser beam at the beam's

greatest angle of incidence. It must also be strong,

lightweight, and flat within a fraction of the laser

wavelength.

An alternate method for pointing the laser beam

would be to electronically control the phases of the
light waves from the diodes. Use of this method

might eliminate the need for a gas lens and director

mirror, substantially reduce the mass of the satel-

lite, and provide almost instantaneous pointing re-

sponse. Indications are, however, that such a sys-

tem would be unable to provide the required range

of pointing angles while providing receiver spot sizes

smaller than the transmitter dish. That technology

might provide the small angular changes needed by
a servo feedback loop to improve tracking accuracy

and reduce the size of the reception dish.

Satellite Radiators

Main radiator. The main radiator radiates

waste heat from the photovoltaic array into space.

Physically, it is an aluminum sheet that uses heat
pipes to distribute heat uniformly and provide addi-
tional structural stiffness. The Sun side of the ra-

diator provides a substrate for the reflective coat-

ings. As described in reference 18, its mass density

is 2.5 kg/m 2. Its surface, being approximately per-

pendicular to any surface that it orbits, absorbs very
little radiation from that surface. Neither does it ab-

sorb radiation directly from the Sun (it is shaded)

or from itself (on its convex side). (Its concave side

reabsorbs a small part of its own radiation.) The ori-

entation and shape of the main radiator make it an
effective radiator even at relatively low temperatures.

Laser radiator. Radiation of waste heat from

the laser is accomplished by a separate radiator

operating at a lower temperature and located closer

to the laser. The housing and support structure of

the laser form part of the radiator. The main part

of the laser radiator, however, is located in a band

sector centered on the bottom (nadir) side of the

collector. In this position it "sees" little radiation

from the main radiator. The laser, laser radiator, and

transmission optics, all being located on the lower

(nadir) side of the otherwise symmetrical satellite

system, provide gravity gradient stabilization of the

satellite and reduce the amount of thrusting needed

for its reorientation during orbit.

Laser Converter Assembly

General

The laser beam from the satellite is directed to the

laser converter assembly to convert the laser photons

to electricity. The output of the converter assembly

is used to power a fixed lunar base or to power a

lunar rover that can cover nearly 100 percent of the
lunar surface. The electrical output power is 1 MW

for the habitat and 75 kW for the rover. Figure 9 is
a flow diagram for the laser converter assembly. The

laser beam is incident on a highly reflective parabolic

dish that redirects the beam toward the photovoltaic

converter from wherever pointing accuracy may have

placed it. The reception dish also acts as a secondary

concentrator that adjusts the beam size to that of the
photovoltaic converter. A lenticular array of small
antireflection-coated lenses in front of the converter

evenly distributes the laser beam intensity over the

area of the photovoltaic converter where the laser

photons are converted to electricity. The electrical

power then passes through the appropriate power-

conditioning equipment to the user (either the habi-

tat or the rover). Although the photovoltaic con-

verter has a high efficiency, a significant amount of
heat must be removed. In order to accomplish this,

the photovoltaic converter is mounted on a heat pipe

that transfers the heat to a radiator. Each compo-

nent of the laser converter assembly will be discussed
in more detail.
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Photovoltaic Converters

Photovoltaicconvertershavebeenusedfor many
yearsto convertsolarradiationto electricity;how-
ever,conversionof laserphotonsto electricityre-
quiressomeadditionalconsiderations.Laserra-
diation is monochromatic,whereassolarradiation
is broadband. Laserirradianceis high (up to
1 kW/cm2),whereasthe irradiancefor unconcen-
tratcdsolarradiationis low(_0.136W/cm2).

In orderto maximizetile laser-to-electricconver-
sionefficiency,the bandgapenergyof tile converter
semiconductormustbeverynearthelaserphotonen-
ergy(ref.19).Thewavelengthofthediodelaserused
in this laser-powersystemis 0.85pm. This wave-

length requires a semiconductor bandgap energy of
1.46 eV in order to maximize the converter efficiency.

Although there is no binary semiconductor with this

bandgap energy, the composition of the ternary semi-

conductor Gal-xAlxAs can be adjusted to achieve

this bandgap (x is the fraction of A1). The relation-

ship between the bandgap energy and the composi-

tion is E.q = 1.424 + 1.247x (ref. 20) where Eg is the
bandgap energy in electron volts and x is the frac-

tion of AI. The compound Ga0.971A10.029As has a

bandgap energy of 1.46 eV at 300 K. This semicon-
ductor would be appropriate for use with a 0.85-pm

diode laser.

Figure 10(a) is a diagram of a conventional pho-
tovoltaic converter (not to scale). In a conventional

converter, the photons are incident normal to the p-n

junction. The charge carriers, after being separated

at the p-n junction, must then diffuse laterally and

vertically to reach the metal contacts.

Figure 10(b) is a diagram of a vertical junction

converter (not to scale). In this type of device, the

photons are incident parallel to the p-n junction.
Each face of the converter is completely covered with

the contact metal. The charge carriers can thus dif-
fuse a short distance to the metal contacts without

having to diffuse laterally through the higher resistiv-

ity semiconductor material. This property minimizes
the series resistance of the converter, an important

consideration in efficient conversion of high-intensity

laser radiation to electricity. For this reason, the ver-

tical junction photovoltaic converter was selected as
the laser converter.

In order to obtain the highest practical laser-to-

electric conversion efficiency, the vertical junction

converter was optimized using the model described
in reference 21. Table I lists the optimized con-

verter parameters for use with a 0.85-1tm diode laser.

These parameters were optimized for a single ver-

tical junction converter. However, a practical con-
verter would consist of many single junctions con-

nected in series. Figure 11 shows the efficiency of a

500-junction, series-connected converter as a function

of input power density. The efficiency increases from
26 percent at l W/cm 2 to 47 percent at 1 kW/cm 2.

A power density of 1 kW/cm 2 is chosen for the habi-

tat and 0.1 kW/em 2 is chosen for the rover. The

converter efficiency is 47 percent for the habitat and

32 percent for the rover.

Converter Radiators

Although these efficiencies are quite high, a sub-
stantial amount of the incident photons are converted

to heat that must be removed to keep the converter

temperature at 300 K. In this space power system,
the most convenient method of heat removal is by

radiation to space using heat pipe radiators (ref. 18).

In order to electrically insulate the conw2rter verti-

cal junctions from the heat pipe, the converter is
mounted on a diamond sheet. This diamond sheet

provides good electrical insulation and also high ther-

mal conduction (ref. 22) for conducting the heat away
from the converter. Figure 12 is a schematic diagram

of this type of converter system. The lunar base radi-

ator is mounted on an insulating blanket to prevent

heat transfer from the surface and is aligned with the

solar ecliptic to prevent direct solar irradiation. The
area needed for the respective radiators was calcu-
lated from

A= q
a_(Tit _ T,21) (13)

where

A

C

(7

heat radiated, 1.1 MW (for hmar habitat)

and 0.16 MW (for hmar rover)

radiator area

emissivity, 1

Stefan Boltzmann constant,

5.7 x 10 -s W-m-2-K -4

T1 temperature of radiator, 300 K

T2 temperature of heat sink, 250 K (ref. 23)

The radiator area needed for the lunar habitat is
4.6 x 103 m 2 and for the rover is 6.7 x 102 m 2. From

reference 18, the specific mass of a typical radiator

is 4 kg/m 2 (for a radiator that radiates from one

side only). Here, the same radiator radiates from
two sides. Therefore, its specific mass is 2 kg/m 2.

The mass of the habitat radiator is 9.2 x 103 kg, or

98.6 percent of the total habitat converter system
mass. The mass of the rover radiator is 1.3 x 103 kg

or 97.0 percent of the total rover converter system

mass.



GaA1As, Diamond Substrate, and
Lenticular Diffuser

The area of GaA1As needed for the converter was

calculated from the required efficiency, input power

density, and output power. Using the thickness and

density, the mass of GaA1As is calculated to be

0.01 kg for the habitat and 0.01 kg for the rover. The
i-ram-thick diamond substrate has the same area

as that of the GaA1As. The mass of the diamond

substratc is 0.4 kg for the lunar habitat and 0.8 kg for
the rover. The i-ram-thick lcnticular diffuser has the

same area as the GaA1As. The mass of the lenticular

diffuser is 0.6 kg.

Supporting Structure, Supporting

Blanket, Secondary Concentrator, and

Insulating Blanket

The supporting blanket is typical of that used

with solar arrays. Using a specific mass of 2.7 kg/m 2,

the mass of the supporting blanket is 2.7 kg for

the lunar habitat and 0.7 kg for the rover. The
aluminum support structure consists of an aluminum

plate and four aluminum support rods. The mass

of this supporting structure is 116 kg for the lunar

habitat and 31.8 kg for the rover. The polished

secondary concentrator focuses the larger laser beam
down to the diameter of the converter. The mass

of the secondary concentrator is 6.7 kg for the lunar

habitat and 7.0 kg for the rover. Table II shows the

masses of the converter system components for both
the 1-MW habitat and the 75-kW rover.

Component Parameters

Component parameters are calculated by work-

ing backward from the mission power requirement.

The rover on the lunar surface requires 75 k_ r of
power. Analysis of the laser photoconvertcr shows

that it can convert 32 percent of the laser power that

it receives to electrical power. (The other 68 percent

must bc radiated away as waste heat.) Therefore,
it must receive 234 kW. The photoconverter receives
only 85 percent of the transmitted radiation because

the diffracted beam is larger than the area of the
photoconverter, so about 276 kW must be transmit-

ted by the laser optics. (Refer to figs. 13 and 14.)
Since there is negligible attenuation in the transmis-

sion optics, the power from the laser must also be

276 kW. (Various parameters, some of which are pre-
sented here parenthetically for convenience, are sum-

marized in tables III and IV.)

The laser amplifier is composed of three injection-

locked stages, the output array being the final stage.
Each stage amplifies power by a factor of 100 by in-

creasing the number of LDA's while maintaining the

power of each at 5 W. The LDA's in the output array
(55 148) produce an output power that is tile near-

est multiple of 5 W greater than tile power required

by the receiver/converter. Adding the LDA's of the
other two stages and a driver, the total number of

LDA's in the laser is 55 705. Input power to the am-

plifier must be supplied to all these LDA's (not just
the output stage). That requires an input power of.

0.398 MW, since the LDA's operate at 70 percent ef-

ficiency in the injection-locked mode. Input power in

excess of output power must be radiated to space.

The solar photovoltaic array at the center of the

parabolic dish must provide the input power to the

laser amplifier. The photovoltaic array operates at

22.5 percent efficiency when illuminated by power

from the whole solar spectrum. The whole solar spec-

trum does not illuminate the array, but the array

operates as if it were illuminated by all the solar
spectral power reflected from the parabolic collec-

tor. So the collector must reflect 1.77 MW, and its

aperture must collect 1.8 MW. (The collector absorbs

36.1 kW.) In the vicinity of the Earth and the Moon,

the Sun provides an irradiance of 1365 W/m 2. The
small parabolic reflector near the focus of the collec-

tor spectrally divides the 1.77 MW from the collector.

Only the effective half (as explained above) reaches
the photovoltaie array. The difference between the

effective half (0.88 MW) and the array output power
(0.398 MW) must be radiated away as heat.

The photovoltaic array functions optimally near a
solar concentration of 300, so its area is the collector

aperture area multiplied by the reflectivity (0.98) and

divided by 300. The diameters of the photovoltaic

array and the small parabolic reflector are equal.
The focal length of the collector is 17.8 m, and its
diameter is 41 m.

The main radiator and laser radiator areas are

determined by equation (13) with the exception that
the emissivities of the areas are 0.95 and 0.5 for the

back side and front side of the collector, respectively.

Radiation areas of the laser housing and its supports
have not been included.

(Analysis of the habitat system follows the same

above procedure.)

The gas lens and director mirror are the major
components of the transmission optics in terms of

function and mass. The area of the lens approximates

that of the laser beam. For the habitat beam, the

mass, bascd on 5.0-mm-thick silicate glass, is about

1075 kg. Including structure, the total mass of the

lens system is 1255 kg.
The mirror diameter must be twice thc diameter

of the laser beam to be able to redirect the entire

beam to all the visible surface below. Although its

surface area is four times that of the lens, its mass

7



canbe keptrelativelysmallby useof thegraphite
epoxyand honeycombtechnologyassociatedwith
the AdvancedSunflowermirrors. Its mass(habitat
beam)is estimatedat 800 kg. The slewingand
accelerationrequiredof themirror isverysmalland
canbeprovidedby two smallelectricmotorswith
appropriategearing.Themassesof the motorsand
gearsareexpectedto be about90 kg. The total
massofthemirrorsystemisestimatedto be1020kg.
Correspondingmassesfor the roverbeamopticsare
givenin tableIII.

Transportingthe laserpowerstation from low
Earthorbit (LEO)to hmarorbit requiresthe addi-
tionalmassesof anorbit transfervehicle(OTV) and
thefuelrequiredfor its operation.Transportingthe
receiver/converterfromLEOto lunarorbit andthen
to thelunarsurfacerequiresanOTV,its fuel,anda
lunardescentvehicleandits fuel. (Thesemassesare
includedin tablesII, III, andIV to facilitatecompar-

isons with other sources of power for use on the hmar

surface and for the lunar rover.) Estimates of these
transportation masses are based on the performance

of the chemical propulsion OTV's discussed in refer-

ences 24 and 25. They include all the fuel required

to deliver the cargo to or near the Moon and to re-
turn the unloaded OTV to LEO. They also include

an appropriate fraction of the OTV mass because,
while the OTV's are reusable, they have a projected
lifetime of about 30 missions.

The mass needed to transport cargo to or near the

Moon greatly exceeds the mass of the cargo itself.

(Fig. 15 graphically portrays the relative sizes of

component masses and their totals.) Delivery to

lunar orbit was found to require a transportation
mass that was 1.7 to 2.2 times the cargo mass,

depending on the size of the OTV. Large OTV's

were more efficient. Delivery to the lunar surface

was found to require a transportation mass that was

4.15 times the cargo mass when the cargo mass was

about 20 000 kg. The data in reference 25 limited the

calculation to this single value, which was applied to

the delivery of cargo of any size to the lunar surface.

The mass of fuel required to orient the satellite

would depend strongly on its lunar precession (which

has not been calculated) and has not been included in
the mass estimates. The use of high-specific-impulse

ion thrusters is expected to limit that required mass

to a very small amount.

Orbit and Power Distribution

Orbits affect the shape, size, duty cycle, coverage,

and orientation of the transmitter/converter system

and, in turn, are determined primarily by system

pointing accuracy, allowable transmitter/converter

sizes, and transmission wavelength. For example, a

8

satellite beam to the lunar horizon (3310 km) would

require a receiving (converter) dish at least 6.62 m

in diameter if pointing accuracy is 1 microradian.

(Ref. 26 indicates that 1 microradian is achievable.)

Any finite spot size would increase the required di-
ameter. Spot area, transmission distance, and beam

wavelength are related to the area of a uniformly ra-

diating transmitter aperture by equation (2).

Transmission distance is determined by orbit

height and the position of the converter on the sur-

face. Orbit height and geometry determine the in-

stantaneous velocity of the satellite. For a circular

lunar orbit, velocity is constant and is given by

v= [aM/(n + h)] (14)

where

G universal gravitational constant

M mass of the Moon

R radius of the Moon

h orbit altitude

The period of the orbit and surface areas covered

(fig. 16) can be calculated from the Velocity and
altitude.

Lunar orbit was chosen to be circular at an alti-

tude of 2000 km. At that altitude, the best practical

pointing accuracy (approximately 1 microradian) re-
quires a receiver dish several meters in diameter for

expected transmitter apertures. The orbit must pass

within 50°29 _ of the lunar pole to receive constant

solar illumination. A much closer approach to the

lunar pole would provide a more favorable alignment

of satellite components for gravity gradient stabiliza-

tion, but the actual inclination of orbit would be cho-

sen to minimize the thrust needed to keep the collec-

tor facing the Sun as the satellite precesses about the

Moon. Precession of the satellite would provide com-
plete coverage of the lunar surface over a period of
time.

Three satellites approximately 120 ° apart in orbit

would be required to provide uninterrupted power to

a single user within 654 km of the orbital plane on

the lunar surface:. (Orbital precession would even-
tually interrupt power flow to a stationary reee|verl)

Receivers more than 654 km from the orbital plane

woifld riot be powered constantly; the farther from

the orbital plane, the smaller the duration of power

reception. Power would be received on the surface

as far away as 1889 km from the orbital plane. Mul-
tiple users with power links would extend the dura-

tion of power reception and/or decrease the number

of satellites required. In an extreme example, three



linkedreceivers120° aparton the surfacecouldre-
ceiveconstantpowerfrom onesatellite. That one
satellitewouldhaveto be threetimesmorepowerful
to maintainthepowerlevelsat eachstation. (But
thepowerlevelsnccdnotnecessarilybemaintained.
Upto threetimesasmuchpowerwouldbeavailable
ondemandat anyparticularsite.)A satellitepower
systemmight "bootstrap" such power links on the

lunar surface by use of the rover.

Critical Technologies

Laser Diodes

In the satellite system described here, the LDA's

operate at 70 percent efficiency. This efficiency has

been obtained (ref. 27) at an operating temperature
of 300 K but approaches an upper limit of present

capability. Efficiencies as large as 84 percent are

possible (ref. 28). However, LDA's of these high ef-
ficiencies are not yet mass produced. Also, if such

high efficiencies are obtained at high operating cur-

rent densities, the lifetime of the LDA is adversely af-

fected (ref. 29). Currently, LDA's operating at about

1000 A/cm 2 and 300 K can operate constantly for ap-

proximately 1 year with continuous degradation. El-

evated operating temperatures significantly degrade

efficiency and lifetime and affect output wavelength

(refs. 30 and al). The extreme heat flux densities

generated by LDA's make heat transfer design very
sensitive.

Beam Combination

A number of methods exist for combining laser

beams coherently (refs. 16 and 32). Among these are

the traveling-wave amplifier and the injection-locked
amplifier. The system described here assumes that

an injection-locked amplifier is used. With injection
locking, individual elements of the output array can

operate at their oscillator power level (5 W) while

combining coherently (ref. 17). However, injection

locking is very sensitive to temperature changes and

is very difficult to implement. The use of a traveling-

wave amplifier, on the other hand, would produce

less power per LDA but would be easier to imple-

ment. If injection-locked amplifiers prove to be im-

practical, the expected development of larger and/or
two-dimensional LDA's could more than compensate

for the loss of power per LDA.

The critical technologies impact two important

parameters of the satellite system: laser diode effi-

ciency and laser beam coupling efficiency.
Figures 17 and 18 show their effects on total satel-

lite mass. Laser diode efficiency will depend on

the development of laser diode technology and how

laser diodes are implemented in amplifiers. Beam

coupling efficiency can be altered by (1)the dis-

tance between transmitter and receiver, (2) the sizes

of transmitter and receiver, (3) laser beam coher-

ence, (4) pointing/tracking errors, and (5) optical
accuracies.

Photovoltaic Converter

The particular configuration of the Ga0.971

Alo.029As vertical junction converter has never been

fabricated. Molecular beam epitaxy or vapor phase

epitaxy can be used to grow structures of the re-
quired dimensions. Interconnection of the p-n junc-

tion units requires a metal that will grow as a single

crystal on Gao.971Alo.029As. This technology has not
been demonstrated and is critical to the fabrication

of the converter.

Concluding Remarks

The satellite system described here does not in-

clude (1) the very highest laser diode array (LDA)

power efficiency that is possible, (2) the highest

power per LDA that is available today, (3) the best

reception efficiency that could be achieved, or (4) the

maximum use of available solar power. It has in-

cluded (1) a high large-scale array amplifier efficiency,

(2) injection-locked amplifiers, (3) coherent beam

combination, and (4) advanced lithographic technol-

ogy for diode lasers. The extremely rapid develop-

ment of these technologies should make them a real-

ity within a decade and justifies their inclusion.
Though this description applies to lunar missions,

such satellites can be used at other locations in the

solar system for other missions. For example, they

could provide power at the asteroid belt, which is ex-

pected to be a source of raw materials for future space

development. For Earth itself, they offer pollution-
free power for the projected demands of emerging
nations in the next several decades.

Power sources other than the Sun .could drive the

laser transmitter. Only one, the nuclear reactor,

is competitive. Although nuclear power is a viable

option, its development and use is more a political
issue than a scientific or utilitarian issue.

That a similar satellite system could be made to-

day testifies to its imminence. The degree of per-

fection to which the critical technologies can develop

(and how soon they develop) will determine how well

(and how soon) these satellites compare with the de-
scription given here.

NASA Langley Research Center
Hampton, VA 23665-5225
April 26, 1990
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Table I. Optimized Converter Parameters

Width, #m ............................... 3.0
Thickness, pm ............................. 10.0

Donor concentration, cm -3 ...................... 5 × 1015

Acceptor concentration, cm -3 ..................... 1 × 1017

p-surface recombination velocity, cm-sec -1 ................ 1 x 103

n-surface recombination velocity, cm-sec -1 ............... 1 × 103

Width of p-region, pm .......................... 2.5

Series resistance, f_ ......................... 1 × 10 -3

Input power density, W-cm -2 ..................... 1 × 103

Number of junctions ........................... 500

Table II. Masses of Converter System Components for Lunar Habitat and Lunar Rover

Component
Converter
Diffuser

Diamond

Supporting blanket

Support structure

Beam-sized adjuster

Heat pipe radiator

Insulating blanket

Total converter system mass
Fuel and OTV mass

Mass of converter system,

fllel, and OTV

Mass, kg

Habitat

0.0111 "

0.557

0.362

2.7

116

6.67
9200

Negligible

9.33 x 103

38.7 x 103

48.0 x 103

Rover

0.0124

0.620

0.821

0.675

31.8

6.97

1330

Negligible

1.37 x 103

5.69 x 103

7.06 x 103
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TableIII. PowerSystemComponentsandParameters

Component Habitat Rover

Solarcollector/concentrator:
Powercollected,MW .................
Concentration .....................
Aperturearea,m2 ...................
Aperturediameter,m ..................
Solarconstant,W/m2 ................
Focallength,m ....................
Aperture--axisintersection,m ..............
Surfacearea,m2 ....................
Mass(excludingradiators),kg ..............
Surfacereflectioncoefficient ..............

Solarphotovoltaicarray:
Inputpower,MW ...................
Solarpowerconversionefficiency,percent .........
Operatingtemperature,K ...............
Emissioncoefficient(frontsurface) ............
Emissioncoefficient(rearsurface) ............
Area,m2 .......................
Mass,kg .......................

Amplifier:
Powerinput,MW ...................
Poweroutput,MW ...................
No.of LDA'sin outputarray ..............
No.of LDA's in amplifier ................

LDA array output area, m 2 .............

LDA array output diameter, m ..............

Mass, kg .......................

Laser diode array" (LDA):

Power output, W/LDA .................

Wavelength, #m ....................
Efficiency, percent ...................

Operating temperature, K ................

Dimensions, era ....................

Transmission optics:

Mirror system mass, kg ...............

Lens system mass, kg ..................

Trusses:

Length of main truss, m ...............

Mass of all trusses, kg ...............

16.1

300

12000

124

1365

54

18

12 994

1299

0.98

8

22.5

353

0.5

0.95

40.0

98

3.6

2.5

500 626

505 683

50

8

683

5

0.85
70

300

lxlxO.6

1020

1255

71.5

1129

1.8

300

1322

41.0

1365

18

5.9

1431

143

0.98

0.9

22.5

353

0.5

0.95

4.4

11

0.4

0.28
55 148

55 705

37

7

75

5

0.85

70

300

2.7 x 2.7 x 0.6

756
927

23.7

124
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Table III. Concluded

Component Habitat Rovcr

Radiators:

Tempcraturc of main radiator, K ................... 353
Area of main radiator, m 2 ...................... 3422

Diameter of main radiator, m .................... 66

M_ss of main radiator, kg ...................... 8898

Area of laser radiator, m 2 .................... 1648

Mass of laser radiator, kg ...................... 4285

Transmitter and receiver:

Orbital altitude, km ........................ 2000
Distance to horizon, km ....................... 3310

Beam area at horizon, m 2 ..................... = 0.6

Beam diameter at horizon, m .................... 0.86

Electrical output, power at receiver, MW ............... 1.0

Photoconverter efficiency, percent .................. 47

Pointing accuracy m!croradian .................... 1.0
Receiver dish diameter, m ...................... 7.5

Beam coupling efficiency at receiver, percent .............. 85

==

I

14

353

377

22

980

182

472

2000

3310

0.8

1.0

0.075

32

1.0

7.6

85

-=

Y.



Table IV. Power System Mass Summary and Totals for Lunar Habitat and Lunar Rover

Component

Amplifier

Solar photovoltaic array

Collector/concentrator
Main radiator

Laser radiator

Trusses

Transmission optics

Habitat

683

98

1 299

8 898

4285

1 129

2 275

Mass, kg

Rover

75

11

143

980

472
124

1 683

Satellite 18 667 3 488

Fuel and OTV 36 446 7 740

Satellite, fuel, and OTV 55 113 I 11 228
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Main radiator
(back side only)

Solar
panel

.,,

Solar collector/
concentrator

Parabolic reflector
(z50 percent)

Laser heat _-.
radiator

(back side only)

Support struts

Gimballed director_

mirror \

Laser amplifier

Gas lens

Figure 1. Diode laser satellite.
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Multistage laser diode array amplifiers

M_

laser

Cohere

Figure 2. Multistage, large-scale array amplifier.

_-Cylindrical coupling lens amplifier y

_, _Laser diode array _x

Mount j x__ Coolant

Figure 3. Laser diode array amplifier element.
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\

Laser diode
array amplifier

element

Figure 4. Output aperture of large-scale array. Not to scale.

Y

Sy._

Dy__ r__ c
[3 ',

\

Output beam profile of
the element amplifiers

Far-field
diffraction pattern

Figure 5. One-dimensional far-field diffraction pattern of output array; Dy is the beam width and Sy is the

separation between amplifier elements; c_ (not shown) is an angle perpendicular to plane of ft.

=
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Figure 6. Detailed structure of the central far-field pattern.

0_

o

t--

(D

.o

0)

O
C.}

$

O
0-

100

90

8O

7O

6O

5O

40

PC1

I I I I
300 .1X .2X .3X .4;L

Limit of displacement phase error

Figure 7. Power collection efficiency versus displacement phase error.
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Heat out

Laser beam

Concentrator

Lenticular
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Photovoltaic
converter

Electricity
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Heat pipe
Power

condit "

Radiator
Habitat )
or rover_

Figure 9. Flow diagram for converter assembly.
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(a) Conventional converter. (b) One junction of a 500-junction
vertical junction converter.

Figure 10. Photovoltaic converters.
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Figure 11. Converter efficiency versus input power density. Optimized 0.85 #m converter (1.46 eV),
500 junctions.
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Figure 12. Schematic diagram of converter radiator system.
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Figure 16. Lunar orbit data.
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Figure 18. Satellite mass variation versus coupling efficiency. (Diode efficiency = 70 percent.)
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