NASA Technical Memorandum 102659

EQUILIBRIUM RADIATIVE HEATING TABLES FOR AEROBRAKING IN THE MARTIAN ATMOSPHERE

Lin C. Hartung

Kenneth Sutton

Frank Brauns

(NASA-TM-102659) EQUILIBRIUM RADIATIVE N90-25290 HEATING TABLES FOR AEROBRAKING IN THE MARTIAN ATMOSPHERE (NASA) 20 p CSCL 200 Unclas

G3/34 0290739

May 1990

Langley Research Center Hampton, Virginia 23665

.

• 1

-

4

•

EQUILIBRIUM RADIATIVE HEATING TABLES FOR AEROBRAKING IN THE MARTIAN ATMOSPHERE

Lin C. Hartung Kenneth Sutton

NASA Langley Research Center Hampton, VA 23665

Frank Brauns North Carolina State University

Introduction

Studies currently underway for Mars missions often envision the use of aerobraking for orbital capture at Mars. These missions generally involve blunt-nosed vehicles to dissipate the excess energy of the interplanetary transfer. Radiative heating may be of importance in these blunt-body flows because of the highly energetic shock layer around the blunt nose. In addition, the Martian atmosphere contains CO_2 , whose dissociation products are known to include strong radiators.

Sutton¹ developed an inviscid, equilibrium, stagnation point, radiation-coupled flow-field code for investigating blunt-body atmospheric entry. The method has been compared with ground-based and flight data for air,² and reasonable agreement has been found. In the present work, the method has been applied to a matrix of conditions in the Martian atmosphere. These conditions encompass most trajectories of interest for Mars exploration spacecraft. The predicted equilibrium radiative heating to the stagnation point of the vehicle is presented here.

Method

The method used is the Radiating, Inviscid Flow, Stagnation Point (RIFSP) code. Details of the method, which is essentially a solution of the radiation-coupled inviscid flow equations at a hemispherical stagnation point, can be found in Sutton.¹ The radiation model is the equilibrium radiation line group method developed by Nicolet,³ which includes atomic line and continuum mechanisms, as well as molecular bands. The RIFSP code was recently updated to FORTRAN V, and its overlay structure was removed in the process. It runs easily on current computers and requires less than 3 seconds of CPU time per iteration on a Sun4 SPARCstation, even for the most difficult iteration cases discussed below. The cases in this paper generally converged in less than 1000 iterations depending on the magnitude of the radiative flux. Memory size is no longer a concern for this code with current computers.

Calculation Matrix

The matrix of velocity and density conditions for which solutions have been obtained was generated by attempting to bracket the flight conditions of most Mars aerobraking vehicles that are currently envisioned. Walberg⁴ gives an overview of the mission scenarios, while Braun⁵ provides a detailed study. A matrix of the selected conditions is given in Figure 1. A series of body shapes was also considered at each flight condition to bracket the vehicle designs under consideration. These range from a moderate nose radius of 1-m to a very blunt body with a 23-m nose radius.

All computations were made using an assumed atmospheric composition of 97percent CO_2 and 3-percent N_2 . If argon is also present in the atmosphere, it can have a significant impact on the radiative heating by reducing the amount of energy which goes into dissociation. The amount of argon present in the Martian atmosphere is somewhat controversial, so this effect has not been considered in the present study.

Results

The equilibrium radiative heating results obtained for the Mars entry matrix are given in Tables 1-9 for free-stream densities ρ_{∞} ranging from 3.162e-8 to 1.e-2 kg/m³. Each table includes the entry velocity V in km/s, the nose radius R_n in meters, and the radiative heating rate Q_r in MW/m². The results are also plotted in Figures 2-10 and show the variation of the logarithm of radiative heating with the logarithm of the nose radius for various velocities at each free-stream density.

Discussion

The results display the expected trends of increasing radiative heating with increasing nose radius or entry velocity. All cases in the matrix have been run with 20 grid points along the stagnation line. This was found to be adequate in a previous study of Earth entry radiative heating.⁶ In a small fraction of the cases a slight readjustment in the distribution of the grid points was necessary. This necessity occurred with no discernable pattern for about 8 percent of the cases, all with relatively minimal radiative heating. The adjustment was required by a breakdown in the iteration procedure which is thought to be caused by the sensitivity of the chemistry iteration at certain conditions. The adjustment of the grid points should have minimal effect on the results. In previous work, an impact was observed when changing the number of grid points, but not when making minor readjustments in a sufficiently resolved grid.

Note that this is strictly an equilibrium method. Nonequilibrium effects, which may be important in some of these cases, have been completely ignored. Also, since the method is inviscid, the potential absorption of radiation by a boundary layer has been neglected.

If an ablating heat shield is necessary, as some studies have indicated,⁵ the presence of ablation products may significantly alter the radiative heating to the wall. The current results may be regarded as conservative estimates in that situation.

Conclusion

A matrix of equilibrium radiative heating results has been generated for Mars aerobraking in an assumed 97-percent CO_2 , 3-percent N_2 atmosphere. These results have been presented in tabular and graphical form for use in design and parametric studies.

References

- Sutton, Kenneth, "Characteristics of Coupled Nongray Radiating Gas Flows with Ablation Products Effects About Blunt Bodies During Planetary Entries," PhD Thesis, North Carolina State University, Raleigh, North Carolina, 1973.
- Sutton, Kenneth, "Air Radiation Revisited," in Progress in Astronautics and Aeronautics: Thermal Design of Aeroassisted Orbital Transfer Vehicles, ed. H.F. Nelson, vol. 96, pp. 419-441, AIAA, New York, 1985.
- 3. Nicolet, W. E., "Advanced Methods for Calculating Radiation Transport in Ablation-Product Contaminated Boundary Layers," NASA CR-1656, Sept. 1970.
- 4. Walberg, Gerald D., "A Review of Aerobraking for Mars Missions," IAF Paper 88-196, October 1988.
- Braun, Robert D., Richard W. Powell, and Lin C. Hartung, "The Effect of Interplanetary Trajectory Options on a Manned Mars Aerobrake Configuration," NASA TP-3019, 1990.
- 6. Sutton, Kenneth and Lin C. Hartung, "Equilibrium Radiative Heating Tables for Earth Entry," NASA TM-102652, 1990.

V ,	R _n ,	Q_r ,
km/s	m	MW/m^2
5.0	1.0	4.434E-3
	2.3	8.605E-3
	5.0	1.521E-2
	10.0	2.419E-2
	23.0	4.090E-2
6.0	1.0	.1080
	2.3	.1987
	5.0	.3450
	10.0	.5620
	23.0	.9787
F		
7.0	1.0	6.551
	2.3	11.010
	5.0	17.846
	10.0	26.425
	23.0	38.793

Table 1. Radiative Heating Prediction for $\rho_{\infty} = 1.E - 2 \text{ kg}/m^3$

Table 3. Radiative Heating Prediction for $\rho_{\omega} = 1.E - 3 \text{ kg}/m^3$

V,	R _n ,	Q_r ,
km/s	m	MW/m^2
5.0	1.0	6.569E-5
	2.3	1.429E-4
	5.0	2.914E-4
1	10.0	5.390E-4
	23.0	1.094E-3
6.0	1.0	7.944E-3
	2.3	1.215E-2
	5.0	1.985E-2
	10.0	3.288E-2
	23.0	6.141E-2
70	10	4 558E-1
/.0	23	7.0765.1
	2.5	1 147
	10.0	1.14/
	10.0	1./3/
	23.0	2.837

Table 2. Radiative Heating Prediction for $\rho_{\infty}=3.162 E-3\,kg\,/m^3$

V ,	R_{n} ,	Q_r ,
km/s	m	MW/m^2
5.0	1.0	5.668E-4
	2.3	1.185E-3
	5.0	2.280E-3
	10.0	3.972E-3
	23.0	7.336E-3
6.0	1.0	2.342E-2
	2.3	4.238E-2
	5.0	7.595E-2
	10.0	1.261E-1
	23.0	2.292E-1
7.0	1.0	1.700
	2.3	2.862
	5.0	4.581
	10.0	6.901
	23.0	11.431

V ,	$\overline{R_n}$,	Q_r ,
km/s	m	MW/m^2
4.0	1.0	3.645E-7
	2.3	8.279E-7
	5.0	1.768E-6
	10.0	3.640E-6
	23.0	7.647E-6
5.0	1.0	7.245E-6
	2.3	1.609E-5
	5.0	3.365E-5
	10.0	6.458E-5
	23.0	1,393E-4
6.0	1.0	3.072E-3
	2.3	4.986E-3
	5.0	7.322E-3
	10.0	1.068E-2
	23.0	1.870E-2
7.0	1.0	1.316E-1
	2.3	1.968E-1
	5.0	2.842E-1
	10.0	4.171E-1
	23.0	6.870E-1
8.0	1.0	3.343E-1
	2.3	5.062E-1
	5.0	7.026E-1
	10.0	9.788E-1
	23.0	1.578
9.0	1.0	6.111E-1
	2.3	9.889E-1
	5.0	1.334
	10.0	1.734
	23.0	2.630

Table	4.	Radiative	Heating	Prediction	for
$\rho_{\infty} = 3.$	162E	$-4 kg m^3$	-		

Table 5. Radiative Heating Prediction for $\rho_{\omega} = 1.E - 4 kg/m^3$

V,	R_n ,	$\overline{Q_r}$,
km/s	m	MW/m^2
4.0	1.0	4.355E-8
	2.3	9.971E-8
	5.0	2.152E-7
	10.0	4.262E-7
	23.0	9.638E-7
5.0	1.0	7.720E-7
	2.3	1 746E-6
1	5.0	3.714E-6
	10.0	7.235E-6
	23.0	1.606E-5
6.0	1.0	
	2.3	1.841E-3
	5.0	3.028E-3
	10.0	4.417E-3
	23.0	6.791E-3
7.0	1.0	3.037E-2
	2.3	5.303E-2
	5.0	8.112E-2
	10.0	1.118E-1
	23.0	1.641E-1
8.0	10	7 194F-2
	2.3	1 295E-1
	5.0	1.998E-1
	10.0	2.667E-1
	23.0	3.771E-1
00	10	1 1500 1
2.0	23	1.139E-1
	2.3 5.0	2.20UE-1
	10.0	5.000E 1
	10.0	6.000E-1
L	23.0	0.821E-1

Table 6. Radiative Heating Prediction for $\rho_{\infty} = 3.162E - 5 kg/m^3$

Table	7.	Radiative	Heating	Prediction	for
$\rho_{\infty} = 1$	E - 5	kg/m ³			

V.	R	0
km/s	m	MW/m^2
4.0	1.0	5.171E-9
	2.3	1.187E-8
	5.0	2.576E-8
	10.0	5.130E-8
	23.0	1.172E-7
5.0	1.0	8.107E-8
	2.3	1.851E-7
	5.0	3.988E-7
	10.0	7.877E-7
	23.0	1.774E-6
6.0	1.0	2.704E-4
	2.3	5.516E-4
	5.0	1.001E-3
	10.0	1.625E-3
	23.0	2.707E-3
7.0	1.0	5.500E-3
	2.3	1.113E-2
	5.0	1.972E-2
	10.0	3.049E-2
	23.0	4.611E-2
8.0	1.0	1.219E-2
	2.3	2.535E-2
	5.0	4.619E-2
	10.0	7.183E-2
	23.0	1.068E-1
9.0	1.0	1.800E-2
	2.3	3.926E-2
	5.0	7.699E-2
	10.0	1.270E-1
	23.0	1.976E-1
10.0	1.0	3.112E-2
	2.3	5.783E-2
	5.0	1.005E-1
	10.0	1.675E-1
	23.0	3.030E-1

[V,	R_n ,	Q_r ,
	km/s	m	MW/m^2
	4.0	1.0	6.155E-10
		2.3	1.415E-9
		5.0	3.075E-9
		10.0	6.142E-9
		23.0	1.409E-8
	5.0	1.0	8.516E-9
		2.3	1.955E-8
		5.0	4.235E-8
		10.0	8.429E-8
		23.0	1.921E-7
	6.0	1.0	6.145E-5
		2.3	1.350E-4
		5.0	2.694E-4
		10.0	4.743E-4
		23.0	8.804E-4
	7.0	1.0	8.633E-4
		2.3	1.897E-3
		5.0	3.783E-3
		10.0	6.616E-3
		23.0	1.184E-2
	8.0	1.0	1.823E-3
		2.3	4.054E-3
		5.0	8.248E-3
		10.0	1.477E-2
		23.0	2.653E-2
	9.0	1.0	2.570E-3
		2.3	5.814E-3
	i	5.0	1.225E-2
		10.0	2.313E-2
		23.0	4.507E-2
	10.0	1.0	4.660E-3
		2.3	9.326E-3
		5.0	1.736E-2
		10.0	2.953E-2
		23.0	5.576E-2

Table 8. Radiative Heating Prediction for $\rho_{\infty} = 3.162 E - 6 kg/m^3$

Table 9. Radiative Heating Prediction for $p_{\omega} = 3.162E - 8 \text{ kg}/\text{m}^3$

V,	R_n ,	Q_r ,
km/s	m	MW/m^2
4.0	1.0	7.364E-11
	2.3	1.693E-10
	5.0	3.681E-10
	10.0	7.362E-10
	23.0	1.691E-9
5.0	1.0	9.028E-10
	2.3	2.075E-9
	5.0	4.506E-9
	10.0	9.000E-9
	23.0	2.064E-8
6.0	1.0	1.268E-5
	2.3	2.870E-5
	5.0	6.045E-5
	10.0	1.145E-4
	23.0	2.343E-4
7.0	1.0	1.286E-4
	2.3	2.915E-4
	5.0	6.154E-4
	10.0	1.169E-3
	23.0	2.389E-3
8.0	1.0	2.603E-4
	2.3	5.925E-4
	5.0	1.261E-3
	10.0	2.427E-3
	23.0	5.088E-3
9.0	1.0	3.552E-4
	2.3	8.125E-4
	5.0	1.751E-3
	10.0	3,446E-3
	23.0	7.600E-3
10.0	1.0	6.150E-4
	2.3	1.276E-3
	5.0	2.503E-3
-	10.0	4.484E-3
	23.0	8.752E-3

V,	R_n ,	Q_{r_1}
km/s	m	MW/m^2
4.0	1.0	1.638E-14
	2.3	3.412E-14
	5.0	8.188E-14
	10.0	1.638E-13
	23.0	3.766E-13
6.0	1.0	1.681E-8
	2.3	3.865E-8
	5.0	8.401E-8
	10.0	1.678E-7
	23.0	3.851E-7
8.0	1.0	1.099E-7
	2.3	2.527E-7
	5.0	5.491E-7
	10.0	1.098E-6
	23.0	2. 52 4E-6
10.0	1.0	1.423E-7
	2.3	3.147E-7
	5.0	6.593E-7
	10.0	1.279E-6
L	23.0	2.849E-6

10.0	-					2	2	2	>
9.0				2	2	2	2	2	
8.0				2	2	2	2	2	7
7.0	2	>	>	2	2	2	2	2	
6.0	>	2	>	2	>	>	>	2	7
5.0	2	2	>	>	>	>	>	2	
4.0				2	>	2	>	2	>
P _∞ , V _∞ ,km/s kg/m ³	1.000E-2	3.162E-3	1,000E-3	3.162E-4	1.000E-4	3.162E-5	1,000E-5	3.162E-6	3.162E-8

Figure 1. Flight Conditions Selected for Radiation Calculations.

_

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

Soace Administration	Report Do	cumentation Pag	е	
1. Report No.	2. Government	Accession No.	3. Recipient's Catalog	No.
NASA TM-102659		·····		
4. Title and Subtitle Equilibrium Radiative Heating Tables for Action the Martian Atmosphere			5. Report Date	
		s for Aerobraking	robraking May 1990	
in the Martian Atmo	ospnere		6. Performing Organiza	ation Code
7. Author(s)			8. Performing Organiza	ation Report No.
Ida C. Hostuna Kor	anoth Sutton and	Frank Brauns		
Lin C. nartung, Ker	meen Succon, and	Trank bradno	10. Work Unit No.	,, _,, _
			FOI 42 21 0	1
9. Performing Organization Name and Address			591-42-21-0	1
NASA Langley Research Center Hampton, VA 23665-5225			11. Contract or Grant No.	
			13. Type of Report and	Period Covered
12. Sponsoring Agency Name and Address			Technical Me	morandum
National Aeronautics and Space Administrat Washington, DC 20546		nistration	14. Sponsoring Agency	Code
			0,	
16. Abstract Studies currently aerobraking for or blunt-nosed vehicle transfer. Radiati because of the hig addition, the Mart are known to inclu	underway for Mars bital capture at es to dissipate t ve heating may be hly energetic sho ian atmosphere co de strong radiato	missions often er Mars. These missi he excess energy of of importance in ck layer around th ntains CO ₂ , whose rs.	ivision the use o ons generally in of the interplane these blunt-body ne blunt nose. I dissociation pro	f volve tary flows n ducts
16. Abstract Studies currently aerobraking for or blunt-nosed vehicle transfer. Radiati because of the hig addition, the Mart are known to inclu Sutton developed a radiation-coupled entry. The method air, and reasonabl method has been ap These conditions e spacecraft. The p point of the vehic	underway for Mars bital capture at es to dissipate t ve heating may be hly energetic sho ian atmosphere co de strong radiato n inviscid, equil flow-field code f has been compare e agreement has b plied to a matrix ncompass most tra redicted equilibr le is presented h	missions often er Mars. These missi he excess energy of of importance in ck layer around th ntains CO ₂ , whose rs. ibrium, stagnation or investigating to d with ground-base een found. In the of conditions in ljectories of inter ium radiative heat	vision the use o ons generally in of the interplane these blunt-body be blunt nose. I dissociation pro h point, olunt-body atmosp ed and flight dat e present work, t the Martian atmo rest for Mars exp ting to the stagn	f volve tary flows n ducts heric a for he osphere. loration hation
 16. Abstract Studies currently aerobraking for orleven blunt-nosed vehicle transfer. Radiatibecause of the hig addition, the Martare known to inclus Sutton developed a radiation-coupled entry. The method air, and reasonable method has been ap These conditions e spacecraft. The p point of the vehic 17. Key Words (Suggested by Automatica) 	underway for Mars bital capture at es to dissipate t ve heating may be hly energetic sho ian atmosphere co de strong radiato n inviscid, equil flow-field code f has been compare e agreement has b plied to a matrix ncompass most tra redicted equilibr le is presented h	missions often er Mars. These missi he excess energy of of importance in ick layer around th ntains CO ₂ , whose is. ibrium, stagnation for investigating b d with ground-base een found. In the of conditions in jectories of inter ium radiative heat here.	nvision the use o ons generally in of the interplane these blunt-body he blunt nose. I dissociation pro h point, olunt-body atmosp ed and flight dat e present work, t the Martian atmo rest for Mars exp ting to the stagn	f volve tary flows n ducts wheric a for the osphere. ploration hation
 16. Abstract Studies currently aerobraking for or blunt-nosed vehicle transfer. Radiati because of the hig addition, the Mart are known to inclus Sutton developed a radiation-coupled entry. The method air, and reasonabl method has been ap These conditions e spacecraft. The p point of the vehic 17. Key Words (Suggested by Aur Martian entry Radiative beating) 	underway for Mars bital capture at es to dissipate t ve heating may be hly energetic sho ian atmosphere co de strong radiato n inviscid, equil flow-field code f has been compare e agreement has b plied to a matrix ncompass most tra redicted equilibr le is presented h	missions often er Mars. These missi he excess energy of of importance in ock layer around th ntains CO ₂ , whose rs. ibrium, stagnation or investigating to d with ground-base een found. In the of conditions in tjectories of inter ium radiative heat here. 18. Distribution St Unclassit	vision the use o ons generally in of the interplane these blunt-body be blunt nose. I dissociation pro blunt-body atmosp ed and flight dat e present work, t the Martian atmo rest for Mars exp ting to the stagn atement Eied-Unlimited	har volve tary flows n ducts he osphere. loration hation
 16. Abstract Studies currently aerobraking for orlevent blunt-nosed vehicle transfer. Radiative because of the hig addition, the Martare known to incluse Sutton developed a radiation-coupled entry. The method air, and reasonable method has been ap These conditions e spacecraft. The p point of the vehic 17. Key Words (Suggested by Automatian entry Radiative heating Equilibrium 	underway for Mars bital capture at es to dissipate t ve heating may be hly energetic sho ian atmosphere co de strong radiato n inviscid, equil flow-field code f has been compare e agreement has b plied to a matrix ncompass most tra redicted equilibr le is presented h	missions often er Mars. These missi he excess energy of of importance in ck layer around th ntains CO ₂ , whose rs. ibrium, stagnation or investigating b ed with ground-base een found. In the of conditions in jectories of inter ium radiative heat here. 18. Distribution St Unclassif Sub	avision the use of ons generally in of the interplane these blunt-body he blunt nose. I dissociation pro a point, olunt-body atmosp ed and flight dat e present work, t the Martian atmo rest for Mars exp ting to the stagn atement Eied-Unlimited ject Category 34	f volve tary flows n ducts wheric a for the osphere. Doration hation
 16. Abstract Studies currently aerobraking for orleven blunt-nosed vehicle transfer. Radiative because of the hig addition, the Martare known to incluse Sutton developed a radiation-coupled entry. The method air, and reasonable method has been ap These conditions e spacecraft. The p point of the vehic 17. Key Words (Suggested by Automatian entry Radiative heating Equilibrium 	underway for Mars bital capture at es to dissipate t ve heating may be hly energetic sho ian atmosphere co de strong radiato n inviscid, equil flow-field code f has been compare e agreement has b plied to a matrix ncompass most tra redicted equilibr le is presented h thor(s))	missions often er Mars. These missi he excess energy of of importance in ick layer around th intains CO ₂ , whose irs. ibrium, stagnation for investigating b d with ground-base een found. In the of conditions in jectories of inter ium radiative heat here. 18 Distribution Sta Unclassion Subj	avision the use o ons generally in of the interplane these blunt-body he blunt nose. I dissociation pro a point, blunt-body atmosp ed and flight dat e present work, t the Martian atmo rest for Mars exp ting to the stagn atement fied-Unlimited ject Category 34	f volve tary flows n ducts heric a for he loration hation
 16. Abstract Studies currently aerobraking for orleven blunt-nosed vehicle transfer. Radiative because of the hig addition, the Martare known to inclust Sutton developed a radiation-coupled entry. The method air, and reasonable method has been ap These conditions e spacecraft. The p point of the vehic 17. Key Words (Suggested by Automatian entry Radiative heating Equilibrium 19. Security Classif. (of this reportion of the vehic) 	underway for Mars bital capture at es to dissipate t ve heating may be hly energetic sho ian atmosphere co de strong radiato n inviscid, equil flow-field code f has been compare e agreement has b plied to a matrix ncompass most tra redicted equilibr le is presented h thor(s))	missions often en Mars. These missi he excess energy of of importance in ick layer around th intains CO ₂ , whose irs. ibrium, stagnation for investigating b ed with ground-base een found. In the of conditions in igectories of inter ium radiative heat here. 18. Distribution St Unclassif Subj	point, but of the interplane these blunt-body the blunt nose. I dissociation pro point, blunt-body atmosp and flight dat present work, t the Martian atmo rest for Mars exp ting to the stagn atement fied-Unlimited ject Category 34	22. Price

•

.

•

.

1

.