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INTRODUCTION

The increasing interest in minimum weight designs for aeronautical and aerospace structures has

generated substantial interest inthe analysis of the elastic stability and postbuckling behavior of

structures subjected to inplane compressive loads. For thin homogeneous plates, classical plate theory

predicts deformations and inplane stresses that are comparable to those of three-dimensional elasticity.

Transverse stresses in thin plates are generally small compared to inplane stresses, and thus, both

classical theory and first-order shear deformation theory give satisfactory results. However, since both

theories are two-dimensional, they are not accurate enough to predict transverse stresses directly.

Accurate nonlinear theories are required for the analysis of thick plates in which these transverse

stresses become more significant.

It is often sufficient to use an accurate nonlinear two-dimensional theory to solve some three-dimensional

nonlinear elasticity problems. However, when through-the-thickness effects become more dominant, it

is important to use a nonlinear theory that takes into account such effects. One such theory has been

derived in reference 1 for laminated and thick plates with three-dimensional flexibility effects. This theory

can predict directly the transverse stresses as well as the inplane stresses by using trigonometric terms in

addition to the usual constant and linear terms representing through-the-thickness variation of the

displacements. However, this theory cannot satisfy the surface boundary conditions of a plate.

The purpose of the present paper is to present the results of an investigation of the buckling and

postbuckling response of orthotropic plates loaded in compression. Classical nonlinear von Karman

theory using the Kirchhoff assumptions and three nonlinear transverseshearing theories are used to

predict results for different values of plate width-to-thickness ratios in the postbuckling range. The

nonlinear transverse shearing theories are: first-order shear deformation theory, references 2 and 3;

higher-order shear deformation theory, reference 4; and three-dimensional flexibility theory, reference

1. The idea of satisfying exactly the static tangential or surface boundary conditions on the external

planes of the plate (or shell) was used in references 5, 6, and 7. The first papers dealing with

postbuckling where the static tangential or surface boundary conditions on the external planes of the

plate were satisfied are references 8 and 9. The present derivation of the higher-order shear

deformation theory has the advantage of having nonlinear through-the-thickness terms without

contributing additional unknowns to the first-order shear deformation theory. In addition, it satisfies the

surface boundary conditions of the plate. The essential difference between the higher-order shear

deformation theory and the three-dimensional flexibility theory is that the higher-order shear deformation

theory is a two-dimensional theory that uses cubic terms, whereas the three-dimensional flexibility theory

is a three-dimensional theory that uses trigonometric terms in addition to the constant and linear terms

that represent the through-the-thickness variation of the inplane displacements. The paper presents the

derivation of the nonlinear plate equations for buckling of plates loaded in axial compression for both



higher-order theories. This paper also presents postbuckling results for the average longitudinal

compressive direct stress resultant and maximum stress resultants as a function of the applied

displacements, and maximum out-of-plane displacement as a function of the applied end-shortening

displacement. The plates considered in this paper are infinitely long with side edges simply supported

and are loaded in uniaxial compressive end shortening. The side edges are free to slide along the edges

to allow constant longitudinal strain. Results for the four theodes are presented for aluminum plates and

for composite plates with a symmetric lay-up composed of many layers of thin ___45° plies.
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THEORY

A brief outline of the derivation of the four different theories compared in this paper is presented in

this section. The derivation of equations using classical yon Karman-Kirchhoff theory has been

presented in reference 9. The derivation of equations using first-order shear deformation theory has

been presented in references 2 and 3. The derivation of the equations for the two higher-order

theories are not given in detail elsewhere, so they are presented in the appendix. The general

approach used in deriving the equations to be solved is the same as in reference 10. First, the

displacement functions for each theory are identified. Then the nonlinear strain-displacement

relations are written to include the assumption that the displacements are sinusoidal along the length

of the infinitely long plate. Stress-strain relations are defined for a "specially orthotropic" plate.

Application of the principle of virtual work leads to ordinary differential equations and variationally

consistent boundary conditions which are solved using a procedure based on Newton's method as

discussed in reference 11.

The displacements considered for each theory are:

_;lassical yon Karman-Kirchhoff theory_

0 z
u(x,y,z) = u °(x,y) - w, x(X,y)

O Z
v(x,y,z) = v°(x,y) - W,y(X,y) _-

w(x,y,z) = w°(x,y)

(1)

First-order shear deformation theory_

u(x,y,z)=u°(x,y). ua(x,y)
z

v(x,y,z) = vO(x,y) + va(x,Y) _-

w(x,y,z) = w°(x,y)

(2)



Hioher-order shear deformation theory_

u(x,y.z) = uO(x,y) * u a(x,y) - -_ - + W,x(X,y) _-

o [a _ (__ o )(h)2]Z+w,y(X,y) _-v(x,y,z)=v(x,y)+v (x,y)-°

w(x,y,z)= w°(x,y)

(3)

Three-dimensional flexibility_ theory_

u(x,y,z) = u°(x,y) + ua(x,y) z + uS(x,y) sinEZ=
h h

v(x,y,z) = v°(x,y) + va(x,y) _ + vS(x,y) sin _---h

w(x,y,z) = w°(x,y) + wC(x,y) cos _Z_
h

(4)

In this paper the zero superscripts correspond to the constant-in-z terms, the a superscripts

correspond to the algebraic-in-z terms, and the s and c superscripts correspond to the

trigonometric-in-z terms.

Both the classical von Karman-Kirchhoff and the first-order shear deformation theories have inplane

deformations u and v which are linear in z. Classical theory, however, has the additional assumption

that there is zero transverse shearing (Txz = l'yz = 0), thus eliminating ua and va in favor of

derivatives of w°.

The higher-order shear deformation theory considers inplane deformations u and v which are cubic

in z. As explained in reference 10, the squared-in-z term vanishes and the cubic term does not

introduce any new variables beyond those that appear in first-order shear deformation theory if the

boundary conditions are satisfied at z = + IV2. The three-dimensional flexibility theory considers

trigonometric terms in u, v, and w beyond the expressions considered for the deformations of first-

order shear deformation theory.

To account for the applied displacement U,

o
u°(x,y) =- U x + U2(x,y)

a



vO(x,y) = v_ (y) o+ V 2 (x,y)

(5)

where numbered subscipts for loads, displacements, and curvatures indicate a y dependence only.

To satisfy the assumption that the displacements are sinusoidal along the length

0 0 /¢x
U2 = u2(Y)sin2_.

O 0 /IX
V 2 = v2(Y) COS2_

(6)

All the other u coefficients can be expressed as functions of y multiplied by cos _x/Z, where Z is

the half-wavelength of the buckled plate. All the other v and w coefficients can be expressed as

functions of y multiplied by sin _</_,. The strain-displacement relations used are

2
£X = U,x+RW, x

1 2
ey= V,y+_-W,y

EZ = W, z

7yz=V,z + W,y

"yXZ= U,z + W, x

"f xy= U,y+ V,x + W,xW,y

(7)

Hooke's law that relates stresses to strains for a "specially orthotmpic" plate is used here

o X

Oy

Oz

"_yz

_'_XZ

'txy!

m

- Cll C12 0 0 0 0

C12 C22 0 0 0 0

0 0 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

EX

_y

£Z

i 'Yxz

Yxy

(8)

Ordinary differential equations and variationally consistent boundary conditions are derived using the

principle of virtual work, and the equations are solved by Newton's method. The principle of virtual

work applied to the internal forces of a three-dimensional body considered here is

"a_0b/hi2
8]-[= | (C_xS_x + oyS_y + ozSE z + _y-zSyyz + _xzSYxz + "_xySYxy) dzdydx

0 -h/2

(9)
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withsimplesupportboundaryconditionsaty =0 andy = b.

The half-wavelength Z of the assumed deformations for the infinitely long plates considered is

chosen to minimize the buckling load for each given applied deformation.

The principle of virtual work requires that the geometric boundary conditions be satisfied. Including

additional terms in the representation of the through-the-thickness variation of the inplane

displacements will lead to convergence and satisfaction of natural boundary conditions in the limit if a

complete set of terms is used. An altemate approach is to use terms that satisfy the natural boundary

conditions directly. A complete set of these terms also leads to convergence. For the present problem,

the three-dimensional flexibility theory uses terms that do not satisfy the natural boundary conditions.

For the higher-order shear deformation theory, coefficients of u and v in the assumed displacements of

equation (3) are chosen such that 7xz = 0 and 7yz = 0. The coefficients are written interms of the

existing unknowns ua, va, and w° in a form which satisfiesthe natural boundary conditions at the top

and bottom surfaces of the plate. Comparisons of results are valid whether or not natural boundary

conditions are satisfied.

RESULTS AND DISCUSSION

The results obtained inthis study for long aluminum plates with the geometry shown in figure 1 are based

on values of Young°s modulus E = 10.7 xl06 psi and Poisson's ratio _ = .33. The results obtained in

this study for infinitely long composite plates with a symmetric lay-up composed of many layers of thin

_+45° plies are based on the stiffness properties

All = A22 = 620340 I_in.

A44 = A55 = 50000 I_in.

Dll = D22 = 518.6 Ibin.

A12=446060 Ib/in.

A66=483520 Ib/in.

D12 = 372.91 Ibin.

A33 = 59000 Ib/in.

D66 = 404.23 Ib-in.

for h = .1 in. and for any value of b.

Buckling results given by the four theories are presented in figure 2 for finite aluminum plates and the

results show the variation of the buckling stress coefficient with width-to-thickness ratio b/h for a range of

length-to-width ratios a/b. Asymptotes to the curves in figure 2 give Nxcr for plates of infinite length.

The differences in the buckling results for aluminum plates with width-to-thickness ratios less than ten,
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illustratetheneedfor includingtheeffectsoftransversesheardeformationswhendeterminingthe

compressive buckling stress of these plates.

Results in the form of average axial stress resultant Nxav versus applied end-shortening U, for the four

theories and different values of the width-to-thickness ratio b/h, are presented in figures 3a and 3b for

aluminum plates and composite plates, respectively. In figure 3a, only one curve is shown for a b/h value

of 100 since the corresponding results for each theory are approximately the same. Even for the thicker

aluminum plates there are only slight differences in the results given by the different theories. The

results presented in figure 3b illustrate the nature of the more compliant +45 ° composite plate. The more

pronounced separation in the postbuckling branches of the curves for a given value of the b/h ratio

indicates the lower transverse shear stiffness in the composite plates.

The results show that the higher-order shear deformation theory gives a better approximation of the

effects of shear deformation in thick plates than the first-ordertheory, but it is still a two-dimensional

theory. Significant improvement beyond that already obtained with the higher-order theory requires a

three-dimensional theory. The three-dimensional flexibilitytheory is an attempt to meet this requirement.

However, the present formulation of this three-dimensional theory has limitations associated with the

assumptions made on the w displacement of equation (A10). Although it does include a trigonometric

term in z, this term does not satisfy the bounding conditions at the upper and lower surfaces of the

plates, and therefore does not allow az to have its proper influence on w. Additionally, the assumption

that the nonlinear terms involving wc could be neglected because they were small in comparison to

similar terms involving only w° may be questionable. A secondary effect is the choice of the specially

orthotropic material which foregoes the influence of _z on _y. Neither of these two effects becomes

significant until the effects of shear deformation become more dominant. Evidence of these limitations

are especially noticeable for_results of the three-dimensional flexibility theory at a b/h value of 20 in

figures 4b, 5b, and 6b.

The results presented infigures 4a and 4b for the aluminum and composite plates show that the higher-

order shear deformation theory gives the lowest value of normalized compressive Nymax for higher

values of normalized end-shortening U. In figure 4b, the results for the three-dimensional flexibility

theory at a b/h value of 20 exhibit nonlinear behavior in the postbuckling range. These results suggest

an increase in the importance of the unsatisfied bounding conditions at the upper and lower surfaces of

the plate. Similar behavior for the three-dimensional flexibilitytheory at a b/h value of 20 is shown in

figures 5b and 6b.

The results presented in figure 5a show that the normalized Nxymax as a function of normalized end-

shortening U is nearly independent of the width-to-thickness ratio b/h for the aluminum plates, whereas

figure 5b shows that the effect of the width-to-thickness ratio b/h is more significant for the composite
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plates. Results for the normalized maximum deflection Wmax presented as a function of normalized end-

shortening U in figures 6a and 6b, for aluminum plates and composite plates respectively, show that the

value of the deflection becomes increasingly dependent upon the width-to-thickness ratio b/h as the

value of the normalized end-shortening U increases. These results indicate that shear deformation

effects are more dominant for the composite plates, especially at lower values of the width-to-thickness

ratio b/h.

Present results indicate that three-dimensional flexibilitytheory gives lower buckling loads than the other

theories, and produces acceptable results except when the effect of the missing nonlinear terms

involving wc and the influence of the bounding conditions become dominant. The three-dimensional

flexibility theory has the potential for permitting the development of a rigorous approach for obtaining

direct through-the-thickness stress components without the current limitations caused by using

additional trigonometric terms in z in the expansion of the transverse displacement w and by retaining

the currently neglected nonlinear terms involving wc. Higher-order shear deformation theory has the

advantage of fewer unknowns than the three-dimensional theory and yet it gives comparable results to

those given by three-dimensional flexibility theory. For the +45 ° composite plates, results show more

pronounced nonlinear behavior in the postbuckling range as the plate width-to-thickness ratio b/h

decreases. This more pronounced nonlinear response is a direct result of the increase in shear flexibility

of the more compliant _+45° composite plates. The difference in the order of the approximation of the

four theories is most evident for the +45° composite plate results, particularly for the average axial stress

resultant Nxav as a function of the applied displacement U, and for the maximum out-of-plane

displacement w as a function of the applied displacement U.

CONCLUDING REMARKS

This paper presents buckling and postbuckling results for aluminum plates and _+45° composite plates

subjected to longitudinal compressive end-shortening displacements. The side edges of the plates are

simply supported and free to slide along the edges to allow constant longitudinal strain. The effects of

varying plate width and thickness on the buckling stress coefficient is described. The buckling results for

aluminum plates with width-to-thickness ratios less than ten, indicate that including the effects of

transverse shear deformation is important when determining the compressive buckling stress and these

effects should be included. Postbuckling results for plates with transverse shearing flexibility are

compared to results from classical theory for various width-to-thickness ratios. Characteristic curves

indicating the average longitudinal direct stress resultant as a function of the applied displacements are

calculated based on four different theories: classical yon Karman theory, a first-order shear deformation

theory, a higher-order shear deformation theory that satisfies the bounding conditions at the upper and
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lowersurfacesoftheplate,andathree-dimensionalflexibilitytheorythatcanpredictthetransverseand

inplanestressesdirectly.

Presentresultsindicatethatthethree-dimensionalflexibility theory gives the lowest buckling loads for

the four theories considered, and produces acceptable results except when the effect of the missing

nonlinear terms involving the coefficient wc of the trigonometric term in the expansion of the transverse

displacement w and the influence of the bounding conditions becomes dominant. The three-

dimensional flexibility theory has the potential for permitting the development of a rigorous approach for

obtaining direct through-the-thickness stress components without the current limitations caused by

using additional trigonometricterms in z in the expansion of the transverse displacement w and by

retaining the currently neglected nonlinear terms involving wc. The higher-order shear deformation

theory has fewer unknowns than the three-dimensional flexibility theory but cannot predict transverse or

inplane stresses. The figures presented show that, for postbuckling of aluminum plates, small

differences occur in the average longitudinaldirect stress resultant, inthe maximum values of the other

stress resultants, and inthe maximum transverse displacements calculated when the effects of

transverse shear flexibility are included in the various theories. For the +45 ° composite plates, results

show more pronounced nonlinear behavior in the postbuckling range as the plate width-to-thickness

ratio b/h decreases. This more pronounced nonlinear response is a direct result of the increase in shear

flexibility of the more compliant +45 ° composite plates. The difference in the order of the approximation

of the four theories is most evident for the +45 ° composite plates results, particularly for the results for

the average axial stress resultant Nxav as a function of the applied displacement U, and for the maximum

out-of-plane displacement w as a function of the applied displacement U.
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APPENDIX

Governingdifferentialequationsarederivedinmoredetailinthisappendixforthetwohigher-ordertheories

consideredinthispaper.

Hiaher-order shear deformation theory

The displacements used in this theory are given by equations (3) as

o= + w, y(X,y)
(A1)

w(x,y,z) = w°(x,y)

Substitution of equations (3) into equation (7) gives the strain-displacement relations

o+_wO_ __z_(u.a÷wO,)_x = U'x +u'xa_ - 3_h/

v,_+ 1 w°2 + V,_h- 4-jz_3/v,a + w,_yh)= _- ,y 3_h/_ Y

Ow._+_u._+v.xa____lzl_u.a+_ o7xy = u,_ + v,O+ w,x 3 _h / " V'x + 2W'xy h) (A2)

The assumption that the displacements are sinusoidal along the length leads to

Uo ._O,.Ux sin 2_x= _ + u2_Y)a _.

ua = u_(y) cos-_-

w° = W_l(y) sin-t_---

v° =_(y). _(y) cos-;'._-

va=_ly_sin_ (A3)
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Stresses are determined from Hooke's law according to equation (8), and stress resultant forces and

moments are determined bylhe following integrals through the thickness

2_x
Nxo+ Nx2 cos--_- -

Nyo+ Ny 2 sin 2_x

f, hi2

_ axdz
J --h/2

_f h/2 aydz
-J-h/2

/NyzoSin = .2)
" -h/2

dz

NxzoCOS_= 'xz 1 h2 J
=' -hi2

Nxy 2sin2_x _f hi2 xYdz
;L "J -h/2

/, hi2

Mxosin _- =j O'xZ dz
J -h/2

f h/2Mxlsin _- -_-h GX(h) 3
==, ,_ dz

hi2

/, h/2
Myosin_ x =j (_y2: dz

J -h/2

/, h/2 3

Mylsin_. _ | 4ho iz_ dz

=J_hl2-3 Y_h)

h/2= _ xyZ dz
Mxy°C°S _ h/2

f h/2

=_" -hi2

(A4)
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Substitution of the stresses and strains into the virtual work expression, equation (9), and performing the

variation leads to the differential equations

A66

4 A22_ _, 4 A22

u_" V_l,l,
h ---h-_ +_"'xYl -(D66 +B66) Z_- _2y(D66+ 2D66 +B66)

____[ - uaval' B--22(Myo-My I )-D22 My I +(D12B22- D12 D22)_!-_ +
h

_ __2

= U +_--w 1 Nyo
Vo' -_-_2 A22_ ' +A22

Nxy 2' =_-Nx 2

Ny2' =--_- Nxy 2

(a)u I o_y÷w, 

M +_2
Myo=_" xY1+A44

N r-0
YO-

Ua

/E,_)2(Mx + __Mx2)W_ - Mx I (__)2 + A55(___ + w_1__)+ 21__NxY2_2 _..QY' = _, o

v a

where

(A5)

and the superscript (') denotes differentiation with respect to y.

The stiffnesses of the plate are given by

f h/2 Cijdz
A ij= J -hi2

_- hi2 2

Di= / C[iz dz
" -h/2

(A6)
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where the Cij are the stiffnesses in equation (8). Using the definition 132 = Wl° ' gives the following two

differential equations, which complete the set of equations (14 equations with 14 unknowns) without

squares of derivatives of the unknowns as required in the solution procedure (reference 11).

a l aV1_2"-y- °22(Myo-Myl)-°22My,÷(_22°'2--_ ,u,,÷= u221,12/-K-_-

o__-o_)
(A7)

The boundary conditions at y = 0 and y = b are

u_=u_=0, Ny0=Ny2=0, W_l=0, Myo=My 1=0 (A8)

Three-dimensional flexibility_theory_

The displacements used in this theory are given by equations (4) as

u(x,y,z) = u°(x,y) + ua(x,Y_h + uS(x'Y)sin _z• h

v(x,y,z) = v°(x,y) + va(x,Y) hZ- + vS(x,Y) sin-_-h

w(x,y,z) = w°(x,y) + wC(x,Y)cos _z
h

(A9)

Substitution of equations (4) into equations (7) and neglecting the nonlinear terms involving wc gives the

strain-displacement relations

s sin _z_x=uo÷21wO_÷ua_.+U,x h
az s •¢y = v,_ + w,_ 2 + V,y_- + V,y s,n-_-h

_z = -_wC sin _z
h h

= (U,y+ v,x) sinZ_--ow,_÷_u,_÷valh+s s_xyu,_+v,° +W,x h

0. ua + (w,C._ uS) cos _.Yxz = W'x h h

_ o_= +W,y+ vS+w, )cos _tz7yz h h

(AIO)
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The assumption that the displacements are sinusoidal along the length leads to

u° = - U x + u_(y) sin 2=x
a ;L

ua=u_cylcos_
us = u_(y) cos 7o(

3¢

v°=_o(y)* _(Y)cosZ.=

va = va11(Y)sin-_--

vs = vS11(y) sin_x

w° = W_l(y) sin-_--

wc = W_l(y) sin-_--

(M 1)

Stresses are determined from Hooke's law according to equation (8), and stress resultant forces and

moments are determined by the following integrals through the thickness

__h/2+ Nx2 cos_ _- = a° dzNxo hi2

I9sin2_x = a_ dzNy2 ;L h/2

I"W2 o

Nyzl =)-hi2 _yz dz

/.W2 o

Nxzl = J-h/2 _xz dz

r h/2 o
Nxy2 sin2_x - dz3¢ -)-h/2¢xY

rh/2, a s "
=/ lavlZl*a;, sin_Z I zdz

Mxl .I-h/2_ " _h! " h/h

rW2, a s "
= | _a,; [zl + o',; sin_ZlZ--dz

My1 J-h�2 _ • _hl • h Ih

_f iz + s,in )Z zMxy 1 -J_hl2_ xy_,_) xy h

Lxl= (axa(_) + as sinZ_) sin_z dz
J-hi2 h

= aaz
Lyl hi2 y (h)+ a_ sin sin_z dzh

(A12)
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h/2= azs sin2 E,Z=-dz
Lz1 hi2 h

fh/2 c

Lyzl _ j_h/2.Cyz cos 2_z dzh

h/2Lxz 1 = _Czcos2_Zdz
hi2 h

I_h/2 i,ca lz_ ._Sysin_-) sin_Z dzLxYl = h/2 _ xY_h-]+ h

where the form of the stresses are

_x=o°x+_ +_s,n=h

Oy= c_+ O_h +o_/sinT,_-_h

az = OSzsin_z
h

"Cyz= "C_z+T_j.zCOS_Zh
O

1;XZ = 1;XZ + _ COS _Z
h

o + _q/sin

Substitution of the stresses and strains into the virtual work expression, equation (9), and performing the

variation leads to the differential equations

.o.=__vOw_21__,___._%_
_, A66

_± o2_c__/uo_z_.± _ I__11* ,2v_' A 2 2 Ny

-4 P'I A221 2 ;_ 4 .],,_'/ / 2A_2

v_' [L, 1 _My1+tJ12_D121u___+IK12_Ji21uS__]/IJ22_D22 /
h =LK--_-2322 _K22 J22/h_, _K---_2J221 "X-I/_K---_2J22/

Lxy Mxy K J

J66 966// _J66 D66/

v_" I L,1 M,I+I J12-D12/u_-_+I K12-J121u_]/IK22-J221

h _,H44 I44 J/_H44 I44)

(A13)
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/.yz,
Nxy 2' =_!_-_Nx 2

Ny2" = - Z_-NxY2

MxYl' = Nxzl - Mxl ;L
E,.

My1' = Nyzl + MxYl Z

.x,,.
,,z.'

Q' = NxO° + w +IN_, B4_- + _-2 ^Y2-'Z Nxzl_,

The stiffnesses of the plate are given by

=_ hi2 Cij dz Hij =I_hh//_ CijCOSE___dzAij J-h/2

=_" h/2 Cijz2d zDil J-hi2

Kij = I_hh//_Cijsin2Z_ -dz

r hi2

JII= | Cil z sir_l_'dzJ-h/2 h

(A14)

r h/2 ,_

Iij = J_h/2 Cijcos=:Zr_-dz

where the Cij are the stiffnesses in equation (8). The definition _1 = Wl°" is not used inthis theory due to

differences in the formulation of the theories. Instead, the following definition of 111is used

_ va
[31 _ -_- L_-44 _ 2_, xy2 ]/ 144_J/_H44 I44 l_/L ÷ H44 2 /_H44 I44tj

(A15)

which results in the completely defined set of equations (16 equations with 16 unknowns) without squares of

derivatives of the unknowns as required in the solution procedure.

The boundary conditions used at y = 0 and y = b are

u_=u_=u_=0,%=%=0,_1=._=0,% =_ =0 (A16)
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