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ABSTRACT

This paper is subdivided into three
parts. In the first part generic re-

quirements for end effector design are
briefly summarized as derived from ge-
neric functional and operational require-
ments. Included in this part of the

paper is a brief summary of terms and
definitions related to end effector tech-

nology. The second part of the paper
contains a brief overview of end effector

technology work as JPL during the past
ten years, with emphasis on the evolution

of new mechanical, sensing and control
capabilities of end effectors. The third

and major part of the paper is devoted to
the description of current end effector
technology work at JPL. The ongoing work
addresses mechanical, sensing and control

details with emphasis on mechanical rug-
gedness, increased resolution in sensing,
and close electronic and control integra-

tion with overall telemanipulator control
system.

INTRODUCTION

Space operations planned in the next
decade include assembly, servicing and
repair of space systems. Some of these

operations are expected to be performed
by the use of teleoperators or tele-
robots. The difference between tele-

operator and telerobot is the mode of

control. A teleoperator is continuously
controlled by a human operator in all
activities. In contrast, a robotic

system operates in automatic mode of
control. A telerobot combines control

elements of teleoperators and robots. A

telerobot system permits both direct
operator control and automatic control
supervised by the operator.

The term "telemanipulation" used in the
title of this paper signifies a remote
manipulator system and its operation in

both teleoperator and telerobotic modes
of control, including all elements
needed for the remote operation: the

arm, hand, sensors, electronics, micro-

processor, interfaces, base support,
communication links, the control station

with displays and with manual and com-
puter control input devices.

Robot hands, or end effectors, are essen-

tial elements of telerobot systems to be
employed in space since, in the proper
since of the word, "manipulation" is the

function of the hand. Using the analogy
of the human arm-hand system, the arm is
a positioning, orienting, power and
information transmission device, while

the hand is a powerful tool and delicate
sensory organ. Dexterity and smartness

in telemanipulation to a large extent
resides in the capabilities of robot

hands. End effector technology has a
major impact on task performance in tele-
manipulation.

In the first part of the paper generic
end effector functional requirements are
outlined including terms and definitions.

End effector technology work at JPL
during the past ten years is briefly

reviewed in the second part of the paper.
In the third and major part of the paper
ongoing end effector technology work at
JPL is described.

REQUIREMENTS, TERMS AND DEFINITIONS

The general hand design requirements can

be subdivided into four principal areas:
(i) mechanism, (ii) sensing, data acqui-
sition and transmission, (iii) control,
and (iv) man-machine interface for deci-
sion and control.

Mechanism

The most important function a hand has to

perform is to grasp and to hold objects.
Even though this seems to be rather sim-
ple, one has to keep in mind that objects
come in different sizes, weights and

shapes and with many more characteristics
to be considered such as fragility, ob-
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ject presentation, space restrictions,

accuracy, etc.

It is obvious that no single hand design

can accommodate all requirements to suc-

cessfully handle all objects. Even the

most sophisticated end effector, the

human hand, uses a variety of manual and

power tools and still needs other aiding

devices for even quite common tasks.

In searching for an answer of what com-

prises a useful robot hand from a mechan-

ical point of view, the word "versatil-

ity" comes to ones mind: if the end

effector can handle a large variety of

different objects, it can be considered

versatile. More sophistication will be

gained if the hand is able to manipulate

objects (i.e., to turn an object within

the hand or pull the trigger of a hand-

held drill press while holding it),

Employing tools was the turning point

that changed early man's life. It will

have the same effect on robot hands where

the usage of tools will enhance the

robotic capabilities and application

ranges. But one hand alone cannot accom-

plish much by itself. Therefore, the

final configuration of a robot hand sys-

tem will be a multi-handed configuration

permitting exchange of end effectors on

a given arm.

Two types of hands need to be considered.

The first is the one degree of freedom

hand which can be made smart through

incorporating a variety of different

sensing capabilities built into the hand.

Its mechanical design is relatively sim-

ple, thus reliable. But it is limited

to grasping objects without manipulating

them. The other type of smart hand is

the dexterous hand with several fingers

and finger joints. In this paper we only

consider one-dimensional robot hands.

One-dimensional hands have to opposing

fingers of some geometrical form that can

clamp the workpiece in-between. Hand

performance requirements for these hands

can be established according to the

required tasks to be accomplished. The

capability to execute as many tasks as

possible with one hand design will deter-

mine the hand's kinematic motion and

shape. Should one hand not cover all in-

tended applications, exchangeable plug-in

end effectors might be considered, espe-

cially if the objects and loads vary

greatly in size and shape.

It is usually desirable to have concave

sections in the clamping surfaces to

lock-in the object rather than relying

on frictional forces alone. Hugging an

object allows reduction in clamping force

which might result in structural size
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reduction. Concave surfaces and other

geometrical shapes also assist in grasp-

ing and centering of workpiece in the

gripping area. It will aid the control-

ler in recognizing if the object is

properly grasped. The clamping force

should be adjustable.

A linear closing motion is best suited

for control purposes. Independent acti-

vation of each finger can aid in aligning

the hand for grasping. Even better is a

coasting capability while grappling so

that the fingers can align at the object.

Elastic elements or a spring system can

be incorporated in the finger, assuring

better clamping characteristics with a

more gradual force application and re-

duced slippage between hand and work-

piece.

Sensors

Intelligent operations require a great

amount of sensory information which in-

cludes force, moment, position, tactile,

temperature and proximity sensing,

object recognition, global and local

vision and many more. Space permitting,

any n_mber of sensors can be built into

the hand. Much work is needed to down-

scale the sizes of sensors, f0r most of

them are far too bulky for practical

applications within or at the hand.

If possible, sensors and feedback routing

should be placed entirely within the

physical confinements of the hand for

protection, Otherwise, contaminants and

moisture inflow might hamper their opera-

tions or material handling may crush them

if located in exposed positions. Tactile

and any other sensors which are located

on the surface need to be sealed and

extremely rugged. The amount of sensory

feedback will determine if local pre-

processor are needed. Multiplexing will

always be necessary with smart hands.

Control

Robots do not yet have the capability to

adjust to major changing situations. A

human operator is therefore required in

the control loop to make all major con-

trol decisions. Artificial intelligence

will eventually help but is still years

away in its development. With human

operators controlling the he_eopera£ion

system, the Controller must present the

pro-evaluated feedback to the operator
In easy-to-understand form for quick

recognition, comprehension and decision-

making by the operator.

Man-Machine Interface

The information flow between the operator

and the teleoperator system is a presen-
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ration of sensed information to the oper-
ator and the operator's control decisions
back to the controller.

With vision being the most important

sense, a visual signal in the form of a
mono or stereo TV picture will have to

be transmitted to the operator from the
mechanical hand, It will provide the
operator with a sense for where the hand

is reaching. Additional cameras might be
mounted at the arms of the robot to aid

in grasping. Other sensory information
can be presented in graphic, acoustic or

some other form that provides convenient
state evaluation possibilities for the

operator.

Mechanical, electromechanical and elec-
trical interfaces are common in master-

slave arrangements. Positional control
will be simplified if the operator manu-

ally performs the motion which the end
effector will repeat. This positional
control can be done in a master-slave

control arrangement. The master-slave
arrangements incorporate backdriving (or

force-reflecting) capability. This cap-
ability greatly enhances the operator's
perception for control decisions.

General and specific end effector tech-
nology requirements are treated in more
details in References i and 2.

tion. The proximity sensors in Figure 1
have a distance sensing range of 4 inches
with a resolution of 0.05 inches. More
on this smart hand can be found in

References 3 and 4.

Two smart hands are shown in Figures 2
and 3 developed for control performance
evaluation using the simulated Space

Shuttle Remote Manipulator System (RMS)
at the Johnson Space Center (JSC). The
four-claw end effector shown in Figure 2

is equipped with four proximity sensors
with a distance sensing range of six
inches. These sensors can measure range

and pitch and yaw alignment errors. More
on this experimental sensor system and on
the performance results can be found in
Reference 5. The end effector, which can

have a four-claw or three-claw configura-
tion and shown in Figure 3 is equipped

with a force-torque sensor with a dynamic
sensing range of 200 Ibs, with 0.2 Ibs

resolution. The end effector assembly
schematic clearly shows that the force-

torque sensor frame is an integral part
of the end effector mechanism. In fact,

the whole mechanism is designed around
the sensor frame. Note also in Figure 3
the local electronic instrumentation re-

quired to operate this system. More on
this smart hand and on the experimental
results can be found in References 6 and
7.

PAST END EFFECTOR DEVELOPMENT AT JPL

The JPL end effector development adopted
an evolutionary approach to generate im-

portant and needed capability increases
stepwise. The basic Idea was that the
first generation smart hand models
should be one degree-of-freedom (d.o.f.)

parallel-claw end effectors equipped with
proximity, tactile, six d.o.f, force-

torque and one d.o.f, grasp force sen-
sors. Several smart hands of this cate-

gory have been developed during the past
ten years. These prototype models differ
in their end effector size, drive mecha-

nism, claw shapes, load handling capa-
city, local electronics and control

design, and subsystem interface instru-
mentation.

An early smart hand prototype is shown in

Figure i. Indicated on the figure are
three sensors: a six d.o.f, wrist force-

torque balance sensor, two proximity sen-

sors in each claw, one pointing forward
and one pointing downward, and a thirty-
two-point touch sensor on each claw.

Each touch-sensing spot in the gripping
area is actually a copper pin. The con-
tact pressure on the-pln will cause the

circuit underneath to close, generating
a simple "on" signal. The center-to-
center distance between the contact pins

determines the touch sensing area resolu

Figure 4 shows a smart hand designed for

tests on an Orbiting Maneuvering Vehicle
(OMV) Protoflight Manipulator Arm (PFMA)
at the Marshall Space flight Center
(MSFC). The JPL-OMV smart hand is a one-

d.o.f, gripper with intermeshlng Jaws
consisting of parallel plates with a V
groove center section. Thus, the claws

can mechanically lock on square or cylin-
drical objects in two-d.o.f. The Jaws

can travel on a linear path while grip-
ping, and their maximum opening at the
tip is 6,5 cm. Each jaw has a built-ln
load cell to measure gripping force in
the range of one to 600 Newtons. The

Jaws are driven by a DC motor via oppos-
ing lead screws. Double slides, support-
ed at both ends for compactness and
stiffness, guide the jaws' motion. Each

slide is on a separate hardened and
ground steel rod. A channel built into

the drive system's frame gives additional
guidance. The entire smart hand mecha-
nism mounts to the robot arm wrist

through a slx-d.o.f, strain gauge load
cell system by which the three inter-

action forces (Fx, Fy, Fz) and moments
(Mx, My, Mz) with the environment are
measured in the range of 120 Newtons and
70 Newton-Meters,

Self contained in sensor data acquisi-
tion, data processlng and motor control,
the JPL-OMV smart hand has three built-ln
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microprocessors (Motorola MC68701 and
MC68705 units), as shown in Figure 4.
Thus, the command interface, force-moment

and position feedback to the remote sup-

port equipment require only a single full
duplex RS-232 link. The distributed

microprocessors' architecture in the hand
uses advanced integrated circuits, in-
cluding hybrid and high level multifunc-

tional packages, thereby minimizing the
chip counts. Custom design circular and
annualar printed circuit cards support
the hand's controller ICs. Seven slip

rings interface the local electronic
circuits with the central electronics.

Four are used for power transmission,
two for bidirectional data communication,

and the seventh for system ground.

Power for the motor and electronics comes

from a support chassis that also houses
a National Semiconductor 32016 micro-

processor and a Parallax graphics pro-
cessor for high level control and real-
time force-moment graphics display. A
control box is used to operate the hand,

setting the gripper control mode, chang-
ing the give force, rate and position,

and adjusting operating parameters such
as force and rate limits. This gripper

can handle fragile objects with a gentle
grasp force of from one to five Newtons,
or hold a tool with a firm grip of up to
600 Newtons.

Force and torque gripper control takes
place in the hand itself, using a micro-

processor for motor control. Commands
from the control box are sent to the
motor controller via a serial link and

the communication processor. On this
same route, force, moment and position
information is continuously sent to the

support chassis for graphic display on a
TV monitor. The forces and moments mea-

sured by the six-d.o.f, strain gauge
force-moment sensor assembly are repre-
sented as bar graphs in a star configura-

tion which suggests a perspective view
of the Cartesian reference frame of the

gripper. Jaw opening and clamping force

are represented by vertical bars on the
left side of the graphics display. Soft-
ware provides for two display adjust-

ments; taking away unwanted load bias
(like gravity) and scaling the display

bars by specifying the force and moment
level corresponding to a full bar-graph

display. For performance evaluation of
this JPL-OMV Smart Hand see Reference 8.

Figure 5 shows a smart hand developed for

the Goddard Space Flight Center (GSFC)

Flight Telerobotic Servicer (FTS) ground
test facility. This hand is also

equipped with six-d.o.f, force-torque
and one-d.o.f, grasp force sensors. The

operation of this smart hand is very
similar to the operation of the JPL-OMV
hand described above. Note, however, the

reduced volume of electronics of this

smart hand and the V-shaped grooves that
contour the inner surface of the jaws in

two perpendicular directions, as compared
to the electronics and to the claw con-

figuration of the JPL-OMV smart hand.

The smart hand shown in Figure 6 was
designed at JPL to fit a medium size
industrial robot arm such as the PUMA
560, It is used at JPL for research in

hybrid motion and force modes of control.
The hand has three parts: a jaw mecha-
nism, sensors and local electronics.

Powered by a DC torque motor through
gears and recirculatlng ball spindles,

the parallel jaw gripper mechanism moves
on rails and is supported by linear
bearings to minimize friction. Each jaw
subassembly consists of three parts: a

moving support, a grasp force sensor
operating in the range of one to 150

Newtons, and an interchangeable jaw tip.
As seen in the photo, V-shaped grooves
contour the inner surface of the jaws in

two perpendicular directions, assuring a
friction-independent, mechanically ffrm

grasp. This permits the gripper to
mechanically lock on rectangular or
cylindrical objects in two directions
with two-d.ouf, constraints or to connect

to a T-shaped tool head with three-d.o.f.
constraints.

Behind the base of the jaws is a six-axis

force-moment sensor with a dynamic range
of 75 Newtons and 20 Newton-meters for

reading the three orthogonal forces and

moments induced by the robot hand's
interaction with the environment. This
sensor consists of a Maltese cross-like
structure instrumented with strain

gauges. Strain gauge readings from this
sensor are acquired by the local micro-

processor, formatted, and transmitted to
the central control computer. There,

control programs are executed and sensor
data are sent to a remote control
station.

Local electronics for this smart hand are

housed in a shell attached to the force-
moment sensor and connected to the robot

wrist. In it are two custom printed cir-

cuit boards, one for the digital and one
for the analog input/output electronics.

The digital electronics are based on an
Intel 8097 microprocessor with a high

number of built-in functions that permit
effective management of the real-time

multi-tasking environment. The local

software system consists of a background
process for message analysis and message

generation, and an interrupt driven rou-
tine for the real-tlme functions of th_

controller. The microprocessor clock

generates an interrupt every two milli-
seconds. Presently, three separate grasp

control loops are implemented; posit%on,
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rate and force controls. When in force

control mode, the controller maintains a

preset grasp force until the central con-
trol computer issues a different command.

More on this smart hand can be found in

Reference 9. This hand, called Model A

PUMA Smart Hand, is presently being used
on one of the PUMA 560 robot arms in the

JPL laboratory breadboard system for
dual-arm teleoperation described else-

where in this proceedings. (See
Reference I0.)

CURRENT SMART HAND DEVELOPMENT AT JPL

The ongoing end effector technology work
at JPL is concentrated on the redesign of
Model A PUMA Smart Hand to obtain wider

dynamic range in task performance both
mechanically and electronically. This

new design, called Model B and Model C
PUMA Smart Hand, contains numerous

novelties which fall into two categories:
electronic novelties and mechanical
novelties.

Electronic Novelties

Figure 7 shows Model A and Model B PUMA
smart hands side by side, The electronic
novelties included in Model B smart hand

(and also in Model C smart hand the mech-
anism of which is described later in this

paper) are the following:

- Instead of a conventional design

where a microprocessor performs the
data collection and communication
functions, this new electronics

employs a high speed custom designed
state machine. This state machine
interfaces to a bidirectional fiber

optic link for high speed data com-
munication. This circuit achieves
a factor of 100 improvement in data

collection speed and servo rates up
to 10 kHz for a 16 input system.

The high servo rate makes it possi-
ble to perform advanced signal pro-

cessing on the force data.
- Due to the high bandwidth of the

optical communication link it is

not necessary to process the data
locally in the hand, All data pro-
cessing functions are performed at

the host processor so all of the
software can be written in a famil-

iar and convenient development
environment. The software can be

changed much more easily.
- In a conventional system the strain

gauges are excited by a DC voltage
around 5 to I0 volts. The higher

this voltage the more signal we get
out of the strain gauges with a con-
stant noise level. The voltage is

limited by the heat produced in the
strain gauges. This voltage is

typically not more than 12 volts.
Our new electronics uses a narrow

pulse (5 _sec wide) to excite the
gauges and a very high voltage (i00
V). This results a factor of I0

improvement in the signal to noise
ratio of the force measurements.

- The above mentioned high strain

gauge voltage is variable by soft-
ware controlling the full scale

force range. This method keeps the
12-bit accuracy no matter what force

range is used. The control range
is a factor of ten, resulting in a
virtual floating point force mea-

surement system. The outcome is
equivalent to having a 15-bit force

reading at 5 kHz rate which can be
processed to get a 17-bit value at

the system servo rate of 1000 Hz.
- When converting the 8 raw force

readings to the 6 Cartesian forces
and torques, four of the output
numbers are computed as differences

of two of the raw readings, If one
of the two numbers subtracted reach

saturation due to a large force on
some other axis, the difference will
be inaccurate, To avoid this situa-

tion the new circuit subtracts these
two numbers in hardware. The result

is an accurate Cartesian reading of

a small force/torque even if there
are large forces acting on other
axis. In this arrangement we have

12 raw readings that are converted
to 6 Cartesian forces and torques.

According to the block diagram shown in
Figure 8, the end effector electronics
consists of the following major sub-

systems:

- PLL clock and state machine

- Power supply
- Motor drive

- A/D converter and input multiplexer

- Sample and hold with preamplifier
circuits

The functions of these are as follows:

• The PLL clock and state machine

block converts the serial data

coming in from the host processor

into parallel data bytes and words
written to the internal data bus.

When all expected bytes have come
in, the state machine switches to
transmit mode and converts the par-

allel data coming from the internal
bus to a serial bit stream that is

transmitted on the output optical

fiber to the host processor. The
output data also includes the entire

received input data as an echo for
debugging purposes, This block
consists of the following pieces:
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- Edge detector
- Packet detector
- Fast clock
- PLL state machine

- Extra hit removal logic
- Serial to parallel conversion

logic

- Read/write pulse generation logic
- State change logic

The function of the edge detector
logic is to generate a I0 nanosecond

wide pulse every time a positive
edge is detected in the data. The
packet detector generates a reset

signal if there is no input data
coming in, removes the reset signal
as soon as data begins to come in.
The fast clock is an accurate time

base for the entire system. This
clock runs at 24 MHz, 8 times the
bit rate.

The PLL state machine generates a

3 MHz two-phase clock for data
decoding purposes. This clock is
phase locked to the pulses coming

from the edge detector.

The extra bit removal logic removes

every fifth bit from the incoming
data stream. Upon transmission

every four bits of data is followed
by an extra bit which is added in
order to guarantee a level transi-
tion that keeps the PLL clock syn-
chronized. These extra bits have
to be removed from the receiver
data.

The serial to parallel conversion
logic generates the data bus signals
from the incoming serial data and it

generates the serial outgoing data
from the parallel bus signals.

The read-write pulse generation

logic generates a write pulse every
time a full byte or word appears on
the data bus. This logic supports

up to 256 devices on the data bus.
When transmission is performed, this

logic generates a read pulse for
every byte or word to be read into
the parallel to serial conversion

logic.

The state change logic counts the

incoming data bytes and after a pre-
set number of bytes have come in, it
switches to transmit mode. Later

when the preset number of bytes have
been transmitted, it switches off

all circuits and returns to idle

mode.

The function of the power supply is to

generate the following supply voltages:

+ 5v
+ 15v

+ 50v

from a single 30v supply coming into the

hand. The +50V supply is not DC but it
is a pulse instead. This pulse is
emitted every time the hand goes from
idle to receive mode and is used to

excite the strain gauges. The size of

this pulse is under software control.
It can be varied from 5 to 50 volts.

The motor drive consists of two identical

output circuits. Each one can be soft-

ware controlled to produce a voltage from
-15 to +15 volts. The motor is connected

between these two outputs as a bridge.

Thus, the motor voltage can vary from 0
tO + or - 30 volts.

The A/D converter is a successive approx-
imation 12 bit unit. It performs one

conversion in 3 microseconds. The input
to this A/D converter is unusual in the

sense that the sample and hold circuits

are in front of the input multiplexer and
so one for each input is needed. This
arrangement makes it possible to sample
all of the inputs simultaneously, improv-

ing the signal quality. This _rrangement
is also needed because all of the strain

gauges are excited with the same pulse.
The A/D converter section also includes

a standard voltage reference.

Sample and hold with preamplifier cir-
cuits. There are 16 input circuits of

which 12 are eql/ipped with local D/A
converters. These D/A converters are

under software control, they are used to
remove any offset from the data. Such an

offset varies depending on hand orienta-
tion, the object grasped and the distance

of the grasping from the FT sensor center
point, By locally removing these poten-

tially large offsets, the sensitivity of
the hand is substantially enhanced. The

remaining 4 inputs that do not have D/A
converters are used for finger position,

motor current and supply voltage sensing.

This hand cannot exist on its own, it

always has to be examined in relation to
the control processor that it is con-

nected to. The control processor has to
be equipped with a matching fiber optic
link, This link has been developed to
allow our processors to communicate to

each other. Currently this link only
exists for the Intel iSBX bus of the

32016 within the MULTIBUS environment,

but within a few months we are going to
make a version for the 68020 in the VME

bus environment, The controlling pro-
cessor outputs a packet to the hand that
contains the 16 output commands. Two of
these define the motor drive current, the

rest specify the bias values for 12 of
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the A/D inputs. The hand responds with
an echo of these same values followed by

the 16 A/D readings, two bytes each. It

is up to the control processOr to perform
the following functions:

- Finger motion control, such as force

servicing.
- Signal processing of the input data,

such as noise elimination.
- Coordinate transformation of

Cartesian forces to task frame.

Although the top speed of the hand is
around 10,000 Hz, currently we perform
the above functions at a 5000/1000 Hz

servo rate. The force readings are taken
at 5000 Hz, and the output filtered force

data is computed at a i000 Hz rate.

Mechanical Novelties

The latest smart hand mechanical design
at JPL is known as the Model C PUMA Smart
Hand. This model stands 8.5 inches from

its mounting plate to its fingertips and

spans just over 7 inches along its widest
point (see Figure 9). Physically, the
hand attaches to the manipulator arm at

the base of a cylindrical bell which
houses the four electronic boards des-
cribed above under Electronic Novelties.

Mounted to the upper end of the bell is
a force/torque sensor which, in turn,
attaches to the mechanism structure.

This component houses the motor and
drive system to activate the fingers.

The two fingers protrude from this struc-
ture, being attached via grip force sen-
sors. These fingers, designed to grasp
both flat and round objects, are capable

of handling up to 3.6 inch objects with
a maximum grip force of 60 Ibs.

Mechanically, there are three areas that
were designed based on the criteria sub-
mitted. These are: i) the overall

structural design, 2) the drive mecha-
nism, and 3) the sensing elements. The

structural design involved creating a

lightweight yet rugged instrument that
would take the abuse submitted in a

laboratory environment. Designing the
drive mechanism consisted of developing

a durable, dependable transmission
system to actuate the fingers. Sensing

design encompasses the detection of
loads at the worksite. Each of these
will be discussed.

The entire structure of the hand is of

anodized aluminum alloy. To create a
rugged yet lightweight construction,
aluminum 7075-T6 is used since its high

strength allows thinner cross-sections.
Structurally, the hand is designed to
handle a 50 Ib external force and 50
ft-lbs of external torque, while only

weighing between 4.5 and 5 Ibs (total

predicted weight with electronics).
Considerable care was taken to shield
various delicate components (such as the

electronics) from being damaged, but

still provide easy access for servicing.

The fingers are actuated by a brushed,
direct current, frameless motor (manufac-

tured by Magnetic Technology, capable of
II0 oz-in of torque) which directly

drives a leadscrew on which the fingers
follow. The fingers are supported on

Schneeberger crossed-roller linear
bearings. To create the opposing motions
of the two fingers, the motor was mounted
at the center of the leadscrew with

right- hand threads extending from one
side while left-hand threads are on the
other. The result is that the fingers

will move in opposite directions for a

given motor rotation. This, coupled
with the leadscrew's high mechanical

advantage, is a very simple and reliable
transmission system which provides a com-

pact conversion of the motor's angular
motion into the finger's required high-

force, linear motion.

Using this type of drive system basically
resulted in deciding what type of nut
and leadscrew assembly to use, since the
losses and mechanical advantage of this

assembly dictate the motor size. All of
JPL's previous designs which incorporated
a leadscrew drive used a ball nut assem-

bly. A ball nut is basically a ball
bearing whose races are the screw
threads. Such assemblies exhibit very

low friction and therefore are highly

efficient (greater than 90% as opposed
to about 15 to 25% for a bronze nut on a
steel leadscrew). Since the efficiency
is over 50%, these assemblies are also

backdriveable. Three major problems are
that ball nut assemblies are susceptible

to dirt and debris, require precise

alignments, and are very expensive since
it would have to be custom-made for this

hand (costing about $5000 per assembly).
This led to researching alternative

leadscrew designs.

Analyzing the mechanics of leadscrews
resulted in four basic design conclusions

to improve performance: i) the screw
diameter should be as small as possible,

2) the coefficient of friction between
the nut and screw should be below 0.1,

3) the lead angle should be as high as
possible (up to 45 degrees), and 4) a

square thread should be used as opposed
to a acme or "V" thread. Using a square

thread increases efficiency and reduces

problems caused by dirt because it tends
to Glean the thread during operation.
The first and third conclusions are

dependent upon the loading criteria and
physical limitations of the hand. The
second, though, is primarily a function
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of the materials chosen for the nut and
leadscrew. Further research found that

the coefficient of friction value was

the single most contributing factor to

having a high efficiency system, as
opposed to altering the screw design to
reduce frictional effects.

Concentrating the research on various

types of low-friction materials, several
possible solutions were found for the
nut material to operate on a stainless
steel leadscrew: I) Teflon, 2) a solid-
film lubricant over a base metal, and 3)
Teflon filled Delrin. Teflon is the

obvious choice because it has the lowest

coefficient of friction of any known

solid (about 0.04), but this polymer may
have a problem of "creeping" when under

a sustained load (while gripping).
Literature regarding solid-film lubri-
cants indicated that they may have fric-
tion levels comparable to Teflon, but

test samples showed this not to be the
case (friction about 0.15 to 0.20 at the

operating load). DuPont manufactures a
Teflon filled Delrin (acetal resin) which

would not have the creep problems of the
Teflon, but the friction would be twice

as high (about 0.08). Overall, Teflon

would be the best solution if the creep
is acceptable. In the case that Teflon

should prove to be unacceptable, a Teflon
filled Delrin will be used.

With this drive transmission system, the
mechanism would operate at about 55%

efficiency with Teflon nuts as opposed
to about 40% with the Delrin nuts.

Neither system will be backdriveable,

even though the Teflon system operates
over 50%. This is because the motor's

cogging torque is high enough to prevent
backdriving at the rated load (60 Ibs).

This results in a possibly desirable
feature. This hand will be capable of

gripping an object and maintaining the
grip force without continuously supplying

power to the motor, yet only incorporate
a minimal amount of friction if servoing
is required. The accuracy of grip force
magnitude after the motor power is dis-

continued will be a function of the sys-
tem's and the gripped object's compliance
since there will be a slight mechanical

relaxation. Although any external loads
which are applied may result in undesir-
able ringed forces, this mode could be

useful for moving or holding an object
in free space with no power dissipation.

Loading and position sensors are essen-
tial for completing tasks efficiently.

The Model "C" is equipped with three
such sensors: I) finger position sensor,
2) grip force sensor (GFS), and 3) force/

torque sensor (FTS). For this hand, it
was decided that the finger position did

not need to be known very precisely.

Therefore a linear potentiometer is used
for this purpose.

To measure the forces applied to the
finger, a GFS is used. This sensor is

part of the hand's structure which con-

nects the fingers to the mechanism. Any
finger force which is applied must be
transmitted through this structure, thus
causing it to deflect. Semiconductor

strain gages are used to detect this de-
flection and thereby measuring the grip
force.

The GFS's shape is that of a rectangular,

tubular box (see Figure I0). This design
has two key features. Firstly, when
under load, the sensor deforms similar to

a four-bar linkage, keeping top parallel
to the bottom. This results in the faces

of the two fingers remaining parallel
within a designed tolerance. Secondly,
by placing the strain gages in specific
locations, the effects of applied moment

can be cancelled, thereby measuring only
the shear force. The shear force is

equal to the grip force whereas the
moment is due to where the force is

applied on the finger (how far from the
sensor). Through a detailed theoretical

analysis which was verified by a series
of tests, the test location determined

for the gages was with all four (full

bridge) on the same outer face (see
Figure i0). This configuration resulted
in the most accurate readings and also

provided for the easiest installation.

Between the mechanism and the electronics

bell is where the external forces and

torques are detected with the FTS. The
FTS also uses strain gages, but the

structure is much more complex than the
GFS. It basically consists of two rigid
bodies connected with four beams (see

Figure Ii). One body attaches to the
mechanism while the other to the bell.

Therefore any external forces or torques
must pass through the beams, resulting
in deflections which are detected by 32
strain gages (8 full bridges, 8 gages on

each beam). Through the proper decoding
scheme, the forces and torque about
three orthogonal axes can be determined.

Overall, the Model "C" design has very
desirable features for a hand of this

nature. It is very rugged in its light-
weight, high-strength construction. The

actuation system is very simple, incor-
porating a minimal number of moving

parts. Furthermore, the design is very
reliable mechanically, which is implied
by the simplicity of the transmission

system. The Model C smart hand will
also be used at the Intelligent Systems
Research Lab (ISRL) of Langley Research
Center (LaRC).
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CONCLUSION

JPL's smart hands represent only the

beginning of the evolutionary trail.
Future plans include the addition of new
electro-optical proximity and tactile

sensing capabilities. Used in close-up
work, optical sensors beam infrared light
at the object of interest. Reflections

from the object's surface will be tri-
angulated to provide depth information.
Tactile sensitivity will give robot hands
abilities similar to those of human skin,

with its sensitivity to touch.

The trend to develop smarter robot hands

challenges mechanical design and sensor
and microelectronics technology. Hands
such as those at JPL were inconceivable

just a few years ago, due to the bulk of
the local controlling electronics. As
circuit size continues to shrink, smart

hands will get brighter, bringing
increased benefits both in space and on
earth.
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Figure I. A Smart Hand Early Prototype at JPL (1976-80)

Figure 2. JPL-RMS Smart Hand with Proximity Sensors (1979-81)

!

_igure 3. JPL-RMS Smart Hand with Force-Torque Sensor (1982-84)
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Figure 4. JPL-OMV Smart Hand (1984-86)

Figure 5. JPL-FTS Smart Hand (1987)
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Figure 6. 0?L-PUMA 560 Smart Hand and Control, Model A (1988)

439 ORIGINAl. PAGE IS

OF POOR QUALITY



ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE IS

OF POOR QUALITY

• O_AL FILER OUT I PLL CLOCK I

_,_'_".' _,',t", :t,'; %%" .o,o.

INPUT

Figure 7. JPL-PUMA 560 Smart Hand Model B
(1989)

Figure 8. JPL-PUMA 560 Smart Hand Model B

and C Electronics Block Diagram
(1989)
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Figure 9. JPL-PUMA Smart Hand Model C

Mechanism (1989)
Figure i0. Grip Force Sensor Frame and

Gages Schematics
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Figure II. Force-Torque Sensor Frame, Gages and Loading Schematics
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