Numerical Approach of Collision Avoidance and Optimal Control
 on Robotic Manipulators
 Jyhshing Jack Wang, Automation Specialist, The M. W. Kellogg Company
 The author owes help from: Jyhpyng Wang, Research Associate, M.I.T.

Abstract

Collision-free optimal motion and trajectory planning for robotic manipulatora tre solved by method of sequential gradient restoration algorithm. Numerical examples of a two degree-of-freedom (DOF) robotic manipulator are demonstrated to thow the excellency of the optimization technique and obstacle avoidance veheme. The obstacle is put on the midway, or even further inward on purpose, of the previous no-obracle optimal trajectory. For the minimum-time purpose, the trajectory grazes by the obstacle and the minimum-time motion successfully avoids the obstacle. The minimum-time is longer for the obatacle avoidance cases than the one without obstacle. The obstacles avoidance scheme can deal with multiple obstacles in any ellipsoid forma by using artificial potential fields as penalty functions via distance functions. The method is promising in solving collision-free optimal control problems for robotics and con be applied to any DOF robotic manipulators with any performance indices and mobile robots as well. Since this method generates optimum solution based on Pontryagin Extremum Principle, rather than besed on sasumptions, the results provide a benchmark againat which any optimization techniquer can be measured.

Key words Bang-bang control, optimal control, Cartesian space, joint space, robotic manipulators, degree-of-freedom.

1. Introduction

The problem of increasing productivity, automated manufacturing, and performing complex lasks in hazardous or remote environments can be solved by robotic systems. Such systems have been applied to wide variety of industries which includes spray painting, welding, assembling, material handling, highly risky work and remote control jobs. As pointed out by Holcomb and Montemerlo [1] and Lemer [2], remote control robotic systems will be developed in the future space stations. Also ${ }^{11}$ wellknown, with the demand of increasing productivity and industrial automation, the problem of controlling the robotic manipulators hat received a great deal of interest in the field of automated manufacturing.

1.1 Research Objectives

One of the focal points in robot design liet in the computation and control of the motion of the manipulator. In order to make sure that the manipulator is able to execute a apecial taik moat efficiently for human beinga, it is important that the manipulator performi from initial states io designated finsal states in an optimal way under collision avoidance concern. Control on robotici can be reparated into two major catezorier: 1) trajectory planning, 2) trajectory tracking. Varioui optimal controllera need to be devised in the trajectory tracking problem: which are not the subjects in this article. Trajectory planning is not only the determination of the path of the end effector. Trajectory planning generatel a specified motion of time history from initial ctates to final states. Motion planning does not recessarily require optimization techniques but extra excursion of the robot is just not cost-efficient and can cause more potential collision problems. Obviously, tho minimum-time tujectory la of particular interest tince the productivily in automation is maximized. Various performance goals, for example: distance, enorgy or time-energy combination, sre slio applicable. Various concepti for the uudy of optimal control of robotic manipulators have been itudiod for this purpore.

1.2 Pravious Work

One of the plonecred work is done by Kahn and Rohh [3]. The highly nonlinear manipulator dynamical equationi of motion are linearized, an approximate bang-bung solution has been doveloped to the suboptimal feedback control problem.

Gilbert and Johnson [4] have developed apath planning scheme in which the obstaclet are avoided via an infinite penalty function aenerated from distance function. In their study, the nonlinear dynamic equations are approximated by linear subspace functions which are choten as piecewise polynomial splinet. In their examples, distance conatrainta are
violated when spline knot interval rections equal to one; the payload object if made urictly convex by approximating its boundary by arca of cermin curvature; obritacier are arrumed to be convex rets; the complex ditance finding minimization problem within the optimal control problem is not fully described. In the optimization technique, more than one optima can be drawn at the amme case.

Baied on Pontryagin extremum principle, the time-optimal motions of varlour types of robotic manipulators have been investigated by Gearing, Guzzella, Hepner and Onder [5] a clasified by cylindrical, spherical roboth, and a robot with horizontal articulated amn with two links. In the analysis of the time-optimal control problem, the bang-bang control solution satisfies the Pontryagin extremum principle and the study has been made for unconstrainted trajectories. In their examples, two links intercross each other in the planar two-link manipulator.

Due to the difficulty of highly nonlinear robot mathematical model, a near-optimal control algorithm based on Pontryagin extremum principle and Riccati formulation has been presented by Kim, Jamshidi and Shahinpoor [6]. The algorithm reducea the original nonlinear equation set into a linear one by a parameter sensitivity method and P-D controller is used to solve the linearized model.

Ozaki and Mohri [7] has developed the study of collision-free joint trajectories along given path with some physical constraints such as manipulator dynamics, obstacles avoidance, joint velocities and input torques by formulating artificial potentials into the planning problem for constraints using linear programming algorithm to minimize the error between present and desired trajectory, in which, the nonsmooth time functions were approximated by cubic spline functions.

The technique of dynamic programming has also been popular solution method to many investigators in the field of robotic manipulators research. Based on dynamic programming, Vukobratovic and Kircanski [8] have determined the energy-optimal velocity distribution of the manipulator end-effector for a prescribed path in the workspace subject to the forces/torques constrainu. The given taveling time needs to be diacretized in their atudy.

Singh and Leu [9] have formulated and solved the optimal trajectory planning az an optimal control problem by a path parameterized method of dynamic programming under the constraints of the joint forces/torques and volocities. Bang bang control has been generated for minimum time problemt without obstacles svoidance concem.

In order to implement dynamic programming approach, Stin and McKay [10] have atudied trajectory planning of robotic manipulatort using parametric function and its derivative to reduce dimenalons in state apace which finds the positions, velocities, nccelerations, and sorquer of the problem by minimizing the cost of the parameter of moving robatic manipulator along a specified geometric path subject to input torqua/force constraints without obstacle avoidance concern. Alons a pre-selected feometric path, for quadratic velocity bounds, and plecewiso analytic ceomatric path constrainu, the minimum-time control problem has been studied by Shin and McKay [11] with the phase-plane rechnique: in Cartestan space which hat to be converted into joint space by Interpolation. Under the sisumpition that the path is given al parameterized curve, thay have also determined a near-minimum time geometric path for the study deacribed above which minimizes approximate lower traverial time bounds uaing maximum velocity boundr [12]. Their techniquei are limited by paramelorization.

Bobrow, Dubowsky, and Cibson [13] have studied the problem of minimum-time trajectorier along atblirary pre-planned spatial pathi by a apecial technique in which the actuator torque bounds are assumed to be functions of the robot's current position and velocity. This technique cannot handle the case when the feasible regions in the phase plane are not simply connected. The idea of the time-optimal solution is bated on choosing the maximum accelerntion/deceleration to make velocity as large as possible at every point without violaing constralnta. The difficulty is finding moltiple switching pointi for time-optimal problems. Dubowiky, Norria and Shiller [14] have devised time optimal trajectory planning scheme with obstacle avoldance consideration via CAD approach in which the minimum distance to obstacles is found from software OPTARM II by a table of various geometric shape. The penalty function for obstacle avoidance needs to have a characteristic of more effective weighting and
dramatic steepness. The technique cannot be easily extended to solving oplimal trajectory planning for other perfomance indices and constraints.

Based on the same assumption, Rajan [15] has devised a parameterized path method for the minimum-time problem in which the cubic spline paths are parameterized and optimized locally by an iterative scheme. The optimization procedure stops until the minimum-time path comes close enough to the previous path while using Bobrow's algorithm for inner minimization and varying the path for outer minimization. The algorithm cannot be effectively applied to the planar movements of a manipulator with obstacles in the workspace. The weak points of the algorithm are on the premises that the minimum time path is smooth and a smooth curve is well approximated by splines.

Sahar and Hollerbach [16] have devised a method based on statespace search tree representing all possible solutions, and searching for the best one by using a Symbolics Lisp Machine for time-minimum criterion. The algorithm is a logical approach but not mathematical approach which is not suitable for routine off-line trajectory planning due to the complexity of computation.

Luh and Lin [17] have devised kinematical appronch which assomes the path consists of a sequence of Cartesian straight line segments and constant limits on Cartesian velocity and acceleration are known a prioni without considering the dynamics of the arm.

Weinreb and Bryson [18] have presented the Adjustable ControlVariation Weight (ACW) algorithm for the minimum-time control of a twolink robotic arm through choosing controls subject to the ctuator constraints. In their examples, the two links of the planar manipulator intercross each other. Meier and Bryson [19] have developed an algorithm for solutions of time-optimal control problem of atwo-link planar manipulator which contains solutions for two-point boundary value problem of constrainted motion between two endpoints.

Zhang and Wang [20] have investigated a collision-free time-optimal control problem of a iwo-link planar robotic manipulator by applying the method of global linearization transformation in joint space configuration. A1 : result, the nonlinear equations of motion are transformed into an equivalent linear model and an approximate explicit expression has been obtained for the case of minimum-time control of a two-link planar robotic manipulator with two-dimensional planar geometrical obstacle avoidance. In their example, radius of the circle obstacle is not shown.

Bobrow [21] has continued the study of optimal path planning using minimum-time criterion with obstacles avoidance consideration in which the actuator torque bounds are assumed to be functions of the robor's current position and velocity, where the Catesian path of the end-effector is represented with uniform cubic B-spline polynomisls. The obstacle avoidance is enforced by ensuring the distance between the end-effector and the obstacle which was evaluated by stepping small increments of the path parameter.

Wang [22] has devised the numerically approach of using sequential gradient restoration algorithm to solve Bolza classical optimal control problem on robotics without linearization or parameterization, including the analytical time-optimal solutions of a two-link manipulator and/or actuator constrainted cases, in which the implementation can be extended into obstacle avoidance consideration.

1.3 Overview

We can see that numerous attempts have been made to find collision-free optimal môtion of a robotic manipulator without great success. All of the aforementioned investigations are limited in one way or another.

Collision-free optimal control problems for robotic manipulators are difficult due to the two-point boundary-value problem which involves, in addition to the optimality conditions, the kinematical and highly nonlinear dynmical equations of the system, the obstacle constraints, the limits imposed on controls, and the satisfaction of terminal conditions. Gencrally speaking, analytical solutions for classical optimal control problems with equality and/or inequality constraints ire not possible. Therefore, numerical method is resolved. Numerical methods and computer routines are available nowadays ranging from simple integration to TPBVP and optimization al a low price [23].

To solve constrainted optimal control problems, a restoration phase is needed at the end of the gradient phase [24]. The collision-free motion planning problems of robotics can be formulated as a classical optimal control problem and solved by sequential gradient restorition algorithm [25]. Collision can be avoided by continuously controlling the closest point on the arm to the obstacles using virtual potential fields as penalty functions via distance functions [26].

1.4 Present Modelling

As pointed out in recent research, owing to the difficuly of solving TPBVP and highly nonlinear dynamic equations, the classical optimal control problem is mostly approached by approximation (linearization, parameterization, modification) which more or less replaces the original optimal control problem into the assumed one. As in those study where the nonlinear dynamic equations or the two-point boundary value problems are linearized or parametcrized, the solutions generated based on those assumptions are not necessarily good approximations to the original ones. The intention of this research is to present a numerical approach for determining the collision free optimum motion of robotic manipulators, a method to solve classical optimal control problem without any modification, Iinearization or simplification. Solutions including robot positions, velocities, accelerations and force/torque in both Cartesian space and joint space which satisfies the Pontryagin extremum principle are obtained by solving the manipulator kinematical and dynamical equations with optimality conditions. For given initial and final conditions, under the physical conditions imposed on control in joint space and obstacles constaints, the continuous time-history of the positions, velocities, atcelcrations, torques/forces and the optimal collision-free motion of a robotic manipulator in minimum time are determined.

Applications of sequential gradient restoration algorithn occur in various branches of science and engineering. With particular regards to aerospace engineering, various problems of coplanar and noncoplanar, orbital and suborbital space flight [27, 28, 29] and atmospheric fight in a windshear [30, 31, 32] have been solved by the sequential gradient restoration algorithm. Also, the sime technique has been successfully employed in the thermofluid science [33, 34]. In general, sequential gradient restoration algorithm has proven to be very promising algorithm in solving enginecring optimal control problems [35, 36$].$

1.5 Advantages over Existing Techniques

To solve collision-free optimal control problems on robotica with constraints, we need a numerical method which has the following advantages:

1) able to solve TPBVP which is essentially the core of the problem [6. 8, 10, 11, 12, 13, 14, 15, 217: In fact, TPBVP can be solved by shooting method and relaxation method or method of particular solutions. TPBVP is involved in the first-order exact optimality condtions derived from calculus of variation.
2) able to solve highly nonlincar dynamic equations without linearization. parameterization or simplification [3, 4, 6, 7, 10, 11, 12, 17, 20, 21]: Any modification by linearization or simplification directly or indirectly replaces the original problem. The drastic approximation leads to significant error and unsatisfactory, unknown effect to the optima and the obstacle avoidance. For example, collision-free optimal solution can be declared only when there is not another more optimal solution.
3) able to solve any robotics formulation regardless number of joints or DOF [15, 17, 18, 19, 20]: A technical approach should not be limited by the number of joints or DOF of robolics. Any dynamic systems can be formulated from state functions point of view and solved as control systems regardess number of dimensions.
4) able to avoid the obstacles toward optimization direction without any unnecessary excursion [5, 7, 8, 9, 14, 15, 20, 21]: Collision avoidance should be achieved in a most efficient way, in terms, an optimal way, without requiring extra journey of the robot arm. The weighting effect and clearence between trajectory and obstacle should be specified by only one parameter.
5) able to solve general constraints of robot motion planning; On trajectory plañining, we have state constraints, control constraints, or a combination of the sbove. Obstacle inequality constraints, control inequality constraints can be transformed into equality constraints.
6) able to solve any terminal conditions, any performance indice: $[3,13$, $14,15,18,21$]: In various applications, various performance indices need to be implemented. For example, time, distance, energy or a combination of the above. Point to point task has different initial and final states in applications.
7) has the potential to fully utilize computer power as the computer industries grow in the near future: Several years from now, computers can be many times faster in CPU. We don't reject any ideas which consume more CPU time than we can afford today. On the contrary, we encourage numerical method that fully utilizes the modern scientific computing concepts. Provided we have infinitesimal small stepsize and infinite digit, and we have sufficient CPU time on computers, this calculus of varistion approach generates solutions which satify exact necessary conditions. Sufficient conditions can also be checked.
1.6 Drawbacks

There are certainly some drawbacks: 1) Minimum distance finding problem within the optimal control problem at each time stage is difficult. For more complex manipulators and general obstacles, the minimum distance can be found through optical devices or solid modeling techniques. In common sense, a human being has to sense (by eyes) obstacles and potential of collision before he/she can think about avoidance. 2) Due to the consumption of huge amount of CPU time, the method is good for offline programming but is not yet ready for real-time, on-line applications. This is a tradeoff for a new promising technique.

1.7 Contents

A brief description of the dynamic systems and constrains are given in section 2. Section 3 conatins the obstacles avoidance schemes. Section 4 contains the optimal control theory. Section 5 containa the tequential gradient restoration algorithm. In Section 6, numerical examples of swo degree-of-freedom robotic manlpulator are demonatrated. The insight of collision-free minimum-time motion are shown in captiont and tables. Finally, discustion is in section 7 , conclusion and prospective research are presented in section 8. Appendix A illustratels the kinematics of a twolink manipulator example.

2. Dynamic Systems and Constraints

The highly nonlinear dynamic equatons and inequality control constraints andior inequality atate constrainu are also the main difficulties of optimal control on robotics.

2.1 Dynamics

Under the assumption that the links are uniform rods of mass mit the mass center, of moment of inertia I_{4}, of length i_{i}, respectively, i is the number of the link. The gravity g is acting parallel to the negative y-axis direction. The dynamical equations can be derived by means of NewionEuler (Lagrange-Euler) equations [37, 38, 39] or symbolic method [40] and expressed in general as:

$$
\begin{equation*}
\tau=M(\theta) \alpha+\mathbf{C}(\theta, \omega)+\mathbf{G}(\theta) \tag{I}
\end{equation*}
$$

where τ is the vector of applied torques/forces, $M(\theta)$ is the inertial matrix terms of the manipulator, $\mathbf{C}(\theta, \omega)$ is the vector of centrifugal and Coriolis terms, $G(\theta)$ is the vector of gravity terms. For example, a two-link manipulator in Fig. 1. [16]:

Fig.1. Two-link robotic manipulater
Link 1 of m_{1}, l_{1}, l_{1}
Link 2 of $m_{2}, 1_{2}, l_{2}$
$M(\theta)=\left(\begin{array}{cc}l_{1}+I_{2}+\left(m_{1} l_{1}^{2}+m_{2} l_{2}^{2}\right) / 4+m_{2} l_{1}^{2}+m_{2} I_{1} l_{2} \cos \theta_{2} & I_{2}+\left(m_{2} l_{2}{ }^{2}\right) / 4+\left(m_{2} l_{1} l_{2} \cos \theta_{2}\right) / 2 \\ I_{2}+\left(m_{2} l_{2}^{2}\right) / 4+\left(m_{2} l_{1} l_{2} \cos \theta_{2}\right) / 2 & I_{2}+\left(m_{2} l_{2}^{2}\right) / 4 \\ I 2\end{array}\right)$
$\mathbf{C}(\theta, \omega)=\binom{-\mathrm{m}_{2} l_{1} l_{2} \sin \theta_{2}\left(\omega_{2}\right)^{2} / 2-m_{2} l_{1} l_{2} \sin \theta_{2}\left(\omega_{1}\right)\left(\omega_{2}\right)}{m_{2} l_{1} l_{2} \sin \theta_{2}\left(\omega_{1}\right)^{2 / 2}}$
$G(\theta)=g\binom{m_{2} l_{2} \cos \left(\theta_{1}+\theta_{2}\right) / 2+l_{1}\left(m_{1} / 2+m_{2}\right) \cos \theta_{1}}{m_{2} l_{2} \cos \left(\theta_{1}+\theta_{2}\right) / 2}$
One can see that these highly nonlinear terms are functions of the joint velocities and angles. $\theta_{i}, \omega_{i}, \alpha_{i}$ are relative angle, angular velocity, and angular acceleration of link i respectively.
2.2 Control Systems and Inequality Control Constralnts

Robotics dynamic system can be formulated in two ways:

2.2.1 Kinematical Formulation

Kinematical formulation is practical in most cases, specially when the model reference dynamic parameters are not known in advance. For example, the payload is never known ahead; or for safety reason that the inertia force caused by acceleration of the robols shall be limited. In kinematical formulation, the control system is as follows:

: $=\omega$

$\Delta=\alpha$
$0, \omega, \alpha$ are vector of state variables. Once the statei In joint ipace of the manipulator are known, we can compute the joint torques which are required to balance the retaction forces/moments acting on the links. The physical inequality constraints imposed on the robot in this atudy are joint accelefation bounds [20]. With these conatraints, we can limit the torques which are related to the joint space configuration. In terms,

$$
\begin{equation*}
|\alpha| \leq C, \tag{7}
\end{equation*}
$$

Via the following variable transformation, the joint acceleration an be limited within the bounds
$a=C \sin (u)$,
C is vector of upper bounda of the absolute acceleration in joint space. uis vector of the new control variable.

2.2.2 Dynamical Formulation

If we know the model reference system in advance, in dynamical formulation, the control system is as follows:

$$
\begin{align*}
& \dot{\theta}=\omega \tag{9}\\
& \dot{\omega}=M^{-1}(\tau \cdot C(\theta, \omega)-\mathbf{G}(\theta)) \tag{10}
\end{align*}
$$

θ, ω, α are state variables. In this formulation, we assume the dynamic parameters in matrices $\mathbf{M}, \mathbf{C}, \mathbf{G}$, are known. The matrix M is always both "symmetric and positive definite" [38], therefore always invertible. The physical inequality constraints imposed on the robot in this formulation are joint torque/force bounds. With these constraints, we can limit the torques in the actuator space configuration. In terms,

$$
\begin{equation*}
|\tau|, C \tag{11}
\end{equation*}
$$

Via the following variable transformation, the joint torque can be limited within the bounds

$$
\begin{equation*}
\tau_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}} \sin \left(\mathrm{u}_{\mathrm{i}}\right) \tag{12}
\end{equation*}
$$

C is vector of upper bounds of the absolute torque in actuator space. wis vector of the new control variable.

2.3 Equality Constraints

In some cases, the end-effector has to follow apecified path, or the orientation of the arm in the motion is specified and fixed, for example, the robot arm is holding a flash tight moving along a specified path, then, the degree of freedom is reduced by the number of constraints. One or more state constraints have to be added in Cartesian space, then converted into joint space. The system is solved with replacement of the algebraic equation into the state variables according to the constraints.
3. Obstacles Avoidance Schemes

By definition, obstacles can be avoidable or unavoidable for fixed configuration. Configuration has to be fixed in one task to avoid excess excursion and changing kinematics. For examples, in Fig. 2., the obstacle is away from the robot chassis but within the work envelope. That is considered as avoidable. In Fig. 3., obstacles are too close to the robot and there is no space for feasiblly moving the robol amm through the obstacle environment. This is considered al unavoidable.

For simplicity, each obstacle is put into an ellipsoid. It is a litule wasteful to put an obstacle which is not necessarily in ellipsoid shape into an ellipse. The advantage is the ellpsoid parameters can be changed to
shapen the oral into the figure of the obstacle without wasting too much space. Collision avoidance can be achieved by continuounly controlling the closent point on the arm to the obstacles.

Fig. 3. Unavoidable Obgtacles
3.1 States Inequality Constraints

Let Q_{1} denotes the i-th obstacle ellipsoid function among m obstacles. The obstacle constraint is:

$$
\begin{equation*}
Q_{1}=a_{0}\left(x-x_{0}\right)^{2}+b_{0}\left(x-x_{0}\right)\left(y-y_{0}\right)+c_{0}\left(y-y_{0}\right)^{2}+f_{0}=0 \tag{13}
\end{equation*}
$$

For collision avoidance, it is a must that at all times, for the closest point on the arm.

$$
\begin{equation*}
Q_{1}: 0 \tag{14}
\end{equation*}
$$

3.2 Distance Functions

Distance function D_{i} is defined as the function $Q_{1}(x, y)$ from the closest point (x, y) on the arm to the i -th obstacle.

The position on each link can be identified by

$$
\begin{equation*}
x=x_{1}+\lambda\left(x_{2}-x_{1}\right) ; \quad y=y_{1}+\lambda\left(y_{2}-y_{1}\right) \tag{15}
\end{equation*}
$$

in terms, $x_{1} y$ are functions of a parameter $\lambda . x_{1}, y_{1}, x_{2}, y_{2}$ are Cartesian coordintes al end points of the links.

Substituting (x, y). $Q_{i}(x, y)$ becomes a function of parameter 2. To find the closest point from the arm to the obstacle, we take differentiation and find minimum Qıversus λ

$$
\begin{equation*}
\frac{d Q \mathbf{d}}{d \lambda}=0, \tag{16}
\end{equation*}
$$

then, D_{1} is choosen among the closest points on linkt to the obstacle. In moss of the avoidable obstacle cases, the closest point happens to be on the forearm at end-effector.

When $\mathrm{D}_{1}=0$, it means the am touches the i-th obsacle at the closest point. When D_{i} is infinitesimally smatl, it means the arm grazes the i ith obstacté.

3.3 Virtual Potential Field Penaliy Function Method (P1)
 The penally function P_{1} is defined as

$$
\begin{array}{ll}
S_{1}=\exp \left(D_{1} / a_{i}\right) \cdot 1 \\
P_{i}=\frac{1}{S_{i}} & S_{1} \geq \varepsilon \\
P_{1}=\Gamma & S_{1}<\varepsilon
\end{array}
$$

A) In a small number which denotet the dramatic steepnest factor between the trajectory and the i-th obsucle where the penalty becomes active. Γ is - huge number on the edge of the precision boundary that causes computer overflow. E is a liny number on the edge of the precifion boundary that causet computer underflow. The merit of this infinite penalty function la by choosing a imall number a; one can define how close the trajectory if allowed to clear the i-th obutacle. By increasing the value a^{2}, one can supplant the steepnesi of the penalty function so the ifafectory will never get into the obutacles' forbidden ares. As D increnses, P tharply decreases, i.e. almont no penally in fariher disance; a D decronser, P dramatically increaref, i.e. audden increase of a penalty barrier in the goal function for obstacle avoldance. As soon a P dominates the gonl function, the problem changes from a minimum-goal one into an obtacle avoidance one. See Fig. 4. as following:

Fig. 4. Penalty function versus distance function diagram
For this optimal control system, we have formulated θ, ∞, α as state variables x; u as control variables. For the time-optimal problem, the performance index is:

$$
\begin{align*}
& \mathrm{I}=\pi+\int_{0}^{1} \pi P_{z}(\tau) d \tau \tag{20}\\
& P_{z}(\tau)=\sum_{i=1}^{m} P_{I}(\tau) \tag{21}
\end{align*}
$$

Boundsry conditions are initial states $x(0)$, and final states $x(1)$ of specified values. Once the states and the controls are computed, the required reacting torques τ can be solved from Eq. (1).
3.4 Violation Compensation Penalty Function Method (P2)

The penalty function $\mathbf{P}_{\mathbf{i}}$ is defined as

$$
\begin{array}{ll}
\mathbf{P}_{1}=0 & D_{1}<0 \\
\mathbf{P}_{1}=-\left(D_{1}-\varepsilon\right)^{3} & D_{1}<0 \tag{23}
\end{array}
$$

E is amall number. This penalty is a negative compensation function via the distance function. The merit of this pensily function is to force the violation of the obstacle constraim out as the negative sign indicates.

For thit optimal control systern, we have the iame state variablea and control variables as above. For the time-optimal problem, the new performance index in:

$$
\begin{equation*}
I=\pi+\int_{0}^{1} \pi P_{g}(\tau) d \tau \tag{24}
\end{equation*}
$$

$P_{i}(\tau)=\sum_{i=1}^{m} W_{i} P_{i}(\tau)$
WI is weighting factor for the corresponding penalty function.
3.5 Varlables Transformition Method (P3)

For collition avoidance, by introducing new varisble 2_{4}

$$
\begin{align*}
& Q_{1}=a_{0}\left(x-x_{0}\right)^{2}+b_{0}\left(x-x_{0}\right)\left(y-y_{0}\right)+c_{0}\left(y-y_{0}\right)^{2}+f_{0}=z^{2} \tag{26}\\
& \left.\frac{1}{2}=\left\{a_{0}\left(x-x_{0}\right) t+b_{0}\left(x-x_{0}\right) y / 2+b_{0}\left(y-y_{0}\right) t / 2+c_{0}\left(y-y_{0}\right)\right\}\right] / z \tag{27}
\end{align*}
$$

where f, y, wre the time diffrentiation of x, y. We add one or more differential conatraints to the control syisem. For this optimal control syatem, we have formulated $\theta, \omega, \alpha, z$ at itate variables $x ; u$ at control varinbles. For the time-optimal problem, the performance index is: $1=\pi$

3.6 Time Scaling

In the systems, time hat been normalized from $t_{\text {initial }}=0$ to tinal $=1$ via the following transformation: $t=\pi \pi$, i.e., $d t=\pi d x$. π is a parameter which represents the final time.

3.7 Minimum Distance Problem

For the minimum-distance problem of the end-effector in Cartesian space, the performance index can be replaced by:

$$
\begin{equation*}
I=\int_{0}^{1} \pi\left(v_{x}^{2}+v_{y}^{2}\right)^{1 / 2} d \tau+\int_{0}^{1} \pi P_{s}(\tau) d \tau \tag{28}
\end{equation*}
$$

3.8 Primal Formulation

Optimal control has the characteristic of duality [41, 42]. In this tudy, the sequential gradient restoration algorithm is employed in conjunction with primal formulation.

4. Optimal Control Theory

The optimal control problem [43] is described in general as follows:
With respect to the vectorial state variable $x(t)$, vectorial control variable $u(t)$ and the vectorial parameter π, the problem of minimizing a functional

$$
\begin{equation*}
I=\int_{0}^{1} f(x, u, \pi, t) d t+[h(x, \pi)]_{0}+[g(x, \pi)]_{1} \tag{29}
\end{equation*}
$$

subject to differential constraints:

$$
\begin{equation*}
\dot{x}-\phi(x, u, \pi, y)=0, \quad 0 \& s i, \tag{30}
\end{equation*}
$$

initial conditions:
$[\omega(x, \pi)] 0=0$,
and final conditions:

$$
\begin{equation*}
[\psi(x, \pi)]!=0 . \tag{32}
\end{equation*}
$$

where f, h, B, are scalar functions, and ϕ, ω, ψ are vectorial functions of specified dimensions. t is independent variable. The subscript 0 denotes the initial point, and the subscript 1 denotes the final point.

Optimality Criteria

By introducing the Lagrange multipliers, the problem shown above can be recast as minimizing the augmented functional J

$$
\begin{equation*}
\mathrm{J}=\mathrm{I}+\mathrm{L} \tag{33}
\end{equation*}
$$

subject to Eqs. (30-32), where L is the Lagrangian functional

$$
\begin{equation*}
L=\int_{0}^{1} \lambda T(\dot{x}-\phi(x, u, \pi, t)) d t+\left(\sigma^{\top} \omega\right)_{0}+\left(\mu^{\top} \psi\right)_{1} \tag{34}
\end{equation*}
$$

The symbols $\lambda(t), \sigma, \mu$ denote Lagrange multipliers of appropriate dimensions associated with the constraints. The superscript symbol T denotes the transpose of the matrix.

The first-order optimality criteria originated from Pontryagin Extremum Principle for Eqs. (29-34) can be derived from Euler equations in calculus of variation as:

$$
\begin{align*}
& i-f_{x}+\psi_{x} \lambda=0, \quad 0 \& 1 s 1, \tag{35}\\
& f_{u}-\phi_{u} \lambda=0, \tag{36}\\
& \int_{0}^{1}\left(f_{x}-\phi_{x} \lambda\right) d t+\left(h_{x}+\omega_{\pi} \sigma\right)_{0}+\left(g_{x}+\psi_{\pi} \mu\right)_{1}=0, \tag{37}\\
& \left(-\lambda+h_{x}+\omega_{x} \sigma\right)_{0}=0, \tag{38}\\
& \left(\lambda+g_{x}+\psi_{x} \mu\right)_{1}=0 . \tag{39}
\end{align*}
$$

In terms, we seek the functions $x(t), u(t), \pi$ and the multipliers $\lambda(t), \sigma$, μ such that the feasibility Eqs. (30-32) and the optimality criteria Eqs. (3539) are satisfied to certain numerical accuracy.

5. Algerithm

The sequential gradient restoration algorithm, in either the primal formulation or the dual formulation, is in iterative techrique which is constructed by a sequence of two-phase suboptimal cycles. Each cycle includes a gradient phase and a restoration phase. In the gradient phase. the value of the augumented functional is decreased in one step. while avoiding excessive constraint violation. In the restoration phase, the value of the constraint error is decreased in one or multiple steps, while avoiding excessive change in the value of the functional. In a complete gradientrestoration cycle. the value of the functional is decreased, while the constraints are satisfied to a pre-selected degree of accuracy. Therefore, a sequence of suboptimal solutions is generated. Each new suboptimal solution is an improvement of the previous one from the point of view for the value of the functional to be minimized. The optimal solution it reached when the optimality error and the constraint error are both satisfied to a cerrain accuracy. Schematic diagram is shown in Fig. 5:

Let $x(t), u(t), \pi$ denote the nominal functions; let $\tilde{x}(t), \tilde{u}(t), \tilde{\pi}$, denote the varied functions; let $\Delta x(t), \Delta u(t), \Delta \pi$ denote the ditplacements leading from the nominal functions to the varied functions. Under the assumption that the displacements $\Delta x(1), \Delta u(t), \Delta \pi$ are linear with stepsize α, where α, 0 ; and $\mathrm{A}(\mathrm{t}), \mathrm{B}(\mathrm{t}), \mathrm{C}$ denote the displacements per unit steptize. Then the following relations can be used for iterations:

$$
\begin{align*}
& \tilde{x}(t)=x(t)+\Delta x(t)=x(t)+\alpha A(t) \tag{40}\\
& \tilde{u}(t)=u(t)+\Delta u(t)=u(t)+\alpha B(t) \tag{41}\\
& \tilde{\pi}=\pi+\Delta \pi=\pi+\alpha C \tag{42}
\end{align*}
$$

Thus, each iteration of the gradient phase and the restoration phase involves two distinct operations: (i) the determination of the direction functions $A(t), B(0), C$, and (ii) the determination of the stepsize of varintion a.

From (40-42) and constraint conditions (30-32), one can derive the following relations from firat order variation:

$$
\begin{align*}
& \dot{A}-\phi_{x} \mathrm{~T} A-\phi_{4} \mathrm{~T} B-\phi_{x}^{\mathrm{T}} \mathrm{C}+\mathrm{D}_{\mathrm{r}}\left(\frac{1}{x}-\phi\right)=0, \quad 0_{i}: \leq 1, \tag{43}\\
& \left(\omega_{x} \mathrm{~T} A+\omega_{\pi}^{\mathrm{T}} \mathrm{C}+\mathrm{D}_{r} \omega\right)_{0}=0, \tag{44}
\end{align*}
$$

$\left(\psi_{\pi}{ }^{T} A+\psi \pi T C+D_{r} \psi\right)_{1}=0$,
and from Eqs. (40-42) and first-order optimality criteria (35-39), one can derive the following relations from first order variation:

$$
\begin{array}{ll}
\lambda-D_{8} f_{k}+\phi_{R} \lambda=0, & \text { Os } 1 \leq 1, \\
B+D_{g} f_{12} \cdot \phi_{n} \lambda=0, & 0 s t: 1, \\
C+\int_{0}^{1}\left(-\phi_{\pi} \lambda\right) d t+\left(\omega_{\pi} \sigma\right)_{0}+\left(\psi_{\pi} \mu\right)_{1}+D_{g}\left[\int_{0}^{1} f_{\pi} d t+\left(h_{\pi}\right)_{0}+\left(g_{\pi}\right)_{1}\right]=0, \tag{48}
\end{array}
$$

$$
\begin{equation*}
\left(A-\lambda+\omega_{x} \sigma+D_{\mathbf{L}} h_{x}\right)_{0}=0 \tag{49}
\end{equation*}
$$

$\left(2+\psi_{x} \mu+D_{g} g_{n}\right)_{!}=0$,
where, in the gradient phase, $\quad D_{2}=1 . \quad D_{r}=0$,
in the restoration phase.

$$
\begin{equation*}
D_{g}=\overline{0}, \quad D_{r}=1 \tag{51}
\end{equation*}
$$

The above linear two-point boundary-value problem [LTP-BVP] can be solved for the direcion functions $A(t), B(t), C$, by the method of particular solutions [44, 45].

Stepsize

Eqs. (40-42) define one-parameter functions of the stepsize ar For this parameler, the functionals I, J, P become functions of a as following:

$$
\begin{equation*}
\mathrm{I}=\mathrm{F}(\alpha) \quad \mathrm{J}=\mathrm{Y}_{(\alpha)} \quad \mathrm{P}=\mathrm{P}(\alpha) \tag{53}
\end{equation*}
$$

Then, bisection technique is used for the one-dimension search to find the stepsize, starting from referencestepsize α_{g} in gradient phase, until (i)

$$
\begin{equation*}
J(\alpha)<J(0), \quad P(\alpha)<P_{*} \tag{54}
\end{equation*}
$$

$P_{\text {. is }}$ i preselected number, not necessarily small; and starting from reference stepsize α_{f} in restoration phase, until (ii)

$$
\begin{equation*}
P(\alpha)<\mathbf{P}(0) \tag{55}
\end{equation*}
$$

In a complete, successful gradient-restoration cycle, the following condition musl be satisfied or the cycle is restarted with reduced stepsize.

$$
\begin{equation*}
\mathrm{I}_{\mathrm{i}}<\mathrm{I}_{\mathrm{i}-1} \tag{56}
\end{equation*}
$$

where I_{i} denotes the value of the functional (29) after current cycle. $\mathrm{I}_{\mathrm{i}-\mathrm{I}}$ denotes the value of the functional (29) after the previous cycle.

Updating suboptimal solution schemes

Once the direction function $A(t), B(t), C$, and stepsize a are solved, the 4tates, the controls, and the parameteri are updated according to Eqs. (4042).

Sumanry of Algorithm

Let P be the squafe norm of the error associated with the feasibility Eq:. (30-32), and Q be the square norm of the error associated with the optimality criteria Eqs. (35-39), then

$$
\begin{align*}
P= & \int_{0}^{1} N(\dot{x}-\phi) d t+N(\omega)_{0}+N(\psi)_{1} \tag{57}\\
Q= & \int_{0}^{1} N\left(\lambda^{\sigma} \cdot f_{x}+\phi_{\pi} \lambda\right) d t+\int_{0}^{1} N\left(f_{u} \cdot \phi_{u} \lambda\right) d t \\
& +N\left[\int_{0}^{1}\left(f_{\pi}-\phi_{\pi} \lambda\right) d t+\left(h_{\pi}+\omega_{\pi} \sigma\right)_{0}+\left(g_{\pi}+\psi \pi \mu\right)_{1}\right] \\
& +N\left(-\lambda+h_{\pi}+\omega_{\pi} \sigma\right)_{0}+N\left(\lambda+g_{x}+\psi_{\pi} \mu\right)_{1} \tag{58}
\end{align*}
$$

where, N denotes quadratic norm operation.
Thus, numerical convergence for optimal solution can be declared when

$$
\begin{align*}
& P £ \varepsilon_{1}, \tag{59}\\
& Q £ \varepsilon_{2}, \tag{60}
\end{align*}
$$

$\varepsilon_{1}, \epsilon_{2}$ are preselected, smail, positive numbers.
The algorithm is started from providing nominal functions of $u(t)$, and π. The nominal functions can be provided arbitrarily, but good nominals help convergence. The nominal controls are provided with a standard shooting method of Modified Quasilinearization Algorithm, followed by solving the nominal states based on nominal controls, to some accuracy of teminal conditions.

Then, the restoration phase is started. Eqs. (43-45) are solved with (52) and search of stepsize in restoration phase. The one or more iteration restoration phase is completed only until Eq. (59) is satisfied. Then. the gradient phase is started. Eqs. (46.50) are solved with (51) and search of stepsize in gradient phase until Eq. (60) is satisfied for only one iteration. The restoration phase is stasted again. Thus, a sequence of suboptimal solutions is generated. Each new solution is an improvement of the previous one from the point of view for the value of the functional to be minimized. The optimal solution is reached when Ineqs. (59-60) are both satisfied.

6. Numerlical Examples

Numerical examplet for sime-optianal control with obstactes evoldance schemes of two-ink robotic manipulator sre shown in this section. The numericti and analytical solutions of time-optimal control withous obtinclea can be refered to [22]. The following physical parameters are taken from Asada [46], Sahif and Hollerbach [16] and Zhang and Wang [20]. The obstacle it put on the midway, or cven further fnward, of the previous no-obstacle optimal trajectory on purpose. The algorithm can be applied to any degree-of-freedom robots with arbitrarily given physical parameters and boundary conditions.

In joint apace,

initial posilion ($\left.0_{1}, \theta_{2}\right)_{i}=(0.25,0.35)$	rad.
Fins position ($\left.0_{1}, \theta_{2}\right)_{f}=(0.8208,1.4208)$	d.
initinl velocity ($\left.\boldsymbol{0}_{1}, \cos _{2}\right)=(0.0,0.0)$	rad/sec.
final velocity ($\left.\omega_{1}, \omega_{2}\right) f=(0.0,0.0)$	rad/sec.
acceleration bounds ($\left.C_{1}, C_{2}\right)=(0.5,1.0)$	$\mathrm{rad} /(\mathrm{sec})^{2}$
gravity constumte 9 9.8	\#/ $/(\mathrm{sec})^{2}$.

Link 1
mass $\mathrm{m}_{1}=50 \mathrm{~kg}$ iength $\mathrm{I}_{1}=0.5 \mathrm{~m}$, moment of inertin $\mathrm{I}_{1}=5.0 \mathrm{~kg} /(\mathrm{m})^{2}$.
Link 2
minif $\mathrm{m}_{2}=30 \mathbf{k g}_{\text {, length }} \mathrm{l}_{2}=0.5 \mathrm{~m}$, moment of inertia $\mathrm{I}_{2}=3.0 \mathrm{~kg} /(\mathrm{m})^{2}$.

The ellipse obstacle is represented by the foltowing equation:
$Q=m_{0}\left(x-x_{0}\right)^{2}+b_{0}\left(x-x_{0}\right)\left(y-y_{0}\right)+c_{0}\left(y-y_{0}\right)^{2}+f_{0}=0$; where, $f_{0}-\left(x_{0}\right)^{2}$

The following symbols are used in the tables:
Pl: Virtual Potential Field Penalty Function Method
P2: Violation Compensation Penalty Function Method
P3: Yariablea Transformation Method
B : Ellipse Obatacle. C : Circle Obstacle, when $b_{0}=0$
Table 1. Comparison of Obstacles Avoidance Schemea

	(PI-C)	(P2.C)	(P3-C)
10 (m)	0.5	0.5	0.5
yo (III)	0.76	0.75	0.76
50 (m)	0.1	0.1	0.1
10	1.0	1.0	1.0
b_{0}	0.0	0.0	0.0
c_{0}	1.0	1.0	1.0
($\mathrm{m}^{\text {) }}$	10^{-4}	-	-
e(m)	-	3.0×10^{-4}	-
W	-	0.5×10^{10}	-
minimym time (sec)	2.914	3.071	4.337
-. ${ }^{2}$ denolas there is no such value for the achems. 2.137 see it the mindmum time withour obstacle apoidance.			

Tabie 1. containt the inalgite of conprition verweat iwe pentity function motheds and the viriables trmaformation melbod for circie owncie (bow). Circle obotacie is connored at ($0.5,0.76$) of radius 0.1 . Virtelel peteatial fiele penalty funotion hat oniy one paramothe and genaretes grano-by rajectory. Vielatien compensation penaity
 fartaite combination of two paramesars. Vartablea trandormation wethod avolds obetacle successiflly tut in the coasumiated when the robot is away frem the ownacien to gonerote tree reest ppitan.

PI	(11)	(12)	(C1)	(C2)
40(${ }^{(1)}$	0.51	0.50	0.51	0.50
yo (E)	0.62	0.74	0.42	0.15
He(8)	0.2	0.2	0.1	0.1
40	2.0	2.0	1.0	1.0
6	2.0	2.0	0.0	0.0
4	2.0	1.0	1.0	1.0
(${ }_{\text {(a) }}$	10^{-4}	10^{-4}	10^{-4}	10^{-4}
tinimy ting (40)	4.332	3.330	3.931	2.914

In Trile 2., the circla and allipee obatacis avoldmee are limed for slde-by-fide
 is 45 degret elocitwise orianted. Eoth B1, Cl have the wase center leculion at (0.51,
 (0.5. 0.76). Owisg to the catue journg the ebriacle avoidmee easces, the blager the obetmele of the clever the obotacia, the lenger the minlmum-time ls , in trajeotery.

For the eake of triad, the remitu corroppods to the first sllipen (II) In Table 2. are shown in Piga. 6-11.
Fis. 6 peatalan the epeisal trajoctory in tiatimuat time
Fg. 7 costilas the joim angle profite in minimut time.
Fly. conenise the jolet velocity proflie in minimum tiese.
Fe. 9 conatins the folst acceloration profile in miniman tiene

$\overline{\mathbf{P I}}$	(C1)	(c2)	(C3)
$x_{0}\left(\begin{array}{l}\text { a }\end{array}\right.$	1.0	1.0	1.0
yo (e)	1.0	1.0	1.0
ro (e)	0.6	0.5	0.4
40	1.0	1.0	1.0
10	0.0	0.0	0.0
0	1.0	1.0	1.0
- (1...)	10^{-4}	0.5×10^{-4}	10^{-4}
$\begin{aligned} & \text { BIataz } \\ & \text { ung (cec) } \end{aligned}$	3.029	2686	2.157

 roben, to the mintmun-time for C3 in we met as the one without obatecle. The minimumation is leager at oforucle is biger in C1. C2 eases.
In C3 cacs, owing to the influanee of the exioting penality function, thore ere twe eurves owarlapped on the tritectory. One curve ia for provious optimal urajectery withoot obstacle avoldence acherse, mather ase it eprial trujectory with obsucios Poldance sechane und obtucle it outaide the work cavelop.

6.1 Iavery Obotela Avoldance

In joint epeos,

tultal p	pention ($\mathrm{P}_{1}, 02 \mathrm{C}=(0.349,0.624)$	rad.
finat p	pention (1, $0_{2} \mathrm{~K}=(0.497,0.555)$	rad.
lalitial	valocky ($\left.\omega_{1}, \omega_{2}\right)_{\mathrm{i}}=(0.0,0.0)$	radisec.
fial	velochy ($\left.\sim_{1}, \pm_{2}\right) \mathrm{f}=(0.0,0.0)$	rad/sec.

The followint case study show: the arm started near the edge of one side of the obstacle and ended noar the odge of another side of the obatacle.

Thble 4. Severe Obracle Avoldance.

As we see, minimum-time control is not neceasarily reiated to minimum-distance of the end-effector. The collision avoidance scheme has exceltence to move around and avold revere obstacle.

7. Dlscusslon

The insighta of the merit of the optimal obstacles avoidance are shown sbove in Fig. 6-15. All the obstacle avoidance trajectories have the following characteristics: 1) grazing by the obstacle. 2) trying to achieve previour no-obstacle trajectory at near bang-bang control for minimumtime. (At least one joint bang-bang control is the solution for minimumtime without obstacle: avoidance) 3) achieving previous no-obstacle optimal trajectory with collision avoidance scheme in the cases of noobstacles. 4) being able to move around and avoid the severe obstacle.

Virtual potential penalty function method does not cause obstacles constraints violation or over-constrained situation, is the one and only best method. Violation compensation method is difficult to implement owing to the two weighting factors which causes a litile obstacle constraint violation from time to time. Variables transformation method is over-constrainted when the obstacles are away from potential collision. This discussion matche: the one in [4] even though the implementation of penalty function is different. This approsch also illustrates the experimental results for optimization with inequality and/or equality constraints.

At we can see from the comparison tables, the minimum-time of collision-free optimal trajectory is relatively depended on the size and location of the obstacles. The jerk control can be overcome by achieving a near optimal motion in which the trajectory is farther away from the obstacle and the minimum-time is longer.

More intensive research need to be done on minimum distance finding through optical devises or solid modeling. Since the robot manipulator: are usually constructed by connected links, in most of the cases, we can say obstacles avoidance for fixed configuration is equivalent to the end-effector obstacle avoidance even though this statement is not true in general. We have to solve end effector obstacles avoidance before we solve other lype of problems because the object is usually on the grip.

The numerical experiments have been done on IBM AS9000 mainfraim and VAX 8800, are also attempted to be done on Macintosh. The CPU time for current research varies from 20 minutes (IBM) to one hour (VAX). The accuracy also varies from machine lo machine without very much difference. As the computer industries are growing, the CPU lime or accuracy is not a problem for future scientific computation

The numerical results are constructed by 100 sycles and 300 iterations whichever reached first. The convergence is fast at early stages, it slows down after the sub-optimal solutions come close to the optimal solution. To gave computation, one can set up lower limits for cycle, iteration and CPU time, to near-optimal solutions will be generated based on Pontryagin Extremum Principle.

8. Conclusion

In this paper, collision-free optimal motion and trajectory planning for robotic manipulators are solved by method of sequential gradient restoration algorithm. Numerical examples of a two degree-of-freedom robotic manipulator are demonstrated. The obstacle is put on the midway, or even further inward, of the previous no-obstacle optimal trajectory on purpose. For trying to achieve previous no-obstacle trajectory, the trajectory tangentially grazes by the obstacle and the minimum-time motion successfully avoids the obstacle. The minimum-time is longer for the obstacle avoidance cases than the one without obstacle. All the numerical experiments indicate the obstacles avoidance scheme has the same characteristics which allows the trajectory gets as close to the optimal as possible but barely graze by the obstacle. The weighting and effective point of the penalty can be defined by one parameter which justify the closeness between the trajectory and the obstacle. The trajectory will try to achieve optimization under the obstacles barrier. This if the most outstanding characteristic than other schemes to achieve collision avoidance and also find the optimal motion without extra excursion.

The obstacles avoidance schemes can deal with multiple obstacles in ellipsoid forms by continuously controlling the closest point from the arm to the obstacle using virtual potential fields as penalty function g via distance functions. The algorithm is very promising in solving collision-free optimal control problems for any degrec-of-frcedom robotic manipulators with any performance indices and mobile robots as well. The minimum time motion is at least one joint bang-bang control or near bang-bang control with obstacles avoidance, no matter the controls are imposed on angular accelerations or on actuator torques. The minimam-disiance trajectory without obstacles is a straight line.

Since this algorithm generates true local minimum solution based on Pontryagin extremum principle, rather than based on approximations, the results provide a benchmark against which any other optimization can be measured

The perspective research is to investigate the result of optimal solutions for robotic manipulators when the controls are imposed on actuator constraints, and/or with moving obstacles avoidance under different performance indices; and model-reference adaptive optimal feedback control.

Appendix A: KInematics of Two-Link Robotic Manlpulator
In general, the kinematics, dynamics, control and constraints study of robot can be found in [37]. The kinematical equations are developed by geometrical relationship between Cartesian space and joint space [38]. They can be expressed in general as:

Forward kInematics $\quad x(t)=F_{1}(\theta(t))$

$$
\begin{equation*}
v(t)=F_{2}(\theta(t), \omega(t)) \tag{61}
\end{equation*}
$$

$a(t)=F_{3}(\theta(t), \omega(t), \alpha(t))$
where $x(t), v(t)$, and $a(t)$ are vectors of positions, velocities and accelerations of the end-effector in Carterian space. $\theta(t), \omega(t)$, and $\alpha(t)$ are vectors of angles, angular velocities and angular accelerations in joint space.
F are functions. For a two-link planar robotic manipulator [40] (Fig.1.):

$$
\begin{align*}
& \binom{x}{y}=\binom{l_{1} \cos \theta_{1}+l_{2} \cos \left(\theta_{1}+\theta_{2}\right)}{1_{1} \sin \theta_{1}+l_{2} \sin \left(\theta_{1}+\theta_{2}\right)} \tag{64}\\
& \binom{v_{x}}{v_{y}}=\left(\begin{array}{ll}
-l_{1} \sin \theta_{1} \cdot l_{2} \operatorname{in}\left(\theta_{1}+\theta_{2}\right) & -l_{2} \sin \left(\theta_{1}+\theta_{2}\right) \\
l_{1} \cos \theta_{1}+l_{2} \cos \left(\theta_{1}+\theta_{2}\right) & l_{2} \cos \left(\theta_{1}+\theta_{2}\right)
\end{array}\right)\binom{\omega_{1}}{\omega_{2}} \tag{65}\\
& \binom{a_{x}}{a_{y}}=\left(\begin{array}{cc}
-l_{1} \sin \theta_{1} & l_{2} \operatorname{tin}\left(\theta_{1}+\theta_{2}\right) \\
l_{1} \cos \theta_{1} & l_{2} \cos \left(\theta_{1}+\theta_{2}\right)
\end{array}\right)\binom{\alpha_{1}}{a_{1}+\alpha_{2}} \\
& \left\{\begin{array}{l}
1_{1} \cos \theta_{1} l_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
l_{1} \sin \theta_{1} 1_{2} \sin \left(\theta_{1}+\theta_{2}\right)
\end{array}\right)\binom{\omega_{1}^{2}}{\left(\omega_{1}+\omega_{2}\right)^{2}} \tag{66}\\
& \text { Inverse kinematics } \theta(t)=\mathbf{G}_{1}(x(t)) \tag{67}\\
& \omega(t)=G_{2}(x(t), v(t)) \tag{68}\\
& \alpha(t)=\mathbf{G}_{3}(x(t), v(t), u(t)) \tag{69}
\end{align*}
$$

G are functions which depend on the configuration (like: elbow-down). For a two-link robotic manipulator in elbow-down position (Fig.1.):

$$
\begin{align*}
& \theta_{1}=\tan ^{-1}\left(\frac{y}{x}\right)-\tan ^{-1}\left(\frac{l_{2} \sin \theta_{2}}{l_{1}+l_{2} \cos \theta_{2}}\right), \quad \text { where, } \tag{70}\\
& \theta_{2}=\cos ^{-1}\left(\frac{x^{2}+y^{2}-11^{2}-12^{2}}{21_{1} 1_{2}}\right) \tag{71}\\
& \binom{\omega_{1}}{\omega_{2}}=\frac{1}{l_{1} 1_{2} \sin \theta_{2}}\left(\begin{array}{cc}
l_{2} \cos \left(\theta_{1}+\theta_{2}\right) & l_{2} \sin \left(\theta_{1}+\theta_{2}\right) \\
-\cos _{1} \theta_{1}-1_{2} \cos \left(\theta_{1}+\theta_{2}\right) & -l_{1} \sin \theta_{1}-l_{2} \sin \left(\theta_{1}+\theta_{2}\right)
\end{array}\right) \\
& \mathbf{x}\binom{\mathbf{v}_{\mathbf{x}}}{\mathbf{v}_{\mathbf{y}}} \\
& \binom{\alpha_{1}}{\alpha_{1}+\alpha_{2}}=\frac{1}{\left.l_{1}\right]_{2} \sin \theta_{2}}\left(\begin{array}{cc}
l_{2} \cos \left(\theta_{1}+\theta_{2}\right) & l_{2} \sin \left(\theta_{1}+\theta_{2}\right) \\
-l_{1} \cos \theta_{1} & -l_{1} \sin \theta_{1}
\end{array}\right)\binom{a_{x}}{a_{y}} \\
& +\frac{1}{1_{1} l_{2} \sin \theta_{2}}\left(\begin{array}{cc}
l_{1} l_{2} \cos \theta_{2} & 1_{2}^{2} \\
-1_{1}^{2} & -1_{1} 1_{2} \cos \theta_{2}
\end{array}\right)\binom{\omega_{1}{ }^{2}}{\left(\omega_{1}+\omega_{2}\right)^{2}}(73)
\end{align*}
$$

Reference

1. Holcomb, L.B., Montemerlo, M.D., "The NASA Automation and Robotics Technology Program", Acit Aslronauijca, Vol. 16, 1987, pp. II-I8.
2. Lerner, E.J., "Robots on the Space Station", Aerospace America. June 1987. pp. 42.45.
3. Kahn, M.E., Roth, B., "The Near-Minimum-Time Control of Open-Loop Articulated Kinematic Chains", Loumal of Dynmic Systems. Measurement.and Control. Vol. 93, 1971, pp. 164-172.
4. Gilbert, E.G., Johnson, D.W. "Distance Functions and Their Application to Robot Path Planning in the Presence of Obstacles" IEEE Journal of Robotics end Automation, Vol. RA-1, No. 1. March, 1985, pp. 21-30.
5. Geering, H.P., Guzzella, L., Hepner, S.A.R., Onder, C.H., "Time-Optimal Motions of Robots in Assembly Tasks", IEEE Transactions on Automatic Contol, Vol. AC-31, 1986, pp. 512-518.
6. Kim, Y.T., Jamshidi. M., Shahinpoor, M., "Near-Optimum Control of a Robot Manipulator". International Journal of Robolics and Automation, Vol. 2, 1987, pp. 15-20.
7. Ozaki H., Mohri, A. "Planning of Collision-Free Movements of a Manipulator with Dynamic Constraints", Bobolićas. Vol. 4, 1986, pp. 163-169.
8. Vukobratovic, M., Kifcanski, M., "A Method for Optimal Synthesis of Manipulation Robol Trajectories", Journal of Dynamic Syarms. Mesurement. and Control, Vol. 104, 1982, pp. 188-193.
9. Singh, S., Leu, M.C., "Optimal Trajectory Generation for Robotic Manipulators Using Dynamic Programming". Joumal of Dynamic Syarms. Measuremenh and Control, Vol. 109, 1987, pp. 88-96.
10. Shin, K.G., McKay, N.D., "A Dynamic Programming Approach to Trajectory Planning of Robotic Manipulators", IEEE Transactions on Automatic Control. Vol. AC-31, 1986, pp. 491-500.
11. Shin, K.G., McKay, N.D., "Minimum-Time Control of Robotic Manipulators with Geometric Path Constraints", IEEE Transaction on Automatic Control, Vol. AC-30, No. 6, 1985, pp. 531.541.
12. Shin, K.G., McKay, N.D., "Selection of Near-Minimum Time Geometric Paths for Robotic Menipulators", IEEE Transtcilont on Automatic Control. Vol. AC-31, 1986, pp. 501.511.
13. Bobrow, J.E., Dubowkky, S., Gibson, J.S., "On the Optimal Control of Robotic Manipulators with Actuator Conatraintu", Procesdinet of the American Comiol Conference, San Francisco, California, June 22-24, 1983, pp. 782-787.
14. Dubowsky, S., Norris, M.A., Shiller, Z., "Time Optimal Trajectory Planning for Robotic Manipulatott with Obstacle Avoidance: A CAD Approach" IEEE Intefititional Conforence on Robotici and Aulomation, San Francisco, CA, April 1986, pp. 1906-1912.
15. Rajan, V.T., "Minimum Time Trajectory Planning". Proceedinse of the IEEE Intemnional Conference, on Robalics and Automution, St. Liout, Missourl, March 25-28, 1985, pp. 759-764.
16. Sahar, G., Hollerbach, J.M., "Planning of Minimum.Time Trjectories for Robor Ams". The Intemational Journal of Roboulce Reseacch, Vol. 5, No. 3, 1986, pp. 90-100.
17. Luh, J.Y.S., Lin, C.S., "Optimum Path Planning for Mechanical Manipulator". Loumal of Dynamic Syusmb. Meraurement. and Conurol. Vol. 103, June 1981, pp. 142-151.
18. Weinreb, A., Bryion, A.E., Jr., "Minimum-Time Control of a Two-Link Robot Arm", IEAC Control Applications of Nonlinear. Programming and Ootimization, Capri, Italy, 1985, pp. 195-199.
19. Meier E.B., Bryson A.E., Jr., "An Efficient Algorithm for Time Optimal Control of a Two-Link Manipulator", AIAA Conference on Guidance and Control. Monterey, CA, August 1987, pp. 204-212.
20. Zhang, W., Wang, P.K.C., "Collision-Free Time-Optimal Control of a Two-Link Manipulator". Internasional Journal of Rebotics and Automation. Vol. 1, No. 3, 1986, pp. 96.104.
21. Bobrow, J.E., "Optimal Robor Path Planning Using the Minimum-Time Criterion" IEEE Joumal of Robolics and Aulomalion. Vol. 4, No. 4. August 1988, pp. 443-450.
22. Wang, J.J., "Oplimel Control of Robotic Manipulators", Lniernational Lourmal of Robotica and Automation. Vol. 4, No. 1, 1989, pp. 27.35.
23. Vetterling W.T., Teukolsky S.A., Press, W.H., Fannery, B.P., Numerien Recipes: The At of Scienific Compuing. Cambridge University Prerr, 1988.
24. Kelley, H. J., "Gradient Theory of Optimal Flight Path", ARS Journal, Vol. 30, No. 10, 1960.
25. Gonzalez, S., Miele, A., "Sequential Gradient Restoration Algorithm for Optimal Control Problems with General Boundary Conditions", Joural of Optimization_Theory and Apolications, Vol. 26, No. 3, 1978, pp. 395.425.
26. Khatib, O., "Real-Time Obatacle Avoidance for Manipulatori and Mobile Robots", The Iniemaional Joumal of Robotici Rerearch. Vol. 5, No. 1, 1986, pp. 90-98.
27. Miele, A., Venkataraman, P., "Optimal Trajectories for Aeroasizted Orbital Transfer". Acti Astronausica, Vol. 11, Nos. 7-8, 1984, pp. $423-$
28. 433.
1. Miele, A., Basapur. V.K., Meste, K.D., "Nearly-Grazing Optimal Trajectorien for Acronssisted Orbital Transfer", Journal of the Astronoutical Sciences. Vol. 34, No. I, 1986, pp. 3-18.
2. Miele. A., Basapur, V.K., Lee. W.Y., "Optimal Trajectories for Aerosssisted Coplanar Orbital Transfer", Qumal of Optimixition Theory and Applications, Vol. 52, No. 1, 1987. pp. T-24.
3. Miele, A., Wang, T., Melvin, W.W., "Optimal Take-Off Trajectories in the Presence of Windshear", Journal of Optimization Theory and Applications. Vol. 49, No. I, 1986, pp. 1-45.
4. Wang. J.J., "Near-Optimal Guidance for Abort Landing Flight in : Windshear", M.S. Thesis, Rice University, Houston, TX, December 1987.
5. Miele, A., Wang, T., Wang. IL., Melvin, W.W., "Optimal Penetration Landing Trajectories in the Presence of Windshear", Iournal of Optimization Theory and Applications, Vol. 57, No. 1, 1988, pp. 1-40.
6. Lam., T.T., Bayazitoglu, Y., "Solution to the Orr-Sommerfeld Equation for Liquid Film Flowing Down an Inclined Plane: An Optima! Approach", Intemational Joumal for Numerical Methods in Fluids Vol. 6. 1986, pp. 883-894.
7. Bayazitoglu, Y., Lam., T.T., "Marangoni Convection in Radiating Fluids", Joumal of Heal Transfer, Vol. 109, No. 3, 1987.
8. Wang, J.J., "Optimal Control of Robotic Manipulators with Actuator Constraints", AAC Professionals. Science. Engineering and Technology Seminars, Houston. TX, May 28-29, 1988
9. Wang, J.J., "Optimal Control of Robotic Manipulators with Obstacles Avoidance", SIAM Conference on Control in the 90's, San Francisco, CA, May 17-19. 1989
10. Vukobratovic, M., et al. "Introduction to Robotics", Springer-Veriag. New York, 1989.
11. Wolovich, W.A., Robolics: Basic Analysis and Design, CBS College Publishing. New York, NY, 1987.
12. Brady. M., Hollerbach, J.M., Johnson, T.L., Lozano-Perez, T., Mason, M.T., Robot Molion: Planning and Control., The MIT Press, Cambridge,
Massachusetts, 1982 . Massachusetts, 1982.
13. Cheng, P.Y., Weng. C.I., Chen, C.K., "Symbolic Derivation of Dynamic Equations of Motion for Robot Manipulators Using Piogram Symbolic Method": IEEE Journal of Robotics and Autemation, Vol. 4, No. 6, December 1988, pp. 599-609.
14. Rockafellar, R.T., "Duality in Opimal Control", Mathematical Control Theory, Edited by W. A. Coppel, Published by Springer-Verlag, New York. NY, 1978, pp. 219-257.
15. Miele, A., Wang. T., "Primal-Dual Properties of Sequential Gradient Restoration Algorithms for Optimal Control Problems", Part 2, General Problems, Leurnal of Mathematical Analysis and Applications. Vol. 119. Nos. 1-2, 1986, pp. 21-54.
16. Bryson, A.E., Jr., Ho, Y.C., Applied Optimal Control, Blaisdell Publishing Company, Waltham, Massachuselts, 1969.
17. Miele, A., "Method of Particular Solutions for Linear, Two-Point Boundary-Value Problems, Leumal of Optimization Theory and
Applications. Vol. 2. No. 4, 1968, Tpp 260 -273 Applications. Vol. 2. No. 4, 1968, pp. 260-273.
18. Miele, A., Iyer, R.R., "General Technique for Solving Nonlinear, TwoPoint Boundary-Value Problems via the Method of Particular Solutions", Ioumal of Optimization Theory and Application, Vol. 5 , No. 5, 1970, pp. 382-399.
19. Azada, H., "Dynamic Analysis and Denign of Robor Manipulatori Using Ineria Ellipsoids". Proceedinus of the IEEE Computer Sociely 1 is International Conference on Robotics. Allanta, Georgin, March 13-15, 1984, pp. 94-102.
[^0]
[^0]: Jyhahing Jack Want had his B. S. Gegree from National Chent Kung Univeraty Taiwan, and M. S. trom Rice Univertity Houmon, both in mechanical migineering. His Interested rescirch felds include: robotice, dynamic syateme eontrol, optimization, optimal Control, sutomation, control syateme, fight mechanica, nerospace engineering applications, nomerice! methode, computer slmutation, CAD. CAE. He currently worke tor The M. W. Kellogt Company at Houston, TX. TEL. (713) 960-3008 (O), (713) 74.675) (H), Telex: 166385, Fax: (715) 560-2032, KC03, Jtok Wung

