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CHAPTER 1

INTRODUCTION

In the early days of helicopter development, the blades

were rigidly attached to the rotor hub. It was observed by

pioneers like Sikorsky and Juan de la Cierva that their

helicopters, which were called autogyros, could hover and

climb vertically. Yet the machine failed to fly forward, and

in fact it would get out of control and rolled over. Cierva

was especially puzzled by this phenomenon since he was able

to fly a model built with flexible spars without problem Ill.

It was later discovered that the way the rotor blades

were attached to the shaft hub was responsible for the

control problem with the autogyro. Cierva's full-scale

prototype had the rotor rigidly connected to the shaft with

wires while the model was made of flexible material. Figure

i.i illustrates the velocity distribution of a helicopter

rotor blade in forward flight. During hover, air speed

encountered by each blade is the same. As the helicopter

flies forward, the air speed experienced by an individual

blade varies depending on the azimuth angle and radial

position during each revolution. On the advancing side, the

resultant speed is higher than the retreating side. There is

a region of reverse flow on the retreating side where the

forward speed exceeds the speed due to blade rotation.



Retreati= K side

Re 5u.tant sFeed

rctcr- forward

Forward speed

,i

Advancing side

Resultant speed

rotor + fcrw_r_

Figure I.I Velocity Distribution during Forward Flight

When stiffly attached to the shaft, such as the case of

Cierva's autogyro, each blade had the same pitch setting,

thus angle of attack. As the resultant velocity was higher

on the advancing side, more lift was generated. The

difference in lift between the two sides resulted in a

rolling couple. Since this was not compensated for, the

helicopter toppled. On the other hand, if the blades were

allowed to move up and down freely, the ones on the

advancing side would begin to flap upward because of higher

lift. As it flapped up, the angle of attack was decreased,

resulting in lower lift. Maximum flapping for a blade hinged
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at the center of the shaft occurred at the nose of the

helicopter. Meanwhile, experiencing lower lift, the

retreating blade started to descend as it rotated towards

the tail. Its angle of attack was decreased until the

retreating blade reached the position over the tail, where

the local velocity attained a mean value. When the blades

were allowed to flap up and down, the rotor maintained a

fore and aft tilt position such that the lift distribution

was balanced and the machine remained stable.

Flapping is a phenomenon arisen from the need to

balance the moment produced by aerodynamic, inertial and

centrifugal forces about the Center of Gravity. The front

and back, or longitudinal, flapping discussed above is

caused by asymmetric velocity distribution during forward

flight. Besides longitudinal flapping, a rotor blade also

flaps laterally due to coning. In order for the rotor blade

to achieve an equilibrium position during flapping, its

angle of attack has to be just sufficient to compensate for

the speed at each point during a revolution. The amount of

flapping also depends on the stiffness of the rotor. In

flight, a rotor with flapping hinges will maintain a

slightly coned shape with the lift providing the upward

force and the centrifugal force keeping the blades extended.

The idea of having hinge in a blade was further

utilized in the rotor technology. By incorporating a second

hinge in the plane of the rotor disk, the blade can move

3



freely without causing stress in the rotor root. This hinge

is known as lead-lag hinge and together with flapping hinge,

result in the fully articulated rotor used extensively

nowadays.

The ability for a helicopter rotor to flap is an

important factor in both stability and control. The attitude

of the tip-path-plane determines the thrust vector in space.

To control a modern helicopter, the pilot changes the pitch

of the blade cyclically about the feathering axes by tilting

the swash plate. The angle between the rotor shaft and the

tip-path-plane is defined as the flapping angle while the

angle between the shaft and the swash plate is called

feathering angle. In forward flight at constant speed, the

orientation of tip-path-plane is fixed in space. This can be

achieved with more than one trim condition. One of such

conditions has the tip-path-plane perpendicular to the rotor

shaft. Flapping angle is, by definition, zero and only

feathering is used to maintain the thrust vector. On the

other hand, a different center of gravity position or

horizontal stabilizer setting can result in the same trim

condition with the swash plate being perpendicular to the

shaft. In this case, there is no feathering and flapping is

the sole means of control. Typically, both flapping and

feathering are used to realize the required tip-path-plane

orientation.

Flapping can be introduced by either the pilot as a



mechanism of controlling a helicopter, or by gust

disturbance. Gust is undesirable because it has

deteriorating effects on the handling qualities of a

helicopter. Handling qualities is perceived by pilot in

terms of both stability and control. The ability of the

pilot to hold the attitude in the presence of gust is a

stability characteristic. Conversely, if it takes a lot of

efforts for him to change the altitude of the helicopter

under windy conditions, the pilot will view the control as

sluggish. Therefore, it is critical to minimize the flapping

caused by gust.

Norman Ham of MIT has been working on the idea of IBC

(Individual Blade Control) [2] The method employs blade

mounted sensors to measure the flapping motion parameters

and applies the processed information to control the root

pitch of each individual blade. As a result, flapping caused

by gust disturbance is reduced. The net effect is a tighter

control over the tip-path-plane, resulting in improvement of

the vehicle's handling qualities.

This thesis attempts to demonstrate the utilization of

rotor flapping in synthesizing an IBC system for gust

alleviation. The objective of this study is to illustrate

and seek to improve Ham's IBC method. A sensor arrangement

with two accelerometers mounted on the root and tlp of a

blade is proposed for estimating of flapping states for

feedback control. Equivalent swash plate implementation of

5



IBC is also deliberated. The study concludes by addressing

the concept of general rotor states feedback, of which the

IBC method is a special case.

This thesis is consisted of eight chapters. The

following is a brief summary of each chapter. The blade

flapping equation of motion is derived in Chapter 2. Ham's

original IBC method and a modified IBC scheme called Model

Reference ( MRIBC ) are examined in Chapter 3, followed by

simulation study with ideal measurements and relative

performances of the two methods in Chapter 4. The practical

aspects of IBC implementation are presented in Chapter 5.

Different configuration of sensors and their merits are

considered. In Chapter 6, the realization of IBC using

equivalent swash plate instead of direct actuator motion is

discussed. It is shown in Chapter 7 that IBC is a particular

case of rotor states feedback. The idea of general rotor

states feedback is further elaborated here. Finally, major

conclusions of this thesis are given in Chapter 8.



CHAPTER 2

BLADE FLAPPING EQUATION OF MOTION

The equation governing the rigid flapping motion 8 of a

single articulated blade in a rotating coordinate system may

be approximated by a linear differential equation [3,4]:

S + A(u,¢)S + B(_,¢)S = C(U,¢)e + Wg(u,w,_)

where

¢

8

Wg

W

(i)

= blade flapping angle

= advance ratio

= blade azimuth angle

= collective and cyclic pitch control input

= Disturbance gust input

= frequency of gust

= rotor speed

The coefficients in the equation of motion are periodic in

_, and are function of _. The equation is reduced to a

ordinary linear differential equation with constant

coefficients in hover, when _ = 0.

The equation of motion can be derived by sun_ning

moments about the articulated offset hinge, as shown in

Figure 2.1. Forces acting on an element of mass dm are : 1)

aerodynamic lift force dL, 2) force due to tangential

acceleration of flapping (r-e)_ X dm and 3) centrifugal

force due to rotation about the rotor shaft rQ 2 x dm.



tJ
Q

hinge_

--- r
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4m ____.. rQ 2 dm
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i

t
i

t

Figure 2.1 Forces acting on a blade element

By using harmonic balance technique [5], the pitch and

gust inputs can be expressed in assumed harmonic motion

forms. The root pitch input e assumes a harmonic motion of

steady-state term plus harmonics at rotor rotation frequency

:

8 = 80 - Als cosRt - Bls sinRt (2)

The gust input assumes the form of a sine wave of

frequency w and first subharmonic (g - w) and superharmonic

(R + w) of the rotation frequency :

Wg = aI sinwt + bI (cos(Q -w)t - cos(Q + w)t) * _ (3)

8



Assumptions made in deriving the above blade flapping

equation of motion are :

i)

2)

3)

4)

5)

6)

7)

The blade is rigid.

Only a single blade is considered, there is no

interaction with the fuselage.

Flapping is assumed to take place in the pitch

plane, there is no coupling with the roll or yaw

axis.

In deriving the equation, any higher order terms

beyond second of the normalized flapping hinge

offset E are dropped.

The inflow of air to the rotor disc due to forward

flight is lumped into the gust term Wg.

The rotor speed is constant.

Gravitational force on the blade is neglected;

only inertial and aerodynamic forces are being

considered.



CHAPTER 3

IBC ANALYTICAL FEEDBACK CONTROL

A helicopter, compared to an airplane of similar size,

provides a smoother ride in the presence of gust. Since the

rotor blades flap individually to reduce the pitch and roll

rate, the fuselage and the rest of the helicopter are

shielded from the disturbance. In contrast, the wings of an

airplane simply transmit the wing loads, either as

disturbance or lift, to the fuselage. The result is a

rougher ride.

The air space around a helicopter rotor is a very

complex aerodynamic environment. The frequency response of a

blade can be divided into two categories according to the

frequency contents of the excitation. The first one is the

low frequency range from 0 to 1 _ (rotational speed), which

includes gust response, blade instability due to flap-lag

coupling, and ground resonance. The second category is a

high frequency domain above i Q involving blade bending

stress, vibration, noise and higher harmonic motion.

The blade flapping mode, which completes a cycle during one

blade revolution, has a natural frequency of approximately

1 _. This mode dominates low frequency effects such as gust

response and flying qualities. Since blade flapping is a

means by which the pilot trims and controls the helicopter,

any unwanted blade flapping due to gust is viewed as an

external disturbance to be attenuated.

10



Methods of IBC Analysis

To best illustrate IBC technique, general methods used

to analyze systems described by differential equation with

periodic coefficients will be discussed, followed by the

particular IBC control algorithm used by Ham. Finally, a

modified approach termed MRIBC (Model Reference Individual

Blade Control), is presented for possible improvement of the

IBC concept. The equation describing the rigid flapping

motion of a single articulated blade in a rotating

coordinate system can be approximated by a linear

differential equation with periodic coefficients :

(i)

Many features of analysis and synthesis of linear time-

invariant system, such as eigenvalues and linear quadratic

synthesis, can be applied to a linear periodic system,

according to Floquet theory [4'6]. The theory states that if

the solution of a linear periodic system is sampled at

intervals of one system period, the sampled solution behaves

as a time-invariant system. As the first step in designing a

controller for the IBC system, the periodic system is

transformed into a time-invariant one. Linear quadratic

synthesis can then be employed to determine a set of control

gains which optimizes a particular cost function.

11



Ham's IBC (Individual _lade Control)

Norman Ham of MIT has been doing research work on IBC

concept. IBC is an active control in which each blade is

separately controlled in the rotating frame by attaching

broad-bang electrohydraulic actuators to the swash plate or

individually to each blade. The control signal is generated

from sensors mounted on the blades. IBC involves not just

control of each blade independently, it also provides a

feedback loop for each blade in the rotating frame.

In Ham's IBC design, the controller design (blade

flapping angle, angular rate and angular acceleration

feedback gains) was not conducted using multi-variable

states feedback control methods such as linear quadratic

analysis. Instead, the feedback gains were selected such

that the closed-loop blade dynamic behavior was the same as

the open loop's, with the exception of a reduced gust term.

The derivation of Ham's IBC scheme is given in Appendix A.

In Chapter 6, it is shown that Ham's IBC scheme is a limited

case of multi-variable rotor states feedback control system.

Figure 3.1 shows a block diagram of the open loop system.

8s_ is the trimmed collective and cyclic pitch input from

the swash plate to sustain the forward flight. Wg is the

disturbance gust input. A typical plot of input and output

for this open loop system is depicted in Figure 3.2. When

the output angle, rate and acceleration are fed back, as

12



illustrated in Figure 3.3, a full state feed back IBC system

is formed.

8

pLA._,_r
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Figure 3.1 Open loop flapping equation
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Figure 3.3 Ham's IBC method

Periodic controller gains are difficult to implement

physically. It also places a lot of demands on the actuator.

A set of constant gains may be chosen for feedback while the

flapping equation of motion still maintains the same

periodic coefficients. This configuration is being

investigated as an alternative to the time-varying gain

model in a simulation study in Chapter 4.

Another viable approach to Ham's IBC is apparent when a

closer look is taken at the equation of motion. The periodic

coefficients are cosine and sine functions multiplied by

first and second order terms in _. These terms will not vary

much when _ is close to zero. A constant coefficient model

of the blade flapping equation may be valid for low advance

ratio. In reference 2, a Floquet analysis was performed to

the flapping equation of motion and it was found that the

14



eigenvalues of the blade characteristic equation did not

vary significantly for U < 0.3.

Model Reference IBC

It is desirable to have a control law which is less

sensitive to the DC value of the control input. Too high a

DC value has degrading effects on the handling qualities of

a helicopter. R Model Reference IBC system is proposed. A

block diagram of the system is shown in Figure 3.4.

!

" I _._DEL RE F E P.E._:CE

__ PLANT
.+

ibc

Figure 3.4 Model Reference IBC method
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A math model of the plant can be built using technique

such as parameter identification. The differences between

the plant and the model states, rather than the plant states

themselves, are used to formulate the feedback control law.

The IBC control is a function of the error signal e, and

therefore less sensitive to DC value of the control input.

Derivation of the equations for MRIBC method is shown in

Appendix B.

Owing to the scope of the present studies, some

essential subsystems in IBC are not addressed. For instance,

the actuator dynamics is ignored in the analyses. Actuator

is basically a low-pass servo system. When it is placed in

the feedback loop in Figure 3.3, 8i5 c will contain only the

low frequency portion of the original signal. High frequency

flapping disturbance will not be affected by the IBC system

since the high frequency content of the feedback signal is

filtered. Flapping states 8, 8, _, used in determining 8ih c

are either measured or estimated. In both cases, the signal

is corrupted due to presence of noise. Low pass filters are

usually required before this signal can be utilized. This

will introduce delay (phase shift) in addition to effects on

the overall stability of the whole IBC system.

16



CHAPTER4

SIMULATION ANALYSIS OF IBC WITH IDEAL MEASUREMENTS

A simulation study was performed to evaluate the IBC

schemes employing the Model Reference method and the

original one conceived by Ham. The simulation runs were made

using a VAX digital computer. A fourth order Runge-Kutta

method was utilized for numerically solving the differential

equations of motion. Integration step size was 0.001 second.

A generic UH-60 Black Hawk rotor blade was chosen for the

study. Effects due to fuselage interaction or actuator was

not considered. In the simulation, sensor dynamics was

ignored and perfect measurements of flapping angle, rate and

acceleration were presumed avai|able.

Ham's IBC Method

Three approaches were made in analyzing Ham's IBC

method. The first approach employed the full periodic

flapping equation of motion with time-varying feedback

control gains. The second method still used periodic

coefficients for the equation. The controller gains were,

however, independent of time. They were computed as average

value of the time-varying gains. In the third approach,

constant coefficients were assumed for the flapping motion,

resulting in constant gains. It is known as simplified Ham's

IBC method in this study.

To investigate the effects of IBC on gust alleviation,

17



both the open and closed loop flapping angles were plotted

on the same graph. Peak to peak values of the two angle

responses were measured and the percentage of reduction due

to feedback computed. For example, Figure 4.1 shows_ for the

first approach of periodic coefficients and gains, the

decrease in flapping angle response when the gain KA takes

on a value of .35 and 1.2. The dotted curve is open loop

response (KA = 0) and the solid one represents the response

when IBC is in effect.

In Ham's second IBC approach, an effort was made to

find a set of constant feedback gains which would work

reasonably well for the time-varying flapping equation of

motion. It was observed that the system became unstable when

the gain KA was over 0.55. The results are summarized in

Figure 4.2 for KA = 0.35 and 0.575. There appears to be a

phase swift in the angle response between the open loop (KA

= 0) and KA _ 0 case. This method is not further pursued in

the current study.

Discussion of Results

Sensitivities of flapping angle response to control

gains are demonstrated in Figures 4.3 and 4.4 for first and

third approach respectively. Gust effect is seen to be

reduced by increasing the value of KA. For any given value

of KA, the first approach with time-varying gains tends to

achieve a better performance in reducing flapping due to

18



gust disturbance. On the other hand, the simplified IBC is

easier to implement since a constant set of feedback gains

is used through out the flight.

As shown in Figures 4.5 and 4.6, the magnitude of the

IBC control input, Bib c, also gets larger with increasing KA.

Furthermore, even though the magnitude of the total control

input TTOL, defined as the sum of IBC control and swash

plate input, remains about the same, its DC value increases

as KA is changed from 0.35 to 1.2. This increase in DC value

is equivalent to adding an extra collective pitch input due

to swash plate motion. An excessive DC value may impair the

vehicle's flight qualities. The allowable peak to peak value

of the control input places an upper limit on KA. A

realistic upper bound of KA is about 1.2.

From the derivation in Appendix A, it is established

that, in theory, the gust term can be reduced by a factor of

i/Kg using Ham's IBC method. For the simplified IBC scheme

with constant coefficients and gains, Kg = 1 + KA. Thus, a

theoretical reduction of 50% in gust input can be

accomplished with KA = 1 for the simplified IBC method. The

corresponding reduction in flapping response 8 is not

necessarily the same in magnitude. The simulation results in

Figure 4.8 show that a reduction of 20% in flapping response

is achieved when KA = 1.

MRIBC (Model Reference IBC) Method

19



In this study, the plant was modelled by differential

equation with time-varying coefficients. Two model reference

control schemes, one with time-varying math model and

feedback gains and the other with time-invariant model and

gains were simulated.

Discussion of Results

A typical time history of _ibc and 8 for MRIBC with

time-varying math model is shown in Figure 4.7. Note that

the feedback signal 8 ibc has a DC value of zero. This is a

characteristic of MRIBC since_bc depends only on the

differences in the plant and model states. MRIBC control

activity is minimum with absence of gust disturbance on the

blade. Between the methods with constant math model and

time-varying model, the latter exhibits higher percentage of

gust reduction for the same KA. The results are summarized

in Figures 4.8 and 4.9. As KA is increased, both models

become unstable eventually. This happens at KA > 0.75 for

the time-varying math model. The model with constant

coefficients will be unstable if KA • 1.2.

MRIBC with time-varying math model of the plant shows

performance comparable to that of the original IBC's. In

fact, for KA = 0.5, MRIBC has a slight edge over IBC.

However, MRIBC becomes unstable rather quickly. MRIBC with

time-invariant math model generally has smaller percentage

of gust reduction than simplified IBC.

20



As previously discussed, MRIBC has an control input

whose DC value is less sensitive to variation of controller

gain KA than IBC. This property is illustrated in Figures

4.10 and 4.11. While Ham's simplified IBC is shown in Figure

4.11 to have a _ibc with DC value of about -0.2 tad., the

corresponding value is essentially zero in the case of MRIBC

with time-invariant math model.

21



CHAPTER 5

ESTIMATION OF BLADE STATE VARIABLES

For any of the above IBC schemes to work, blade angular

displacement, angular rate and angular acceleration are

needed to generate the feedback signal. The information can

definitely be obtained by direct sensor measurements, as in

the case of full blade state variables feedback. However,

there are several disadvantages with measuring all states

directly. First of all, sensors are expensive and they add

complexity to the overall system. Secondly, there is always

noise associated with any measurement. In certain cases, the

noise present may make an otherwise stable system unstable.

To counteract the noise, filters are invariably required for

these sensor data, again adding cost and complexity.

Figure 5.1 shows a block diagram of a typical closed-

loop estimator.

i° j I
I ^ ^

_ODEL _ w-

F,G

Figure 5.1 Closed-loop estimator
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The idea of estimator is to make use of algorithm to

reconstruct all the blade states given only measurement of

some of them. A plant is represented by a set of first order

differential equations :

Let

X = F X + G U

h

X -- estimate of X

X = F X + G U + K(Y - Y)

= F X + G U + K(Y - H X)

(i)

(2)

Let

A

X = estimation error : X - X

. s>.

X = X - X

: Fx + Gu - [Fx - cu + K(Y - _x)]

- <F - K .)

This is a homogeneous differential equation. Values of

the estimator feedback gain vector K can be chosen such that

the estimator system matrix (F - K H) represents a stable

system. Furthermore, K should be selected such that the

estimator system, and therefore the estimation error,

converges to zero as fast as possible. When this happens, X

A
will converge to X regardless of the value of X(0). For the

selection of the gain vector K, the characteristic equation

of the system matrix (F - K H) is computed. The coefficients

of like powers of this equation are then compared to the

equation formed with the desired estimator root locations in

23



the s-plane. K is uniquely determined if the output variable

y is a scalar, i.e. there is only one non-zero element in

the row matrix H.

Estimator roots are picked to be faster than those of

the plant so that total response is dominated by the

response due to the plant. The faster the estimator roots,

the quicker the error converges. Upper limit to the

estimator response speed depends on noise rejection

characteristics and sensitivity to model errors. In the

simulation, the estimator roots were selected at least 4

times faster than the plant's. In the following section, the

performances of two estimators, namely Direct Flap Estimator

and IBC Kinematic Estimator are evaluated.

Direct Flap Estimato_

Direct flap estimator uses only the flapping angle 8 to

• oe

estimate 8, 8 and 8. In state space form, the open loop

flapping equation of motion is written in the form of (i)

as:

1o I x
U = 8sw p + Wg

T
a - [0, i]

H = [I, 0]

24



In state space form, the estimator for the blade flapping

equation of motion is given as :

(3)

Case l-A, Direct Flap Estimator

The coefficients A, B are being utilized ms feedforward

A

terms and the estimation error [_ - _] as feedback term.

Ham's simplified model with constant coefficients and

controller gains was employed to demonstrate the performance

of the estimator. The estimator roots were set about 4 times

faster than the fastest plant root. The result is shown in

Figure 5.2. The dotted and the solid lines represent the

true and estimated states respectively. The estimated angle

follows the true one very closely and the rate is doing

reasonably well.

Case I-B. Direct Flap Estimator

The plant dynandcs change with flight conditions, and

is therefore time-varying. The flapping equation is a

function of forward air speed and blade azimuth angle. If

the estimator roots are to be maintained throughout the

flight, estimator gains will have to be adjusted

continuously [6]. This can be done by gain scheduling as a
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function of flight conditions. However, this is not an easy

task as the combinations of flight conditions are numerous.

If the plant dynamics are taken out by setting A, B and the

input matrix to zero, a set of constant estimator gains can

be utilized through out the flight. The model becomes known

as kinematic estimator [?'8]. The equation below describes

such an estimator.

(4)

By analogy with classical control theory, Equation (4)

characterizes PI (proportional plus integral) control since

the estimation error is used to update both the angle and

the rate. The effectiveness of the kinematic estimator is

depicted in Figure 5.3. It does not track the plant as well

as the previous estimator in Equation (3) which includes the

plant dynamics.

The kinematic estimator described by Equation (4)

employs fi to estimate both _ and _. Since acceleration "_ is

also needed for the IBC schemes, the estimator in Equation

eo

(4) will be extended to provide fi information. Two cases are

considered. The first one is essentially two Direct Flap

Case I-B estimators cascaded together. Figure 5.4

illustrates this method. The output of the first estimation,
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is used as input to predict _. It is seen from Figure 5.5

that while the angle can be tracked very well, the estimated

acceleration lags behind the true one. The second case is

delineated by Equation 5.5.

d

dt

_J

B m

O I O

O O I

O 0 0
D

I K 1

- , + K 2

J K3

(s)

/ •

The system matrix is 3 x 3. Three estimator roots close

to the ones used in equation (4) were chosen to evaluate

this implementation. The performance is similar to case one

above, as shown in Figure 5.6.

Figure 5.4 Cascaded Direct Flap estimator

IBC Kinemati9 Estimator

For the Direct Flap estlm•tors described •bore,

measurement of flapping angle is required to estimate B,

and _. This can be done by attaching • strain gauge at the
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blade root fitting. A better technique to deduce all three

states needed for IBC is to use two accelerometers mounted

at the root and tip of a blade [7]. In this IBC Kinematic

Estimator method, the two accelerometers provide both B and

information, from which _ can also be estimated. A block

diagram for this approach is given in Figure 5.7.

:: I-- Algorithm I _
i

Kinematic ___.

--D- estimator: _ 8

Figure 5.7 IBC Kinematic Estimator block diagram

An accelerometer positioned along an hinged blade

experiences inertial force as shown in Figure 5.8.

n(x)

/_J--,-- rQ 2

_rQ2dm[_ + n(x)]

Figure 5.8 Blade inertia forces
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The signal af(x) is in response to both the flapping

and first elastic flatwise bending mode.

af(x) is given by [2]:

o_

a_.(x) R_ 2 ( x_/Q 2 + x_ + n(x)g/_ t= + xn(x)g ) (6)

where R

X

: rotor radius

: rotor speed

: blade spanwise location (x - e)/R

: blade flapping angle

n(x) : first elastic flatwise bending mode shape

g = first elastic flatwise bending mode

displacement

The first elastic bending mode has a natural frequency

at about 2 8. If a low pass filter with bandwidth up to 1

is used, the flapping mode, which has a natural frequency

between 0 and 1 _, will be preserved while the first elastic

bending mode is attenuated. With such a low pass filter, the

accelerometer signal becomes :

at(x ) : RO2 ( x_/g 2 + xS ) (v)

This is an algebra equation with two unknowns on the

29



right hand side. With two accelerometers placed at different

locations on the blade, two such equations are obtained.

Both flapping angle and acceleration can then be solved for.

Written in scalar form, Equation (4) becomes :

dp ". ,,
-- = ,B + K 1 (_ - D)
dt

¢

dp ,,
-- = K 2 (,D - _)
dr, (8)

Equation (8) is modified to acco,_nodate the additional

flapping acceleration information. The IBC Kinematic

Estimator equation can be expressed as :

d_
_ = p + K1 (P - _)
dt

dp_= ÷K2 (p _
dt

(9)

QI,

Since both 8 and _ are available, the task of

estimating 8 is not difficult. In fact, the estimated B

tracks the true one very closely after a transient duration

of 0.5 second.
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CHAPTER 6

IMPLEMENTATION OF IBC THROUGH SWASH PLATE ACTUATORS

All the IBC methods discussed so far utilize an

individual actuator to change the pitch of each blade. This

is direct control in the rotating frame. IBC is executed

using these actuators, which rotate with the blade while

pilot control is achieved using a conventional swash plate

in non-rotating frame. In this configuration, actuator

reliability is always a concern, and it may be more

significant than the simplicity such a system offers. As an

alternative, by attaching actuators to the swash plate, the

same degrees of individual blade control can be accomplished

in a pure non-rotating frame.

A helicopter with swash plate has three control

degrees-of-freedom : collective, longitudinal and lateral

cyclic. For a helicopter with three blades, the number of

control degrees-of-freedom is equal to the number of blades.

When four blades are present, as in the case of Black Hawk,

an equivalent swash plate implementation of IBC can also be

formulated. For a four bladed helicopter, a transformation

between the rotating coordinate system and the non-rotating

system is given as :

-"TR  wp

whereng__ibc = [_81,_82,_83 ' 484 ]T is the individual blade

pitch control angle vector in the rotating reference frame,
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and_8_6wp = [ _8ci,_ Als,_ Bls,_ 8} ]T is the ideal swash plate

displacement vector in the non-rotating frame, d8 i is any

element ofd_bc. It can be expressed in e|ements of swash

p2ate displacement vector as

Zl 8i = A 8C1 +_ A1s cos_ i +_ B1s sin_ i +A 8} (-I) i (z)

for i : 1,2,3,4 in the case of a four-blade system.

Thus, the transformation matrix can be expressed as

TR
1 C¢ 1 S¢ I -i

1 -S_ 1 C_ I 1

1 -C¢ ! -S¢ 1 -I
1 S¢ I -C¢ I 1

(2)

where # : azimuth angle, C_ 1 : Cos_ I, S_ I : Sin_ 1

An equivalent swash plate motion for a given 8i5 c can be

derived as

where

TR "! : i/2

B

1/2

C¢ I
S¢

z/2 z/2 z12
-S¢ I -C¢ l S¢ I

C_l -_ -C¢Iz/2 i/2

(3)

Since the current swash plate mechanism has only three

control degrees of freedom, _e½ does not exist. Only

[ _Scl_is_Bls ] motion can be realized in real application.

If they are fed back to the rotor system, then
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ec

A 1

B 1

: i12

n

1/2

C_ 1

k

-s_ I -c¢ I s_11 (4)

c¢1 -s_ 1 -c_

The equivalent blade pitch angle becomes

8!

82

83

84

1 C_ ! S¢ ! -I

1 -S¢ 1 C_ 1 1

1 -C¢ 1 -S¢ 1 -I

1 S_ 1 -C_ 1 1 I Al,J
Bl,I

When Equation (4) is substituted into (5)

(5)

82

83

et
t -i i314 314 -I14 i141i e_ I

: 114 314 114 -i14j e2 (6)

-iI_:11-IIII: 114314 _

It can be seen from the above re|ationship that an

identity matrix between [ =81,Ae2,=e3,=e 4 ]T and

[81, e2, e3 ' 04 ]T is not present in general. The two vectors

in Equation (6) will be identical if ( _81 and _ e 3 ) and

(82 and 84 ) have the same magnitude and are always 180

degree out-of-phase with each other. A simulation study with

the Black Hawk GENHEL model was conducted and the result is

depicted in Figure 6.1 The equivalent blade root pitch

motion due to IBC generated through the swash plate, _ el, is

reasonably close to the original direct IBC motion, _8 I, in

rotating frame. Given the complexity in mounting the
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actuators directly on the blades and reliability

considerations, IBC through swash plate is a practical way

for implementation of IBC.

J:.

I

: I

  i'jii' ' ' '
• J_ ' ,

A e

I

! _ I, I

) i ,

I i '

,_ i! ,

i

: b!a_e root pitch gene_'ated _o_ Jkrec_ IBC

...... blac_e root p_tch cjer_e'-ated b_. _BC _ia sv, ash-pIate motion

Figure 6.1 Blade root pitch motion
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CHAPTER 7

GENERALIZED ROTOR STATES FEEDBACK CONTROL SYSTEM

In this chapter, a generalized rotor states feedback

control system is defined. It is shown that the IBC system

through swash plate control is a limited case of a general

rotor states feedback control system [9].

The general coordinate transformation between blade flapping

angles _R in rotating frame and the rotor states _ in non-

rotating frame is given by :

where

T

1 C_ ! S_ 1 -I

1 -S_ 1 C_ 1 1

1 -C¢ 1 -S¢ I -i

1 S_ ! -C_ 1 1

: [ 8!, 82, 8_, 84, ]T

: [ SO, 81c, 81,, S½ ]T

in rotating frame

in non-rotating frame

8i : 80 + 81c cos¢ i + 818 sine i + 8½ (-I) i

for i = I, 2, 3, 4

Generalized pure IBC

For Ham's pure IBC system, individual root pitch angle

vector =8_ibc is generated from the blade states [ _ _ _ ]

using sensors mounted on the rotor blades. The control is

performed in the rotating frame through actuators attached

to the blade roots. The control law is given as
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Equation (i) is differentiated twice to give

Equation (2) is now written in terms of the non-rotating

rotor state vector _ and its derivatives as

:°

L_b = = [Zz T + Z2 _ + K3 T] _ +

t2zz + K2T) +
m.

[Kz T] _ (S)

Equation (5) shows a pure IBC concept through the root pitch

actuators control is a special case of the rotor states

feedback control system with time-varying feedback gain

vector as given in Equation (5).

Generalized IBC ConcePt via Swash plate Feedback

For a helicopter with 3 or 4 blades, the IBC control

can be realized through the swash plate motion. Using

Equation (i)

Since

therefore (6)

• e

T-I[2KI T + K 2 T] _4_ +
,o

T'I[KIT] (V)
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This is equivalent IBC via rotor state feedback in the non-

rotating frame through the swash plate motion. Now, consider

a simplified case where the control law in Equation (2) is

given as :

K 1 = kl14, K 2 : k214, K 3 = k214

Here kl, k 2 and k 3 are scalar feedback gains and 14 is an

4 x 4 matrix. With this simplified control logic, Equation

(7) becomes :

8_6_ [kI T-IT: "'+ k2 T-!T ÷ ka It] _ +

[2k ! T'IT + k2 T'IT] _._ +

ma

}k3 % 0

i° k3- k1° <_0 -k2O k 3 -
0 0 0

k2 O 0

e-

k I 0 0

0 k I 0

0 0 k 1
0 0 0

m

0

o _+
0

J

k3
_3

(8)
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Note only first three control signals (elements) in _Sswp are

used for gust control.

For another special case where K1 = K/R 2, K 2 = K/_ 2 and

K3 = K, Equation (7) becomes

b,

[2K/_2 T'_ ÷ K/_ T-_r]___ ÷
o_

K_ (9)

After the matrixes are expanded, Equation (8) becomes

1 0 0 0 1 0 0

L_w p = K o i o _ + K/_ i 2
-I 0 0 I -2 i
0 0 ii 0 0

0

o_

_- -'3I

il 0 0 Oli.,

÷ Klo2 0 I 0 0 _ (10)
0 0 1 0

0 0 0

The control shown in Equation (I0) is the original IBC

concept proposed by Ham. Comparing Equation (10) with

Equation (5), it is clear that IBC control scheme suggested

by Ham is a limited case of the rotor states feedback

control system.
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_ene_al Rotor State Feedback throuoh the Swash vlate_

All the discussions so far on IBC control do not

consider the helicopter body. In fact, motion of the

fuselage will affect rotor flapping and vice versa• The body

of the helicopter is isolated from external disturbance

because of stabilizing effect provided by the rotor, which

acts as a gyroscope. If fuse|age body states are available

for feedback, more versatile gust alleviation control law

can be formulated. Studies on IBC by J.C. Wang has found

that a significant reduction on the body vertical

acceleration caused by gust can be achieved by adding a body

vertical acceleration feedback loop into the IBC system [9].

If _, _, _ can be estimated from sensors mounted on

the blade, a genera] gust control law can be developed by

using rotor and body states feedback as

where the fuselage body state vector X 8 is

-- [u,q,w,v0p,r] _

U,V,W

p,q,r

: linear velocity

: angular velocity

The optimal gain matrixes KI through K5 for a given flight
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condition can be derived for control law synthesis when the

nine degree-of-freedom rotorcraft state dynamic equations

become available.
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CHAPTER 8

CONCLUSIONS

In modern day helicopters, flapping provides a means of

orientating the rotor thrust vector for stability and

control functions. Simulation studies were performed to get

some insight into Ham's original IBC method of reducing

blade flapping due to gust disturbance. Results show that

for an IBC model with periodic coefficients and controller

gains, up to 36% in gust alleviation can be achieved with a

maximum feedback gain KA of 1.2. When a simplified model

with constant coefficients and gains is used, the reduction

is decreased to about 22% for the same value of KA.

It is desirable to have a control system which is less

sensitive to the DC value of the input control. A MRIBC

(Model Reference IBC) method is suggested for possible

improvement of Ham's origina| IBC. The sensitivity to

control input is lessened since differences in flapping

states between the model and the plant, instead of the

states, are employed for control law synthesis in MRIBC. The

performance of this method matches very well with that of

Ham's in both time-varying and time-invariant cases. The

Model Reference IBC system, however, becomes unstable at

KA = .75 and KA = 1.2 respectively for time-varying and

constant math model.

For its insensitivity to flight conditions and

simplicity of implementation, kinematic estimator is used to
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reconstruct the states required for IBC feedback given only

measurements of some of the states. Two algorithms for

estimating both flapping angle, rate and acceleration from a

single measurement of angle (Direct Flap Estimator) were

investigated. While satisfactory tracking of angle and rate

can be attained, both procedures do not provide a good

estimation on flapping acceleration. There appears to be a

phase lag between the true and the estimated acceleration.

The IBC Kinematic Estimator method utilizes two

accelerometers attached to different locations on the blade

to extract both flapping angle and angular acceleration

information. Algorithm is then used to estimate flapping

angular rate via a kinematic observer. This technique

provides good estimations of all three states used for IBC

control law synthesis. The method assumes that the blade

motion is due to rigid body flapping.

The control for IBC can be exercised in the rotating

frame by directly attaching actuators to the rotor blades.

This mechanism, though appealing because of its simplicity,

place severe demands on the actuators. It is shown that IBC

can be achieved through a swash plate in the non-rotating

frame when the control degrees-of-freedom equals to the

number of blades. This is the case for a three bladed

helicopter. When the number of blades is four, coordinate

transformation can still be utilized to find an equivalent

swash plate feedback control. A simulation study with GENHEL
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shows blade root pitch motion generated by IBC via swash

plate motion is reasonably close to that produced by direct

IBC in the rotating frame.

Also presented in the thesis is the general rotor

states feedback control system in the non-rotating reference

frame. Ham's IBC system is shown to be a special case of the

general rotor states feedback scheme. The optimum state

feedback gains in Equation 7.11 can be found for higher gust

a11eviation. This is beyond the scope of this thesis, and is

not further pursued here.
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APPENDIX A

Derivation of Ham's IBC method

The flapping equation of motion is described by :

(1)

For the UH-60 blade used in the simulation, the parameters

are given as :

A

B

C

Wg

= 23.76 + 31 * _ * sin_

= 734 + (692.24 + 1323.8 * _ * sin_) * g * cos_

= 684.3 + (1808 + 1313 * _ * sin_ ) * _ * sin_

= Kg (972 * sin wt + 792 * _ (cos(g-w)t - cos(_+w)t))

8sw p : 0.2975 + 0.009 * cos _t - 0.142 sin Qt

g

w

: 0.18

: 24 tad/second

: 13 tad/second

Here, the total blade root-pitch angle is consisted of two

parts :

e = 8*s_ + eib c
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0 t
where swp is the effective blade pitch input due to motion

of the swash plate, and eibc is the individual pitch feedback

control signal for gust alleviation.

The feedback control law is generated as :

eibc = (KA _/_2 + KR _Ig + KP _ ) (2)

where K's are feedback control gains and

8'swp = Kswp * 8swp (3)

Kswp is the forward controller gain. Substituting Equations

(2) and (3) into Equation (i), we obtain

A + C KR/O , B + C KP

+C )_ + (....... )_
1 + c KA/O2 1 + C KA/o2

C 1

( ) Kswp 8swp + ( ) Wg
1 + C KA/R2 1 + C KA/O2

(4)

To reduce the gust effect acting upon the rotor blade, the

controller gains can be selected such that the closed-loop

blade dynamics equation will assume the form

48



The controller gains are assigned as :

KR

KP

Kswp

KG

= KA * A/R

- KA * B/R2

= 1 + C * KA/R2

= i + C * KA/R2

For Ham's simplified IBC scheme, the following assumption

are made :

A _ g ; B -" Q2 . C -" o2

With the above simplification, the controller gains become

KR : KP : KA

Kswp = KG : 1 + KA

The IBC feedback control law is now

eibc : ( _ /Q2 + _ /o + _ ) k'_
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APPENDIX B

Derivation of Model Reference IBC method

To design a IBC control law which is less sensitive to the

DC value of the blade flapping motion, a Model Reference IBC

system is studied. Flapping equation of motion is given as :

(i)

where

0 = Bswp + Bibc (2)

If a math model of the blade is known,

_m + A(_,¢)Sm + S(_,_)_m : C(_'_)Os_ (3)

then the error in flapping angle can be formed by

e(t) : [3(t) - Bin(t)

B(t) is the measured angle, and Bm(t) is the model response.

From Equations (I) and (3), we have the error dynamics

equation :

Jf •

e + A(p,¢)e + B(l_,#)e : C(p,#)Oib c + Wg(IJ,w,Q) (4)
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A control law can be generated as

eibc = (r_ _'/o2 + KR ;/g +KP • ) (5)

where

KR = EA * A/Q

KP = KA * b/R 2

Substituting KR and KP, Equation (5) is now given as

i0

eibc = KAIo2 ( e + A(p,¢)e + B(U,¢)e ) (6)

Equation (4) becomes

,|

e + A(_,_)e + B(t_,¢)e :
1

i + KA C/R 2
Wg (7)

Equation (I) is now

°' ' I

+ A(U,¢)S + B(u,_)S = c(u,¢)es_ + ..............
I + lr_ C/R 2

wg (s)

Prom Equation (8) and Equation (4) of Appendix A, both

control schemes reduce the effective gust level by a factor

of I / ( 1 + KA ( C/R 2) ). MRIBC is dependent on|y on the
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¢ IQ

error signal e, e and e. It is less sensitive to the DC

value of the flapping motion.

From a point of view of practical application, it is

desirable to have constant coefficients in the blade

flapping math model. Using the same approximations as in

Appendix A,

A • _ ; B _ 02 • C _ 0 2
S

Equation (3) becomes

,b t

8_ + 0 8m + 02 8m = Q2 esup (9)

and the control law is

_Q

eibc : _ ( e/_ 2 + e/_ + • ) (io)

-- 52



APPENDIX C

53



0.,_ =.

C.4C

O._E

0.2.5

C: :3

;,43

;.z;

T.../_

L.J .0 2.b 3.0 • 0 5.0 6'0 7'.0 8.0 9.0 10.0

Time (sec) 1_ = 1.2

) r ' 1:: ' ' i; !

; , i, I'L il /  ijllj_Ir Iv

b
,J ,J

: - _ _ Z.; 4 _ 5.3 5.0 7.0

Time (sec)

;O.O

Open looR

IBC in effect

Figure 4.1 Oust alleviation vs controller gain KA

54

ORiGiNAL PAGE 15

OF POOR QUALITY,



0.45

0.40

0.35 '

C, 30

v 0.25

C.',5

C.I:

, ..'..i,!.......,,_i._i

C.3 ' 3
r

2,0 3.0 4.0 5'.0 6,0 7.0

Yime (sec)

e;.O 9'.0

IrA= 0.35

IC.O

Ill

l-I

2,3

-I .n

-2._

r,i ,_I ,,I p,l _( r,,--:^J A

C.0 1.0 2.0 3.0

: i

4'.0 5'.0 " 6'.0 7.0

Time (see)
8.0 9.0 ]0.0

KA = O. 575

Figure 4.2 IBC second approach

55

ORIGIHAL PAGE IS
OF POOR QUALITY



|011.

Z
Cl 4_¢

J-

¢J aSO

Z

_ 3¢o

sc

cc

GAIN KA

Figure 4.3 IBC performance, Ham's with time-varying gains

45G faco

Ic 0
1,1,-

Z
-- 3$0

2C0

1$0

_ 1Bo

$.o

iJ.ql
oQ O| +i 11 |l +l I,| 11 +.I

GAIN KA

Figure 4.4 IBC performance, Ham's with time-invarlant gains

56

ORIGINAL PAGE IS

OF POOR QUALITY



.6
I ....

Iw

C.4

,6
1,4

C'.2

WW_

O _"

I-,

v.O 1'.0 2.0
J

4.0 5.0 6.0 7'.0 8.0 9.0 I0.0

,Ii

_i i 11

• _ V V

_.g l,O 2_2.. 3=.C 'ii.O 5.0

Time (sec)

8.0 9.0 I_ 0

Figure 4.5 Control input for small gain KA

-C. 3C
,,-,,

'_ -g. 25

a
1,I

-0.4:

¢,#
.ID
.,,w -_.4-:

-0. £g

;a 0._

@D 0.3

e_

0

_'_,,i_, _':'_i''IF

,i, ,VV Ili

O.C .0 2.0 3.0 ,r 0 " , 5'o0

I liVi!V!VvVV_'_,l,,/i/i_:,,iCi:i:'V'

i

6.0 7.0 8.0 9.0

Time (mec)

O,O

I0.0

Figure 4.6 Control input for large gain KA

57

ORIGINAL PAGE IS

OF POOR QUALITY



0.84

0,C2

a
l,.I 0.3C

u -0. E_£

-C.:_

C.O .0 2.0 3.0 4'.0 5.0 6:.0 7'.0 8.0 9.0 10.0

"" 0.5

Ill 0.4

C.3

,,.,w O.Z
ml

0 0.',

C'._

3.4

18
l,I

C.2

C.3

,! ii .• ,7
ill 'q

_ _ i_ _ _ lii ,

30 iO 2.0 3.0 4.0 S.3 6.0 9.0 i0.0

0.0 1.0 2.0

, 11' 'i, rl't_ ' _'_ F ,U

3,o _.o s.o 6.0 7.o e.o 9,o 1o.o

Time (sec)

Figure 4.7 Hodel Reference IBC
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