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INTRODUCTION

Polyimides belong to a class of polymers known as polyheterocyclics_ Since

their initial disclosure in the later 1950s, hundreds of polyimides with different

chemical structure and molecular order (morphology) and accordingly, different

physical, mechanical and chemical properties have been reported. Numerous

reviews on polyimides are available, l-s The impetus to develop polyimides was the

demand for a polymer to operate in a high temperature environment. Initial

applications were in the electrical field where higher temperature insulation was

needed. High temperature organic polymers were also required for use in structural

components in advanced high speed aircraft, weapon systems and space vehicles.

Although many different families of high temperature polymers have been

disclosed, polyimides have attracted the attention of the scientific community. Their

popularity arises as a result of a unique combination of thermal stability, chemical

and solvent resistance, mechanical properties, reasonable cost and the ability to be

processed into useful forms.

Unlike most other high temperature polymers, polyimides can be prepared

from a variety of inexpensive monomers by several synthetic routes. By judicious

choice of starting materials, a polyimide can be tailor-made for a specific

application. For example, the glass transition and crystalline melt temperature,

thermooxidative stability, toughness, dielectric constant, coefficient of thermal
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expansion, chemical stability, mechanical performance, etc. of polyimides can be

controlled within certain boundaries. This versatility has permitted the development

of various forms of polyimides. These include adhesives, composite matrices,

coatings, films, moldings, fibers, foams and membranes. Polyimides are currently

commercially available in the form of adhesive tapes, composite prepreg, molding

powders, moldings, films and foams.

Polyimides are synthesized through both condensation (step-polymerization)

and addition (chain growth polymerization) routes. The precursor materials used in

addition polyimides or imide oligomers are prepared by condensation method. This

chapter will deal only with high molecular weight polyimide made via

polycondensation or step-growth polymerization. The purpose of this chapter is to

acquaint the reader with the various synthetic routes to condensation polyimides,

structure/property relationships of condensation polyimides and composite

properties of condensation polyimides. No attempt was made to comprehensively

review condensation polyimides since this would be beyond the scope and space

limitation of this chapter. Instead, the focus is on the synthesis and chemical

structure/property relationships of polyimides with particular emphasis on materials

for composite application.

FEATURES OF POLYCONDENSATION PROCESS

Before beginning a discussion on condensation polyimides, a brief review on

the features of polycondensation or step-growth polymerization is worthwhile. In

polycondensation processes, monomeric molecules react to give off a small

molecule as a by-product. As a result, the molecular weight of the polymer is less

than the total molecular weight of the monomers used to form the polymer.

Condensation polymerization is a step-growth process where molecular weight
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increase is slow. One monomer will react with a different monomer to form a dimer

which subsequently reacts with other monomers or dimers to form trimers or

tetramers and so on. All polymer chains grow at about the same rate, one step at a

time, until high molecular weight polymer is formed or the reaction ceases. The

number average degree of polymerization, DP, is defined as the average number of

repeat units per molecule and is obtained from the Carothers equation, DP = 1/1-p,

where p equals the extent of reaction. Hence, a polycondensation which has gone

to 95% completion will have formed a polymer with 20 repeat units (1/1-0.95) in the

average chain. Accordingly 98% completion will provide a polymer with 50 repeat

units in the average polymer molecule. The theory is based upon the

polymerization of an A-B monomer. For condensation polymers such as polyimides

prepared from two monomers (AA + BB type), the average number of repeat units is

one half of DP.

The polyimide from the reaction of pyromellitic dianhydride and 4,4'-

oxydianiline has a repeat unit molecular weight of 366 g/mole. Therefore at 98%

reaction, this polyimide would have a number average molecular weight of 50/2 x

366 or 9,150 g/mole. A polymer with an Mn of 9,150 g/mole would not normally be

expected to have mechanical integrity. However, polyimides are unusual polymers

and because of the strong intermolecular association through primarily polar and

charge transfer interactions, polyimides at seemingly low Mn can exhibit good

mechanical properties.

To obtain a high molecular weight polyimide via condensation

polymerization, the purity of the monomers must be high (> 99%) and no side

reactions that consume monomers or functional groups can occur. Equal molar

amounts of AA + BB type monomers are required. (Only a few high molecular

weight polyimides have been reported from A-B monomers). When highly pure

monomers are used in stoichiometric amounts, polyimides with very high molecular
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weights can be obtained. These high molecular weight polyimides exhibit high melt

viscosities and accordingly poor flow in composite fabrication. To alleviate this

problem, the stoichiometry can be upset to limit the molecular weight and the

polymer chains can be end-capped with inert groups to improve melt flow and

provide melt stability.

To determine the stoichiometry to obtain a polymer with a desired DP from AA

+ BB monomers, the Carothers equation is modified to that given below

DP= 1 +r

2r(1 - p) + 1 - r

where r = the ratio of AA to BB monomers. If p, the extent of reaction is 1, the

equation reduces to DP = 1 + r/1 - r. At 4% excess of the A-A monomer, r = 0.96 and

theoretically a DP of 49 is attainable. Thus, for a polyimide from the reaction of

3,3',4,4'-benzophenonetetracarboxylic dianhydride and 3,3'-diaminobenzophenone

with a repeat unit molecular weight of 498 g/mole, the number average molecular

weight of the polymer would be 49/2 x 498 or 12,201 g/mole. This is adequate

molecular weight in this polyimide to afford good mechanical properties.

Polyimides can be prepared by several methods using solution or melt

polycondensation processes. Various factors affect the polymer in each of these

polymerizations. For example, in solution polycondensation, stirring rate, mode of

monomer addition, form of monomer when added, temperature, time, atmosphere

and concentration are variants. If these factors are properly controlled, high

molecular weight polymer can be readily obtained from high purity monomers.

Several different polymerization routes leading to polyimides will be

discussed in the following section. Only those routes or variations thereof which

have provided high molecular weight polyimides will be covered.
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POLYIMIDE SYNTHESIS

1. The most popular and versatile route to aromatic polyimides involves the

reaction of an aromatic tetracarboxylic dianhydride with an aromatic diamine to

initially form a precursor, configurationally unordered, polyamide acid (polyamic

acid). The precise isomer distribution is unimportant from a practical standpoint and

is primarily a function of the reactivity of the dianhydride. The precursor polymer can

be chemically or thermally converted to the polyimide. As an example, 3,3',4,4'-

benzophenonetetracarboxylic dianhydride is depicted to react with 3,3'-

diaminobenzophenone in Eq. 1 to yield the polyamide acid which is converted to

the polyimide (structure 1). Although this general route appears to be relatively

straightforward, it is actually very complex. 1

The experimental procedure for the preparation of a polyamide acid will vary

from one laboratory to another. In addition, the particular monomers and solvents

may necessitate a modification in the procedure. A typical synthesis is generally

conducted by adding the dianhydride in the form of a fine powder, slurry or solution

to a stirred solution or slurry of the diamine in a highly polar solvent such as N,N-

dimethylacetamide (DMAc) or N-methylpyrrolidinone (NMP) at ambient temperature

under nitrogen at solids content of 15 to 25% (weight/volume). High molecular

weight polyamide acid readily forms by the nucleophilic attack of an amino group on

an anhydride carbonyl group, opening the anhydride ring to form the amide acid.

Dianhydride (structure 2) containing electronic attracting groups such as CO or SO2

o 2 o o
II o
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where x = nil, -CO-,-S02-,-C(CF3)2-, U[_j_-C -, 0, S, -C(CH3)2-, etc

are more reactive than those containing electron donating groups such as O or

C(CH3)2. Similarly diamines (structure 3) containing electron donating groups are
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where x = same as for structure 2

more reactive than those containing electron attracting groups. Certain diamines

such as 4,4'-diaminodiphenyl sulfone or 4,4'-diaminobenzophenone are poor

nucleophiles such that the formation of high molecular weight polyamide acid

through reaction with a dianhydride, especially a less reactive dianhydride, is often

difficult to attain. High molecular weight polyamide acids, however, have been

prepared from the reaction of aromatic dianhydrides with 4,4'-

diaminobenzophenone 7 and 4,4'-diaminodiphenyl sulfone. 9

The reverse addition, 7 that is, the addition of a diamine to a dianhydride is not

recommended for the preparation of a high molecular weight polyamide acid. An

excess of anhydride groups is thought to attack the polyamide acid causing chain

cleavage. 9 Thus only dianhydrides such as pyromellitic dianhydride that are

virtually insoluble in the polymerization medium will form high molecular weight

polyamide acid by the reverse addition route.

Other solvents, particularly ether solvents such as tetrahydrofuran 10 or bis(2-

methoxyethyl)ether (diglyme),lO, 11 have also been used to prepare high molecular

weight polyamide acids. However, only certain polyamide acids can be prepared in

high molecular weight in ether solvents whereas most polyamide acids can be

prepared in high molecular weight in the more universal, highly polar, solvents such

as DMAc and NMP. The reactivity of the monomers as well as the solubility of the

polyamide acid is different in the ether solvents versus the highly polar solvents.

The nature of the polyamide acid, particularly the molecular weight

distribution, is influenced by several factors such as the solubility of the monomers,

reaction time, solvent, concentration and stirring rate. For example, with insoluble

dianhydrides or improper mixing, there can be interfaces or zones where the

polymerization is proceeding independent of the total system, thereby providing
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molecules of significantly different molecular weight, with a preponderance on the

high molecular weight end. Ether solvents tend to yield somewhat lower molecular

weight polyamide acids having a broad molecular weight distribution and in many

cases, a bimodal molecular weight distribution.

The stability of the polyamide acids is also a concern. These materials are

known to undergo molecular weight equilibration 12-14and chain cleavage9,15 as a

function of time under various conditions. This instability is of practical importance

since the properties of the polyamide acid and corresponding polyimide are directly

effected. Polyamide acids in solution should be stored cold (0°C) under nitrogen.

Chain cleavage is faster at higher temperatures and lower concentrations.

The preceding discussion briefly outlined some of the problems associated

with the polyamide acids. More details on these problems can be found in a single

review.1 In spite of these problems, high molecular weight polyamide acids are

successfully prepared and converted to polyimides for use as adhesives, composite

matrices, coatings, fibers, films, foams, moldings and membranes.

The conversion of the polyamide acid to polyimide can be accomplished by

chemical or thermal inducement. The thermal cyclodehydration of polyamide acids

to polyimides occurs generally with a partially reversible change in molecular

weight. 15-17 As the polyamide acid is heated and converted to polyimide, it

undergoes a decrease in the molecular weight and then an increase as the

temperature is raised. High molecular weight polyamide acids free of solvent

cannot be isolated from solutions in highly polar solvents. Polyamide acids with low

solvent content can be isolated from solutions in ether solvents, particularly

tetrahydrofuran. However, polyamide acids made in ether solvents are more difficult

to thermally convert to polyimides, exhibiting more foaming than those from highly

polar solvents. The polar solvents apparently enhance the cyclodehydration

process and also serve as a plasticizer, providing flow, during compression or
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injection molding. The detrimental effect of the polar solvents is that small amounts

are held tenaciously by certain polymers, particularly those having high glass

transition temperatures (e.g. > 250°C). Temperatures in excess of the glass

transition are required to remove the last amount of solvent. In certain forms,

particularly thicker components such as bonded parts, composites and moldings,

porosity, delimination or large bubbles develop in the part due to volatization of the

last traces of solvent. These voids lower the mechanical properties and

thermooxidative stability.

Polyamide acids have been successfully used in combination with a

reinforcement to fabricate small, essentially void-free, composites with high

mechanical properties by careful control of cure conditions to accommodate volatile

evolution (e.g. condensation by-products and residual solvent). However, this is an

exception rather than a norm. The fabrication of quality composites from polyamide

acids becomes more of a problem as the size of the composite increases. Larger

quality composites can be fabricated through long cure cycles which translates into

high manufacturing cost and unacceptability for many applications.

Polyamide acids can be chemically converted to polyimides or polyisoimides

through the use of cyclodehydrating chemicals such as acetic anhydride and

triethylamine and dicyclohexylcarbodiimide or trifluoroacetic anhydride respectively.

The utility for composite application lies primarily in the formation of small particle

powders (e.g. 1-21_)that can be used to powder or slurry impregnate reinforcements.

Another use of the chemically converted materials is that certain polymers can be

dissolved and the resulting solution used to impregnate a reinforcement. Although

solution impregnation is undesirable due to the generally poor quality of the prepreg

and solvent removal problems, small composites of good quality have been made

from solution coated prepreg. The polymer must be fusible under the conditions of

fabrication. The glass transition temperature or crystalline melt temperature, melt
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viscosity and volatile content are the most important factors in a polymer to obtain

good consolidation in a composite.

The preceding discussion pertained to the preparation of polyimides via

polyamide acids and concentrated on the reaction of aromatic dianhydrides with

aromatic diamines. The properties of the polyimides can obviously be substantially

altered through chemical structure variations by introducing connecting groups such

as alkylene, alkylenedioxy, perfluoroalkylene and the like in both the dianhydride

and the diamine. Heteroorganic monomers such as silicon containing, phosphorus

containing and other unusual dianhydrides and diamines have also been used to

make high molecular weight polyamide acids. In addition, alicyclic dianhydrides

can be used to form high molecular weight polyamide acids. However, alicyclic and

aliphatic diamines will not form high molecular weight polyamide acids when

reacted with dianhydrides primarily because the basicity of the amine allows for salt

formation with the carboxylic acid of the polyamide acid. Alternate synthetic

methods are available to make polyimides from the reaction of alicyclic or aliphatic

diamine with dianhydrides.

Chemical structure/property relationship studies on polyimides have been

extensively conducted. Several tables will be used to explain these relationships.

Since the studies were conducted in different laboratories, the method employed to

determine certain properties may vary. As a result, discretion should be exercised

in comparing the properties of a polyimide in one study with one from another study

because the method of measurement, thermal history of the polymer, molecular

weight of the polymer, etc. may vary. In Table 1, the Tgs of several polyimides

derived from a common dianhydride that was reacted with different diamines are

presented. As evident in theTable, polyimides containing the more rigid moieties (p-

phenylene, 1,5-naphthalene and 4,4'-biphenylene) have the highest Tgs while
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those containing flexible moieties [4,4'-diphenyl ether and 1,3-bis(4-

phenoxy)benzene] have lower Tgs.

In Table 2, three isomers of a diamine were used to prepare polyimides.

Again the most flexible diamine (3,3'-diaminobenzophenone) provided polyimides

with the lowest Tgs. This study also clearly shows the effect of a rigid dianhydride

(pyromellitic dianhydride) versus a more flexible dianhydride (3,3',4,4'-

benzophenonetetracarboxylic dianhydride) on the polyimide Tg. Table 3 shows Tgs

of five polyimides where a common diamine was reacted with five dianhydrides.

The Tgs are all relatively low because polyimides from this particular diamine are

relatively flexible.

A series of semi-crystalline polyimides containing carbonyl and ether

connecting groups between the aromatic rings is presented in Table 4. The Tgs

ranged from 215 to 246°C and the Tms were from 350 to 427°C. The properties of a

semi-crystalline polyimide in structure 4, designated LARC-CPI (Langley Research

__enter-Crystalline Polyimide), are given in Table 5.

II ..... 0 ..-.. II 0 0
II II

o o 4

The relationship of chemical structure to Tg and color in polyimide films is

given in Table 6. Conventional polyimide films are yellow to orange in color. The

intensity of the color can be essentially alleviated by the proper design of the

molecule. The use of the bulky hexafluoroisopropylidene and sulfone groups

coupled with the use of the meta isomers in the diamine was particularly effective.

Disruption of the conjugation and the intermolecular association is important for

obtaining essentially colorless films as well as soluble polyimides. Most of the

polyimides in Table 6 are soluble in chloroform.
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Within certain boundaries, the dielectric constant of polyimides can be

controlled through the chemical structure of the molecules. Linking groups that

disrupt conjugation, dissymmetry and bulky groups that interrupt molecular

continuity, molecular packing and intermolecular polar association all contribute to

lower dielectric constant in polymers. The effect of these factors on the dielectric

constant of polyimides is evident in Table 7. The hexafluoroisopropylidene group

and meta catenation lowers the dielectric constant of polyimides significantly.

Although many studies were conducted to correlate the chemical structure of

polyimides with certain physical properties, there is no detailed published study

where the effect of chemical structure, molecular weight and molecular weight

distribution and various end-groups was correlated with compression moldability or

melt viscosity and mechanical properties. Studies of this type have been done by

industrial companies active in the polyimide field but these studies are not

published. Those active in the synthesis of polyimides for adhesive and composite

work realize that with many polyimides, especially those with high Tgs, the

molecular weight must be controlled to obtain adequate flow during compression

molding to yield panels with high mechanical properties. In addition, the molecules

are frequently end-capped with a stable group to afford better melt stability. The

very factors in a polyimide that contribute to a high Tg also result in high melt

viscosity and accordingly, difficult compression moldability. As a result, the

properties of the polymer are frequently compromised to obtain better processability.

As an example, high molecular weight polyimide (Tg ~ 260°C)in structure 1

has a melt viscosity of ~ 106 Pa.sec (~ 107 poise) at 350°C under a shear rate of

10 -1 sec -1. The molecular weight of this polymer has been controlled by upsetting

the stoichiometry followed by end-capping to provide a grade of LARC-TPI (inherent

viscosity of 0.37 dL/g and Tg of ~ 236°C) with a melt viscosity of 6 x 103 Pa.sec (6 x

104 poise) at 340°C under a shear rate of 10 "1 sec-l. 24 The stoichiometric



12

adjustment and end-capping group may vary slightly from one polyimide to another.

As a general rule, the stoichiometry can be upset by 3 to 5 mole % in favor of the

diamine and phthalic anhydride used as the end-capper.

Several other synthetic routes to condensation polyimides will be briefly

reviewed. The reaction of a dianhydride with a diamine to yield a precursor

polyamide acid is the most versatile and widely used route to polyimides.

2. Certain variations on route 1 to avoid the unstable polyamide acid have

been reported. For example, the diester diacid or diamide diacid from the reaction

of a dianhydride with an alcohol25or secondary amine26 respectively has been

converted to the corresponding diacid chloride and subsequently reacted with an

aromatic diamine to yield a stable precursor polyamide ester or polyamide amide.

The precursor polymer has been thermally converted to polyimide.

3. An aromatic or alicyclic dianhydride or tetracarboxylic acid is thermally

reacted with an aromatic or aliphatic diamine in a phenolic solvent such as m-cresol

using a catalytic amount of an organic base such as quinoline to form the

polyimide. 27-28 The polyimide must be soluble in the phenolic solvent to obtain

high molecular weight.

4. An aromatic tetracarboxylic acid or half ester (diester diacid) is initially

reacted with an aromatic diamine in solvents such as diglyme, ethanol or NMP.

Upon heating and removing the solvent, polymerization occurs to yield high

molecular weight polyimide. To obtain high molecular weight, adequate molecular

mobility must occur during the polymerization. This route has been successfully

used to prepare the Avimid® K-Ill polyimide.29

5. An aromatic activated dinitro compound undergoes aromatic nucleophilic

displacement by reaction with a diphenoxide anion [e.g. a bis(nitrophthalimide) and

a bisphenol salt] to form a polyetherimide.3° This route has been claimed as that

used to make the Ultem® series of polyetherimides.
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6. Melt polycondensation of an aromatic or alicyclic dianhydride or

appropriate derivative with an aromatic diamine has been successfully used to

make high molecular weight polyimides.31 The polyimide must remain fusible

during the polymerization to allow for adequate molecular mobility for chain growth.

This route is suspected to be that used to prepare Ultem® 1000.

7. An exchange reaction between a bisimide and an aromatic diamine using

an organometallic catalyst has been successfully used to prepare high molecular

weight polyimide. 32-33

8. Other exchange reactions have also been reported to yield polyimides. As

an example, 3,3',4,4'-benzophenonetetracarboxylic dianhydride is reacted with less

than a stoichiometric amount of caprolactam in the presence of ethanol. The

resulting partially imidized product is subsequently thermally reacted with an

aromatic diamine such as 4,4'-methylenedianiline to yield a polyimide. 34

Intermediates from this route have been formulated and successfully used to

prepare low density, ductile, fire resistant, foams via microwave curing.

9. The polyamic acid as discussed in item 1 has been converted to

polyisoimide by treatment with certain chemical cyclodehydrating agents such as

dicyclohexylcarbodiimide. 35 The polyisoimide rearranges to polyimide upon

heating. The attractive feature of this route is that the polyisoimide is significantly

more soluble and exhibits better melt flow than the corresponding polyimide. This

route is currently being used to prepare a series of acetylene terminated isoimide

oligomers.36

10. Derivatives of diimides for example N,N-bis(ethoxycarbonyl)-

pyromellitimide can be reacted with aromatic diamines to yield stable precursor

polyamide amides. These precursor polymers are subsequently thermally

converted to polyimides.37 Unlike polyamic acids, the polyamide amides and

solutions thereof are stable. A variation of this route involves reacting the N,N'-
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di(ethoxycarbonyl) pyromellitimide with an aliphatic diamine via interracial

polymerization.38

11. An aromatic dianhydride is reacted with an aromatic diisocyanate to form

a seven membered ring which eliminates carbon dioxide to yield the imide. 39 The

polyimide, formerly known as Upjohn PolyJmide 2080, was prepared by this route.

The stoichiometry can be altered and end-capping agents can be used in

routes 2 to 11, similar to that discussed in route 1, to obtain polymer of lower

molecular weight with better solubility and compression or injection moldability.

Most of the preparations in routes 2 to 11 do not offer the versatility in chemical

structure variation as route 1. Melt fusibility or solubility of the polyimide are

required to obtain high molecular weight in several of the routes 2 to 11.

COMPOSITE PROPERTIES

Several condensation polyimides have been evaluated as composite

matrices primarily in combination with continuous fiber reinforcements. Most of the

work has concentrated on glass and carbon/graphite filament reinforcements

although boron and quartz reinforcements have seen minor evaluation. In addition,

superficial work has been done with a few inorganic fibers and fibers from the new

high modulus rigid rod polymers such as the polybisbenzthiazole. Kevlar® is not a

reinforcement of choice because of the high temperatures required in composite

fabrication with most polyimides. The following discussion will be restricted

primarily to condensation polyimide composites using continuous carbon/graphite

reinforcements.

Several methods have been employed to prepare carbon/graphite prepreg.

Solutions of polyamide acids, mixtures of monomers, polyimides, polyisoimides and

various modifications (e.g. B-staged precursor polymer consisting of a mixture of
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polyamide acid and polyimide) have been used to impregnate fibers. Prepreg has

also been prepared from slurries of polyimide powders and mixtures of polyamide

acids solutions with polyimide powders. In addition, preliminary work has involved

the deposition (e.g. electro, electrostatic and gravity) of dry polyimide powders onto

carbon/graphite tow. Another form of condensation polyimide prepreg which has

been evaluated is a hybrid where polyimide fibers have been co-mingled with

carbon/graphite fibers. Melt impregnation using polyimide film or powder have also

received attention as a means of prepreg preparation. Of the five methods of

prepreg preparation (solution, slurry and melt impregnation, powder deposition and

co-mingling), solution coating has been the method most extensively used to

evaluate polyimides as composite matrices.

Prepreg quality is very important because with inferior prepreg, the

fabrication of large high quality polyimide composites is virtually impossible. Unlike

forgiving systems, such as epoxies, where high quality composites can be obtained

from poor quality prepreg, precursors to and polyimides themselves are unforgiving

materials. Volatiles in the prepreg can cause significant fabrication problems such

fiber wash during consolidation and voids. With the current state of technology, tack

in polyimide prepreg is due to residual solvent. Prepreg with drape but not volatiles

can be made by dry powder impregnation. Each prepreg form appears to have

certain advantages and disadvantages. High melt viscosity which necessitates the

use of high temperatures and pressures [e.g. >_1.38 MPa (200 psi)] is frequently a

problem for volatileless polyimide prepregs.

The following discussion pertains to the composite work recently reported on

condensation polyimides. No attempt was made to comprehensively cover all the

condensation polyimide composite work. Instead, the emphasis will center on

representative condensation polyimides that have been evaluated as composite

matrices.
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A family of Avimid® K polymers, 29 amorphous linear condensation

polyimides, formed from the reaction of a monomeric mixture of an aromatic diethyl

diacid with an aromatic diamine in NMP have received considerable attention. The

exact chemical composition of the polymers have not been disclosed although they

are presumably covered in a patent. 40 The synthetic scheme of one polyimide

(structure 5) of particular interest is that shown in Eq. 2.
0 0

• II A II

HsC20--C'-_(-')"T-C--0C2H5 _- n H2N_ _-'T-0_

n • _IO_C_C02I I i.,.._....1_0_ _ NH 2

& - 2n C2Hs0H, - 2n H20

(2)

g II

- N N
0

5

The Tg of high molecular weight polymer (structure 5) is 284°C. 41 The Tg and melt

viscosity of this polymer can be lowered considerably by upsetting the monomer

stoichiometry to lower the molecular weight and subsequently end-capping. In Eq.

2, the molecular weights of the diethyl pyromellitic acid and the 1,4-bis(4-

aminophenoxy)-2-phenylbenzene are 310 and 368 g/mole respectively. On a one

mole scale, the combined weight loss of ethanol and water in going from monomers

to polymer is 128 g/mole or 18.9%. This obviously represents a significant weight

loss which must be handled if the monomeric reaction approach is employed to

make prepreg and subsequently composites. In most instances, "B staging" is

performed to reduce the volatile evolution and increase the melt viscosity.

A polyimide, designated Avi_d® K-Ill, has the neat resin properties in Table

8. An NMP solution of a mixture of monomers was used to impregnate a

carbon/graphite fiber reinforcement such as Magnamite AS-4 to yield a tacky,

drapable prepreg which contains ... 15-17 weight % volatiles (~ 50% are

polymerization by-products and the remaining 50% residual solvent). Laminates
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were fabricated by conventional vacuum bag/autoclave molding technique using a

ClL[recycle of ~ 9 hours which involved heating to 343°C during ~ 6 hours under

vacuum, applying 1.34 MPa (200 psi) at 343°C, and maintaining at 343°C for ~ 2

hours followed by a cool-down under pressure during 1 hour to 20000. 29 The

mechanical properties of representative laminates are presented in Table 9.

Although Avimid K-Ill prepreg contains high volatile content which can cause

severe composite processing problems, cure cycles as long as 14 hours have been

employed primarily to accommodate the volatile evolution during the fabrication of

sizable low void content (e.g. 0.5%) laminates [e.g. 0.6 m x 2.2 m x 32 plies (2 ft x 7

ft)]. Avimid K-Ill is one of the leading condensation polyimide candidates for high

performance composite applications. Limited quantities of Magnamite AS-4

prepreg currently costs ~ $220 to $440 per kilogram (~ $100 to $200 per pound)

depending on the size of the order. Work is still underway with Avimid K-Ill primarily

to reduce the time required for composite fabrication and also to develop a larger

mechanical property data base. Another condensation polymer (formerly called

NR150B2), Avimid N, with higher temperature performance than Avimid K-Ill is also

under development.

The polyimide of structure 6 was prepared via the polyamic acid in NMP and

subsequently converted to polyimide

polyimide are presented in Table 10.

o o

O// v C (3

by heating in NMP. 42 The properties of the

As prepared by

6

imidization in hot NMP, the polyimide exhibited crystallinity as evidenced by wide

angle x-ray diffraction and differential scanning calorimetry showing a Tm at 236°C.

However, the crystallinity disappears after heating above 250°C and could not be

recovered by simply annealing under ambient conditions. The fractured compact



18

tension specimens of amorphous polymer which gave an average critical strain

energy release rate (Gic) of 3200 JIM2 showed pronounced crazing and moderate

roughness due to yielding, creating new surface area to dissipate the stress. The

melt viscosity in Table 10 is similar to that of the polyetherimide Ultem® 1000 (Tg =

220°C, run at 276°C) and polysulfone UDEL® P-1700 (Tg = 190°C, run at 240°C).

The tensile shear strengths are the highest average value reported for a polyimide

and comparable to the highest values ever reported for an organic adhesive. The

excellent adhesive strength has been attributed to the high flow and accordingly

good wetting of the adherends.

Preliminary unsized AS-4 unidirectional composite properties are also listed

in Table 10. Prepreg was prepared by coating tow with an NMP solution of the

polyimide which was subsequently wound on a drum and air dried to a tack-free

state. The prepreg was then placed unrestrained in a circulating air oven and

further dried by heating to ~ 200°C for 1 hour to yield volatile content of < 1.0%.

Prepreg prepared and dried in this manner is generally of poor quality with high

resin content on the non-drum side, curled and boardy. Although the preliminary

adhesive and composite properties of this polyimide were encouraging, no further

work was performed in our laboratories because the polyimide is sensitive to

solvents encountered in aerospace composite applications (e.g. hydraulic fluid and

paint stripper).

A polyimide of structure 7 was prepared by reacting 1,3-bis(aminomethyl)-

o_ _ 0 A_.],//

--_l_"FO_ tl r(")T I_1-- R

where R =- CH2

7 CH3

CH 2 _ (25%),-(CH2) s- (25%) and -_}_. (50%)
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cyclohexane (0.25 mole) and 1,6-hexanediamine (0.25 mole) with 3,3',4,4'-

benzophenonetetracarboxylic dianhydride (0.99 mole) and phthalic anhydride

(0.002 mole) in m-cresol at ambient temperature under nitrogen for 0.5 hour. 2,4-

Diaminotoluene (0.50 mole) was added and the reaction mixture (solids content of

20%) was stirred under nitrogen for 24 hours at 185 to 195°C. 44 The polyimide had

a surprisingly narrow molecular weight distribution with a polydispersity factor

(Mw/Mn) of only 2.04. The polydispersity factor for most polyimides is significantly

higher. The tensile and compression properties of the polyimide as well as the

fracture energy in Table 11 are excellent. The preliminary adhesive properties were

also impressive with high 25°C strength and good retention of strength at 200°C.

The major disadvantage of this polyimide was the use of m-cresol as the

polymerization solvent. Other solvents were not investigated as the polymerization

medium. Meta-cresol has an unpleasant odor, irritates the skin upon contact and is

difficult to remove.

Unidirectional and fabric carbon/graphite prepreg were prepared by solution

coating and subsequently dried to 250°C to reduce the volatile content to < 1%.

Laminate fabrication involves heating to 300°C under 1.34 MPa (200 psi) and

maintaining at 300°C under pressure for 0.5 hour. Preliminary laminate properties

presented in Table 12 are comparable to that of the state-of-the-art 177°C epoxy

systems.

The polyimide of structure 1 in Eq. 1 commonly referred to as LARC-TPI has

undergone extensive evaluation. Although different properties (e.g. Tg, fracture

energy and adhesive strength) have been reported for LARC-TPI due largely to the

difference in quality of the polymer, thermal history and method of measurement, the

properties in Table 13 are typical. The laminates were fabricated from prepreg

prepared from a 2:1 by weight slurry of LARC-TPI powder and polyamic acid. The
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powder is from chemically imidized polyamic acid and exhibits a transient

crystallinity and excellent melt flow characteristics. LARC-TPI laminates fabricated

without the powder exhibited significantly lower mechanical properties. More recent

composite work with LARC-TPI has provided excellent mechanical properties 49

Since this initial work with the semi-crystalline LARC-TPI powder, a new

experimental form of powder designated LARC-TPI-1500 has been introduced. 50

One grade of this new end-capped, controlled molecular weight, powder form of

LARC-TPI (inherent viscosity of 0.37 dl_/g and Tg of ~ 236°C) as mentioned earlier

had a relatively low melt viscosity [6 x 103 Pa.sec (6 x 104 poise) at 340°C under a

shear rate of 10 -1 sec-1]. 24 Composites from this material are being evaluated.

A polyimide similar to LARC-TPI is the polyimidesulfone in structure 8. The

sulfone group in place of the carbonyl group results in more intermolecular

N roT'_.

kO 8

association (polar interaction) and accordingly a higher Tg (273°C versus 250°C)

and higher modulus [4.96 GPa (720 ksi) versus 3.72 GPa (540 ksi)].51

Polyimidesulfone/112E-glass with an A-1100 finish adhesive tape was used to

fabricate Ti/Ti tensile shear specimens at 325°C under 1.38 MPa (200 psi) for 15

minutes. Tensile shear strength of 32.1 MPa (4650 psi) at 25°C, 18.1 MPa (2620

psi) at 232°C, and 24.5 MPa (3560) at 232°C after 5000 hours at 232°C in air were

obtained. 51 A postcure effect (higher strength after aging) is evident at 232°C

similar to that observed for LARC-TPI. This polyimide has also been evaluated as a

composite matrix. Two parts of the LARC-TPI semi-crystalline powder were blended

with one part (by weight) of the polyamic acid of the polyimidesulfone and the

resulting slurry used to prepare prepreg. The composite properties were slightly

better than those reported in Table 13 for LARC-TPI. Further work is underway to
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optimize the formulation and the composite fabrication conditions49 with the

polyimidesulfone.

Two relatively new thermoplastic polyetherimides recently developed as

composite matrices are similar in chemical structures to that of Ultem® 1000

polyetherimide 52 in 9. Although the chemical composition of these two new
0 0

II CH 3 It

_C_ 0 C 0 1

0 0
9

polyetherimides, Cypac 7005 and 7156-1, have not been disclosed, Cypac 7005

presumably uses a different diamine than Ultem® 1000 whereas Cypac 7156 uses

a different dianhydride and diamine than Ultem® 1000. The neat resin properties of

Ultem® 1000, Cypac 7005 and Cypac 7156-1 are presented in Table 14. The Tg of

Cypac 7156 (275°C) is higher than that of Cypac 7005 (230°C) which permits better

retention of mechanical properties at elevated temperatures.

Laminate properties for Cypac 7005 are summarized in Table 15. In addition,

compression strength at 23°C after 1500 in Ib/in impact for fabric laminates was

46,000 psi while quasi-isotropic AS-4 laminates gave 42,000.s4, 5s Unidirectional

AS-4 laminate also gave 23°C short beam shear strengths of - 16,000 psi, 54 a

relatively high value for a thermoplastic matrix. The Cypac 7005 laminates were

reported 53 to show little effect after exposure to jet fuel (JP-4) and hydraulic fluid

(Skydrol). The current price of Cypac 7005 AS-4/3K70P fabric prepreg is ~ $330/kg

(~ $150/Ib).

A controlled molecular weight, end-capped version of the semi-crystalline

polyimide of structure 4 (neat resin properties in Table 5) was recently evaluated in

composite work. 56 Unidirectional unsized AS-4 laminates fabricated at a final
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temperature of 365°C under 3.4 MPa (500 psi) for 15 minutes followed by a

postcure at 300°C under 3.4 MPa for 3 hours from solution-coated drum-wound tape

containing 2.1% volatiles gave the preliminary properties in Table 16. Good

retention of flexural properties was observed at temperatures as high as 232°C

(above the Tg) due to increased crystallinity from aging at 316°C for 100 hours. The

short beam shear strengths are low because of the poor quality of the prepreg (e.g.

fiber misalignment, resin rich areas, fiber wetting, etc.). Regardless, short beam

shear specimens tested at 232°C retained 60% of their room temperature strength.

Further work is underway on LARC-CPI to optimize the polymer (improve

processability, crystallization rate, etc.), obtain better quality prepreg and conduct

more extensive laminate properties.

Another condensation polyimide, JD861, has been evaluated as a composite

matrice and is commercially available.57 The exact chemical composition has not

been disclosed although the polyimide is thought to be from the reaction of the

dimethyl ester of 3,3',4,4'-benzophenonetetracarboxylic acid and two diamines, one

of which may be 1,3-bis(3-aminophenoxy)benzene. JD861 has a Tg of 266°C; 23°C

flexural strength and modulus of 170 MPa (24.7 Ksi) and 4.1 GPa (590 Ksi)

respectively; 23°C tensile strength, modulus and strain of 120 MPa (17.4 Ksi), 3.4

GPa (500 Ksi) and 4.2% respectively; and a fracture toughness of 1400 J/M2 (8 in

Ib/in2).58 Preliminary carbon/graphite fabric composite properties are presented in

Table 17. Residual compressive strengths of quasi-isotropic Toho HTA-7 laminates

after 6750 J/M (1500 in Ib/in) impact were ~ 220 MPa (32 Ksi).58

CONCLUSIONS

Although condensation polyimides can be prepared for many applications

where the Tg, Tin, thermooxidative stability, toughness, color, dielectric constant,
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coefficient of thermal expansion, chemical stability, mechanical properties, etc. can

be controlled within certain boundaries, a readily processable, low cost, high

temperature condensation polyimide with high overall composite properties has not

been realized. Depending upon the approach to condensation polyimide

composite matrices (e.g. mixture of monomers, polyamide acid, polyimide, mixtures

of polyamide acid and polyimide, etc.), certain shortcoming still exist. These

include:

• limited flow which necessitates the use of high fabrication temperatures

and pressures

• volatile evolution leading to processing problems and poor mechanical

properties

• high cost which may discourage their use except in specialty high

performance applications

• low compression strength

To overcome these limitations, research and development is being directed

towards the following areas:

• Improving _he processability of polyimides that do not evolve volatiles

• Development of an in-situ polymerization route to high Tg, solvent

resistant, tough polyimides without volatile evolution

• Cost reduction through use of less expensive monomers and better

processability

• Increased durability at high operating temperatures

• Higher compression strength

• Innovative low cost process to prepare prepreg and composites

A single polyimide matrix system cannot perform in all the different

applications because the requirements vary significantly. As a result, composite

matrices are generally developed for particular applications. Polyimide matrix
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development during the last two decades has been sporadic primarily because of a

questionable market. New markets are developing particularly in the military arena,

jet engine applications and in high speed commercial transports (formerly called

supersonic transports) which demand high temperature performance. These areas

offer the potential for a sizable market for polyimide composite matrices. As

polyimides evolve with good processability and mechanical performance, larger

markets will develop which will lower the cost and stimulate their use in other

structural applications.

The use of trade names or manufacturers does not constitute an official

endorsement of such products or manufacturers, either expressed or implied, by the

National Aeronautics and Space Administration.
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Table 1

Glass Transition Temperatures of Polyimides*

o oII II
/C_ CF3/_/C,,,.

N,,,CO,,,[,_ _ _C N-Ar
II CF30 0

Ar --

-GOH2_-

-_s_
-_s__

n inh' dL/g

0.35

0.41

0.64

0.40

0.38

0.46

0.35

0.31

0.35

mg. °C

326

297

365

337

291

285

283

336

229

* Ref 16



Table 2

Glass Transition Temperatures of Polyimides*

oo._ II IIN c/Ar c/N--Ar
II II
0 0

Ar

BTDA

AF' n inh of poly(amide-acid),dL/g

4,4'-DABP 0.73 295

BTDA 3,4'-DABP 0.64 283

BTDA 3,3'-DABP 0.55 264

PMDA 4,4'-DABP 0.98 380

PMDA 3,4'-DABP 0.84 339

PMDA 3,3'-DABP 0.83 321

0 0 0 0
II II II II

do_o r_F.C..o o_0_%
_c_C-L.,Y.,_C / _C/_/_C/

II II II II
0 0 0 0

BTDA PMDA DABP

* Ref 7



Table 3

Glass Transition Temperatures of Polyimides*

o o
II II

Ic_ /c_N_r,,Ah_o_o
N_'c/Ar_C/II II _1_ I_ L,_/n

• 0 0

Ar = nin h of polyamide acid,dUg

;_o-_ o._,
;____ o._o

c_

I

c_

0.44

mg, °C

167

187

201

206

221

* Ref 19



Table 4

Glass Transition and Crystalline Melt Temperatures of Polyimides*

0 0

/C_ ,,,C'_,-C_ II
N N C--
"C O/L_o_ / 0

II II
0 0

Ar

Polyamide acid

n inh ,dL/g

0.81

0.62

0.57

0.52

0.42

Polyimide

Tm ' oTg,°C C

222 350

233 427

233 422

215 418

246 424

* Ref 20



Table 5

Properties of Polyimide 2 (LARC-CPI)*

Glass transition temperature: 222°C

Crystalline melt temperature: 350°C

Melt viscosity at 395°C at angular frequency of 0.1 rad/sec:

Equilibrium moisture pickup: < 1%

Dielectric constant at 1 MHz: 3.1

Solvent Resistance: Excellent

Fracture Energy (GIc): 6650 J/M z (38 in Ib/in 2)

Un0riented Thin Film Tensile Properties (Through 1 hr @ 300°C)

105 Pa.sec (106 poise)

Test Condition Strength, MPa (Ksi) Modulus, GPa (Ksi) Elongation, %

25°C 151.7 (22.0) 4.34 (630) 8.3

25°C after 100 hr soak in 30% 139.9 (20.3) 4.07 (590) 5.0

aq. NaOH

177°C 104.8 (15.2) 3.72 (540) 21.1

232°C 35.8 (5.2) 1.69 (245) 76.1

232°C after 100 hr @ 316°C in air 57.9 (8.4) 2.35 (341) 9.6

Ti/Ti Adhe._ivg Properties [RT _ 400°C under 6.9 MPa (1000 psi), hold 15 min @ 400°C]

Tensile Shear Strength, MPa (psi)

43.1 (6250)

49.1 (7120)

31.1 (4510)

4.1 (590)

18.9 (2740)

25.3 (3670)

Test Condition

25°C

25°C after 1000 hr @ 232°C

177°C

232°C

232°C after 1000 hr @ 232°C

232°C after 100 hr @ 316°C in air

*Ref. 21



Table 6

Glass Transition Temperatures and Color of Polyimide Films*

X ___1 --Ar

X

-C(CF3) 2-

-C(CF3)2-

-C(CF3) 2-

-C(CF3) 2-

-0-

-0-

-0-

Ar --
Polyamide acid

nin h ,dL/g Tg, °C

__o-_o-_ ,_o

-_o_ ,oo

_,o_-_ o,,
--I_ C (CF3)2"_- 0.60

-_o-_o-_ o,,

-_s°_-_ o._,

206

244

279

260

187

192

258

Film color**

Pale to colorless

Pale to colorless

Colorless

Colorless

Pale yellow

Pale to colorless

Pale yellow

* Ref 22

** Film thickness, [0.0051 cm, (0.002 in.)]



Table 7

Dielectric Constants of Polyimides*

o
II II

.,-C_ ,,.C_

N C jAr c/N--Ar'
II II
0 0

AF Ar'

-8::)_0_@-

Dieleclric constant
at 10 GHz

3.22

_o-_

;5

;5
__CF_F___

_F_

-_o__

__o_
-_o__

__o__
-_L_o__

-_o-_

2.84

3.15

3.09

3.07

2.99

2.79

2.73

2.39

* Ref 23



Table 8

Ambient Temperature Properties of Avimid® K-Ill*

Tensile Strength

Tensile Modulus

Elongation

Fracture Energy (GIc)

Shear Modulus

Poisson's Ratio

Density

Tg

102 MPa (14800 psi)

3.76 GPa (546,000 psi)

14%

1900 J/M 2 (10.9 in Ib/in 2)

1.37 GPa (198,000 psi)

0.365

1.31 g/cc

251oc

*Ref. 29
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Table 10

Properties of Polyimide 61

Glass transition temperature: 155°C

Crystalline Melt temperature: 236°C

Melt viscosity for amorphous polymer at 210°C under angular frequency of 0.1

rad/sec: 6 x 105 Pa.sec (6 x 106 poise)

Fracture energy (GIc): 3200 J/M2 (18.2 in Ib/in2)

Thin Film Properties (_driedthrough 2 hr _ 210°C_

Test Temp., °C

Tensile Strength, MPa (Ksi)

Tensile Modulus, GPa (Ksi)

Elongation, %

25 93

86.2 (12.5) 64.8 (9.4)

2.70 (391) 2.06 (298)

4.0 5.0

Ti/Ti Adhesive Properties (RT _ 260°C. 100 Dsi. held 15 min)

Test Temp., °C 25 93

Tensile Shear Strength, MPa (psi) 54.1 (7850) 37.2 (5400)

Un_ized AS-4 Unidirectional Laminate Pro Derties 2 (RT _ 260°C. 100 Dsi. held 30

Test Temp., °C

Flexural Strength, MPa (Ksi)

Flexural Modulus, GPa (Msi)

Short Beam Shear Strength, MPa (Ksi)

25 93

1716.6 (249) 1111.9 (162)

117 (16.9) 109 (15.8)

82.7 (12.0) 47.5 (6.9)

1Ref. 42

2Ref. 43



Table 11

Properties of Polyimide 7

Glass transition temperature: 233°C

Inherent viscosity at 25°C: 0.28 dug (CHCI3), 0.55 dug (m-cresol)

Number average molecular weight: 24,500 g/mole
Weight average molecular weight: 50,000 g/mole

Density: 1.33 g/cc
Melt viscosity at 300°C at angular frequency of 0.1 rad/sec: 106 Pa.sec (107 poise)

Equilibrium water pickup: 2.5%

Solvent resistance: Resistant to hydraulic fluid, jet fuel, deicing fluid

Fracture energy (GIc): 2100 J/M2 (12 in Ib/in2)

Properties of neat resin moldings 1

Test Temperature, °C

Tensile Strength, MPa (Ksi)

Tensile Modulus, GPa (Ksi)

Elongation, (break), %

Compressive Strength, MPa (Ksi)

Compressive Modulus, GPa (Ksi)

Elongation (yield), %

25 93

128.2 (18.6) 93.8 (13.6)

3.14 (456) 2.72 (395)

6.7 5.0

213.7 (31.0) 156.5 (22.7)

3.82 (554) 3.16 (458)

9.5 8.6

Ti/Ti Adhesive Properties 2 [RT -_ 316°C under 0.34 MPa (50 psi), hold 0.5 hr @

316°C]

Test Condition

25°C

25°C after 3 da water boil

200°C

200°C after 500 hr @ 200°C

Tensile Shear Strength, MPa (psi)

37.0 (5370)

26.1 (3790)

19.5 (2830)

18.7 (2710)

1Ref. 44

2Ref. 45
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Table 13

Properties of Polyimide 1 (LARC-TPI)

Glass transition temperature: ~ 250°C
Density: 1.33 g/cc
Fracture energy (GIc): "" 2600 J/M 2 (15 in Ib/in 2)

Uporiented Thin Film Properties at 25°C (dried through 1 hr @ 300°C) 1

Tensile Strength, MPa (Ksi)
Tensile Modulus, GPa (Ksi)
Elongation, %

13.6 (19.7)
3.72 (540)

4.8

Ti/Ti Adhesive Properties [RT -_ 343°C under 1.4 MPa (200 psi)]

Test Condition Tensile Shear Strength, MPa (psi)

25°C

232°C

232°C after 1000 hr @ 232°C

232°C after 10000 hr @ 232°C

232°C after 37000 hr @ 232°C

42.6 (6000) 2

13.8 (2000) 3

15.2 (2200) 3

24.1 (3500)3

24.1 (3500) 3

Unidirectional AS-4 Laminate Properties 4,5 [cured through 1 hour @ 350°C under
2.1 MPa (300 psi)]

Flexural St., Flexural Mod., Short Beam Shear

Test Temperature, °C MPa (Ksi) GPa (Msi) St., MPa (Ksi)

25 1972 (285) 97.2 (14.1) 95.1 (13.8)
93 1751 (254) 97.2 (14.1) 86.9 (12.6)

149 1599 (232) 90.3 (13.1) 73.1 (10.6)

177 1372 (199) 91.7 (13.3) ....

1Ref. 7

2Ref. 47

3Ref. 48

4Ref. 49

5Fiber Vol ~ 48%, good C-scan



Table 14

Neat Resin Properties*

Property

Tg, °C

Tensile St., MPa (Ksi)

Tensile Elong., %

Flexural St., MPa (Ksi)

Flexural Mod., GPa (Ksi)

Ultem® 1000

217

105 (15,2)

60

145 (21.0)

3.3 (479)

Cypac 7o05

230

95 (13.8)

20

130 (18.9)

3.0 (435)

Cypac 7156-1

275

102 (14.8)

15

128 (18.6)

3.1 (450)

*Ref. 53



Table 15

Cypac 7005 Graphite AS-4/3K7OP Laminate Properties*

Property

Tg, °C

Fiber Vol., %

Flexural St., MPa (Ksi)

23°C dry

150°C dry

150°C wet

Flexural Mod., GPa (Msi)

23°C dry

150°C dry

150°C wet

Short Beam Shear St., MPa (Ksi)

23°C dry

150°C dry

150°C wet

Compression St., MPa (Ksi)

23°C dry

150°C dry

150°C wet

Value

225

54

838 (120)

559 (80)
405 (58)

56 (8.0)

54 (7.9)

53 (7.7)

66 (9.5)

41 (5.8)

35 (5.0)

503 (73)

414 (60)
289 (42)

*Ref. 53



Table 16

LARC-CPI Unidirectional Unsized AS-4 Laminate Properties*

Test Temp., Flexural St., Flexural Mod., Short Beam

°C Exposure Ksi Msi Shear St., Ksi

25 None 267 15.0 8.7

177 None 212 14.4 3.0**

204 None 196 14.4 ---

232 None 110"* 11.9 ---

25 100 hr @ 316°C, air 265 14.3 8.9

1 77 100 hr @ 316°C, air ........ 6.9

204 100 hr @ 316°C, air 214 14.0 5.9

232 100 hr @ 316°C, air 209 13.3 5.3

*Ref. 56; fiber volume ..-53%; fabricated by heating to 365°C under 500 psi, holding

0.5 hr @ 365°C under 500 psi, and postcuring at 300°C for 3 hr under 500 psi

**Thermoplastic failure



Table 17

JD°861 Toho HTA-7, 5-Harness Satin Fabric
Laminate Properties (Weft direction)*

Flexural St., MPa (Ksi)

23oC

200oC

Flexural Mod., MPa (Msi)

23oc

200°C

Short Beam Shear St., MPa (Ksi)

23oc

200°C

Compressive St., MPa (Ksi)

23°C

200°C

790 (114)

500 (72.4)

57 (8.3)

56 (8.1)

56 (8.1)

36 (5.2)

369 (53.6)

199 (28.8)

*Ref. 58


