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AB STRACT

A multigrid method is presented for calculating turbulent jets in crossflow. Fairly

rapid convergence is obtained with the k - e turbulence model, but computations

with a full Reynolds stress turbulence model (RSM) are not yet very efficient. Grid

dependency tests show that there are slight differences between results obtained on

the two finest grid levels. Computations using the RSM are significantly different from

those with k - _ model and compare better to experimental data. Some work is still

required to improve the efficiency of the computations with the RSM.

*Work Funded under Space Act Agreement C99066G.
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constant in Reynolds stress model

k - e turbulence model constants

jet diameter

near-wall proximity function in Reynolds stress model

rate of production of turbulent kinetic energy

height of duct

turbulent kinetic energy

pressure

jet to crossflow velocity ratio

pitch spacing of multiple jets

source term for dependent variable

crossflow velocity

cartesian velocity components

Reynolds normal stresses in cartesian directions

Reynolds shear stresses

jet velocity

width of duct

cartesian coordinates

constants in Reynolds stress model

Kronecker delta

rate of dissipation of turbulent kinetic energy

von Karman constant

thermal/species diffusivity

molecular viscosity

turbulent eddy viscosity

density

turbulent Prandtl/Schmidt number for

General representation of dependent variable

Superscripts

1

2

3

lateral direction

vertical direction

longitudinal direction
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INTRODUCTION

Three-dimensional turbulent jets in crossflow have important engineering applications in

both confined and unconfined environments. Examples of jets issuing into confined cross-

flow include internal cooling of turbine blades, dilution air jets in combustion chambers,

jets from V/STOL aircraft in transition flight, etc. The examples of turbulent jets issuing

into unconfined (semi-infinite) crossflow are even more numerous. These include discharges

from cooling towers or chimney stacks into the atmosphere or sewerage and waste heat

into water bodies, film-cooling of turbine blades, etc.

The interaction of the jets with the crossflow has been investigated in numerous exper-

imental studies [1-4]. Crabb et al [2] present a comprehensive review of pre 1980 studies,

most of which only deal with mean flow properties. Measurements of turbulent properties

can be found in [2-6]. Numerous computational studies of the generic problem of turbulent

jets in crossflow are also reported in the literature [7-10], but there are uncertainties as to

the accuracy of the results. First, it has not been possible to obtain grid independent solu-

tions. In a recent study, Claus and Vanka [11] present results with computational grids up

to 96x96x256, but could still not confirm grid independency. Secondly, most computat;ons

have employed the k- e turbulence model which assumes gradient diffusion relations for the

Reynolds stresses and an isotropic eddy-viscosity distribution. Measurements of Reynolds

stresses and velocity fields by Andreopoulos and Rodi [4] suggest that these assumptions

may not be appropriate in many cases.

The present study tries to address these problems. Computations are performed with a

multi-grid procedure which enables convergence on very fine grids within a relatively small

number of iterations. A second-moment closure turbulence model is utilised to compute

the Reynolds stresses, as well as the more popular k - e model.

MATHEMATICAL MODEL

In the present work we solve the time-averaged, three-dimensional, steady state equations

governing the turbulent flow and heat transfer. The equations may be expressed in carte-

sian tensor notation as:

Continuity

Momentum

_
Oy _

Temperature/Concentration

)
Oy J

= o (1)

y Oy_ kay J + Oy'}j
(2)
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with i--1,2,3 and j--1,2,3 representing properties in the lateral, vertical and longitudi-

nal directions, respectively, yJ (-- yl,y2, yS) represents the cartesian coordinates; Ui the

cartesian velocity components; P the presssure and ¢ the normalised temperature or con-

centration, p is the density,/_ is the molecular viscosity and A is the thermal or species

diffusivity. The equations are expanded by using Einstein's summation rule for repeated

indices. -p_and -pu-_are respectively, the Reynolds stresses and heat/concentration

fluxes which must be determined by a turbulence model before the system of equations
can be closed.

Turbulence Model

In this paper results are presented of calculations with both the standard k - e turbulence

model [12] and a second-moment turbulence closure based on the proposals of Launder,

Reece and Rodi [13], hereafter denoted LRR.

In the standard k - e model, the Reynolds stresses and heat fluxes are approximated

with the Boussinesq eddy viscosity/diffusivity concept as

(0__sv0__iv_ ,
-pu_ui = #t \ OyJ + Oy' } - _k6_i (4)

./_ 0¢
-P"'_' : °* _u' (5)

#tis the eddy viscosity given by :

k 2

I_t = cup T (6)

The distributions of the turbulent kinetic energy k and its rate of dissipation e are then

obtained from the solution of the transport equations:

-_y,(pU_d - Oy, _,a,Oy,/ c_2p-_

where G is the turbulence production rate given by:

G = - pu_uj
Oy _

The empirical constants appearing in the equations above are:

(8)

(9)



(10)

and 6_j is the Kronecker delta. Equations (1)-(9) form a closed set which is solved itera-

tively in a sequential manner to obtain the velocity and temperature fields.

For the second-moment closure model, we adopt the proposals of LRR [13], model 1

to approximate the pressure-strain, diffusion, and dissipation terms in the Reynolds stress

equations. The resulting system of equations can be written in cartesian tensor notation as:

= o , - +- p{(1 a) u--T  yU,]

with the empirical coefficients a, fl,'l, cl, and ca given by:

a = 0.7636- 0.06f; fl = 0.1091 + 0.06 f; ff = 0.182; cl : 1.5- 0.50f; ca = 0.22

(12)

and f is the wall-proximity function with value of unity near walls and zero in a completely

free stream.

To be consistent with the second-moment closure, we modify Eq. (8) slightly by intro-

ducing non-isotropic eddy-viscosity distributions into the diffusion terms, following LRR.

We do not apply a second-moment closure model to the turbulent heat flux u_ in the

present study. Equations (1), (2), (3), (8) and (11) form a closed set which should be

solved simultaneously. The equations are solved in a sequential manner, first for the ve-

locity components and pressure, then Reynolds stresses and dissipation, and finally the

temperature. If the terms involving gradients of the Reynolds stresses on the r.h.s, of Eq.

(2) are treated explicitly the system of equations will be very stiff and it will be extremely

difficult to obtain a converged solution with an iterative scheme. The stiffness can be

reduced considerably by splitting the Reynolds stress u_u i into two parts:

_Uj_

u,u i uiu/- /_tf0--U_U' ÷ (13)
= p _ OyJ Oy _ )

The first part is treated explicitly. The second part is added to the molecular diffusion

term and treated implicitly. The modified momentum equation has the form:

- Oy' kay' + Oy'/] (14)



The set of Eqs. (1), (3), (8) (11) and (14) is solved, using underrelaxation factors of 0.75

for the three velocity components, 0.25 for the presssure, and 0.7 for the temperature and

all turbulence quantities. Four types of boundary conditions are encountered, namely:

inlet, outlet, symmetry and walls. Inlet conditions are specified from experimental data.

The outlet is an outflow boundary requiring no formal specification of conditions. Along

symmetry planes the normal gradients of all variables are set to zero, and the normal

velocity component is also zero. The walls are special in that we do not integrate all the

way down, rather we use the wall-function method [12,13] to prescribe the values of the

dependent variables at near-wall nodes.

Multigrid Procedure

In the present work the FAS-FMG (full approximation storage-full multigrid) algorithm

originally developed by Brandt [14] is employed to solve the hydrodynamic equations.

The present implementation derives from previous works by Demuren [15] and Vanka [16].

There are however significant differences. First, the present method uses a regular grid sys-

tem with no staggering of the velocity nodes relative to the pressure nodes. The expected

odd-even decoupling problem is overcome by adding a fourth-order artificial dissipation

term to the pressure gradient. It can be shown that, with a coefficient of unity, this

practice is equivalent to the so-called "momentum interpolation" method of Peric [17].

However, there is now the flexibility to vary the coefficient all the way down to zero, if nec-

essary. The second difference is that the system of equations is now solved in a sequential

manner as opposed to the coupled approach proposed by Vanka. Numerical experiments

showed no advantage in using the latter in a multigrid procedure, and it can be shown

mathematically that it is less stable in a single-grid procedure. Further, it appears easier

to vectorize the decoupled procedure.

The smoothing scheme is based on the SIMPLEC method described by van Doormaal

and Raithby [18]. The salient steps are:

1. Solve the U1 momentum equation using a guessed pressure field.

2. Then the U2 momentum equation.

3. Then the U3 momentum equation.

4. Compute the velocities on the faces of the control volume, each by linear interpolation

plus a fourth-order artificial dissipation term.

5. Then compute the mass source error in each control volume.

6. Solve a pressure-correction equation to eliminate the mass source errors, and then

correct the pressures and corresponding velocity components.
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7. If on the finest grid level, solve the equations for k, e, and u_u i, as the case may be.

8. Then solve the temperature equation.

These steps are repeated until convergence. A V-cycle multigrid algorithm is utilised

with 10 iterations on the coarsest grid and 3 on intermediate grids. One or more iterations

are carried out on the finest grid depending on the achieved smoothing rate. Restriction

from fine to coarse grid is by averaging, and prolongation from coarse to fine grid is by

trilinear interpolation. An ADI scheme is employed to solve the final set of algebraic

equations for all variables at all grid levels. The underlying algorithm is the tri-diagonal

matrix algorithm (TDMA) which is known to be recursive, and would thus not normally

be vectorizable. However, by changing the data structure we can make all the internal

loops of the ADI solver vectorizable on the Cray computers. Although we cannot remove

the recursivity of the algorithm, the change in data structure ensures that all floating point

operations are in vector form. Typical saving in total CPU time resulting from this is of

the order of 50%.

The equations for turbulent quantities k, e and uiuj are solved only on the current finest

grid during the iteration process. Corresponding operators on coarser grids are calculated

using restricted values for these quantities. However, the solution process on any fine grid

is started with variable values prolongated from the converged solution on the immediate

coarser grid. This point is especially important for the Reynolds stresses.

RESULTS AND DISCUSSION

Computational Details

The test cases for the present work are derived from experimental studies of opposed

jets discharging normally into a cross-stream by Atkinson et al [3]. Figure 1 shows the

schematic diagram. Three cases are considered; two with a single pair of opposed jets and

one with a row of five pairs. The computational details are presented in table 1, below.

Table 1 :Computational Details of Test Cases.

Case R S/D or W/D Coarsest Total Points CPU Time/ Work Units

grid on Finest Grid (Cray YMP mins)

1 1.8 12 12x10x22 876,744 39/82

2 1.0 12 12x10x22 876,744 34/71

3 1.8 4 8x10x22 534,600 27/94

In table 1, R represents the jet to crossflow velocity ratio, D is the jet diameter, W

is the channel width in the single-pair jet study, and S is the jet-centreline pitch spacing

in the multiple-pairs jet study. The channel heigth is 4D in all cases, so that there is a
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symmetry plane at 2D. Cases 1 and 2 also have a symmetry plane passing through the

centre of the jet and channel, whereas case 3 has a third symmetry plane through the

mid-plane between jets. The inlet plane for the crossflow is located 4D upstream of the jet

inlet and the outlet plane 14D downstream. We take advantage of the various symmetry

planes to minimize the size of the computational domain. Figure 2 shows typical velocity

vectors in the center plane computed with the RSM model on a 3-level grid. Details of

the flow field are discernible in the exploded view (a). We can see the complex flow spiral

in the wake, which shows how the crossstream passing between the jets is entrained into

the jet. There is also a small reverse flow near the stagnation point in front of the jet.

Further, for this velocity ratio, it is clear that the two opposing jets impinge upon each

other along the symmetry plane, from about one diameter downstream of the exit pipes.

The performance values in table 1 are for convergence to a normalised residual level of

5x10 -4. They represent the total computational work done on all grids for computations

with the k - E turbulence model on a single processor. Computations with the Reynolds

stress model typically require twice as many iterations. It now appears that the multigrid

scheme should also be applied to the turbulence quantities k, e and u-7_. The computations

presented in the paper are for 3- and 4-grid levels using the k - e turbulence model and

3-grid levels using RSM. 3-grid-level calculations take roughly 3-4 minutes.

Grid Dependency

One of the main aims of the present study is to attempt to obtain grid-independent results

through considerable grid refinement, so as to separate numerical errors from model errors.

Figures 3-5 present the results of grid dependency tests. In Fig. 3, computed longitudinal

velocity contours are compared along four axial planes for case 1. The computations on

the right are on a grid which is exactly twice as fine as the one for the results on the left.

We see that the flow patterns are exactly the same, but there are slight differences in peak

values, especially in the near field. Figure 4, showing computed concentration/normalised

temperature contours emphasizes these points. We also see steeper gradients near the edge

of the jet for the finer grid computations, which is a result of reduced numerical diffusion.

Figure 5 repeats these comparisons along two axial planes for case 3, which has the same

velocity ratio as case 1 but for multiple pairs of jets. It is interesting to note that the

results for these cases are similar, except for the higher velocity magnitudes and smaller

jet spreading in case 3. These are of course due to the higher blockage factor in this case.

Although the results cannot be claimed to be grid-independent the differences between

them are small enough for us to estimate changes that could be expected from further grid

refinement as compared with turbulence model changes. These results are for 3-level and

4-level grids. The next level of grid refinement will contain about 6.8 million points and

should require about 256 megawords memory and 4 hours computational time. Although

this is still within the capacity of the computer, the turnaround is expected to be very

long.
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Comparison with Experiment

The present computations on a 3-level grid are compared with experimental results of

Atkinson et al I31 in Figs. 6 and 7. The choice of grid is dictated by the little differ-

ences in predictions between 3- and 4-level grids shown in the preceeding subsection, and

the much greater expense of computations with RSM. Figure 6 presents the longitudinal

velocity results for case 1 and fig. 7 those for case 2. For case 1, predictions with the

k - _ model at yS/D = 4 show the characteristic kidney shape. This is not evident in

the measurements, and the RSM results show a much milder shape. It appears that the

k - c model produces counter-rotating vortices that are too strong, leading to excessive

distortion of the velocity contours. The Reynolds stresses act to reduce this motion and

thus procure better agreement with the measurements. This trend is repeated in the re-

suits at y3/D = 8 . In general, the RSM model produces contour shapes that are much

closer to the measurements than the k - E model. The magnitudes may not be exactly the

same, but the trends are very encouraging, and the changes are certainly more significant

than obtained through grid refinement. However, more work needs to be done to improve

the RSM predictions. Concentration comparisons are not presented because these are not

truly symmetrical in the experiments since only one jet was seeded in each case.

CONCLUDING REMARKS

A multigrid procedure for calculating turbulent jets in crossflow has been presented. The

procedure is applied with either a k - E turbulence model or a second-moment closure

model. With the k - c model version, convergence can be obtained in less than 100

equivalent fine grid iterations on any grid. RSM version still needs some work to bring it

to the same level of emciency. Computations with the k - _ model show slight changes

with grid refinement, but the use of the RSM leads to much closer agreement of velocity

contours with experimental data.
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