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Abstract 

This thesis resulted from a research effort that explored the use of 
knowledge-based system (KBS) architectures to manage information on the primary 
flight disJ?lay (PFD) of commercial aircraft. The information management strategy 
that was implemented tailored the information on the PFD to the tasks the pilot 
performed. This task-tailored approach to PFD information management required 
complex logic that led to difficult-to-manage software in earlier implementations 
using traditional programming techniques. Based on this problem, a KBS approach 
was chosen over the traditional programming approach. This decision was based, in 
part, on an earlier study that found KBS architectures easier to manage given 
complex decision logic. This thesis describes the KBS design and implementation of 
the task-tailored PFD information management application. 

While working with the PFD information management system, an 
improvement to the system's functionality was made. In the logic used for task­
tailored information management, knowledge of the phase of flight was necessary 
for correct operation. Needing this input required that the pilot track and enter this 
information (via cockpit switches) throughout the flight. This additional task for the 
pilot was not desirable, so an effort to automate the detection of flight phase was 
pursued. This thesis describes the knowledge acquisition and subsequent system 
design of the flight-phase detection KBS. 

Since the task-tailored PFD information effort became the first study 
involving integrated KBS's running in LISP and executing in real time on a civil 
transport aircraft, a preliminary study to evaluate the feasibility of the KBS concept 
was performed. The objectives of this feasibility study were to test the resulting 
KBS's, collectively called the Task-Tailored Flight Information Manager (TTFIM), 
in flight, to verify their implementation, integration, and to validate the software 
engineering advantages in an operational environment. This thesis will discuss these 
flight tests and the subsequent results. 

The results of the flight tests verified the feasibility of using KBS's for PFD 
management with actual data. Correct implementation and integration of the KBS 
with existing aircraft systems were evident by the correct mapping of KBS-dictated 
PFD formats with those generated by the traditional implementation. Flight tests 
were also successful in validating the logic used for flight-phase detection. The 
flight-phase detection logic was successful for all elements within the flight-test 
envelope except one. However, the cause of this one problem was easily isolated 
during the flight test given the KBS environment. 

The process of implementing the KBS's for flight tests validated the software 
engineering advantages in an operational environment. Frequent modifications to 
TTFIM were necessary to achieve desirable performance. The KBS's built-in 
utilities enabled quick and easy modifications. This observation and positive 
programmer feedback validated the ability of a KBS approach to ease software 
maintenance. Another finding in favor of the software engineering advantages of 
the KBS approach was the programmer's ability to more easily develop initial 
systems (i.e., from scratch) using the KBS shell than with traditional programming 
techniques. And, the ease with which the one logic error in the flight-phase 
detection KBS was isolated during the flight tests was further evidence of the 
software engineering advantages of KBS architectures. 



Contents 
Page 

Abstract............................................................................................................................. i 
Contents............................................................................................................................ 11 
Acknowledgements .......................................... .. ............................... ............. .................. 11 

List of Acronyms .............................................................................................................. 11 

Introduction ..................................................................................................................... 1 
1 Task-Tailored PFD Information Management 

1.1 Domain............................................................................................................ 2 
1.2 Problem........................................................................................................... 4 
1.3 Approach . .. . . . . . . . . . . . ... .......................................... ............................. ................. 4 
1.4 System Design ................................................................................................. 5 

2 Automatic Flight-Phase Detection 
2.1 Problem ........................................................................................................... 8 
2.2 Approach ......................................................................................................... 8 
2.3 System Design ................................................................................................. 10 

3 Evaluation ....................................................... ................. .. . ....................... .............. .... 13 
4 Concluding Remarks.................................................................................................. 16 
Appendices 

A Primary Flight Display (PFD) ...................................................................... 18 
B Transport Systems Research Vehicle (TSRV) .......................................... 22 
C Optional PFD Information ........................................................................... 26 
D Input for Information Selection KBS ......................................................... 28 
E Information-Management Logic ................................................................. 31 
F Implementation and Integration Issues ...................................................... 35 
G Flight-Phase Detection Rules...................................................................... 41 
H Flight-Test Envelope for Stage 1 Tests...................................................... 43 
I Flight-Test Envelope for Stage 2 Tests ...................................................... 49 
J GoldWorks Code ........................................................................................... 50 

Bibliography ..................................................................................................................... 85 

Acknowledgements 
I would like to acknowledge the able technical support of James Ramsay, 

who managed the GoldWorks(TMJ KBS software for the real-time aircraft 
experiment, and Kelly DeBure, who modified and maintained the aircraft software 
affected by the introduction of the KBS's. 

List of Acronyms 
CMP 
CR 
CRT 
DATAC 
EC 
ED 
EICAS 
EPR 
1/0 
KBS 
LaRC 
LD 

Control Mode Panel 
Cruise 
Cathode-Ray Tube 
Digital Autonomous Terminal Access Communication 
Enroute Climb 
Enroute Descend 
Engine Indication and Crew Alerting System 
Engine Pressure Ratio 
Input/Output 
Knowledge-Based System 
Langley Research Center 
Land 

11 



NASA 
PC 
PFD 
STAR 
TC 
TSRV 
TTFIM 
TX 
T/0 
TD 
VLDS 

National Aeronautics and Space Administration 
Personal Computer (TM) 

Primary Flight Display 
Standard Terminal Arrival Route 
Terminal Climb 
Transport Systems Research Vehicle 
Task-Tailored Flight Information Manager 
Taxi 
Takeoff 
Terminal Descend 
Visual Landing Display System 

Ill 





Introduction 

The difficulties flight crews have experienced managing the 
large amount of information available in today's transport aircraft cockpit, and the 
trend to increase the amount of information in future cockpits, have made 
information management a primary avionics concern. Many airline incidents and 
accidents have been attributed to difficulties mana~ing cockpit information. For 
example, a United Airlines DC-8 crash in 1978 dunng approach to Portland, 
Oregon, was attributed to an information management problem. The aircraft ran 
out of fuel while the crew was troubleshooting a landing gear problem. If the flight 
crew's attention had been focused on the fuel information at the right time, the 
accident may have been avoided. 

While good information management has always been a concern, a new 
feature of the current generation of transport aircraft offers the potential for more 
information management problems than before. This feature is the cathode-ray 
tube (CRT) display. The almost unlimited flexibility of the CRT display lifted many 
of the restrictions imposed by the electro-mechanical instruments formerly used. 
Now, much more information can be presented on a CRT at any given time, and 
display formats can be altered to make room for even more pieces of information. 
This flexibility can lead to information management problems which yield factors 
that cause display clutter. 

Some research efforts have already been made to reduce the information 
management problems of selected CRT display formats. For example, the Engine 
Indication and Crew Alerting System (EICAS) of the Boeing 757 and 767 aircraft 
reduced the information management problems on its target CRT by using a 
centralized caution and warning system to manage the engine information 
presented. With EICAS, only the parameters required to set and monitor engine 
thrust were displayed full time, while the remaining engine parameters were 
monitored and only presented when out of tolerance [Ford, 1982) [Ropelewski, 
1982). 

Another effort targeted at managing a specific CRTs information was the 
NASA, Langley Research Center (LaRC) research effort focussed on the primary 
flight display (PFD - see appendix A). Under this research effort, all information on 
the PFD necessary for the basic control of the aircraft (i.e., pitch, roll, airspeed, and 
altitude) was presented all of the times. Presentation of optional information (e.g., 
reference altitude, glideslope deviation, and vertical path) was tailored according to 
the task(s) the pilot performed, so that optional information was presented only 
when needed by the pilot. For example, when one of the pilot's tasks was to follow a 
~lideslope signal, the PFD was configured with Glides/ope Deviation guidance, 
instead of Vertical Path or Reference Altitude guidance. 

This task-tailored approach to PFD information management required 
complex logic to automate. Originally, this logic was implemented using procedural 
programmin~ techniques. However, this ori~inal implementation led to several 
software engineering disadvantages. The original procedural code was hard to 
trace, modify, and verify, and with each change to the logic, these problems were 
enhanced. Because of these problems, a knowledge-based system (KBS) approach 
was explored ac, an alternative to the traditional programmin~ approach. The 
decision to use a KBS approach was based in part, on an earlier study that found 
KBS architectures easier to manage given complex decision logic [Ricks & Abbott, 
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1987]. This thesis describes the KBS design and implementation of the task-tailored 
PFD information management application. 

Another aspect of this thesis dealt with an improvement to the information 
management system's functionality. For correct operation of the information 
management logic, knowledge of the phase of fli~ht was needed. This required that 
the pilot (or test engineer) track and maintain this input through bezel switches (i.e., 
toggle switches) in the cockpit. This additional task for the pilot was not desirable, 
so an effort to automate the detection of flight phase was pursued. This thesis will 
discuss the approach taken to automate the flight-phase detection, and describe the 
resulting KBS. 

Since this PFD information mana~ement effort resulted in the first study 
involving KBS's running in LISP in real time on a civil transport aircraft (i.e., the 
Transport Systems Research Vehicle - see appendix B) a preliminary study to 
evaluate the KBS concept was necessary. The objectives of this study were to 
design, implement, and test (in flight) the KBS approach to PFD information 
management, to determine the feasibility of addressing this problem with a KBS 
approach, to validate the flight-phase detection logic, and to confirm the software 
engineering advantages of the KBS approach while in an operational environment. 

This paper is divided into four sections. The first section describes the PFD 
information management problem and resulting system design. The second section 
discusses the knowledge acquisition and construction of the flight-phase detection 
KBS. The third section describes the evaluation of the KBS concept (including the 
evaluation of the flight-phase detection KBS). And, the final section summarizes 
the results of this evaluation and lists recommendations for further research. 

Chapter 1 Task-Tailored PFD 
Information Management 

1.1 Domain 
In previous PFD research efforts, goals were not directed at managing the 

flow of information. In past efforts, each piece of information was simply given a 
location on the screen and presented whenever available. However, the increased 
amount of information targeted for the PFD made it difficult to present information 
based solely on availability. Continuing to dedicate space on the PFD for each 
piece of information would have contributed to factors that cause display clutter 
( e.g., display density). Display clutter increases the user's search time and inhibits 
the ability of the user to understand pertinent display information. 

Therefore, an effort targeted at managing information on the PFD was 
initiated at NASA LaRC. Under this effort, the PFD information management 
philosophy presented all information necessary for the fundamental control of the 
aircraft (i.e., pitch, roll, airspeed, and altitude) at all times. It then tailored the 
optional information on the PFD according to the task(s) the pilot performed, so 
that optional information was presented only when needed by the pilot. For 
example, when one of the pilot's tasks was to follow a glideslope signal, the PFD was 
configured with Glides/ope Deviation guidance, instead of Vertical Path or Reference 
Altitude guidance. 
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Providing only relevant information on the PFD was a logical approach to 
explore, since the more information the greater the competition among screen 
components for a person's attention. Visual search times would have been longer, 
and meaningful patterns more difficult to perceive if the screen flooded the user 
with too much information [Galitz, 1989]. The overall cleanliness of the display 
heightens the operator's ability to successfully perform his search and identify 
information. Because when an operator scans a display for a specific parameter 
( target), all other information on the screen is noise [Gilmore, 1985). 

Since it was decided that only relevant information be presented, relevant 
PFD information was defined as information necessary and helpful for the 
fundamental guidance and control of the aircraft at any point in time. In 
determining the relevance of PFD information, the information was categorized as 
either basic or optional. Basic PFD information (e.g., altitude, airspeed, pitch, etc .. ) 
was defined as the information necessary for the fundamental guidance and control 
of the aircraft, and by definition, basic PFD information was always relevant. 
Optional PFD information (e.g., reference altitude, vertical path, etc ... ) was 
identified as the information that was helpful in performing certain guidance and 
control tasks, such as maintaining a specified altitude, or following a vertical path. 
However, optional information was not required for the fundamental guidance and 
control of the aircraft, nor was it always relevant to the pilot's current tasks. Since 
basic information was always relevant and therefore always displayed, optional PFD 
information was the target of the task-tailored PFD information management effort. 

Following is a list of the optional information symbols managed by TIFIM. 
The optional information controlled by this system was Localizer Deviation, 
Horizontal Deviation, Track-Angle Error (1, 2, and 3), Vertical Path, Reference 
Altitude, Glideslope Deviation, Radar Altitude, Runway Image, Waypoint Star, 
Flare Guide, and Commanded Airspeed (1 and 2). Appendix C gives a detailed 
description of each piece of information. 

The logic necessary to carry out this task-tailored approach to information 
management required input data from many sources. The information necessary to 
decide what optional PFD information to present consisted of the airplane's 
automatic control mode configurations, the cockpit switch settings, sensor and 
system information (e.g., signal availability and numerical sensor values), and the 
current flight phase. Descriptions of the input data can be found in appendix D. 

As mentioned above, the tasks the pilot performed were used to determine 
what information was relevant and subsequently, what optional information to 
present. This mapping of tasks to relevant optional information was done implicitly. 
In other words, the tasks were not sought explicitly at run-time and then all 
information necessary for the tasks identified. Instead, the conditions that were true· 
when a task was being executed were used for the conditions of the subsequent 
optional information rule. For example, if the airplane was in the landing phase of 
flight, with a valid glideslope signal, and the automatic land mode had been enga~ed 
on the control-mode panel (CMP), then the task of following a glideslope was bemg 
executed. Therefore, the guidance symbol on the altitude scale should represent the 
glideslope signal (i.e., Glideslope Deviation Symbol). 

The rules used for the task-tailored management of optional information 
displays are described in detail in appendix E. 
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1.2 Problem 
This task-tailored approach to PFD information management required 

complex logic to automate. Early attempts at implementing the complex lo~ic with 
traditional programming techniques led to difficult to manage programs which 
proved costly in time and clarity. With the traditional implementation, logic 
pertinent to managing the dispfay elements was hard to distinguish from other code. 
As a result, it also became increasingly harder to understand and modify the logic 
used to control the optional information presentation as the implementation 
progressed. 

The software engineering problems were critical with the PFD management 
application since the vehicle for this system was a research environment and the 
frequency of logic changes was high. Since changes were frequently occurring to the 
logic, the costs of time and clarity mentioned above were amplified. Therefore, a 
new implementation approach was sought. 

1.3 Approach 
Because of the software engineering problems with the traditional 

implementation, a KBS approach was explored. The decision to use a KBS 
approach was based, in part, on an earlier study that found KBS architectures easier 
to manage given applications with complex logic [Ricks & Abbott, 1987]. In this 
earlier study the traditional implementation was more efficient in execution time, 
however, the KBS provided the potential for improving the productivity of the 
programmer and designer. In the study, modifications to the KBS implementation 
were found to be easier, more efficient, and less error-prone than with the 
traditional implementation. The homogeneous representation of the rule-base was 
found to be instrumental in code simplification and test-tool development needed 
during the verification process. The overall simplicity and modulanty of the KBS 
were found to be more amenable to utilities that aided in the explanation of the 
system's execution. 

Another factor contributing to the exploration of a KBS approach for this 
application was the successful use of KBS architectures for rapid prototyping. It has 
been found that rapid prototyping environments generated systems that simulated 
the important interfaces, and performed the main functions of the intended system 
[Rushby, 1988]. These features of rapid prototyping allowed early experience with, 
and direct testing of, the main aspects of the system's proposed functionality, 
thereby allowing much earlier and more realistic appraisals of the system's 
requirements specifications. Therefore, rapid prototyping environments fit neatly 
into the standard life-cycle model of software engineering. Rapid prototyping 
helped avoid the problem of making errors early and not detecting them until late in 
the life-cycle (a particularly costly and serious problem). Without rapid prototyping, 
missing or inappropriate requirements were hard to detect at an early stage. 
Systematic reviews (commonly used in non-rapid prototY{>ing development) often 
detected inconsistent, or ambiguous requirements, but missing requirements 
generated no internal inconsistencies and often escaped detection until the system 
was actually built and tried in practice. 

Another experimental comparison of a prototyping versus a traditional 
approach to software development [Boehm et al. 1984] found that both approaches 
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yielded approximately equivalent products, though the prototyping approach 
required much less effort (45% less) and generated less code. Since the products of 
rapid prototyping were developed incrementally, they were also considered easier to 
learn and use. 

Based on the findings of these earlier studies, this application was 
implemented using a KBS approach in an attempt to reduce the software 
engineering problems found with the traditional implementation. The next section 
describes the system design. The system described made use of one KBS to 
implement the same system (functionality) previously implemented using traditional 
techniques. 

1.4 System Design 
The KBS implementation of the optional PFD information management 

effort was named the Task-Tailored Flight Information Manager (ITFIM), 
describing the functionality of the system. The overall system design is illustrated in 
Figure 1-1, and again with a data flow diagram in Figure 1-2. 
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Figure 1-2 shows that the final control and guidance information was provided 
to the pilot via the PFD. The PFD formats (including the dynamic information) 
were configured within the Displays computer (see appendix B). Configuration of 
the PFD was based on two sets of data. One set of data contained all the sensor and 
system information residing on the various aircraft computers. And, the second set 
of data identified the optional information to present. The optional information to 
present was generated by the task-tailored approach described above. The selection 
of optional information KBS based its decision on the status of the display switches, 
the control mode configuration, the indicated flight phase, and various sensor/ system 
information. The pilot requests generated the configuration commands needed to 
determine the status of the display switches, control mode configuration, and phase 
of flight. The airplane sensors provided the data to the onboard computers. 

Implementation and integration issues of the TTFIM flight software are 
discussed m appendix F. 

Chapter 2 Automatic Flight-Phase 
Detection 

2.1 Problem 
Another aspect of this thesis dealt with an improvement to the task-tailored 

PFD information management system's functionality. As illustrated in Figures 1-1 
and 1-2, correct operation of TTFIM required indication of the current phase of 
flight as input. For the earlier implementations, this required that the pilot (or test 
engineer) track and maintain this input through bezel switches (i.e., toggle switches) 
in the cockpit. Additional tasks (like indicating flight phase) for the pilot were not 
desirable, so an effort to automate the detection of flight phase was pursued. 

2.2 Approach 
Through pilot interviews and piloted simulations in the Transport Systems 

Research Vehicle (TSRV) simulator [NASA SP-435, 1980] [Grove et al. 1986], a set 
of rules was derived for automatic flight-phase detection while in flight. The pilot 
interviews were conducted first to obtain a preliminary set of rules. These rules 
were then implemented in the TSRV simulator for further knowledge acquisition. 

The initial pilot interviews were used to determine the number of different 
flight phases needed and to get a working set of rules which characterized these 
phases. As a starting point for these interviews, the current set of flight phases used 
by the pilots for manual entry into TTFIM was used: taxi, takeoff, climb, cruise, 
descend, and land. For better resolution, and for possible use of the automatic 
detection logic for other applications, four new phases were substituted for two of 
the former ones. The phases of terminal climh and enroute climb were substituted 
for climb. Similarly, enroute descend and terminal descend were substituted for 
descend. 

The rules focussed on the fact that only certain phases can physically 
transition from one to another. For example, when the aircraft is taking off, the 
only possible phase transitions from takeoff were to either terminal climb, land, or 
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taxi. With these physical limits on the possible transitions, the rules for each phase 
transition only needed to be able to distinguish itself from its transition neighbors, 
thus minimizing the number of conditions required for each transition. 

To minimize the possibility of ambiguity in the flight-phase detection logic, 
the rules were defined as "transition-in" rules. This meant that the conditions 
required for a flight phase to be active only needed to be true to start that phase, not 
to stay in that phase. Once in a specified phase of flight, the only way the system 
would transition into another phase of flight was if the conditions for another phase 
became true (not if the condit10ns of the current were no longer true). For example, 
one of the conditions in the rule for takeoff stated that the flight phase in the 
previous cycle was either taxi or land (i.e., Last-Phase = TX or LD). One cycle 
after the phase of flight became takeoff, the "Last-Phase" variable was bound to 
takeoff (i.e., T /0), thus no longer satisfying the condition stating that the last phase 
must be either taxi or land. However, the phase of flight remained takeoff until the 
conditions of another phase became true. 

The vehicle used for further knowledge acquisition was the TSRV simulator. 
The TSRV simulator was a fixed-based cockpit configured as the research cockpit of 
the TSRV airplane (see appendix B). The simulation included a six-degree-of­
freedom set of nonlinear equations of motion, and functionally represented the 
aspects of the advanced flight control configuration of the airplane. The research 
cockpit is characterized by eight, 9-inch diagonal, color display units. 

For this study, the TSRV simulator was also connected to the Visual Landing 
Display System (VLDS). The VLDS was a camera/model-board system for 
generating a visual out-the-window scene for the pilot of a simulated aircraft. The 
system consisted of a dual-scaled terrain model, a series of lamps to illuminate the 
model, a three-degree-of-freedom translation system to position the camera, and a 
three-degree-of-freedom optical/rotational system mated to a color television 
camera. The VLDS provided non-composite RGB television signals to an external 
simulator cockpit window display device to give a field of view of 48 degrees 
horizontally, by 36 degrees vertically [Grove et al. 1986]. The VLDS provided the 
"out-the-window" scenes necessary for the taxi, takeoff, terminal descend, and land 
phases of this study. 

The flight-phase detection logic was coded in a module that ran in the 
background of the TSRV simulation. No functionality of the simulation (e.g., 
display configurations) was affected by the introduction of this logic with the 
exception of a coded number on one of the cockpit displays to show the 
experimenter what phase of flight the logic detected. 

For the evaluation and further knowledge acquisition of the flight-phase 
detection rules, seven pilot subjects were used. Three of the subjects were NASA 
test pilots, one subject was a pilot for the United States Navy, one subject was a 
Army Reserve pilot, and the remaining two were NASA employees - one with an 
Airline Transport rating, and the other with commercial and instrument ratings. 
Each subject was briefed prior to the simulation study with respect to the display 
formats, the aircraft cockpit systems, and the evaluation task. 

The simulator evaluation began after the pilot briefing. Many of the 
evaluation sequences were as follows: 
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l. Simulator familiarization and practice flights - Because no demands 
were placed on the subjects that were specific to the simulated 
aircraft, and pilot performance was not a measure of concern in this 
study, the simulator familiarization and practice flights used the same 
scenario programmed for the evaluation (i.e., same flight plan). 

2. Full mission flight (i.e., from taxi at Norfolk International to taxi at 
Richmond International) with discrete inputs from the subjects being 
recorded - The subjects were briefed regarding the flight phases 
identified in this study and were asked to indicate when they thought 
they were making a transition from one phase to another by keying 
the trigger on the side-stick controller. The input from the pilots were 
compared against the transition times generated by the automatic 
flight-phase detection logic. 

3. Full mission flight with the simulation being frozen at each phase 
transition for subjective evaluation - At each flight-phase transition the 
simulation was frozen and the subject was given the opportunity to 
evaluate the current phase transition qualitatively. 

4. Flights consisting of aborted takeoffs, touch-and-go's, and other 
deviations from the flight plan - These deviations were not pre­
programmed and left up to the pilot as to how they were carried out. 
Most of these flights were frozen at each phase transition for further 
subjective evaluation. 

Because the pilots' performance was not a measure, and no statistical 
significance was sought, deviations from the above sequence were allowed. The 
results sought in each subject evaluation were to either validate the set of rules 
being used or to identify changes that needed to be made. Valid changes to the 
logic were made between each subject evaluation. Errors in the logic often surfaced 
with one pilot and not another due to differences in their flying styles and training 
biases. The final set of rules used in simulation were representative of each of the 
evaluations. 

The overall result of this evaluation process were the set of rules taken to the 
TSRV aircraft for flight tests. These rules are discussed in appendix G. 

2.3 System Design 
The resulting system design with the addition of the new KBS for fli~ht-phase 

detection is illustrated in Figure 2-1, and again with the data flow diagram m F1~ure 
2-2. The overall system design is the same as illustrated in Figure 1-2, and described 
in section 1.4 with the exception of the new KBS that detected the phase of flight. 
With this change, the pilot requests and subsequent bezel switch settings are not 
needed to supply the phase of flight input to the information selection KBS. 
Instead, the phase of flight is determined using the sensor/system infonnation and 
the logic described above. 

lm{Jlementation and integration issues of the TIFIM flight software are 
discussed m appendix F. 
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Chapter 3 Evaluation 

The task-tailored PFD information management effort was the first study 
involving KBS's running in LISP, and executins in real-time on the TSRV airplane. 
With the advent of such a drastic implementat10n change, feasibility issues were a 
concern. Therefore, a study to evaluate the feasibility of approaching the PFD 
information management problem with a KBS approach was r.erformed. The 
implementation and integration of the software for the feasibility study were also 
used to validate the software engineering advantages of the KBS approach in an 
operational environment. 

TTFIM was evaluated onboard the TSRV aircraft in two stages. The 
objective of the first stage of flight tests was directed only at testing the KBS that 
selected the display elements to present, to assess the feasibility of the KBS 
approach. For the first stage of flight tests, no functional changes from the 
traditional baseline implementation were desired. For these initial flights, the flight 
engineer manually entered the flight-phases as they occurred (see Figure 1-2, page 
11). See appendix H for a description of the flight-test envelopes used for the stage 
1 evaluation. 

For the second stage of flight tests, the objectives were to validate the flight­
phase detection logic, and to evaluate the addition and integration of the new KBS 
(see Fi~re 2-2, page 18). These tests were done with a flight-test envelope 
consisting of multiple repetitions of each flight phase represented in the KBS, and 
multiple transitions between the flight phases. See appendix I for descriptions of the 
flight-test envelope used for the stage 2 evaluation. 

STAGE 1 Evaluation - Optional Information Selection KBS 

The intent of the first stage evaluation was to assess the feasibility of 
implementing the PFD information management application using a KBS for real­
time operation onboard the TSRV airplane. For this evaluation, the KBS 
implementation was intended to duplicate the functionality of the traditional 
implementation. There were no characteristics of TTFIM in this stage that changed 
the functionality of the PFD information management from what the traditional 
implementation did on the airplane. Therefore, a successful evaluation of the stage 
1 tests was defined as a KBS implementation and integration that duplicated the 
performance of the traditional system. 

As mentioned earlier, flight tests were used to verify the implementation and 
integration of TTFIM on board the TSRV. The traditional code implementation 
was used in the flight tests as a basis for comparison. Both pilot feedback and 
comparisons between KBS display elements and expected display elements were 
used in the post-flight analysis. 

The test pilot for this study had flown many hours in the TSRV research 
cockpit, and was familiar with the behavior of the PFD when driven by the 
traditional implementation. Therefore, pilot feedback was used to note deviations 
on the PFD from what was expected. Pilot comments during the flight tests were 
manually recorded for post-flight analysis. While major irregularities did not occur, 
the pilot did notice that the first appearance of some of the optional information 
was slower with the KBS approach. 
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Throughout the flight tests, short delays (of a few seconds or less) were noted 
with the first appearance of a few optional information display elements. The 
increase in time needed to initiate some of the optional information formats was 
attributed to the slower nature of the LISP language and hardware, and the simple 
addition of a new module in the TSRV data communications (remember that the 
traditional implementation was embedded in the Displays computer graphics calls). 
Now extra steps were required to retrieve the input information, process the 
information, and then send the information to the Displays computer for formatting. 

Delays were also noted in the comparison data that were recorded. 
Comparison data were recorded throughout the flight in the form of discrete display 
control words (see Table 3-1 below). Two discrete words were sufficient to 
represent each of the optional information elements driven by TTFIM (words O and 
1). When a bit in a control word was set (i.e., equal to one), the relative display 
element was active. For example, when the second and fourth bits in control word 
zero were set and the remaining bits were zero, then Horizontal Deviation and 
Glideslope Deviation were the only active elements of word one. 

TABLE 3-1 

Output Display Control Words 

Display Control Word Bit Indication 

0 0 Reference Altitude 
1 Waypoint Star 
2 Horizontal Deviation 
3 Glideslope Deviation 
4 Localizer Deviation 
5 CAS Reference (dial) 
6 CAS Reference (buffer) 

1 0 Runway Image 
1 Radar Altitude 
2 Vertical Path 
3 Flare-Guide 
4 Track-Angle Error 1 
5 Track-Angle Error 2 
6 Track-Angle Error 3 

The comparison data for the stage 1 tests consisted of the display elements 
active under both the traditional and KBS implementation - each implementation 
generated its own display control words. Even though the optional information on 
the PFD was bein¥ driven by the KBS, both the traditional and KBS implementation 
were generating display control words for post flight analysis. As with the pilot 
feedback, the only deviations noted in the post flight analysis were the small delays 
the KBS experienced when updating some of the active display elements. 

Even though some update delays occurred with the KBS implementation, 
flight operations were not interrupted. Feedback from the pilot was positive, and 
the KBS display elements were equivalent to the expected display elements. These 
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results confirmed TIFIM's implementation and integration, and thus validated the 
feasibility of the KBS concept for implementation of PFD information management. 

STAGE 2 Evaluation - Fli,:ht-Phase Detection KBS 

The second stage of tests were directed at validating the flight-phase 
detection logic, and verify the implementation and integration of the KBS onboard 
the TSRV. The implementation and integration of the new KBS with the other 
KBS and TSRV systems were evaluated using the same measures as the previous 
study - the PFD performance (assessed again by pilot evaluation and comparison 
data). Since the automatic flight-phase detection KBS was not designed to change 
the PFD performance, but rather to eliminate the need for the pilot to enter it 
manually, the performance of the PFD would be the same as the traditional 
implementation if the flight-phase detection KBS was implemented and integrated 
correctly. 

Validating the flight-phase detection logic was done by comparing the phases 
detected with those expected. Two additional control words were added to help 
evaluate the detection of flight phase KBS. These control words are defined in 
Table 3-2 below. 

TABLE3-2 

TIFIM Output Control Words 

Display Control Word Bit Indication 

2 0 Takeoff 
1 Terminal Climb 
2 Cruise 
3 Terminal Descent 
4 Land 
5 Taxi 
6 Enroute Climb 
7 Enroute Descend 

3 0 Error Flag (for flight phase) 

Only one phase was true at one time, therefore only one bit in word 2 was set 
at one time. The error bit (word 3) was set when errors were reported by the KBS. 
The control word indicating the phase of flight was decoded and displayed on the 
screen during the flight. This presentation of flight-phase was used by the test 
engineer to note whether the logic was detecting current phases as it should. Video 
recordings of the PFD were also used in post flight analysis. 

Correct PFD configurations verified the implementation and integration of 
the flight-phase detection KBS. The evaluation of the flight-phase detection logic 
was successful for all elements within the flight-test envelope (see appendix I) 
except one. At one point in the flight-test envelope, the test called for a "touch-and­
go" where the KBS was to detect the transition from land to takeoff. However, a 
transition to taxi occurred due to an erroneous value given for the flap settings in 
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the rules. This problem was easily isolated given the KBS environment. With the 
correction to the flight-phase detection KBS being made, the tests were considered 
successful. 

Software En2ineerin2 Evaluation 

The implementation and integration of the fli~ht test KBS's were also used to 
validate the software engineering advanta~es of KBS s identified in a previous study 
[Ricks & Abbott, 1987] while in an operational environment. In the development 
and maintenance process, frequent modifications to TIFIM's rules were needed to 
achieve correct performance. The KBS programming environment's built-in utilities 
enabled quick, easy, and efficient modifications. 

The KBS environment also provided routines for explaining the execution, 
and producing information needed to verify performance. These features helped 
during the initial development and in explaining system performance during the 
flight tests. Positive programmer feedback and the additional data point of isolating 
the logic error in the flight-phase detection KBS during the flight tests was further 
evidence of the software engineering advantages of KBS architectures. 

Chapter 4 Concluding Remarks 

This thesis resulted from a study at NASA LaRC that is explorin~ effective 
ways of managin~ information on the PFD of commercial aircraft cockpits. The 
current informat10n management strategy being explored determines when to 
present information on the PFD by the tasks the pilot performs. This task-tailored 
approach to PFD information management reqmres complex logic that led to 
software engineering problems when traditional procedural programming 
techniques were used. Based on these software engineering problems, a KBS 
approach was chosen over the traditional programming approach. This decision was 
based, in part, on earlier studies that found KBS architectures easier to manage 
given complex logic. 

While working with the PFD information management system, an 
improvement to the system's functionality was made. In the logic used for task­
tailored information management, knowmg the phase of fli[Jhf was necessary for 
correct operation. In the original procedural implementat10n, the need for this 
input required that the pilot enter the phase of flight (via cockpit switches) 
throughout the flight. Adding this task for the pilot was not desirable, so the 
detection of flight phase was automated within this effort. 

Since the task-tailored PFD information effort was the first study to involve 
KBS's running in LISP in real time on the TSRV aircraft, feasibility issues surfaced. 
Therefore, a preliminary study to evaluate the feasibility of the KBS concept for this 
flight application was performed. The objectives of the study were to test the 
resulting KBS's in flight, to verify their implementation and integration, and to 
validate the software engineering advantages in an operational environment. 

The results of the flight tests verified the feasibility of using KBS's for PFD 
management with actual data. Correct implementation and integration of the KBS 
with existing aircraft systems were evident by the correct mapping of KBS-dictated 
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PFD formats with those generated by the traditional implementation. The only 
irregularity noted during the flight tests by both pilot feedback and recorded 
comparison data were the small delays that the KBS caused when changing some of 
the PFD information formats (e.g., from reference altitude guidance to glideslope 
guidance). However, these delays were very slight, and did not interrupt flight 
operations. 

Flight tests were also successful in validating the logic used for flight-phase 
detection. Validation of the flight-phase detection logic was done by tracking the 
phases detected with those expected. The evaluation of the flight-phase detection 
logic was successful for all elements within the flight-test envelope except one. 
However, the cause of this one problem was easily isolated during the flight test 
given the KBS environment. Correct mapP,ing of PFD formats during the validation 
of the flight-phase detection logic also venfied the integration of the flight-phase 
detection KBS with the KBS system for selection of PFD formats. 

The process of implementing the KBS's for flight tests provided the 
information necessary to confirm the software engineering advantages of KBS 
architectures in an operational environment. Frequent modifications to TIFIM 
were necessary to achieve desirable performance. The KBS's built-in utilities 
enabled these modifications to be done quickly and easily. This observation and 
positive programmer feedback validated the ability of a KBS approach to ease the 
task of software maintenance. Another finding in favor of the software engineering 
advantages of the KBS approach was the programmer's ability to more easily 
develop initial systems (i.e., from scratch) using the KBS shell than with traditional 
programmin~ techniques. The ease with which the one logic error in the fli$ht­
phase detect10n KBS was isolated during the flight tests was even further evidence 
of the software engineering advantages of KBS architectures. 

An auxiliary contribution of this thesis resulted from the process of preparing 
the KBS software for flight tests onboard the TSRV airplane. The experience 
gained during this process will ease the effort required to take future systems 
requiring Al-based implementation techniques to the TSRV. Another contribution 
was that the flight-J;>hase detection logic used in this study can be use by other 
studies requiring fhght-phase input. And, the KBS architecture developed for this 
task will also ease the future exploration of PFD information management efforts by 
providing an software platform more amenable to logic modifications. For future 
work, pilot evaluations of the task-tailored PFD information management 
philosophy are planned. Additionally, f Jans are being made to perform a sensitivity 
analysis and an ambiguity evaluation o the flight-phase detection logic. 
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Appendix A 
Primary Flight Display (PFD) 

The PFD (see Figure A-1) provides a pilot with information necessary for 
guidance and control of an aircraft. Studies have shown great potential in reducing 
pilots visual work load with electronically generated PFD's ( e.g., [Steinmetz, 1986], 
[Abbott et a1. 1987a] and [Abbott et al. 1987b]). The installation of electronically 
generated PFD's in some of the Boeing, McDonnell Douglas, Airbus, and other 
aircraft families characterize an increasing trend toward using these PFD's. 

The PFD format in the TSRV shows the current aircraft attitude and 
provides other critical state information to the pilot. Refer to the PFD format 
drawin~, Figure A-2. The area in the center of the screen is referred to as the PFD 
view wmdow. Within the window a number of symbols appear that depict aircraft 
roll, pitch, yaw, flight path angle, angle of attack, and track error. Three 
dimensional representations of the waypoint and the destination runway are 
displayed in the window along with a flare guidance cue and alert messages. 

Angular perspective in the window is provided by the pitch grid and horizon 
ticks. The pitch grid has a double solid line representing the horizon which 
separates the sky from the ~round, along with parallel grid bars spaced in 5 degree 
increments. Along the honzon line, tick marks are spaced to show 10 degree steps 
of horizontal displacement. The other window symbology is interpreted against the 
grid and ticks to ascertain proper angular readings. The area from the horizon line 
to the top of the view window is raster filled in blue to easily distinguish the 
sky/ ground boundary formed by the horizon line. At the top of the window along 
the arc is a roll scale which uses a triangular pointer to designate current aircraft roll 
angle. The roll angle corresponds to the amount of rotation applied to the horizon 
line within the view window. 

On either side of the view window are gray raster filled rectangular areas 
called the airspeed and altitude tapes. They have tick marks and numeric values 
which can slide vertically giving the appearance of rolling measurement tapes. 

The airspeed tape, on the left side of the view window, has the current 
aircraft airspeed value in the blacked out area at the center of the tape. A yellow 
pointer box containing a reference airspeed value may also appear at the 
appropriate spot on the tape when certain conditions arise. When airspeed is 
changmg an elongated arrow will grow from the tape center vertically along the 
outside of the tape ticks and foint to the airspeed that will be reached in ten 
seconds at the current rate o acceleration. Also along the same edge of the 
airspeed tape are a pair of wed$e markers that bound a range of airspeeds suggested 
for the current aircraft flap settings and gross weight. 

On the right hand side of the view window is the altitude tape. Similar to the 
airspeed tape, the current airplane altitude is shown in the blacked out area at the 
tape center. A yellow pointer box can also be displayed on the altitude tape 
representin~ selected altitude, glideslope deviation, or vertical deviation depending 
on the conditions. Flight path angle error is determined from the length of the 
white arrow that grows from the center of the altitude tape. When the glideslope 
error symbol is being displayed on the altitude tape, three magenta dots appear 
along the left edge of the tape to be used as a glideslope deviation scale. The last 
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item connected with the altitude tape is the radar altitude symbol. This red and 
white wedge shaped symbol is placed on the tape at the point that corresponds to 
the height of the ground above sea level. 

On the top of the display area above the tapes is the phase of flight indicator 
on the left, and the baroset value and wheel/column detent pointers on the right. 
Below the altitude tape is a rectangular box containing the decision height value. 
Directly under the view window is the horizontal deviation scale and the flight 
information and status boxes. The horizontal scale has two reference markers. The 
white arrow that expands along the bottom of the scale shows track angle error 
while the pointer box on the top is used for horizontal deviation, localizer deviation, 
or crosstrack. 

Along either side of the display screen are small squares adjacent to the 
sixteen bezel buttons. The squares indicate the current state of the bezel buttons, 
small green squares indicate "ON" and smaller magenta ones for "OFF". Normally 
(however experiments may redefine) the top six bezel buttons on the left hand side 
are used to choose the phase of flight mode for the PFD format. The bottom two 
bezels are the "cas" and "message" buttons which enable the display of the 
commanded airspeed and alert messages respectively. The eight buttons on the 
right hand area are also used to enable certam symbols. The first six enable the 
following pointers; reference altitude, vertical deviation, glideslope, horizontal 
deviation, crosstrack, and localizer. The last two are used to select the perspective 
runway symbols and waypoint star. 
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Figure -1 - The Primary Flight Di play 
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I - Waypoint Star 
2 - Reference Altitude 
3 - Verticle Path 
4 - Glideslope 
5 - Radar Altitude 
6 - Localizer 
7 - Horizontal Path 
8 - Track-Angle Error 
9 - Reference Air Speed 
10- Runway 
11- Flare Guidance 

Figure A-2 - PFD With Optional Information Formats 
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Appendix B 
Transport Systems Research Vehicle 
(TSRV) 

The TSRV [NASA NR87-48, 1987) is a specially instrumented Boeing 737 (a 
twin-engine subsonic commercial jet transport), with two flight decks (see Figures B­
l and B-2). The forward flight deck is a conventional Boeing 737 flight deck used 
for operational support and safety backup. The aft flight deck is a fully operational 
research flight deck positioned in the aircraft's cabin. 

The experimental systems consist of triplex digital flight control system, a 
digital navigation and guidance system, and an electronic CRT display system 
located in the aft (research) fli~ht deck [Knox & Cannon, 1980). The full-scale 
research flight deck is located m the airplane cabin just forward of the wing as 
shown in Figure B-2. Figure B-3 shows the instrument panel of the research flight 
deck. 

The triply redundant digital flight control system is driven by the controls 
computer. It provides both automatic and fly-by-wire control wheel steering 
options. One advance control mode, velocity vector control wheel (stick) steering 
mode, has the flight control computers (see Figure B-2) vary pitch attitude and 
heading to maintain flight-path angle and track angle, respectively [Knox & Cannon, 
1980). 

The navigation computer (see Figure B-2) is a general-purpose digital 
computer designed for airborne computations and data processing tasks. Major 
software routines in the navigation computer include navigation position estimate, 
flight route definition, guidance commands to the flight control computer system, 
and flight data storage for navigation purposes. 
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Figure B-1 - Transport Sy tern Re earch Vehicle 
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Appendix C 
Optional PFD Information 

This af pend ix lists the optional information managed by TIFIM along with a 
description o each piece of information. The optional information controlled by 
this effort were Localizer Deviation, Horizontal Deviation, Track Error 1-3, 
Vertical Path, Reference Altitude, Glideslope Deviation, Radar Altitude, Runway 
Image, Waypoint Star, Flare Guide, and Commanded Airspeed 1-2. 

Localizer Deviation, located at the bottom of the PFD, is used for horizontal 
guidance where a localizer signal is used for the horizontal track. The Localizer 
Deviation symbol indicates horizontal deviation from the localizer beam in degrees. 

Horizontal Deviation, located at the bottom of the PFD, was horizontal 
guidance where the reference path was either commanded by the pilot (via the 
CMP) or from the navigation computer (pre-programmed). The Horizontal 
Deviation pointer indicated horizontal fhght path deviation in feet. 

Track Error located at the bottom of the PFD, was horizontal guidance using 
an arrow to indicate the difference between actual track and either the dialed in 
track, the track in the navigation computer, or the runway. Track Error 1 used the 
runway heading as the path reference. Track Error 2 used the track commanded by 
the pilot (via the CMP). And, Track Error 3 used the path in navigation computer. 

Vertical Path symbology was located on the right hand side of the view 
window on the altitude tape. Vertical Path was for vertical guidance where the 
reference path was either commanded by the pilot (via the CMP) or in the 
navigation computer. 

Reference Altitude symbology was located on the altitude tape. Reference 
Altitude was vertical guidance where the reference was either commanded by the 
pilot (via the CMP) or in the navigation computer. 

Glideslope Deviation symbology was located on the altitude tape. Glideslope 
Deviation guidance was like Vertical Path guidance with the exception of the path 
being defined by a glideslope signal. 

Radar Altitude was another item connected with the altitude tape. This 
symbol was placed on the tape at the point that corresponded to the height of the 
ground. If desired by the pilot, Radar Altitude can be displayed whenever valid. 
Radar Altitude is sometimes called Runway Altitude since it shows the placement of 
the runway above sea level. 

Runway Image was displayed as a three dimensional image in the middle of 
PFD view window. Runway Image was used as secondary vertical and horizontal 
guidance. The runway symbol has a horizontal line across it to indicate the 
touchdown point on the runway. Like Radar Altitude, Runway Image can be 
displayed whenever valid and desired by the pilot. 

Waypoint Star was displayed as an image in the middle of the PFD view 
window. Waypoint Star was a three dimensional visual reference of the destination 
waypoints within the PFD view window as defined in the navigation computer. 
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Waypoint Star guidance was used for both vertical and horizontal guidance. 
Waypoint Star guidance was displayed whenever valid and desired by the pilot. 

Flare Guide symbol was displayed in the middle of the PFD view window 
when the appropriate conditions occur during the landing phase. The flare guidance 
cue rose from the bottom of the screen toward the bore sight of the gamma wedge 
symbol. Once the cue reached the bore sight, the pilot began the flare maneuver 
and in doing so, kept the cue and sight joined as a single unit. To clean up the 
screen when the flare guide symbol was used, no horizontal or track angle error 
guidance was displayed. 

Commanded Airspeed was located on the left hand side of the view window 
on the airspeed tape. Commanded Airspeed provided a reference for ( as the name 
implies) airspeed. Commanded Airspeed 1 used as a reference, the input from the 
pilot (i.e., the CMP). Commanded Airspeed 2 used as a reference, the speeds given 
for waypoints in the navigation computer. The only competition with Commanded 
Airspeed guidance is between the source of the reference. Either the pilots 
reference will be used, or that in the navigation computer. 
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Appendix D 
Input for Information Selection KBS 

This appendix lists the input information used by ITFIM to select the 
optional information to present on the PFD, along with a brief description. The 
input information consisted of control mode configurations, cockpit switches, sensor 
and system information, and the current flight phase. At the end of this appendix is 
a brief listing of the information used to determine the phase of flight. 

Control mode configurations were any of the many combinations available 
on the control mode panel (see Fi~re D-1 and [NASA SP-435, 1978)). The lower 
left-hand section of the CMP proVIded selection of attitude control-stick steering, 
velocity vector control-stick steerin~, or automatic flight path control. The lower 
center and right-hand sections proVIded selection of the type of automatic :path 
guidance. The four top sections provided hold select, and preselect operation of 
automatic airspeed, altitude, flight-path-angle, and track-angle modes. Most 
buttons on the CMP were 4-level buttons indicating either off, preselect, arm, or 
en~aged status. The dials on the CMP were used to input reference airspeeds, 
altitudes, flight path angles, or horizontal track. The combinations of buttons 
statuses and dialed input, relative to themselves and each other define the control 
mode configuration. 

Cockpit switches were any of the bezel switches located in the cockpit. The 
switches useful to the ITFIM system were the ones the pilot used to impose his 
choice of display configuration overrides, and were located on both sides of the PFD 
screen. The switches correspondin~ to the optional information formats (total of 9) 
were two-value bezel switches that indicated whether the pilot wanted the particular 
piece of information or not. These switches reflected the pilot's preference 
regarding the following symbols: Reference Altitude, Vertical Path, Glideslope 
Deviation, Horizontal Deviation, Localizer Deviation, Crosstrack Deviation, 
Runway Image, Waypoint Star, and Commanded Airspeed. The remaining switches 
corresponded to the flight phases and were either on or off, and only one could be 
on at any given time. 

Sensor and system information consisted of information in the navigation 
computer (e.g., signal availability), sensory values, and various numerical and 
boolean data residing in other systems onboard the TSRV. The sensor and system 
information looked at by TTFIM were whether not a glideslope signal was valid, 
whether or not a localizer signal was valid, whether or not another waypoint existed 
to be displayed, whether or not the waypoint was within the displayable range, 
whether or not runway information was available, aircraft altitude (both barometric 
and radar), decision height, aircraft offset from horizontal path, runway length, 
aircraft heading, runway heading, and aircraft track. 

Current flight phase was the most interesting of the inputs to ITFIM. 
Needing to know the flight phase meant that either the pilot would have to input the 
information as it changed, or some means of automating the detection needed to be 
pursued. Both methods were employed. For the first stage of the implementation, 
the pilot had to manually input the phases using the bezel switches on the left side 
of the screen, then the flight-phase detection was automated to achieve the "human­
centered" objectives discussed in this paper. 
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When requiring the pilot to input the phase of flight, TIFIM only used six 
phases: taxi, takeoff, climb, cruise, descend, and land (see the bezel switches on the 
left of the PFD - Figure A-1 ). For automatic flight-phase detection, eight phases 
were used: taxi, takeoff, terminal climb, enroute climb, cruise, enroute descend, 
terminal descend, and land. The data used to detect flight phases were the squat 
switch status, gear status, epr value, gamma value, flaps settings, reverser status, 
radar altitude, barometric altitude, and the previous flight phase. 
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Figure D-1 - Control Mode Panel 



Appendix E 
Information Management Logic 

The followin~ logic represents that used in the TTFIM flight tests for 
determining the optional information to present. The intent of these rules were to 
duplicate the logic used in the traditional baseline implementation. Therefore, even 
when simplifications could be made, they were not. The rules appear here as they 
were in the flight tests. 

HORIZONTAL DEVIATION 
if flight phase is not TX 

HOR display switch is on 
horizontal track in navigation computer is valid 
FLARE GUIDE symbol is not active 
TRACK-ANGLE ERROR {2} symbol is not active 
LOCALIZER DEVIATION symbol is not active 
radar altitude is greater than 260' 

HORIZONTAL DEVIATION 
if flight phase is not TX 

HOR display switch is on 
horizontal track in navigation computer is valid 
FLARE-GUIDE symbol is not active 
TRACK-ANGLE ERROR {2} symbol is not active 
LOCALIZER DEVIATION symbol is not active 

TRACK-ANGLE ERROR {2} 
if flight phase is TX or T /0 

XTK display switch is on 
automatic track angle mode is preselected or engaged 
automatic horizontal path mode is not armed 
FLARE GUIDE symbol is not active 

TRACK-ANGLE ERROR {2} 
if automatic track angle mode is preselected or engaged 

XTK display switch is on 
automatic horizontal path mode is not armed 
FLARE-GUIDE symbol is not active 
radar altitude is greater than 260' 

TRACK-ANGLE ERROR {4} 
if flight phase is LD 

XTK display switch is on 
localizer is valid 
FLARE-GUIDE symbol is not active 
radar altitude is grater than 260' 

TRACK-ANGLE ERROR { } 
if flight phase is T / 0 

XTK display switch is on 
horizontal track in navigation computer is valid 

31 



FIARE-GUIDE symbol is not active 
TRACK-ANGLE ERROR {2} symbol is not active 
TRACK-ANGLE ERROR {4} symbol is not active 

TRACK-ANGLE ERROR { } 
if flight phase is not TX 

XTK display switch is on 
horizontal track in navigation computer is valid 
FIARE-GUIDE symbol is not active 
TRACK-ANGLE ERROR {2} symbol is not active 
TRACK-ANGLE ERROR {4} symbol is not active 
radar altitude is greater than 260' 

VERTICAL PATH 
if VRT display switch is on 

vertical path in navigation computer is valid 
GLIDESLOPE DEVIATION symbol is not active 
REFERENCE ALTITUDE symbol is not active 

REFERENCE ALTITUDE 
if flight phase is not TX 

automatic altitude hold mode is preselected, armed, or engaged 
automatic land mode is armed or enga~ed 
GLIDESLOPE DEVIATION symbol 1s not active 

REFERENCE ALTITUDE 
if flight phase is not TX 

RALT display switch is on 
automatic altitude hold mode is preselected, armed, or engaged 
automatic enable mode is engaged 
automatic track angle mode is engaged 
automatic flight path angle mode is en~aged 
GLIDESLOPE DEVIATION symbol 1s not active 

REFERENCE ALTITUDE 
if flight phase is not TX 

RAL T display switch is on 
automatic altitude hold mode is preselected, armed, or engaged 
automatic attitude control (a-cws) mode is engaged 

or automatic velocity vector control (v-cws) mode is engaged 
GLIDESLOPE DEVIATION symbol is not active 

REFERENCE ALTITUDE 
if flight phase is not TX 

RALT display switch is on 
automatic track angle mode is engaged or h-path mode is engaged 
automatic enable mode is engaged 
automatic altitude hold mode is engaged 
GLIDESLOPE DEVIATION symbol is not active 

GLIDESLOPE DEVIATION 
if flight phase is LD or TD 

G/S display switch is on 
automatic attitude control (a-cws) mode is engaged 
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or automatic velocity vector control (v-cws) mode is engaged 
glideslope signal is valid 

GLIDESLOPE DEVIATION 
if fli~ht phase is LD or TD 

G/~ display switch is on 
ghdeslope signal is valid 
automatic enable mode is engaged 
automatic flight path angle mode is engaged 

GLIDESLOPE DEVIATION 
if fli~ht phase is LO or TD 

G/~ display switch is on 
ghdeslope signal is valid 
automatic enable mode is engaged 
automatic land mode is armed or engaged 

RADAR ALTITUDE 
if flight phase is TD, TC, EC, ED, or LD 

radar altitude is less than 1300' 

RUNWAY IMAGE 
if flight phase is TD or LO 

RWY display switch is on 
runway is within coverage cone 
runway in navigation computer is valid 
a/ c is within coverage cone 
altitude is less than or equal to 5000' 

WA YPOINT STAR 
if STAR display switch is on 

horizontal track in navigation computer is valid 
there is another waypoint in the navigation computer 
waypoint is within range 

FLARE GUIDE 
if flight phase is LD 

automatic velocity vector control (v-cws) mode is engaged 
radar-alt is less than the decision height 

FLARE GUIDE 
if flight phase is LD 

automatic velocity vector control (v-cws) mode is engaged 
radar-alt is less than 200' 

LOCALIZER DEVIATION 
if flight phase is LD or TD 

LOC display switch is on 
localizer signal is valid 
FLARE-GUIDE symbol is not active 
radar-alt is greater than 260' 

COMMANDED AIR SPEED {1} 
if automatic commanded airspeed hold mode is preselected or engaged 

3 .... ~., 



COMMANDED AIR SPEED {2} 
if automatic time path mode is engaged 

CAS display switch is on 
last waypoint in navigation computer is false 
COMMANDED AIR SPEED symbol { 1} is not active 
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Appendix F 
Implementation and Integration Issues 

TTFIM's final system design was implemented and integrated for flight tests 
onboard NASA, Langley's TSRV aircraft (see appendix B) using a commercial 
knowledge-based expert system development shell . Implementation and 
integration issues of the flight software are discussed below in sections that describe 
the software development environment, the system's knowledge base, the system's 
inference mechanism, the operation protocol, and integration modifications that 
were necessary to the existing software modules. 

The Software Development Environment 

Both KBS's (refer to Figure 2-2, page 18) onboard th~ TSRV were developed 
and maintained with the Gold Hill Computers' GoldWorks ~TM) expert system shell. 
GoldWorks was a knowledge-based expert system development environment 
integrated with Gold Hill's Golden Common LISP Developer software. The 
GoldWorks system had two interfaces to accommodate different user needs and 
areas of expertise. The menu-based interface allowed non-LISP programmers to 
develop the system without using LISP. Whereas, more experienced developers 
were able to work with GoldWorks' open architecture through the Developer 
interface - a functional interface. 

The Knowled2e Base 

As with most KBS's, the primary implementation concern was the knowledge 
base. Everything the KBS knew about the application was contained in the 
knowledge base. TTFIM's knowledge base consisted of both passive and actii'e 
knowled~e pertaining to task-tailored PFD information management (both 
informat10n selection and fli$ht-phase detection). Passive knowledge were facts 
known to be true a priori, while active knowledge were any methods (e.g., rules, 
daemon functions, etc.) used to make, delete, and modify facts during run-time. 

In TTFIM, passive knowledge was used for initializations. For example, the 
assertions on page 77 were passive knowledge that initialized, among other things, 
the phase of flight. And, in TTFIM, one use of active knowledge was the rules for 
detecting the phase of flight. For example, the rule for takeoff on page 81 would 
assert the fact (phase next takeoff) when the facts supporting the following 
conditions were true: in auto-detect mode; the previous phase of flight was taxi or 
land; the engine reversers are not engaged; epr $feater than 1.8; flaps are set less 
than or equal to 30 degrees; and, radar altitude 1s less than or equal to 400 feet. 

All facts (resulting from both passive and active knowledge) were 
represented in GoldWorks with asserlions. In addition to the facts (also called 
patterns), an assertion contained the fact's dependency information. The 
dependency information of an assertion recorded how the assertion was put into the 
assertion base (the derivation) and why the assertion was currently in the assertion 
base (the justification or logical support). At any one time, the assertion base 
contained all the current factual information about TTFIM (see Figure F-1 below 
for an example snapshot of a partial TTFIM assertion base during run-time). 
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lTRUE) 
EQUIV TAKEOFF 1) 
EQUIV TERM-CB 2) 
EQUIV CRUISE 4) 

... 
EQUIV ENR-DS 128) 
DETECT AUTO) 
SHIFT OUTPUT) 
G/S VALID-IS ON) 
LOC VALID-IS ON) 
NAV-PATH VALID-IS ON) 
NA VP A TH2 VALID-IS ON) 
RAL T SWITCHED ON) 
VERT SWITCHED ON) 
G/S SWITCHED ON) 

... 
CAS SWITCHED ON) 
LOC SWITCHED ON) 
ALT MODE-IS 1) 
TKA MODE-IS 1) 
A-CWS MODE-IS 1) 
AUTO MODE-IS 1) 

... !LAND MODE-IS 1) 
FPA MODE-IS 1) 
V-CWS MODE-IS 4) 
CAS MODE-IS 2) 
DEC-HEIGHT IS 1000) 

... 
ALTITUDE IS 100) 
EPR IS 185) 
CAS-REF-BUF SYMBOL OFF) 
FLARE-GUIDE SYMBOL OFF) 
RAD-ALT SYMBOL OFF) 
RWY-IMAGE SYMBOL OFF) 
LOC-DEV SYMBOL OFF) 

G/S-DEV SYMBOL OFF) 
REF-ALT SYMBOL OFF) 
VERT-PATH SYMBOL ON) 
WP-ST AR SYMBOL ON) 
XTK-DEV SYMBOL ON) 
HOR-DEV SYMBOL ON) 
CAS-REF-DIAL SYMBOL ON) 

... !GEAR DISCRETE-IS ON) 
NOW-IS IN-PHASE TAKEOFF) 
NOW-IS NOT-IN-PHASE TAXI) 

Figure F-1 - Example Snapshot of a portion of TfFIM Assertion Base 
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The justification and logical dependency portion of the assertions were used 
to support assertion retraction. When an assertion was removed from the assertion 
base, the system used the justifications and lo~ical dependency information of the 
assertion and removed or retracted all assertions that logically depended upon it 
from the assertion base. When the retraction of one assertion was to cause the 
retraction of another assertion, the rule that led from one assertion to the other was 
defined with a dependency value of "t". For example, the rule for horizontal 
deviation on page 87 of appendix J had a dependency value oft. So, when any of 
the assertions needed to fire the horizontal deviation rule were retracted ( e.g., (now­
is in-phase takeoff)), the assertion (hor-dev symbol on) would be retracted. On the 
other hand, if an assertion was not to be retracted when conditions that put the 
assertion in the assertion base were retracted, it was defined with the dependency 
value of nil. An example of this was the rule for slave-phase on page 79 of appendix 
J, in which the dependency value was nil. When the assertion (shift detect) of this 
rule was retracted, it did not retract the assertion generated by the rule (i.e., (now-is 
in-phase ?phname), (shift output), or (phase-out is ?phnum) ). 

Assertion retraction was also enabled when an assertion relation was defined 
as functional. The special characteristic of a functional assertions was that when one 
functional assertion had the same elements as another functional assertion except 
for the last element in the list, it caused the first assertion to be retracted. For 
example, DETECT (page 76, appendix J) was defined as a functional assertion 
relation. If (detect auto) was asserted first, then (detect manual) was asserted later, 
the assertion (detect auto) was retracted. 

TTFIM's assertion base was also modified by daemon functions. TTFIM 
made use of GoldWorks daemon capability to perform overhead operations (e.g., 
re-initializing values). For example, the when-modified facets of frame instances 
allowed a LISP function to be attached. Whenever a slot value associated with the 
daemon function was modified (asserted, retracted or modified), the system 
evaluated the LISP functions in the order listed. For example, the instance 
SYMBOL (page 74 of appendix J) defines when-modified daemons to each of its 
slot values to indicate a modification to the output module (new show) and to re­
initialize the symbols to off (off-set). 

The Inference En2ine 

While the knowledge base contained the information specific to TTFIM, the 
inference engine contained the facilities that caused the system to make inferences 
about the data. The inference engine was rcsponsihle for applying the active 
knowledge to the factual data (i.e., assertions) when searchmg for solutions. 
Pattern-matching was used to match the antecedents and/or consequents of defined 
methods (e.g., rules, daemon functions, etc.) to assertions in the assertion base. 

Several inferencin~ techniques were available in GoldWorks (i.e., forward 
chaining, backward chaining, or a combination of forward and backward chaining). 
In addition, Gold Works allowed the control of the inference process to be altered 
by the use of priorities. TTFIM consisted primarily of data-driven production rules. 
The forward-chaining of TIFIM was used to infer solutions from assertions that 
existed in the assertion base. The forward-chaining was initiated when the 
antecedent, or "if," portion of a forward rule matched a set of assertions in the 
knowledge base. When the rule was matched and ready to fire, the inference engine 
created an agenda item. When the agenda item fired, the consequent of the rule 
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entered new assertions into the knowledge base. These assertions in turn could 
cause more agenda items to be created, continuing the forward chaining. 

As mentioned above, GoldWorks allowed the control of the inference to be 
altered by usins priorities. The higher the priority, the sooner the rule was applied 
to the agenda hst. TTFIM used priorities and the SHIFT relation (appendix J, page 
76) to control the ordering of agenda items. 

Operation Protocol 

During flight, the TTFIM KBS software operated in interpreted-LISP mode 
on a Gold Hill Computers' HummingBoard card, installed in an 80286-based 
Personal Computer (PC) clone. The HummingBoard was an 80386-based CPU that 
could be housed in any 8088-based PC, 80286-based PC, or compatible. 1TFIM's 
process communicated with the display processes on the Norden computer, by 
sending display symbol control words, via the common data transfer system called 
the Digital Autonomous Terminal Access Communication (DAT AC) bus. 

All of the various functions of the TSRV were networked through the 
DA TAC bus. The DA TAC bus was also the means for retrieving the massive 
amount of input data necessary to TTFIM. The DAT AC bus was a 1 megahertz 
serial bus which operated in broadcast mode - every terminal on the bus had access 
to the transmissions of all other terminals on the bus. All aircraft parameters from 
sensor interface pallets, and all flight commands, were distributed over the DAT AC 
bus for access from any of the various stations depicted in Figure B-2 (page 36). 

GoldWorks' built-in low-level functions permitted TTFIM to communicate 
with the DAT AC bus by accessing certain areas of the host PC's memory. When 
TTFIM read from or wrote to the special area of the PC memory, a PC resident 
program did the appropriate transfer (i.e., read or write) on the DATAC bus. 

All of TTFIM's data were formatted into the low byte of the specified 
DA TAC address. The upper bytes of the DAT AC words were not used since the 
TTFIM hardware was not able to address the upper byte. TIFIM outputs consisted 
of four packed discrete bytes. The bytes were put on the DA TAC bus as the low 
bytes of four DA TAC words. The first two words indicated the state of the 14 
configurations of optional PFD symbols controlled by TTFIM. The third word 
indicated the detected phase of flight. And, the fourth word was a one bit error flag. 



TABLE F-1 
TTFIM Output Control Words 

Display Control Word Bit Indication 

0 0 Reference Altitude 
1 Waypoint Star 
2 Horizontal Deviation 
3 Glideslope Deviation 
4 Localizer Deviation 
5 CAS Reference ( dial) 
6 CAS Reference (buffer) 

1 0 Runway Image 
1 Radar Altitude 
2 Vertical Path 
3 Flare-Guide 
4 Track-Angle Error 1 
5 Track-Angle Error 2 
6 Track-Angle Error 3 

2 0 Takeoff 
1 Terminal Climb 
2 Cruise 
3 Terminal Descent 
4 Land 
5 Taxi 
6 Enroute Climb 
7 Enroute Descend 

3 0 Error Flag (for flight phase) 

The formatting and final control of all displays in the TSR V were the 
responsibilities of the Displays computer (shown in Figure B-2, page 36). The 
Displays computer produced the high-level commands needed by the display 
systems in the aft cockpit (i.e., graphics commands). The logical decision of which 
optional information display elements to present on the PFD was formerly 
embedded in these high-level display commands. However, with the KBS in 
operation, the logic portion of the Displays computer software was disabled. The 
Display computer looked for the display control words from the KBS to determine 
which optional information display elements to present. 

Baseline Software Modifications 

In addition to the KBS development, this effort required modification of the 
displays input/output (1/0) handler as well as the 1/0 data common. 1/0 routines 
were written to format the input discretes m.ed by the GoldWorks software, and to 
unpack the output discretes which controlled the display of optional display symbols 
on the PFD (see Table F-1) and dictate which phase of flight to indicate in the top 
left corner of the PFD. Display modules were modified to accept the output 
discretes from the GoldWorks software. The modules were modified in such a way 



that control of the optional display symbols could be determined by either the 
present logic or the KBS software. Control was switched via a configuration word 
set interactively by the experimenter. 

Implementing the TTFIM software also included the redefinition of several 
bezels on the PFD. The eight bezels on the left of the PFD were used for manual 
selection of phase of flight (when not in automatic detection mode) and the seventh 
bezel on the right was used to select manual or automatic phase of flight 
configuration. 
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Appendix G 
Flight-Phase Detection Rules 

The following logic represents that used in the TfFIM flight tests for 
determining the phase of flight. As with the information management logic, the 
flight-phase detection logic appears as it did in the flight tests, even though 
simplifications can now be made. 

The flight-phase detection rules were "transition-in" rules, meaning that the 
conditions required for a flight-phase to be active only needed to be true to start 
that phase, not to stay in that phase. Once in a specified phase of flight, the only 
way the system would transition into another phase of flight was if the conditions for 
another phase became true (not if the conditions of the current were not true). For 
example, one of the conditions in the rule for takeoff stated that the flight phase in 
the previous cycle was either taxi or land (i.e., Last-Phase = TX or LD). One cycle 
after the phase of flight became takeoff, the "last- phase" variable was set to takeoff, 
thus not satisfying the condition stating that the last-phase must be either taxi or 
land. However, the phase of flight remained takeoff until the conditions of another 
phase became true. 

TAXI (TX) 
Last-Phase = T /0 or LD 
Squat-Switch = GROUND 
Gear= DOWN 
EPR < 1.8 
-1.0° < GAMMA < 1.0° 
Radar-Altitude < = 10' 
FLAPS< 5° 

TAKEOFF (T/0) 
Last-Phase = TX or LD 
Reversers = OFF 
EPR > 1.8 
Radar-Altitude < = 400' 
Flaps < = 30° 

TERMINAL-CLIMB (TC) 
Last-Phase = T /0 or TD 
Squat-Switch = AIR 
Gear= UP 
Gamma>= 1.0° 
Radar-Altitude > = 400' 
Barometric-Altitude < 5000' 
Flaps < = 15° 

ENROUTE-CLIMB (EC) 
Last-Phase = TC or CR or ED 
Squat-Switch = AIR 
Gear= UP 
EPR > 1.2 
Gamma > = 1.0° 
Barometric-Altitude > = 10000 
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CRUISE (CR) 
Last-Phase = EC or ED 
Squat-Switch = AIR 
Gear= UP 
EPR > 1.2 
-1.0° < Gamma < 1.0° 
Flaps= 00 
Barometric-Altitude > = 10000 

ENROUTE-DESCENT (ED) 
Last-Phase = CR or ED 
Squat-Switch = AIR 
Gear= UP 
EPR < 1.4 
Gamma< -1.0° 
Barometric-Altitude > = 10000 

TERMINAL-DESCENT (TD) 
Last-Phase = TC or ED 
Squat-Switch = AIR 
EPR < 1.4 
Gamma< -1.0° 
Barometric-Altitude < 10000 

LAND (LD) 
Last-Phase = T /0 or TD or TC 
Gear= DOWN 
EPR < 1.8 
Gamma<= 0° 
Flaps > = 15° 
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Appendix H 
Stage 1 Flight-Test Envelopes 

The stage 1 flight tests of TTFIM were done during the baseline verification 
flights on June 7 and 13, 1989. The functionality of TTFIM at this stage, was to 
duplicate the functionality of the traditional implementation in the baseline, 
therefore transparent to the pilot. So, dedicated flight tests were not necessary. The 
flight-test envelope for the June 7 and 13, 1989, are given in the tables below. 

TABLE H-1 
June 7, 1989, TSRV Flight-Test Envelope 

Flt.Deck Configuration Purpose Procedure 

RFD Cruise-Trimmed VCWS mode check Engage RFD 
Sidearm control Display system check Select VCWS 

Check pitch roll & 
yaw 

FFD STAR WFB13 MLS autoland evaluation Engage auto HOR 
(see Figure H-1) & VERT path 
Altitude 4000' New throttle Enter star at first 

waypoint 
210 kts Enable MLS when 

MLS is valid 
ADIRS Pilot call out alt & 

cross track errors at 
Autothrottle MLS engage 

Arm land mode in 
final turn 
Continue landing 
through rollout 

RFD STAR WFB13 Manual MLS Engage VCWS & 
(see Figure H-1) autothrottles 
Altitude 4000' Approach & landing Enter star at first 

waypoint 
210 kts Pilot evaluation of SAC Enable MLS when 

configuration valid 
SAC config 1.0 Pilot call out alt & 

crosstrack errors at 
ADIRS MLS engage 

Continue approach 
to go-around 

RFD SAC config 2.0 Pilot evaluation of SAC Repeat previous 
alternate configuration procedure 

Exercise Lateral 
Trim Switch 
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TABLE H-1 (continued) 

Flt.Deck Configuration Purpose Procedure 

RFD SAC config 3.0 Same as previous Repeat previous 
procedure 

RFD Gear up Stick shaker check Engage RFD 

Flaps up AOA vane check Select altitude hold 

CAS = 210 kts Set idle thrust - FFD 

Altitude 10,000' 
safetl pilot should 
chec that throttles 
are on AFT stop 
FFD Pilot should 
call out CL/CLmax 
values in .1 inc 
RFD pilot initiates 
recovery 

RFD Gear up Same as previous Repeat previous 
procedure 

Flaps 1 

CAS = 200 kts 

RFD Gear up Same as previous Repeat previous 
procedure 

Flaps 5 

CAS = 195 kts 

RFD Gear up Same as previous Repeat previous 
procedure 

Flaps 10 

CAS = 180 kts 

RFD Gear up Same as previous Repeat previous 
procedure 

Flaps 15 

CAS = 165 kts 

RFD Gear up Same as previous Repeat previous 
procedure 

Flaps 25 

CAS = 160 kts 

44 



TABLE H-1 (continued) 

Flt.Deck Configuration Purpose Procedure 

RFD Gear down Same as previous Repeat previous 
procedure 

Flaps 25 

CAS = 160 kts 

RFD Gear down Same as previous Repeat previous 
procedure 

Flaps 30 

CAS = 155 kts 

RFD Gear down Same as previous Repeat previous 
procedure 

Flaps 40 

CAS = 140 kts 

RFD Cruise-trimmed VCWS performance Engage RFD VCWS 
Longitudinal axis Apply 1/4 PMC step 

Altitude 10,000' input up allowing 2 
Display evaluation deg increase in att 

CAS = 250 kts Release & allow to 
stabilize 

SAC Config X.lp* Return to level 
Displays verify: 

fhght path angle 
command, symbol 
& position, pitch 
attitude, VCWS 
indication, drift 
angle indication 

RFD same as previous same as prev10us Repeat previous 
procedure for 1/4 
PMC down & 2 deg 
attitude decrease 

* - either 1, 2, or 3, depending on results of previous runs 
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TABLEH-2 
June 13, 1989, TSRV Flight-Test Envelope 

Flt.Deck Configuration Purpose Procedure 

RFD Cruise-trimmed VCWS performance Engage RFD VCWS 
Longitudinal axis Apply 1/4 PMC step 

Altitude 10,000' input up allowing 2 
Display evaluation deg increase in att 

CAS = 250 kts Release & allow to 
stabilize 

SAC Config 4 Return to level 
Displays verify: 

fhght path angle 
command, symbol 
& position, pitch 
attitude, VCWS 
indication, drift 
angle indication 

RFD same as previous 
with CAS = 300 kts 

same as prev10us same as previous 

RFD same as previous 
with CAS = 250 kts 

same as prev10us same as previous 
with 1/4 PMC down 
& 2 deg attitude 
decrease 

RFD same as prev10us same as prev10us same as previous 
with 1/4 PMC up & 
5 deg attitude 
increase 

RFD same as previous 
with CAS = 300 kts 

same as previous same as previous 

RFD same as previous same as previous same as prev10us 

RFD same as previous same as previous same as previous 

RFD same as previous same as prev10us same as previous 

RFD Cruise-Trimmed VCWS performance RFD enga~e VCWS 
Longitudinal axis Increase fliht path 

Altitude 10,000' angle in 1 eg steps 
Precise control to 5 deg, stabilizing 

CAS = 250 kts at each ste~ 
Display symhology checks Return to evel 
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Flt.Deck 

RFD 

RFD 

RFD 

RFD 

TABLE H-2 (continued) 

Configuration 

same as previous 

same as previous 

Cruise-Trimmed 

Altitude > 10,000' 

SAC config 4 

Purpose 

same as previous 

same as previous 

Manual electric pitch 
stability check 

Manual Throttle fixed 
CAS = 250 kts 

same as previous same as previous 
with CAS = 300 kts 

47 

Procedure 

same as prev10us 
with decrease in 1 
deg steps to -5 deg, 
stabilizmg at each 

same as previous 
with increases and 
using manual click 
trim switch 

Disconnect RFD 
Trim a/c 
Reengage RFD 
Apply 1/4 PMC step 
input up allowing 
2 deg increase in alt 
Release, allow to 
stabilize 
Return to level 
Display verify: 

flight path angle 
command, symbol 
& position, pitch 
attitude, VCWS 
indication, drift 
angle indication 

same as prev10us 



WFFBAA 
4000 

215 KT 

TDA22 
35 

130KT 

WFBBB 
4000 

190 KT 

Figure H-1 - STAR WFB13 
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Appendix I 
Stage 2 Flight-Test Envelope 

One objective of the November 13, 1989 flight test was to functionally test 
and check out the operation of the flight-phase detection KBS and the integration of 
the KBS with the information selection KBS and other onboard systems (primarily 
to check out the automatic flight-phase detection). The flight-test envelope for this 
flight test is given in the Table below. 

TABLE 1-1 
November 13, 1989, Portion of the TSRV Flight-Test Envelope 

Flt.Deck Configuration Purpose Procedure 

RFD Altitude < 10,000' TIFIM automatic flight- TX 
phase detection check in T/O 
terminal area TC - then level off 

TD - then level off 

RFD same as previous same as previous TC - no level off 
TD - no level off 

RFD Altitude > 10,000' TIFIM automatic fli~ht- TC 
phase detection chec EC 
outside terminal area CR - level off, vary 

gamma (-1 and 1) 
ED 
CR 
EC 
CR 
EC - no level off, 

straight to next run 

RFD Touch and '§o same as previous for ED 
STAR WF 13 touch and go TD 
(see Figure H-1) LD - touch and go 

T/O 

RFD Full mission phase same as previous for TC 
detection full miss10n EC 

CR 
ED 
TD 
LD 
TX 
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AppendixJ 
GoldWorks Code 

The following are the GoldWorks files used in the flight tests. Minor 
changes were made to make the code more readable ( e.g., documentation). Note 
that 'Track-Angle Error" is consistently referred to as Crosstrack Deviation in the 
following code. No effort was made to correct this conflict in the following code. 
The "Crosstrack Deviation" output from this code was interpreted by the Display 
computer as meaning "Track-Angle Error." 

.. 
" ;; detTrame.lsp -- dolm: 1-12-90 .. 
" ;; Defines all frames. Each of the frames will be described in detail using in-line 
;; documentation . .. 
" 
(in-package 'gw) 

;; CURRENT is a top-frame used to categorize the instances NOT-IN-PHASE, and 
;; IN-PHASE. The fields defined here that will be inherited by all instances of 
;; CURRENT are: NOW-IS -- to specify the what the current phase is or is not and, 
;; ERR-FLG -- to be set when an error in the logic occurs. 

(DEFINE-FRAME CURRENT 
( :print-name "CURRENT'' 
:doc-string "" 
:is TOP-FRAME) 

(NOW-IS 
:default-values (TAXI) 
:constraints (:ONE-OF (TAXI TAKEOFF TERM-CB TERM-OS ENR-CB 

ENR-DS CRUISE LAND))) 
(ERR-FLG 

:default-values (0) 
:constraints (:ONE-OF (0 1)))) 

;; DSPLA Y is a top-frame used to categorize the instance of SYMBOL Gust one 
;; instance at the present time). The fields defined here that will be inherited by 
;; all instances of DSPLA Y are each symbols on the PFD that will be either on or 
;; off. 

(DEFINE-FRAME DSPLA Y 
(:print-name "DSPLA Y" 
:doc-string"" 
:is TOP-FRAME) 

(REF-ALT 
:default-values (OFF) 

:constraints (:ONE-OF (OFF ON))) 
(G/S-DEV 

:default-values (OFF) 
:constraints (:ONE-OF (OFF ON))) 

(XTK-DEV 
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:default-values (OFF) 
:constraints (:ONE-OF (OFF ON))) 

(XTK-DEV2 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ON))) 

(XTK-DEV4 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ON))) 

(WP-STAR 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ON))) 

(LOC-DEV 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ON))) 

(RWY-IMAGE 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ON))) 

(RAD-ALT 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ON))) 

(HOR-DEV 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ON))) 

(FLARE-GUIDE 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ON))) 

(CAS-REF-DIAL 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ON))) 

(CAS-REF-BUF 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ON))) 

(VERT-PATH 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ON)))) 

;; CONTROL is a top-frame used to categorize the instances of SHOW and INIT. 
;; The fields defined here that will be inherited by all instances of CONTROL are: 
;; DLOAD -- to specify whether or not to download from the DA TAC bus; 
ULOAD--
;; to specify whether or not to upload to the DATAC bus; and, STATUS -- to 
indicate 
;; that an update to the display control words had occurred. 

(DEFINE-FRAME CONTROL 
(:print-name "CONTROL" 
:doc-string"" 
:is TOP-FRAME) 

(DLOAD 
:default-values (NO) 
:constraints (:ONE-OF (NO YES))) 

(ULOAD 
:default-values (NO) 
:constraints (:ONE-OF (NO YES))) 
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(STATUS 
:default-values (0))) 

;; A/C-STA TUS is a top-frame used only for cate~orization. There are no 
;; inheritance fields. The next level in this lattice 1s still a frame. All instances will 
;; be of the sub-frames grouped under this top-frame. The sub-frames are BEZEL, 
;; CMS, V ALIDS, BOOLS, and ANALOG. 

(DEFINE-FRAME A/C-STA TUS 
( :print-name "A/C-STA TUS" 
:doc-string'"' 
:is TOP-FRAME)) 

;; BEZEL is a sub-frame of A/C-STATUS. The instance of BEZEL are used to 
;; assert which selection switches have been set. There are 10 fields defined in 
;; BEZEL and inherited by SWITCHED -- each can be either ON or OFF. 

(DEFINE-FRAME BEZEL 
( :print-name "BEZEL" 
:doc-string "" 
:is A/C-STATUS) 

(RALT 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ONO 1))) 

(VRT 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ONO 1))) 

(G/S 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ONO 1))) 

(XTK 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ONO 1))) 

(STAR 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ONO 1))) 

(HOR 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ONO 1))) 

(RWY 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ONO 1))) 

(CAS 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ONO 1))) 

(LOC 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ONO 1))) 

(AUTO-PHASE 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ONO 1)))) 

;; CMS is a sub-frame of A/C-STA TUS. The instance of CMS is MODE-IS which 
;; is used to indicate which automatic control mode the airplane is configured for (if 

52 



;; any). There are 11 fields defined in CMS mapping to each of the switches on the 
;; mode control panel. While the selections are more limited for some than others, 
;; each of the fields will range from 1 to 4 (the most). 

(DEFINE-FRAME CMS 
(:print-name "CMS" 
:doc-string"'' 
:is A/C-ST A TUS) 
(CAS 

:default-values ( 1) 
:constraints (:RANGE (1 4))) 

(ALT 
:default-values (1) 
:constraints (:RANGE (1 4))) 

(TKA 
:default-values ( 1) 
:constraints (:RANGE (1 4))) 

(V-CWS 
:default-values (1) 
:constraints (:RANGE (1 4))) 

(A-CWS 
:default-values (1) 
:constraints (:RANGE (1 4))) 

(AUTO 
:default-values (1) 
:constraints (:RANGE (1 4))) 

(H-PATH 
:default-values ( 1) 
:constraints (:RANGE (1 4))) 

(V-PATH 
:default-values ( 1) 
:constraints (:RANGE (1 4))) 

(T-PATH 
:default-values (1) 
:constraints (:RANGE (1 4))) 

(LAND 
:default-values (1) 
:constraints (:RANGE (1 4))) 

(FPA 
:default-values ( 1) 
:constraints (:RANGE (1 4)))) 

;; VALIDS is a sub-frame of A/C-STATUS. The instance of VALIDS is VALID-IS 
;; which is used to assert which signals are currently valid in the airplane's 
;; computer. Each of the inheritance fields can be either ON or OFF (i.e., valid or 
;; not valid). 

(DEFINE-FRAME VALIDS 
(:print-name "V ALIDS" 
:doc-string '"' 
:is A/C-STATUS) 
(G/S 

:print-name "" 
:default-values (OFF) 
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:constraints (:ONE-OF (OFF ON))) 
(LOC 

:default-values (OFF) 
:constraints (:ONE-OF (OFF ON))) 

(NAY-PATH 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ON))) 

(NAYPATH2 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ON)))) 

;; BOOLS is a sub-frame of A/C-STATUS. The instance of BOOLS is 
;; DISCRETE-IS. The inheritance fields of BOOLS are used for asserting boolean 
;; information pertaining to the aircraft's current configuration 

(DEFINE-FRAME BOOLS 
( :print-name "BOO LS" 
:doc-string '"' 
:is A/C-STATUS) 

(LAST-WP 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ON))) 

(RWY-IN-NAY 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ON))) 

(IN-COVERAGE 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ON))) 

(WP-ALERT 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ON))) 

(WP-DISPlA Y ABLE 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ON))) 

(GEAR 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ON))) 

(SQUAT 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ON))) 

(TREYERSE 
:default-values (OFF) 
:constraints (:ONE-OF (OFF ON)))) 

;; ANALOG is a sub-frame of A/C-STATUS. The instance of ANALOG is IS 
;; which is used to assert information about the aircraft that takes on analog values 

· ;; ( e.g., like altitude). Likewise, the inheritance fields of the ANALOG refer to 
;; analog values needed by ITFIM. 

(DEFINE-FRAME ANALOG 
(:print-name "ANALOG" 
:doc-string "" 
:is ~~.~TA TUS) 

(AL DE 

54 



.. 
" 

:default-values (0) 
:constraints (:RANGE (-100 25000))) 

(DEC-HEIGHT 
:default-values (1000) 

IFW~)aints (:RANGE (0 2500))) 

EPR) 
GAMMA) 
RADAR-ALT) 
PHASE-IN 

:default-values (0) 
:constraints (:RANGE (0 128))) 

(PHASE-OUT 
:default-values (0) 
:constraints (:RANGE (0 128))) 

(RWY-HEADING 
:default-values (0) 
:constraints ( :RANGE (-180 180))) 

(A/C-TRACK 
:default-values (0) 
:constraints (:RANGE (-180 180)))) 

;; definstn.lsp -- dolm: 1-16-90 .. 
" ;; Defines (and makes) all instances. Each of the instances will be described in 
;; detail using in-line documentation. 

" 
;; NOT-IN-PHASE inherits CURRENT fields with nothing extra. 

(DEFINE-INSTANCE NOT-IN-PHASE 
(:print-name "NOT-IN-PHASE" 
:doc-string "" 
:is CURRENT) 

(NOW-IS TAXI) 
(ERR-FLG 0) 
) 

;; IN-PHASE inherits CURRENT fields with 2 additions. When the phase of flight 
;; is modified, the when-modified daemon calls NEW-SHOW to set the system flag 
;; noting that a new phase needs to be displayed. If an error occurs in the automatic 
;; flight-phase detection logic, the when-modified daemon calls ZERO-SET to 
;; change the value back to 0. 

(MAKE-INSTANCE 'IN-PHASE 
:print-name "IN-PHASE" 
:doc-string '"' 
:is 'CURRENT 
:slots 
'( 

~
NOW-IS :VALUE TAXI :WHEN-MODIFIED (NEW-SHOW)) 
ERR-FLG :VALUE O :WHEN-MODIFIED (ZERO-SET)) 
) 
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;; DISCRETE-IS inherits the slots of frame BOO LS with all slots initialized to 
;; OFF. 

(DEFINE-INSTANCE DISCRETE-IS 
(:print-name "DISCRETE-IS" 
:doc-string "" 
:is BOOLS) 
LAST-WP OFF) 
RWY-IN-NAY OFF) 
IN-COVERAGE OFF) 
WP-ALERT OFF) 
WP-DISPLAY ABLE OFF) 
GEAR OFF) 
SQUAT OFF) 
TREVERSE OFF) 

;; SHOW inherits the fields of CONTROL. The fields are used to control 
;; execution characteristics of TTFIM. DLOAD is used to control the downloading 
;; from the DA TAC card. ULOAD controls the uploading to the DAT AC card. 
;; And, STATUS is used to indicate a change has occurred. 

(DEFINE-INSTANCE SHOW 
(:print-name "SHOW" 
:doc-string "" 
:is CONTROL) 

~

DLOADNO) 
ULOADNO) 
STATUS 0) 

;; INIT inherits the fields of CONTROL with 2 additions. DLOAD is to control the 
;; downloading from the DAT AC card to the TTFIM software. When DLOAD is 
;; modified, the daemon calls FULLOAD to signify a full loading of all DAT AC 
;; values. ULOAD works as the inverse of DLOAD with an inverse daemon 
;; function SEND-DSP-CMD. 

(MAKE-INSTANCE 'INIT 
:print-name "INIT' 
:doc-string'"' 
:is 'CONTROL 
:slots 
'( 

~

DLOAD :VALUE NO :WHEN-MODIFIED (FULLOAD)) 
ULOAD :VALUE NO :WHEN-MODIFIED (SEND-DSP-CMD)) 
STATUS :VALUE 0) 
) 

;; SYMBOL is an instance of DSPLA Y. Each of the display symbols are initialized 
;; to OFF with when-modified daemons calling function NEW-SHOW to notify the 
;; system that a change has been made, and function OFF-SET to change it back to 
;; OFF. Note, how the rule are stated will only turn a symbol ON, not OFF. 
;; Therefore, they are cut off each time (in this system only) and turned on again if 
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;; they are still active on the next cycle. 

(MAKE-INSTANCE 'SYMBOL 
:print-name "SYMBOL" 
:doc-string 1111 

:is 'DSPLAY 
:slots 
'( 

REF-ALT :VALUE OFF :WHEN-MODIFIED (NEW-SHOW OFF-SET)) 
G/S-DEV :VALUE OFF :WHEN-MODIFIED (NEW-SHOW OFF-SET)) 
XTK-DEV :VALUE OFF :WHEN-MODIFIED (NEW-SHOW OFF-SET)) 
XTK-DEV2 :VALUE OFF :WHEN-MODIFIED (NEW-SHOW OFF-SET)) 
XTK-DEV4 :VALUE OFF :WHEN-MODIFIED (NEW-SHOW OFF-SET)) 
WP-STAR :VALUE OFF :WHEN-MODIFIED (NEW-SHOW OFF-SET)) 
LOC-DEV :VALUE OFF :WHEN-MODIFIED (NEW-SHOW OFF-SET)) 
RWY-IMAGE :VALUE OFF :WHEN-MODIFIED (NEW-SHOW OFF-SET)) 
RAD-ALT :VALUE OFF :WHEN-MODIFIED (NEW-SHOW OFF-SET)) 
HOR-DEV :VALUE OFF :WHEN-MODIFIED (NEW-SHOW OFF-SET)) 
FLARE-GUIDE :VALUE OFF :WHEN-MODIFIED (NEW-SHOW OFF-SET)) 
CAS-REF-DIAL :VALUE OFF :WHEN-MODIFIED (NEW-SHOW OFF-SET)) 
CAS-REF-BUF :VALUE OFF :WHEN-MODIFIED (NEW-SHOW OFF-SET)) 
VERT-PATH :VALUE OFF :WHEN-MODIFIED (NEW-SHOW OFF-SET)) 
) 

;; IS is an instance of ANALOG and is used to initialize the value of ALTITUDE to 
;; 0, DEC-HEIGHT to 1000, PHASE-IN to 0, PHASE-OUT to 0, 
;; RWY-HEADING to 0, and A/C-TRACK to 0. Note that throughout this system, 
;; all variables (slots or assertions) that refer to altitude take on a half value due to 
;; restrictions of the systems integer values. 

(DEFINE-INSTANCE IS 
( :print-name "IS" 
:doc-string 1111 

:is ANALOG) !ALTITUDE 0) 
DEC-HEIGHT 1000) 
PHASE-IN 0) !PHASE-OUT 0) 
RWY-HEADING 0) 
A/C-TRACK 0) 
) 

;; MODE-IS is an instance of CMS in which each of the control mode switches are 
;; initialized to 1. 

(DEFINE-INSTANCE MODE-IS 
(:print-name "MODE-IS" 
:doc-string 1111 

:is CMS) ICAS 1) 
ALT 1) 
TKA 1) 
V-CWS 1) 
A-CWS 1) 
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AUTO 1) 
H-PATH 1) 
V-PATH 1) 
T-PATH 1) 
IAND 1) 
FPA 1) 

;; SWITCHED is an instance of BEZEL in which each of the bezel switches 
;; associated to display options are initialized to OFF. Note, the last bezel switch 
;; mentioned, AUTO-PHASE, is the switch the flight engineer used to toggle 
;; between automatic flight-phase detection, and manual flight phase entry. 

(DEFINE-INSTANCE SWITCHED 
( :print-name "SWITCHED" 
:doc-string "" 
:is BEZEL) 
RALTOFF) 
VRTOFF) 
G/S OFF) 
XTKOFF) 
STAR OFF) 
HOR OFF) 
RWY OFF) 
CASOFF) 
WC OFF) 
AUTO-PHASE OFF) 

;; VALID-IS is an instance of V ALIDS in which it initializes each slot to OFF (or 
;; not valid). 

(DEFINE-INSTANCE VALID-IS 
(:print-name "VALID-IS" 
:doc-string "'' 
:is VALIDS) !G/S OFF) 
LOCOFF) 
NAY-PATH OFF) 
NAVPATH2 OFF) 

.. 
" ;; defreltn.lsp -- dolm: 1-16-90 .. 
" ;; Defines all relations. Each relation will be described in more detail using in-line 
;; documentation .. 
" 
(in-package 'gw) 

;; EQUIV is used to define table-lookups. For example 
;; (EQUIV takeoff 2) 

58 



;; can be used like (EQUIV ?p 2) to bind ?p to takeoff, or like (EQUIV takeoff ?p) 
;; to bind ?p to the numerical value of takeoff. This becomes more powerful when 
;; all phases are considered and the EQUIV relation is used in rules where the 
;; phase is known in either the numerical or symbolic form and not both. 

(DEFINE-RELATION EQUIV 
(:print-name "EQUIV" 
:doc-string"" 
:explanation-string "" 
:LISP-function NIL 
:relation-type :ASSERTION) 

NIL) 

;; SHIFT is used to help dictate the flow of TTFIM. SHIFT adds some 
;; procedurality to TTFIM. SHIFT probably could have been left out all together 
;; and its role handled by priorities. However, SHIFT makes it easier to 
;; understand. Certain rules will change the value of SHIFT to direct the inference 
;; to other sections of rules. Shift is a functional-assertion and therefore only one 
;; assertion of SHIFT can be true at one time. 

(DEFINE-RELATION SHIFT 
(:print-name "SHIFT" 
:doc-string "'' 
:explanation-string "" 
:LISP-function NIL 
:relation-type :FUNCTIONAL-ASSERTION) 

NIL) 

;; DETECT is used to dictate whether the automatic detection of flight phases is on 
;; or not. DETECT is a functional assertion. 

(DEFINE-RELATION DETECT 
( :print-name "DETECT' 
:doc-string"" 
:explanation-string "" 
:LISP-function NIL 
:relation-type :FUNCTIONAL-ASSERTION) 

NIL) 

;; PHASE is used in the flight-phase detection KBS to store the valid flight phases. 
;; It's not functional because the rules allow more than one phase to be detected 
;; (however, more than one is never detected). 

(DEFINE-RELATION PHASE 

.. 
" 

(:print-name "PHASE" 
:doc-string"" 
:explanation-string "" 
:LISP-function NIL 
:relation-type :ASSERTION) 

NIL) 

;; defassrt.lsp -- dolm: 1-16-90 .. 
" 
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;; Defines initial assertions. Descriptions of theses assertions will be described 
;; using in-line documentation . .. 
" 
(in-package 'gw) 

;; Some of these assertions can be made by changing intial values of slots in the 
;; appropriate instances. However, it's easier to keep track of them here. The table 
;; lookup for the flight phase relations are also defined here. 

(DEFINE-ASSERTION 

.. 
" 

(and 
NOW-IS IN-PHASE TAXI) 
SHIFT TOP) 
MONITOR DISPLAY ON) 
EQUIV TAKEOFF 1) 
EQUIV TERM-CB 2) 
EQUIV CRUISE 4) 
EQUIV TERM-DS 8) 
EQUIV LAND 16) 
EQUIV TAXI 32) 
EQUIV ENR-CB 64) 
EQUIV ENR-DS 128))) 

;; r-top.lsp -- dolm: 1-17-90 .. 
" ;; This group of rules are to fire first. The order within the group is dictated by the 
;; priority value. The fact that this group fires first is dictated by the (SHIFT TOP) 
;; which is set during the loading of the system, and after the output of the results. 
;; The appropriate rules within this group will fire, then make the assertion (SHIFT 
;; DETECT) so that the phase can be detected (either manually or automatically. 
;; Each rule's purpose will be described using in-line documentation . .. 
" 
(in-package 'gw) 

;; DOWNLOAD sets the DLOAD slot of INIT (an instance of CONTROL) to YES 
;; so that the values from the DAT AC hus can he loaded into the system. 

(DEFINE-RULE DOWNLOAD 
{:print-name "DOWNLOAD" 
:doc-string 1111 

:dependency NIL 
:direction :FORWARD 
:certainty 1.0 
:explanation-string 1111 

:priority 900 
:sponsor TOP-SPONSOR) 

(SHIFT TOP) 
THEN 
(INSTANCE INIT IS CONTROL WITH DLOAD YES) ) 
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;; QUERY-AUTO determines if the user (i.e., pilot) wants to have the system 
;; automatically detect the phase of flight. If the user wants the automatic 
;; detection, the auto-phase switch will be on. Therefore, if the system is recycling 
;; to the top (i.e., SHIFf TOP), and the auto-phase switch is on, then assert 
;; (DETECT AUTO) so that the rules for automatic detection will fire, and turn 
;; control over to the detection section (i.e., SHIFf DETECT). 

(DEFINE-RULE QUERY-AUTO 
(:print-name "QUERY AUTO" 
:doc-string "" 
:dependency NIL 
:direction :FORWARD 
:certainty 1.0 
:explanation-string "" 
:pnority 800 
:sponsor TOP-SPONSOR) 

(SHIFf TOP) (AUTO-PHASE SWITCHED ON) 
THEN 
(DETECT AUTO) (SHIFf DETECT) ) 

;; QUERY-MANUAL determines if the user (i.e., pilot) wants to manually indicate 
;; the phase of flight. If the user wants manual entry, the auto-phase switch will be 
;; off. Therefore, if the system is recycling to the top (i.e., SHIFf TOP), and the 
;; auto-phase switch is off, then assert (DETECT MANUAL) so that the rules for 
;; automatic detection will not fire, and turn control over to the detection section 
;; (i.e., SHIFf DETECT). 

(DEFINE-RULE QUERY-MANUAL 
(:print-name "QUERY MANUAL" 
:doc-string "" 
:dependency NIL 
:direction :FORWARD 
:certainty 1.0 
:explanation-string "" 
:pnority 800 
:sponsor TOP-SPONSOR) 
(SHIFf TOP) (AUTO-PHASE SWITCHED OFF) 

THEN 
(DETECT MANUAL) (SHIFf DETECT) ) 

.. 
" ;; r-phases.Isp -- dolm: 1-19-90 .. 
" ;; This group of rules fire after TOP, and before the symbol rules. There is no 
;; reason to dictate the transition to the symbol rules with a shift command since the 
;; priorities can handle that. The ultimate purpose of these rules is to set the 
;; assertion (NOW-IS IN-PHASE?). The first rule handles the case when manual 
;; input of flight phase has been chosen. There is then a series of rules that handle 
;; the automatic detection of all valid phases of flights. The last set of rules work 
;; with the automatic phase selection by picking one phase out of multiple, none, or 
;; one choice given by the previous rules. Transition to the last set of rules is done 
;; with (SHIFf READY). After the phase of flight has been chosen, (SHIFf 
;; OUTPUT) is set to allow the output section of code to fire. However, the next 
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;; set of rules that will fire are the symbol rules since their priority is higher. 

" 
;; SlA VE-PHASE is used to determine NOW-IS IN-PHASE when manual 
;; selection has been selected. While--fo manual selection, PHASE-IN IS is 
;; asserted with the numerical equivalence of the flight phase as dictated by the 
;; bezel switches beside the PFD. Then using the EQUIV assertions as a table 
;; lookup, NOW-IS IN-PHASE is bound to the symbolic equivalent of the 
;; numerical representation of the flight phase. SHIFT is then changed to 
;; OUTPUT for the reasons described above. 

(DEFINE-RULE SlA VE-PHASE 
( :print-name 11SlA VE-PHASE" 
:doc-string 1111 

:dependency NIL 
:direction :FORWARD 
:certainty 1.0 
:explanation-string 1111 

:pnority 800 
:sponsor TOP-SPONSOR) !DETECT MANUAL) (SHIFT DETECT) 
PHASE-IN IS ?PHNUM) 
EQUIV ?PHNAME ?PHNUM) 

THEN 
(NOW-IS IN-PHASE ?PHNAME) 
(SHIFT OUTPUT) (PHASE-OUT IS ?PHNUM) ) 

;; PHASE-IDS 
;; if current-phase = terminal-climb or enroute-descent, and 
;; squat-switch = off (i.e., in the air), and 
;; gamma < -1.0 degrees, and 
;; epr < 1.4, and 
;; barn-altitude < 10000' 
;; then 
;; next-phase = terminal-descent 

(DEFINE-RULE PHASE-IDS? 
( :print-name "Terminal Descent Test" 
:doc-string 1

"' 

:dependency T 
:direction :FORWARD 
:certainty 1.0 
:explanation-string 1111 

:pnority 100 
:sponsor TOP-SPONSOR) 
(DETECT AUTO) 
(OR 
(NOW-IS IN-PHASE TERM-CB) (NOW-IS IN-PHASE ENR-DS)) lSQUAT DISCRETE-IS OFF) 
GAMMA IS ?G) (EPR IS ?E) (ALTITUDE IS ?BALT) 
< ?G -10) ( < ?E 140) ( < ?BALT 5000) 

THEN 
(PHASE NEXT TERM-OS)) 
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;; PHASE-TCB 
;; if current-phase = takeoff or terminal-descent, and 
;; squat-switch = off (i.e., in the air), and 
;; gear = off (i.e., up), and 
;; gamma > = 1.0 deg., and 
;; flaps < = 15. deg., and 
;; baro-alt < 10000', and 
;; radar-alt > 400' 
;; then 
;; next-phase = terminal-climb 

(DEFINE-RULE PHASE-TCB? 
(:print-name "Terminal Climb" 
:doc-string 1111 

:dependency T 
:direction :FORWARD 
:certainty 1.0 
:explanation-string "" 
:pnority 100 
:sponsor TOP-SPONSOR) 

(DETECT AUTO) 
(OR 

(NOW-IS IN-PHASE TAKEOFF) (NOW-IS IN-PHASE TERM-DS)) !SQUAT DISCRETE-IS OFF) (GEAR DISCRETE-IS OFF) 
GAMMA IS ?G) (FLAPS IS ?F) (RADAR-ALT IS ?RA) 
ALTITUDE IS ?BALT) ( > = ?G 10) ( < = ?F 15) 

( > = ?RA 200) ( < ?BAL T 5000) 
THEN 
(PHASE NEXT TERM-CB)) 

;; PHASE-TO 
;; if current-phase = taxi or land, and 
;; flaps < = 30. deg., and 
;; reversers = off, and 
;; epr > 1.8, and 
;; radar-alt < = 400' 
;; then 
;; next-phase = takeoff 

(DEFINE-RULE PHASE-TO? 
(:print-name "Takeoff Test" 
:doc-string 1111 

:dependency T 
:direction :FORWARD 
:certainty 1.0 
:explanation-string 1111 

:pnority 100 
:sponsor TOP-SPONSOR) 

(DETECT AUTO) 
(OR 

(NOW-IS IN-PHASE TAXI) (NOW-IS IN-PHASE LAND)) 
(TREVERSE DISCRETE-IS OFF) (EPR IS ?E) (FLAPS IS ?F) 
(RADAR-ALT IS ?RA)(> ?E 180) ( < = ?F 30) ( < = ?RA 200) 
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THEN 
(PHASE NEXT TAKEOFF)) 

;; PHASE-TAXI 
;; if current-phase = takeoff or land, and 
;; squat-switch = on (i.e., on the ground), and 
;; gear = on (i.e., down), and 
;; flaps < = 15 deg., and 
;; -1.0 <gamma< 1.0 
;; epr < 1.8, and 
;; radar-alt < = 10' 
;; then 
;; next-phase = taxi 

(DEFINE-RULE PHASE-TAXI? 
(:print-name ''TAXI-TEST' 
:doc-string 1111 

:dependency T 
:direction :FORWARD 
:certainty 1.0 
:explanation-string 1111 

:priority 100 
:sponsor TOP-SPONSOR) 

(DETECT AUTO) 
(OR 
(NOW-IS IN-PHASE TAKEOFF) (NOW-IS IN-PHASE LAND)) !SQUAT DISCRETE-IS ON) (GEAR DISCRETE-IS ON) 
EPR IS ?E) (GAMMA IS ?G) (FLAPS IS ?F) 
RADAR-ALT IS ?RA) ( < ?E 180) ( < ?G 10) ( > ?G -10) 
< = ?F 15) ( < = ?RA 5) 

THEN 
(PHASE NEXT TAXI)) 

;; PHASE-LAND 
;; if current-phase = takeoff or land or terminal-descent, and 
;; gear = on (i.e., down), and 
;; flaps > = 15 deg., and 
;; gamma< 0.0, and 
;; epr > 1.8 
;; then 
;; next-phase = land 

(DEFINE-RULE PHASE-LAND? 
( :print-name "LAND-TEST' 
:doc-string 1111 

:dependency T 
:direction :FORWARD 
:certainty 1.0 
:explanation-string 1111 

:priority 100 
:sponsor TOP-SPONSOR) 

(DETECT AUTO) 
(OR 

(NOW-IS IN-PHASE TAKEOFF) (NOW-IS IN-PHASE TERM-OS) 

64 



(NOW-IS IN-PHASE TERM-CB)) (GEAR DISCRETE-IS ON) 
(EPR IS ?E) (GAMMA IS ?G) (FlAPS IS ?F) ( < ?E 180) 
( < = ?G 0) ( > = ?F 15) 

THEN 
(PHASE NEXT LAND)) 

;; PHASE-EDS 
;; if current-phase = cruise or enroute-climb, and 
;; squat-switch = off (i.e., in the air), and 
;; gear = off (i.e., up), and 
;; gamma < -1.0, and 
;; epr < 1.4, and 
;; barn-altitude > = 10000' 
;; then 
;; next-phase = enroute-descent 

(DEFINE-RULE PHASE-EDS? 
(:print-name "Enroute Descent" 
:doc-string'"' 
:dependency T 
:direction :FORWARD 
:certainty 1.0 
:explanation-string "" 
:pnority 100 
:sponsor TOP-SPONSOR) 

(DETECT AUTO) 
(OR 

(NOW-IS IN-PHASE CRUISE) (NOW-IS IN-PHASE ENR-CB)) !SQUAT DISCRETE-IS OFF) (GEAR DISCRETE-IS OFF) 
GAMMA IS ?G) (EPR IS ?E) (ALTITUDE IS ?BALT) 
< ?G -10) ( < ?E 140) (> = ?BALT 5000) 

THEN 
(PHASE NEXT ENR-DS)) 

;; PHASE-CRUISE 
;; if current-phase = enroute-climb or enroute-descent, and 
;; squat-switch = off (i.e., in the air), and 
;; gear = off (i.e., up), and 
·· flags = 0 " ;; -1. < gamma < 1.0, and 
;; epr > 1.2, and 
;; barn-altitude > = 10000' 
;; then 
;; next-phase = cruise 

(DEFINE-RULE PHASE-CRUISE? 
( :print-name "CRUISE-TEST'' 
:doc-string"" 
:dependency T 
:direction :FORWARD 
:certainty 1.0 
:explanation-string "" 
:pnority 100 
:sponsor TOP-SPONSOR) 
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(DETECT AUTO) 
(OR 

(NOW-IS IN-PHASE ENR-CB) (NOW-IS IN-PHASE ENR-DS)) 

!SQUAT DISCRETE-IS OFF) (GEAR DISCRETE-IS OFF) 
FLAPS IS 0) (EPR IS ?E) (GAMMA IS ?G) 
ALTITUDE IS ?BALT) (> ?E 120) (> ?G -10) ( < ?G 10) 
> = ?BALT 5000) 

THEN 
(PHASE NEXT CRUISE)) 

;; PHASE-ECB 
;; if current-phase = terminal-climb or enroute-descent or 
;; cruise, and 
;; squat-switch = off (i.e., in the air), and 
;; gear = off (i.e., up), and 
;; gamma>= 1.0, and 
;; epr > 1.2, and 
;; barn-altitude > = 10000' 
;; then 
;; next-phase = cruise 

(DEFINE-RULE PHASE-ECB? 
(:print-name "Enroute Climb" 
:doc-string"'' 
:dependency T 
:direction :FORWARD 
:certainty 1.0 
:explanation-string "" 
:pnority 100 
:sponsor TOP-SPONSOR) 

(DETECT AUTO) 
(OR 

(NOW-IS IN-PHASE TERM-CB) (NOW-IS IN-PHASE CRUISE) 
(NOW-IS IN-PHASE ENR-DS)) (SQUAT DISCRETE-IS OFF) !GEAR DISCRETE-IS OFF) (EPR IS ?E) (GAMMA IS ?G) 
ALTITUDE IS ?BAL T) ( > ?E 120) ( > = ?G 10) 
> = ?BAL T 5000) 

THEN 
(PHASE NEXTENR-CB)) 

;; TEST-PHASE-IN sets SHIFT READY if the system is in automatic detection 
;; mode, if its still time for DETECT rules, and if a new phase (i.e, PHASE NEXT 
;; ?) exists in the assertion lists. A SHIFT READY allows the system to fire the 
;; prioritization rules below that address the possibility of multiple choices of flight 
;; phases being selected. 

(DEFINE-RULE TEST-PHASE-IN 
(:print-name "PHASE DETECTED" 
:doc-string '"' 
:dependency NIL 
:direction :FORWARD 
:certainty 1.0 
:explanation-string '"' 
:priority 50 
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:sponsor TOP-SPONSOR) 
(DETECT AUTO) (SHIFT DETECT) (PHASE NEXT?) 

THEN 
(SHIFT READY)) 

;; NO-PDETECT takes care of the no phase TRANSITION being detected. Since 
;; all of the phase rules are "transition-m" rules, this rule is true most of the time. 
;; When this rule is true, the previous phase is still valid. This rule then sets SHIFT 
;; OUTPUT. 

(DEFINE-RULE NO-PDETECT 
( :print-name "NO-PDETECT' 
:doc-string "" 
:dependency NIL 
:direction :FORWARD 
:certainty 1.0 
:explanation-string"" 
:pnority 50 
:sponsor TOP-SPONSOR) 

(DETECT AUTO) (SHIFT DETECT) (UNKNOWN (PHASE NEXT?)) 
THEN 
(SHIFT OUTPUT)) 

;; EXCESS-NEXTS takes care of retracting NEXT phases when more than one 
;; exists that are not equal to the previous phase. NOTE: If multiple next phases 
;; exists, this rule will always be true and will always retract each of the NEXT 
;; phases since none will ever equal the previous phase (see note in rule above). 
;; The rule is somewhat valid since the phase detection rules should be written 
;; where this case can never be true. And, if this case is ever true (but it's not) then 
;; the retraction of all NEXT which forces it to stay in the previous phase is valid. 

(DEFINE-RULE EXCESS-NEXTS 
(:print-name "EXCESS-NEXTS" 
:doc-string "" 
:dependency NIL 
:direction :FORWARD 
:certainty 1.0 
:explanation-string "" 
:priority 45 
:sponsor TOP-SPONSOR) 

(SHIFT READY) (PHASE NEXT ?X)-> ?S (PHASE NEXT ?Y) -> ?R 
(LAST PHASE ?Z) (NOT-EQUAL ?X ?Y) (NOT-EQUAL ?Z ?X) 
(NOT-EQUAL ?Z ?Y) 

THEN 
(RETRACT ?R) (RETRACT ?S)) 

;; ESCAPE works with the other rules above as follows. If all the next phases have 
;; been retracted, then there is no longer a NEXT PHASE. This rule asserts the 
;; warning and shifts control to ERROR. Note: No errors of this nature were 
;; reported during the flight tests. 

(DEFINE-RULE ESCAPE 
(:print-name "ESCAPE" 
:doc-string "" 
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:dependency NIL 
:direction :FORWARD 
:certainty 1.0 
:explanation-string "'' 
:priority 42 
:sponsor TOP-SPONSOR) 
(SHIFT READY) (UNKNOWN (PHASE NEXT?)) 

THEN 
(PROHIBITED PHASE WARNING) (SHIFT ERROR)) 

;; GET-NEXT takes care of assertin~ the one-and-only PHASE NEXT (the higher 
;; priority rule have ascertained that 1f it gets here, there is only one PHASE 
;; NEXi) as the new NOW-IS IN-PHASE. It also sets SHIFT SET. 

(DEFINE-RULE GET-NEXT 
(:print-name "Get Next Phase" 
:doc-string "11 

:dependency NIL 
:direction :FORWARD 
:certainty 1.0 
:explanation-string 1111 

:priority 20 
:sponsor TOP-SPONSOR) 

(SHIFT READY) (PHASE NEXT ?PH) -> ?R 
THEN 
(NOW-IS IN-PHASE ?PH) (SHIFT SET) 
(RETRACT ?R) ) 

;; P-CONVERT uses the EQUIV lookup table to assert the numerical value of the 
;; flight phase in the INSTANCE IS ANALOG. SHIFT is then set to OUTPUT. 

(DEFINE-RULE P-CONVERT 

.. 
" 

(:print-name 11P-CONVERT' 
:doc-string "11 

:dependency NIL 
:direction :FORWARD 
:certainty 1.0 
:explanation-string 1111 

:pnority 20 
:sponsor TOP-SPONSOR) 

(SHIFT SET) (NOW-IS IN-PHASE ?PH) (EQUIV ?PH ?NUM) 
THEN 
(SHIFT OUTPUT) 
(INSTANCE IS IS ANALOG WITH PHASE-OUT ?NUM)) 

;; r-symbls.lsp -- dolm: 1-19-90 .. 
" ;; Contains all of the PFD symbol selection logic. There is no SHIFT control 
;; checks in these rules. All the rule's dependency are set. This set of rules fire 
after 
;; the phase detection rules. Note that the error logic also transitions here. 

;; NOT-TAXI just sets the assertion NOW-IS NOT-IN-PHASE TAXI if the a/c is 
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;; any other phase. This is a poor substitution for the lack of a "not" logical in the 
;; GW package. 

(DEFINE-RULE NOT-TAXI 
(:print-name "Not in Taxi phase" 
:doc-string "" 
:dependency T 
:direction :FORWARD 
:certainty 1.0 
:explanation-string "" 
:priority 10 
:sponsor TOP-SPONSOR) 

(OR 
NOW-IS IN-PHASE TAKEOFF) 
NOW-IS IN-PHASE TERM-CB) 
NOW-IS IN-PHASE TERM-DS) 
NOW-IS IN-PHASE ENR-CB) 
NOW-IS IN-PHASE ENR-DS) 
NOW-IS IN-PHASE CRUISE) 
NOW-IS IN-PHASE LAND) ) 

THEN 
(NOW-IS NOT-IN-PHASE TAXI)) 

;; HORIZONTAL DEVIATION {A} - if nav. path = valid 
;; hor switch = on 
;; not in phase taxi 
;; FLARE GUIDE symbol = off 
;; XTK-DEV2 symbol = off 
;; LOC-DEV symbol = off 
;; radar-alt > 260' 
;; then 
;; HOR-DEV symbol = on 

(DEFINE-RULE TTFIM-HOR-DEV{A} 
(:print-name "Display Hor Dev" 
:doc-string "" 
:dependency T 
:direction :FORWARD 
:certainty 1.0 
:explanation-string "" 
:priority 0 
:sponsor TOP-SPONSOR) 

!NAVPATH2 VALID-IS ON) (HOR SWITCHED ON) 
NOW-IS NOT-IN-PHASE TAXI)(FLARE-GUIDE SYMBOL OFF) 
XTK-DEV2 SYMBOL OFF) (LOC-DEV SYMBOL OFF) 
RADAR-ALT IS ?H) ( > ?H 130) 

THEN 
(HOR-DEV SYMBOL ON)) 

;; HORIZONTAL DEVIATION {B} - if not in phase taxi 
;; nav. path = valid 
;; hor switch = on 
;; FLARE-GUIDE symbol = off 
;; XTK-DEV2 symbol = off 
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.. 
" .. 
" .. 
" 

LOC-DEV symbol = off 
then 

HOR-DEV symbol = on 

(DEFINE-RULE TTFIM-HOR-DEV{B} 
( :print-name "Display Hor Dev" 
:doc-string 1111 

:dependency T 
:direction :FORWARD 
:certainty 1.0 
:explanation-string "" 
:priority 0 
:sponsor TOP-SPONSOR) 

!NOW-IS IN-PHASE TAKEOFF) (NAVPATH2 VALID-IS ON) 
HOR SWITCHED ON) (FLARE-GUIDE SYMBOL OFF) 
XTK-DEV2 SYMBOL OFF) (LOC-DEV SYMBOL OFF) 

THEN 
(HOR-DEV SYMBOL ON)) 

;; CROSSTRACK DEVIATION {2} - if phase= TAXI or TAKEOFF 
;; tka mode = 2 or 4 
;; xtk switch = on 
;; FLARE GUIDE symbol= off 
;; horizontal path mode < > 3 
;; then 
;; XTK-DEV2 symbol= on 

(DEFINE-RULE TTFIM-XTK-DEV2{SEL-TX-TO} 
(:print-name "XTK-DEV2" 
:doc-string "(TKsel - TKa/c) mid-priority" 
:dependency T 
:direction :FORWARD 
:certainty 1.0 
:explanation-string 1111 

:priority 0 
:sponsor TOP-SPONSOR) 

lOR (NOW-IS IN-PHASE TAXI) (NOW-IS IN-PHASE TAKEOFF)) 
OR (TKA MODE-IS 2) (TKA MODE-IS 4)) (XTK SWITCHED ON) 
FLARE-GUIDE SYMBOL OFF) (H-PATH MODE-IS ?H) 

(NOT-EQUAL 3 ?H) 
THEN 
(XTK-DEV2 SYMBOL ON)) 

;; CROSSTRACK DEVIATION {2} - if tka mode = 2 or 4 
;; xtk switch = on 
;; FLARE-GUIDE symbol = off 
;; horizontal path mode < > 3 
;; radar-alt > 260' 
;; then 
;; XTK-DEV2 symbol = on 

(DEFINE-RULE TTFIM-XTK-DEV2{SEL-ANY} 
(:print-name "XTK-DEV2 (TKsel" 
:doc-string "(TKsel - TKa/c) mid priority" 
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:dependency T 
:direction :FORWARD 
:certainty 1.0 
:explanation-string "" 
:pnority 0 
:sponsor TOP-SPONSOR) 

XTK SWITCHED ON) (FLARE-GUIDE SYMBOL OFF) !
OR (TKA MODE-IS 2) (TKA MODE-IS 4)) 

H-PATH MODE-IS ?M) (NOT-EQUAL 3 ?M) (RADAR-ALT IS ?HT) 
> ?HT 130) 

THEN 
(XTK-DEV2 SYMBOL ON)) 

;; CROSSTRACK DEVIATION {4} - if phase = land 
;; xtk switch = on 
;; localizer = valid 
;; FLARE-GUIDE symbol = off 
;; radar-alt > 260' 
;; then 
;; XTK-DEV4 symbol = on 

(DEFINE-RULE TTFIM-XTK-DEV4{LAND} 
(:print-name "XTK-DEV4" 
:doc-string "(TKa/c - rwy-hdg) max-priority" 
:dependency T 
:direction :FORWARD 
:certainty 1.0 
:explanation-string "" 
:pnority 0 
:sponsor TOP-SPONSOR) 

(NOW-IS IN-PHASE LAND) (XTK SWITCHED ON)(LOC VALID-IS ON) 
(FLARE-GUIDE SYMBOL OFF) (XTK-DEV2 SYMBOL OFF) 
(RADAR-ALT IS ?Q) ( > ?Q 130) 

THEN 
(XTK-DEV4 SYMBOL ON)) 

;; CROSSTRACK DEVIATION { } - if phase = takeoff 
;; xtk switch = on 
;; navigation path = valid 
;; FLARE-GUIDE symbol = off 
;; XTK-DEV2 symbol = off 
;; XTK-DEV4 symbol = off 
;; then 
;; XTK-DEV symbol = on 

(DEFINE-RULE TTFIM-XTK-DEV {NAV2} 
(:print-name "XTK-DEV" 
:doc-string "(TKnav - TKa/c) min-priority" 
:dependency T 
:direction :FORWARD 
:certainty 1.0 
:explanation-string "" 
:priority 0 
:sponsor TOP-SPONSOR) 
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!NOW-IS IN-PHASE TAKEOFF) (XTK SWITCHED ON) 
NAVPATH2 VALID-IS ON) (FLARE-GUIDE SYMBOL OFF) 
XTK-DEV2 SYMBOL OFF) (XTK-DEV4 SYMBOL OFF) 

THEN 
(XTK-DEV SYMBOL ON)) 

;; CROSSTRACK DEVIATION { } - if phase = taxi 
;; xtk switch = on 
;; navigation path = valid 
;; FLARE-GUIDE symbol= off 
;; XTK-DEV2 symbol = off 
;; XTK-DEV4 symbol= off 
;; radar-altitude > 260' 
;; then 
;; XTK-DEV symbol = on 

(DEFINE-RULE TTFIM-XTK-DEV{NAV} 
(:print-name "XTK-DEV" 
:doc-string "(TKnav - TKa/c) min-priority" 
:dependency T 
:direction :FORWARD 
:certainty 1.0 
:explanation-string"" 
:priority 0 
:sponsor TOP-SPONSOR) 

l
XTK SWITCHED ON) (NAVPATH2 VALID-IS ON) 
NOW-IS NOT-IN-PHASE TAXI) (FLARE-GUIDE SYMBOL OFF) 
XTK-DEV2 SYMBOL OFF) (XTK-DEV4 SYMBOL OFF) 
RADAR-ALT IS ?H) ( > ?H 130) 

THEN 
(XTK-DEV SYMBOL ON)) 

;; VERTICAL PATH - if vrt switch= on 
;; navigation path = valid 
;; G/S symbol = off 
;; REF-ALT = off 
;; then 
;; VERT-PATH symbol = on 

(DEFINE-RULE TTFIM-VERT-PATH{CWS} 
( :print-name "Vertical Path - CWS Mode" 
:doc-string "'' 
:dependency T 
:direction :FORWARD 
:certainty 1.0 :explanation-string "" 
:priority 0 
:sponsor TOP-SPONSOR) 

1
VRT SWITCHED ON) (NAY-PATH VALID-IS ON) 
G/S-DEV SYMBOL OFF) 
REF-ALT SYMBOL OFF) 

THEN 
(VERT-PATH SYMBOL ON)) 

;; REFERENCE ALTITUDE - if alt mode = 2, 3, or 4 
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.. ,, .. ,, .. 
" .. ,, .. ,, 

land mode = 3 or 4 
phase < > taxi 
G/S DEV symbol = off 

then 
REF-ALT symbol = on 

(DEFINE-RULE TTFIM-REF-ALT{LAND} 
( :print-name "Ref-Altitude in LAND Mode" 
:doc-string "" 
:dependency T 
:direction :FORWARD 
:certainty 1.0 
:explanation-string '"' 
:pnority 0 
:sponsor TOP-SPONSOR) !OR (ALT MODE-IS 2) (ALT MODE-IS 3) (ALT MODE-IS 4)) 
OR (LAND MODE-IS 3) (LAND MODE-IS 4)) 
RALT SWITCHED ON) (AUTO MODE-IS 4) 

(NOW-IS NOT-IN-PHASE TAXI) (G/S-DEV SYMBOL OFF) 
THEN 
(REF-ALT SYMBOL ON)) 

;; REFERENCE ALTITUDE - if alt mode = 2, 3, or 4 
;; ralt switch = on 
;; auto mode = 4 
;; tka mode = 4 
;; fpa mode = 4 
;; phase < > taxi 
;; G/S-DEV symbol = off 
;; then 
;; REF-ALT symbol = on 

(DEFINE-RULE TTFIM-REF-ALT{FPA} 
(:print-name "Ref-Altitude in FPA Mode" 
:doc-string"" 
:dependency T 
:direction :FORWARD 
:certainty 1.0 
:explanation-string '"' 
:pnority O · 
:sponsor TOP-SPONSOR) 

(OR (ALT MODE-IS 2) (ALT MODE-IS 3) (ALT MODE-IS 4)) !RALT SWITCHED ON) (AUTO MODE-IS 4) (TKA MODE-IS 4) 
FPA MODE-IS 4) (NOW-IS NOT-IN-PHASE TAXI) 
G/S-DEV SYMBOL OFF) 

THEN 
(REF-ALT SYMBOL ON)) 

;; REFERENCE ALTITUDE - if alt mode= 2, 3, or 4 
;; a-cws mode = 4 or v-cws mode = 4 
,, ralt switch = on 
;; phase < > taxi 
;; G/S-DEV symbol = off 
;; then 
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.. ,, REF-ALT symbol = on 

(DEFINE-RULE TTFIM-REF-ALT{CWS} 
(:print-name "Ref-Altitude in CWS Mode" 
:doc-string "" 
:dependency T 
:direction :FORWARD 
:certainty 1.0 
:explanation-string 1111 

:priority 0 
:sponsor TOP-SPONSOR) 

!
OR (ALT MODE-IS 2) (ALT MODE-IS 3) (ALT MODE-IS 4)) 
OR (A-CWS MODE-IS 4) (V-CWS MODE-IS 4)) 
RALT SWITCHED ON) (NOW-IS NOT-IN-PHASE TAXI) 
G /S-DEV SYMBOL OFF) 

THEN 
(REF-ALT SYMBOL ON)) 

;; REFERENCE ALTITUDE - if tka mode = 4 or h-path mode = 4 
;; ralt switch = on 
;; auto mode = 4 
;; alt mode = 4 
;; phase < > taxi 
;; G/S-DEV symbol = off 
;; then 
;; REF-ALT symbol = on 

(DEFINE-RULE TTFIM-REF-ALT{ALT} 
( :print-name "Ref-Altitude in AltEng Mode" 
:doc-string "" 
:dependency T 
:direction :FORWARD 
:certainty 1.0 
:explanation-string "" 
:priority 0 
:sponsor TOP-SPONSOR) 

!OR (TKA MODE-IS 4) (H-PATH MODE-IS 4)) 
RALT SWITCHED ON) (AUTO MODE-IS 4) (ALT MODE-IS 4) 
NOW-IS NOT-IN-PHASE TAXI) (G/S-DEV SYMBOL OFF) 

THEN 
(REF-ALT SYMBOL ON)) 

;; GLIDESLOPE DEVIATION - if a-cws mode = 4 or v-cws mode = 4 
;; g/s switch = on 
;; glideslope = valid 
;; phase = land or terminal descent 
;; then 
;; G/S-DEV symbol = on 

(DEFINE-RULE TTFIM-G/SLOPE{CWS} 
( :print-name "GlideSlope - CWS Mode" 
:doc-string 1111 

:dependency T 
:direction :FORWARD 
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:certainty 1.0 
:explanation-string "'' 
:priority 0 
:sponsor TOP-SPONSOR) lOR (A-CWS MODE-IS 4) (V-CWS MODE-IS 4)) 
G/S SWITCHED ON) (G/S VALID-IS ON) 
OR (NOW-IS IN-PHASE LAND) (NOW-IS IN-PHASE TERM-OS)) 

THEN 
(G/S-DEV SYMBOL ON)) 

;; GLIDESLOPE DEVIATION - if phase = land or terminal-descent 
;; g/s switch = on 
;; glideslope = valid 
;; auto mode = 4 
;; fpa mode = 4 
;; then 
;; G/S-DEV symbol= on 

(DEFINE-RULE TTFIM-G/SLOPE{FPA} 
(:print-name "GlideSlope - FPA Mode" 
:doc-string "" 
:dependency T 
:direction :FORWARD 
:certainty 1.0 
:explanation-string "" 
:priority 0 
:sponsor TOP-SPONSOR) !OR (NOW-IS IN-PHASE LAND) (NOW-IS IN-PHASE TERM-OS)) 
G/S SWITCHED ON) (G/S VALID-IS ON) 
AUTO MODE-IS 4) (FPA MODE-IS 4) 

THEN 
(G/S-DEV SYMBOL ON)) 

;; GLIDESLOPE DEVIATION - if phase = land or terminal-descent 
;; g/s switch = on 
;; glideslope = valid 
;; auto mode = 4 
;; land mode = 3 or 4 
;; then 
;; G/S-DEV symbol = on 

(DEFINE-RULE TTFIM-G/SLOPE{LAND} 
(:print-name "GlideSlope - LAND Mode" 
:doc-string "" 
:dependency T 
:direction :FORWARD 
:certainty 1.0 
:explanation-string '"' 
:priority 0 
:sponsor TOP-SPONSOR) !OR (NOW-IS IN-PHASE LAND)(NOW-IS IN-PHASE TERM-OS)) 
OR (LAND MODE-IS 4) (LAND MODE-IS 3)) 
AUTO MODE-IS 4) (G/S SWITCHED ON) (G/S VALID-IS ON) 

THEN 
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(G/S-DEV SYMBOL ON)) 

;; RADAR ALTITUDE - if phase = tds, tclb, eclb, eds, or land 
;; radar-alt < 1300' 
;; then 
;; RAD-ALT symbol= on 

(DEFINE-RULE TTFIM-RADAR-ALT 
(:print-name "Display RAD ALT Symbol" 
:doc-string 1111 

:dependency T 
:direction :FORWARD 
:certainty 1.0 
:explanation-string "" 
:pnority 0 
:sponsor TOP-SPONSOR) 

(OR (NOW-IS IN-PHASE TERM-CB) (NOW-IS IN-PHASE TERM-OS) 
(NOW-IS IN-PHASE ENR-CB) (NOW-IS IN-PHASE ENR-DS) 
(NOW-IS IN-PHASE LAND)) 

(RADAR-ALT IS ?Q) ( < ?Q 650) 
THEN 
(RAD-ALT SYMBOL ON)) 

;; RUNWAY IMAGE - if phase = term-descent or land 
;; rwy switch = on 
;; in-coverage discrete = on 
;; rwy in nav computer = true 
;; a/c is w/in coverage cone 
;; alt < = 5000' 
;; then 
;; RWY-IMAGE symbol = on 

(DEFINE-RULE TTFIM-RWAY-IMAGE 
(:print-name "Runway Image" 
:doc-string"" 
:dependency T 
:direction :FORWARD 
:certainty 1.0 
:explanation-string 1111 

:pnority 0 
:sponsor TOP-SPONSOR) 

(OR (NOW-IS IN-PHASE TERM-OS) (NOW-IS IN-PHASE LAND)) 

!
RWY SWITCHED ON) (IN-COVERAGE DISCRETE-IS ON) 
RWY-IN-NAV DISCRETE-IS ON) (A/C-TRACK IS ?T) 
RWY-HEADING IS ?H) ( < (- ?T ?H) 41) 
< (- ?H ?T) 41) (ALTITUDE IS ?A) (<=?A 2500) 

THEN 
(RWY-IMAGE SYMBOL ON)) 

;; WA YPOINT STAR - if star switch = on 
;; nav-path = valid 
;; last-waypoint = false 
;; waypoint is w/in range 
;; then 
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.. ,, WP-STAR symbol = on 

(DEFINE-RULE TTFIM-WP-ST AR 
( :print-name "WaypointStar" 
:doc-string"" 
:dependency T 
:direction :FORWARD 
:certainty 1.0 
:explanation-string "'' 
:pnority 0 
:sponsor TOP-SPONSOR) !STAR SWITCHED ON) (NAY-PATH VALID-IS ON) 
LAST-WP DISCRETE-IS OFF) 
WP-DISPLAY ABLE DISCRETE-IS ON) 

;; (WP-ALERT DISCRETE-IS OFF) 
THEN 
(WP-STAR SYMBOL ON)) 

;; FLARE GUIDE - if phase = land 
v-cws mode = 4 .. 

" .. 
" .. 
" .. 
" 

radar-alt < decision height 
then 

FLARE-GUIDE symbol = on 

(DEFINE-RULE TTFIM-FLARE{ <DEC} 
(:print-name "Display FlareGuide below DecisionHeight" 
:doc-string "'' 
:dependency T 
:direction :FORWARD 
:certainty 1.0 
:explanation-string "'' 
:pnority 0 
:sponsor TOP-SPONSOR) 

(NOW-IS IN-PHASE LAND) (V-CWS MODE-IS 4) 
(RADAR-ALT IS ?H) (DEC-HT IS ?D) ( < = ?H ?D) 

THEN 
(FLARE-GUIDE SYMBOL ON)) 

;; FLARE GUIDE - if phase = land 
v-cws mode = 4 
radar-alt < = 200' 

.. ,, .. 
" .. 
" 

then .. 
" 

FLARE-GUIDE symbol= on 

(DEFINE-RULE TTFIM-FLARE{ <200} 
(:print-name "Display FlareGuide below 200'" 
:doc-string "'' 
:dependency T 
:direction :FORWARD 
:certainty 1.0 
:explanation-string "" 
:pnority 0 
:sponsor TOP-SPONSOR) 
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(NOW-IS IN-PHASE LAND) (V-CWS MODE-IS 4) 
(RADAR-ALT IS ?Q) ( < = ?Q 100) 

THEN 
(FLARE-GUIDE SYMBOL ON)) 

;; LOCALIZER DEVIATION - if phase = land or term-ds 
;; Joe switch = on 
;; localizer = valid 
;; FLARE-GUIDE symbol = off 
;; RADAR-ALT> 260' 
;; then 
;; LOC-DEV symbol = on 

(DEFINE-RULE TTFIM-LOC-DEV 
( :print-name "Display LOC DEV" 
:doc-string 1111 

:dependency T 
:direction :FORWARD 
:certainty 1.0 
:explanation-string 1111 

:pnority 0 
:sponsor TOP-SPONSOR) 

!
OR (NOW-IS IN-PHASE LAND)(NOW-IS IN-PHASE TERM-OS)) 
LOC SWITCHED ON) (LOC VALID-IS ON) 
FLARE-GUIDE SYMBOL OFF) (XTK-DEV2 SYMBOL OFF) 
RADAR-ALT IS ?Q) ( > ?Q 130) 

THEN 
(LOC-DEV SYMBOL ON)) 

;; COMMANDED AIR SPEED - if cas mode = 2 or 4 
;; then 
;; CAS-REF-DIAL symbol = on 

(DEFINE-RULE TTFIM-CAS{DIAL} 
(:print-name "Display CAS" 
:doc-string "" 
:dependency T 
:direction :FORWARD 
:certainty 1.0 
:explanation-string "" 
:pnority 0 
:sponsor TOP-SPONSOR) 
(OR (CAS MODE-IS 2) (CAS MODE-IS 4)) 

THEN 
(CAS-REF-DIAL SYMBOL ON)) 

;; COMMANDED AIR SPEED - if t-path mode = 4 
;; cas switch = on 
;; last waypoint = false 
;; CAS-REF-SYMBOL = off 
;; then 
;; CAS-REF-BUF symbol = on 

(DEFINE-RULE TTFIM-CAS{WP-BUFF} 
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.. 
" 

( :print-name "CAS-SELECT {WP-BUFF}" 
:doc-string "" 
:dependency T 
:direction :FORWARD 
:certainty 1.0 
:explanation-string "'' 
:pnority 0 
:sponsor TOP-SPONSOR) 

(T-PATH MODE-IS 4) (CAS SWITCHED ON) 
(LAST-WP DISCRETE-IS OFF) (CAS-REF-DIAL SYMBOL OFF) 

THEN 
(CAS-REF-BUF SYMBOL ON)) 

;; r-output.lsp -- dolm: 1-19-90 .. 
" ;; Contains the rules for initiating uploads, displaying info on development screen, 
;; and starting the recycle. This is the last set of rules to fire. After setting SHIFT to 
;; OUTPUT, the system falls through the symbol rules (they have higher priority) 
;; then control comes here. To start the recycle, SHIFT TOP is set. 

" 
;; UPLOAD -- If SHIFT EXIT has been set and a slot has been change (i.e., 
;; STATUS SHOW 1) or an error has occurred, let DATAC code know an upload 
;; needs to take place by setting slot ULOAD to YES. 

(DEFINE-RULE UPLOAD 
(:print-name "UPLOAD" 
:doc-string "" 
:dependency NIL 
:direction :FORWARD 
:certainty 1.0 
:explanation-string "" 
:pnority 0 
:sponsor TOP-SPONSOR) 
(SHIFT EXIT) (OR (STATUS SHOW 1) (ERR-FLG IN-PHASE 1)) 

THEN 
(INSTANCE INIT IS CONTROL WITH ULOAD YES)) 

;; ERROR-HANDLER -- The only time the error handler will be used is when 
;; multiple NEXT PHASEs occur when automatically detecting flight phases. This 
;; itself is unlikely since the rule were designed so that this will not occur. 

(DEFINE-RULE ERROR-HANDLER 
(:print-name "ERROR-CODE" 
:doc-string "" 
:dependency NIL 
:direction :FORWARD 
:certainty 1.0 
:explanation-string"" 
:priority -200 
:sponsor TOP-SPONSOR) 

(SHIFT ERROR) 
THEN 
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(SHIFT EXIT) (INSTANCE IN-PHASE IS CURRENT WITH ERR-FLG 1) 

;; EXIT-ESCAPE -- The exit route used when no changes have to be reported to 
;; the output screen. Sets SHIFT EXIT. 

(DEFINE-RULE EXIT-ESCAPE 
(:print-name "NORMAL EXIT ROUTE" 
:doc-string "" 
:dependency NIL 
:direction :FORWARD 
:certainty 1.0 
:explanation-string "" 
:pnority -800 
:sponsor TOP-SPONSOR) 

(SHIFT OUTPUT) 
THEN 
(SHIFT EXIT) ) 

;; RECYCLE-RULE -- Resets the DLOAD, ULOAD, ERR-FLG, and STATUS 
;; assertions for the next cycle. Also sends control back to the top by SHIFT TOP. 

(DEFINE-RULE RECYCLE-RULE 

.. 
" 

(:print-name "RECYCLE-RULE" 
:doc-string 1111 

:dependency NIL 
:direction :FORWARD 
:certainty 1.0 
:explanation-string 1111 

:pnority -900 
:sponsor TOP-SPONSOR) 

(SHIFT EXIT) 
THEN 
(INSTANCE INIT IS CONTROL WITH DLOAD NO WITH ULOAD NO) 

!INSTANCE IN-PHASE IS CURRENT WITH ERR-FLG O) 
INSTANCE SHOW IS CONTROL WITH STATUS 0) 
SHIFTTOP) ) 

;; f-utils.lsp -- dolm: 1-22-90 
.. 
" ;; All daemon functions. These functions handle overhead operations at what 
;; would be considered the system level. 
.. 
" 
;; ZERO-SET is used as a daemon function to return values to O when they have 
;; been retracted. It would have been nice if the system had a feature like this -­
;; instead of retracting the assertion, it returned the assertion to its default value. 

( defun zero-set (inst slot old new) 
(cond ( (eq *no-value* (multiple-value-bind (x y) (slot-value inst slot) y)) 

(setf (slot-value inst slot) 0 ) ) ) 
) 
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;; OFF-SET is used as a daemon function to return values to OFF when they have 
;; been retracted. It would have been nice if the system had a feature like this --
;; instead of retracting the assertion, it returned the assertion to its default value. 

(defun off-set (inst slot old new) 
(cond ( (eq *no-value* (multiple-value-bind (x y) (slot-value inst slot) y)) 

(setf (slot-value inst slot) 'OFF))) 
) 

;; TF-SET is a slot fixing daemon. If a true/false slot = 1 then it sets it to 'T. And, 
;; if it = 0, it sets it to 'F. 

(defun TF-SET (inst slot old new) 
(cond ( (equal 1 (car new)) (setf (slot-value inst slot) 'T)) 

( ( equal O ( car new)) (setf (slot-value inst slot) 'F) ) ) 
) 

;; OFF-ON-SET is a slot fixing daemon. If an OFF /ON slot = 1 then it 
;; sets it to 'ON. And, if it = 0, it sets it to 'OFF. 

(defun OFF-ON-SET (inst slot old new) 
(cond ( (equal 1 (car new)) (setf (slot-value inst slot) 'ON)) 

( (equal O (car new)) (setf (slot-value inst slot) 'OFF))) 
) 

;; f-iobas.Jsp -- dolm: 1-22-90 .. 
" ;; TTFIM functions for io operations (i.e., port calls, low-memory access, etc. 

" 
; ; ----- Download ----.. 
" ;; For complete load of TTFIM module of data from ioports. Called as daemon. 

(defun FULLOAD (inst slot old new) 
(cond ( (equal 'YES (car new)) (do-load))) ) 

( defun DO-LOAD () 
mode-fix Ml LIST 'MODE-IS 4 #x133) 
mode-fix M2LIST 'MODE-IS 4 #x134) 
mode-fix M3LIST 'MODE-IS 3 #x135) 
on-off-fix SlLIST 'SWITCHED 7 #x131) ; switches 
on-off-fix S2LJST 'SWITCHED 3 #x132) 
on-off-fix VLIST 'VALID-IS 4 #x136) ; valids 
on-off-fix BLIST 'DISCRETE-IS 5 #x137) ; booleans 
slot-fix 'PHASE-IN 'IS (read-byte #x130)) ;; new for Phase2x 
slot-quan 'RADAR-ALT 'IS #xl3C) 
slot-quan 'DEC-HEIGHT 'IS #xl3E) 
slot-quan 'RWY-HEADING 'IS #x148) 
slot-quan 'A/C-TRACK 'IS #x146) 
setf SLIST '(TREVERSE SQUAT GEAR)) 
on-off-fix SLIST 'DISCRETE-IS 3 #xl4F) 
slot-quan 'GAMMA 'IS #xl40) 
slot-quan 'EPR 'IS #x142) 
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(slot-quan 'FLAPS 'IS #xl4A) 
(slot-quan 'ALTITUDE 'IS #x138) ) 

;; Final load function for the MODE instance. Accepts a slot-name list as argument 
;; -- accepts 'number' & 'addr' as arguments for called function 'make-nlist - where 
;; 'number is # of items in N-LIST 

(defun MODE-FIX (list inst number addr) 
(mapcar 'SLOT-FIX list 

(make-inst-list inst number) 
(make-nlist number addr) ) ) 

;; ON-OFF-FIX is the ultimate level function for single digit (1/0 - t/f) loads. 
;; Accepts arguments list = slot name list, number = # items in list, addr = ioport 
;; addr. 

(defun ON-OFF-FIX (list inst number addr) 
(mapcar 'SLOT-FIX list 

(make-inst-list inst number) 
(make-on/off-list number addr) ) ) 

;; sets a given slot value in the current GW frame/instance/slot environment 

(defun SLOT-FIX (slot inst value) 
(setf (slot-value inst slot) value)) 

;; load of analog slot 'inst directly from port addr. 

( defun SLOT-QUAN (slot inst addr) 
(setf (slot-value inst slot) (read-word addr))) 

;; this is called by OTHER-FIX & MODE-FIX to create a list of 'number' items all 
;; of 'inst' 

( defun MAKE-INST-LIST (inst number) 
(DO (( COUNT number) (I-LIST NIL)) 

((ZEROP COUNT) I-LIST) 
(setfl-LIST (cons inst I-LIST)) 
(setf COUNT (- COUNT 1)))) 

;; MAKE-NLIST (called by MODE-FIX) - gets word from ioport (addr) & converts 
;; input (byte) into a list of numbers - each from 1-4 in value using 2 bits per 
;; number. 

(defun MAKE-NLIST (number addr) ;; number = # items, addr = ioport lsetf N-LIST ()) ;; declare N-LIST - this function 
setf D-WORD (read-byte addr)) 
DO ( (XNUM number (- XNUM 1) ) ) ;; NUMBER initialized and bound 

( ( = 0 XNUM) N-LIST) ;; terminate when NUMBER = 0 
(setf N-LIST (cons (nib-to-num D-WORD) N-LIST) );; add to list 
(setf D-WORD (truncate D-WORD 4))) ;; chop 2 bits 

N-LIST) ;; return N-List 

;; MAKE-ON/OFF-LIST accepts arguments 'number' & 'addr' - passing addr to 
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;; read-byte, and 'number' to WORD-TO-LIST function. It creates a list of l's & 
;; O's in the list TFLIST - bound here but returned as output to caller. 

(defun MAKE-ON/OFF-LIST (number addr) 
(setf WORD (read-byte addr)) 
(setf TFLIST (WORD-TO-LIST NUMBER WORD)) 

TFLIST) 

;; WORD-TO-LIST. Subroutine converting an input number (byte) into a list of n 
;; l's & O's, where n may be up to 8 (16) depending on the input number. The 
;; 'number' argument is the # of items in the list. The 'input' argument is the data 
;; number. 

(defun WORD-TO-LIST (NUMBER INPUT) 
(DO ((I-LIST()) (VALUE INPUT) (INDEX NUMBER (- INDEX 1))) 

( (ZEROP INDEX) I-LIST) 
(SETO I-LIST (CONS (COND ( (ODDP VALUE) 1) ( (EVENP VALUE) 0)) 

I-LIST)) 
(SETO VALUE (TRUNCATE VALUE 2))) 

) 

;; NIB-TO-NUM accepts an input number from the caller and converts lowest two 
;; bits into a value 1-4 which it returns 

(defun NIB-TO-NUM (input) ;; input is a 2bit number 0-3 
(setq I-NUM 1) ;; for each bit in input, incr I-NUM 
(cond ( (oddp INPUT) (setq I-NUM ( + I-NUM 1)) )) 
(setq INPUT (truncate INPUT 2)) 
(cond ( (oddp INPUT) (setq I-NUM ( + I-NUM 2)))) 
I-NUM ) ;; return a number 1-4 

(defun READ-BYTE (addr) 
(sys:%ioport addr nil nil)) 

(defun READ-WORD (addr) 
(sys:%ioport addr nil t)) 

;; Lists naming to read into slots from ioports for TTFIM 
;; downloading. 

(setf MlLIST '(TKA FPA ALT CAS)) !setf M2LIST '(LAND AUTO A-CWS V-CWS)) 
setf M3LIST '(T-PATH V-PATH H-PATH)) 
setf VLIST '(NAVPATH2 NAV-PATH LOC G/S)) 

(setf BUST '(IN-COVERAGE RWY-IN-NAV WP-ALERT WP-DJSPLA YABLE 
LAST-WP)) 

(setf SlLIST '(CAS XTK LOC HOR G/S VRT RALT)) 
(setf S2LIST '(AUTO-PHASE STAR RWY)) 

;; ----- Upload -----.. ,, 
;; For uploading data that has changed. Called as a daemon . .. 
" 
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;; New TIFIM upload daemon. 

(defun SEND-DSP-CMD (inst slot old new) 
(cond ( (equal 'YES (car new)) (write-word #xllO (make-dsp-cmd)) )) 
( cond ( ( equal 'YES ( car new) ) 

(write-byte #x 112 (slot-value 'IS 'PHASE-OUT)) ) ) 
( cond ( ( equal 'YES ( car new) ) 

(write-byte #xl 13 (slot-value 'IN-PHASE 'ERR-FLG)))) ) 

;; For TTFIM upload .. originally in file \larc\io99bas.lsp 

(defun MAKE-DSP-CMD () 

) 

(setf DSPSLOT '(REF-ALT WP-STAR HOR-DEV G/S-DEV LOC-DEV 
CAS-REF-DIAL CAS-REF-BUF RWY-IMAGE RAD-ALT VERT-PATH 
FLARE-GUIDE XTK-DEV XTK-DEV2 XTK-DEV4)) lsetf BINLST '( 1 2 4 8 16 32 64 256 512 1024 2048 4096 8192 16384)) 

setf OUTNUM 0) 
mapcar 'BIT-SET DSPSLOT BINLST) 
OUTNUM 

;; Primitives for upload of display command word (bytes) where OUTNUM is 
;; unbound here and references a global var from caller. 

(defun BIT-SET (slot bnum) 
(cond ((equal 'ON (slot-value 'SYMBOL slot)) 

(setf OUTNUM ( + bnum OUTNUM) )) 
( t OUTNUM))) 

;; With these defns. must use hex addr & value 

(defun WRITE-BYTE (addr value) 
(sys:%ioport addr value nil)) 

(defun WRITE-WORD (addr value) 
(sys:%ioport addr value t)) 
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