
A Real-Time Robot Arm Collision Detection System

By Clifford A. Shaffer and Gregory M. Herb

TR 90-28

A REAL TIME ROBOT ARM COLLISION DETECTION SYSTEM

Clifford A. Shaffer

Gregory M. Herb

Department of Computer Science

Virginia Polytechnic Institute and State University

Blacksburg, Virginia 240e,1

ABSTRACT

A data structure and update algorithm are presented for a prototype real time collision
detection safety system for a multi-robot environment. The data structure is a variant of the

octree, which serves as a spatial index. An octree recursively decomposes three dimensional space

into eight equal cubic octants until each octant meets some decomposition criteria. Our oetree

stores cylspheres (cylinders with spheres on each end) and re :tangular solids as primitives (other
primitives Can easily be added as required). These primitives make up the two seven-degrees-

of-freedom robot arms and environment modeled by the system. 0ctree nodes containing more

than a predetermined number N of primitives are decompose". This rule keeps the octree small,

as the entire environment for our application can be modele] using a few dozen primitives. As

robot arms move, the octree is updated to reflect their char,,_ed positions. During most update
cycles, any given primitive does not change which octree nodes it is in. Thus, modification to

the octree is rarely required. Incidents in which one robot arm comes too close to another arm

or an object are reported. Cycle time for interpreting current joint angles, updating the octree,

and detecting/reporting imminent collisions averages 30 milliseconds on an Intel 803S6 processor

running at 20 MHz.

Keywords and Phrases: hierarchical data structures, octrees, collision detection, collision avoidance,

tale-operated robots.

June ii, 1990

This work was partially supported by NASA/Goddard SFC under Grant NAG 5-1183.

i

1. INTRODUCTION

This paper describes the use of a hierarchical data structure, the N-Objects octree, in a

collision detection safety system for a multi-robot work environment. The goal is not to perform

robot arm path planning, but rather to support a real-time safety system to warn of imminent

collisions between two robot arms or between a robot arm and objects in the environment. The

algorithms described can be used to provide a collision detection capability for a variety of robotics

applications.

Our test environment is modeled on NASA's proposed space station operating bay con-

taining two tele-operated robot arms and various objects to be manipulated and avoided by the

arms. A tele-operated robot is one whose motions axe dictated by an operator through a controlling

device. In this case a mini-master, which is a scaled-down model of the arm, is manipulated by

the operator to move the robot arm. Given the working conditions of the operator and the tasks

being performed, the probability of an accident occurring is-macceptably high. Hence, a safety

system is needed which will prevent unintentional collisions. Ideally, a collision avoidance system

wi!! provide safe operation of the robot arms without hindering the operator.

Each robot arm in our application has seven degrees ef freedom, with each section of the

arm being nearly cylindrical in shape. The operating environment is not static - the system must

accommodate movement of both the arms _nd other objects. Nor are motions predetermined. The

operating paradig_a is one of receiving an indication of movemant by certain objects, updating the

representation of the environment to reflect that movement, and reporting any imminent collisions.

From the above characterization of the problem, we see that the collision detection system

requires the following of its representation. First, the representation must determine in real time if

robot arms/objects are about to collide. Second, the representation must constantly be updated,

adjusting to the movements of the robot arms and objects. Both updating and collision detection

nmst consistently be performed within the permitted time pe:iod to be acceptable as a real time

1

safetysystem.Third, therepresentationmustbea reliable,bu_not necessarilyexactmodel.That
r

is, since we are trying to warn of and avoid imminent collisions, exact representation of the objects

is not required -- as long as the approximation does not lead to missing imminent collisions, nor

leads to reporting too many false warnings.

Quad- and octree [Same89, Sameg(}] have become popular data structures for applications

in computer vision, robotics, computer graphics, and Geographic Information Systems as well as

other related disciplines. The octree is a hierarchical data structure that recursively subdivides

a cubic volume into eight smaller cubes (called octants) until a certain criterion, known as the

decomposition rule, is met. This decomposition process is often represented as a tree of out-degree

eight as shown in Figure 1. Changing the decomposition rule gives rise to many varieties of octrees.

The most well known form is the region octree. It is most appropriate for defining the shapes of

homogeneous objects which are difficult to model with highe!--level primitives. Beginning with a

cube that encloses the set of objects to be modeled, splitting oc=urs until each octant lies completely

within an object or is completely empty (see Figure 1).

Another type of octree, which we here refer to as the N-Objects octree, is widely used for

ray tracing of images to simulate realistic lighting effects [GlasS4, GlasS9, MacD89]. The N-objects

octree subdivides space into octants, as does the region octree. However, the N-objects octree stores

a list of the objects that inhabit each node. Beginning with a c,:be that encloses all of the objects,

splitting occurs until no more than N objects lie in any leaf node. The value we choose for N may

depend on the characteristics of the environment being modeled and the task being performed.

We use the N-Objects octree to serve as the underlying representation of our collision

detection system for a number of reasons. The N-Objects octree provides a compact representation

of the environment. An appropriate decomposition rule keeps the size of the tree small which, as we

shall see, allows for fast updating. The N-Objects octree is a dynamic structure which easily adjusts

to changes in the environment through the splitting and merging of octants. Equally important to

2

the efficiencyof the system,smallobjectmotionsrarelyrequirethat the structureof thetreebe

changed.As a result,our systemoperateswith anaveragecycletime of 30msec(andunder60

msecin the worstcase)for our testsimulations.

2. PREVIOUSWORK

Many researchershavestudiedpathplanningproblemsin movingenvironments(for over-

views,see[Shar89,Whit85]). With the expandeduseof tele-operatedrobotsin space,manufac-

turing, and the nuclearindustry,the problemof collisiondetectionandpreventionhasbecomea

significantproblemin its ownright. Herewedescribepreviou3work relatingto variousaspectsof

our representation.

Onepopularapproachto path planningand collisionavoidanceis to model the robot's

workspacein termsof therobotarm'sconfigurationspace[LozoS1,Lozo83, Fave84]. Unfortunately,

the computational complexity of this approach grows rapidly with the number of robot arms and

the number of joints making up the robot arms. In additiom this approach is not suited to a

dynamic real time environment. Fujimura and Samet [Fuji_6, Fuji88] have studied using four

dimensional region octrees (three spatial dimensions and time) to do robot planning. Hong and

Shneier [Hong85] have also considered the region octree for planning.

The use of region octrees to support collision detection is presented in [Boaz84, Roac87].

First, a plan to perform a given task is generated by the planning system. To ensure that no

collisions occur, the planned motions are sampled at discrete times and inter-object interference is

checked for. A region octree is constructed a priori for static objects in the environment. At each

sample, an octree is constructed for each moving object and static intersections tests are performed

by parallel traversal of the octrees.

Hayward [Hayw86] describes a collision detection tool based on region octrees for an off-

line robot programming system. It takes as input a geometric description of a workspace and

3

a robot trajectory and reportswhereand whena collisionwouldoccurshouldthe trajectorybe

executed.Yu and KhaJil [Yu86]presenta systemfor collisiondetectionof a robot workingin a

fixedenvironment.The robot and the environmentaremodeledby meansof simpleprimitives

(i.e. spheres,cylinders,parallelepipeds,cones,andplanes).The authorsobservethat, in spiteof

the simplemethodsusedfor modeling,an "on-line"applicationbasedon testing theintersection

of the robot links with all obstaclesat eachcontrolpoint is not practical. In orderto accelerate

the calculationof the collisiondetectionalgorithm,atablelook-upprocedureis used.Freespace

is representedby discretizingjoint spaceandis storedin a table structure. This tableis usedto

mapthe positionof a robot link to the obstaclesthat lie closeto that link. Thus,the numberof

intersectiontestsperformedat eachsampleis reduced.

Manydifferentapproacheshavebeenreportedfor thegeneralproblemof collisiondetection.

Someof the systemsaretargetedfor off-lineapplicationswhere;_ystemperformanceisnot amajor

factor andoperatorinteractionis possible.Othersareusedir conjunctionwith planningsystems

to decideif pre-plannedrobot motionsarecollisionfree. Still othersproposethe useof custom

hardwareto efficientlydetectcollisions[Smit85].Wedesirea systemwhichwill providereal time

responsewith little or no interactionwith the operator.Furthermore,noprior knowledgeof robot

armmovementswill beavailable.Finally,a systemusingspecializedhardwareis not acceptablein

ourparticular applicationdueto thehigh costof testingand acceptinga newcomputerfor space

f/ight.

3. GENERALDESCRIPTIONOF THE ALGORITHM

Our approachto collisiondetectionis to maintaina modelof theworkingenvironmentand

throughthat model,detectwhenobjectsin the realworld areaboutto collide. In effect,a real

timesimulationof the environmentisperformed.Informatior.regardingthe positionof objectsis

input to thesystem,the representationis updatedto reflectthe currentstateof theworld,andany

imminent collisionsarereported.

Eachobjectin the workingenvironmentthat cancollidewith anotherobjectis includedin

the world model.A constructivegeometryapproachis usedto :epresent objects. That is, complex

objects are described as the union of simpler primitive objects. For our representation, we have

chosen cylspheres, cylinders with spheres on each end, to represent each link in the robot arms. The

cylsphere both provides an acceptable approximation for the links and allows for efficient intersec-

tion tests. The operating environment is not well modeled by cylspheres, so our representation also

supports rectangular solids as additionM primitives. Each primitive object in the environment is

considered a separate entity and is assigned a unique identification number. A geometric descrip-

tion of each primitive object and its current position in the world is stored in a table and is accessed

through this ID. The use of cylspheres and rectangular solids allows for a satisfactory represent-

ation of our working environment (shown in Figure 2) with o_ly 35 primitives. We expect that

the workspace for a wide range of applications can be modeled with at most a couple of hundred

primitive objects.

When primitive objects are used to construct more complex objects, such primitives may

appear to overlap, but no collision should be reported. To handle this problem, the notion of

compatible primitives is introduced. Two adjacent primitives that make up am object (such as

consecutive links in a robot arm) will never collide and thus are defined to be compatible. Com-

patibility between objects is represented by a two-dimensional array in which the entry at row i

and column j is TRUE if objects i and j are compatible and F._LSE otherwise.

We now turn to the problem of collision avoidance. We don't actually want to detect

collisions. We wish to detect imminent collisions, with the intention of avoiding them. Thus,

the collision detection system shall issue a warning when two objects come "too close" to one

another. _Vhen a certain distance between non-compatible objects is to be maintained, the standard

technique for a static environment is to extend each primitive by 1/2 the minimum tolerance

5

distancein all directions.Wheneverextended(incompatible)primitivesoverlap,acollisionwarning

canbeissued.

In a dynamicroboticsenvironment,severalfactorsgo into determiningthe minimumdis-

tanceallowedbetweenan arm andotherobjects.First, the currentpositionof the arm (i.e., the

currentjoint angles)must bepassedfrom the controllerto the collisiondetectionsystem.The

detectionsystem(whichis the part of theoverallsystemdescribedin this paper)mustrecognize

that a collisionisaboutto occurandissuea shutdowncommand.Thecontrollermustthanengage

the breaks.Finally, the arm mustactuallystop,whichmayin turn causeoscillationsor bending

in the arm.

Cycle timesfor the controllerto propagatejoint positionsto the detectionsystemcan

varywidely betweensystems,rangingfrom only a couplemilliseconds(theexpectedtimefor the

armsNASA intendsto fly on the spacestation) to typically 50 msec(asrequiredfor NASA's

currenttest robots). In our tests,our collisiondetectionalgorilhmrequires30-60msecto issuethe

shutdowncommand.Time to actuallystop is in the 10-20ms_.,:rangeat maximumspeed.Thus,

thetolerancevalueshouldbebasedon thedistancethat thereootarmcanmovetowardanobject

in approximately50 to 100msecat ma.x_imumspeed.With maximumspeedof the endeffectors

limited to 24 inches/second, that yields between a one and three inch tolerance zone around each

moving object, depending on the values selected.

In a dynamic environment we may also wish to make provision for the relative speed of

moving objects. In other words, if an object is moving at less than ma.xJmum speed, the minimum

tolerance for that object can be reduced. Our cylsphere representation provides only an approximate

model for the links of the arms, and in some cases is in error by more than one inch. This is close

enough to the tolerance required at maximum speed that the overhead incurred by changing the

model for the arms to account for varying speeds is unjustified. We use a fixed tolerance for each

arm such that at least 1.2 inches of buffer area beyond the approximated boundary of the robot arm

6

is providedby thecylsphere.This is anacceptableapproximationfor our target environmentsince

wedo not expectthat the operatorwill everintendto havetwoarms(or objects) within lessthan

twoinchesof eachother(the exceptionbeingwhentheoperatorwishesto graspartobject). Given

twoobjectsin the workingenvironmentandtheir associatedtolerances,determiningan imminent

collisionbetweenthemis now reducedto simply detectingan intersectionbetweenthe primitive

objects (including their tolerances) which represent them. Changes in the tolerance limit should

have little or no effect on the algorithm's performance.

To reduce the number of unnecessary intersection tests between primitive objects during the

collision detection phase, an indexing scheme over the working environment is needed to determine

which objects, and the primitives representing them, are close to each other and which are not.

The octree provides such an index.

The octree consists of two types of nodes: internal nodes and leaf nodes. Whether a

particular volume in space is represented by an internal nodo or a leaf node is time dependent.

That is, a leaf node may be split because of movements in th.,, environment and thus becomes an

internal node. The following record structure in Pascal-like notation is used to represent both types

of nodes. Since our octree will be small and memory is not a bottleneck, a node representation

that is space inefficient but minimizes computing time has been chosen.

OctNode = record

vertices : array[0..7] of Point; { Coordinates for corners of octant }

isSplit : Boolean; { Internal or leaf node }
children : array[0..7] of TOctNode; { Pointers to internal node's children }

parent : _'OctNode; { Node's parent)

childNo : 0..7; { Which child node is of parent }

numObjects : integer; { Number of objects contained
assocObjects : ObjectList { Head of contained objects list }

end;

The first step in modeling the world is to build the octree. We begin with an empty cube

enclosing the working environment represented by the root of the octree. Objects are added to

the tree one at a time, and splitting is performed as directed by the decomposition rule. The

decompositionrulefor our N-objectsoctreeis to split anodeif morethan N objects lie within it.

The value chosen for N is determined by the complexity of the objects supported and the denseness

of the environment, although we shall see that our application is not sensitive to the value of N

(also see [Nels86]). Figure 3 shows a 2D workspace stored in an N-objects quadtree with N = 5.

Given an object and a node in which to insert it (initially the root), insertion proceeds as

follows. If no part of the object lies inside the node, then do nothing and return. If the node is an

internal node, then recursively insert the object into each of the node's children. Otherwise, apply

the decomposition rule to the node to determine if the node should be split before inserting the

object into it. If the number of objects already in the node is less than N, then add the new object's

ID to the node's object list. Otherwise, split the node, inserting all of its objects into the node's

newly created children. Next, the new object is recursively inserted into each of the children. This

split-insert process is repeated until all leaf nodes contain no more than N objects. The following

Pascal-like psuedo code formalizes the insertion process.

{ Insert a primitive object into a node. }

procedure InsertObject(objectId: integer; node : TOctNode);

{ ObjectNodeIntersect returns TRUE iff the object lies wi*.hin the node. AddObjectToNode

and RemoveObjectFromNode inserts and removes the object ID from the node's object list,
respectively. }

var child : Octant;

begin

if ObjectNodeIntersect(objectId, node) then
if nodeTisSplit then

for child := oct0 to oct7 do !nsertObject(objectld, nodeTchildren[child])
else

if nodeTnumObjects < N

then AddObjectToNode(objectId, node)
else SplitInsert(objectId, node)

end;

{ Recursively split and insert a primitive object into a node. }

procedure SplitInsert(objectId: integer; node : TOctNode);
var

objfd : integer;
child : Octant;

8

begin
SplitNode(node);{ SplitNodecreateschildrenandlinks themto node }

for each objld in nodeTassocObjects do begin
for child := Oct0 to Oct7 do

if ObjectNodeIntersect(objId, nodeTchildren[chila_)

then AddObjectToNode(objId,nodeTchildren[child]);
RemoveO b ject FromN od e(obj I d,node)

end;
for child := Oct0 to Oct7 do

if ObjectNodeIntersect(objectld, nodeTchildren[child]) then begin

if nodeTchildren[child]TnumObjects < N

then AddObjectToNode(objectld, nodeTchildren[child])

else SplitInsert(objectld, nodeTchildren[child])
end

end;

Each cycle, the system receives two sets of joint angle values corresponding to the current

configuration of the two robot arms. These joint angles are measured relative to a "home" position

where every cylsphere is parallel to a coordinate axis. Using these values, simple kinematic trans-

formations are applied to determine the current position of each line in Cartesian space. For each

arm, beginning with the end effector and working backwards tcwards the joint attached to the base,

we rotate each joint (and all joints dependent on it) to the position specified by its corresponding

joint angle. Rotating a joint is performed by simply rotating the two end points of the cylsphere

which represents it. As a by product of these transformations, the locations of objects currently

attached to the end effectors of the robot arms are also updated.

The second step in the update process modifies the octree representation to reflect any

changes in position of the robot arms. Three possible approaches to updating have been consid-

ered. The n,.ive approach is to completely rebuild the octree for each cycle, checking for possible

collisions as each object is inserted into the tree. This might be a good idea if a large portion of

the environment changed during each cycle. However, due to the short cycle time (30-60 msec)

combined with restrictions on robot arm speed, we expect only small changes in the environment

during each cycle. Such changes rarely require modification to the octree. A second approach is

9

to deleteand re-insertmovingobjects.This approachrequiresmodificationof a relativelysmall

portionof the tree,but will causeexpensiveandunnecessarymergesandsplits. Objectsmovevery

smalldistancesduringa shortcycletime, and thusa movingobjectis frequentlyre-insertedinto

the samenodesfrom which it wasdeleted.However,whensucha nodeand its siblingscontain

N+I objects, the nodes will be merged when the moving object is deleted from the tree, only to be

split again when the object is re-inserted.

A more efficient update process changes the structure of the tree only when changes in the

environment dictate. We observe that the tree structure changes only when an object e:dts a node

(causing the object to be deleted from that node) or moves into a new node (causing the object

to be inserted). These events, in conjunction with the decomposition rule, may cause nodes in the

tree to merge or split. Further, when an object enters a new node, that node is a neighbor of a node

in which it currently resides. Two nodes are considered neig';lbors if they share a face, edge, or

corner. With this approach, tree updates work as follows. First, locate all nodes that the moving

object resided in before it moved. For each of these nodes locate all of its neighbors using neighbor

finding techniques described by Samet [Same89]. If the object has moved into a neighbor node,

then insert it at that node and spilt if necessary. Upon comp!etion, check if the object has ex_ited

any of the nodes it resided in before the move. If so, then delete the object from such nodes and

try to merge them with their siblings.

This algorithm allows us to perform efficient updates c_"the octree by ignoring parts of the

tree where no movement has occurred. Ifowever, collision checking must be incorporated into the

update. After an object moves, all objects in all nodes that contain it are checked for possible

collisions. In the octree, multiple moving objects may reside in the same node or a moving object

and a static object may share more than one node. To eliminate any redundant intersection tests, we

keep track of which pairs of objects have been checked for collisions during the current cycle. Thus,

a complete intersection test between a pair of objects will be performed at most once (although

10

our updatealgorithmmaycheckseveraltimesto seeif a givenpair hasbeentested).

Optimizationof the neighborfinding processresultsfrom locatingneighborsonly in the

directionof object motion. In fact, oftenthe numberof neighborsprocessedcan be reducedto

zero. If a movingobject's boundingbox remains completely within a single node, then there is

no need to check for entry into any of the neighboring nodes. Determining if a bounding box lies

completely within a node requires at most six comparisons. This quick check can save a significant

amount of processing time, particularly if many small objects are moving (e.g. the fingers of a

gripper).

The amount of computation needed for an update when an object moves into a neighboring

node can be further reduced. When an object moves into a neighbor, the algorithm described above

will insert the object into that node and perform any required splitting. If the neighbor is split,

the algorithm will attempt to recursively insert the object into all of the neighbors' children (and

possibly their offspring). Due to restrictions in robot motion, we only need to update the part of

the neighbor which lies closest to the original node. So, the object is inserted into only the leaf

descendents of the neighbor which lie on the common face, ed[,e, or corner between the two nodes.

When a single object lies in many nodes, there will be some overlap in the neighbors of

these nodes. This presents a problem for our algorithm because it will visit the same neighboring

node multiple times. For example, if an object moves into a node X which is a neighbor to three

of the nodes in which it currently resides, then our algorithm will process X three times. In fact, it

will insert the object's ID into X's associated object list three times when only once is necessary.

Furthermore, two of the nodes which an object lies in can be n_ighbors, causing the algorithm to

add an object to a node's associated objects list in which it is already stored.

To prevent such anomalies, we augment our algorithm to mark all nodes which have been

visited while moving an object. Each node in the tree includes the field lastCheckNo, which stores

an integer denoting the last update during which this node was visited. The variable ThisChecl_'No

11

is usedto denotethe currentobjectupdate.Whenan objectmoves,eachnodethat is processed

hasits lastCheckNo assigned the value of ThisCheckNo. Before processing a node, we first check

its lastCheckNo to determine if it has been processed. If ThisCheckNo is equal to lastCheckNo,

then the node is ignored. After processing an object, ThisCheckNo is incremented by one. Using

an unsigned 32 bit integer, ThisCheckNo will reset to zero after 4,294,967,296 updates. At this

point, the tree should be traversed and every node's lastCheckNo reset. Assuming a 50 msec cycle

time with 14 updates of the octree required during each cycle (all seven links of both arms moved),

this occurs approximately every 6 months during continuous operation. The following Pascal-like

psuedo code provides a more formal description of the updating process.

{Update the octree when an object has moved.}

procedure UpdateObject(objectId : integer);

{ ObjectId is the label for a primitive object. Location oI objectId is a member of the set of

nodes containing the primitives. ObjectNodeIntersect de'.ermines if a primitive object lies in
a node. CollisionInNode determines if an object collide:_ (intersects) with any of the objects

in a node. GetUnCheckediNeighbors returns a list of all neighbors of a node which have not

been visited during the current update. BoundingBoxIr_ideNode determines if an object's
bounding box lies completely inside a node. NeighborInD,rection determines if a neighbor lies

in the direction of the moving object. DeleteObjectFromi_ode removes an object's association

with a node and performs any possible node merging. }
oar

location : TOctNode; {A node in which the object resides (see Section 4))

neighbor : l"OctNode;

neighbors : NeighborList;

begin
ThisCheckNo := ThisCheckNo + 1;
for each location of objectId do begin

if ColllsionIaNode(objectId, location) then HandleColJhion; {Warn system of collision}
locationTlastCheckNo := ThisCheckNo

end;

for each location of object[d do begin

if not BoundingBo_sideNode(objectId, location) then begin

Get UnCheckedNeighbors(loeation, neighbors);
for each neighbor in neighbors do

if NeighborInDirection(neighbor) then

if ObjeetNodeIntersect(objectId, neighbor)

then UpdateNeighbor(objectId, neighbor)

else neighborTIastCheckNo := ThisCheckNo

end;

12

if not ObjectNodeIntersect(objectld,location) { Object moved our }

then DeleteObjectFromNode(objectld, location)

end;

{Update a node that an object has just moved into.}

procedure UpdateNeighbor(objectId : integer; neighbor : TOctNode);
var child : Octaxtt;

begin

if neighborTlastCheckNo <> ThisCheckNo then begin
if neighborTisSplit then

for each child of neighbor on common face, edge, or corner do

UpdateNeighbor(object f d, node Tchildren[child])
else begin

neighborTlastCheckNo := ThisCheckNo

if ObjeetNodeIntersect(objectId, neighbor) then begin

if CollisionInNode(objectId, neighbor) then
HandleCollision {Warn system of collision}

else if neighborTnumObjects < N then

AddObjectToNode(objectf d, neighbor)

else UpdateSplitInsert(objectf d, neighbor)
end

end

end;

{Recursively split and insert an object into a node during update.}

procedure UpdateSplitInsert(objectId : integer; node: TOctNc.de):
var

obj[d : integer;
child : Octant;

begin

SplitNode(node);
for each objld in nodeTassocObjects do begin

for child := oct0 to oct7 do

if Ob jectNodeIntersect(obj ld, nodeT ehildren[chila_)

then AddObjectToNode(obj[d,nodeTehildren[child]);

Remove Object From Nod e(objId,node)
end;
for child := oct0 to oct7 do

nodeTchildren[child]_lastCheckNo := ThisCheckNo;

if ObjectNodeIntersect(objectId, nodeT children[child]) then
if nodeTchildren[child]TnumObjects < N

then AddObjectToNode(objeetId, node_children[chila_)

else UpdateSplitInsert(objectId, nodeT children[chiIa_)

end;

13

A fundamentalassumptionusedby our updatealgorithmis that an object cannotmove

through a node between consecutive updates. If this were not true, then our premise that between

updates an object can move only into neighbor nodes would no longer hold. Consider, for example,

an object that has moved out of a node, completely through one of its neighboring nodes, and into

a non-neighboring node. The update algorithm described above would recognize that the object

has left its original node, but has not moved into any of the neighboring nodes. The object would

"disappear" from this part of the octree and possible collisions would be ignored. Alternatively, an

algorithm that deleted a moving object from its current node and then inserted the object at its

destination could miss collisions at intervening nodes. Recall that the tolerance zone was set to be

greater than the distance that an object can move in one cycle.

The maximum speed at which an object can move, combined with the cycle time between

updates, allows us to calculate the maximum distance that an object can move between updates.

This distance is used to determine the minimum size for a leaf node. For example, if the robot arm

tip can move 1 inch in an update cycle, then the smallest vo_el allowed in the octree would have

an edge length of 1 inch. If during the splitting process a no.Ie with this size is created, then we

prevent any more splitting and allow this node to e:dst without regard to the decomposition rule.

Since the minimum size of any primitive in the smallest dimension is at least twice the tolerance

value, it is also not possible for a primitive to move into, through, and out of the corner of a node

in a single cycle.

The bounding cube used to enclose the entire working environment of our test scenarios

is 250 inches wide in each dimension. The robot arms themselves have a maximum reach of 75

inches when fully extended. While the minimum resolution for our octree was calculated to be 1.95

inches, during testing this level of decomposition was never approached, in part due to the value

of N (10).

14

Whenanobjectmoves,wemustquicklylocatewhatnedescontaintheobject. Thisis done

usinglocation links. The set of location links for an object is a linked list of leaf nodes in the tree.

Each object's description contains a pointer to one of the leaf nodes containing the object. This

leaf node in turn contains an object list entry with a pointer to another leaf node in which the

object lies (see Figure 4). A sequence of links is formed tha_ includes every leaf node containing

that object. When an object enters a leaf node, the node is added to the object's location list.

Similarly, when an object eats a leaf node, the node is removed from the object's location list.

During an update for a moving object, each node on the object's location list is processed.

4. INTERSECTION ALGORITHMS

Intersection tests are an essential part of the collision avoidance system. Tests between

primitive objects (rectangular solids and cylspheres) are perfor_ned to determine possible collisions.

Tests between primitive objects and nodes are performed tc build and update the octree. We

briefly describe intersection tests involving cylspheres. Intersections between rectangular solids are

common in graphics applications, and not further discussed. Additional primitives can be included

by simply adding the appropriate intersection tests. For more complete details on our intersection

operations, see [Herbg0].

Determining if two cylspheres intersect is a straightforvcard process. Cylspheres are de-

scribed using two points (endP1 and endP2) and a radius. In addition, the length of the axis

between the two end points is stored since it is needed throughout the intersection calculation. To

determine if a point P lies within a cylsphere, first the distance from P to the line segment formed

by endP1 and endP2 is calculated. If this distance is less thun the cylsphere's radius, then P lies

within the cylsphere.

To determine if two cylspheres csl and cs2 intersect, we generalize this approach. Given two

lines in space, there is a unique point on each line where the lipes are closest to each other (unless

15

the lines axeparallel). This point is quickly foundusingsimpleline-planeintersections.For the

linescontainingtheaxesof csl and cs2, assume that we have f_und these two points, PI and P2,

respectively. If P1 lies outside the two end points on the axis of csl, then the closest end point is

taken as P1. The same is done for P2 and cs2. Next the distance between PI and P2 is calculated.

If this distance is less than the sum of the radii of the two cylspheres, then they intersect.

For all intersection tests, a bounding box test is performed first in hopes of quickly ru]_ing

out an intersection. To calculate the bounding box for a cylsphere the maximum and minimum z,

y, and z values for points on its surface are found. To find the minimum • value, the smaller of the

z coordinates of the two end points is determined and the cylsphere's radius is subtracted from it.

The remairting values for the bounding box are found similarly. Every time a cylsphere's position

changes, its bounding box is recalculated.

Due to constraints on object motion, for a cylsphere t_ intersect a rectangular solid (box),

either an edge of the box passes through some part of the cylspl ere's surface or part of the cylsphere

passes through a face of the box. If both of these cases are checked and no intersection is found,

then it is assumed that the box and the cylsphere do not c',erlap. Intersections tests involving

nodes are similar to intersection tests involving rectangular solids. A node is just a special case of

a rectangular solid in that its edges are all equal in length and parallel to a coordinate axis.

5. EXPERIMENTAL RESULTS AND ANALYSIS

Our collision detection algorithm was implemented using the C language, running under

UNIX. All timing results are for an Intel 80386 CPU with math co-processor running at 20 MHz.

This configuration matches NASA's planned computing environment on the space station. Our

algorithm was tested by first generating joint angles using a robot simulation program. This

program allowed us to direct the two robot arms through a task within a 3 dimensional graphical

model, sampling the robot arms' joint angles at discrete intervals, and storing them into a file. For

16

eachtask, the correspondingjoint anglefile wasusedasinput to our algorithm. The algorithm

proceedsby first readingin a blockof joint angles. For eachset of joint anglesin the block,

kinematicsare appliedto producethe arm'snewposition,and theoctreeis updated. Whenever

a collision is detected,the algorithmterminates,indicatingwhichobjectshavecollided. Upon

completion,the algorithmreportstiming results.

Our testingwascomprisedofrunningthreeseparatetasksusingafixedworkingenvironment

(seeFigure 2). Our environmentwasmodeledafter the testbedconstructedat NASA'srobotics

laboratoryat the GoddardSpaceFlight Center. The tasks consisted of the two robot arms being

navigated through the environment to simulate realistic operation. The first task was comprised

of the left arm moving towards the box located on the table in front of the robots while the right

arm simultaneously positioned itself above the box located on the table to the right. The second

task was similar to the first except that the left arm collided with the table in front. The third

task consisted of the right arm colliding with the table located in front while attempting to grasp

the box lying on top of it. The tasks required 1000 cycles, 150 _ycles and 2000 cycles, respectively.

The average time per cycle (processing one complete set of joint angles and checking for

collisions) over the three tasks was about 30 msec. However, the actual time for each cycle varied

depending on how many primitives moved during that cycle. For example, all seven links of both

arms moving required more computation time then if a single link of one arm was moving. This

is because the first case requires updating the tree 14 times (14 objects have moved) whereas the

second case requires updating the tree only once. The time required for each cycle of the algorithm

was measured using the system clock, which had a resolution of 10 msec. The observed upper

bound for the range of update cycle times was under 60 msec.

Further data was collected on how much computation .;s done by each part of the algorithm.

About 28% of the computation time was devoted to performing the kinematics for the robot arms.

The kinematics algorithm that we implemented was selected for its simplicity rather than it el-

l7

ficiency. A more efficient algorithm could offer significant improvement. The remainder of the

computation time was used to update the octree and check for collisions. About 27% of the time

was spent performing object-object intersection tests and about 7% calculating rotation angles and

bounding boxes for moving objects. Object-node intersection tests required 13% of the time while

retrieving neighbors took about 7%. The remaining computation time was dedicated to overhead

incurred by other parts of the algorithm (i.e. splitting, merging, etc.). In summary, kinematics,

collision detection, and octree maintenance each required rot ghly one third of the computation

time.

Two characteristics of the N-Objects octree which make it a desirable representation for

a collision avoidance system is that it is compact and changes in its structure rarely occur. The

initial configuration of the octree representing our test scena:io (35 objects) was split only two

levels below the root and contained 33 nodes, of which 29 wet. leaf nodes. The average number of

objects in each non-empty leaf node was about 5 (with N = 15), while 15 of the nodes were empty.

Each object resided in about 2 nodes on the average. So the o cupancy of each leaf node as well as

the number of nodes occupied by each object were both low. "l:br the three tasks used to test our

algorithm, the average number of cycles between a split or merge was around 600. Given a 30 msec

cycle time, this translates into once every 18 seconds.

In Section 3, techniques for improving system performance were discussed. In each case a

positive effect on performance was observed. To illustrate how fine tuning of the algorithm can

effect system performance, we compared computational requirements with and without each tech-

nique incorporated into the algorithm. Eliminating redundant intersection tests between objects

decreased computation time by 4%. Calculating the direction,s) of a moving object and updating

only neighbors in this direction reduced computation time by 8%. Checking if an object's bound-

ing box is completely contained within a node (to preclude checking for movement into the nodes'

neighbors) reduced computation time by 13%. The use of bounding boxes to eliminate object-

18

object and object-node intersection tests had the most significant effect by reducing computation

time by 80%.

The decomposition rule for the N-Objects octree is simply "split a node if more than N

objects lie within it." The value chosen for N, though, affects system performance. A large portion of

the computation required by an octree update consists of object-node and object-object intersection

tests. Object-node tests are needed to determine if an object has moved into a new node. Object-

object tests are used to detect collisions between objects. The chosen value of N directly effects the

number of each type of intersection test performed during an update. For example, the choice of a

small N causes the tree to decompose to a much lower level than a large N. This deeper splitting,

in general, increases the number of nodes that an object lies in. This in turn increases the number

of neighbors that need to be checked for possible entry.

On the other hand, if we choose a larger N, the tree is r.ot as deep and we have fewer nodes

to process during the update. However, since more objects _re allowed to share a node, when

an object moves, more object-object intersection tests are required within the nodes to detect for

possible collisions. Thus, the value of N controls the relative zanount of each type of intersection

test performed during an update. Depending on the relative cost of performing object-node and

object-object intersections, the val,ic cllosclt for ,V directly effects system performance. If the cost

of performing an object-object intersection test is much more expensive than the cost of an object-

node intersection test then a large value for N would optimize the update process.

Given the primitives supported by our representation and the working environment of the

robot arms, we have chosen a value of 10 for N. This value resulted in optimal performance given

the relative costs of object-node intersection tests (70 microseconds) and object-object intersection

• tests (150 microseconds). Figure 5 shows how system performance varied for different values of N.

Although 10 provided the lowest average cycle time, this number falls within a wide range of values

providing similar performance. Thus, we can be confident that a different task or environment

19

wouldnot requirethat a differenta valuefor N be used.

A natural question to ask is how does the octree compare in performance to the naive

approach to collision detection? A naive algorithm is one which, when an object moves, would

check for possible collisions with all other objects in the world. The computation time for such

an algorithm grows in proportion to the number of objects in the world (assuming a constant

number of objects have moved). This may be acceptable behar,-or if the computation cost for the

intersection tests is very low. The naive algorithm also does not require nearly as much overhead

as the octree. For a sufficiently simple environment, the naive approach is more efficient than the

octree. Conversely, the octree is more efficient for a sufficiently complicated environment. The

question is at what point does the octree perform better?

The naive algorithm was implemented and tested with the same three tasks as described

above. The number of objects in the robot's environment was varied and timing results were

recorded. The same tests were repeated using the octree _ersion of the algorithm. Figure 6

illustrates the behavior of the two algorithms. The cycle times for both algorithms increased as

objects were added to the environment. In both cases tho_gh, the objects were added into the

immediate area surrounding the two robot arms. Other objects could have been strategically

placed in the working environment which would have no effect on the cycle time for the octree

algorithm but would still increase the cycle time for the naive algorithm. For example, objects

could be placed in parts of the tree where no updating takes place, in which case no increase in

cycle time would be observed. Thus, our testing was biased against the octree method, yet the

octree showed greater performance gains over the naive method as the environment became more

complex.

A grid representation is similar to the octree in that i" provides a spatial index by parti-

tioning the space into disjoint regions. Grid structures have been suggested for use in performing

geometric operations on large data bases [Fran83, Fran89]. A grid is overlayed onto the data and

20

for eachgrid cell, a setcontainingeach object that lies in that cell is formed. Such a represent-

ation was implemented to perform collision detection and com.,_ared to the octree approach. To

simplify implementation, the grid was represented as a three-dimensional GxGxG array of octree

nodes, where G was the number of cells along each dimension of the fixed-size world. Updating

was similar to octree updating with the exception of finding neighbors. Finding the neighbors of

a node was simplified to acquiring the 26 surrounding grid cells. To provide for a fair comparison,

all of the performance enhancing techniques that were incorporated in the octree implementation

were also included in the grid implementation.

To test the grid implementation, we used our standard three tasks and varied the value of

G. Figure 7 provides an illustration of how the algorithm performed for different values of G. In our

tests, the best grid was slightly worse than the octree. Althoughthe grid representation is a simple

one, it is a static structure whose performance suffers when t_¢ distribution of the geometric data

it represents is not uniform. Furthermore, choosing a good v_lue for G may be difficult since the

optimal value can vary from task to task or even during a tag,_.

An alternative method for modeling three dimension_] objects is the region octree. The

region octree represents an object as a set of cubes of varying size. Each cube is colored black

or white, depending on whether it is inside the object (black) or outside the object (white). A

region octree representation of our world model can be constructed in which the black nodes

represent robot arms and objects, and the white nodes represent the free space. Using methods

described in [Boaz$4], nodes in the tree can be transformed to reflect the movement of robot arms.

Using a fine resolution octree, we can develop an accurate model of the robot arms and their

working environment. However, the storage space required by the region octree and the amount

of computation needed to perform the required transformations during robot movement may be

unacceptable for reM time robot collision detection.

21

A regionoctreewasimplementedusingourworldmodelof cylspheresandrectangularsolids.

Usinga resolutionof 1.2 inches(the sameasthat usedfor the N-Objectsoctree),the numberof

leafnodesneededto representthescenariomodelwasaround30,000.Theuppersix links of both

robot armsrequireda total of about 3,000leaf nodes. Giventhat these12links movedduring

a typical cycle,it is inconceivablethat updating3000nodeson today'smicroprocessorscouldbe

donein real time (i.ewithin a 30-60msectime span).

6. CONCLUSIONS AND FUTURE WORK

The performance of the N-0bjects octree is directly affected by the number of stationary

and moving objects in the environment. When a stationary object is added to the environment,

it may increase the algorithm's cycle time in a number of ways. The new object may cause the

tree to split, in which case the algorithm may be required to process more nodes during an update.

The object may also share a node with a moving robot arm, increasing the number of intersection

tests performed during an update. On the other hand, the cbject may be added in an area not

close to a robot arm, in which case no effect on cycle time will be observed. In general, stationary

objects only increase cycle time if they are included in nodes that also contain moving objects.

Thus, the number of stationary objects affecting cycle time is closely related to the percentage of

nodes containing moving objects.

Adding a moving object, for example another robot arm, will have a more predictable effect

on cycle time. In a given cycle, every moving object in the environment causes the octree to be

updated with respect to that object. When the number of moving objects in the world is doubled,

we would expect the time needed to update the octree to alsc double (assuming that the moving

objects make up a reasonably small percentage of the total number of objects). If for example we

wish to increase the number of primitives used to represent a robot arm, a corresponding increase

in cycle time should result. This behavior was observed durir.g our testing, when cycle time was

22

proportionalto thenumberof links whichmovedduringthat cycle.

With the expandeduseof tele-operatedrobotsin space,manufacturing,and the nuclear

industry,the problemof collisiondetectionandpreventionhasbecomemoreimportant. Providing

a mechanismto ensuresafeoperationof robots is of high priority, given the consequencesof

accidentallydamagingexpensiveroboticequipmentor nuclearwastecontainers.The goalof our

researchwasto providesuchamechanism,with thespecificapplicationstudiedfor testingpurposes

beingthe operatingbayof NASA'smannedspacestation. A collisionavoidancesystemmustbe

efficient enough to provide timely information about possible collisions, reliable enough to not miss

any imminent collisions, and usable enough so as not to hinder normal operations. The N-Objects

octree representation presented here meets all of these requirements.

The algorithm we have presented is suited to a variety of different applications in robotics

where a collision avoidance capability is needed. However, there are some restrictions on the kinds

of problems that our system can be applied to. Information about the robots and their working

environment must be available to the system in the form of _ geometric model using supported

primitives. Thus. the shape of the environment must be su_.table to such a representation. If

information about the environment is known a priori, then it can be manually entered by the

user. Otherwise, some form of sensing is required so that the system may acquire this knowledge.

Position information about moving objects is needed by the system in order to maintain the model.

Joint angles were used in our application of the system to tele-operated robots on the space station.

However, if an astronaut walks into the robot's work area and moves a box, its new position must

be made available to the system.

To obtain real time performance, some sacrifices were necessary in terms of the accuracy of

our model. Other primitives may have better represented the robots and working environment but

at the cost of more expensive intersection tests. Hence, the system is well suited for an application

where an approximate model is acceptable. We also made the assumption that no object will move

23

into, through, andout of a nodein a singlecycle.Sinceour cycletimeis soshort, this shouldnot

limit most applications.Finally,if a largenumberof primitivesaremoving,cycletimeswill likely

increasebeyondacceptablelimits. On the otherhand,a smallnumberof movingprimitivescan

likely operatein realtime evenwith a relativelylargenumberof stationaryobjects.

The octreeprovidesa flexiblemeansfor indexingthreedimensionalspacein that it easily

supportsdynamicmodelingof robotarms.If wewishto changethemodelof the armbasedon the

type of task it is performing,wesimplydeletethe modelof the old armfrom the tree andinsert

the new model. Forexample,whenanarm is performinggrossmotionsthe entire grippercould

be represented,for efficiencyreasons,asa singleprimitivewhichcompletelyenclosesit. However,

whenthe gripperisbeingusedto graspanobject,amoredetailedmodelis desired.This capability

issupportedby deletingthecoarsemodelandinsertingthedetailedmodelat the appropriatetime.

In the samemanner,theoctreealsoprovidesfor changingthemodelof thearm basedonhowfast

it is moving(althoughour test applicationdid not requireth:_,;capability). Similarly, tolerances

for the arm maybe relatedto the massof a graspedobject.

The researchpresentedhereprovidesafoundationonwhichto developa collisionavoidance

system.However,an issuethat hasbeenignoredin this paperis that of object graspingby the

robot. That is, the systemmust be able to distinguishbetweenintentionaland unintentional

collisions.Whenarobotgripperis aboutto collidewith anobject,thesystemshouldnotreport an

imminentcollisionif the operatoris actuallyattemptingto pi_kup that object. A simplesolution

to this problemwouldbe to interrogatethe operatorto determinehis intentions. However,as

little interaction with the operatoraspossibleis desired.An alternativeapproachmight be to

declareaheadof time all objectsthat will be manipulatedby _herobotto be compatiblewith the

gripper. Unfortunately,this still leavesopenthe possibilitythat thegrippermay unintentionally

collidewith oneobjectwhile trying to graspanother.A third approachwouldbe to adoptasimple

heuristicsuchaswhenthegripperapproachesanobjectwhilemovingat a low speed,assumethat

24

theoperatoris trying to manipulatethat object.In anycase,this is not a trivial problem.

TheN-Objectsoctreecouldalsoserveastheunderlyingrepresentationfor arobotplanning

system.Usingagenerateandtestparadigm,theoctreecouldserveasameansof determiningif a

givenplan wouldbecollisionfree. Alternatively,the octreecouldbeusedasa searchspacefor a

robot planningsystem.Usingtreetraversaltechniques,the plannercouldsearchtheoctreeitself

for a collision-freepath.

Thereis still muchwork to bedonein thefield of tele-operatedrobotics. Thefinal goal

is to allow for veryhigh level humancontrol. The limitationsof currenthardwareand software

technologypreventsusfrom reachingthisgoal.However,theneedstill existsfor collisionavoidance

andsafetysystemsto meet the operationalrequirementsof teday.Theoctreehasprovento bea

usefuldatastructurefor both developingcurrentsystemsand researchingsystemsfor the future.

7. REFERENCES

1. [Boaz84] M. Boaz, Spatial Coordination of Transfer Movements in a Dual Robot Environment,
Master's Thesis, Virginia Tech, Blacksburg VA, 1984.

2. [Fave84] B. Faverjon, Obstacle avoidance using an octree in the configuration space of a manip-

ulator, IEEE Conference on Robotics, Atlanta, 1984, 504-512.

3. [Fran83] W.R. Franklin, Adaptive Grids for Geometric Operations, Proceedings of the Sixth
International Symposium on Automated Cartography, Vol 2, O:tober 1983, 230-239.

4. [Fran89] W.R. Franklin, M. Kankanhalli, and C. Narayanaswami, Efficient Primitive Geometric
Operations on Large Databases, Proceedings GIS National Conference 1989, Ottawa, Canada,

March 1989, 59-67.

5. [Glas84] A.S. Glassner, Space Subdivision for Fast Ray Tracing, IEEE Computer Graphics and

Applications 4, 10(October 1984), 15-22.

6. [Glas89] A.S. Glassner, An Introduction to Ray Tracing, Academic Press Inc., San Diego CA,
1989.

7. [Hayw86] V. Hayward, Fast CoLlision Detection Scheme by Recursive Decomposition of a Manip-

ulator Workspace, Proceedings 1986 IEEE International Conference on Robotics and Automation,

Vo! 2, San Francisco, CA, April 1986, 1056-1063.

25

I

8. [Herb90] G.M. Herb, A real time robot collision avoidance sai._ty system, Masters Thesis, Virginia

Tech, Blacksburg VA, May 1990.

9. [Hong85] T.-H. Hong and M. Shneier, Describing a robot's workspace using a sequence of
views from a moving camera, IEEE Transactions on Pattern Analysis and Machine Intelligence 7,

6(November 1985), 721-726.

10. [LozoS1] T. Lozano-Perez, Automatic planning of manipulator transfer movements, IEEE Trans-
actions on System, Man and Cybernetics 11, 10(October 1981), 681-698

11. [Lozo83] T. Lozano-Perez, Spatial planning: a configuration space approach, IEEE Transactions
on Computers 32, 2(February 1983), 108-120.

12. [MacD89] J.D. MacDonald and K.S. Booth, Heuristics for Ray Tracing Using Space Subdivision,
Graphics Interface 89, 152-163.

13. [Nels86] R. Nelson and H. Samet, A Population Analysis of Quadtrees with Variable Node Size,

Computer Science TR-1740, University of Maryland, College Park MD, December 1986.

14. [Roac87] J.W. Roach and M.N. Boaz, Coordinating the Motions of Robot Arms in a Common

Workspace, IEEE Journal of Robotics and Automation 3, 5(October 1987), 437-444.

15. [Same89] H. Samet, Applications of Spatial Data Structures; Computer Graphics, Image Pro-
cessing, and GIS, Addison-Wesley, Reading MA, 1989.

16. [Same90] H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wesley,

Reading MA, 1990.

17. [Shar89] M. Sharir, Algorithmic Motion Planning in Robotics, IEEE Computer 22, 3(March

1989), 9-20.

18. [Smit85] R.C. Smith, Fast Robot Collision Detection Using Graphics Hardware, Proceedings of

IFAC Symposium on Robotic Control, Barcelona, Spain, 1985, 277-282.

19. [Whit85] S.H. Whitesides, Computational Geometry and Motion Planning, in Computational

Geometry (Ed., G.T. Toussa_nt), North-Holland, Amsterdam, The Netherlands, 1985, 377-427.

20. [Yu86] Z. Yu and W. Khalit, Table Look Up for Collision Detection and Safe Operation of
Robots, Theory of Robots, selected papers from IFAC/IFIP/IMACS Symposium, Vienna, Austria,

December 1986, 343-347.

26

// /4/ 5 /I

0

2 3

I

J

I

I

J

/

(a) (b)

0 1 2 3 4 5 6 7

(c)

Figure 1. An example region octree. (a) The object. (b) Its region octree block decomposition. (c) The
resulting tree structure.

ILvJ

Figure 2. Working environment used to test collision detection algorithms.

_EL

Figure 3. Decomposition for sample environment using a 5-objects quadtree.

Object Table

Figure 4. Location links for objects in the octree.

E

E
I.--
¢1

0

5O

45

40

35

30

25

20

15

10

5

0 l ' I I I I I

0 5 10 15 20 25 30

I

35 40

N

Figure 5. System performance for different values of N in decomposition rule.

E

E
,u

i.-
a)

-5

5O

45

40

35

30

25

20

15

10

5

0

Naive

Octree

I I I I !

10 15 20 25 30 35 40

Number of Objects

Figure 6. System performance of naive and octree algorithms as environment grows in

size.

20

15

og

5

0

i I I I

5 10 15 20

Grid size

Figure 7. System performance of grid algorithm as grid size (G) is varied.
Values are averaged over all 3 tasks.

