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The minimal polynomial extrapolation (MPE) and reduced rank extrapolation (RRE)

are two very effective techniques that have been used in accelerating the convergence

of vector sequences, such as those that are obtained from iterative solution of linear

and nonlinear systems of equations. Their definitions involve some linear least

squares problems, and this causes difficulties in their numerical implementation. In

this work timewise efficient and numerically stable implementations for MPE and

RRE are developed. A computer program written in FORTRAN 77 is also appended

and applied to some model problems.

tWork funded under Space Act Agreement C99066G.
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1. INTRODUCTION

The minimal polynomial extrapolation (MPE) of Cabay and Jackson [2] and the reduced rank

extrapolation (RRE) of Eddy [3] and Megina [9] are two methods used in accelerating the convergence

of a large class of vector sequences. In particular, they are employed for accelerating the convergence

of fixed point iterative techniques for linear or nonlinear systems of equations, such as those that arise

in the discrete solution of continuum problems.

A unified treatment of these and other extrapolation methods has been given in the survey paper

of Smith, Ford, and Sidi [19], where some numerical testing for them is also provided. Detailed con-

vergence analyses for MPE and RRE have been presented in Sidi [12], Sidi and Bridger [16], and Sidi

[13], and we shall mention some of the results that follow from these analyses later in this work. Also,

both MPE and RRE are very closely related to some well known Krylov subspace methods when they

are applied to linearly generated vector sequences, and this subject is explored in detail in [13]. In fact,

MPE and RRE are equivalent to the Arnoldi method and generalized conjugate residuals (GCR),

respectively, when they are all applied to linear systems of equations starting with the same initial

approximation. For the method of Amoldi see Saad [10], and for GCR see Eisenstat, Elman, and

Schultz [4]. We also mention that the conjugate gradient type method of Axelsson [1], the method of

Young and Jea [22] ',hat has been called ORTHODIR, and the recent generalized minimal residual

method (GMRES) of Saad and Schullz [11 ] are all equivalent to GCR, and are used in solving linear

equations. Recursion relations that exist amongst various approximations that are obtained from both

methods are discussed in the paper by Ford and Sidi [6], where the existence of an interesting four-

term lozenge recursion is shown. MPE and RRE have been employed successfully in Sidi and Celes-

tina [17] in accelerating the convergence of some finite difference solution techniques in large scale

computational fluid dynamics problems. Finally, the application of MPE and RRE and other vector

extrapolation methods to the iterative solution of consistent singular linear systems has been con-

sidered in Sidi [15], where this approach is shown to be sound theoretically, and precise convergence

analyses are also provided.

The definitions of MPE and RRE involve the solution of a linear least squares problem, the

number of equations in this problem being equal to the dimension of the vectors in the given

sequence. Since, in general, this dimension may be very large, as it is, for example, in three-

dimensional computali_nal fluid dynamics problems, the matrix of the least squares problem may be
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very large. Thus, if standard linear least squares packages are used, the time and core memory require-

ments in the implementation of MPE and RRE may become prohibitive. To circumvent this problem,

the solution of the linear least squares problem was achieved in [17] by solving the corresponding nor-

mal equations that is much less costly than using least squares packages. This approach proves to be

quite efficient when the amount of extrapolation is not very large. When the amount of extrapolation is

increased, however, the accuracy decreases, as the normal equations become very ill conditioned.

In the present work we propose new implementations for MPE and RRE, which are very inex-

pensive as far as both time and core memory requirements are concerned, and are stable numerically

as the amount of extrapolation is increased. These implementations are also quite interesting

mathematically, as they allow one to compute exactly (or estimate) the accuracy achieved in the extra-

polation process without actually computing the residuals at each stage. This can be employed to

further reduce the cost of implementation.

The plan of this paper is as follows: In Section 2 we briefly review the definitions of MPE and

RRE. In Section 3 we consider the application of MPE and RRE to vector sequences that are gen-

erated by iterative solution of linear systems as this provides the motivation for different modes of

usage of the methods. We devote Sections 4-6 to the development of the new implementations of

MPE and RRE and the description of the mathematical features of these implementations. In Section 4

we give the details of the new implementations. One of the crucial ingredients of these implementa-

tions is the efficient solution of the least squares problems by use of QR factorization. In Section 5 we

show how, in these new implementations, the/2-norms of the residuals can be computed exactly for

linear systems (or estimated for nonlinear systems) without doing extra vector computations. This

enables us to assess the accuracy of the extrapolation without actually carrying it out, and can be used

to reduce the amount of computation drastically. In Section 6 we discuss the operation counts and the

storage requirements for the new implementations. In Section 7 we discuss some practical matters

concerning the efficient use of MPE or RRE or any other vector extrapolation methods. Finally, in

Section 8 we give some numerical results obtained by applying MPE and RRE through their new

implementations to certain model problems. A computer program written in FORTRAN 77 that

implements MPE and RRE is provided in the appendix.
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2.REVIEW OF MPE AND RRE

LetXo,X_,x2.....be a givensequenceofN-dimensionalcolumn vectors,and denoteitslimitor

antilimit by s. The vectors x7 are assumed to be complex, in general. Define

Ui=AXi=Xi+l-Xi arid wi=Aui=A2xi, i=0,1,2 .....

Define the Nx(j+l) matrices U_") and W_") by

U_") = [u. lu.+_ I ... lu.+j]

and

W_") = [w. Iw.+l I • .. Iw.+j].

2.1 Definition of MPE

For MPE the approximation s,,,k to s, the desired limit or antilimit, is defined by

k

Sn, k _. Z'_jXn+j ,

j=o

where the yj are determined as follows:

(i)

(ii)

(2.1)

(2.2)

(2.3)

(2.4)

Use the least squares method to solve the overdetermined and, in general, inconsistent linear

system

where c = (Co,C t ..... ck-I )1".

Set ck = 1, and compute the yj by

U_Qtc = -u. +k , (2.5)

cj
Y/- k---, O<j<k,

k

assuming that _ci _:O. When this condition is not satisfied s,,.k does not exist.
i=0

(2.6)

2.2 Definition of RRE

For RRE the approximation s,.k to s, the desired limit or antilimit, is defined by

k-I

S.,k =X. + _, _iU.+i, (2.7)
i=O

where the _, are determined by solving the overdetermined and, in general, inconsistent linear system
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=-u., (2.8)

with _= (_o,_1 ..... _k_l) r, using the least squares method. Since a least squares solution to (2.8)

always exists, s_,k always exists. In particular, s_.t exists uniquely when the matrix WI__)l has full rank,

i.e., rank (W_I)=k, or, equivalently, when the vectors w,,,w,,+t ..... w,,.k-i are linearly indepen-

dent. It can easily be shown that rank (W_t) = k, thus s_,t exists uniquely, when rank (U_")) = k+l.

There exists an equivalent formulation of RRE that seems to be more suitable for computer

implementation. It also has the advantage of unifying most of the algorithmic aspects of MPE and

RRE. In this formulation sn.k is of the form given in (2,4); only this time the 7j are obtained by the

least squares solution of the overdetermined and, in general, inconsistent linear system

Uin)7= 0, (2.9)

where 7= (7o,71.....7k)r,subjecttotheconstraint

k

= i. (2.1o)
j=o

(NotethattheYIinMPE satisfy(2.10)automatically,ascaneasilybe seenfrom (2.6).)

Remarks:

(1)
k

It is important to realize that the y/in sn.k = Y'.yjx_ +j depend on both n and k.
j=o

(2) In most applications, N, the dimension of the vectors xi, is much larger than k, so that the

matrices U__) have many more rows than columns. Therefore, there is great need to reduce the

amount of numerical work with the columns of the matrices U) _).

3. APPLICATION OF MPE AND RRE TO LINEAR SYSTEMS

Consider the linear nonsingular N-dimensional linear system

x =Ax +b, (3.1)

where A is an NxN matrix and b is an N-dimensional column vector. Pick an initial vector x0, and

generate the vectors x 1,x2 ..... by the iterative scheme

xi+l = Axi + b, i = 0, 1.... (3.2)
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Thesolution s of (3.1) is now the limit of the sequence Xo,Xl,X2 ..... when the latter converges, other-

wise, s is the antilimit.

Let ko be the degree of the minimal polynomial of the matrix A with respect to the vector xn-s.

Then the following statements are true.

(i) sn,k, is uniquely defined both for MPE and RRE, and

(ii)

(iiii

(iv)

s,,,ko = s . (3.3)

Also the linear systems in (2.5), (2.8), and (2.9) are consistent for k = ko, even though they may

be overdetermined. This is a consequence of the fact that the vectors u,+j, 0 _<j <-k0-1, are

linearly independent, and u,,+to lies in their span. (See [13, Section 2.2].)

For k < k0, s,.k is uniquely defined for RRE. For MPE, however, sn.t may fail to exist when

k < ko. When the matrix C = I-A has positive definite hermitian part, s,,.k exists uniquely for

MPE also for k < ko. (See [13, Section 2.2].) More generally, sn,k exists uniquely for MPE also

for k < k0, if the eigenvalues of C all lie on one side of a straight line through the origin in the

complex plane, or, equivalently, if they all he in an open sector S = {_t: l arg I_-01 < rt/2}, for

some 0, -re < 0 < n. This result can be proved exactly as Theorem 2.2 in [13] with C there

replaced by e-'°C.

When the Amoldi method and GCR are used in solving the linear system Cx = b, where

C = l-A, with x,, as the initial vector, they become equivalent to MPE and RRE, respectively.

Specifically, the approximations obtained from the Amoldi method and GCR are exactly

s,,. t,s,,.2 ..... that are produced by MPE and RRE, respectively. (See [13, Section 2.3].)

If the distinct nonzero eigenvalues of A are denoted _.), j = 1,2 ..... and are ordered such that

I_.1t > 1_.21> t_.31 > .,. , (3.4)

then, provided

t)_kl > I_.k+l I , (3.5)

and A is diagonalizable, we have

s,,,_-s--O(IXk+l I") as n _,,_, (3.6)

both for MPE and RRE. (The coefficient of I_.k+l I" on the right hand side of (3.6) becomes

large when thc largest eigenvalues _.1,_.2 ..... are close to 1.) In view of the fact that
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(v)

xn-s=O(l_,ll _) as n--)**, we conclude thatMPE and RRE are both true acceleration

methods.Under thesame conditions,ifs,,.k- sispreciselyO (I_,k+lI") asn ---+,0.then.theyj

forMPE and RRE aresuchthat

k k _-_.i

p,.k(_,)=_yj_j =I'-[_ +0 (l_,k+i/_,kl")as n _ _, (3.7)
j=o i=l

i.e., for fixed k and for all sufficiently large n, the polynomial p(s._)(_.) has precisely k zeros that

tend to _.1,_.2..... _.k. Furthermore, if we denote the zero of Pfn't)(_.) that tends to _.j by _.j(n),

then

_,jCn)-_,i=O(l_k+t/_,jl") as n--)_, l <.j<_k. (3.8)

The proofs of (3.6) and (3.7) have been given in [12, Sections 3 and 4]. The proof of (3.8) will

be published in the future. In case the matrix A in (3.2) is normal, the right hand sides of (3.7)

and (3.8) can be replaced by O (I _.k+l/_.kl 2_) and O (I _.k+l/_.j 12n), respectively. (The result in

(3.6) remains the same, however.) This implies that when A is normal the rates of converge of

p(n.k)(_.) and its zeros _.j(n) are twice those that can be achieved otherwise. These results fol-

low from the corresponding results of Sidi [14].

For the most general case in which the matrix A is not diagonalizable, the results in (3.6)-(3.8)

need to be modified considerably. For a complete treatment of this case see [16, Sections 2,3,

and 5], where modifications of (3.6) and (3.7) are given. The modification of (3.8) will be pub-

lished in the future.

A direct consequence of the result given in (3.6) is that better accuracy may be obtained if extra-

polation is preceded by a number of fixed point iterations. This has indeed been observed

numerically both for linear and nonlinear problems. We shall comment on this again in Section

7.

Let us denote C = I-A. Then s is the solution to Cx = b. Denote by ltj, the set of all polynomi-

als Qk(k) of degree at most k that satisfy Qk(0) = 1. Consider now s,,k as obtained by applying

MPE or RRE to the vector sequence Xo,X _..... Then

IIr(sn,k)ll <( min IIQk(C)II )llr(x,,)ll forRRE, (3.9)

where r(x) = Ax+b-x = b---Cx = -C(x-s) is the residual for x, and II. II is the 12 vector norm,
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or the matrix norm induced by it. (In fact,

ing sequence for RRE.)

definite, then

llC ,a(s,,k-s),< fg

where

IIr(sn,k)II, k = 0,1,2 ..... is a monotonically decreas-

if Ch = I(C+C'), the hermitian part of C, is positiveSimilarly,

min IIQt(C)ll )lIC_/2(xn-s)ll forMPE, (3.10)
Q,_

L if C is normal '
13= (3.11)

LN/cond(C h) otherwise,

with L = II C_1/2C C_ 1/2 II _>1. Note that both IIr(x)II and IIC1/2x II are true norms for x. Two

types of bounds for min IIQk(C)ll, in case Ch is positive definite, are given in [13, Section 4],
Q,t E _t

and these can be used to derive upper bounds for IIr(sn,k)ll and IIcl/2(sa,t-s)II for fixed n and

increasing k. For details see [13]. These bounds are employed in [17] to justify the use of the

extrapolation strategy that has been called "cycling" in [19] and all subsequent publications.

Finally, analogous and almost identical results exist for the case in which the system in (3.1) is

singular but consistent, so that it has an infinity of solutions. In this case the limit or antilimit depends

on x0 in a very specific manner. For details, see [15].

Remark: The various Krylov subspace methods like the Amoldi method and GCR and others can be

applied only to linear systems. Acceleration methods such as MPE and RRE, however, can be applied

to nonlinear systems as well as linear ones. The reason for this is that, unlike the Krylov subspace

methods, MPE and RRE are defined exclusively in terms of the given vector sequence, which may be

generated, for example, by an iterative method. Whether the vector sequence is generated linearly or

nonlinearly is irrelevant to the definitions of MPE and RRE and other vector extrapolation methods.

This is a very important property of vector extrapolation methods.

4. IMPLEMENTATION OF MPE AND RRE

4.1 General Considerations

As we have seen in Section 2, both MPE and RRE entail linear least squares problems in their

definitions. There is, therefore, an immediate need for the efficient solution of these problems. We
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propose to solve these problems by applying the QR factorization to the matrices U_").

To keep the notation simple we shall set n = 0 everywhere, and denote the matrices U_°) by Ui.

This amounts to simply rer_aming xn and calling it Xo.

We assume that the vectors uo,ul ..... u_ are linearly independent so that the N×(k+l) matrix Ut

is of full rank k+l. The case in which Uo,Ui ..... ut are linearly dependent will be discussed later in

this section. We recall that for the linear system in (3.1) this assumption is valid when k < ko, where

ko is the degree of the minimal polynomial of the matrix A with respect to the vector Xo-S. Therefore,

there is a unique Nx(k+l) matrix Q,,

Q, = [qolql I "" Iqk], (4.1)

whose columns qi satisfy

(qi,qi) = q_ qj = 5_i ,

and a unique (k +l)x(k+l) upper triangular matrix R,,

(4.2)

R k =

roo rol to2

rll r12

r22

0

°°.

•o.

rok

rlk

r 2k

rkk

(4.3)

with rii > O, i = O,1..... k, such that

U, = Qk Rk. (4.4)

This QR factorization amounts to orthonormalizing the vectors Uo,U 1,u2 ..... in this order• It is

important to retain this order, as this enables us to form the QR factorization of U,+l by appending

one additional column to Q, to obtain Qk+l, and a corresponding column to Rk to obtain Rk+l. Need-

less to say, this results in considerable savings in computing time.

QR factorization can be performed in different ways. The simplest way is the Gram-Schmidt

(GS) process for orthonormalization of Uo,Ul,U2 ..... This process is very unstable, however, in the

sense that the computed vectors qo,q_,q2 ..... are very far from being orthogonal. The modified

Gram-Schmidt (MGS) process, on the other hand, seems to be quite stable, and is the one that we have
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preferred. We recall that MGS is entirely equivalent to GS mathematically, and requires the same

number of arithmetic operations as GS. The two methods are different numerically, however. For

details, see, e.g., Golub and Van Loan [7, pp. 218-219].

For the sake of completeness we describe MGS for the case in which the vectors Uo,U i ,u2 .....

arc introduced one by one and in this order.

Algorithm MGS

Step 1.

Step 2.

read uo, and compute the scalar roo and the vector qo according to
roo=(Uo,Uo) 1/2 and qo=uo/roo.

for k = 1,2 ..... do
read uk, and set ul °) = uk

for j=0 to k-I do

rjk = (qj.u_/))

u__'÷1)= u_')-rjkqj
end

compute rkk and qk according to
rk_ = (U_kli.U_k))1_'2and qk = u_k) /ru,

end

(Here (y,z) stands for the Euclidean inner product y'z, as before.)

It is easy to see that, when implementing MGS on a computer, u_°),u_ 0 ..... u__), and qk Can all

be made to occupy the same storage locations. As we shall see in the next paragraph, the computation

of So.k can be based on the qj without the need to save either the xj or the u./. We can thus let uk

occupy the same storage locations as the u_,').

QR factorization can also be achieved by using Householder transformations. Although the com-

puted matrices Qk produced in this approach are closer to unitary than those produced by MGS when

the l:z condition number of Uk is large, the amount of computing in this approach is about twice that

required by MGS. We shall elaborate on this further in Section 7.

We now recall from the definitions of MPE and RRE, that the approximations So,k for both

methods can be expres_d in the form

k k

s0,k = _'yjx_ with _'/= 1 .
./=o ./=o

Assuming that Yo,71..... )'k have been determined, let us compute _o,_l ..... _k-l from

(4.5)
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_o = 1-yo and _j =_j-t-Yj. 1 <_j __.k-1.

Then, we can reexpress so, k in the form

k-I

so.k=xo + E iui=xo + uk-t ,
iffiO

where { = ({o,_l ..... {k_l) r. Substituting now Uk-I = Qk-I Rk-1 in (4.7), we obtain

k-I

s0,k =Xo + Qk-l(Rk-t_)=x0 + _rljqj,
j=0

where

(4.6)

(4.7)

(4.8)

rlj = (j+l)st component of the column vectorRk_l_, j = 0,1 ..... k-1. (4.9)

This approach to the computation of s0,k is very advantageous, as it enables us to overwrite

x t,x: ..... and Uo,U 1..... and thus saves a lot of storage.

4.2 Determination of the yj When rank (Uk) = k+l

The only thing that remains to be done now is to determine the y), and this requires separate

treatments for MPE and RRE.

4.2.1 Determination of the yj for MPE

As mentioned in Section 2, in order to determine the yj for So,k in MPE we first solve the over-

determined system

Uk-! c = -uk (4.10)

by least squares. Since we also assume that the rank of Uk is k+l, we conclude that c is the unique

solution of the normal equations

U'k-i Uk_lC=-U'k-I uk. (4.11)

Upon invoking Uk-I = Qk-1 Rk-l in (4.1 1) and using the fact that Q]-I Qk-I = lk_ = the kxk identity

matrix, and the fact that Rk-_ is a nonsingular matrix, we obtain

Rk-1 c =--Q_-I uk. (4.12)

It is easy to see that

Q'k-l Uk = (r ca,r lk..... rk-i.k) T ffiPk , (4.13)

so that (4.12) becomes
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Rt-t c =-pk • (4.14)

This is a linear system ofk equations in the k unknowns co,cl ..... ct-l, and its matrix Rk__ is upper tri-

angular. Hence its solution can be achieved easily by back substitution.

Once Co,C1 ..... ck-1 are determined, we set ck = 1, and compute the yj from (2.6), provided

k

,0.
i=0

4.2.2 Determination of the yj for RRE

Again as we mentioned in Section 2, the yj for So,t in RRE can be determined by solving the

overdetermined system

Uky= 0 (4.15)

by least squares subject to the constraint

k

EY./= 1. (4.16)

This amounts to minimizing the positive definite quadratic form _U*kUky subject to (4.16). Conse-

quently, the lemma in Appendix A applies, and the yj can be obtained by solving the linear system of

k +2 equations

U,UkT= X
k

E tj = l
)_

for%,T1 ..... Yk, and k. Here

_, =(l,l ..... 1) r .

As is stated in the same lemma, k turns out to be strictly positive, and is given by

k=y'U_Uky at the solution.

The 7: can be obtained by first solving the linear system

u'k =

for d = (do,di ..... dk) r, and letting

(4.17)

(4.18)

(4.19)

(4.20)
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(4.21)

and finally setting

y= ;Zd. (4.22)

As far as the solution of the system in (4.20) is concerned, we accomplish this again by using the

QR factorization of Uk. Again by Q*kQk=l(k+D×(k+D =the (k +l )x(k +l ) identity matrix, we can

rewrite (4.20) in the form

R*kRkd = _'. (4.23)

This system can be solved by forward and back substitution as the matrix Rk is upper triangular.

4.3 Treatment of the Case rank (t/t) = k

Up to this point we discussed the case in which the vectors Uo,Ul ..... uk are linearly independent.

Since these vectors are being introduced one by one, we can view this case as adding the vector uk to

the linearly independent set {Uo,Ul ..... uk-1} and obtaining the linearly independent set {Uo,Ul ..... u_.

We now consider the case in which {Uo,Ul ..... uk-l} is a linearly independent set, but {Uo,Ut ..... u_

is not, i.e., rank (Uk) = k. This exhibits itself through ra = 0 in the QR factorization step.

If we are applying MPE, then we can compute the ¥) by solving the (nonsingular) system in

k

(4.14) and employing (2.6), provided Y_ci _t 0 there. We then compute So,k.
i=O

If we are applying RRE, we can compute So,k as follows: First, by the linear dependence of

k
Uo,Ul ..... uj,, there exist constants CXo,Oq..... ak, not all zero such that _.,oqui = 0. This implies that the

i,,o

linear system in (4.15) is consistent. Also we can write Uk = QkRk, where Qk and Rk are as in (4.1)-

(4.3), qo,ql ..... qk-I are uniquely determined and q_ is arbitrary in (4.1), and ra = 0 in (4.3). Multiply-

ing both sides of (4.15) by Q_, and using the fact that Q_Qk = l(k+t)×(k+0, we obtain the system of k+2

equations

k

Rk_'=0 and ]E'Y./: 1. (4.24)
./=0

Now, by r_t = 0, this system actually consists of the k+l inhomogeneous equations
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k

[Rk-tIpk]y= 0 and _/._--I (4.2_
j=o

inthek+1 unknowns Yo,Yl.....Yk.Sincealeas'tsquaressolutionforthelinearsystemin(2.8)always

exists,a solutionfortheyj alwaysexiststoo. Consequently,theequationsin(4.25)alwayshave a

solutionforRRE. Once we determinea setofyj's,we compute so,k.

Comparing (4.25)with(4.14)and (2.6),we seethatifSo,kexistsforMPE when rank(UD = k,

thenitisequaltos0.kforRRE.

IfthevectorsequenceXo,Xl,x2.....isgeneratedas in (3.2),then,as explainedin Section3,

rank(Uk)= k+l fork < ko, where ko isthedegreeof theminimal polynomialofA with respectto

xo-s.The smallestvalueof k forwhich rank(Uk)= k isko,and atk = ko we alreadyreachthesolu-

tion,i.e., SO,ko = s. That is the first time r_ = 0 occurs, we have So,j, - s, and stop.

If the vector sequence xo,xl,x2 ..... is not generated linearly, and rank(Uk_l)=k, but

rank(Uk) = k < k+l, then we can compute s0.k first, and then take So.k or a nearby vector as x0, and

restart the computation. Other strategies for continuing the computation can likewise be devised, but

we shah not pursue this matter further.

It should be mentioned, however, that, due to roundoff, the chances of encountering the case

rank (Uk) < k+l in practice are extremely small. We have thus not included the treatment of this case

in the computer program given in the appendix.

4.4 Summary of Implementations

We now summarize the major steps of the implementations, as they have been described above.

We assume that all the matrices Uk have full rank.

Suppose that, starting with Xo, we have constructed the matrices Qk-i and Rk-_.

We now read xk+_ and compute uk =xk+i-Xk. Following this. using MGS, we compute the

scalars rok,rlk ..... r_ and the orthonormal vector qk, which we use to augment the matrices Qk-i and

Rk-i to give Qk and R,, respectively.

We next proceed to the computation of the yj. For MPE, we first solve the upper triangular kxk

systcm in (4.14) for Co,Cl ..... ck-i by back substitution, and then use (2.6) to obtain the yj. For RRE,

we solve the (k +l )×(k +l ) system in (4.23) for d, and then determine the 7: by (4.21) and (4.22). The

solution of the system in (4.23) can be achieved very simply by forward and back substitution as Rk is
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upper triangular.

Once the yj have been determined, we compute the _/by (4.6) and the q/by (4.9), and linally,

So,k by (4.8). "

Next we read xk+2, and proceed similarly, until a suitable stopping criterion is met.

It should he noted that, strictly speaking, neither ra nor qk is needed for determining s_j.t, and

their computation can be completed after xk+2 has been introduced. In the computer program that we

give in the appendix, though, we chose to compute ra and qt before the computation of .__J.t.

Finally, it is not difficult to see that these implementations are very appropriate for vector com-

puters as their handling of the x,, ui, and q, can be entirely vectorized. The computer program given in

the appendix to this work has been written to take full account of this.

5. ESTIMATION OF RESIDUAL NORMS

5.1 General Considerations for Linear and Nonlinear Systems

Let s be the solution of the linear or nonlinear system of equations

x =Ffx), (5,1/

and let us define the residual for an arbitrary vector x by

r(x) = F(x)--x . (5.2/

Let Xo be a given initial approximation, and generate the sequence of vectors x_,x 2..... according

to the fixed point iterative method

x).l =F(xj), j =f),l ..... ¢5.37

Consequently, the residual forxj is given by

r(xl) = F (xj)--xj = xj÷l-xj = uj , (547

thus is readily available.

Let us assume that MPE or RRE is applied to the .sequence x_j,xl,x2 ..... and that we are com-

puting the sequence s., _,s_, 2..... Let us assume also that we would like to stop the computation as

soon as some norm of r:s_,k) becomes _<e for some t, t > 0 being a prea.ssigncd levcl of accuracy.

The most direct way of doing this would be by actually computing the vectors

S_, t,r(s_ 1),_,2,r(sn,2) ..... _hich is vet3' costly.
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Indeed,thecomputationof s,,,, involves about k vector additions and k scalar-vector multiplica-

tions, that of r (s,.k), by (5.2), amounts to one additional fixed point iteration and one vector addition,

and the computation of the norm of r(s,,k) requires an additional inner product. In addition, the

number of the vector operations increases with increasing k. In view of this, the most desirable situa-

tion is one that enables us to estimate some norm of r(s,,,D without having to compute either s,,k or

r(s,.k).

$.2 Residual Computation for Linear Systems

We now devise a strategy by which the/2-norms of the residuals r(sn,k) can be obtained exactly

without the need to compute either s,,.k or r (s,,k), when the sequence Xo,Xl,X2 ..... is being generated

linearly by the iterative method in (3.2), i.e., when F(x)=Ax+b in (5.3). The case in which F(x) is

nonlinear will be considered at the end of this section.

When F (x) = Ax+b, the residual for an arbitrary vector x, by (5.2), becomes

r (x) = Ax + b -x. (5.5)

Consequently, by (2.10L (3.2). and (2.1), we have

k

r(so.k) = _yjuj = Uky, (5.6)
j=0

and the/2-norm of r(so, k) is thus

IIr(so.k) II = (r(so.k),r(so.k)) 1/2 = (y*U*kUky) 1/2 . (5.7)

By invoking Uk = QkRk in (5.7), we obtain

IIr(s o,k) II -- (y*R_Rk y)1/2 . (5.8)

We now analyze y*R*kRkyfor MPE and RRE separately.

5.2.1 lz -Norm of Residual with MPE

Let us compute Rky first. By (4.12)-(4.14) we have

JR,_, ,p,] [1 ] =0. (5.9)

k

By dividing both sides of (5.9) by _ci with cA = 1, and invoking (2.6). we obtain
i=0
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from which we obtain
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[Rk-l I pt]y= 0.

Rky= (0,0 ..... 0,rnyD r ,

(y'R_Rky) 1/2 = r_ Iyk I .

Consequently, for linearly generated sequences

IIr(s0,k)ll = r_ Iyk I

exactly, with r(x) as defined in (5.5).

5.2.2 12 -Norm of Residual with RRE

By (4.19) we have immediately

(': U"kUk'_)v2 = 4-2,

(5.10)

(5.11)

(5.12)

(5._3)

(5.14)

with _. as determined from (4.23) and (4.21). Consequently, for linearly generated sequences

IIr(so,k)ll = "_/-_ (5.15)

exactly, with r(x) as defined in (5.5).

The results given in (5.13) and (5.15) assume exact arithmetic. Due to roundoff errors, however,

the actually computed residual norms may be getting farther from (5.13) and (5.15), especially when k

is increasing. In this case it may be appropriate to compute So,k and the norm of its residual every

once in a while to make sure that roundoff has not started to dominate the computations. Although

such a test is not included in the computer program given in the appendix, it is quite easy to incor-

porate it there.

5.3 Practical Residual Estimation in Extrapolation for Nonlinear Systems

We now consider the problem of error estimation for the case in which F (x) in (5. I) is nonlinear.

Let us assume that the sequence xo,x z,X z ..... is convergent, its limit, of course, being s, the solution

of (5. I). Therefore, for n suflaciently large, x.,x.÷1 ..... are all very close to s, and we have

x..l-s = F'(s)(x.-s) + e. , (5.16)

where F'(x) is the Jacobian matrix of the vector valued function F (x), and en is a vector whose norm
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is O(llxn-s II2) as n --_ _. This implies that the sequence Xo,Xt,X2 ..... behaves linearly at infinity,

in the sense that

xj+t = F'(s)xj + (s-F'(s)s) (5.17)

for all sufficiently large j. Thus, for n sufficiently large, we can take

r (s,,D = U_')¥ (5.18)

c.f., (5.6), and

Itr(sn,t)II " (_*R[n)*R_n)y) 1/2 , (5.19)

c.f., (5.8), where we have retained the index n in U[") and U_") = Q_")R_,"). The norm in (5.19) is the

/2-norm as before. Consequently, we can take (5.19) as an estimate for the/2-norm of the residual

r(s.,k) without having to compute either sn,k or r(s.,t), since it is given by (5.12) for MPE and by

(5.14) for RRE.

In case n is not large enough, (5.19) may not be very realistic. In this case we may choose to

compute s.,t and r(s.,D not for all k, but for k =p, 2p, 3p ..... say, for some integer p > 1. This obvi-

ously reduces the cost.

When we are using MPE or RRE in the cycling mode, which is one of the best modes of usage,

things become simpler, To see this let us recall how cycling can be performed.

Step 1. Fix the integer k. Pick s o mx0 and set q = 0.

Step 2. Generate xl, by (5.3). If IIr(s_q))ll = IIxl-xoll -- Iluoll <_, then stop. Otherwise, generate

x2 ..... xk+l by (5.3).

Step 3. Compute s_q+l) = So,k by MPE or RRE.

Step 4. Replace Xo by s_q+l), and q by q+l, and go to Step 2.

(That r(s_ q)) = Uo in Step 2 follows from (5.4).)

Consequently, no extra computation for residuals is necessary, as uo is the true residual in each

cycle. "
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6. OPERATION COUNT AND STORAGE REQUIREMENTS

In most applications, N, the dimension of the vectors, is extremely large, while k takes on very

small values. Consequently, the major part of the computational effort is spent in handling the large

vectors, the rest being negligible.

As we can easily see, most of the vector computations take place in the QR factorization. At the

kth stage that leads to s0,k, the vector xt+l is provided first. Starting with this, we need one vector

addition to form uk = Xk+l--Xk, and, following that, k vector additions, k+l scalar-vector multiplica-

tions, and k+l inner products to form the orthonormal vector qt and the scalars rok,rlt ..... r_ by

MGS. The computation of So.k, if desired, requires k vector additions and k scalar-vector multiplica-

tions by (4.8). The computation of the y,., _i, and ni is negligible, as it involves work with k×k or

(k+l)×(k+l) triangular matrices for very small values ofk.

As for the storage requirements, it is clear that x0 needs to be saved. At the kth stage qk needs to

be saved, in addition to the previously saved qo,q i ..... qk-I. We also need two or three more auxiliary

vectors of dimension N. Similarly the elements of the matrix Rk all need to be saved, but their storage

requirements are negligible.

In view of the above, if only So.x is needed for some preassigned K, then, recalling that the vec-

tor qx need not be computed, the total operation count is I/2(K2+5K+2) vector additions, _/_(K2+5K)

scalar-vector multiplications, and t/_(K2+3K+2) inner products, which amounts to -2K2N floating

point operations (scalar additions and multiplications). As for the storage requirements, we need

(K+I)N storage locations for xo,qo,ql ..... qK-I, and 2N storage locations for two additional auxiliary

vectors. No additional storage locations are required for So.t as So.k can overwrite x0 at the end of the

computation.

In many cases it turns out that the accuracy that can be achieved with m cycles of MPE or RRE,

each cycle being of width K, is comparable to that obtained for So.,nx. If we compare the computa-

tional costs of each of these strategies, we see that, roughly speaking, the former is m times less expen-

sive computationally than the latter, and requires m times less storage. Thus, as a computational stra-

tegy, cycling possesses important advantages.

It is very instructive to compare the implementations for MPE and RRE, as they are given in this

work, with the vector epsilon algorithm (VEA) of Wynn [21 ]. VEA is defined recursively by
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and n=0.1 .....

_') (6.1)
el t = + k_>0, n'a_0,

where Ae_") = e_'*t)-e_ "), and _ = (-il ..... _N)r if z = (zl ..... zN)r: Thus, the computation of E_") for

k > 2 requires two vector additions, one scalar-vector multiplication, and one inner product. For et ")

only one vector addition is required. Now as is suggested by experience and as can be justified heurist-

ically, for given K, e_ for VEA and So.K for MPE or RRE would have comparable performance. The

total operation count for determining e_ is 4K 2 vector additions, 2K2+K scalar-vector multiplica-

tions, and 2K2+K inner products, which amounts to -10K2N floating points operations (scalar addi-

tions and multiplications). As for the storage requirements, we need (2K+l)N storage locations to

save _2x),_t_ -_) ..... e_. and 2N storage locations for two auxiliary vectors. Consequently, VEA is

about l_vc times more expensive than either MPE or RRE as far as operation counts are concemed. As

far as storage requirements are concemed, VEA is about twice as expensive as either MPE or RRE. In

addition, since x0,xl ..... x2r are needed for e_, whereas, only x0,xt ..... xK+l are needed for

either MPE or RRE, VEA is about twice as expensive as MPE or RRE with respect to the number of

vectors they utilize.

We note that, in the epsilon family of vector extrapolation methods, VEA seems to be the most

advantageous as far as the operation count, storage requirements, and numerical stability are con-

cerned. For more details, see [19].

7. SOME PRACTICAL CONSIDERATIONS FOR ENHANCING CONVERGENCE AND
STABILITY

In this section we would like to make a few remarks, which we believe are of practical impor-

tance with regard to enhancing the convergence and stability of vector extrapolation methods as they

are applied to iterative procedures Most of these remarks are based on the known theoretical results

concerning vector extrapolation methods, some of which have been discussed in Section 3.

7.1 Effect of Iteration Before Extrapolation

In most problems of interest the vector sequence Xo,X_ ..... converges extremely slowly so that

there is not much difference between Ilxn-s II and Ilxo-s II even for appreciably large values of n.

The rcsult in (3.6), however, suggests that there may be a large difference between IIs_,k--S II and
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IIx,,-sII (hence IIxo-s II) if n is sufficiendy large. If the vectors xj are produced by an iterative pro-

cedure such as (3.2), then this implies that it may be very useful to start the extrapolation procedure

after a number of iteratior_,s with (3.2). One heuristic argument in favor of this strategy runs as fol-

lows: The initial error Xo-S, in general, has components in the direction of all eigenvectors and princi-

pal vectors of A. After a few iterations the components in the direction of those eigenvectors and prin-

cipal vectors corresponding to zero eigenvalues of A are totally eliminated, while those corresponding

to the eigenvalues that are close to zero are diminished. Consequently, the error vector x,,-s has

mostly contributions from the eigenvectors and principal vectors corresponding to the large eigen-

values. Precisely these contributions are now diminished by the extrapolation procedure.

7.2 A Simple "Averaging" of the Iteration Process and Its Effect on Convergence and Stability

Assume that (3.2) or (5.3) result from the discrete solutions of continuum problems. Then, for a

convergent scheme, the largest eigenvalues of A or of F'(s), the Jacobian matrix of F (x) at x --s, may

be very close to 1 in the complex plane in some cases. This may cause the extrapolation process not to

be very effective, The process may even suffer from a large amount of numerical instability.

One way of dealing with this problem is by applying extrapolation methods not to the sequence

Xo,Xl,X2 ..... but to Yo,Yl,Y2 ..... where yj =xjp, for some positive integer p. This strategy has been

successfully implemented in [17].

Another way would be by changing (5.3), in general, to read

xj+ =xj + j =0,1 ..... (7.1)

where co is a scalar different than 1. (The sequence generated by taking to = 1 is the one generated by

(5.3).) Thus x./+_ is now a weighted "average" ofxj and F(xj), in which the weights 1--_ and to need

not be both positive.

By picking to appropriately we can cause the spectrum of the Jacobian matrix of

(1---to)x + o_F(x) at x = s, namely, (1---¢.o)!+ o_F'(s), to be increasingly favorable to s,,.k for large values

of n.

Let us take a look at the following example: Suppose the eigenvalues ofF'(s) are all positive and

lie in the interval [e,l-rl] for some e > 0 and 1"1> 0 close to zero. Consequently, the sequence

Xo,Xl ..... obtained from (5.3) converges, provided xo is sufficiently close to s in case F(x) is non-

linear, and unconditionally in case F(x) is linear. If we pick _=2, then the eigenvalues of
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(1-'-_)I + toF'(s) lie in the interval [-l+2e, 1-2rl] so that the sequence obtained from (7.1) also con-

verges. (If e = rl, then this sequence converges more quickly than the one obtained from (5.3).) The

new spectrum has two important properties relevant to vector extrapolation methods: 1) The largest

positive eigenvalue of F'(s), namely, 1-rl, has moved away from 1.2) Negative eigenvalues close to

-1 have been created. Both of these properties enhance the stability of vector extrapolation processes

both mathematically and numerically. (This follows from [12, Theorem 4.1], [16, Theorem 3.2], and

[18, Theorems 4.1 and 5.2].) It should be noted that 2 is also that value of o_ for which the spectral

radius of (l-to)/+ ¢zF'(s) is minimal when e = rl.

7.2.1 Special Considerations for Linear Systems

When F(x) = Ax+b, and the vector sequence is generated by the iterative procedure in (7.1), the

approximation.,, .__ _ arc independent of to, as has been shown by Israeli and Sidi [8]. That is to say,

the convergence properties of the so.k arc not changed by varying to. Nevertheless. varying co may

influence the stability properties of the numerical implementations.

First, if the sequence obtained from (3.2) is divergent, then all the computations leading to So.k

will suffer a large loss of accuracy, especially for increasing k. By changing to in (7.1) appropriately,

we can cause the scquence to converge (or diverge very slowly), thus avoiding the numerical problem

caused by the unboundedness of the original sequence.

Next, if the sequence obtained from (3.2) is slowly converging on account of the largest eigen-

values of A all being very close to 1 in the complex plane, then the vectors Uo,Ul,U2 ..... are near being

linearly dependent. Consequently, the 12 condition number of the matrices Ui may be very large. This

may have a negative influence on the QR factorization of Uk by MGS that we have chosen for our

implementation. This influence exhibits itself in the computed matrices Qk being far from unitary and

the computed So.k not being very accurate. If, by picking co appropriately in (7.1), we can change the

spectrum in such a way that it now contains both positive and negative large eigenvalues, then the vec-

tors Uo,Ul,U2 ..... will be far from being linearly dependent numerically. This will result in better con-

ditioned matrices Uk, which, in turn, will result in the computed matrices Qk being closer to unitary

and the computed s0.k being quite accurate.

The numerical aspects of MGS and its use in the solution of least squares problems and the com-

parison of thcse with :he Householder QR factorization and least squares solutions are discussed at
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length in [7, Sections 5.2.8, 5.2.9, and 5.3.6].

7.2.2 Application to Jacobi Iteration for Consistently Ordered Matrices

The observations above can be used very effectively in the solution of linear systems whose

matrices are consistently ordered. Such matrices arise frequently, for example, in the finite difference

solutions of elliptic equations.

Suppose iterative methods of the form (3.2) are being used in the solution of such a system. If

the method used is the Jacobi iteration method, then it is known that the nonzero eigenvalues of A

come in pairs of the form + la, see, e.g., Varga [20, Chapter 4]. Consequently, if the eigenvalues of A

are real, then they are in the interval [-1+8, 1--,5] for some 8, 0 < 8 < 1, provided p(A) < 1. As a

result, the nonzero eigenvalues of A 2 are in the interval [c,l-rl], for some _ > 0, where

1-rl = (1-8) 2 = 1-28 if 8 _: 1. Furthermore, if 2M is the number of the distinct nonzero eigenvalues of

A, then the number of the distinct nonzero eigenvalues of A 2 is M whether the eigenvalues of A are

real or not.

This implies that the approximation s_,.z_ obtained from the Jacobi iterative method and the

approximation s_.k obtained from the double Jacobi iterative method

y =Axj +b (7.2)

xj+t=Ay+b, j=0,1 .....

have the same asymptotic behavior as n --_ **. In addition, since the largest eigenvalues of A 2 are

twice as far from 1 as those of A, s_.k is more stable than sin. z_ as n --_ ** both mathematically and

numerically.

We can now couple the double Jacobi iteration method with the simple averaging procedure that

was discussed above. Tha new iteration procedure then is

y :Axj +b

z =Ay+b (7.3)

x./+l = (1-03)x/+ ¢oz, j=0,1 .....

for some 03_ 0. As explained before, by varying co we can cause the spectrum of the iteration matrix

of (7.3), namely, (1--03)! + ox4 2, to become favorable to s.,k. In particular, by picking co= 2 we can

cause this spectrum to lie in the interval [-l+2e, 1-2rl] = [-l+2e, 1-45+82]. This enlarges the distance

of the largest positive eigenvalue of the Jacobi iteration matrix A from 1 even further, and introduces
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negative eigenvalues close to -1. This causes sZk to become more stable. Furthermore, if e > 8, the

convergence rate ofxn from (7.3) with co = 2 is as good as that ofxn from (7.2).

We note, incidentally, that the iterative method of (7.3) with co = 2 is known as Abramov's

method, see Faddeev and Faddeeva [5, p. 514]. It is quite easy to see that, in this case,

xj+1-s= (2A 2-1)(xs-s)= T2(A)(xs-s),

where T2(_.)= 2Z.2-IistheChebyshev polynomialofdegreetwo.Itshouldbe emphasizedthatthisis

notChebyshev acceleration,however.

8. NUMERICAL EXAMPLES

We have applied MPE and RRE through their new implementations described in the previous

sections to several examples. This has been done by employing the computer program that is provided

in Appendix B of this work. Some of the results obtained this way will be reporled in this section.

We have picked real linear systems of equations whose matrices are symmetric or nonsym-

metric. Numerical results for two of these systems, one symmetric and the other nonsymmetric, are

includcd in this work.

Ex.ample 1. Consider the vector sequence obtained from (3.2), where A is a 1000xl000 septadiagonal

matrix symmetric with respect to both of its main diagonals, and is given by

A = 0.06 ×

"5211

26311

136311

1136311

1136311

The vector b is such that the exact solution s of (3.1) is (1,1 ..... l)r.

All eigenvalues of A are in (0,1), the smallest and the largest being 4.7279-.. x 10-6 and

0.95999..., respectively. Consequently, the matrix C = I-A is symmetric positive definite. Also,

there is a large amount of clustering of eigenvalues near the smallest and the largest ones.
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Taking Xo = 0, we generated the vectors x l ,x2 ..... by (7.1) once by taking to = 1 and once by tak-

ing to = 2, and then applied MPE to these two sequences. We also applied the method of conjugate

gradients (CG) to the linear system Cx = b starting again with Xo = 0. The results of these computa-

tions are shown in Table 1a.

Recall that the Amoldi method becomes equivalent to CG when C is a symmetric matrix, and

MPE, when applied to a linearly generated sequence, becomes equivalent to the Amoldi method. Also

So,k, when applied to a sequence generated linearly as in (7.1), is independent of co. Consequently,

So,k, both for co= 1 and to=2, obtained from MPE, and zk, obtained from CG, are all the same

mathematically. This is verified in Table la at least for k < 10. The differences between the co = 1 and

o_=2 MPE computations fork > 10 can be explained exactly as described at the end of Section 7.2.1.

Again, as can be seen from Table la, the co = 2 MPE computation differs from the CG computation

starting with k = 40 approximately. Since CG involves orthogonalization with respect to only one vec-

tor, its absolute accuracy is guaranteed. On the other band, MPE involves orthogonalization with

respect to an ever increasing number of vectors at each stage, thus it cannot be absolutely accurate. In

spite of this, the present implementation of MPE seems to be very stable in the sense that I}So, k-s It

seems to be constantly decreasing with increasing k. Indeed, we have verified this by going up to

k = 100 in both the co = 1 and co= 2 MPE computations.

Our purpose in presenting Table la was to demonstrate the good stability properties of the new

MPE implementation for large values of k. Otherwise, CG is the method we would normally use for

this example, since its operation count and storage requirements are extremely small.

In Table lb we present the results obtained for the same example with co = 2 first performing 20

iterations and then using MPE in the cycling mode with k = 10, as explained at the end of Section 5.

The remarkable effectiveness of this strategy is obvious.
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Table la - Numerical results for Example 1, starting with Xo = O.
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4.75 D-01

2.00 D-04

2.90 D-06
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1.74 D-07
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9.11 D-11
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1.77 D-13

9.46 D-14

Table lb - MPE applied to Example 1 in the cycling mode. Starting with the zero vector, first 20

iterations are performed. Following that MPE is applied in the cycling mode with k = 10. The 12-

norm of the error in the initial (zero) vector is 3.16D+01. The vectors are obtained by "averaging" the

iterative process (3.2) with to = 2.
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Example 2. Consider the linear nonsymmetric system of equations 6"x =/_, where C is the block - tri-

diagonal matrix

t,

'B

-/

-i

B -I

-I B -1

\\ '\\

with 8 ---

--/

B

F4 a

\

and a=--l+8, b =-1-8, 8 40. (See [10, p. 122].) Again, the vector/_ is such that the exact solution s

is (1,1 ..... 1)7-. The iterative method that we pick for this system is Jacobi's method, so that

A=I-Ic
4 "

Now the matrix C is consistently ordered. Thus the suggestions put forth in Section 7.2.2 can be

successfully employed in this case.

In our numerical experiments we took 8 = 0.2. The matrices B and / in C" were all 10×10 and

was 200x200, exactly as in [10]. The extrapolation method for which we give numerical results is

RRE. We first applied RRE in the cycling mode in conjunction with Jacobi iteration. The vector

obtained at the end of each cycle is denoted 3_i). Next we applied RRE in the cycling mode in conjunc-

tion with double Jacobi iteration. The vector obtained at the end of each cycle is denoted _") now.

Finally, we applied RRE in the cycling mode extended as follows: The vector sequence is generated

by the iterative procedure of (7.3) with to--2, i.e., by the "averaged" double Jacobi iteration with

to = 2. In each cycle ni+ki+l such iterations are performed, and extrapolation is applied to the last

k,+2 of the vectors, i.e., in each cycle sn,,k, is computed. The vector obtained at the end of each cycle

, . _(i)
now is uenotea sn,.k,. The index i denotes the cycle number in each case.

_(i) ^(i)
In Table 2 we give the 12 - norms of the errors sk-s (k = 20), sk-s (k = 10), and

~0)
sn,,k ' (n i = 5, k i = 5 all i). Thus the number of basic Jacobi iterations performed to obtain the approxi-

_(i) A(,) -(,) .(i)
mations sk sk and s,,,A in each cycle is 21, 22, and 22 respectively. We see that _(i), , S2o and Slo have

_(i)
comparable accuracy, as expected. The number of vector operations for S2o, however, is over three
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. A(i)
times that ror._z0. Also the slorage requirement for _!'!. i_ _u: twice t_a, fo: _i", The perforrr.,an_ _ o_

_(i) _(i) r _(i)
s5.5 is only slightly inferior. The number of vector operations for s5.5 is about one tenth that mr s2o,

• ._(i)
while its storage needs are about one third mose o_ S2o.

1 6.66D-02
2 2.02D-IM
3 2.53D-07
4 2.90D-10
5 2.03D- 12
6 1.35D-13
7 3.61D-14

^(i)
IISto-S II

7.47D-02

2.36D-04
4.26D-07
2.05D-09
5.96D 12
6.48D-14
3.13D-14

1.34D-01
5.86D-04
1.14D-05

3.04D-08
2.15D-10

1.07D- 12
1.75D-14

Table 2 - RRE applied to Example 2 m the cycling mode. The initial vector is zero, and the i2-nonn
of the error associated with it is 1.41D+01.
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APPENDIX A

Lemma: Let T be an mxm hermitian positive definite matrix, and let Zl ,z2 ..... zm be complex vari-

ables. Denote z = (zl,z2 ..... z,,,) r. Then the solution to the problem

minimize z* T z

m

subject to _,zi = l
i=l

can be obtained by solving the linear system of m +1 equations

where zl ..... z_, and i are unknowns, and

rz =l_

_zi = I,
i=!

=(1,1 ..... 1)r

The unknown t turns out to be real and positive, and is given by

X = z* T z at the solution.

The solution of (A.2) can be achieved by first solving the system

Th=e

for h = (h I ..... h,.) r, and letting

and finally setting

z=lh

Proof: We start by expressing the problem in terms of real variables. Let us write T in the form

T=M +iN, M and N real mxm matrices.

Then, by the assumption that T is hermitian, it follows that

M r =M and Nr =-N ,

Writing

(A.I)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

z =x+iy, x and y realm-dimensional vectors, (A.10)
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andinvoking(A.8)and(A.9)in z°T z, we have

z'T z = xrM x + yrM y + 2yrN x. (A.11)

m

Now the constraint _,zi = 1 in (A.1) is equivalent to two real constraints, namely,
i=1

m m

_xi = I and _Yi =0. (A.12)
i=l i=l

We now use the method of Lagrange multipliers to minimize (A.11) subject to (A.12). Introducing

/*1 m

the Lagrange multipliers -2tx and -2v for the constraints _xi = 1 and _Yi = 0, respectively, and tak-
i=1 i=1

ing derivatives with respect to the x_ and Yi, we obtain the linear system of equations

Mx - Ny - t.t e =0

My + Nx-v _ =O,
(A.13)

which, upon letting X = I.t+ iv, becomes equivalent to Tz = k _'. We have thus shown the truth of

(A.2). Multiplying Tz = X _ on the left by z °, and using _,zi = 1, we obtain (A.4). Obviously, _. has
i=l

to be strictly positive. For if _. were zero, then z=0 would have to be the solution as T is hermitian

m

positive definite, but this would contradict the constraint _.,zi = 1. The rest of the proof follows easily
i=l

from (A.2), and we shall omit it. 1_



- 32-

APPENDIX B

In this appendix we give a computer code written in standard FORTRAN 77 that implement

MPE and RRE as described in the present work.

The implementation of MPE and RRE is done in SUBROUTINE MPERRE that forms the heart

of this code.

Use of MPE and RRE in the cycling mode is made possible by SUBROUTINE CYCLE.

The vector sequence for extrapolation is generated by calling SUBROUTINE VECTOR, which,

in the present code provides the iteration sequence of Example 1 with a) = 2 weighting.

The driving program in the present code is the one that generates some of results shown in Table

lb.

We give no further explanations about the code and its use, as the different parts of the code are

documented in detail.
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C IMPLEMENTATION OF MPE AND RRE WITH QR FACTORIZATION FOR LEAST CYC00020

C SQUARES. (QR PERFORMED BY MODIFIED GP.AM-SCHMIDT PROCESS) CYC00030

C MPE AND RRE ARE APPLIED IN THE CYCLING MODE. CYC0¢040

********************************************************************************

C THE COMPONENTS O[ _ THE INITIAL VECTOR X, NAMELY, X(I),I-I, ...,NDIM, CYC00060

C CAN BE PICKED RANDOMLY. WE ACHIEVE THIS, E.G., BY INVOKING THE CYC00070

C IMSL VERSION I0 SUBROUTINE DRNUN THAT GENERATES PSEUDORANDOM CYC00080

C NUMBERS FROM A UNIFORM (0,I) DISTRIBUTION. CYC00090

C OTHER CHOICES FOR X(1), .... X(NDIM) ARE POSSIBLE, SUCH AS X(I)-0, CYC00100

C I-I,...,NDIM. IN THIS CASE REPLACE THE STATEMENT CYC00!I0

C CALL DRNUN(NDIM, X) CYC00120

C BY THE DO LOOP CYC00!30

C DO I0 I=I,NDIM CYC@9140

C X(I)-0 CYC00i50

C i0 CONTINUE CYCOC!60

***************************************************************************_****

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

PARAMETER (METHOD=I,N0=20,N=0,KMAX'I0, NCYCLE=IS,NDIM=I000)

PARAMETER (EPSC-ID-10, IPRES-I,IPRESI'I)

DIMENSION X(NDIM),S(NDIM),Y(NDIM),Z(NDIM)

DIMENSION Q(NDIM, 0:KMAX-I),R(0:KMAX, 0:KMAX)

DIMENSION C(0:KMAX),GAM/4A(0:KMAX),XI(0:KMAX-!)

EXTERNAL VECTOR

INITIAL VECTOR DETERMINATION.

I0

CALL DRNUN(NDIM, X)

DO i0 I=I,NDIM

X(I)-0

CONTINUE

END OF INITIAL VECTOR DETERMINATION.

CALL CYCLE(METHOD, X,S,N0,N,_MAX, NCYCLE,NDIM, Y,Z,VECTOR,Q,R,

*C,GAMMA, XI,RESC,EPSC, IPRES,IPRESI)

STOP

END

CYC00180

CYC00190

CYC00200

CYC0O210

CYC00220

CYC00230

CYC00240

CYC00250

CYC00260

CYC00270

CYC00280

CYC00290

CYC00300

CYC003!0

CYC00320

CYC00330

CYC00340

CYC00350

CYC0036C

CYC00370

CYC00380

CYC00390

CYC00400

CYC0@410

C THE ARGUMENTS METHOD,NDIM, Y,Z,VECTOR, Q,R,C,G_MMA, XI,IPRES,IPRESI CYC00460

C ARE AS IN SUBROUTINE MPERRE. CYCO0470

C CYC00480

C X : INITIAL VECTOR. INPUT ARRAY OF DIMENSION NDIM. (DOUBLE CYC00490

C PRECISION) CYC00500

C S : THE FINAL APPROXIMATION PRODUCED BY THE SUBROUTINE. OUTPUT CYC00510

C ARRAY OF DIMENSION NDIM. (DOUBLE PRECISION) CYC00520

C NO : NUMBER OF ITERATIONS PERFORMED BEFORE CYCLING IS STARTED, CYC00530

C I.E., BEFORE MPE OR RRE IS APPLIED FOR THE FIRST TIME. CYC00540

C INPUT. (INTEGER) CYC00550

C N : NUMBER OF ITERATIONS PERFORMED BEFORE MPE OR RRE IS APPLIED CYC00560

C IN EACH CYCLE AFTER THE FIRST CYCLE. INPUT. (INTEGER) CYC00570

C Z.MAX : WIDTH OF EXTRAPOLATION. ON EXIT FROM SUBROUTINE MPERRE IN CYC00580

C EACH CYCLE, THE ARRAY S IS, IN FACT, THE APPROXIMATION CYC00590

C S(N0,KMAX) IN THE FIRST CYCLE,AND S(N,KMAX) IN THE FOLLOWING CYC00600

C CYCLES. INPUT. (INTEGER) CYC00610

C NCYCLE: MAXIMUM NUMBER OF CYCLES ALLOWED. INPUT. (INTEGER) CYC00620

C RESC : L2-NOP_ OF THE RESIDUAL FOR S AT THE END OF EACH CYCLE. CYCO0620

C RETRIEVED AT THE END OF THE NEXT CYCLE. OUTPUT. (DOUBLE CYC00640

C PRECISION) CYC00650

C EPSC : AN UPPER BOUND ON RESC/RESP, SOME RELATIVE RESIDUAL FOR S, CYC00660

SUBROUTINE CYCLE(METHOD, X,S,N0,N, KMAX,NCYCLE,NDIM, Y,Z,VECTOR, Q,R,

*C,GAMMA, XI,RESC,EPSC, IPRES,IPRESI)

******************************************************_******************_***_**

C THIS SUBROUTINE APPLIES MPE AND RRE IN THE CYCLING MODE. CYC00430

C MPE AND RRE ARE INVOKED BY CALLING SUBROUTINE MPERRE. CYCOC440

**************************************************************************_**___
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C USED IN THE STOPPING CRITERION. HERE RESP IS THE L2-NORM CYC00670

C OF THE RESIDUAL FOR S(N0,KMAX) AT THE END OF THE FIRST CYC00680

C CYCLE, I.E., ON EXIT FROM SUBROUTINE MPERRE THE FIRST TIME. CYC00690

C IF RESC.LE.EPSC*RESP AT THE END OF SOME CYCLE, THEN ONE CYC00700

C ADDITIONAL CYCLE IS PERFORMED, AND THE CORRESPONDING CYC00710

C S(N,KMAX) IS ACCEPTED AS THE FINAL APPROXIMATION, AND THE CYC00720

C SUBROUTINE IS EXITED. INPUT. (DOUBLE PRECISION) CYC00730

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

PARAMETER (EPS-0)

DIMENSION X(NDIM),S(NDIM),Y(NDIM),Z(NDIM)

DIMENSION Q(NDIM, 0:KMAX-I),R(0:KMAX, 0:KMAX)

DIMENSION C(0:KMAX),GAMMA(0:KMAX),XI(0:KMAX-I)

EXTERNAL VECTOR

DO 40 IC-I,NCYCLE

IF (IPRES.EQ.I.OR.IPRESI.EQ.I) THEN

WRITE (6, i01) IC

10l FORMAT(/,' CYCLE NO. ',I3)

END IF

NN-N

IF (IC.EQ.I) NN-N0

IF (IPRES.EQ.I.OR.IPRESI.EQ.I) THEN

WRITE(6, 102) NN

102 FORMAT(/,' NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS',I3)

WRITE (6, 103) KMAX

103 FORMAT(/,' WIDTH OF EXTRAPOLATION IS ",I3)

END IF

DO 20 J-0,NN-I

CALL VECTOR(X,Y,NDIM)

DO i0 I-I,NDIM

X(I)-Y(I)

10 CONTINUE

20 CONTINUE

CALL MI ERRE (METHOD, X, S, KMAX, KOUT, NDIM, Y, Z, VECTOR, Q, R, C,

*GAMMA, XI, RES, RESI, EPS, IPRES, IPRESI)

IF (IC.EQ.I) RESP=R(0, O)

RESC-R (0,0)

IF (RESC.LE.EPSC*RESP) RETURN

DO 30 I-I,NDIM

X(I}-S(I)

30 CONTINUE

40 CONTINUE

RETURN

END

SUBROUTINE MPERRE(METHOD,X,S,KMAX, KOUT,NDIM, Y,Z, VECTOR,Q,R,C,

*GAMMA, XI,RES,RESI,EPS, IPRES,IPRESI)

CYC00750

CYC00760

CYC00770

CYC00780

CYC00790

CYC00800

CYCO0810

CYC00820

CYC00830

CYCO0840

CYCO0850

CYC00860

CYC00870

CYC00880

CYC00890

CYC0090.0

CYC00910

CYC00920

CYC00930

CYC00940

CYCO0950

CYC00960

CYC00970

CYC00980

CYC00990

CYC01000

CYC01OI0

CYC01020

CYC01030

CY*01040

CYC01050

CYC01060

CYC01070

CYC01080

CYC01090

CYC01100

CYC01110

CYC01120

CYC01130

********************************************************************************

C THIS SUBROUTINE APPLIES THE MINIMAL POLYNOMIAL EXTRAPOLATION (MPE) CYC01150

C OR THE REDUCED RANK EXTRAPOLATION (RRE) METHODS TO A VECTOR CYC01160

C SEQUENCE X0,XI,X2,..., THAT IS OFTEN GENERATED BY A FIXED POINT CYC01170

C ITERATIVE TECHNIQUE. CYCOlI80

C BOTH MPE AND RRE ARE ACCELERATION OF CONVERGENCE (OR EXTRAPOLATION) CYCOlI90

C METHODS FOR VECTOR SEQUENCES. EACH METHOD PRODUCES A TWO-DIMENSIONAL CYC0!200

C ARRAY S(N,K) OF APPROXIMATIONS TO THE LIMIT OR ANTILIMIT OF THE CYC01210

C SEQUENCE IN QUESTION. CYC01220

C THE IMPLEMENTATIONS EMPLOYED IN THE PRESENT SUBROUTINE GENERATE CY_01230

C THE SEQUENCES S(0,0)-X0,S(0,I),S(0,2), .... CYC01240

*************************************************************************__*****

C AUTHOR : AVRAM SIDI CYC*I260

C COMPUTER SCIENCE DEPARTMENT CYC*I270

C TECHNION-ISRAEL INSTITUTE OF TECHNOLOGY CYCOI280

C HAIFA 32000, ISRAEL CYC0!290

C E-MAIL ADDRESS: CSSSIDI@TECHNION.BITNET CYC0i30O

********************************************************************************

C METHOD: IF METHOD.EQ.I, THEN MPE IS EMPLOYED. IF METHOD.EQ.2, THEN CYC01320
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C
C x
C
c S
C
C
c KMAX
C
C
C KOUT
C
C
C
C NDIM
C Y
C Z

RREIS EMPLOYED.INPUT.(INTEGER)
: THEVECTORX0. INPUTARRAYOFDIMENSIONNDIM. (DOUBLE

PRECISION)
: THEAPPROXIMATIONS(0,K) PRODUCEDBYTHESUBROUTINEFOR

EACHK. ONEXIT, S IS S(0,KOUT).OUTPUTARRAYOFDIMENSION
NDIM. (DOUBLEPRECISION)

: A NONNEGATIVEINTEGER.THEMAXIMUMWIDTHOFEXTRAPOLATION
ALLOWED.THUSTHENUMBEROFTHEVECTORSX0,XI,X2, ...,
EMPLOYEDIN THEPROCESSIS KMAX+2ATMOST.INPUT. (INTEGER)

: A NONNEGATIVEINTEGER.KOUTIS DETERMINEDBYA SUITABLE
STOPPINGCRITERION,ANDDOESNOTEXCEEDKMAX.THEVECTORS
ACTUALLYEMPLOYEDBYTHEEXTRAPOLATIONPROCESSARE
X0,XI,X2..... XP, WHEREP-KOUT+I.OUTPUT.(INTEGER)

: DIMENSIONOFTHEVECTORS.INPUT.(INTEGER)
: WORKARRAYOFDIMENSIONNDIM.(DOUBLEPRECISION)
: WORKARRAYOFDIMENSIONNDIM. (DOUBLEPRECISION)

C VECTOR:A USER-SUPPLIED
C
C
C
C
C
C
C
C Q
C
C
C
C
C
C R
C
C
C
C C

C

C

C

C

C

C

C

C

C XI

C

C

C

C RES

C

C

C

C RESI

C

C

C

C EPS

C

SUBROUTINE WHOSE CALLING SEQUENCE IS

CALL VECTOR(Y,Z,NDIM); Y, NDIM INPUT,Z OUTPUT.

Y,Z,NDIM ARE EXACTLY AS DESCRIBED ABOVE.FOR A FIXED POINT

ITERATIVE TECHNIQUE FOR SOLVING THE LINEAR OR NONLINEAR

SYSTEM T=F(T), DIM(T)=NDIM, Y AND Z ARE RELATED BY Z=F(Y) .

THUS XI=F(X0), X2=F(Xl), ETC.

VECTOR SHOULD BE DECLARED IN AN EXTERNAL STATEMENT IN THE

CALLING PROGRAM.

: WORK ARRAY OF DIMENSION (NDIM, 0:KMAX-I) . FOR EACH K, ITS

ELEMENTS ARE THOSE OF THE ORTHOGONAL MATRIX OBTAINED FROM

QR FACTORIZATION OF THE MATRIX U

U = ( U0 1 U! I ... I UK ), K-0,1,2, ...,

WHERE U0=Xl-X0, UI=X2-X!, U2_X3 -x2, ETC. OUTPUT. (DOUBLE

PRECISION)

: WORK ARRAY OF DIMENSION (0:KMAX, 0:KMAX) . FOR EACH K, ITS

ELEMENTS ARE THOSE OF THE UPPER TRIANGULAR MATRIX OBTAINED

FROM QR FACTORIZATION OF THE MATRIX U DESCRIBED ABOVE.

OUTPUT. (DOUBLE PRECISION)

: WORK ARRAY OF DIMENSION (0:KMAX). FOR EACH K, C FOR MPE IS

THE LEAST SQUARES SOLUTION OF THE SYSTEM U'C=0 SUBJECT TO

THE CONSTRAINT C(K)=I. (DOUBLE PRECISION)

GAMMA : WORK ARRAY OF DIMENSION (0:KMAX). FOR EACH K, THE GAMMA'S

ARE SUCH THAT

S(0,K)=G_MMA(0)*X0+G_MA(1)*XI+...+GAMMA(K)*XK-

FOR EACH K, G_V_ FOR RRE IS THE LEAST SQUARES SOLUTION OF

THE SYSTEM U'GAmmA=@ SUBJECT TO THE CONSTRAINT

GAM_MA(0)+G_M_A(1)+...+GAM_MA(K)=I. (DOUBLE PRECISION)

: WORK ARRAY OF DIMENSION (0:KMAX-I). FOR EACH K, THE XI'S

ARE SUCH THAT

S(0,K)-X0.XI(0)*U0+XI(1)*UI+...+XI(J)*UJ, J-K-I.

(DOUBLE PRECISION)

: L2-NORM OF THE RESIDUAL FOR S(0,K) FOR A LINEAR SYSTEM

T=A*T+B (OR AN ESTIMATE FOR IT FOR A NONLINEAR SYSTEM

T=F(T)) FOR EACH K. ON EXIT, THIS K IS KOUT. OUTPUT.

(DOUBLE PRECISION)

: L2-NORM OF THE RESIDUAL ACTUALLY COMPUTED FROM S(0,K) FOR

EACH K. (THE RESIDUAL VECTOR FOR ANY VECTOR VEC IS TAKEN

AS (F(VEC)-VEC) .) ON EXIT, THIS K IS KOUT. OUTPUT.

(DOUBLE PRECISION)

: AN UPPER BOUND ON RES/R(0,0), THE RELATIVE RESIDUAL FOR S,

USED IN THE STOPPING CRITERION. NOTE THAT R(0,0)=L2-NO_M

CYC01330

CYC01340

CYC01350

CYC01360

CYC01370

CYC01380

CYC01390

CYC01400

CYC01410

CYC01420

CYC01430

CYC01440

CYC01450

CYC01460

CYC01470

CYC01480

CYC01490

CYC01500

CYC0!510

CYC01520

CYC0!530

CYC01540

CYC01550

CYC01560

CYC01570

CYC01580

CYC0!590

CYC01600

CYC01610

CYCti620

CYC0i630

CYC01640

CYC0!650

CYC01660

CYC0!670

CYC0i680

CYC01690

CYC01700

CYC01710

CYC01720

CYC01730

CYC01740

CYC@I750

CYC01760

CYC01770

CYC01780

CYC01790

CYC0!800

CYC01810

CYC0!820

CYC01830

CYC01840

CYC01850

CYC01B60

CYC01870

CYC0188G

CYC0i890

OF THE RESIDUAL FOR X0, THE INITIAL VECTOR. IF, FOR SOME K, CYC01900

RES.LE.EPS*R(0,0), THEN THE CORRESPONDING S(0,K) IS ACCEPTED CYC0191C

C

C

C AS THE FINAL APPROXIMATION, AND THE SUBROUTINE IS EXITED

C WITH KOUT=K. IF S(0,KMAX) IS NEEDED, THEN EPS SHOULD BE

C SET EQUAL TO ZERO. INPUT. (DOUBLE PRECISION)

C IPRES : IF IPRES.EQ.I, THEN RES IS PRINTED FOR ALL K, K=0,1, ....

C OTHEWISE, IT IS NOT. INPUT. (INTEGER)

C IPRESI: IF IPRES!.EQ.I, THEN RESI IS COMPUTED AND PRINTED FOR ALL

C K, K=0,1, .... OTHERWISE, IT IS NOT. INPUT. (INTEGER)

CYC0192C

CYC0!93C

CYC0194[

CYC0195C

CYC0!96[

CYC0!97(

CYCOI99_



-38-

C THE ABOVE MENTIONED QR FACTORIZATION IS PERFORMED BY EMPLOYING CYC02OOO

C THE MODIFIED GRAM-SCHMIDT PROCESS. CYC02010

********************************************************************************

C

C

C

C

C

C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

PARAMETER (EPSI-ID-32, EPS2-1D-16)

DIMENSION X(NDIM),S(NDIM),Y(NDIM),Z(NDIM)

DIMENSION Q(NDIM, 0:KMAX-1),R(0:KMAX, 0:KMAX)

DIMENSION C(0:KMAX), GAMMA(0:KMAX) ,XI (0 :KMAX-1)

IF (IPRES.EQ.1.AND.IPRESI.EQ.1) THEN

WRITE (6,301)

301 FORMAT (/, ' K RES RESI' )

ELSE IF (IPRES.EQ.1.AND.IPKES1.NE.1) THEN

WRITE (6,302)

302 FORMAT (/, ' K RES' )

ELSE IF (IPRES.NE.I.AND.IPRESI.EQ.I) THEN

WRITE (6,303)

303 FORMAT(/,' K RESI' )

END IF

DO i0 I-I,NDIM

Y(I)'X(I)

i0 CONTINUE

DO 250 K-0,KMAX

COMPUTATION OF THE VECTOR XJ, J-K+1, FROM XK, AND COMPUTATION OF UK

2O

CALL VECTOR(Y,Z,NDIM)

DO 20 I-I,NDIM

Y(I)-Z (I)-Y(I)

CONTINUE

DETERMINATION OF THE ORTHONORMAL VECTOR QK FROM UK BY THE MODIFIED

GRAM-SCHMIDT PROCESS

DO 50 J-0,K-I

SUM-0

DO 30 I-I,NDIM

SUM-SUM+Q(I,J)*Y(I)

30 CONTINUE

R(J,K)-SUM

DO 40 I-I,NDIM

Y(I)-Y (I)-R(J, K) *Q (I, J)

40 CONTINUE

50 CONTINUE

SUM-0

DO 60 I-I,NDIM

SUM-SUM+*(I)**2

60 CONTINUE

R (K, K) -DSQRT (SUM)

IF (R(K,K).GT.EPSI*R(0,0).AND.K.LT.KMAX) THEN

HP-ID0/R (K, K)

DO 70 I-I,NDIM

Q(I,K)-HP*Y(I)

70 CONTINUE

ELSE IF (R(K,K).LE.EPSI*R(0,0)) THEN

EEE-EPSI

WRITE(6,304) K,K,EEE

304 FORMAT(/,' R(',I3,',',I3,') LE.',IP,D8.1,'*R(0,0).',/)

END IF

END OF COMPUTATION OF THE VECTOR QK

IF (METHOD.EQ.I) THEN

COMPUTATION OF THE GAMMA'S FOR MPE

C*C02030

CYC02040

C¥C02050

CYC02060

CYC02070

CYC02080

CYC02090

C*C02!00

CYC02!IO

CYC02120

CYC02130

CYC02!40

CYC0215O

CYC02160

CYC02170

CYC02180

CYC02190

CYC02200

CYC02210

CYC02220

C*C02230

CYC02240

C*C02250

CYC02260

CYC02270

CYC02280

C*C02290

CYC02300

CYC02310

CYC02320

CYC02330

CYC02340

CYC02350

C*C02360

CYC02370

CYC02380

CYC02390

CYC02400

C*C02410

CYC02420

CYC02430

CYC02440

CYC02450

C*C02460

CYC02470

CYC02480

CYC02490

C*C02500

CYC02510

CYC02520

CYC02530

CYC02540

CYC02550

CYC02560

CYC02570

CYC02580

CYC02590

CYC02600

CYC02610

CYC02620

CYC02630

CYC02640
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DO 90 I-K-I,0,-1

CI--R(I, K)

DO 80 J-I+I,K-I

CI-CI-R (I, J) *C (J)

80 CONTINUE

C(I)-CI/R (I, I)

90 CONTINUE

C (K) -ID0

SUM=0

DO i00 I-0,K

SUM-SUM+C ( I )

i00 CONTINUE

IF (DABS (SUM) .LE.EPS2) THEN

WRITE (6,311) K

311 FORMAT(/,' S( 0,',I3,') IS NOT DEFINED.',/)

GO TO 250

END IF

DO Ii0 I-0,K

GAMMA(I)-C (I) /SUM

ii0 CONTINUE

RES-R (K, K) *DABS (GAMMA(K))

C

C END OF COMPUTATION OF THE GAMMA'S FOR MPE

C

ELSE IF (METHOD.EQ.2) THEN

C

C COMPUTATION OF THE GAMMA' S FOR RRE

C

DO 130 I-0,K

CI-ID0

DO 120 J-0, I-i

CI-CI-R(J, I)*C(J)

120 CONTINUE

C(I)-CI/R(I, I)

130 CONTINUE

DO 150 I-K,0,-1

CI=C(I)

DO 140 J=I÷I,K

CI=CI-R (I, J) *GAMMA (J)

140 CONTINUE

GAMMA(I) =CI/R (I, i)

150 CONTINUE

SUM=0

DO 160 I=0,K

SUM-SUM+GAMMA (I )

160 CONTINUE

DO 170 I-0,K

GAMMA (I ) -GAMMA (I ) /SUM

170 CONTINUE

RES-ID0/DSQRT (DABS (SUM))

C

C END OF COMPUTATION OF THE GAMMA'S FOR RRE

C

END IF

KOUT-K

IF (IPKES.EQ.I.AND.IPRESI.NE.I) THEN

WRITE (6,321) K, RES

321 FORMAT (I 3, 2X, IP, DI5 .2)

END IF

IF (RES.LE.EPS*R(0,0) .OR.R(K,K) .LE.EPSI*R(0,0)

* .OR. K. EQ. KMAX. OR. IPRESI .EQ. i) THEN

C

C COMPUTATION OF THE APPROXIMATION S(0,K)

C

X! (0) -ID0-GAM_4A (0)

DO 180 J=!,K-I

CYC02650

CYC02660

CYC02670

C¥C02680

CYC02690

CYC02700

CYC02710

CYC02720

CYC02730

CYC02740

CYC02750

CYC02760

CYC02770

CYC02780

CYC02790

CYC02800

CYC02810

CYC02820

CYC02830

CYC02840

CYC02850

CYC02860

CYC02870

CYC02880

CYC02890

CYC02900

CYC02910

CYC02920

CYC02930

CYC02940

CYC02950

CYC02960

CYC02970

CYC02980

CYC02990

CYC03000

CYC03010

CYC03020

CYC03030

CYC03C40

CYC03050

CYC03060

CYC03070

CYC03080

CYC03090

CYC03100

CYC03110

CYC03120

CYC03130

CYC03140

CYC03150

CYC03!60

CYC03170

CYC03180

CYC03190

CYC03200

CYCC32!0

CYCO32f$

CYC0323@

CYC03240

CYC63250

CYC03260

CYC03270

CYC03280

CYC03290

CYC03300
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XI(J)-XI(J-I)-GAMMA(J)

180 CONTINUE

DO 190 I-I,NDIM

s(1)-x(1)
190 CONTINUE

DO 220 J-0,K-I

HP-0

DO 200 I-J,K-I

HP-HP+R(J,I)*XI (I)

200 CONTINUE

DO 210 I-I,NDIM

S(I)-S(I)+HP*Q(I,J)

210 CONTINUE

220 CONTINUE

C

CYC03310

CYC03320

CYC0333G

CYC03340

CYC03350

CYC03360

CYC03370

CYC03380

CYC03390

CYC03400

CYC034!0

CYC03420

CYC03430

CYC03440

CYC03450

230

C

C

C

END OF COMPUTATION OF THE APPROXIMATION S(0,K)

END IF

IF (IPRESI.EQ.1) THEN

EXACT COMPUTATION OF RESIDUAL L2-NORM.

CALL VECTOR(S,Y,NDIM)

RESI-0

DO 230 I-I,NDIM

RES1-RESI+(Y(I)-S(I))**2

CONTINUE

RESI-DSQRT(RESI)

END OF EXACT COMPUTATION OF RESIDUAL L2-NORM.

240

25O

IF (IPRES.EQ.I) THEN

WRITE(6,331) K,RES,RESI

331 FORMAT(I3,2X, IP,2DI5.2)

ELSE IF (IPRES.NE.I) THEN

WRITE(6,332) K, RESI

332 FORMAT(I3,2X, IP,DIS.2)

END IF

END IF

IF (RES.LE.EPS*R(0,0).OR.R(K,K).LE.EPSI*R(0,0)) RETURN

DO 240 I-I,NDIM

Y(I)=Z(I)

CONTINUE

CONTINUE

RETURN

END

CYC03460

CYC03470

CYC03480

CYC03490

CYC03500

CYC03510

CYC03520

CYC03530

CYC03540

CYC03550

CYC03560

CYC03570

CYC03580

CYC03590

CYC03600

CYC03610

CYC03620

CYC03630

CYC03640

CYC03650

CYC03660

CYC03670

CYC03680

CYC03690

CYC03700

CYC03710

CYC03720

CYC03730

CYC03740

CYC03750

CYC03760

CYC03770

SUBROUTINE VECTOR(X,Y,NDIM) CYC03780

*************************************************************************__*****

C THIS SUBROUTINE GENERATES THE VECTOR Z FROM THE VECTOR Y BY USING, CYC03800

C E.G., A FIXED POINT ITERATION TECHNIQUE. CYC03810

************************************************************************__**__**

IN THE PRESENT EXAMPLE THE ITERATIVE TECHNIQUE IS OF THE FORM

Y-AI*X+BI. HERE A1 IS AN NDIM*NDIM SEPTADIAGONAL MATRIX SYMMETRIC

WITH RESPECT TO BOTH OF ITS DIAGONALS, AND IS DEFINED AS

A!-(I-OMEGA)*I+OMEGA*A, WHERE OMEGA IS A SCALAR, I IS THE

IDENTITY MATRIX, AND A IS THE MATRIX

l 5 2 1 !

I 2 6 3 1 1

l 1 3 6 3 1 1

A- 0.06"I 1 1 3 6 3 1

l 1 1 3 6 3

I 1 1 3 6

i

1

1 1

3 1

CYC03830

CYC03840

CYC03850

CYC03860

CYC03870

CYC03880

CYC03890

CYC03900

CYCO3910

CYC03920

CYC03930

CYC03940

CYC03950

CYC03960
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C B1 IS THE VECTOR DEFINED AS BI-OMEGA*B, THE VECTOR B BEING CHOSEN CYC03970

C SUCH THAT THE SOLUTION OF THE SYSTEM T-A*T+B IS THE VECTOR CYC03980

C (i,i, .... i). CYC03990

C THE ITERATIVE TECHNIQUE USED IS THUS RICHARDSON'S ITERATIVE CYC04000

C METHOD APPLIED TC THE SYSTEM (I-A)*T-B. CYC04010

*************************************************************************__***_*

10

2O

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

PARAMETER (OMEGA-2D0, TAU-ID0-OMEGA)

DIMENSION X(NDIM),Y(NDIM)

N-NDIM

Y (i) - (5*X (I) +2*X (2) +X (3) +X (4)) *6D-2+46D-2

Y (2)- (2*X (!) +6*X {2) +3*X (3) +X (4) +X (5)) *6D-2+22D-2

Y (3)- (X (i) +3*X (2) +6*X (3) +3*X (4) +X (5) +X (6)) *6D-2+ID-I

DO 10 I-4,N-3

Y(I)-(X(I-3)+X(I-2)+3*X(I-1)+6*X(I)+3*X(I+I)+X(I+2)+X(I÷3))*6D-2

* +4D-2

CONTINUE

Y (N-2) - (X (N) +3*X (N-I) ÷6*X (N-2) +3*X (N-3) +X (N-4) +X (N-5)) *6D-2+ID-I

Y(N-1)-(2*X(N)+6*X(N-1)+3*X(N-2)÷X(N-3)+X(N-4) )*6D-2+22D-2

Y (N)- (5*X (N) +2*X (N-I) +X (N-2) ÷X (N-3)) *6D-2+46D-2

DO 20 I=l, N

Y (I) -TAU*X (I) +OMEGA* Y (I)

CONTINUE

RETURN

END

CYC04030

CYC04040

CYC04050

CYC04060

CYC04070

CYC04080

CYC04090

CYC04100

CYC04110

CYC04120

CYC04130

CYC04140

CYC04150

CYC04160

CYC04170

CYC04180

CYC04!90

CYC04200

CYC04210
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CYCLE NO. 1

NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS 20

WIDTH OF EXTRAPOLATION IS I0

K

0

1

2

3

4

5
6

7

8

9

i0

RES

4.75D-01

5.36D-01

I. 52D-02

1.93D-02

4.23D-03

3 79D-03

1 41D-03

1 00D-03

5 16D-04

3 04D-04

2 00D-04

RES 1

4.75D-01

5.36D-01

1.52D-02

1.93D-02

4.23D-03

3.79D-03

I .41D-03

i. 00D-03

5.16D-04

3.04D-04

2.00D-04

CYCLE NO. 2

NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS 0

WIDTH OF EXTRAPOLATION IS 10

K RES

0 2.00D-04

1 9.57D-05

2 9.59D-05

3 4.58D-05

4 4.42D-05

5 1.68D-05

6 1.91D-05

7 6.49D-06

8 7.22D-06

9 2.56D-06

I0 2.90D-06

RESI

2.00D-04

9 57D-05

9 59D-05

4 58D-05

4 42D-05

i 68D-05

1 91D-05

6 49D-06

7 22D-06

2 56D-06

2 90D-06

CYCLE NO. 3

NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS 0

WIDTH OF EXTRAPOLATION IS I0

K

0

!

2

3

4

5

6

7

8

9

i0

RES

2 90D-06

1 18D-06

1 38D-06

6 20D-07

6 64D-07

2 43D-07

2 63D-07

8 58D-08

9 15D-08

3.95D-08

4.17D-08

RES 1

2.90D-06

1.18D-06

1.38D-06

6.20D-07

6.64D-07

2.43D-07

2.63D-07

8.58D-08

9.15D-08

3.95D-08

4.17D-08

CYCLE NO. 4

NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS 0

WIDTH OF EXTRAPOLATION IS i0

K RES RESI

0 4.17D-08 4.17D-08

i 2.44D-08 2.44D-08
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2 2.40D-08 2.40D-08

3 1.29D-08 1.29D-08

4 1.24D-08 1.24D-08

5 5.49D-09 5.49D-09

6 5.39D-09 5.39D-09

7 1.95D-09 1.95D-09

8 1.96D-09 1.96D-09

9 8.71D-10 8.71D-10

10 9.27D-10 9.27D-10

CYCLE NO. 5

NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS 0

WIDTH OF EXTRAPOLATION IS I0

K

0

1

2

3

4

5

6

7

8

9

i0

RES

9 27D-I0

5 14D-10

5 46D-I0

2 74D-I0

2 71D-10

1 17D-10

1 09D-10

4 64D-II

4 28D-II

2 07D-II

2 19D-II

RESI

9.27D-I0

5.14D-I0

5.46D-I0

2.74D-I0

2.71D-I0

1.17D-10

1.09D-10

4.64D-II

4.28D-II

2.07D-II

2.18D-II

CYCLE NO. 6

NO. OF ITERATIONS PRIOR TO EXTRAPOLATION IS 0

WIDTH OF EXTRAPOLATION IS i0

K RES RESI

0 2.18D-II 2.18D-II

1 1.25D-II 1.25D-II

2 1.26D-II 1.26D-II

3 7.23D-12 7.23D-12

4 6.32D-12 6.32D-12

5 3.29D-12 3.28D-12

6 2.85D-12 2.85D-12

7 1.27D-12 1.28D-12

8 1.15D-!2 1.15D-12

9 5.79D-13 5.67D-13

i0 5.67D-13 5.49D-13
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