
N90-26776

OPTICAL CONSTANTS OF KEROGEN FROM 0.15 TO 40 #m:
COMPARISON WITH METEORITIC ORGANICS

BISHUN N. KHARE,* W.R. THOMPSON,* C. SAGAN,* E.T. ARAKAWA,** C. MEISSE,**
I. GILMOUR, *°**
*Laboratory for Planetary Studies, Cornell University, Ithaca, New York, 14853,
U.S.A.
**Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, U.S.A.
*Enrico Fermi Institute and Department of Chemistry, University of Chicago, Chicago,
IL 60637, U.S.A.
**Present address: Planetary Sciences Unit, The Open University, Milton Keynes, MK7

6AA, U.K.

AND

ABSTRACT

Kerogens are dark, complex organic materials produced on the Earth primarily

by geologic processing of biologic materials, but kerogens have chemical and

spectral similarities to some classes of highly processed extraterrestrial organic

materials. Kerogen-like solids have been proposed as constituents of the very dark

reddish surfaces of some asteroids [Gradie and Veverka, Nature 283, 840 (1980)] and

are also spectrally similar to some carbonaceous organic residues and the Iapetus

dark material [Cruikshank et al., Icarus 53, 90 (1983)]. Kerogen can thus serve as a

useful laboratory analogue to very dark, spectrally red extraterrestrial materials;

its optical constants can be used to investigate the effects of particle size, void

space and mixing of bright and dark components in models of scattering by dark

asteroidal, cometary, and satellite surfaces.

We report measurements of the optical constants of both Type II kerogen and of

macromolecular organic residue from the Murchison carbonaceous chondrite via trans-

mission and reflection measurements on thin films. These films, of thickness 0.2-

1.3 #m, are produced by vacuum deposition of kerogen powder heated to 550-750°C onto

sapphire, CaF 2, and CsI substrates. IR spectra of the thin films show that the

spectral features of the kerogen powder are retained. Apparently no substantial

change in optical constants occurs upon vacuum deposition, except for the desirable

loss of silicate contaminants which can be seen in the spectra of the powder.

The real part of the refractive index, n, is determined by variable incidence-

angle reflectance to be 1.60 _+0.05 from 0.4-2.0 #m wavelength. Work extending the

measurement of n to longer wavelengths is in progress. The imaginary part of the

refractive index, k, shows substantial structure from 0.15-40 #m. The values are

accurate to __20% in the UV and IR regions and to +_.30% in the visible. We have also

measured k values of organic residues from the Murchison meteorite. Comparison of

the kerogen and Murchison data reveals that between 0.15 and 40/_m, Murchison has a

similar structure but no bands as Sharp as in kerogen, and that the k values for
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Murchison are significantly higher than those of kerogen.

INTRODUCTION

Kerogens are dark, complex organic materials produced on earth from biolog-

ically derived organic material that has been incorporated into sediments where it

has undergone further geological processing. 1'2 Kerogens can be classified as either

Type I, II or III depending on their H/C and O/C elemental ratios. 3 These

classifications reflect the origins and chemical structures of the kerogens. Type I

is derived from predominantly aliphatic algal material, Type II from lipid-rich

marine material, and Type III from more aromatic-rich terrestrial organic matter. 4

Within each type, individual samples differ according to the degree of geologic

processing but originate from the same type of parent material. 5 While of biotic

origin, kerogens have chemical and spectral similarities to some types of highly

processed extraterrestrial organic materials. Kerogen-like solids have been

proposed as constituents of the very dark reddish surfaces of some asteroids 6 and are

also similar to the Iapetus dark material. 7 Kerogens can thus serve as useful

laboratory analogues to very dark, spectrally red extraterrestrial materials.

Measurements of their optical constants can be used to investigate the effect of

particle size, void space, and mixing of bright and dark components in models of

scattering by dark asteroids, cometary and satellite surfaces.

Here, using high-vacuum film deposition and transmission spectroscopic

techniques, we study and compare the optical constants of a Type II kerogen and of

organic residue from the Murchison carbonaceous chondrite. Meteorites were formed

in the solar nebula, where organic material is thought to have been produced by

catalytic reactions of carbon monoxide, hydrogen, and ammonia, s and by ultraviolet

and charged particle irradiation. 9 Hayatsu and co-workers 1° have undertaken _xten-

sive investigations of the structure of Murchison organic materials using a variety

of degradation techniques. They conclude that the material is comprised of condensed

aromatic and heterocyclic ring systems cross-linked by short methylene chains,

ethers, sulfides, and biphenyl groups. 1°'11. These chemical structures are similar to

those of kerogen. Comparison of the spectroscopic properties of the extrater-

restrial abiotic Murchison organic residue and the terrestrial metamorphosed biotic

material that composes kerogen provides further insight into their structural and

chemical similarities and differences.

EXPERIMENTAL

(a) Sample Information

The kerogen sample is a 190 million year old Type II kerogen from the Isle of
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Skye, Scotland. The extraction of kerogen from the sedimentary rocks followed the

procedure used by Durand and Nicaise. 12 The meteoritic material used is a sample of

"macromolecular" organic" material isolated by acid-dissolution and solvent

extractions from the Murchison carbonaceous chondrite; a similar procedure is used

for kerogen.

(b) Film Preparation

Films of kerogen and of Murchison organic material were prepared by thermal

evaporation. The experimental set-up is shown in Figure 1.

/

/

substrate

evaporant(,heating block )

debristrap

thickness
monitor

vent valve
gate valve

gauge

mectaanicalpump

roughingvalve

forelinevalve

diffusionpump

Fig. 1. Apparatus for vacuum-evaporation and film deposition.

It consists of a high vacuum system, a film coating chamber, and a thickness monitor.

The temperature was checked by a color scale. The color of the molybdenum heating
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wire around the sample heating block determined the temperature at which the sample

started to evaporate to within 100*C. The main advantage of preparing the film by

vacuum deposition was that the film was protected from contamination, particularly

by water. A Veeco/Kronos Model QM311 quartz crystal microbalance was used to monitor

the approximate thickness. This allowed us to produce films of optimal thickness for

determinations of k in different regions of the spectra. Exact thicknesses were

determined after the spectral measurements were completed. The substrates used in

this work were sapphire, calcium fluoride, and cesium iodide which are, respective-

ly, transparent over the spectral ranges 0.15-6.5 #m, 0.13-9.0 #m, and 0.30-50 #m.

Two substrates and the thickness detector were positioned just above the sample block

about 7 cm from the sample, such that the angle of incidence of evaporated sample onto

the substrates was close to normal. In all our film depositions, we masked half the

area of the substrate with foil in order to measure the transmission through the

substrate alone. A thin, even layer of sample around the entire surface of the sample

indentation ensured good thermal contact, producing a homogenous beam of evaporated

material to be deposited uniformly onto the substrate. Up to 3 depositions were

required to produce a sufficiently thick film for optical constants measurements.

The evaporation of kerogen took place in three phases. The rate of deposition

was around 10 A min "1 at the beginning, when the temperature was maintained at roughly

550°C. After about 1 hour the rate of deposition drops rapidly. Raising the tempera-

ture to roughly 650°C causes a second, faster phase of deposition which lasts about 30

min. After another drop in rate, the temperature was raised to roughly 750°C, and

held there for about 2 hrs., after which no further deposition was noted. The fact

that new deposition occurs when the temperature is raised may indicate either the

evaporation of different fractions or pyrolytic release of large fragments at higher

temperatures. Its color is yellow and during the evaporation, a distinctive odor is

noticed. A similar odor was produced while evaporating the Murchison organic

extract. After the evaporation, some residues remained in both cases. A total of

nine kerogen films were deposited. Three sapphire substrates had film thickness of

0.190, 0.733, and 1.213 #m. Five CsI substrates had films that were 1.089, 1.267,

1.213, 2.100, and 3.000/_m thick, and one CaF 2 substrate had a 0.469/_m thick film.

Similar film preparation methods were repeated to produce films of the

Murchison organic residue.

(c) Spectroscopic Measurements

Infrared spectra (2.5-25/_m) of the original, pre=evaporation kerogen and

Murchison organic residue samples were obtained with a Nicolet FTIR spectrometer by

measuring the transmission through a pellet prepared in a potassium bromide matrix.
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1 to 2 mg of material is mixed with about 100 mg of spectrograde KBr powder. After

grinding well, the mixed powder is made into a pellet about 0.2 mm thick using a

standard dual-bolt pellet press. After removing the bolts, the body of the press is

inserted into the beam of the FTIR spectrometer to scan the spectrum.

Transmission spectra (2.5-40/_m) of the vacuum-deposited films on a CsI

substrate were obtained at I cm 1 resolution with a Beckman Acculab Model 10 Infrared

spectrometer. Spectra were scanned twice for better accuracy.

A Cary Model 14 PM spectrometer was employed for measurements in the 0.4 to

2.5 #m wavelength region. A Shimadzu spectrometer was employed for measurements from

0.19 to 0.7 #m. We will be using a Seya-Namioka monochromator from 0.13 #m to 0.19 tim

in the vacuum UV region for transmission as well as reflection measurements. Reflec-

tion measurements from 0.01 /_m to 0.17 #m will also be made on a MacPherson Model 247

grazing incidence monochromator.

Imaginary Part of the Refractive Index k

The imaginary part of the refractive index k, is given by Khare et al. 13 as

k ._ A in Ts (l-R)
4_rC T (1-Ro) z

(i)

where T s = transmission through substrate

R o =( ns - 1 )ns+ i

where n s = the real part of the refractive index of the substrate, and

T = transmission through the substrate plus kerogen.

In our case, T s and T were directly measured and R, the total normal incidence

reflectance from the film-substrate system, was estimated by drawing a baseline

through the wavelength regions where the film had no significant absorption. If the

refractive index, nf, of the film is determined by an independent method, the equa-

tion for R can be computed by

R

(i + nf2)(nf 2 + ns 2) - 4nf2ns + (i - nf2)(nf 2 - ns2)COS 6

(1 + nf2)(nf 2 + ns 2) + 4nf2ns + (1 - n£2)(nf 2 - ns2)Cos 6

(2)

where, 6 : 2_nf (2t) (3)
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Values of n s are determined from independent measurement or from the litera-

ture, 14 At wavelengths where the real part of the refractive index of the film could

not be measured independently, an extrapolated value is used to calculate R for use

in Eq. (1).

Real Part of the Refractive Index, n

The real part of the refractive index, n, of kerogen was determined by vari-

able-angle reflectance in the 0.4-2.0 #m wavelength region. To obtain n for a wider

wavelength range, we ran a program based on the Kramers-Kronig relation between n and

k (Inagaki et al.) 15, given by dispersion relation analysis. When the k values are

well determined by transmission measurement, an integral over the energies E = hc/A,

O9

n(E) - 1 = __2f E'k(E') dE'

_r J (E')2 - E2
0

(4)

was used to obtain n values. This requires a knowledge of k for high energies (short

wavelengths). Since we have not yet determined k on our MacPherson grazing spec-

trometer that goes down to 0.01 tim, we had to estimate k values for the short wave-

length region. We know from past experience that all such organics have a strong

feature at -0.12/_m. We introduced this feature numerically and adjusted its

magnitude such that the Kramers-Kronig analysis on k produced n values consistent

with those actually measured at other wavelengths. We will soon measure the k values

for kerogen in the short wavelength region to obtain more accurate values of n. Until

then the n values outside the range 0.4-2.0/;m should be considered tentative.

RESULTS AND DISCUSSION

(a) FTIR Spectra of Original Pre-Evaporation Samples

The infrared spectra of complex organic solids such as kerogens generally show

a limited number of absorption bands which are due to well-defined chemical groups,

and can be assigned on the basis of numerous spectra of simple substances. 5,16,17 The

FTIR transmission spectra of the kerogen sample and of the Murchison organic extract

are shown in Figure 2. The principle absorption features and their most likely

assignments are listed in Table I. The kerogen sample is characterized by strong

aromatic absorptions in the 800-1000 cm "1 region, and C=O and aliphatic absorptions

at 1720 cm "1 and 2900 cm "1 respectively. It is essentially aromatic in character but

has not undergone extensive carbonization as significant amounts of aliphatic and

oxygenated material are still present.
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Fig. 2. FTIR transmission spectra in KBr matrix of (A) kerogen Type II
(Skye #5) and (B) organic residue from the Murchison meteorite.
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Table I

Assignments of absorption features in FTIR spectra of kerogen and organic residue in
Murchison meteorite

Wavenumber (cm" 1) Structural Assignment

3420

2924/2853

1710 (shoulder)

OH stretching (absorbed H20 and possible
contribution from phenolic, alcoholic,
carboxylic OH) 4

Alkyl CH stretching

C-O stretching (minor)

1630

1455

870/820/750

650

C-C stretching of aromatic and polyaromatic
rings (may contain minor C--O stretching)

Asymmetric bending of CH 2 and CH 3

Aromatic CH deformation absorptions

Out of plane deformation of aromatic CH

The band at 2326 cm "1 is due to atmospheric CO 2 in the spectrometer.

The Murchison organic residue spectrum is clearly dominated by strong aromatic

absorptions in the 800-1000 cm "1 region, consistent with existing chemical

analysis.10,11 No aliphatic absorptions are observed as the corresponding functional

groups are apparently contained in relatively soluble components removed by the

solvent extraction process. The Murchison "macromolecular" organic material was

prepared by HF/HCI dissolution (5 cycles) of -50 g of freeze/thaw disaggregated bulk

meteorite followed by solvent extraction with methanol and toluene to leave a black

carbonaceous residue. A similar residue was used by Cruikshank et al. 7 for reflec-

tance measurements although they incorrectly denoted it as an extract.

(b) FTIR Spectra of Vacuum-Deposited Kerogen

Figure 3 shows the FTIR spectrum of an evaporated film of kerogen deposited on

a CsI substrate and the FTIR spectrum of the original kerogen in a KBr matrix for

comparison. The strong similarity of the two spectra demonstrates that while the

vacuum evaporation process undoubtedly fractionates the kerogen to some degree, the

primary functional units are apparently unchanged, and the essential spectral

characteristics are preserved. Indeed, the major difference between the two spectra

is the near absence of a silicate absorption at around 1200 cm'l in the evaporated

film. The removal of this and other impurities is an incidental benefit of the use of
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the thin film vacuum deposition technique for measuring the optical constants of

kerogen. The additional detail present in the evaporated film spectrum presumably

reflects the higher quality obtainable from optically clear film as opposed to

powdered solids.

Figure 4 shows the FTIR spectrum of the residue left after the evaporation. As

can be seen, it is essentially featureless, aside from some adsorbed water, some weak
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Fig. 3. -Vertical lines indicate similarities between the evaporated film
of kerogen and the original kerogen in KBr matrix, demonstrating that major

spectral features are preserved.
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C-C features, and a slight silicate absorption at 1200 cm "1. Evidently, nearly all of

the kerogen is successfully evaporated at 500°C to 750°C.

(c) Infrared Spectra of Films of Murchison Organic Residue and Kerogen
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Fig. 5. IR spectra of vacuum-deposited films of Murchison organic residue
and Type II kerogen.
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Murchison organic residue and compare it with a similarly thermally evaporated film

of kerogen. Both of these spectra were obtained with the Beckman Acculab

Spectrometer. The films are similar enough in thickness that a direct comparison is

possible. The Murchison extract shows spectral features similar to those of the

kerogen film, except for the absence of aliphatic CH features near 2900 cm "1 and

1450 cm "1. It is significantly more absorbing than the kerogen film we discuss below.

(d) Optical Constants of Kerogen and Meteoritic Organic Material

Using Eq. (1), the spectra, and the measured film thicknesses, the imaginary

part of the refractive index, k, was calculated from 0.15-40/_m for both kerogen and

the meteoritic samples. Figure 6 shows results for kerogen graphically; the values

0.6 Evaporated KEROGEN TYPE]]: [SKYE -#5]

0.4

0.06

0.04

002

0.0t I I I I __i I
0.15 0.5 0.5 t 2 4 6 10 20

X(/zm)
Fig. 6

are also listed in Table II. The values are accurate to +_20% in the UV and IR regions

and to _+30% in the visible. Fig. 6 shows that k has substantial structure from 0.15-

40/zm.

The real part of the refractive index of kerogen, n, was determined by variable

incidence-angle reflectance to be 1.60 + 0.05 from 0.4 to 2.0 #m. Fig. 7 shows the n

values computed from k by Kramers-Kronig analysis. The uncertainty is +_.0.05.

1

4O
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Table II.
Imaginary Part of the Refractive Index (k) = al0 "b at Various

Wavelengths (,_) of Thermally Evaporated (to 750°C) Film of Kerogen at Room
Temperature.

k (gm} a b

0.15 11.40 1

0.155

0.16

0.165

0.17

0.1725

0.175

0.18

0.185

1.35 1

1.36 1

1.38 1

1.39 1

1.39 1

1.40 1

1.44 1

1.48 1

0.19 1.56 1

0.195 1.67 1

0.2 1.92 1

0.205 2.01 1

0.21 1.96 1

0.22 1.80 1

0.23 1.72 1

0.24 1.69 1

0.25 1.63 1

0.28 1.46 1

0.3 1.29 1

0.32 1.06 1

0.35 7.72 2

0.38 5.68 2

0.4 4.31 2

0.45 2.84 2

0.5 2.15 2

0.55 1.77 2

0.6 1.23 2

0.65 1.23 2

0.7 1.23 2

0.75

0.8

0.85

1.31 2

1.53 2

1.46 2
I

1.0

]a b
1.33 2

1.38 2

1.1 1.30 2

1.2 1.10 2

1.3 1.34 2

1.4 1.75 2

1.5 1.94 2

1.6 1.98 2

1.7 2.03 2

1.8 2.07 2

1.9 2.11 2

2.0 2.27 2

2.1 2.46 2

2.2 2.62 2

2.3 2.92 2

2.4 3.02 2

2.5 3.40 2

2.632 3.71 2

2.703 3.86 2

2.740 4.39 2

2.778 4.93 2

2.817 5.51 2

2.857 5.83 2

2.899

2.941

2.985

3.030

3.125

3.226

3.289

3.311

3.322

3.333

6.02 2

k (_tm)
3.356

3.378

3.401

3.425

3.448

7.45

8.58

1.02

7.75

6.45

a b

6.67 2

6.76 2

7.11 2

7.46 2

8.00 2

3.472 6.76 9.09 2

3.496 8.07 9.50 2

3.521 5.13 1.03 2
3.546

3.571

3.623

4.82

4.52

4.49

4.44

4.20

3.650

3.704

9.09 2

8.50 2

8.31 2

8.20 2

18.00 2

3.846 4.05 7.58 2

4. 3.97 7.84 2

4.167 3.90 8.39 2

4.348 3.89 2 9.40 2

4.545 3.92 2 1.01 1

4.762 4.01 2 1.35 1

5. 4,36 2 1.72 1

5.128 4.55 2 2.01 1

5.263

5.556

4.51 2

5.16 2

5.714

8.34 2

b _. (_tm)

2 6.536

2 6.623

1 6.667

2 6.711

2 6.757

2 6.803

2 6.849

2 6.897

2 6.993

2 7.042

2 7.143

2 7.246

2 7.299

2 7.407

2 7.692

2 8.333

9.091

10.

11.111

12.5

13.333

14.289

15.384

15.873

16.667

18.182

20.

22.222

25.

28.571

30.303

33.333

40.

2.71 1

3.53 1

5.64 2 4.08 1

6.21 2 5.747 5.93 2 3.84 1

6.41 2 5.882 6.91 2 3.02 1

6.62 2 5.952 7.56 2 2.35 1

6.42 2 6.061 8.61 2 2.09 1

6.23 2 6.211 8.57 2 2'68 1

5.99 2 6.25

5.67 2 6.329

5.54 2 6.41

7.87 2

7.40 2

7.16 26.4525.88 2

3.86 1

4.10 1

3.78 1

2.74 I

k values for the original kerogen can also be estimated from its transmission

spectrum in a KBr matrix as shown in Fig. 3. By knowing the percent of kerogen in the

KBr pellet and the thickness of the pellet, it was possible to estimate k from 2.5 to

25 #m. Figure 8 compares k of the original material with that obtained for the thin

film. (Values are normalized to unity at 16 #m.)
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The agreement between the normalized k values before and after evaporation is

good, again illustrating the preservation of the spectral characteristics of the

kerogen after evaporation. As in the FTIR transmission spectra (Fig. 3), the only

major differences are due to the lack of silicate absorption in the evaporated film.

Fig. 9 compares the k values obtained for the evaporated kerogen film with the

k values of the evaporated Murchison organic residue. Table III lists the k values

for the film produced from the Murchison organic extract. The Murchison sample, like

Type II kerogen, also shows substantial structure, although k values obtained for

Murchison are significantly higher than those of the kerogen, and as expected, do not

show any feature associated with aliphatic functional groups.

t0

t(_t -

m

I I i , _ i,w i _ w _ w , ..iJ[ i , w , i ,_.

j\./...,,,,,..

_oooO°°

"_-(k) Murchison

........ ( k ) Kerogen

11_21 t i i , ,,,,I , , , , ,,,,I10 iO2

X (yrn.)

m

I I I i I I I I

Fig. 9

CONCLUSIONS

(1) The Murchison organic residue has some similarities to Type II kerogen in

the infrared, but has a higher k (is more absorbing) and lacks aliphatic spectral

features.



TableIII.
ImaginaryPart of the Refractive Index (k) ---al0 "b at Various Wavelengths

(,_) of Thermally Evaporated (to 750"C) Film of Organics in Murchison
Meteorite at Room Temperature.

,X(/_m) a b

2.5 5.28 2
2.63 5.64 2
2.70 6.45

A (pm) a b

6.25 1.28 l
6.45 1.09 l
6.67 1.07

2.78 1.09 1 6.89 1.14 I
2.86 1.63 1 7.14 1.09 1
2.94 1.94 1 8.33 1.10 1
3.03 2.16 1

L

3.12 1.91 1
3.23 1.61 1
3.33 1.40 1
3.45 1.23 1
3.57 8.83 2
3.85
4,17

7.55
7.68

10.00 1.37
11.11 2.25 1
12.50 3.58 1
14.29 7.67 1
15.87 1.02 0
16.67 9.95 0
18.18 8.50 0
20.00 6.96 1
22.22 5.59 1
25.00 6.85 1
28.57 8.90 1
33.33 1.19_ 0

4.55 7.96 2
5.00 8.35 2
5.71 9.13 2

,.,

5.88 1.19 1
6.06 1.41 1 40.00 1.10

(2) The thermal evaporation technique is a good method for determining the

optical constants of kerogens, organics in meteorites, and probably for other kinds

of tholins. 9

(3) More material is required to produce thick films and pellets to obtain

results for the far infrared region to ,X= 1 mm. Transmission measurements in the

vacuum UV to soft x-ray region are required to obtain the best determination of n

through Kramers-Kronig analysis.

(4) Brooke et al. TM detect strong 3.4 and 2.8 pm emission features in comet
4

P/Brorsen-Metcalf and find that the positions and widths of these features coincide

with those observed in comets P/Halley, Wilson (1987 VII), and Bradfield (1987 XXIX).

Comets and carbonaceous chondrites probably both accreted from low-temperature

condensates in the solar nebula, 1°'19 but the organic residues of comets can derive

from pre- and post-accretion irradiation of hydrocarbon-containing ices, a somewhat

different origin than that generally envisioned for meteoritic organics. 8'9 The

3.4 #m CH and 2.8 pm OH features in the above comets well match spectral features

found in organic residues of HzO-CH 4 and HzO-C2H 6 ice irradiation, z°'21'22 Similar

spectral features in the kerogen suggest not its presence in comets, but simply some

basic spectral similarities due to some commonality of functional groups in these

materials.
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