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Summary

Reaction-rate coefficients and thermodynamic and transport properties are reviewed and sup-

plemented for an ll-species air model. These coefficients and properties can be used for analyzing

flows in chemical and thermal nonequilibrium up to temperatures of 30 000 K. Such flows will likely

occur around currently planned and future hypersonic vehicles. Guidelines for determining the state

of the surrounding environment are provided. Curve fits are given for the various species properties

for their efficient computation in flow-field codes. Approximate and more exact formulas are pro-

vided for computing the properties of partially ionized air mixtures in a high-energy environment.

Limitations of the approximate mixing laws are discussed for a mixture of ionized species. An elec-

tron number-density correction for the transport properties of the charged species is given. This

correction has generally been ignored in the aerospace literature.

Tabulated values of the curve-fit coefficients and computer subroutines to evaluate the various

species properties using these coefficients arc available froIn the NASA Computer Software Manage-

ment and Information Center (COSMIC).

Introduction

Currently envisaged transatmospheric and aeroassist missions (refs. 1 to 4) have created a

resurgence of interest in the aerothermodynamic design of hypersonic vehicles. However, tile

velocities and altitudes at which these proposed craft would operate are different, and sonmtimes

more severe, than those experienced in the past. As a result, the nonequilibrium flow environment

that will surround these vehicles will considerably impact the vehicle aerodynamics, thermal loads,

and propulsion-system efficiency. Since such an environment is difficult to simulate in current ground-

based test facilities, the design of these future vehicles will rely heavily on numeric calculations. In

turn, these calculations will require a good understanding of the physical modelling required to

simulate these phenomena.

Under hypersonic flight conditions, a vehicle travelling through the atmosphere will excite the air

that flows around the body to very high temperatures as the kinetic energy of the vehicle is dissipated

to the gas. Depending on the flight velocity, various chemical reactions will be produced behind a

shock wave as shown in figure 1 (which is adapted from ref. 5) for the stagnation region of a sphere

with a radius of 30.5 cm. These reactions will affect the properties of air and cause considerable

deviation from those of a thermally and calorifically perfect gas. A vehicle flying through the higher

reaches of the atmosphere at high velocities may also experience thermal nonequilibrium (fig. 1),

since the lower density reduces the collision frequency, and the high velocity results in smaller

transit times for the air molecules. Both of these processes create a delay in the equilibration

of translational, rotational, vibrational, and electronic modes of the thermal energy. Under these

conditions, the modelling of the air chemistry requires a multitemperature approach in contrast to

classical single-temperature formulations.

Four regions (I to IV) are delineated in figure 1. These regions show when the various chemical

activities are initiated at a given altitude and velocity. The initiation of chemical and thermal

nonequilibrium processes for different velocity and altitude conditions is similarly depicted through

regions A, B, and C. This figure clearly shows that the set of chemical reactions and thermodynamic

and transport properties would change continuously for a given flight trajectory. For example, in

regions A and B (i.e., before initiation of thermal nonequilibrium), the specific heat at constant

pressure Up would change as follows:

Cp = Constant in region I before the excitation of vibrational energy mode

Cp = Cp(T) in region I after the excitation of vibrational energy mode and

before the dissociation of oxygen

Cp = Cp(Ci, T) after the dissociation of oxygen



Similarly,theequationof statechangesalongthe flight trajectoryastile thermalequilibriumand
thermalnonequilibriumregions(rcf.6) aretraversed:

Runiv

p=p_- T

/i_univ

p=p_Ttr

(in regions A and B)

(in region C)

where Ttr is the translational temperature in an environment of thcrmal nonequilibrium.

In numerical simulations, the thermodynamic and transport properties and reaction-rate coef-

ficients (in the case of finite-rate chemistry) are usually required. It is obvious from the previous

discussion that these properties and the equation of state should be evaluated carefully when chemi-

cal and thermal nonequilibrium conditions exist in the flow field around a hypersonic vchiclc. Under

chemical and thermal equilibrium conditions, the transport and thermodynamic properties of high-

temperature air and its components are well documented in the literature (refs. 7 to 12). However,

for flows With finite-rate chemistry, the individual species properties and appropriate mixing laws

that are required are not as well established. For example, in a partially ionized gas mixture, the

conventional mixing laws (refs. 13 and 14) developed for nonionized mixtures cannot be extended to

higher temperatures without considerable error (ref. 15).

The purpose of this report is to rcvi_w the thermodynamic and transport properties and the

reaction-rate coefficients of the most important reactions for the 11 constituent species of air (N, O,

N2, O2, NO, ..N+, ...n+, _J+"2,O_-, NO +, e-) for temperatures up to 30000 K. Those species properties

that are not available in the literature for this l 1-species model are provided, and curve fits are

obtained for all properties to permit their efficient computation in flow-field codes. Tabulated values

of the curve-fit coefficients and computer subroutines to evaluate the various species properties using

these coefficients are provided in reference 16. These values and codes may be obtained for a fcc
fl'om:

COSMIC

Computer Services Annex

University of Georgia

Athens, GA 30602

(404) 542-3265

Request the code by the designation LAR 14447. This code is written in FORTRAN 77 for use on

computer with a FORTRAN compiler.

Approximate and more exact mixing laws for the various species properties arc also provided

for partially ionized gas mixtures. The limitations of the" approximate mixing laws are pointed out,

especially for a mixture of ionized species. An electron number-density correction for the transport

properties of the ionized species, which has been generally neglected in the aerospace literature,

is provided. Sources of the input data used in the calculation of various flow-field properties are

identified. Appropriate formulas are provided for using these properties in computations of flows

with thermal nonequilibrium.

Symbols

A%, B%, c%

Ab,r

curve-fit coefficients for collision cross section ratio Bi*j
(eq. (47))

coefficient in modified Arrhenius form of backward

reaction-rate constant (eq. (3b))



A_iy, B-_ij, CD u , D_ij

Af,r

,4,:)

A*.
_J

AKeq,r, BKeq,r ' CK(_q,,-,

DKoq,r, EKm,,-, FK,,q.T

AIQ, i , Bh'Li, CK],_,

DKf, i , EKL_

,41t

Ap_ , Bpi , Cpi

%1/

A-(2,2)
flij

a0

Bb, r

U _J

Bf, F

Bi_

Abel

Cl,

Cp,.

Cpf

Cp,i

(G,i) l

(Cp,i)int

(Cp,i)rot

curve-fit coefficients for diffusion coefficient Dij

(eq. (42c))

coefficient in modified Arrhenius form of forward

reaction-rate constant (eq, (3a))

matrix elements of first. Chapman-Enskog formula

ratio of collision cross sections, _12'2)/

curve-fit coefficients for equilibrium constants Keq,r

(eqs. (5c) and (Sd))

curve-fit coefficients for frozen thermal conductivity of

species i, Ix'f, i (eq. (26))

coefficients of polynomial curve fits for thermodynamic

properties, r_ = 1, 2, ..., 7 (eqs. (10a) to (I0c))

curve-fit coefficients for viscosity of species i, lti

(eq. (25))

curve-fit coefficients for collision cross sections _I] "1
)

(eq.

curve-fit coefficients for collision cross sections _I, 2.'2)
_6

(eq. (46))

first Bohr radius, 0.52918 × 10 -8 cm

temperature exponent for backward reaction-rate

constant

temperature exponent for forward reaction-rate constant

--(1,2) --(1,3) /--(1,1)ratio of collision cross sections, (5flij - 4Qi) ) flij

mass diffusion parameter defined by equation (A10)

specific heat at constant pressure, { Oh _ , cal/g-mole-K

reactive specific heat at constant pressure,

i=1 p

frozen specific heat at constant pressure,

G: E oh= , ?TT- _ hi , cal/g-mole-K
i=1 i=1 p

specific heat at constant pressure of species i,

(_)p, cal/g-mole-K

electronic component of Cp,i, cal/g-mole-K

internal component of Cp,i, cal/g-mole-K

rotational component of Cp,i, cal/g-mole-K

3



(_,i)tr

(Cp,i)vib

Cv

Cv,i

(Cv,i)int

(Cv,i)tr

Dii

Dij

D 0

Eb,r

Ef,r

e

ci

fi

h

hi

(ah{IT,of

J

j k

K

K. el

Keq,r

K I

translational component of Cp,i, cal/g-mole-K

vibrational component of Cp,i, cal/g-mole-K

(0e) , cal/g-mote-Kspecific heat at constant volume, aT v

specific heat at constant volume of species i,

(_)v' cal/g-mole-K

internal component of Cv,i, eal/g-mole-K

translational component of Cv,i, cal/g-mole-K

coefficient of self diffusion, cm2/sec

binary diffusion coefficient, cm2/sec

= pDij, cm2-atm/sec

multicomponent diffusion coefficient, cm2/sec

activation energy for backward reaction r, erg/g-mole

activation energy for forward reaction r, erg/g-mole

internal energy of mixture, cal/g-mole

internal energy of species i, cal/g-mole

free energy of species i, cal/g-mole

free energy of species i at the standard state of 1 atm

pressure (1 atm = 101.3 kPa), cal/g-mole

NS
enthalpy of mixture _ Cihi, cal/g-mole

i=1

Planek constant, 6.6261 × 10 -27 erg-sec

enthalpy of species i, cal/g-mole

specific-heat function for species i, cal/g-mole-K

standard heat of formation of species i at temperature

Tref, cal/g-mole

conversion factor from calories to ergs, 4.184 x 10r

ergs/calorie

kth component of diffusion mass flux of species i, k = 1

to 3, g/cm2-sec

total effective thermal conductivity of mixture in

thermodynamic equilibrium, Kf + Kr, cal/cm-sec-K

thermal conductivity of electrons, cal/cm-sec-K

component of thermal conductivity of mixture due to

electron excitation, cal/cm-sec-K

equilibrium constant for reaction r, kLr/kb, r

frozen thermal conductivity of mixture in thermo-

dynamic equilibrium, Ktr +/tint, cal/cm-sec-K



Kf,i

Eiilt

Kint,i

KF

Ktr , K[ 1)

Ktr,i

Kvib

k

kb,r

Lei

Lef,ij

Leij

L f,ij

11I

Mi

mi

NA

Npr

Np,_j

n

ni

P

Pe

Pem

fi'ozen thermal conductivity of species i in thermo-

dynamic equilibrium, Ktr,i + Kint,i, cal/cm-sec-K

internal component of frozen thermal conductivity of a

mixture in thermodynamic equilibrium, /{rot + Kvib +/(el,

cal/cm-sec-K

internal component of frozen thermal conductivity of

species i in thermodynamic equilibrium, cal/cm-sec-K

reaction component of thermal conductivity of a mixture

(eqs. (A19) and (A20)), cal/cm-sec-K

translational thermal conductivity of mixture from first

Chapman-Enskog approximation, cal/cm-sec-K

translational thermal conductivity of mixture without

contributions caused by electron-heavy particle collisions,

Ktr -- Kc, cal/cm-sec-K

translational component of thermal conductivity of

species i, cal/cm-sec-K

vibrational component of thermal conductivity of mix-

ture, cal/cm-sec-K

Boltzmann's constant, 1.38066 × 10 -16 erg/K

backward reaction-rate coefficient for reaction r,

cm3/mole-sec or cm6/mole2-sec

forward reaction-rate coefficient for reaction r,

cm3/mole-sec

Lewis number, defined by equation (Ag)

frozen binary Lewis number, pCp]Dij/Kf

total binary Lewis number, pCI_Dij/K

multicomponent Lewis number, pCpf Dij/Kf

molecular weight of mixture, g/g-mole

molecular weight of species i, g/g-mole

mass of particle i, g

Avogadro's number, 6.0221 × 1023 molecules/g-mole

total Prandtl number, Cpp/K

frozen Prandtl number, Cpf#/Kf

number density, particles/cm 3

number density of species i, particles/cm 3

pressure, arm

electron pressure, atm

limiting value of electron pressure, atm
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=_

Qtr,i

qk

Runiy

Tc

rd

Si

T

ZDb, r

TD/,r

Trd

Trot

Gr

Tvib

l

(t'i

Xi

Xi

X k

Z(j NS),i

(_i,r

_3i,r

"Y2

2. i

translational partition function per unit volume, 1/cm 3

kth component of overall heat-flux vector, k = 1 to 3,

cal/cm2-sec

universal gas constant, 1.987 cal/g-mole-K

radius of electron orbit from solution of SchrSdinger

equation, em

Coulomb cutoff (or Debye shielding) radius, em

density cutoff radius, em

entropy of species i at temperature T, cal/g-mole-K

temperature under thermodynamic equilibrium, K

characteristic reaction temperature for backward reac-

tion r, Eb,r/k, K

characteristic reaction temperature for forward reaction

r, Ef,r/t G K

electron temperature, K

electronic excitation temperature, K

reference temperature, 298.15 K

rotational temperature, K

translational temperature, K

vibrational-electron-electronic excitation temperature, K

vibrational temperature, K

time, sec

mean molecular velocity of species i, cm/sec

kth component of diffusion velocity of species i, k = 1

to 3, cm/sec

mass rate of formation of species i, g/cma-scc

concentration of species i, moles/volume

mole fraction of species i

kth component of general orthogonal coordinate system_

k = 1 to 3, cm

constants (used in eq. (2e)) given in table I

stoichiometric coefficient for reactant i in reaction r

stoichiometric coefficient for product i in reaction r

ratio of specific heats, Cp/Cv

mole mass ratio of species j, Xj/p

defined by equation (34), cm-scc

i

i

I
!ii i



1{2.)
U

Ai

p(1) _

# i

P

Pi

-(1,1)
f_ij

--(1,2) --{1,3)
_q , f_ij

Subscripts:

b

c

el

i

j

l

p

T

rot

tr

vc

L/

Abbreviations:

ASTV

mol.

NASP

NATA

defined by equation (35), cm-sec

mean-free path of pure species i, cm

modified mean-free path of species i in a mixture, cm

mean-free path of species i in a mixture, cm

viscosity of mixture from first Chapman-Enskog approxi-

mation, g/era-see

viscosity of species i, g/cm-sec

density of mixture, g/era a

density of species i, g/era a

average collision cross section (used for diffusion, viscos-

ity, translational, internal, and reaction components of

thermal conductivity) for collisions between species i and

j, i 2 (1 1= 10 -8 cm)

average collision cross section (used for viscosity and

translational component of thermal conductivity) for

collisions between species i and j, A 2

average collision cross sections (used for translational

component, of thermal conductivity) for collisions be-

tween species i and j, A 2

backward reaction

electron

electronic excitation

species i

species j

species l

constant pressure

reaction

rotational energy mode

translational energy mode

vibrational-electron-electronic energy mode

= NS, total number of species

Aeroassisted Space Transfer Vehicle

molecules

National Aero-Space Plane

Nonequilibrium Arc Tunnel Analysis



=

2=

z

3

NIR

NJ

NR

NS

total number of independent reactions

sum of reacting species (NS) plus number of catalytic

bodies

total number of reactions

total number of species

Chemical Kinetic Model and Reaction Rates

Thermal Equilibrium

When chemical reactions proceed at a finite rate, the rate-of-production terms appear ii t the

energy equation, when formulated in terms of temperature, and in the species continuity equations

(refs. 17 to 19). For a multicomponcnt gas with NS reacting chemical species and NR chemical

reactions, the stoichiomctric relations for the overall change from reactants to products are

NJ kf'r NJ

i=1 kb,r i=1

(1)

where r = 1, 2, ..., Nil and NJ is equal to the sum of the reacting species (NS) plus the number

of catalytic bodies. The quantities _i,r and _qi,r are the stoichiometric coefficients for reactants and

products, respectively, and kI,7- and kb, r are the forward and backward rate constants. The quantities

X i denote the concentrations of the chemical species and catalytic bodies in moles per unit volume.

The catalytic bodies (NJ NS) may be chemical species or linear combinations of species that do

not undergo a chemical change during the reaction.

The net mass rate of production of the ith species per unit volume resulting from all the reactions

Nil may be obtained (ref. 18) from

or

d,i = Mi __, k, dt It= _-_ k, dt ]r
r=l r=l

Nit

wi = 3Ji Z (_i,r - c_i,r)(nf, r - Rb,r)
r=l

(2a)

(2b)

where
NJ

Rf,r = kf, r H (_J p)°_j'r

j=l

NJ

Fib, ,. = kb.r II (,,fjp);_zr

j=l

Here, the mole-mass ratio yj (also known as the mole number) is defined as

x_ = c, (j = 1,2, NS)

fl _2 ""_

_fj ---- NS

i_IZ(j_NS),i "/i (j = NS + 1,...,N J)

(2c)

(2d)

:i: i



The constants Z(j_NS), i are functions of the catalytic efficiencies of the NS species and arc

determined from the linear dependence of the catalytic bodies upon the NS species. Values of these

constants for the ll-species air model are given in table I.

The reaction rates in equation (1) or equations (2c) and (2d) are expressed in the modificd
Arrhenius form as

1 (mole -°r
Af'rTBf'r exp(-TDD/T)' se-_ \ cm 3 Jkf,r (3a)

where

kb,r _- Ab,rTBb,Texp(_TDb,T/T), 1 /'mole -Zrse--7t,Ta ) (3b)

NJ

Ctr-=- Z ai,r- 1 (4a)
i=1

NJ

_r = _ _i,r- 1 (4b)
i-1

and where TD] _ and TDb r are tile characteristic reaction temperatures for the forward and backward

reactions, respectively. )alues for the reaction rates kf, r and kb,T are tabulated in table II for the

ll-species air model. For a specified temperature, density, and species composition, equations (2) to

(4) can be used to obtain the production rate of a species i in a multicomponent gas by employing

the catalytic body cfficiencies and reaction rates from tables I and II. The first seven reactions and

reaction rates in table II are taken from reference 20 and were employed in reference 17 for the

7-species air model (N, O, N2, 02, NO, NO +, e-). Reaction rates for reactions 8 to 20 of table II are

taken from reference 21. Some of these reactions have been regrouped here (and in ref. 22) through

the use of third bodies M1 to M4, which is similar to the approach used in reference 17.

The reaction rates given in table II are appropriate for flow velocities of about 8 km/sec (i.e., up

to the Shuttle-type reentry velocities). For higher flow velocities, the backward reaction rates can

be obtained from the forward reaction rates l by using the following relation:

kf'r(T) (5a)
kb'r- Keq,r(T)

The equilibrium constants Keq,r have been obtained by using the atomic partition functions and

the molecular partition functions provided in reference 23. The electronic partition function for the

atomic species and internal partition functions of molecular species are tabulated in reference 23. The

internal partition functions of the molecular species were obtained using existing data on molecular

constants augmented by solving the SchrSdinger equation. The translational component required

for obtaining the total partition function (which is used to compute the equilibrium constant) is
obtained from

Qtr,i = (27rmikT/h2) 3t2 (5b)

where Qtr,i is the translational partition function per unit volume and h is the Planck constant.

The computed values of Keq,r have been curve-fitted here by the least-squares curve-fit method

as a function of temperature using the expression

or,

={ xp + (5c)

ln(Keq,r) = kKoq,r Z5 + BKeqmZ4 + CKeq,rZ 3 + DKeq,rZ 2 + EKoq,rZ + FKoq. r (5d)

I The high-temperature data for the forward reaction rates are not well-defined.



where

z = in (:04/T) (Se)

The curve-fit coefficients in equations (5c) and (5d) are given in table III. Caution should be exercised

in evaluating the equilibrium constant A'eq,r from the coefficients given in table III. All the six

sign.ificant digits for tile coefficients should be used. Equation (Sd) is preferred to equation (5c) in

computing the equilibrium constant for reasons of accuracy, because the exponent of the exponential

term in equation (5c) is a large number. Since the electronic partition functions of atomic species

(tabulated in ref. 23) are significantly affected at high temperatures and low densities, the curve-fit

coefficients arc given for 6 different values of tim total number density. These number densities

cover the range of practical interest for aerospace applications. Figure 2(a) shows the variation

of the equilibrium constant with temperature for different values of the total number density. The

equilibrium constant clearly exhibits a number-density dependence at. very high temperatures and low

total number densities. Figure 2(b) gives a comparison of the present curve fit with the exact vahms

calculated from the partition functions. Values obtained from Park's curve fits (ref. 23) and from

table II by employing the relation Keq,r = kf,r/]%,r are also shown. Park's five curve-fit coefficients

were obtained by using five discrete temperatures (2000, 4000, 6000, 8000, and 10 000 K); thus, they

are in disagreement with the exact values and the present curve fits at the higher temperatures.

Comparison of the exact values with those obtained froin table II also gives an indication of the

temperature range beyond which the backward reaction rates of table II shoukt not be employed.

The equilibrium constant K_.q,,- is usually given as a fimction of temperature only. Figure 2(a)

and table III indicate, however, that under low-density and high-temperature conditions A_,q,r is also

a flmction of the total number density n. This dependence arises because the electronic partition

flmctions of nitrogen and oxygen atoms and ions are dependent upon the total number density under

those conditions. In reality, there is a finite (as opposed to infinite) number of electronic states that
-" contribute to the electronic pariTifi0n fiinction. This finite number of states is obtained because ii

(a) the orbits of electrons cannot extend beyond the distance to the nearest neighboring particle

: (a t)henomenon known as the density cutoff) and (b) the Coulomb feld is truncated due to the '

perturbation of the field t)y the electrons and ions in the neighborhood (a phen0menonknown as

the charge shielding). On the average, the distance to the nearest particle is given in centimeters as

ra = 1/r, 4a (5f)

where n is the total number density in particles/era 3 and r a is the radius of an electron orbit as

the result of density cutoff. In the hypersonic fligtit regime of interest, this radius prevails over the

Coulomb cutoff radius re, (or Debye shielding) defined in centimeters by

,¥ = 6.90 :

Further, the quantum theory gives the allowable radius r_ of an electron orbit as follows:

ra = ao N2 (5h) _i

where a 0 = 0.52918 x 10 -s cm and is known as the first Bohr radius, and N (which is an eigenvalue

in the solution of the Sehr6dinger equation) is called the principal quantum number. Equating the

smaller of the two radii given by equations (5f) and (Sg) with equation (Sh) yields the cutoff quantum

number _'_max as

i_[,nax = /'_a_ or ,/_-dva0 (5i)

Olfly electronic states with principal quantum numbers up through Nm_ contribute to the electronic

partition function. Since the contribution from the highly excited states with quantum numbers near

_ 10



Nmax is proportional to Nm3ax exp(-E/kT), where E is the ionization energy, these highly excited

states dominate the overall partition function at sufficiently high temperatures or low total number

densities, and the partition function then becomes strongly dependent on number density (eqs. (5f),

(5g), and (5i)). Under these conditions, most of the atoms present in the gas are in the highly excited

electronic states near Nmax rather than in the ground state. Since these highly excited atoms have

very different properties than ground-state atoms, the reaction-rate data given in table II, which were

determined for primarily ground-state atoms, are no longer appropriate for the low-density, high-

temperature conditions at which the number-density dependence of the partition function becomes

significant. Therefore, more general models, which account explicitly for the behavior of the excited

atoms, are required. This regime lies outside the range of primary interest for aerospace applications,

however, and is not covered in this study.

Park (ref. 24) has recently presented a new set of reaction rates for use in computing highly ionized

flow in the hypersonic environment. In particular, the power of the preexponential temperature of the

rate coefficients for the associative ionization and dissociative recombination reactions (reactions 7,

10, and 13 in table II) is assigned a value of zero at temperatures greater than 6000 K to keep

the rate coefficients from becoming unrealistically large at very high temperatures, for which no

experimental data are available. Since the power of the preexponential temperature of the rate

coefficients is negative and zero for reactions 10 and 13, respectively, in table II, Park's suggestion

is already implemented in the reaction rates for these reactions. The preexponential power of the

rate coefficient for reaction 7 may need to be reexamined when tile temperatures become excessively

large. Further, for extremely high temperatures, such as those encountered with earth reentry

velocities greater than 12 km/sec, much slower reaction rates have been recommended (refs. 25

and 26) for electron-impact ionization reactions 8 and 9 given in table II. Also, the reaction rates

given in reactions 8 and9 in table II are from expansion flow data, which tend to be lower than data

obtained under compressive flow conditions.

Thermal Nonequilibrium

The reaction rates given in table II were originally used by Blottner (ref. 17) and Dunn and

Kang (ref. 21) in the context of a single temperature assuming thermal equilibrium. Park's

(ref. 25) guidelines (ill the context of his two-temperature model) may be used for defining the rate-

controlling temperature in dissociation and the electron-impact ionization reactions under thermal

nonequilibrium conditions. These guidelines were used in reference 27, for example.

Based on the preferential dissociation concept, Park has suggested the use of a temperature

weighted with the vibrational temperature to characterize dissociation reactions (ref. 25). The

reaction rates in Park's model are assumed to be dictated by the geometric average temperature

= (6a)

and the dissociation reaction rates are given by

B f,
kf, r = A/,rTav'" cxp(-TDL_/Tar) (6b)

The recombination (or backward) reaction rate, however, depends only on the temperature of the

impacting particles and may, therefore, be evaluated from

kb, r = k f ,r(Ttr ) / I_eq,r(Ttr ) (6c)

Treanor and Marrone (refs. 28 and 29) suggested a more rational (but slightly more difficult) way
than Park's method to account for the effect of vibrational relaxation on dissociative reactions with

the preferential dissociation concept. They suggested the use of a vibrational coupling factor (refs. 27

to 29) with the dissociation reaction rates obtained under the assumption of thermal equilibrium.
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Recentwork of Jaffe(ref. 30), basedon collisiontheoryand usingmethodsof statistical
mechanics,yieldednoevidenceof preferentialweightingto anyparticularenergymodeinobtaining
thetotalenergyavailablein acollision,whetherit isanelastic,inelastic,or reactiveencounter.Jaffe
foundthat themultitemperaturceffectson thereactionratesweresmallfor dissociation.These
findingsweresupportedby thoseof Mosset al. (ref.31),whocarriedout flow-fieldanalyseswith
the'DirectSimulationMonteCarlo(DSMC)approach.Thus,a weakerdependenceof kl, r on Tvi b

(such as the one suggested by Sharma et al. (ref. 32) as Tav = Tt0r6Tv0i't_) might be more realistic,

especially for highly energetic flows.

It is obvious that the multitempcrature kinetic models for high-energy flows based on both

preferential and nonpreferential dissociation assumptions employ a considerable degree of empiricism.

They exemplify the degree of uncertainty that exists in modelling the multitemperature kinetics.

Quantum mechanical studies of the type in reference 30, supplemented by nonobtrusive laser

diagnostic studies, would bc desirable for establishing these models on a sounder basis.

Species Thermodynamic Properties and Mixture Formulas

Thermal Equilibrium

Thermodynamic properties (i.e., Cp,i and hi) are required for each species considered in a finite-

rate flow-field calculation. For calculations with chemical equilibrium, the free energies Fi are

also required. Since the multicomponent gas mixtures are considered to be mixtures of thermally

perfect gases, the thermodynamic properties for each species are calculated by using the local static

temperature. Then, properties for the gas mixture are determined in terms of the individual species

properties through the following relations:

NS

i=l

where

ef

and
NS

CPI = E CiCp,i (8a)
i=l

where

c,,i = (8b)

The mixture Cp] as defined by equation (Sa) is the "frozen" specific heat. This definition does
not account, for species production or conversion due to chemical reactions. Frozen specific heat

is commonly used in defining the Prandtl and Lewis numbers 2 for a mixture and is related to the

mixture enthalpy h through the relation

(oh_E h,or ) p= <cp,,CpI= Of i=1 i=1
(9)

Expressions for Cp,i using the partition-function approach were obtained in reference 33, whereas
a virial coefficient method was used in references 34 and 35. If the effects of nonrigidity of the rotor

2 See appendix A for various definitions.
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andanharmonicityof the oscillatorarc includedin thesetwomethods,the two formulationsare
equivalent(seesection3.1of ref.36)andcanbeusedinterchangeably.Usingthevirial formulation,
Browne(refs.34 and35)obtainedthe thermodynamicpropertiesascorrectionsto thoseof the
monatomicgasin termsofthefirst andsecondvirial coefficientsandtheirtemperaturederivatives.

Reference33providescurvefits forCp,i and hi, whereas references 34 and 35 provide tabulations

of these data. Since the use of curve fits reduces the expense of computing the original functional

relations, the tabulated thermodynamic properties of references 34 and 35 have been curve-fitted

here as a function of temperature for the temperature range of 300 K < T < 30 000 K. The following

polynomial equations are employed for these curve fits:

Specific heat:

Cp,i
- A1 + A2T ÷ A3 T2 q- A4 T3 + A5 T4 (10a)

Runiv

Specific enthalpy:

hi

Runiv T

A2T A3T 2 A4T 3 A5 T4 A6
-AI+T+--_-+T+T+ T-

For equilibrium calculations, the following curve fit for the free energies Fi may be used:

( Ob)

F° =- A1 [1 - ln(T)]
A2T A3 T2 A4 T3 A5 T4 A6

2 6 12 20 + T- - A7 (10c)

where F,0 is the free energy of species i at a pressure of 1 atm (standard state). The specific-heat

data are easily curve-fitted to the polynomial form of equation (10a). Other polynomial forms are

based on the following thermodynamic relations at constant pressure:

and

dhi = Cp, dT (1 la)

dT

dSi=Cpi T (llb)

dhi = T dSi (llc)

dFi =-Si dT (lld)

where F i is the free energy and Si is the entropy of species i at temperature T.

The polynomial coefficients have been evaluated by using the least-squares curve-fit technique. In

particular, the following polynomial for the specific cnthalpy has been curve-fitted to the tabulated
values of references 34 and 35:

h i - A6Runiv

Runiv T
--A-1 q-A2 T q-A3 T2 q-A4 T3 q-A5 T4 (12a)

Constants A1 to A 5 in equations (10a) to (10c) are then obtained from

An = nAn (n = 1, 2, 3, 4, 5) (12b)

The constant A6 in equations (10b) and (10c) is computed separat.ely. This constant is related

to the heat of formation through the relation

A6Runiv = (hi)T= 0 = (Ahfi )Tref -- [(hi)T_ef -- (hi)T=O] (12C)

In equation (12c), [(hi)Tref -- (hi)T=O] is available from the tabulated data to be fitted. Sources giving

tabulated values of specific enthalpy and free energy generally use 0 K as the reference temperature.

13



Totransformthisreferencetemperatureto thereferenceof 298.15K employedhere,it is necessary
to knowtheheatof reactionat thenewreference.AppendixB givesthemethodusedforcalculating
(/Xhf )T=298.15.

It is sometimes useful to define a specific-heat function h.i such that

[_ = hi- (Ahf )_.,,f (12d)
T

This relation may bc used to obtain T from [_i in an iterative manner. Equation (12d) may be

expressed in a polynomial form by using equations (12a) and (12c) as follows:

hi = (A1 + A2 T + A3 T2 -I- _44T3 + A-hT4)Runiv -
[(h,)T,.,,r-

T
(12e)

or, with the approximation f[r,.f Cp,i dT _ Cp,iTref,

ill = (A1 + A2 T + A3 T2 + A IT3 + Ahrl)/_,miv CP'iTref
T

(12f)

The constant A7 has been obtained by subtracting the remaining terms of the free-energy

polynomial (eq. (10c)), evaluated with the other known constants, from the tabulated free-energy
data as follows:

A7 = All1 - In(T)] - --_T
2

A3 T2 A4T 3 AhT 4 [ F 0 _ (hi)T=O"

6 12 20 [ /_univ T
(13)

x

l

z

Table IV is a listing of the polynomial constants (A1 to A7) for the ll-species air model. The

polynomial coefficients have been obtained for five temperature ranges between 300 and 30 000 K.

To assure a smooth variation of thermodynamic properties over the entire temperature range, values

of A1 to A7 should be linearly averaged across the curve-fit boundaries (i.e., 800 < T < 1200, 5500 <

T < 6500, 14500 < T < 15500, and 24500 < T < 25500), because the curves are not continuous

at the boundaries. A sample subroutine that evaluates the polynomial curve fits and performs the

linear averaging is presented in appendix C. This routine may be easily modified to suit the user's

requirements. : "

Temperature T in equations (10) to (12) is in kelvins. With the universal gas constant in cal/g-

mole-K, the specific heat and enthalpies have the units of cal/g-mole-K and cal/g-mote, respectively.

Figure 3 is a comparison of the values of specific heat obtained from the polynomial curve fit

(eqs. (10)) with the data of Browne (ref. 35). Values provided by' Hansen (ref. 37) are also included

for comparison. Hansen's values begin to deviate from those of references 33 and 35 beyond 4000 K

for 02 (fig. 3(a))' beyond 8000 K for N2 (fig. 3(b)), and beyond 6000 K for NO (fig. 3(c)). This

deviation may be a result Of the rigid-rotor and harmonic-oscillator partition function employed by'

Hansen and of the neglect of electronic contribution. At higher temperatures, the population of levels

corresponding to file nonparabolic regions of the potential-energy curve are no longer negligible, and

it becomes necessary to !ntroduce the nonrigidity and anharmonicity corrections into the energy
levels of the molecules as was done in reference 35 ....:

Reference 38 has provided tabulated values for specific heats, enthalpies, and internal energies

for the ll-species air model up to temperatures of 6000 K. These values are nearly identical to those

given in references 33 to 35. The minor differences that do exist may be due to different forms of the

partition function, different spectroscopic data' inclusion of excited-s{at.e data, inclusion of isotopic

effects, different heats of fornmtion, or other factors.
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Thermal Nonequilibrium

The thermodynamic property data of references 33 to 35 can be used to separate the contributions

of different internal energy modes to the specific heat, as is required in the case of multitemperature

flow-field models. For example, in a two-temperature model (rcfs. 25 and 27), advantage may bc

taken of the fact that tile translational and rotational energy modes are flflly excited and equilibrated

at room temperature; therefore, the heat capacities for these modes arc indcpen(tent of temperature.

The combined vibrational-electronic specific heat for species i, (Cp,i)vc, call then be evaluated by

using the value for the total specific heat Cp,i evaluated at temperature Tve and by subtracting out
the constant contribution froln the translational and rotational specific heats. This can be described

(sec fig. 4 for the various contributions) by

[(Cp,i)ve]Tvc = (Cp,i)Tv_ - (Cp,i)tr - (Cp.i)rot (14)

where the translational component of the specific heat (Cp,i)tr is _ Runiv for all species, while the

rotational component (Cp,i)rot is R,miv for diatolnic species and 0 for monatomic species.

The enthalpy hi for a two-temperature model can bc evaluated similarly, since contributions

from the translational and rotational modes are linear with temperature. Therefore, the vibrational-

electronic enthalpy for species i, (hi)re, can be obtained from the specific enthalpy h i evaluated at

temperature Tvc by sul)tracting the contril)ution from the translational and rotational enthalpies

evaluated at Tvc as well as the cnthalpy of formation as follows:

[(hi)vclTv_ = [hi]r,._ - [(Cp,i)tr -1- (Cp,i)rot](rve - rrcf) - (Ahf)r,.,.f (15)

The specific enthalpy from all the contributions of internal energy modes can then be obtained by

adding tile contributions of translational and rotational enthalpies (evaluated at the translational-

rotational temperature) and the enthalpy of formation to the vibrational-electronic enthalpy as
follows:

hi(T, rye) = [(hi)vc]Tvc -[- [(Cp,i)tr -[- (Cp,i)rotl(Z - Zrcf) nt- (/khl)Tr(, [ (16)

The procedure outlined here for obtaining the specific heats and enthalpies for different internal

energy modes can be used only with one- or two-temperature models. This approach may bc used

for a three-temperature model only if one of the energy modes is partially excited and the rest are

fully excited. If more than one internal energy mode is only partially excited, the partition-function

approach (with appropriate corrections for the rotor nonrigidity and oscillator anharmonicity) would

be needed to obtain the thermodynamic properties of different energy modes.

Species Transport Properties and Mixture Formulas

Thermal Equilibrium

The transport properties required in flow-field calculations are viscosity, thermal conductivity,

and diffusion coefficients. The collision cross sections required for these properties have been

rccomputed herein using the same molecular data used previously by Yos (refs. 7 to 9). The

computational techniques employed in the calculations are described in references 39 to 41; these

references give details of the NATA (Nonequilibrium Arc Tunnel Analysis) code. In NATA, the

average collision cross sections 7r_"l} 's) for the collisions between species i and j are calculated from

basic cross-section data as functions of temperature and gas composition for each pair of species in

the mixture a. The basic data are either in tabular form or are given as simple analytical functions of

temperature or composition. NATA contains 12 methods or options for calculating the cross sections
_(1,1)

"_;,2) * (the ratio of cross sections). Tile options include using the Coulomb cross7r_tij , 7r_ , and Bij

3 Different combinations of the indices I and s arc required for higher order terms of the Chapman-Enskog theory.
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sectionfortheelectronsandionsplususingexponentialpotential(ref.42)andLennard-Jones(6-12)
potential(ref.36)for neutralspeciesinhighandlowtemperatureranges,respectively.Theformulas
usedin NATA to computethe transportpropertiesfromthe collisioncrosssectionsareobtained
fromanapproximation(ref.43)to thefirst-orderChapman-Enskogexpressions.Theseformulasarc
providedin subsequentsections.

Transport properties of single species. The viscosity #i and frozen 4 thermal conductivity

Kf, i of a gas containing a single molecular species are given, to a good approximation, by the
formulas in chapters VII and VIII of reference 36. First, the viscosity is

5 _ x 1016 (17a)
#i- 16 __(2,2)

n_ tii

or

"i = (2.6693 x 10 -5) Ir_T (17b)_(2,2)
7r_ tii

Further, the viscosity can be written in terms of the mean free path Ai as

51r uA (17e)
m = -3-_P i

where the gas density is

the mean molecular velocity is

and the mean free path is

P _ Pi = mini (17d)

(17e)

_xi: r ,__[v%i_):,2)]-1 x 1016 (17f)

Next, the frozen thermal conductivity can be written in the modified Eucken approximation (ref. 36)

as

Kf, i = Ktr,i + Kint, i (18a)

Here, Ktr,i is the translational component of the thermal conductivity and Kint, i is the component

of thermal conductivity resulting from the diffusion of internal excitation energy of the molecules.

Thetranslational component may be written as

75k_ X 1016/j
htr'/= 64 __(2,2)

na _ii

--(1.98 1×10- )
__(2,2)

15 #i Runiv

4 Mi

3 #i(Cp,i)tr

2 Mi

4 See append{x A_for varioUS_definltionK - : :¢::

16

22

(18b)

I

(18c)

(18d) ,I

!
i

(18e) [

I

I
i

!
i
!

!



i

or, in terms of the mean free path ,_i, as

57rpuAi [5_ ]Ktr ,i 32 Mi - (Cv'i)tr

The internal component of thermal conductivity may be written as

Kint,i = 8 Runi v __(1,1) x

: (__(1,1) Runl v
na tii

M_\m/

= 57r Piui_i(Cv,i)int (piDii
32 M i \ #i ]

where the internal specific heat has been introduced from the relation

3 R
(Cp,i)int -_ (Cv,i)int = Cp,i - _Runiv = Cv,i - _ univ

(18g)

(18h)

(18i)

(18j)

(18k)

(181)

and the coefficient of self diffusion Dii from the first Chapman-Enskog approximation is as follows:

8 _-_(1,1)
x 1016 (18m)

--(1 (18n)
7rQi i ,1)p

The coefficient of self diffusion Dii must be regarded as somewhat artificial. It is more correct to

regard it as a limiting form of the coefficient of binary diffusion.

Using equations (18a), (18d), (18j), and (181), the frozen thermal conductivity may now be

expressed as

Runiv#i [_ (pnii_ ( Cp,iK f'i -- )_li --+ \ #i / \ Runiv

or, from equations (18a), (18e), and (18j),

3 C (flnii_ (Cp,i)int]= //i [5 ( p,i)tr+Kf'i _ \ #i /

= _ 2(Cv'i)tr + \ #i ] (Cv'i)int

_)] (19a)

(19b)

09c)
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__(t,t)
Fromequations(17a)and(18m)thefactor(PDii/Pi) is relatedto thecollisioncrosssections_a_ii
throughthefollowingrelation

__(2,2)
pDii 6 a_qi- (20)

lzi 5 __(1,1)
a a_ii

_(2,2). _(1.t)
The ratio 7rxeii /rc_tii in equation (20) is a very slowly varying function of temperature T; hence,

pDii/iti is very nearly constant. This factor, appearing in equations (18j), (18k), (19a), (19b), and

(19c), has a value close to 1.32 for the Lennard-Jones potential over a wide temperature range

(ref. 44). If this factor is approximated by unity', equations (19b) and (19c) for the frozen thermal

conductivity reduce to the form

Kf, i=_f_(Cp,i)tr+(Cp,i)int] (21a)

= M--7 Cp.i + _ univ (21b)

9 R
= 3IiI*_(C"'_+ 4 univ)

or, using equation (17c) to express the results in terms of the mean free path,

El'i= _ \ _[i ) Cv,i + _Runiv

(21c)

(21d)

This is the form for the thermal conductivity derived originally by Eucken.

modified Eucken approximation (eq. (19)) used in the present work by the ratio

It differs from the

1+ 15 Runiv \ Pi /l/ 1+ 15 Runiv

which is about. 6 percent in the case of a diatomic gas near room temperature, where the only internal

energy excited is the rotational energy'.

The modified Eucken approximation (eqs. (19)) neglects the effects of inelastic collisions on the

thermal conductivity. Such collisions introduce a coupling between the translational and internal

components of the thermal conductivity; this coupling tends to reduce the total frozen thermal

conductivity below the value (eqs. (19)) predicted by the modified Eueken approximation. The

effects have been treated in detail for various polyatomic gases near room temperature. It. h_ been

found (refs. 45 to 47) that the errors in equations (19) may approach 10 to 20 percent when!here is

a rapid exchange of energy" between the internal and translational states through inelastic collisions,

as is normally the case for rotational excitation in low-temperature polyatomic gases. However, the

errors become smaller when the exchange is less rapid, and are negligible when 20 or more collisions

are required for the exchange of energy between internal excitation and translation.

The effects of inelastic collisions on the thermal conductivity of high-temperature air have

apparently never been treated in detail. However, it appears that the inelastic cross sections

should, in general, be small enough to make errors in the modified Eucken approximation (eqs. (19))

negligible for air at temperatures greater than about 1000 K. At temperatures below 1000 K, it

may be desirable for more accurate calculations to correct, equations (19) for the effects of inelastic

rotationalLtranslational energy transfer using the analysis of references 45 to 47. However, this

correction has not been included in the values presented here.
2
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TIle collision cross sections 7r_tii or u are, in general, the weighted averages of the cross

sections for collisions between species i and j. These collisions have been defined (refs. 7 to 9) as

7r-_(I,s ) f_C ff exp(-*t2)'y2'_+3(1 -coslx)47r_rijsin?( d)_ d?
(22)

where aij = aij(x,g) is the differential-scattering cross section for the pair (i,j), X is the

scattering angle in the center-of-mass system, g is the relative velocity of the colliding particles,
and = + is the reducedvelocity. For collisions between the similar

/ \

__(u)
species eqtmtion (22) yiehts v_a_ii required in equations (17) and (18). Various combinations of the

indices 1 and s are required for higher order terms of the Chapman-Enskog theory. For the order
_(1,1) _(1,2) _(1,3) _(2,2)

considered here, only mtij , m_ij , mqj , and mtij are needed.
__(1,1) __(2,2)

The collision cross sections _da_ii and J_a_ii employed here are the same as those used by Yos

(refs. 7 to 9). The cross sections for the neutral species N, N2, NO, O, arm 02 were taken from

the tabulations of Yun, Weissman, and Mason (ref. 48) for temperatures up to 15000 K. Above

15 000 K, the cross sections for atomic N were obtained by extending Yun's calculations to 30 000 K

using the same input data and techniques that were used in his work. Tim cross sections for the

remaining species N2 , NO, O, and 02 were extrapolated to 30 000 K assuming the same temperature
dependence as calculated for N.

For the ionized species, the calculations used effective Coulomb cross sections that were chosen

to make the computed transport properties for a flflly ionized gas agree with the correct theoretical

results (ref. 49) discussed in references 7 and 9. The specific formulas used in the calculations are

_(2,2) 1.29Q_. x 1016 (for electrons) (23a)71"_ _ce

_(2,2) 1.36Z4Qc x 1016 (for ions) (23b)lr_Zli :

_(1,1)
Ir_tcc = lr_li '1) : 0.795Z4Qc x 1016 (for electrons and ions) (23c)

where Z = 1 for singly ionized species and

e,l

QC = _ hlA cIn 2
(23d)

The shielding parameter A is defined as

A

-9(kT) 3 16(kT) 2-

4_rc6nc + 1 2/3

1/2

(23e)

[ (  12j3]2.09x 10 -2 _ +1.52

1/2

(23f)

where T is the temperature in kelvins and Pc = nekT is the electron pressure in atmospheres. 6 In

equation (23d), e = 4.8 x 10 10 csu is the electron charge. Equations (23a) to (23f) are applicable

_q,._) -(t.._)
s The collision cross sections designated here &s 7c&tij are the same as _ra2_(l"s)**3given in reference 36 and as f_i_

given in reference 39.

6 For flows with thermal nonequilibrium, Pe = nekTe should be used to obtain the electron pressure.
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onlyfor electronpressuresbelowthelimitingvaluegivenby

Peru = 0.0975 _ (23g)

for ;_vhich the shielding factor In A is equal to 1 in equation (23d) (ref. 49), and should not be used

for electron pressures above this limit. The limiting electron pressure, Peru, from equation (23g)

is plotted as a function of temperature in figure 5. The electron pressures encountered in typical

aerospace applications should fall well below this limit.

In the present report, tile transport properties of the charged species (i.e., ions and electrons) are

provided for the limiting electron pressure Pe = Peru at which the shielding factor in A = 1. For any

other electron pressure, it is necessary to correct the tabulated transport properties of the charged

species according to the formula

Pi(Pe) _ Kf, i(Pe) _ Ktr,i(Pe) Kint,i(Pe) _ 1

#/(Pen,) Kf,i(Pem) Ktr,i(Pem) Kint,i(Pem) in A(pe)

2

[ (T) 4 { T "_ 8/3 ]In 2.09 x 10 -_ lOO-_p_/4 + 1.52 \ lOOOp_/4] ]

(24a)

__(1,s) (for the pair of species for which both are ions or electronsSimilarly, the collision cross sections -J__cij
or a combination of the two) for any other electron pressure Pe may be obtained from the values

provided herein for pc = Peru by employing the relation

_(t,s)
mtij (Peru)

= in A(pe)

[ ( )4 ( )8j3]1 In 2.09 x 10 -2 T T (24b)
= 100 py +152 1000p7

Equation (24b) is also applicable for i = j (single species).

In calculating the contribution Kint, i of the internal energy states to the thermal conductivity
__-(1,1)

for the atomic species N and O, the diffusion cross section ;_tii in equation (18h) or (18i) has

been set equal to the corresponding charge-exchange cross section for the atom and atomic ion

(refs. 8 and 50). As discussed in reference 7, this approximation allows for the effects of excitation

exchange in reducing the contribution of internal energy states to the thermal conductivity in a gas

of identical atoms. For consistency, the same approximation has also been employed in the tabulated

cross sections and self-diffusion coefficients for these species.

The individual species viscosities and thermal conductivities computed using equations (i7)

and (18) have been curve-fitted herein as a function of temperature by employing the following

relations:

#i = [exp(C_ui)] T [Atq lnT+U.,] (25)

K f, i = [ exp(EKL i )] T [AKLi (ln T)3+BKL i (In T)2+CKL i In T+DKf,i ] (26)

The curve-fit coefficients in equations (25) and (26) are given in tables V and VI for the 11

chemical species. These coefficients yield values of the viscosity and frozen thermal conductivity
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of ionicspeciesat the limitingelectronpressure(eq.(23g))andshouldbecorrectedfor anyother
electronpressure(ornumberdensity)by usingequation(24a).

Similarto the equilibriumconstantcalculationsfromequation(5d),the thermalconductivity
shouldbeevaluatedfromthelogarithmicformof equation(26).Also,all the fivesignificantdigits
for thecoefficientsappearingin tableVI shouldbeused.

Figure6 displaystypicalresultsfrom the viscositycurvefit (eq. (25))of equations(17) for
someof the neutralandchargedspecies.Thefrozenthermalconductivitycurve fit (eq. (26)) of

equations (18) is shown in figure 7 for the same species. Figure 7 and table V show that fourth-order

curve fits are needed for the thermal conductivity.

Transport properties of multicomponent mixtures. Rigorous kinetic theory formulas that

have been derived directly from a solution of the Boltzmann equation using the classical Chapman-

Enskog procedure (refs. 36 and 51) are available for obtaining the transport properties of a gas

mixture from the molecular constituent species. In the first Chapman-Enskog approximation,

formulas for both the viscosity and translational component of thermal conductivity Ktr of a gas

mixture are of the general form

p(1) or g[: ) = -

All • "" Alv

Avl " " • Avv

Xl • • • xv

Xl

X/]

(27)

where xi is the mole fraction of the ith species, u(- NS) is the total number of species present in

the mixture, and the matrix elements Aij can be expressed in the form

Aij = Aji = -xixjaij + _ij (xiAi + _ xixlail)
/=1

(28)

where aij = aji and _ij is the Kronecker delta. Elements A i and aij are defined subsequently. The

superscript 1 on p or Ktr indicates that equation (27) is the first Chapman-Enskog approximation for

the transport property. Further details for obtaining the transport properties by employing tile first

Chapman-Enskog approximation are given in reference 43. In principle, the problem of calculating

the transport coefficients for a given mixture consists of two parts: first, the determination of

the collision cross sections 7r_ij for all possible pairs of speeies(i,j); and second, the evaluation

of the Chapman-Enskog formulas. The amount of computation required to evaluate the mixture

transport properties is greatly reduced if approximations to the complete Chapman-Enskog formulas

are employed. Reference 7 has provided approximate formulas for the transport properties based

on the relations developed in references 52 to 54. References 13, 14, and 55, and more recently,

references 15 and 56 have also provided approximations to the Chapman-Enskog formulas. These are

apparently the most satisfactory of the many simplifying approximations for the mixture viscosity

and thermal conductivity that have been suggested by various authors. However, effects of the

elements aij in the Chapman-Enskog formula are completely neglected in Brokaw's approximation

(ref. 53), so that this approximation always gives too large a value for the transport properties. In

the Buddenberg-Wilke (refs. 13 and 55) and Mason-Saxena (ref. 14) formulas, the effects of these

elements are accounted for by means of a single empirical constant, which is assumed to be the same

for all gas mixtures. The approximation used by Peng and Pindroh (ref. 52) represents an attempt

to take account of the nondiagonal elements explicitly to the first order at the expense of a somewhat

increased calculational effort. Armaly and Sutton (refs. 15 and 56) neglected the nondiagonal matrix
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elementsAij in a manner similar to Brokaw (ref. 53). However, they did not force the value of Ai*j,
defined as

_(2.2)
, ij (29)

Aij - --(1,1)

to be equal to 5/3 and 5/2 in their approximations for viscosity and thermal conductivity,

respectively, r They assigned different values to 4*. for ion-atom and neutral atom-molecule
• • " lJ

interactions. From tile computer time, storage, and simplicity point of view, references 13 and 14

appear to be adequate for nonionized gas mixtures, whereas references 15 and 56 are useful for

computing the viscosity and translational component of thernml conductivity for an ionized gas

mixture.

In all the approximations to the Chapman-Enskog formulas for viscosity and translational thermal

conductivity discussed thus far, the transfer of momentum or energo" from one species to another

by collisions has been either neglected or has been accounted for by an empirical constant. This

transfer process, which is represented by the nondiagonal elements aij in the Chapman-Enskog

fornmla (eq. (28)), has the effect of nmking the less conductive species in the mixture carry a larger

fraction of the transport. This process, therefore, reduces the overall conductivity of the mixture

below the value it would have if the transfer process were neglected.

In reference 43, Yos obtained approximations to the Chapman-Enskog formulas that account for

the effects of the aforementioned transfer process between different species. These approximations

reproduce the results of the first Chapman-Enskog formula (eqs. (27) and (28)) to within a fi'action

of a percent for air at 6000 K and for other cases considered in reference 43 and are simpler to use

than the latter. Based on the relations developed by Yos (ref. 43), the following formulas may be

used to compute the mixture viscosity and translational component of thermal conductivity:

i
t

!

NS
C </(A_ + <,v)

p(1) or K[,!)= i=' (30)NS
1-aav E xi/(Ai +aav)

i=l

Here, NS is the number of species in the gas, xi is the mole fraction of the ith species, and aav is an

average value of the nondiagonal matrix elements cont.ained in equation (28) and is defined as

where

xixj ( N
i,j=l (31a)

aav = NS

z
i,j=l

NS

Ai = _ zlBil (31t))
/=t

For the viscosity, the quantities aij and Bij in equations (31a) and (31b) are defined as

NA _  x!2/1 (32a)
a,j -- (;ll i + AIj) 'a J

:. =_ - i _ _ . _- ;-_--:4_! _ : ' '_ :

NA A(2) (32b)
Bil : _ il

7 With A_'. = 5/3 and 5/2, AIj becomes identical to zero in the Chapman-Enskog formula.
Z)
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Fortranslationalthermalconductivity,theabovequantitiesaredefinedas

and
aij = (4.184 x 107 ) _ (Mi + Mj) 2 2

Bil = (4.184 x 107) 2
15h'(Mi + M_)2

x 8M_MIAI_) + (Mi - MI) 9Mi - _All

18B,'_ .(1)_ 4A!2)]
ij//x_j 1J J

(33a)

In these equations, ]ll i is the molecular weight of the ith species, N A is the Avogadro number, and

k is the Boltzmann constant. The remaining quantities are defined

A(!)=_(1.5460x10_ 20) I

A!2)zj -- 16( 1"5460 x 10 -2°)

--(1,2) --(1,3)

.B*. = 5_ij -- 4[_ij

'J --(1,1)
f_ij

2kli21[j ] 1/2 __(1=1)

rrRunivT(Ali + _[j)J 7¢a_iJ

2_SMj ] 1/2rrR,mivT(Mi + :1I_) rr_l_'2)

(34)

(35)

(36)

and the collision integrals 7r_Lij are weighted averages of the cross sections defined in equation (22).

The mixture frozen thermal conductivity Kf employed in defining the frozen Prandtl and Lewis
numbers s can be obtained from the modified Eucken approxinmtion (ref. 54)

Kf = Ktr + Kim (37)

where Ktr is the translational component of the thermal conductivity given by equations (30) to (36)

and Kint is the component of thermal conductivity resulting from the internal excitation energy of

the inolecules, (ref. 7) given by

NS

Kin t = 2.3901 x 10-Sk
i=1

NS

= 2.3901 x 10-SkE
i=1

\ nuniv 2, " / .

/ !

V':c, z__(t) |
z__, .J iy |
j=l j

(38a)

(38b)

If the approximations of references 52 to 54 are employed in place of the more exact, formulas

given by equations (30) to (36), the following approximate formulas for the mixture viscosity and

8 See appendix A for various definitions.
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thermalconductivitymaybeused(ref.7). Forthemixtureviscosity,

= NS--- )

(39)

For the translational component of thermal conductivity in a mixture,

815 /zxINS2 40aK[:)= 2.3901 x to -_k --

i=l (_ijxjAi j

\j---I

where AI_)is given by equation (35) and c_ij is defined as

[1 - (Mi/Mj)][0.45 - 2.54(Mi/Mj)]

aid = 1 + [1 + (Mi/Mj)] 2 (40b)

The approximations of equations (39) and (40) may be valid only for the range of conditions for

which they have been developed and not for general application because of the approximate analysis

of the nondiagonal matrix elements Aij of equation (27). Generally, these approximate formulas

give good results for nonionized or weakly ionized flows with a savings of about a factor of two in

computation time compared with the more accurate formulation of equations (30) to (33), since it

is no longer necessary to evaluate the nondiagonal matrix element aav in equation (31a).

A further sa_dngs of about another factor of two in the transport property calculations may be

obtained if c_ij in equation (40b) and the factor

in equation (20) arc approximated by unity, so that all three of the properties #, Ktr, and Kin t in
NS

equations (38) to (40) depend on tile same parameter _ Xj AIY) in the denominator. With these
J

approximations, equations (38) to (40) may be written in the form

NS

#(1) _-- 5._ E piui_i
32 i=1

(41a)

= 3--2 .= Mi _( "v,i)tr
(41b)

and

57r NS piui_i

i_l _(Cv, i)intKint = -_ "=
(41c)
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wherethepartialgasdensityof the ith component is

Pi = mini (41d)

the mean molecular velocity of the ith component is

ui = _/8kT/Trmi (41c)

and the modified mean-free path of the ith component in the mixture is

NS _(2,2)
xjTr_tij

2n E V/1 + mi/mjk j=l

-1

x 1016 (41f)

In the above equations, n is the total particle density in particles/cm 3 and (Cv,i)in t = (Cp,i)in t. The

modified mean-free path _i given by equation (41f) is not the mean distance between molecular

collisions. It differs from the actual mean-free path ,_ of the ith component in a mixture defined in
reference 6 as

, _ _(2,2)
h i = n 2_, xjrr_ij 1 + mi/mj x 1016 (41g)

j=l

by the factor 2(1 + mi/mj) -1 in each term of the summation. The modified mean-free path _i

represents the mean distance travelled by species i before losing its average excess momentum

relative to the surrounding gas medium through head-on collisions with species j. (See Hansen,

ref. 57.) From equations (37), (41b), and (41c), the expression for the frozen thermal conductivity,

K/, of the mixture can be written as

E 1Kf = _ "= _/ _( v,i)tr _- (Cv,i)int (41tl)

Ns [ 9 ]= 3-2 i_l.= 2tli Cv,i + _(Runiv) (41i)

in close analogy to the Eucken expression (eq. (21d)) for a single-component gas. Equations (41a)

to (41i) represent the predictions of the elementary kinetic theory for the viscosity and thermal

conductivity of a gas mixture. (See refs. 36 and 58.) Although less accurate than the approximation

given by equations (37) to (40), they may still be adequate for many applications, particularly in

view of the current uncertainty in our knowledge of the collision cross sections for high-temperature

gases.

The binary diffusion coefficient Dij needed to obtain the binary and multicomponent Lewis

numbers (refs. 17, 18, and 36) is obtained from the complete first Chapman-Enskog approximation

(ref. 36):

with

Di j _ Dij _ kT
P pA_J ) (42a)

kT

Dij- a");i (42b)
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Here,p is the pressure in atmospheres. Equation (42b) for Dij has been curve fitted in the present

work by using the expression

T L -ij -,j j= (lnT)<)+B_ hlT+C_l ] (42c)

where T is the temperature in kelvins. The curve-fit coefficients of equation (42c) are given in

table VII for the different interactions in the ll-species air model.

The values of Dij obtained from equation (42c) with the curve-fit coefficients given in table VII

are for the limiting electron pressure Pem (eq. (23g)).9 If the pair of interacting species are both ions,

both electrons, or any combination of the two, then Dij must be corrected for the given electron

pressure as follows:

,, ( -, ,  t31In 2"09x10-2(100 ,,/,) +i'52t,,lOOOp,I4/# J
(42d)

To obtain the viscosity p and the frozen component of thermal conductivity K I of a gas mixture

either from the more exact equations (30) to (38) or from the approximate relations in equations (39)

to (41), the binary collision cross sections 7r_}/.'S)and their ratios are needed in equations (34) to (36).
These cross sections, defined by equation (225, are the same as those used by Yes (refs. 7 to 9). In

addition to the formulas given by equations (23) for the Coulomb collision integrals, the following

relations are employed:

7_(1,1) 1016 (433)7r_tei = 0.795Z2Qc ×

7r_12s'2)=_ 1.29Z2Qc x 1016 (43b)

where the subscripts c and I represent electrons and ions, respectively, and Z = 1 for singly ionized

species, and Qc is defined in equation (23d).

The NATA (Nonequilibrium Arc ]5mnel Analysis) code (refs. 39 to 41) employed t'o obtain the

collision cross sections 7r_l_"_')contains- default provisions for estimating some cross sections if they

are not specified explicitly in the built-in data base or the input. The defaults are summarized as

follows:

1. If both species are ions, the Coulomb cross sections given by equations (23) and (43) are

Use&_

2. If one species is neutral and the other is ionized, the formula

_(t.s) = A(l,S)T_O;4=
7r_tij' (44a)

is employed with the constants A (l's) defined in the code.

3. If both species are neutral and are not alike, the cross sections are estimated using the

simple mixing rule

1
, oo + (44b)Jtatij = _

9 For flows with thermal equilibrium, p_ = n¢:kT may be used to obtain the electron pressure. For thermal nonequilibrium
conditions, the electron temperature Tc should be employed instead of T in the previous equation of state.
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Tile built-in data in NATA specifystepsfor calculatingthe crosssectionsfor the like-like
interactionsof tenspecies(e-, N2,02, N, O, NO,NO+, N+, O+, andN_-)andfor thoseunlike
interactionsfor whichexperimentalor theoreticalcrosssectionsareavailablein tile literature.The
crosssectionsfor O_ arc the sameas thosefor N+ in thesecalculations.NATA contains12

_(1,1) 12,2), z,'methodsor optionsfor calculatingzr_zij , zr_ and B*.' these methods are described in detail
in references 39 to 41. Reference 59 provides a comparison between the theoretical calculations

based on these cross sections and the experimental wdues for the thermal conductivity of nitrogen

up to temperatures of 14000 K; fairly good agreement between the two is shown. The accuracy

of the calculated transport properties is largely determined by the accuracy of the input data for

the cross-section integrals. Reference 7 contains a detailed discussion of the values employed in the

present study, and a brief review of these values is provided in the following paragraph.

Similar to the collision cross sections for single-species transport properties described previously,
_(l,s) ,

the vahles of 7r_gij lor mixture transport properties for the atomic and molecular interactions have
been obtained from the calculations of Mason (ref. 48) for temperatures up to 15000 K. The cross

sections for the interactions not tabulated by Mason were assumed to be approximately the same

as the other neutral-neutral interactions. For temperatures above 15000 K, the cross sections for

the atomic and other neutral-neutral interactions were obtained by extending Mason's calculations

up to 30000 K by using the same potential functions that were used in his work (ref. 60). Since

neutral species are not import.ant at high temperatures, the effect of this procedure on the overall

transport properties should be negligible. Further, there appear to be insufficient data available on

the ion-neutral interactions. These interactions have been calculated from the approximate potentials

given by Peng and Pindroh (ref. 52). Those potentials were obtained by drawing a smooth curve

joining the polarization potential at large intermolccular distances to a Morse potential obtained

from spectroscopic data at short distances. Further details for obtaining the interactions between

a neutral species and its own ion with resonant and nonresonant ion-neutral collisions are given

in references 7 and 8. There h_ been a lot of experimental work on the electron-molecule cross

sections, where_ the cross sections for electron-atom scattering are somewhat uncertain, as detailed

in reference 7. For Coulomb collisions between the charged particles, effective collision integrals

were chosen in reference 7 so as t.o make the calculated values of the electrical conductivity and the

electronic contribution to the thermal conductivity agree as closely as possible with the remflts for

a completely ionized gas.

Figures 8 and 9 show viscosity and frozen thermal conductivity values, respectively, of equilibrium

air at 1 atm obtained by employing the collision cross sections computed here for the constituent

species. The present calculations employ" equation (39) for tile mixture viscosity and equations (37),

(38), and (40) for the mixture frozen thermal conductivity. Also, the collision cross sections used

are nearly identical t.o those obtained in reference 9. The mixing laws employed for the viscosity and

thermal conductivity shown in figures 8 and 9 are accurate for subionization temperatures (less than

9000 K at 1 atm) only. For ionized flows, more accurate mixing laws of the type given in equation (30)

should be employed. Figures 8 and 9 also include viscosity and thermal conductivity values from

other sources for comparison. In these figures, the predictions of Peng and Pindroh (ref. 52) and Esch

et al. (ref. 61) are based on the Buddenberg-Wilke (ref. 55) type of mixture law and have the same

level of approximation as the present calculations. The mixture laws employed by Hansen (ref. 37)

and Svehla (ref. 44) contain a somewhat lower level of approximation. In Hansen's and Svehla's

work, the viscosity is computed by using the simple summation formula for a mixture of hard-sphere

molecules, whereas a linearized expression with Eucken's assumption (ref. 36) is used for the frozen

thermal conductivity. The viscosity values obtained in the present work are in good agreement

(fig. 8) with the values obtained by Peng and Pindroh (ref. 52) and Esch et al. (ref. 61), presumably

because of the similar mixing laws. Hansen's (ref. 37) predictions, which are based on the Morse

potential flmetion, are lower, especially at higher temperatures. Svehla's (ref. 44) predictions, which

a_e based on the Lennard-Jones potential, are also lower than the present results for temperatures
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higher than 2500 K. Even with the beginning of dissociation of molecular nitrogen at about 4000 K

(when the dissociation of molecular oxygen is almost complete), Hansen's values of viscosity are

not much different from Sutherland's law. For the frozen thermal conductivity (fig. 9), the present

values are in agreement with those obtained by Peng and Pindroh (ref. 52) up to temperatures of

about 9000 K. The values obtained by Esch et al. (ref. 61) deviate from the present values beyond

6000 K. This deviation may be due to the constant cross-section values that are used for the ionized

species in the 8000 to 15 000 K temperature range in reference 61. Hansen's predictions of thermal

conductivity are lower than the other data and are closer to the Sutherland values up to temperatures

of about 4000 K. Again, the differences between the present computations and those of Hansen are

presumably due to the somewhat more rigorous mixing laws employed herein. Svehla (ref. 44) has

not provided values of the frozen thermal conductivity for equilibrium air and, therefore, his values

are not shown in figure 9.

There are 121 possible binary interactions for the dissociating air with 11 species. Therefore,
- _(L1)-_(2,2)

121 values of each of thc collision cross sections 7r_gij , 7radii , and the collision cross-section

ratio Bi* are required to evaluate the transport properties. If the symmetrical equality is used,
i.e., (i,j_ = (j, i), only 66 values of each cross section and cross-section ratio are required. These

values have been curve-fit in the present study as a function of temperature for the limiting electron

pressure Peln (eq. (23g)) using the following relations

7r_j,1)!l = exp (Did(i,1)) T ', ,, ij _ (45)

7r_j,2)!2 = exp (D_12,2)) T _ '_ " 'J (46)

Curve-fit coefficients in equations (45) to (47)are given in tab!es VIII to X for all interactions in the
11-species air model. Similar to the calculations for the equilibrium constant and thermal conductiv-

ity, the collision cross sections should be evaluated from the logarithmic forms of equations (45) and

(46) by keeping all four significant digits for the coefficients given in tables VIII to X. For electron

pressures different from Pem, the formula given by equation (24b) is used to correct the cross sections

for the ionic species. No such correction is required for the cross-section-ratio parameter B[j.
Figurc 10 illustrates some typical curve-fits that were obtained by using equation (42c) and

equations (45) to (47) with thc associated constants. The figure compares the computed values of

binary diffusion coefficient, collision integrals, and collision-integral ratio with the resulting curve-fit

for different interaction pairs of neutral and ionized species, including electrons. The collision-integral

ratio, B_'. is almost constant with temperature as shown in the figure and was fitted with the lower
Et

-(l _)
order curve-fit when possible. The collision integrals 7c_2ij" for the charged species pairs show a

simple T -2 dependence that requires only two curve-fit coefficients, as seen in equations (23).

Thermal Nonequilibrium

The transport properties of a multitemperature gas mixture may be obtained by following thc

approaches of references 27 and 62. These references have used equations (39) and (40) for the

calculation of mixture viscosity and translational thermal conductivity. The collision integrals

for heavy particles in these equations are evaluated by using the heavy-particle translational

temperature, whereas those for electrons with any other partner are obtained by using the electron

temperature. With these modifications, equations (39) and (40a) can be written for a gas mixture
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a.s

i=l xj Aij (T) + Xe
L j=l j=l

Ktr = (2.3901 x 10 -s) k E NS-1 A,,)(T)
i=l _ O_ijX j + 3.54xe Ai e(2)(Te)

j=l

(48)

(49)

where c_ij is still obtained from equation (40b). The above definition of Kt*r does not include

contributions due to electron-heavy-particle and electron-electron collisions. These contributions,

defined by Ke, are given subsequently. The approach outlined here may also be used to obtain the

mixture viscosity and thermal conductivity from the more exact expressions in equations (30) to (36).

Equations (38) for the internal thermal conductivity need to be modified for the multitemperature

formulation. The contributions resulting from the excitation of different internal energy" modes

cannot be lumped together into a single term Kin t for such a formulation. Further, equation (37)

can no longer be used to obtain a frozen thermal conductivity for the mixture. The relation given

in equation (37) may be used to obtain a frozen thermal conductivity with only the rotational

mode contributing to the internal energy at the translational temperature. In general, there are

four components of the internal thermal conductivity, similar to the molecular specific heat (fig. 4).

Using these components, the kth component of the overall heat-flux vector can be expressed as

= K . OT _ K 0Tvib
qk -(Kt* r -F rot) _x k vib Oqx--_

--- K OTcl _ OTe NS
- + Z P h V/k (50a)

i=1

where K_r is the translational thermal conductivity defined previously by equation (49) and /(rot,

Kvib, and /(el are the rotational, vibrational, and electronic thermal conductivities, respectively,

associated with these internal energy modes (ref. 63). Also, Ke is the thermal conductivity of

electrons, T is the translational-rotational temperature, Tvi b is the vibrational temperature, Tel is

the electronic excitation temperature, Te is the electron temperature, x k is the kth component in a

general orthogonal coordinate system, and the last term is the diffusive component of the heat-flux

vector. In the diffusive heat-flux component, Pi, hi, and V/k are the density, enthalpy, and diffusion

velocity of species i, respectively. Further details of the heat-flux vector qk and other definitions are

given in appendix A. For a two-temperature model, equation (50a) may be written (refs. 25 and 27)
as

= K . OT OTve NS
qk --(Kt*r 4- rot)_-xk -- (/(vib + /(el + Ke)_ + E pihi vik (50b)

i=1

Different components of the internal thermal conductivity in equations (50) can be evaluated

from equation (38a) or (38b) by appropriate modifications for these components. For example,/(rot
can be obtained from

I_ _,.iv (51a)(Krot)partial = 2.3901 x 10-Sk E 1 ....

excitation i=Inol. Xj z_I_)(T ) +x e n_)(T¢)

I, j=l
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= 2.3901× lO-Sk _ {i=mol.

n'miv j

NS-1

A!!)(T) +.re /xie (c)xj U , (1) T,

j 1

(51b)

for partial excitation of the rotational internal energy mode if the temperature is less than that

needed to excite the vibrational energy mode (fig. 3). Values of specific heat at constant pressure

Cp.i in equation (51a) can be obtained from the curve-fit relation of equation (13) by employing the

rotational temperature Trot if different from the translational temperature T. In equation (51b),

(Cp.i)ro t is the rotational component of the total Cp,i. When the vibrational mode begins to excite,

the rotational mode is fully excited, and equation (51a) becomcs

xi } (51e)
(Kvib)rull ----2.3901 x 10 8k E Ns-1

ex,.i,_.tion (1) A(1) _ .;=mo_. E _:j 5,j (T) + _ _i_ (_)
j=l

Similarly, expressions for Kvi b with partial and full excitations of the vibrational energy mode may

be written as

(K..il,)p_,,-ti_l = 2.3901 x 10-8k E
excitation i=nlol.

= 2.3901 x 10-8k E
i=mol.

n univ

NS 1 (1) (1) ,

j 1

(52a)

(52b)NS-1

(t) T) + A(1)fZv'/. :9 Ai:; ( xc i_,, ,,
j=l

and

xi (52c)
(Kvib)fi,:_it_,,io_ = 2.3901 x 10 8k _ NS-1

AfU(T_ A(1)/Ti=mol. E Xj ij , , + xc ie. _. c]

j=l _:_

Once again, the value of Cp,i in equation (52a) can be obtained from the curve-fit relation.... of

equation (13) by employing Tvib; also, in equation (52b), (Cp,i)vib is the vibrational C0mponeiit

of the total Cp,i. The vibrational energy mode is fully excited when the electronic contribution

becomes significant (as shown in fig_4 for the specific heat at. constant pressure).
The rotational and vibrational energy modes arc ahnost fully excited at their respective

characteristic temperatures. Therefore, for rotational and vibrational temperatures greater than

these characteristic temperatures, equations (51b) and (52b) can be used to obtain Krot and h\qb,

respectively.
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Expressionsfor /(el with the excitation of electronic energy mode can be written as

NSI{Kel = 2.3901 x 10-8k E
i=1

NS 1{

= 2.3901 x 10-8k
i=1

Cp.i(T(,I) 9] X }NS 1 --(I)'T' -- x A(1)/T, '
E :rj z.._ij (. ) t c ie (. ()
j=I

• L/lltlV J

NS-1 A(1)(T ) A(1)gT '
Xj ij " J + Xc "-_ic _ c j

j=l

(53a)

(53b)

In equation (53a), higher electronic degeneracy levels begin to contribute to K d (and Cp.i, etc.) e_s

the characteristic temperatures for the electronic excitation of those degeneracy levels are reached.

The term (@,/)el in equation (53b) is the electronic contribution to the total Cp,i. The species that
is left out in the outer summation in equations (53a) and (53b) is the electron.

Finally, the thermal conductivity for free electrons Kc in equations (50) may" be obtained from

the modified form of equation (40a) as follows:

8 15
Kc = (2.3901 x 10- ) 4-NS-1

E
j=l

kx(,

A(2)rT _ A(2)

(54)

This thermal conductivity results from the collisions between electrons and other species, including

other electrons.

In equations (51) to (53) for the partial conductivities in thermal nonequilibrium, the diffusion

rates of tile excited species are assumed to depend on the translational (or kinetic) temperature of the

molecules rather than on the excitation temperature, because the collision frequency of the species

is likely to depend strongly on tile translational telnperature. Therefore, the cross sections A}})-

in tile denominators of these equations are evaluated at the translational temperature T. Perhaps

employing some averaged temperature, which would cover the effects of translational temperature

and excitation on the cross sections, would be more desirable.

Concluding Remarks

The present work provides a review of tile reaction-rate coefficients and thermodynamic and

transport properties for an ll-species air model that are needed in analyzing the high-energy flow

environment of currently proposed and future hypersonic vehicles. The properties not available in

the literature have been provided for this set of species, and curve fits are given for the various species

for their efficient computation in flow-field codes. Approximate and more exact fornnflas have been

provided for computing the properties of partially ionized air mixtures in chemical and thermal

nonequilibrium around such vehicles. Linfitations of the approximate mixing laws for a mixture

of ionized species are pointed out, and an electron number-densitY correction for the transport

properties of the charged species is given. This correction has generally been ignored in the aerospace

literature.

The work presented here uses the best estimates of available data needed to compute properties of

the 11-species air model. However, there is need for improved data, especially for air in thermochem-

ical nonequilibrium. There is a considerable degree of uncertainty about reaction-rate coefficients

at high temperatures. For the multitemperature kinetic models, the theoretical basis needs to be
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developed substantially and the experimental data base needs to be expanded considerably. The

virial-coefficient and partition-function approaches for obtaining the thermodynamic properties are

equally accurate at high temperatures if the effects of nonrigidity of the rotor and anharmonicity

of the oscillator are included in the two methods. The curve fits provided here are for the thermo-

dynamic properties based on the virial-coefficient formulation with these high-temperature correc-

tions. These values seem adequate but need further verification. For transport properties, the input

data for obtaining the collision cross sections at high temperatures require further study.

=

32



Appendix A

Heat Flux, Frozen and Total Prandtl and Lewis Numbers, and Associated Definitions

The kth component of the overall heat-flux vector qk for the dissociating and ionizing air model in a
multitemperature formulation can be expressed as follows: :0

= K " OT 0Tvi b OTel OTe NS
qk -(gtr + rot)0_xk -- Kvib Oz k gel_k-xk - Ke_xk + E pihiYik (ml)

i=l

where the various symbols are explained in the main text after equation (50a). For thermal equilibrium
conditions, equation (A1) may be written as

NS

= K" OT
qk -(K_r + Krot + Kvib + Kel + e)_x k + E pihivik

i=1

(A2)

or

where

and

qk K OT NS
= - f_xk + _ pihiVi k (A3)

i=1

Kf = (K_r + Ke) + Kint

Kint = Krot + Kvib + Kel

Als0, under thermal equilibrium conditions,

(A4)

(A5)

Ktr = Kt*r + Ke (A6)

where Ktr is given by equation (40a), K_r is obtained from equation (49), and Ke is evaluated from
equation (54). The last terms in equations (A1), (A2), and (A3) represent the diffusion contribution to
the heat-flux vector. The diffusion mass flux of species i, j/k, is related to the diffusion velocity V,.k through
the relation

= (AT)

or, in terms of the concentration gradients, may bc cxpressed (refs. 64 and 65) as

dik -- # Lei + Abil

Npr,f _xk l=lb_i _Xk)

where pressure and thermal diffusion have been neglected and where

NS /NS

J=: A.Ij Lef,ij
jyti

Abil = Lei - _- L.f,i I + 1 -- Ml ] j=:

j#i

l0 The heat-flux vector is positive for heat flow in the positive coordinate direction.

(A9)

(A10)
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Tile multicomponent Lewis number Lf, ij and the binary Lewis number Lef, ij are defined, respectively, as

Lf,ij = pCpf Dij/Kf (All)

and

L e f,ij = PCp f Dij /K I (a 12)

where _)ij is the multicomponent diffusion coefficient that can be obtained from the binary diffusion coefficient

following the approach of reference 65.

For binary diffusion, equation (AS) may be simplifed to (ref. 64)

@, = _pDi j OCi (A 13)
coxk

If the species j is assumed to be some effective mean species for the gas, then using equations (A7) and (A13)
in equation (A3) gives

= K OT NS D..h. OCi (A14)qk - 1_-p_ '_ '0x_
i=1

or, for chemical equilibrium flow applications,

or / Ns D,,h.OC"_ o:r

or

qk = - K OT
Ox k

where K is the total effective thermal conductivity defined as

NS D-.h .OCiI'_=Ig+P_ " 'or
i=1

or

K = Kf + Kr

with the reactive contribution to the thermal conductivity Kr defined as

7

(A15)

(A16)

(A17)

(his)

Nv_SD t OCi
Kr = p 2_.., 0 z.i

i=1

(A19)

for chemical equilibrium conditions.

An alternate definition of the reactive thermal conductivity n [l"r for a flow in chemical equilibrium is given
in reference 7 as

/(r = k E NS N

'=' E [(9_,,-_,,)/_1E [(_,,- _,,,>_-(gj,,- _j,,)< _,I_)
i=1 j=l

(A20)

I1 The formula for K,. given here already' includes the effects of ambipolar diffusion (ref. 66) on the reaction conductivity of an ionized

ge_.
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wherek is the Boltzmann constant, NI1R is the total number of independent reactions in the system, NS is
NS

the total number of species in the system, Ah l = _ (_i,1 - cti,l)hi is the heat of reaction per g-mole for
i=t

the /th reaction, zi is the mole fraction of species i, AI_) is defined by equation (34), and c_:i,t and _i,l are

the stoichiometric coefficients for reactants and products in the reaction given by equation (1). The ttlermal

conductivities Kr given by equations (A19) and (A20) are equivalent under conditions of chemical equilibrium.

Similar to relations (A17) and (A18), the total specific heat at constant pressure may be defined as

or, from equation (9),

or

with

( Oh _ (A21)
cv = kST/p

+ oci' 
Cp = Cpf \i=1 hi p

(A22)

Cp = Cpf + Cp,. (A23)

c,,. = h,
\i=1 p

where Cp,. is tile total contribution to the specific heat at constant pressure.
The specific heat at. constant volume Cv may be obtained from

(A24)

where

0c) (A25)C,, = _ v

NS

e = __. Ci(hi - Pi/Pi) (A26)
i=1

This equation may be used with equation (A21) to obtain the ratio of specific heats q from

7 = Cp/Cv (A27)

Using tile various definitions for the thermal conductivity and the specific heats at constant pressure, the

frozen and total Prandtl and Lewis numbers usually employed in dimensionless heat-flux calculations may now
be defined. _2

Generally, the frozen values of specific heat at constant pressure and thermal conductivities are employed

in flow-field calculations. Associated heat flux from these calculations is, accordingly, expressed in terms of the

frozen Prandtl and Lewis numbers. Alternatively, one may also use total values of specific heat at constant

pressure and thermal conductivity in flow-field computations. In this case, the heat flux may be expressed in

terms of the total Prandtl and Lewis numbers. However, the total values of Cp and K, as well as those of the
total Prandtl and Lewis numbers, can be used only with calculations involving thermal equilibrium. This is

obvious from the definitions of K and Cp given by equations (A18) and (A23), respectively.
The frozen Prandtl number and Lewis numbers are defined as

Npr,f = Cpf_/Kf

Le f,ij = pCpl Dij / I_

I_ Kenneth Sutton of NASA Langley Research Center provided some of these definitions in an unpublished memo.

(A28)

(A29)
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whereCur and Kf are defined by equations (9) and (37), respectively. Generally, the subscript f is not used
in the literature to denote the frozen Prandtl and Lewis numbers as is done here.

The total Prandtl and Lewis numbers (consisting of both frozen and reactive components) are defined by

employing the total values of Cp and K as

Npr = Cptt/K (A30)

Leij = pCpDij/K (A31)

where Cp and K are defined through equations (A22) and (A18), respectively. Reference 37 gives similar
definitions of the total Prandtl and Lewis numbers. The frozen values defined by equations (A28) and (A29)

are denoted as partial values in reference 37 and are denoted as Pr I and Lc _ therein.
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Appendix B
Procedure For Obtaining the Heats of Formation at 298.15 K

Asmentionedin themaintext, varioussourcesprovidetabulatedvaluesofthespeciesspecificenthalpyand
freeenergybasedonareferencetemperatureof0 K.Totransformthesethermodynamicvaluesto the298.15K
reference,theheatof reactionisrequiredat thenewreferencetemperature.Thegeneralmethodemployedfor
this transformationinvolvescalculationof theheatof formationfor thereaction

Reactants Products
&rXi (B1)

i=1 i=1

For illustration, the following reaction for the formation of atomic nitrogen, N, may be considered:

1
:N2 ---* N (B2)
2

The heat of formation of a substance is defined as the change in enthalpy created by its production. Since

the enthalpy is a point function of temperature and is independent of the path used to arrive at that point,

the reactants may be cooled from the reference temperature of 298.15 K to 0 K, thus allowing the formation

reaction to occur at the lower temperature. The products may then be heated to the reference temperature of

298.15 K. Through this process we can obtain the heat of formation of atomic nitrogen, N, at 298.15 K by the

following relation:

(AhfN)T=298.15 = (AhIN)T=0 + Ahl + Ah2 (B3)

where

Reactants

Ahl = __, ai,r [(hi)r=o - (hi)T=298.15] (U4a)
i=1

1
= _ [(hN2)T=0 -- (hN2)T=298.15 ] (B4b)

Products

Ah2 = ___ /3i,r [(hi)T=298.15 - (hi)r=o] (B5a)
i=1

= [(hN)T=298.15 -- (hN)T=0] (B5b)

The reference species used here as reactants in the formation reactions are N2, O2, and e-. Care should be

taken in selecting the reaction for the formation of a particular compound. The reactions used for the formation

of each substance, along with the heats of formation at 0 K and 298.15 K, are listed in table B1. The heats
of formation at 0 K are taken from reference 38. The procedure for obtaining the heat of formation for any

substance at 298.15 K from the corresponding value at 0 K is illustrated in figure B1.
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TableB1. Reactionsfor theFormationof VariousSubstancesWith Heatsof Formation

Substance Reaction

N

O

N+

O+

NO

NO+

oI

e-

1 N2_N

½0_O

_- N2 _ N + + e-

½ O2---_O+ +e -

N2+ ,_o_-_NO

½ N2+l O2_NO++ e-

N2 _ N + + e-

O2 _ O_- + e-

112.973

59.553

449.840

374.949

21.580

( /k h.[ )T=O,

keal/g-mole

112.529 + 0.024

58.984 ± 0.024

447.694 ± 0.1

373.024 + 0.024

21.457 ± 0.04

236.660

360.779

279.849

0.0

235.180 + 0.2

359.298 & 0.01

278.370 + 0.2

0.0
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Reactants
at 298.15 K

T

(Ah if) T=298.15
is unknown

Reactants

Ah 1 = T_.,ai, r [(hi)T=0-(hi)T=298.15]
i=1

Reactants
at OK

(Ah if) 0

is known
from
tabulated
data

Products --. Products

_" Products _ (hi)T=0] at 0 Kat 298.15 K Ah2= T_, _i,r [(hi)m=298.15
i=1

Figure B1. Flow chart for obtaining heat of formation at 298.15 K from corresponding value at 0 K.
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Appendix C

Sample Program To Evaluate Thermodynamic Properties From Polynomial Curve

Fits

This appendix is a sample Fortran subroutine which evaluates the species specific heats and enthalpies for an

11-species air model using polynomial curve fits as functions of temperaturc. Five temperature ranges are used

for each species for temperatures between 300 K and 30 000 K. Properties evaluated near the temperature range
boundaries are smoothed by linearly averaging the polynomial coefficients to assure continuous derivatives. The

subroutine may be easily modified for different needs.

SUBROUTINE THERMO (T,CP I,HI)

Computes enthalpy and specific heat for ii species by

approximating polynomials. Polynomial coefficients are stored in

arrays A1 to A6 and are linearly averaged at the temperature range
boundaries.

C

C

C

C

C

C

C

C

C

C

C

C

40

20

input: T temperature, K

output: CPI specific heats of the species, cal/g-mole-K

HI enthalpies of the species, cal/g-mole

DIMENSION AI(II,5),A2(II,5),A3(II,S),A4(II,5),A5(II,5),A6(II,5)

DIMENSION P(6),CDEF(II,5,6)

DIMENSION CPI(II),HI(II)

EQUIVALENCE (AI,CDEF)

Universal gas constant, cal/g-mole-K

DATA UNIR /1.987/

Coefficients are input for five temperature ranges

K=4

L=5

IF(T.GT. 15500.)G0 TO 20

K=3

L=4

IF(T.GT.6500)GO TO 30

K=2

L=3

IF(T.GT.12OO.)GO TO 40

K=I

L=2

PA=I. 0

PB=O. 0

IF(T.LE.SOO.)GO TO 50

PB=(I ./400. )* (T-800.)

PA= I.O-PB

GO TO 50

CONTINUE

PA=I. 0

PB=O. 0

IF(T.LE.5500.)GO TO 50

PB= (i./i000. )* (T-5500.)

PA=I. O-PB

GO TO 50

CONTINUE

PA=O. 0

PB= 1.0

4O



3O

5O

C

IF(T.GE.25500.)GO TO 50

PA=I. 0

PB=O. 0

IF(T.LE.24500.)G0 TO 50

PB=O. 001. (T-24500.)

PA=I. O-PB

GO TO 50

CONTINUE

PA=I. 0

PB=O. 0

IF(T.LE.14500.)GO TO 50

PB=O. 001. (T-14500.)

PA=I. O-PB

CONTINUE

T2=T*T

T3=T2*T

T4=T3*T

TOV=I.O/T

C Compute properties for ii species

DO 65 I=l,ll

DO 60 J=l,6

60 P(J)=PA*COEF(I,K,J)+PB*COEF(I,L,J)

HI(I)=UNIR*T*(P(1)+O.5*P(2)*T+P(3)*T2/3.+O.25*P(4)*T3

I +0.2*P(5)*T4+P(6)*TOV)

CPI(I)=UNIR*(P(1)+P(2)*T+P(3)*T2+P(4)*T3+P(5)*T4)

65 CONTINUE

RETURN

END
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Table I. Third Body Efficiencies Relative to Argon*

Catalytic
bodies

M1

M2
Ma
M4
e-

Efficiencies relative to argon of--

02 N2 O N NO NO + O_- N +

Z(j_NS), i (i=1)(i=2)(i=3)(i=4)(i=5)(i=6)(i=7)(i=8)
1,i 9 2 25 1 1 0 0 0
2,i 1 2.5 1 0 1 0 0 0
3,i 1 1 20 20 20 0 0 0
4,i 4 1 0 0 0 0 0 0
5,i 0 0 0 0 0 1 1 1

O+ (i(i = 9)
0
0
0
0
1

N +

= I0)
0
0
0
0
i

*Extension for the 11 species and 5 catalytic bodies is based on the work of reference 17.
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Table V. Constants for Viscosity* Curve Fits

(1000 K < T G 30000 K) l

Species:I: Api BI, i CI, i

N2

02

N

O

NO

NO +

e-

N +

O +

o3

0.0203

.0484

.0120

.0205

.0452

0

0.4329

-.1455

.5930

.4257

-.0609

2.5

-11.8153

-8.9231

-12.3805

-11.5803

-9.4596

-32.0453

-37.4475

-32.4285

-32.3606

-32.0827

-32.0148

* Viscosity is obtained in g/cm-sec.
For temperatures less than 1000 K, Sutherland's viscosity law for air may

be used for all species.

The charged species viscosities given here are for the limiting electron

pressure Peru (eq. (23g)). For different electron pressures, these values should

be corrected by tile formula given in equation (24a) in the main text.
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TableVI. Constantsfor FrozenThermalConductivity*CurveFits
(1000K _<T _< 30 000 K)t

Species:_ Ah.[, i BKI,i CKj,,i DKI, i EKLi

N2

02

N

O

NO

NO +

e-

N +

O ÷

0.03607

.07987

0

0

.02792

-1.07503

-2.58428

0

0

-.87133

11.95029

31.25959

.01619

.03310

10.17967

-57.90063

-166.76267

.55022

.22834

-52.03466

-.06836

0

0

-.04013

0

-.08373

2.57829

0

0

1.32468

-.03723

2.75459

-35.72737

.00032

.03088

-16.22091

.84192

-33.74529

219.09215

2.49375

2.06339

89.96782

-3.59040

185.13274

93.21782

321.69820

-12.92190

-11.58116

88.67060

-519.00261

-27.89805

-31.51368

-208.57442

-18.65620

-401.50753

* Thermal conductivity is obtained in cal/cm-sec-K.

t For temperatures lower than 1000 K, Sutherland's law for thermal conductivity of air may
be used for each species.

:_ The charged species frozen thermal conductivities given here are for the limiting electron

pressure Peru (eq. (23g)). For different electron pressures, these values should be corrected by
the formula given in equation (24a) in the main text.
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Table VII. Constants for Diffusion Coefficient* Curve Fits

Pair

numberl

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

Interaction

pair (i - j)

N2- N2

02- N2

02- 02

N - N2

N - 02

N-N§

O - N2

O - 02

O-N

O-O_

NO - N2

NO - 02

NO - N

NO - 0

NO - NO

NO +- N2

NO +- 02

NO +- N

NO +- 0

NO +- NO

AD_j B_,j

0.0112

.0465

.0410

.0195

.0179

.0033

.0140

.0226

-.0048

.0034

.0291

.0438

.0185

.0179

.0364

0

.0O47

CDij

1.6182

.9271

1.0023

1.4880

1.4848

1.5572

1.5824

1.3700

1.9195

1.5572

1.2676

.9647

1.4882

1.4848

1.1176

1.9000

1.9001

1.8999

1.9000

1.5552

D_,j

-11.3091

-8.1137

-8.3597

-10.3654

-10.2810

-11.1616

-10.8819

-9.6631

-11.9261

-11.1729

-9.6878

-8.2380

-10.3301

-10.3155

-8.9695

-13.3343

-13.3677

-13.1254

-13.1701

-11.3713

Temperature

range, K:_

Footnotes at end of table, page 60.
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Table VII. Continued

Pair

nmnber _

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Interaction

pair (i - j)

NO + - NO +

e-- N 2

e-- 0 2

e -N

e--- O

e-- NO

e-- NO +

e--c-

N +- N 2

N +- 02

N +- N

N +- O

N +- NO

N +- NO +

N+_e -

N + _ N +

O +- N2

O +- 02

O +- N

O +- O

0

-.1147

-.0241

-.0029

0

.0581

.2202

.2871

0

B_,j

0

2.8945

.3464

.0856

0

-1.5975

-5.2261

-8.3759

0

.0033

0

1
.0034

_-Dij

3.5000

-23.0085

.1136

.6655

1.5000

15.4508

42.0630

82.8802

3.5000

3.5000

1.9000

1.9000

1.5572

1.9000

1.8999

3.5000

3.5000

3.5000

1.9000

1.9000

1.9000

1.5572

-30.3210

65.9815

-1.3848

-.8205

-2.9987

-40.7370

-106.0937

-267.0227

-25.2128

-24.8662

-13.1144

-13.1357

-11.1616

-13.0028

-13.1254

-30.0951

-25.2128

-29.9401

-13.1578

-13.1810

-13.0028

-11.1729

Temperature

range, K{

1000 to 9000

9000 to 300000

1000 to 8000

8000 to 30000

Footnotes "at end of table, page 60.
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TableVII. Continued

Pair
numbert

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

Interaction
pair (i - j)

O +- NO

O +- NO +

O +- c-

O +_N +

O +_O +

N +- N2

N +- 02

N +- N

N +- O

N +- NO

N_-- NO +

N +- e-

N + _ N +

N +_ O +

O +- N2

O +-O2

O_-- N

02+- O

A_j BDij CDij

1.9000

3.5000

1.9000

3.5000

1.9000

ODi I

-13.1701

-30.1395

-25.2128

-29.9722

-30.0066

-13.3173

-13.3495

-13.1144

-13.1578

-13.3343

-30.3036

-25.2128

-30.0839

-30.1273

-30.2867

-13.3173

-13.3495

-13.1144

-13.1578

Footnotes at end of table, page 60.

Temperature

range, K:[:
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TableVII. Concluded

Pair
numbert

60

61

62

63

64

65

66

Interaction
pair (i - j) ADij

O +- NO

O +- NO +

O +- e-

O + _ N +

O +_ O +

or-

0

BDij C_,j

1.9000

3.5000

D-_ij

-13.3343

-30.3036

-25.2128

-30.0839

-30.1273

-30.2867

-30.2867

Temperature

range, KS

*Diffusion coefficients are obtained in cm2-atm/sec. Diffusion coefficients obtained from these curve

fits are for the limiting electron pressure Pem (eq. (23g)). For different electron pressures, the cross sections
should be corrected by the formula given in the main text when the interacting pair of species are both

ions or electrons or a combination of the two. Diffusion coefficients for N + and O + are taken to be the
same.

tCross sections 1 to 15 are used in a 5-species air model and 1 to 28 in a 7-species model.

J;The temperature range for all curve fits is 1000 < T < 30 000 K, except where noted.

§Coefficient for diffusion of internal excitation energy Gee p. 20).
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-(I,1),
Table VIII. Curve-Fit Constants for Collision Cross-Section _ij

Pair

numbert

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Interact ion

pair (i - j)

N2 - N 2

02 - N2

02 - 02

N - N2

N - 02

N-N

O - N2

O 02

O-N

O-O

NO N2

NO - 02

NO - N

NO - O

NO NO

NO + - N2

NO + - 02

NO + - N

NO + - 0

NO + - NO

NO + - NO _

A_I_,1 ) Bfi}j,1)

0 -0.0112

-.0465

-.0410

-.0194

! -.0179

-.0033

-.0139

-.0226

.0048

-.0034

-.0291

-.0438

-.0185

-.0179

-.0364

0

-.0047

"" 0

-0.1182

.5729

.4977

.0119

.0152

-.0572

-.0825

.1300

-.4195

-.0572

.2324

.5352

.0118

.0152

.3825

-.4000

4.8464

1.6185

1.8302

4.1055

3.9996

5.0452

4.5785

3.3363

5.7774

4.9901

3.2082

1.7252

4.0590

3.9996

2.4718

6.8543

-.0551

-2.0000

4.8737

23.8237

Temperature

range, KS

Footnotes at end of table, page 64.
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Table VIII. Continued

62

Pair

number i

22

23

2,1

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Interaction

pair (i - j)

e N 2

e 02

c N

c 0

e NO

e NO +

e e

N- N2

N* 02

N* N

N* O

N + NO

N _ NO !

N * e

N ÷ N +

0 _ N2

O* 02

O + N

O _ O

.1147 -2.8945 24.5080 -67.3691

Temperature

range, K{

.0241 -.3467

.0025 -.0742

0 0

.0164 -.2431

1.3887

.7235

0

1.1231

-0.0110

-0.2116

1.6094

1.5561

1000 to 9000
9000 to 30000

1000 to 9000
-.2027

-.2202

-.2871

0

5.6428

5.2265

8.3757

0

-51.5646

-40.5659

-81.3787

-2.0000

-2.0000

155.6091

104.7126

265.6292

23.8237

23.8237

9000 to 30 000

1000 to 8000

8000 to 30 000

-.0033

0

-.4000

-.4000

-.0572

.4000

6.8543

6.8543

5.0452

6.8543

-.0034

-.4000

-2.0000

-2.0000

-2.0000

-.4000

-.4000

-.4000

-0.0572

6.8543

23.8237

23.8237

23.8237

6.8543

6.8543

6.8543

4.9901

Footnotes at end of table, page 64.



Table VIII. Continued

Pair

number t

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Interaction

pair (i - j)

O* NO

O : NO _

O + e

O _ N +

0 _ O"

Ni N2

N,; 02

N_ N

N_ O

N_ NO

N_ - NO:

N_ e

N½ - N +

N½0 _

N½ - N_

o_ -N2

O_ 02

O,;-N
+

0 2 0

o,_- NO

0 -.4000

-2.0000

-2.0000

-2.O0O0

-2.0000

6.8543

23.8237

23.8237

23.8237

23.8237

Temperature

range, K{

-.4000 6.8543

-2.0000

-.4000

23.8237

6.8543

Footnotes at end of table, page 64.
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Pair

number t

61

62

63

64

65

66

Interaction

pair (i - j)

O_ - NO*

-e

O_ - N +

O_ - 0 +

O_ - N_

Table VIII. Concluded

-2.0000 23.8237

Temperature

range, K{

* Cross sections are obtained in _2, 1 A 2 = 10-16cm 2. Collision cross sections obtained from these

curve fits are for the limiting electron pressure Peru (eq. (23g)). For different electron pressures, the cross

sections should be corrected by the formula given in the main text when the interacting pair of species

are both ions or electrons or a combination of the two. Cross sections for N + and O_- are taken to be the
same.

t Cross sections 1 to 15 are used in a 5-species air model and 1 to 28 in a 7-species model.

The temperature range for all curve fits is 1000 N T < 30 000 K, except where noted.
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--(2,2)*
Table IX. Curve-Fit Constants for Collision Cross-Section flu

Pair

number t

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Interaction

pair (i - j)

N2 - N2

02 - N2

02 - 02

N - N2

N - 02

N-N

O - N2

0 - 02

O N

O-O

NO - N 2

NO - 02

NO - N

NO O

NO NO

NO + N2

NO+ - 02

NO + - N

NO + - O

NO* - NO

NO + _ NO +

e- - N 2

B-(2,2)
_ij

-0.0203

-.0558

-.0485

-.0190

-.0203

-.0118

-.0169

-.0247

.0065

0.0683

.7590

.6475

.0239

.0730

-.0960

-.0143

.1783

-.4467

4.0900

.8955

1.2607

4.1782

3.8818

4.3252

4.4195

3.2517

6.0426

-.0207

-.0385

-.0522

!

-.0196

-.0203

! -.0453

.0780 3.5658

.4226 2.4507

.7045 1.0738

.0478 4.0321

.0730 3.8818

.5624 1.7669

.1147 -2.8945

-.4000

-2.0000

24.5080

6.7760

I

L

24.3602

-67.3691

Temperature

range, K}

Footnotes at end of table, page 68.
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Table IX. Continued

Pair

number I

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Interaction

pair (i - j)

e 02

e N

e O

e NO

e NO _

e- e-

N _ N2

N- 02

N + N

N' O

N NO

N" NO'

N" e

N _ N _-

O* N2

O* 02

O _ N

O "_ O

O _ NO

,4 i(2.2)
"ij

.0241

.0025

0

.0164

-.2027

-.2202

-.2871

B (2,2)
*g

-.3467

-.0742

0

-.2431

5.6428

5.2265
8.3757

0

1.3887

.7235

0

1.1231

-51.5646

-40.5659

-81.3787

-2.0000

-2.0000

-.4000

-.4000

-.4146

-.4000

-.4000

-2.0000

-2.0000

-2.0000

-.4O00

-.4000

-.4000

-.4235

-.4000

Footnotes at end of table, page 68.

-.0110

-.2116

1.6094

-1.5561

155.6091

104.7126

265.6292

24.3061

24.3061

6.7760

6.7760

6.9078

6.7760

6.7760

24.3602

24.3061

24.3602

6.7760

6.7760

6.7760

6.7787

6.7760

Temperature

range, K{

1000 to 9000

9000 to 30 000

1000 to 9000

9000 to 30 000

1000 to 8000
8000 to 30000

66



Tat)leIX. Continued

Pair
numberf

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

Interaction
pair (i - j)

O _ NO *

O _ e

O _ N i

0 _ O-

N2" N,2

N2 + 02

N2 + N

N2 + - 0

N2 ÷ NO

N2 + - NO

N2 + e

N2 + N _

N2 + O *

N2 + N2 +

024 N2

O2 + -02

02 + N

02 + O

0 -2.0000

-.4000

-2.0000

-.4000

24.3602

24.3061

24.3602

24.3602

6.7760

24.3602

24.3061

24.3602

24.3602

24.3602

6.7760

Temperature

range, K{

Footnotes at end of table, page 68.
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TableIX. Concluded

Pair
numbert

60

61

62

63

64

65

66

Interaction
pair (i - j)

02 + - NO

02 + - NO +

02 + - e-

02 + - N _-

02 + O +

02 + N2 +

02 + 02 +

0 -.4000

-2.0000

6.7760

24.3602

24.3061

24.3602

Temperature

range, KS

* Cross sections are obtained in _2; 1._2 = 10-16cm2. Collision cross sections obtained from these

curve fits are for the limiting electron pressure Pem (eq. (23g)). For different electron pressures, the cross

sections should be corrected by the formula given in the main text when the interacting pair of species

are both ions or electrons or a combination of the two. Cross sections for N + and O + are taken to be the
; ?:2same.

t Cross sections 1 to 15 are used in a 5-species air model and 1 to 28 in a 7-species model.

The temperature range for all curve fits is 1000 _< T _< 30 000 K, except where noted.
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TableX. Curve-FitConstantsfor CollisionCrossSectionRatioBij

(1000 K _< T <_ 30000 K)

Pair

number _

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Interaction

pair (i - j)

N2 - N2

02 N2

O2 02

N - N 2

N 02

N-N

O - N 2

O 02

O-N

O O

NO N2

NO--02

NO - N

NO -0

NO NO

NO* - N2

NO + - 02

NO + - N

NO* - 0

NO + - NO

A%

-0.0073

-.0019

.0001

.0043

.0033

.0002

.0042

.0024

.0147

.0002

-.0045

-.0010

.0038

.0033

-.0027

0
I

I

.0003

0.1444

.0602

.0181

-.0494

-.0366

.0002

-.0471

-.0245

-.2628

0

.1010

.0410

-.0425

-.0366

.0700

0

-0.5625

-.2175

-.0306

.2850

.2332

.0537

.2747

.1808

1.2943

.0549

-.3872

-.1312

.2574

.2332

-.2553

.1933

.0632

Footnotes at end of table, page 72.
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7O
I
|
|
!

Pair

number t

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Interaction

pair (i - d)

NO _ NO +

e- N2

e- 02

e- N

e- O

e NO

e- NO _

e- c-

N' N2

N ¢ 02

N' N

N: O

N _ NO

N _ NO-

N + e-

N* N +

0 _ N2

O' 02

O * N

T;d_le X. Continued

Ap*j

.0002

0

1

.0002

CBf.
u

.4463

0

.4463

.4463

.1933

.1933

.0537

.1933

.1933

.4463

.4463

.4463

.1933

.1933

.1933

Footnotes at end of table, page 72.
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Table X. Continued

Pair

number t

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

Interaction

pair (i - j)

0 _ 0

O' NO

0 ' NO*

O_ c-

O' N _

0 + 0 _

N_-N2

N_-O2

N_-N

N_-O

N_-NO

N_-NO +

N_-o-

N_ -N _

N_-O +

+ +

N 2 -N 2

O_-N2

O_-O2

O_-N

%-0

AB_j

.0002

BB*.
LI

0

CB*

u

.0549

.1933

.4463

.1933

.4463

.1933

Footnotes at end of table, page 72.
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TableX. Concluded

|
!

Pair

number t

60

61

62

63

64

65

66

Interaction

pair (i - j)

O_-NO

O_-NO*

O_-e-

O_-N _

0_-0 +

O + N _2- 2

O_-O2 _

AB 5 BB*
U cB_

.1933

.4463

4

* The collision cross-section ratios are dimensionless parameters and are valid as given for

all electron pressures.

t Cross sections 1 to 15 are used in a 5-species air model and 1 to 28 in a 7-species model.
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Regions with chemical and thermal nonequilibrlum

Region Aerothermal phenomenon

(_) Chemical and thermal equilibrium

(_) Chemical nonequllibdum
with thermal equilibrium

(_) Chemical and thermal
nonequilibdum

Chemical species In high-temperature air

Air
Region chemical Species present

model

2 species

5 species

7 species

11 species

02, N2

02, N 2, O, N, NO

02, N 2, O, N, NO, NO+, e"

O 2, N 2, O, N, NO, _+v2,"2,"M+r_+, N +,NO+, e"

Perfect r- Vibrational energy excited

120 _ _/_<Typir_dlofrllgoF J=>_ Ionization\ ! I I_?'r_ I . ;f--i_.. / of atoms of molecules

90-'11 tV \ _'T'_',_-_'_,_ I _/ N'-_N+.e" O.O--_O_.e"
II \ i \ o-*o'.e" ...--.;.e"

Altitude, I t _ \ I_' _'_ "_'_-'T" "t-Br* o.--* NO*, e"
km 60-- I /('Shuttk'-__,_\l \ \\\ \,_ \\

',L
30 -JiJ p_t. ,.Nitrocjen _- -'----, _ _ ,

0 3 6 9 12 15
Velocity, km/sec

Figure 1. Flight stagnation region air chemistry for a 30.5-cm radius sphere (adapted from ref. 5).
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0

in(Keq,r)

In(Keq,r)

-4O

-5O
0

"5 --

-10 -

-15 -

.......... 1015
1016
1017
1018

m_ 1019

I ! I I

10 20 30 40 50

Temperature, K

(a) For different value s of total number density.

Present curve fit

..... Park's curve fit (ref. 23)
Computed from table II

0 Exact

I
60x 103

I ! ! I I
"200 12 24 36 48 60 x 10 3

Temperature, K

(b) For total number density of 1018 particles/cm 3.

Figure 2. Variation of equilibrium constant with temperature for reaction N + O _ NO + + e-.
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8

6

Cp,O 2

R univ

2

O

A

Curve fit to Browne data
Hansen
Browne

0 -= t t t i ! I i 1030 4 8 12 16 20 24 28 x
Temperature, K

(a) Diatomic oxygen.

Curve fit to Browne data
10 - o Hansen

8

_Cp,N_2 6

R univ 4

2-

0 -t I I 2/ t t , I 030 4 8 1 16 20 24 28 x 1
Temperature, K

(b) Diatomic nitrogen.

Figure 3. Curve fit to specific-heat values obtained by Browne (ref. 35) and comparison with Hansen's values

(ref. 37).
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Cp,NO

Runiv

8-- O
A

6

4

2

Curve fit to Browne data
Hansen
Browne

m

0_1 ! I I I I I
0 4 8 12 16 20 24

Temperature, K

(c) Nitric oxide.

Figure 3. Concluded.

I 3
28x 10
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Curve fit to

18- Browne data ___ _/._ __N 216 - Electronic

contribution --_ ., /- Vibrational-
14- _ A _ _" electronic

- X I \ contribution
12 /- Rotational 7 "1 \ .t N

Cp,i, / contributi_,/ _ _,/"cal/g-moI-K 10 -

-/'f_r -Translational'rotational l_
8 j / / contribution..,....--- _

__t/_/ / f_ 1_ Electronic X_. Vibrational
6 -_ I/ / _ contribution contribution

4:] Tt-Translational contribution
I i I , I I

0 5 10 15 20 x 10 3

Temperature, K

Figure 4. Specific heats of monatomic and diatomic nitrogen with contributions from excitation of different
energy modes.

10 5

10 4

10 3

2
10

1
Peru, 10

atm 100

-1
10

-2
10

10 -3

10 -4
0.3 1 10 30 x 103

Temperature, K

Figure 5. Limiting electron pressur e for transport properties of ionic species. The present formulation is
applicable only for electron pressure below this limit.
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-2
10

Figure 6.

78

]£02' 10-3

g/cm-sec

-4
10

0

o Computed

-- Curve fit

I I ! I I

5 10 15 20 25

Temperature, K

(a) Diatomic oxygen.

I

30 x 103

-2
10

P'N2' 10"3
g/cm_ sec

- o Computed
i

-4 ! i i i i i
10

0 5 10 15 20 25 30 X 10 3

Temperature, K =

(b) Diatomic nitrogen.

Curve fit to viscosity values obtained by enaplc_ying collision cross sections based on data of
reference 40. :_=



lINo+,
g/cm-sec

10.2F

10.4J-

10"5- _ o Computed

-- Curve fit

10.6

10.7 I I I I I I
0 5 10 15 20 25 30 x 10 3

Temperature, K

(c) Ionized nitric oxide (Pc = Pem).

10.5 -

10-6

ge-, 10-7
g/cm-sec

10.8 -S -- Curve fit

10.9 ! I
0 5 25

I I I I
10 15 20 30 x 10 3

Temperature, K

(d) Electron (Pe = Peru),

Figure 6. Concluded.
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-1
10

10 -2

Kf'o2 ' .
cal/cm-sec K

10 -3

-4
10

0

o Computed

-- Curve fit

I I I

5 25

I I !

10 15 20 30 x 103

Temperature, K

(a) Diatomic oxygen.

is0

10

10

cal/cm-sec-K

10

-1

-2

-3

-4
10

0

- o Computed

-- Curve fit

1 1 1 I I I

5 10 15 20 25 30 x 103

Temperature, K

(b) Diatomic nitrogen.

Figure 7. Curve fit to frozen thermal conductivity values obtained by employing collision cross sections based
on data of reference 40.
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10
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10 -6

o Computed
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0 5 10 15 20 25

I
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Temperature, K

(c) Ionized nitric oxide (pe = Peru).
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10"1

10-2
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10 -4
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__ ---- Curve f_t

I I I I J
10 15 20 25 30 x 10 3

Temperature, K

(d) Electron (pe = Peru)-

Figure 7. Concluded.
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Sutherland's law:

1.90 - I_s = 1.4584 x 10 "s T :3/2 g
(T + 110.33)' cm-sec

Present (eq. (39))
1.80 - Hansen (ref. 37) S

Esch et al. ./f \

(ref. 61) ,// "
1.70 Peng and // .._"

Pindroh ;//
(ref. 52) //,'

1.60 ...... Svehla .;//

(ref. 44) ,/i
1.50 -

/

S

s
#

1.40 - " ,
#

I

I

I

I

1.30 - ,
!

I

I

I

1.20 - , ,'
I l • . I I

ii.,"
1.10 " '..'" ,"

,.oo "7 ,;x o
Temperature, K

Figure 8. Viscosity of equilibrium air at 1 atm.
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Kf

Ks

5
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3

2
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Present (eqs. (37), (38), and (40))
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Hansen (ref. 37) ,,

Esch, et al. (ref. 61)

Peng and Pindroh

(ref. 52)

/

I •

' /

/

/
s

Sutherland's law:

K s = 5.9776 x 10-6

I I
2 4

T 3/2 cal

(T + 194.4) cm-sec-K

I ! I
6 8 10

!
12

Temperature, K

I
14 x 10 3

Figure 9. Frozen thermal conductivity of equilibrium air at 1 atm.
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Computed:

o z/_l_ ,1)

. _^(2,2)
z_ _'ij

0 P Dij

_._(1,1) I -- Curve ,_" I

_M,Jand50I_ f" 15,]
_(2,2)

10 I I f _1 J
0 5 10 15 20 25 30 x 103

Temperature, K

(a) Neutral-neutral molecular interaction: 02 _-* 02.

10 3

10 2

PDij,
cm2-atm

lO s-_

Computed:

o x=31_'1)

_^(2,2)

A B_ji j

1..2 [] -_- 10 3
;oF ° "

_,,,(1,1) 60 I= -- Curvefit,,._-_P "_'-_ -

and 40 I_ pD ij,
_^(2,2) _l 0 101 cm2-atm

, _-_

_'_i_ 2 20_ 1 _ [ 10

10 l l I l 1li"1 - 1
0 5 10 15 20 25 30 x 103

Temperature, K

(b) Ion-neutral molecular interaction: NO + _ 02.

Figure 10. Curve fit to computed values of collision integrals, collision-integral ratio, and binary diffusion
coefficient obtained by using data of reference 40.
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,os[ f

0

Computed"

_,,,(1,1)
o _uij

_rt(2,2)
A _='ij

[] Bi*j 710 -10 3

O P Oij ^j_,

t: o°'
B-;, 1 cm2-atm

10-1

"_1 10 -2
10-3

5 10 15 20 25 30 x 103

Temperature, K

(c) Ion-ion molecular interaction NO + _ NO+(pe = Pem).

Computed:

_h(1,1)
o _'="ij

...(2,2)
xuij

105F 105 [] Bi*j -_0 ]10 5

| _O PDij " /_-_5 J103
...(2,2) / .,,.(1,1) I "_ ./Or"

xuij_ _lO3_Xuij_ 1_)3 _ _'" _4B:. pDij,
3 '_ cm2-atm

10L 10 !
1 10"1

0 5 10 15 20 25 30 x 103

Temperature, K

(d) Electron-ionized-molecule interaction: NO + _-* e- (Pe = Peru).

Figure 10. Continued.
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Computed:

o xt_l_'l)

,,_ xl_j '2)
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(e) Electron-electron interaction: e- _-* e-(pe = Pem).

Figure 10. Concluded.
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