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Foreword

This document constitutes the proceedings of the Fifth Conference on Artificial Intelligence for Space

Applications, which was held at the Von Braun Civic Center in Huntsville, Alabama on May 22-23, 1990.

This document, in conjunction with the proceedings from the four previous conferences in this series,

demonstrates that the National Aeronautics and Space Administration (NASA) has made significant

progress in applying Artificial Intelligence (AI) techniques to solve some difficult problems in the space

domain. The papers which have been presented and published via this conference-series represent an

increasing number of implementations within the aerospace community and an even larger range of

potential applications.

During the five years spanned by this conference-series, it has been demonstrated that AI technologies

have provided useful and powerful tools which have been effectively used to solve certain classes of

problems. These technologies will play an even more significant role in near-term and evolving space

systems by further enhancing human performance and enabling humans to carry out more complex tasks

in both flight and ground-support environments. It is important to continue to validate and implement

applications of these technologies in order to provide a foundation for activities required for more

ambitious, long-term, future space missions and the infrastructures needed to support those missions.

NASA's Marshall Space Flight Center (MSFC) and the University of Alabama in Huntsville (UAH)

have jointly sponsored this conference, with co-sponsorship from the Huntsville Chapter of the Institute

of Electrical and Electronics Engineers and the Alabama-Mississippi Section of the American Institute

of Aeronautics and Astronautics, to establish a forum to discuss possible solutions to the complex

technical requirements forexecution and support of complex space missions. Additionally, the sponsors

sought to provide an opportunity for those who apply AI methods to space-related problems to identify

common goals, to compare the effectiveness of the various approaches being employed, and to discuss

issues of general interest. Towards these ends, the program committee selected sixty-two papers for

presentation in eighteen technical sessions which cover a broad range of topics related to AI software

systems and to robotics and vision hardware systems.

This conference would not have been possible without the dedicated efforts of many people. First, we

wish to thank the authors whose research, development, and implementation efforts are presented here.

Second, we thank the members of all the committees who planned and executed the numerous activities

required for a conference such as this one. We thank the exhibitors for their efforts to develop and

demonstrate tools and environments for implementing many of the ideas expressed during this

conference. And finally, we wish to thank the invited speakers, lecturers, and others from the aerospace

community whose interest in applying artificial intelligence to space domains makes this conference

both possible and meaningful.

The sponsors hope that these proceedings will be useful as a reference to some selected AI activities in

progress, and will contribute to the literature of AI applications.

Thomas S. Dollman

Gary L. Workman
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Agent Independent Task Planningt

William S. Davis

Boeing AI Center
PO Box 240002, MS JA-74
Huntsville, AL 35824-6402

net: bill@huntsai.boeing.com

ABSTRACT

Agent-Independent Planning is a technique that allows the construction of activity plans
without regard to the "agent" that will perform them. Once generated, a plan is then validated and
translated into instructions for a particular agent, whether a robot, crewmember, or software-based
control system. Because Space Station Freedom (SSF) is planned for orbital operations for
approximately thirty years, it will almost certainly experience numerous enhancements and
upgrades, including upgrades in robotic manipulators. Agent-Independent Planning provides the
capability to construct plans for SSF operations, independent of specific robotic systems, by
combining techniques of object-oriented modeling, nonlinear planning and temporal logic. Since a
plan is validated using the physical and functional models of a particular agent, new robotic systems
can be developed and integrated with existing operations in a robust manner. This technique also
provides the capability to generate plans for crewmembers with varying skill levels, and later apply
these same plans to more sophisticated robotic manipulators made available by evolutions in
technology.

1. Introduction

Space Station Freedom is planned for orbital operations for approximately thirty years. Over
the long life of this complex structure, it will almost certainly experience numerous enhancements
and upgrades, including upgrades in robotic manipulators. Great potential for robotic automation
exists in the areas of housekeeping, laboratory science, maintenance, and safety, as well as various
EVA functions. Throughout this 30-year period the types of robotic manipulators available for
these areas, as well as the capabilities they provide, will continuously evolve with changes in
technology. On the contrary, basic procedures for intra- and extra-vehicular activity, once
established, will remain relatively static. As advances in technology produce more sophisticated
manipulators that are capable of performing more complicated tasks, robots may become
responsible for more detailed operations. However, for these advancements in technology to be
beneficial to Space Station Freedom, any robotic upgrades should be compatible with existing
procedures.

Programming different robots for the same task is a redundant job that should be avoided.

Such programming can be very labor-intensive, not to mention the job of verifying that the "new"

robots are still compatible with the "old" tasks. Some tedious chores that crewmembers perform
today are the duties that may be carried out by the robots of tomorrow. Thus, the robotic plans that
will be developed for future on-board robots should be compatible with crew procedures that are
established in the interim. Persons who are currently responsible for composing such crew

t © 1990 The Boeing Company, all fights reserved
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procedures may eventually be tasked to compose these procedures for robots as well. In this
regard, prescribing activities for robots should be as similar as possible to prescribing activities for
crewmembers.

A technique known as "Agent-Independent Planning" has been developed for addressing the
above issues. Planning is determining a course of action to achieve some goal. Task planning is
determining a sequence of tasks (the course of action) to be performed by an agent to achieve some
desirable state (the goal) in the agent's world. "Agent-Independent Planning" is a method of
automated planning that allows the generation of task plans from a set of goals, without having to
be concerned with constraints imposed by the agent that will execute the plan. In the domain of

Space Station Freedom (SSF), these plans can be considered a sequence of tasks for intra-vehicular
and extra-vehicular operations activity. Plans, or operations procedures, are developed by
considering general constraints on the planning environment and task sequences. For execution of
these procedures, the plans are translated into the specific operations language of a particular agent.
This methodology allows plans and their environment to be modeled in a fashion that separates
different classes of constraints into independent sets.

A prototype of such a system has been developed at Boeing Aerospace and Electronics that
creates agent-independent plans for SSF maintenance and repair operations. The system translates
these plans into (a) code which is executed by a robot, (b) software commands which drive a
graphical robotic simulator, or (c) English sentences (output through a voice synthesizer) which
describe crew procedures. The actual planning mechanism is based on Chapman's TWEAK [3],
but the representation incorporates Allen's time logic [ 1] and hierarchical abstraction [8]. Hogge
integrates a temporal interval-based planner in the domain of Qualitative Physics [4], compiling plan
operators by matching descriptions of an agent with descriptions of the domain. The system
presented in this paper performs along similar lines to match an agent's capabilities with the needs
of a plan. This combination is validated to ensure the agent can perform the given plan.

This paper begins with an explanation of the plan representation in terms of the object-
oriented model of the plan environment, the temporal relationships among tasks in the plan, and
how these two representations axe abstracted into a task library. Once this foundation is
established, a discussion ensues concerning the generation of agent-independent plans, and the

steps necessary to translate these plans for a specific agent.

2. Plan Representation

In order to have agent-independent planning, one must develop a representation for the plans
which is free from the agent who will perform the plan, but also which can later be transformed into
a representation that includes the agent. Such a representation must model the world in segments
which can be connected and disconnected to identify various aspects of the world. We accomplish

this by decomposing the planning environment into three distinct entities: Tasks, Agents, and
Objects. Thus, tasks are actions on objects, agents are the performers of actions, and objects are
the recipients of actions. The agent-independent plan is built combining tasks and objects, and then
the transformation is made to agent-dependency by incorporating knowledge about a specific agent.

Obviously, "action" is the common denominator of these three entities. In a robotic realm, these
actions represent physical motion. A primitive action is defined to be that which represents basic
physical motion, such as locomotion, rotation, limb movement (extension, retraction,
lateral/horizontal/diagonal movement), etc. Figure 1 lists the primitive actions currently employed
in the planning environment. Models of the planning environment (whether agents, objects, or
tasks) all relate to this set of primitives. These actions, or primitive tasks, provide the common



interfacebetweenagents and the planning environment. The agents' and objects' physical and
functional constraints are represented in terms of preconditions and effects on these primitive tasks.
Object-oriented models of agent and object properties allow descriptions of agents and objects to be
combined through inheritance, as will be shown in the following section.

rotateclockwise

rotate counter-clockwise

move to move left grasp push raise

carry to move right release pull lower

Figure 1. Primitive Actions Employed in Planner

2.1. Object-Oriented Environment

Agents and objects are composed of properties which are ordered hierarchically, with lower levels
inheriting the properties of higher levels, and communication between them is done in message-
passing fashion. This hierarchical ordering allows complex, real-world descriptions of items in the
environment. In terms of the Space Station Freedom maintenance domain, this means that complex
items such as thermal control systems can be described by the union of the properties of their
components (such as pumps, valves, pipes, etc.). Tasks, agents and objects are modeled with
primitive actions as a "connecting point". In terms of this paper, task information declares which
objects are affected by action (and possibly in what order the action is to occur), information about
agents declares which actions they can perform and to what capacity, and object information
specifies the manner in which objects can be affected by actions.

Q_iect: tx_b / Task: PUSH(Distance?}

subgoals:

pcb. attached-p = no

Slot?. occupied = no

Slot?. parent-object = P-Obj?

P-Obj?. power-status = off

pcb. coordinates = Slot?. observation-pt
pcb. depth = Distance?

main-effects:

pcb. attached-to = Slot?
side-effects:

pcb. attached-p = yes

pcb ,coordinates = Slot?. coordinates

Obiect: t_J3 / Task: PULL(Distance?_
subgoa/s:

pcb. attached-p = yes

Slot?. parent-object = P-Obj?

P-Obj?. power-status = off

pcb .attached-to = Slot?

pcb. depth = Distance?
main-effects:

pcb. attached-p = no
side-effects:

pcb. coordinates = Slot?. observation-pt

pcb. attached-to = nil

Slot?. occupied = no

Figure 2. Functional Constraints for Printed Circuit Board

Agents and objects are represented as a mixture of characteristics describing their physical
properties and functional capabilities. Such physical properties include size, mass, relative
position, etc. while functional capabilities are constraints based on the primitive actions, as well as
physical properties of agents and objects. These functional constraints are based on typical
planning constraints, such as the preconditions/subgoals and effects found in Wilkins' SIPE [11].

This allows each agent or object to respond differently to the same primitive action according to the
manner in which it is modeled. Figure 2 shows an example of the object constraints for pushing or
pulling a printed circuit board. It is interesting to note how the constraints work to somewhat



specializethesegenericactionsinto "remove"and"insert"actions.Pattern-matchingisemployedto
allow genericconstraintsto betailoredfor specificobjects.In thefigure,variablesarerepresented
by symbolsappendedwith a questionmark. Thesevariablesare instantiatedin the planning
process,andthentheconstraintsareusedto determinetruthsatisfactionfor includingtheactionin
theplan. Functionalconstraintsonanagentworkin asimilarfashion.

Also includedin thedefinition of an agent are the specific instructions necessary for it to
perform a primitive action. It is this set of instructions that will be used to transform the plan
representaUon from agent-independent to agent-dependent. Agent characteristics are arranged in a
hierarchy such that properties of higher level are inherited by lower levels. For example, in figure 3
all the properties associated with limbs of motion are inherited by both arms and legs. In turn, arms
and legs add their own distinguishing properties and capabilities which are inherited by their lower
levels (which inherit the things from the limbs of motion characteristic as well). Thus to describe a
Puma-560 robot with one arm, incorporating vision, force/torque, and tactile sensors, one needs to
include in the robot's description the corresponding characteristics and then add the features

particular to the Puma-560 basic unit. Objects are represented in similar fashion. However,
whereas agents were classified on the grounds of their capabilities to effect action, objects are
classified according to how they are affected by action; the difference is one of activity versus
passivity. For instance, the object classifications, or characteristics, for a printed-circuit-board
(which is mounted on some rack) would include "replaceable object" and "fragile object".
"Replaceable object" would be derived from "removable object" (which has constraints that inhibit
certain actions on the object when "in-place"), while adding its own information concerning the
location of replacement objects, the location to discard used objects, etc.

Input Characteristics

tou_"___"_ht

BASIC-AGENT

Output Characteristics

lang_f motion

'" I '!actile fo_sr_ue vision spe arms legssensors

__r
wheels treads

e two three pad hand

I PUMA560 I
Puma 560 with one-arm, vision sensor, force-torque sensor,

and tactile sensor

Figure 3. Example Agent Hierarchy

2.2. Task Abstraction

As was stated earlier, tasks declare wh-:ch objects are affected by action. Actions are
composed of sub-actions. For instance, replace pump may be broken into isolate pump, remove

pump, discard pump, get a new pump, and install pump. Primitive actions (see figure 1)
correspond to primitive tasks, and are used to create higher-level tasks. Higher-level tasks are



composed of previously defined higher-level and/or primitive tasks arranged in some fashion (see
section 2.3 for this arrangement). Thus, a (theoretically) infinitely large task library can be
developed using this means of abstraction. This capability provides for a dynamic planning
environment. That is, the plan that solves some goal today may well be composed of different tasks
when trying to solve the same goal tomorrow (assuming new tasks are being added to the library).
This allows the system to improve incrementally. By introducing plan variables, tasks then become
predications on objects as they are parameterized, such as remove(pump-27). The argument to a
task can also be an object characteristic (as defined above) in order to describe generic, or template,
tasks for use in describing more abstract tasks. This is analogous to the manner in which Wilkins
[11] uses constraints to construct partial descriptions of objects, as well as the specialization of
abstraction in Tenenberg's [8] plan graphs.

When instantiating plan variables to actual objects or object characteristics, the constraints
associated with that object are added to any existing constraints with the task. When abstracting a
group of tasks into a higher-level task, constraints are combined into a single set representing the
abstracted action. Plan variables which share the same symbol are made to be codesignating, and
any preconditions which are not satisfied within the abstracted group remain as a precondition for
the higher-level task; similarly, effects which reach outside the scope of the task group are
established as an overall effect for the higher-level task.

As initially stated, a plan is a set of tasks to be performed in some order. Because a higher-
level task fits this description, a plan is merely a higher-level task (throughout the remainder of this

paper, "task" and "higher-level task" will be used interchangeably). Each plan's sub-tasks are
ordered according to their connections, which represent sets of operators from temporal logic
specifying their sequence within the plan.

Relation Operator Inverse Pictoral
Operator Example

tl before t2 < >

tl equal t2 = =

tl meets t2 m rni

tl overlaps t2 o oi

tl during t2 d di

tl starts t2 s si

tl finishes t2 f fi

I tl I I t2 I

Figure 4. Possible Temporal Relationships

tlt2

tl I t2 I

tl I
I t2 I

I tl I
I t2 I

1 11 I
I t2 I

2.3. Temporal Plan Network

The temporal operators that reflect time relationships between tasks are those discussed in
[1], and are summarized in figure 4. The temporal relationship between two tasks is expressed as a
disjoint set of temporal operators. Hence, (taskl [<, s, o] task2) denotes that taskl either is before,
starts simultaneous to, or overlaps task2. Using such sets as links between tasks, we construct a
temporal network whose nodes are tasks and whose connections are temporal relationships between

them. The network is constructed regardless of the ability of the agent who will ultimately perform

5



the tasks. We need not worry about parallelism during task/plan description, nor about whether the
agent has one, two, or even ten arms. The only concern is what relationship each task has to other
tasks. Undefined relationships are inferred based on defined relationships. Figure 5 shows an
example; if we have the relationships (taskl [s] task2) and (task2 [o] task3) defined, we infer the
relationship (task1 [ <,m,o] task3).

With the addition of temporal information, task abstraction becomes similar to the concept of
reference intervals in [1]. Each higher-level task, then, is a temporal network of tasks from lower
levels. For any such task, the temporal relations among its subtasks are validated by maintaining
their transitive closure, which prevents ill-definitions such as (task1 < task2), (task2 < task3) and
(task3 < task1). This also may reduce some of the explicit ambiguity expressed in the task's
definition. Any remaining ambiguity is resolved during plan translation (as seen in the next
section). By means of task abstraction, expressed ambiguity, and plan variables (which can either
be instantiated to actual objects, or be constrained by object characteristics), non-trivial plans can be
constructed that are completely independent of the agent that will perform them.

task1 I task2 IAND

I task1 I

I task3

[ task3 j

task1 ] OR OR I task1 I )I task3 J I I task3 I

Figure 5. Implication in the Temporal Logic

3. Plan Translation

3.1. Validation Under Agent Constraints

In order to execute some plan, a declaration must be made as to what agent should perform the

plan. Note, however, that this declaration may specify an agent that is incapable of such action.
Therefore, the combination of agent and plan must be validated. This is essentially the job of plan
translation. The luxuries that afford representation of the plan free from knowledge about an agent
must now be considered in light of the agent capabilities. That is, any ambiguous part of the
specified plan (plan variables, task abstraction, temporal ambiguity) must be resolved to a point
where specific instructions understandable by the agent can be generated. While the agent-
independent plan is represented in a hierarchy of temporal networks containing all possible
orderings of plan performance, plan validation attempts to eliminate those temporal possibilities
which are infeasible for a given agent, effectively producing an agent-dependent network. The
validation process ensures that at least one possible traversal through this agent-dependent network

is an acceptable plan, according to the agent's constraints, for accomplishing the desired goal. It is

at this point that primitive tasks are mapped to specific agent instructions for execution. If at any
point the agent is found incapable of performing the plan, it is said to be "rejected" from
transladon.

The first step of translation is to assign to the plan variables specific objects which the plan
will manipulate, making use of object characteristics (see section 2) to aid in constraining the

assignment. Once all the actual objects are determined, they can be used to check the physical
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constraintsof thespecifiedagent. This is doneby "matching"thephysicalpropertiesof theagent
with thoseof theobjects. For instance,oneconstraintchecksthemassof anobjectagainstthe
possiblemassmovableby theagent,while anotherconstraintchecksthesizeof eachobjectto be
sure the agent possessesthe proper tools and end effectors to manipulatethe object. Such
constraintsareusedin validatingthattheagentisphysicallycapableof manipulatingtheobjects.

Oncethe agent'sphysicalcapability to perform theplan is established,thenext matterof
validationis to ensuretheagentis functionallycapableof planexecution.Functionalconstraintsof
anagentspecify the temporalcapability of an agent. Oncea particularagentis designatedfor
translation, its functional constraints(in the form of planning preconditionsand effects) are
integratedwith theexistingtaskandobjectconstraintsin theagent-independentplan. An agentis
found functionallyincapablewhentheplan requiressimultaneousactionwhich theagentcannot
perform. A secondreasonfor rejectionis simplyanorderingof thetasksthatis incompatiblewith
theagent'sability at agivenmoment.Examplesof thisaredirectingtheagentto "graspthepump"
whenno "hand"is free(i.e.,isemptyandavailable),or telling theagentto "releasethefilter" when
nof'flteris beingheld. Thetemporalcheckmadebyfunctionalconstraintsmustexaminetransitions
from oneprimitive taskto another,andthetimelyorderingof thetaskscancertainlybeconfirmed
by steppingthroughtheplanwhile "simulating"theactionin theworld.

3.2. Deriving an Agent-Dependent Network

An agent-dependent network is produced essentially by eliminating any infeasible temporal
possibilities in the plan ordering. Presented here are two methods for obtaining this network. The
first results in a network which contains every possible ordering in which the agent can successfully
perform the primitive tasks to satisfy the goal, and excludes any problematic orderings. While this
method has exponential computational complexity, it performs satisfactorily for small networks.
Plans of significant abstraction, however, demand a more efficient translation process. The second
method uses a simple heuristic that reduces the algorithmic complexity; and although the resulting

network may produce an incomplete list of viable orderings, a straightforward assumption reducing
the impact of this deficiency makes this method a preferred alternative to the first.

The essence of the fin'st method to derive an agent-dependent network lies in computing the
transitive closure over the temporal operators in the agent-independent network. Recall that such a
transitive closure is always maintained for the subtasks of any high-level task while it is being
defined. With this in mind, computing the transitive closure of all primitive tasks is a matter of

relating tasks across hierarchical boundaries. This can be done using the "during" relationships
(starts, during, finishes, and corresponding inverses) to relate sibling subtasks, as is done in the
reference hierarchies of [1]. Such transitivity applies through all levels of the plan hierarchy, and

can thus relate any primitive task to any other primitive task within a plan. A backtracking algorithm
as is mentioned in [1] can be used to minimize ambiguity among the temporal operators in the final
"closed" network. Once established, an agent-dependent network can be derived by a breadth-first-
like traversal of the independent-network, updating virtual copies of the objects to maintain the
status of the world, and eliminating operators that cause the traversal to "back up" due to an
untimely ordering of events in consideration of the agent.

Intuitively, the above procedure operates in exponential time; a transitive closure algorithm
for temporal intervals is discussed in [I0]. The observation can be made, however, that a vast

majority of these inferred links are irrelevant to the overall order of the plan. This raises the
question: which links are necessary in validation and which are not? The temporal links of
importance are those which impose simultaneous action on the agent. This means that validation



shouldbeconcernednotsomuchwith theinterconnectionsbetweenall of the tasks, but rather with
those which reflect the transition from one task to another. This focus on transitional tasks at the

primitive level is the heart of the second method for obtaining an agent-dependent network.

This "endpoint method" makes use of a couple of existing properties of the agent-
independent network to save time. First, since temporal links among the individual task's subtasks
are consistent due to the maintenance of the transitive closure throughout task description, the entire
network is temporally consistent before validation/translation begins (i.e., consistency among
parents and consistency among children => consistency among siblings). Therefore, the transitive
closure is unnecessary for this purpose. Second, by the above assumption, transitory activity is of
main importance, so this method only considers relationships between primitive tasks which
possibly occur at endpoints of higher-level tasks. Starting with the level-1 tasks (one level above
the primitive/leaf level), a begin-set and end-set is computed for each set of subtasks. These
represent the tasks that can possibly start or finish their parent task, respectively. Given higher-
level tasks T1 and T2, and their respective begin-sets and end-sets, the "during" relationships are
used to infer relationships among members within these sets. However, unlike the previous
method which established relationships among all the primitive tasks, this method only uses the
endpoint relationships to modify higher-level relationships pre-existing in the agent-independent
plan. That is, the temporal relationship between two tasks T1 and T2 is pruned to eliminate any
conflicts in transitioning from a primitive subtask of T1 to a primitive subtask of T2. Once the
endpoint relationships are considered at this level, begin and end sets are computed for the next
higher level in similar fashion, considering further relationships at the primitive level, and pruning
those relationships from the network that are invalid for the agent. Pruning occurs either at the
"local" network (the endpoint level), eliminating the temporal operator(s) which caused a conflicting
task to be considered as an endpoint, or at the most abstract level that is appropriate, eliminating the
temporal operator(s) that caused the endpoint sets to be in conflict. Finally, this method differs
from the previous one, which used breadth-fin'st traversal to find all viable paths, by using depth-
first traversal to find a viable path. The viable path found becomes the sequence of the agent-
dependent plan.

4. Plan Generation

Although the primary intent of this paper is to present "agent-independency," a brief
description of the actual planner is provided to show how it uses the various planning and temporal
constraints. The planner is nonlinear, that is, it produces a plan by deriving and further constraining
sets of partial orders. It incorporates a constraint posting theme, using the objects' and agents'
functional constraints as planning constraints. Certainly more thorough discussions of planning
constraints and techniques exist elsewhere [3,11], but the terms are briefly defined here for clarity.

Each task contains an associated set of planning constraints (preconditions, subgoals, main
effects, and side effects), which result from combining any associated agent or object constraints
with other abstracted constraints. Subgoals are those conditions which must be satisfied before the
execution of a task. Preconditions are those conditions which must be satisfied before the inclusion

of that task into the plan. In essence, they are subgoals that are immediately satisfiable from tasks
already existing in the plan. Main effects are conditions resulting from a task, and serve as a reason

for selecting a task to achieve a particular goal. Side effects are conditions which are caused by a
task, but which are not significant enough to warrant its inclusion in the plan. When adding tasks
to a plan, a clobberer is a task which potentially defeats a precondition for another task, thus

causing a break in plan causality. Promotion is the technique of constraining the clobberer to occur

after the time when the precondition must be met. Separation is the technique of constraining the
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clobberernot to codesignatewith the precondition. That is, anyplan variablesthat could be
instantiatedsuchthattheclobberer'seffectswoulddefeatthepreconditionarepreventedfrom doing
so. Usingtheseterms,figure6 presentsanoutlineof theplanningapproach.

Using the simple conceptsof promotion and separationas definedabovewill force the
plannerto build plans that aresequentialat their most abstractlevel. Incorporatingtemporal
propertiesinto theplannerallowstheconstructionof plansthatarenotcommittedto anyparticular
order. Work along the lines of [2,9] associatestemporal intervals with each task and
condition/effect. Goalsare achievedby "collapsing" intervals (assertingthem be "equal") of
conditionsandeffects. Hence,whenataskis insertedinto theplanits maineffectis assertedto be
temporallyequalwith the subgoalit is supposedto satisfy. This new relationshipis propagated
throughoutthe(top level) tasksin theplan. Upondetectinga clobberer,promotionandseparation
can still be employed,but ratherthan imposinga sequentialconstraintthe conflicting tasksare
simply constrainednot to sharethesameinterval (i.e., not beoverlapping,during, starting,etc.).
Sucha combinationbetweentraditional nonlinearplanningand temporalplanning allows the
generationof taskplansthatmakenopresuppositionconcerningwhichactivitiescanbeparalleland
whichmustbesequential.

General procedure to satis_ a _ooah
1. If a main or side effect which satisfiesthe goal already exists in the plan, then constrain

the effect's task to precede the goal. ( and procede to next goal)

2. Otherwise, select a task whose main effect matches the goal and whose

preconditionscan be immediately satisfied. (fail if no such task exists)
3. Insert task Tinto the plan, binding any plan variables necessary, by constraining Tto

precede the goal and constraining tasks satisfying Ts preconditionsto precede T.

4. If any clobberers exist, try promoting them past the clobberee. (otherwise step 7)

5. If promotion fails, try separation.

6. If separation fails, then backtrack to step 2 and select a different task to satisfy the goal.

7. Upon successful addition of Tinto plan, place Ts subgoals onto goal queue and

continue untilgoal queue is empty.

Figure 6. Outline of Planning Approach

5. Summary and Future Directions

A system has been introduced for describing and generating plans in a representation
independent of an agent, which can subsequently be translated into agent-dependent instructions
suitable for execution. Agents and objects are represented in an object-oriented fashion, allowing

their description of physical and functional capabilities to assist in constraining plan
description/generation, and to be "matched" for plan validation purposes in translation. Tasks can
either be primitive actions based on movement, or abstracted to higher-level tasks (synonymous
with plans) consisting of subtasks arranged in "temporal networks" (which allow temporal
ambiguity in describing task orderings). Tasks and objects are combined to form an agent-
independent plan. Plan translation transforms this into an agent-dependent plan by validating the
combination of the plan with the properties and constraints of a specific agent, resulting in a set of

instructions executable by the agent. Plans are constructed automatically using nonlinear planning
techniques which operate on functional constraints of agents and objects. Integrating temporal
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planningwith thesetechniquesprovidesamoreflexibleplannerwhichholdsnobiasin sequencing
activity.

This systemis implementedfor the domainof maintenanceand repairof SpaceStation
Freedom.It currentlygeneratesVAL II instructionsto aPUMA-560with integratedforce/torque
and vision sensors,English instructionsfor a crewmember,and softwareprocedurecalls to a
robotic simulator.Severalextensionsto this systemareplanned. Planningin complexdomains
oftenrequiresthatplansbeinitially generatedfrom incompletedata,or datathatwill evolveover
time. Currentmethodsallow theuseof temporalrelationshipsin adeductivefashion,reducingthe
possibilitiesof taskorderingasmoreinformationis knownabouttheplan. However,retracting
assertionswhichhavereducedthetemporalnetworkis computationallyveryexpensive.Therefore,
futureworkwill concentrateonaddingnonmonotonicityto thetemporallogic to facilitatereasoning
with changingdata. This will provide a foundation to examinereplanning strategiesfor the
temporalplanner. For better integrationwith crewmembers,techniquesfor explainingplanner
rationale will be explored. In addition, crew skill modelswill be developedto allow better
presentationof plans and their explanationsto crewmembers.Theseenhancementsto agent
modelingwill alsobeextendedto includeamoresophisticatedroboticagentwith adexterousthree-
fingered hand and advancedsensingcapabilities. All of theseactivities will support the
developmentof technologywhichallowsmannedspacecraftworkloadto bemodeledandshared
betweencrewmembersandrobots,andactivityplansto beautomaticallygeneratedregardlessof the
agentswhowill accomplishthem.
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Abstract

The problem of optimal spacecraft scheduling is both important and difficult. Efficient
utilization of spacecraft resources is essential, but the accompanying scheduling problems
are often computationally intractable and are difficult to approximate because of the pres-
ence of numerous interacting constraints. We have applied artificial intelligence tech-

niques to the scheduling of the NASA/ESA Hubble Space Telescope (HST). This pre-
sents a particularly challenging problem since a yearlong observing program can contain
some tens of thousands of exposures which are subject to a large number of scientific,
operational, spacecraft, and environmental constraints. We have developed new tech-
niques for machine reasoning about scheduling constraints and goals, especially in cases
where uncertainty is an important scheduling consideration and where resolving conflicts
among conflicting preferences is essential. These technique have been utilized in a set of
workstation-based scheduling tools (Spike) for HST. Graphical displays of activities,
constraints, and schedules are an important feature of the system. High-level scheduling

strategies using both rule-based and neural network approaches have been developed.
While the specific constraints we have implemented are those most relevant to HST, the
framework we have developed is far more general and could easily handle other kinds of
scheduling problems. This paper describes the concept and implementation of the Spike
system and some experiments in adapting Spike to other spacecraft scheduling domains.

INTRODUCTION

To obtain the maximum benefit from expensive space facilities it is important to schedule space-
craft operations in an optimal manner. Since truly optimal scheduling is usually computationally
intractable, it is therefore necessary to determine the best possible schedule given the resource
and time constraints on the computational effort that can be invested.

The fundamental requirements of optimal spacecraft scheduling are similar in many ways to
those of other scheduling problems, e.g. those encountered in commercial and industrial do-
mains. These problems have been found to be notoriously difficult to solve in practical settings.
In this paper we describe the source of some of these difficulties and how the use of advanced

software technology ("artificial intelligence") can be applied to help overcome them. We de-
scribe the progress made at Space Telescope Science Institute (STScI) in developing AI tools for

* Space Telescope Science Institute (Operated by the Association of Universities for Research in Astronomy for the
National Aeronautics and Space AdminisWation)
t Astronomy Program, Computer Sciences Corporation, Staff member of the Space Telescope Science Institute
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theHubble SpaceTelescope(HST), andconcludewith adiscussionof how these tools can be
adapted for other spacecraft scheduling problems.

HUBBLE SPACE TELESCOPE SCHEDULING

In this section we give a brief description of the problem of scheduling Hubble Space Telescope.
Further discussion can be found in [Miller et al. 1987, Johnston 1988, and Johnston et al. 1987].

Astronomers from around the world submit proposals to obtain observations with HST. Follow-

ing an annual peer review and selection process 1, accepted proposals are prepared and provided
by the successful proposers to STScI. These contain the detailed specification of each observing
program. In addition to such obvious aspects as which instrument to use and which astronomical
targets to observe, astronomers can (and do) specify other constraints on how their observations
are to be taken. These include a wide variety of relative timing constraints (precedence, mini-

mum and maximum time separation, interruptability conditions, repetitions). Some exposures
must be taken at precise times or within specified time windows. Others may require special ob-
serving conditions (e.g. they must be taken while HST is in the Earth's shadow to minimize
scattered light background). Still others may be conditional on results obtained after analysis of
precursor exposures taken by HST, or, in some cases, by other observatories (on the ground or in
space).

Constraints specified by the astronomer must be combined with constraints due to many other
sources. HST is limited in how close to bright sources of light (e.g. the Sun, Moon, and sunlit
earth limb) it can be pointed. Sensitive observations require minimizing subtle sources of stray

and scattered background fight. The low-earth orbit of HST (--95 m period) means that targets are

typically occulted by the earth after no more than ~40 m of observing time. Radiation belts inter-
fere with observations to reduce even further the available viewing time per orbit. For pointing
stability, a pair of suitable guide stars must be found for placement in Fine Guidance Sensors: in
some parts of the sky these stars are sparse. There are thermal and power constraints that appear
in the form of off-nominal roll limitations and recovery-time requirements. This list of con-
straints is far from exhaustive, and, in general, each exposure is subject to some tens of con-
straints.

A one-year observing schedule for HST will generally contain ten to thirty thousand exposures
constrained as described above. It is clear that a scheduling problem of this magnitude is a very
large one indeed.

SPIKE

Computer techniques for optimal scheduling have been investigated for many years by a number
of researchers (see, e.g. [King and Spachis 1980] for a comprehensive review and bibliography).
Much of this classical work has focussed on versions of the idealized "job-shop" scheduling
problem. This problem and related ones are NP-complete, meaning that there are no efficient al-
gorithms for finding solutions (see, e.g., [Garey and Johnson 1979]).

The basic problem with these classical results is that they require key features of the problem to
be abstracted away, so that even "exact" solutions to the abstracted problem are often of little
relevance to the original "real" problem. Approximate solutions to the abstracted problem suffer

from the same limitations. It is clear that classical approaches can be useful for problems which

1The first such solicitation and proposal selection was completed in mid-1989.
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aresufficiently simple: in practicethis often meansthat scheduleoptimization is driven by a
single overriding criterion. For the problem of scheduling complex modern space facilities,
however, this is not the case: more powerful techniques are needed that can handle the com-

plexities of real-world problems.

There are four notable features of spacecraft scheduling that make it a difficult problem: inter-
acting constraints, uncertainty, optimization criteria, and search. Realistic scheduling problems
typically involve a large number of different types of constraints, both strict and preference.
These constraints often have a very large range of timescales compared to classical scheduling
domains, ranging from seconds or minutes to months or years. Trading off and balancing con-
straints adds greatly to the complexity of scheduling. Uncertainty can enter in a variety of ways,
ranging from chaotic (i.e. completely unpredictable) scheduling factors to the smooth degrada-
tion of confidence in the results of an extrapolated model. Optimization criteria are often com-
plex and situation-dependent: there is usually no single criterion that can be used to indicate
schedule optimality. At various times, the schedule may be optimized with respect to operational
efficiency, schedule robustness, or speed of recovery to an original schedule following a disrup-
tion. The process of constructing schedules by searching among alternatives is computationally
expensive, with exhaustive search usually out of the question.

Spike is an activity-oriented scheduling system developed at Space Telescope Science Institute
for scheduling HST. The Spike project was initiated in early 1987: the system has so far been
used during ground test activities and is currently beginning work on the first flight schedule
(HST launch is now scheduled for April 1990). Spike's current focus is the long-range schedul-
ing problem, i.e. that of scheduling over a year or more to a resolution of a few days. The system
is not limited to this problem and was designed to schedule at arbitrary time resolution. The ba-
sic architecture of the system is illustrated schematically in Fig. 1.

The overall approach adopted in Spike was inspired by advances in artificial intelligence re-
search (see., e.g. [Fox and Smith 1984] and [Smith, Fox, and Ow 1986] for a discussion of these
techniques as applied to factory scheduling problems). Spike incorporates several novel features,
however, including an innovative constraint representation and reasoning mechanism [Johnston
1989b] and a new type of search technique motivated by research on artificial neural networks
[Adorf and Johnston 1989, Johnston and Adorf 1989].

Spike's constraint representation provides not only for strict constraints but can also represent in
a natural way preference constraints that indicate conditions that are desired but not required in
the final schedule. Constraints are propagated in a manner that informs the scheduler (whether

human or an automatic search process) what the allowed scheduling opportunities are for all
tasks, as well as a measure of the degree of preference of those opportunities.

In addition to a powerful constraint representation mechanism, Spike employs several other
strategies to reduce the size of the problem as much as possible:

(1) The overall scheduling period is divided into intervals and activities to be scheduled are
f'trst committed to these intervals. Once a satisfactory set of commitments is found, the
intervals are further decomposed and the process repeated. This avoids the need to make

early commitments to specific times for activities when scheduling over long periods
(months to years).

(2) Implications of constraints are pre-propagated to the greatest extent possible and saved,
avoiding repetitive computations during the scheduling search process. This also identi-
fies many types of overconstrained activities that are unschedulable because of irrecon-
cilable constraint conflicts.
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Figure l: A diagram of the overall Spike architecture. The lower level is a constraint representation and reasoning
system which contains descriptions of activities to schedule and their constraints. Temporal constraints are indicated
schematically, but the system can deal with a wide variety of strict and preferences constraint types. The upper level
interacts with the consWaint representation level when searching for feasible and optimal schedules. A variety of
modular search strategies can be utilized at this level.

(3) Activities that can be clumped together and scheduled as single "meta-activities" are
identified by the system before scheduling starts. This reduces the number of individual

activities to schedule, as well as reducing the number of constraints.

(4) The set of activities to schedule can be partitioned into disjoint sets with associated
precedence. The resources consumed by scheduling one set can be cascaded to other sets,
thus permitting a significant reduction in the number of activities that must be considered
at one time.

Uncertainty is always a serious problem with predictive scheduling. Spike's constraint mecha-

nism provides several ways to deal with this problem. The most important is to define con-
straints that represent the probability of success as preference constraints, or, alternatively, con-
straints that represent the maximum acceptable risk as strict constraints. This permits some con-
straints to be treated in a statistical fashion. This technique is used to deal with the fact that the
in-track position of HST in its orbit cannot be accurately predicted more than a few months into
the future.

Although Spike was developed as an automatic scheduling system, it is fundamentally a support
tool for the people who are responsible for making scheduling decisions. Thus one of the most
important characteristics of the scheduler is how it interacts with users. The user must have vis-

ibility into all aspects of the scheduling problem and the evolving schedule. The user must also

have control, i.e. the ability to override any decisions made by the automatic system, and the
ability to create and evaluate alternative schedules. These features are provided by the system.
The user interface makes extensive use of a bitmapped graphics window system and mouse to
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facilitate two-way interaction with the user. An example screen from the running system is
shown in Fig. 2.
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Figure 2: Example screen from Spike showing the scheduling of some HST observations. The upper left window
represents a six-month scheduling interval and displays the combined degree of preference for scheduling a number
of exposures (running vertically up the window). The lower window shows an expanded time view of one specific
exposure and the constraints that contribute to its scheduling preference. The text window on the right displays de-
scriptive information about the schedule, activities, and constraints. The user interacts with the system by clicking
on various active regions and selecting from pop-up menus. For example, clicking on the time scale at the bottom of
each window permits zooming in or out in time, or paging forwards or backwards. The user can create new win-
dows and build new displays dynamically.

Spike was developed on Texas Instruments Explorer workstations and is implemented in Com-
mon Lisp, (old) Flavors, and the Common Lisp Object System (CLOS). Commonwindows
(from Intellicorp, Inc.) is used as the windowing system for the user interface. The operations
hardware configuration is shown in Fig. 3. There are two operations workstations for scheduling
and for evaluating programs for scheduling feasibility. These are networked with the develop-
ment cluster of five workstations. Both share the same file server which is a Sun workstation

with 2Gb of local storage. This server also acts as a gateway to the STScI ethernet backbone and

provides secure access to the scheduling data.
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Figure 3: The Spike operations and development hardware configuration. The system is isolated (for data security)
from the main STScI backbone by a Sun file server with ~2Gb of local disk storage. The Spike local area network
(LAN) includes seven Texas Instruments Explorer lisp machines, ranging from microExplorers (an Explorer co-pro-
cessor in a Macintosh II chassis) to the very fast Explorer II+.

Spike has recently been ported to Allegro Common Lisp (from Franz, Inc.) running on Sun
workstations. The user interface in this configuration is displayed in an X-windows environ-
ment. This permits running the computational kernel of Spike on one machine while the user
interface runs on another. Although the present computational power of general-purpose work-
stations does not yet match that of the fastest Lisp machines, it can be expected that the demon-
strated portability to Unix workstations will prove useful for HST and other applications.

Spike is currently operational at STScI and is in the fh'st stages of constructing the initial sched-
ule to follow launch and vehical and instrument checkout.

EXTENSIONS

Scheduling problems are rarely static: changes come about because of increased experience with
the problem and because of on-orbit experience with the operating spacecraft. Spike was de-
signed with this fact in mind, particularly with regard to changing and adding constraints.

This flexibility has been exercised by conducting several experiments in adapting Spike to
schedule observations from other missions. The results of one of these experiments are shown in
Fig. 4. This represents the scheduling of a one-year period of European International Ultraviolet
Explorer (IUE) programs to a resolution of one week. Spike was adapted to represent the IUE
scheduling constraints with minimal effort. Similar experiments have been conducted for the
Extreme Ultraviolet Explorer (EUVE) as well as for a ground-based telescope in Chile [Johnston
1988a]. Spike has been chosen by the EUVE project to perform science scheduling for that mis-
sion; the Unix version of the system is presently running at the University of California, Berke-
ley, for that purpose.
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Figure 4: Display of the results of the experimental adaptation of Spike to schedule IUE programs. Shown here is a
snapshot of a partial schedule, The top left window, covers a time period of a year: 4-hour observing periods are
being allocated to weeks. The function plotted is the scheduling degree of preference as in Fig. 2, but here the re-
strictions of some programs to specific times or sets of times is indicated by the outlined portions of the curves. The
bottom plot in the same window shows the amount of time allocated per week (solid line) compared to that available
(dashed line).

SUMMARY AND CONCLUSIONS

It is clear that the software technology and approaches to scheduling embodied in Spike have
reached a sufficient level of development that intelligent spacecraft scheduling is a realistic goal.
The use of AI techniques makes it possible to develop and adapt software such as Spike for a va-
riety of spacecraft scheduling problems. Spike embodies innovative approaches in several areas,
including constraint representation and reasoning and optimal scheduling search methods for
large-scale problems.

ORIGINAL PAGE fS

OF POOR QUALITY
17



Future plans for Spike include upgrading all of the system to be compatible with the new ANSI
standard Common Lisp Object System (CLOS) and further research on scheduling search meth-
ods for large problems. Experience from early scheduling for HST operations (in progress now)
will be valuable in further augmenting both the user interface and the computational core of the
system.
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Introduction

Scheduling and resource allocation considerations are fast

becoming one of the major areas of research today. Although these

are not new problems, technological advances continue to open new

and ever increasing areas where having the right resources at the

right place at the right time is crucial. As we enter into the

space age and as the costs involved in doing specific research and

development tasks increase the fundamental equation is truly, Time

is Money.

The methods and techniques applied in this area are often as

much an art form as a truly mathematical form. This is not to say

that the foundations of each of these methods are not

mathematically sound, but rather the how, when and why used in

applying the mathematical principals can produce rather unique and

sometimes more acceptable results. More specifically, there are

certain parameters that are common to most resource allocation

problems. How a particular application manipulates and utilizes

these parameters often determines the degree of performance of a

resource allocation system. A technique that can be applied to

one of these parameters is presented here.

In many resource allocation and scheduling problems one of

the major difficulties facing the investigator is determining how

to apply different constraint equations. Numerous research

efforts have been done in this_area in an attempt to increase the

investigator's control and ability in applying constraints. There

are many widely varying techniques that are available and

frequently used to solve this problem. Usually specific

characteristics of the particular domain involved and the types of

constraint equations that must be applied are the deciding factors

in the selection of the appropriate technique. This is usually

adequate for the current application; however, this solution

usually does result in a generalized mechanism that can be applied

to differing domains with only minor modifications.

In most cases a traditional approach of evaluating the

constraining parameters for each one of the activities that is

being scheduled at the time it is scheduled is sufficient. This

is reasonable when the constraining relations for the activities

are functions which depend upon resources solely. However, when

an interdependency exists between the activities or if the domain
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is not constant new problems may arise. A method that addresses

this in resource allocation problems is the method of constraint

propagation. In the following sections of this paper the concepts

involved in applying this technique are presented.

Dynamic Allocation Scenarios

One area of interest today which can pose some unique and

sometimes tedious constraint evaluation problems is that of

dynamic domains. In this arena the domains are either constantly

changing or possibly modifiable at discrete points of time within

the analysis process. This scenario creates a true illustration

of reality since all to often activities may require the

consumption of a variable amount of a resource. Then as the

activity is performed a more refined estimate of future available

quantities of the resource is determined. This causes the domain

to be dynamically modified. Due to the newly refined domain, a

new allocation may need to be performed over the modified range to

best utilize the remaining resources.

In approaching this task one might consider some type of

readily available dynamic programming technique that would

iteratively reformulate the resource allocation scheme based on

the current domain state. Usually this is a plausible approach;

however, in many instances this can cause severe time delays in

the allocation softwares ability to traverse the domains time

range. This only tends to magnify the often already excessive

computational time required to perform the allocation process.

Figure 1 Dynamic Changing Over Time

What is needed is an alternative approach that can

incorporate the effects domain changes can have on an existing

allocation. In such an approach hopefully only those particular

activities that are effected will be engaged and therefore reduce
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any unnecessary constraint calculations.

Constraint Propagation.

One such technique is

What is Constraint Propaaation?

Constraint Propagation is the technique of having localized

mechanisms that control the behavior of individual activities as

changes in the domain occur. This is more than just a

constraining equation that is applied at a local level. It

requires activation control to be maintained at a local level

while domain changes happen globally. If only those activities

that are directly affected by the domain change are activated then

a direct reduction in the number of constraint equation

evaluations can be achieved. Theoretically this evaluation

reduction would result in the time required in the reallocation

being reduced. Quite possibly each modification made by the

adjustment of the allocated items across the time range could

cause a subsequent alteration in the consumption of additional

resources. More than likely this would initiate a series of

downstream allocation modifications which could in effect initiate

even more downstream allocation modifications and so on. The

procession of changes effected on the downstream allocation of

events can be considered analogous to a propagating wave across

the domains remaining range. Thus arises the term Constraint

Propagation.

Obviously the effectiveness of this methodology is closely

tied to the amount of interdependence that exists between the

different activities regarding the type and quantity of usage of

the various resources. It may be logical to assume that as the

commonalties regarding resource requirements between the different

activities increases then the level of increased performance in

this method decreases. However, logically one would assume that

any reduction in the application of constraint equations should

produce some amount of time savings. This implies that the

overall performance increase seen by the system should always be

non-negative.

How do you design a Constraint Propagation System?

Specific considerations must be made in designing a resource

allocation software system that applies the technique of

constraint propagation. First, there is the need for local

control of processes. This tends to exhibit a requirement for

code encapsulation at the activity level while maintaining global

access to domain information. Although there are possibly a

variety of approaches to achieve this, the best approach is

through the implementation of Object Oriented Programming

Techniques (OOP) . With this approach the individual activities

and resources can be constructed as objects. An activity object

locally contains all the information describing not only resource

consumption requirements and constraints, but also information

which controls what activation triggers exist that would cause a
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re-evaluation of this activity in the allocation process. All the

information would exist as specific slot values located within the

object itself. Likewise a resource object could contain the

resources current state, usage history, any global limitations,

and other pertinent resource specific information.

Figure 2 Object Data Structure

Many of the desired characteristics of a Constraint

Propagation system are similar to those found in Frame Based

Reasoning (FBR) systems. In an FBR system components can be

designed that describe the control structure of the frame. These

so called "daemons" are activated and controlled by the

environment in which the frame resides. For example, an "if-

decreased" daemon could possibly cause the initiation of the

control code when a quantity of a specific resource is reduced for

the time frame containing the specific performance of the

activity. The range of functionality of these daemons is limited

only be the developers ability to tailor the environments object

manipulation characteristics.

There are several programming environments (C++, ADA, LISP,

etc.) that boast an object data structure. For ease of

manipulation and flexibility of control LISP is probably the most

conducive of these environments in which to develop a Constraint

Propagation system. This is due to the extensive functionality

associated with the Lisp object as compared with other programming

environments. These structures support the full range of message

passing capabilities and can have external functional bodies

called "Methods" which can be applied to each object. Simply put,

a "Method" is a segment of computer code that acts similarly to a

function that can be applied to a specific class of objects. It

is through the use of these "Methods" that the behavior of each of
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the daemon slots within the object is defined and controlled. By

the use of this varied level of control constraint propagation

techniques become feasible.

In this brief presentation the concept of constraint

propagation has been discussed. Certainly, performance increases

are possible with careful application of these constraint

mechanisms. The degree of performance increase is related to the

interdependence of the different activities resource usage.

Although this method of applying constraints to activities and

resources is often beneficial, it is obvious that this is no

panacea cure for the computational woes that are experienced by

dynamic resource allocation and scheduling problems. A combined

effort for execution optimization in all areas of the system

during development and the selection of the appropriate

development environment is still the best method of producing an

efficient system.
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Abstract

This paper describes the development of event-based intelligent control system for a
space-adapted mixing process by employing the DEVS (Discrete Event System Specifi-

cation) formalism. In this control paradigm, the controller expects to receive confirming
sensor responses to its controI commands within definite time windows determined by its
DEVS model of the system under control. We apply the DEVS-based intelligent con-
trol paradigm in a space-adapted mixing system capable of supporting the laboratory
automation aboard a Space Station.

I. Introduction

"Intelligent control", the intersection of artificial intelligence, conventional automatic
control, and operations research approaches, is receiving increasing attention in both the-
ory and application(3). An intelligent control system often employs a hierarchical control
structure in which a higher-level intelligent controller supervises a lower-level conventional

controller. The event-based control paradigm, introduced by Zeigler(4), realizes such in-
telligent control by employing a discrete eventistic form of control logic represented by
the DEVS formalism.

In this control paradigm, the controller expects to receive confirming sensor responses
to its control commands within definite time windows determined by its DEVS model of
the system under control. Since the DEVS formalism is at heart of event-based control
system design, such controllers can be readily checked by computer simulation prior to
implementation. Thus the DEVS formalism plays the same role to event-based control

that differential and difference equation formalism play to conventional control(4). An
advantage of an event-based control system using DEVS models includes its fault di-
agnostic capability supported by DEVS-Scheme, a LISP environment implementing of
DEVS formalism(2,7,8).

This paper describes the development of DEVS-based intelligent control system for a
space-adapted mixing process. The paper first reviews the concept of DEVS formalism,
then uses it to formalize the dynamics of a mixing process. It shows the hierarchical
architecture of the realized intelligent control system for mixing. Several simulation runs
illustrate the technique.

II. DEVS Concept for Event-based Control

The Discrete Event System Specification (DEVS) formalism introduced by Zeigler(5)
provides a means of specifying a mathematical object called a system. Basically, a system
has a time base, inputs, states, and outputs, and functions for determining next states and

outputs, given current states and inputs(6). In the DEVS formalism, one must specify
1) basic models from which larger ones are built, and 2) how these models are connected
together in hierarchical fashion. Detail descriptions of how a basic model, called an atomic
model and the second form of model, called a coupled model, are specified are found in
(1,7).

DEVS-Scheme is an implementation of the DEVS formalism in SCOOPS, an object-

oriented superset of Scheme (a Lisp dialect), which enables the modeler to specify models
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Figure 1: Space Adapted Mixing System

directly in DEVS terms. DEVS-Scheme supports building models in a hierarchical, modu-

lar manner (successively putting systems together to form larger ones), a systems-oriented
approach not possible in conventional languages. Detail description of DEVS-Scheme in-
eluding its class hierarchy is available in (1,7).

The DEVS formalism is more than just a means of constructing simulation models.
It provides a formal representation of discrete event systems capable of mathematical
manipulation, just as differential equations serve this role for continuous systems. We
illustrate how mixing systems specified for the space environment may be advantageously
mapped into DEVS representations. Suitably operating on the structure of such DEVS
models provides a basis for the design of an event-based controller.

III. Space Adapted Mixing Process

The design of a space-adapted container would have an aluminium bottle containing
an inflatable bag, which is the actual liquid container; liquid is injected/extracted by
means of syringes; air pressure between the outside of the bag and the inside of the
bottle wall ensures that the bag remains "full" at all times. We treats a system with
space adapted container stirred by rotating propeller as shown in Figure 1. The mixing
process is batch - some quantity of fluid with a given concentration is added to a container
already filled with a liquid of another concentration. The container is fed with an incoming
liquid-A from the syringe-A with a flow rate r= by the control command, FILL-A. Once the
level of liquid-A reaches to its pre-specified level, the flow of liquid-A might be stopped
by control command, STOP. Then, another liquid-B from the syringe-B is added into
the liquid-A in the container with a flow rate rb until it receives the control command,
STOP. Both feeds contain dissolved material with constant concentrations, C_ and Cb,
respectively. Assume that the propeller starts either at the same time as liquid-B starts to
be filled or after filling liquid-B is complete. The propeller should cease its operation by
the control command, STOP. When the propeller stops, the concentration of both liquids
should reach to the equilibrium value. The outgoing flow to the syringe-C has a flow rate
T c •

Figure 2 illustrates the relationship between dynamic characteristics and times. Fig-
ure 2(a) represents the various filling rates : A-filling-rate (r_), B- filling-rate (rb), and

emptying-rate (re). Figure 2(5) shows the normal and fault cases of mixing effect (a)
characteristics. In the fault case, broken propeller, a might be slowly decreased (propeller

speed is reduced). Figure 2(c) shows the volume characteristics : liquid-A volume(V_),
liquid-B volume(Vb), and total volume(V_). The concentration characteristics of normal

and fault cases are shown in Figure 2(d). The concentrations of both liquids are expo-

nentially changed toward the equilibrium value. Here we adopted the 2% steady value
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Figure 2: Dynamic Characteristics of Mixing System

criterion for reaching equilibrium level. Later, we will show how this system can be suc-
cessfully controlled and how the error can be diagnosed.

IV. DEVS Representation of Mixing Process

In the DEVS representation of event-based control, a DEVS model moves through
its checkstates in concert with external inputs, as long as those inputs arrive within the
expected time windows. Associated with each checkstate are a minimum time and a
window. In contrast to conventional sampled data systems, event-based logic does not
require sensor output precision. Sensors can have threshold-like characteristics. Only
two output states, for example, on/off, are needed although more may be employed.
However, to generate the time windows the output states of the sensor must be accurately
and reliably correlated with values of significant process variables. Figure 3(a) shows

possible threshold-type sensors. A visual sensor in Figure 3(b) can provide more precise

information for fault diagnosis. Figure 4 illustrates various data types of sensory inputs.
The indicator used by controller keeps track of the container state estimated by level-
sensors. However, the backup sensor, tube sensor and vision sensor provide more accurate
container state. Therefore, by checking these various sensory sources, the diagnoser can
do the fault diagnosis.

The control task is performed as the DEVS model of control system changes its state
from an initial position on a given threshold sensor boundary to a succession, possibly
cyclic, of boundaries. More concretely, this means we want the system to go through a
predetermined sequence of states as reported by sensor readings. Our control logic will,
as each boundary crossing is achieved, issue a control action, i.e., send an appropriate
input to the system, in order to move toward the next desired boundary. The controller
has a time window in which it expects the appropriate sensor states to change to confirm
the expected boundary crossing. The time windows are derived from the DEVS external
model of the system. Figure 5 presents the phase categorization in terms of the boundary
conditions of the dynamic chacteristics and their transition cycle with control commands.

The transitions labelled by () are expected to take place within given time windows, as
illustrated in the next section.
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V. Simulation Approach of Mixing Process

Figure 6 shows a simulation structure for the mixing process control. The simulation
test is decomposed into a model representing the real bottle, MIX-E, and control-unit. The

control-unit is decomposed into an operator for filling, mixing and emptying a container
and a diagnoser for discovering the causes of any operational faults. There are three
sub-models in the simulation :

MIX-E : Model of a space adapted mixing system. MIX-E is able to respond to both

operational commands and diagnostic probes. It is external to the controller.

MIX-O : an operational model of the mixing system used by a controller, CONTRL, to
generate its commands and verify the received sensor responses. Table 1 presents the

operation table used in the MIX-O model. For example, the first column states that if
the current state is EMPTY and the input is FILL-A then the next-state is A-FILLING;

also the output in the current state is nil and its time-advance is infinity (ta --- inf). The

time window of the next state is given by two fields : next-ta(20) gives its lower bound,

and next-wind(6) gives its width (so its upper bound is 26).

MIX-D : a classification, or expert-system-like model, employed by the diagnoser inference

engine, DIAGN, to determine the probable source of breakdown. As an example, an

informal presentation of some of the diagnostic rules is given below :

R1 : If backup-sensor is not A-full and A-full-sensor is true, then "A-full-sensor is bad".
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R2 : If timing is too-late and phase is A-filling and level is less than 100, then "Tube is
off-angle or leaky".

R3 : If timing is too-late and phase is mixing and concentration-level is greater than 31,
then "Propeller is broken".

Figure 7 shows the hierarchical structure of the mixing control system. Level III is
the lowest level, where the real system under control exists. The external model, MIX-E,
receives input messages such as control commands and read-sensor commands from the
next higher level, Level II. It sends the sensor readings to the next higher level. Level II
corresponds to the control unit shown in Figure 6. It has an operational model, MIX-O,
and a rule-based model, MIX-D, to provide necessary information for the controller and
diagnoser, respectively. It also sends a result message to its next higher level, Level I,
which contains the goal agent, the highest unit of the control system. The agent may
represent a robotic or other autonomous decision maker.

VI. Simulation Results

To test the control logic for a mixing process, we have run several simulation ex-
periments of a possible mixing process. The simulation experiments concern two cases :
normal case and fault case. Initial values for an external model, MIX-E, under normal

operation are given as follows ; r_ = 5, rb = 6.67, rc = 8.3, Va = 100, Vb = 66.6, C_(0) =

50, Cb(0) = 0, angle = 90, constriction effect = 5, leakage rate = 0.001, and a = 0.005. We
also assume several time delays of sensor readings, for example, 1 sec for backup-sensor
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state input next-state output ta next-ta next-wind

empty filI-A A-filling () inf 20 6

A-filling 0 A-over-filling A-full-sensor 20 1000 20

A-over-filling 0 A-burst 0 1000 inf ()
A-over-filling stop A-full 0 1000 inf ()

A-full filI-B&mix B-filling 0 inf 10 4
B-filling 0 B-over-filling B-full-sensor 10 1000 20

B-over-filling stop B-full () 1000 inf ()

B-full mix mixing 0 inf 45 7

mixing 0 over-mixing () 45 1000 20

over-mixing () inf-mixing () 1000 inf ()
over-mixing stop mixed () 1000 inf ()

mixed empty emptying 0 inf 20 6

emptying 0 empty empty-sensor 20 inf ()

Table 1: Table Specification of an internal model,MIX-O

reading and 100 sec for visual-sensor reading. In the future, these time delays could be
taken into account when deciding on sensors to interrogate.

The partial simulation results of normal and fault cases for a goal plan from B-full

to MIXED are illustrated in Table 2(a) and (b), respectively. In the normal case, the

controller, CONTRL, issues the control command, MIX, to the external model, MIX-E,

and also to the internal model, MIX-O, and then waits for the sensory response during the

scheduled time window (7 sec). If the sensory response arrives within the time window,

the controller generates the next command and so on, till the MIX-E reaches to its goal

state. But, in the fault case, where the propeller is broken during mixing (at clock time

35), the mixing effect, a, decreases from 0.08 to 0.05 (the base level) with decreasing rate

0.005 at each time step (see Figure 2(b)). In this case, Table 2(b) shows that there is no

response from MIX-E before time step 86.3, the upper bound of the time window given by

MIX-O. Therefore, the controller generates the error command, ERROR, to the diagnoser.

The diagnoser, DIAGN, checks the data associated with the discrepancy, such as phase
in which it occurred, and its timing. It also gets sensor data from MIX-E. The expert-

system-like model, MIX-D, concludes "the propeller is broken" by using the data from

DIAGN. This is because the indicator shows that its timing is TOO-LATE and current
phase is MIXING but the visual sensor shows that the concentration has not reached to
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Figure 7: Block Realization of the Mixing Control System

clock
MIX-E MIX-O

state output state output

CONTRL

state output

34.3 (mixing 45) () (mixing) (mix 45 7) () (mix)
79.3 () ( ) () () (window 7) ()

83.2 (over-mixing 200) () (mixed) (stop) (check 1) 0
84.2 (mixed) ( ) 0 0 0 (stop)

(a) Goal Plan • B-FULL-> MIXED (normal case)

MIX-E
clock

MIX-O

state output state I output

34.3 (mixing 45) 0 (mixing) (mix 45 7) 0

79.3 () () 0 0

86.3 0 () 0 0

87.3 (reading 1) 0 0 0
88.3 (reading 10) (B-full) 0 0

98.3 (visual 100) (normal) () 0

198.3 (finish-read)(vision-info)0 0
199.3 (passive) (done) 0 0

__00.3 0 () 0 0

CONTRL MIX-D DIAGN

state I output state I output state output

(mix) 0 0 0 0

(wind 7) 0 0 0 0 0

(,error)(too-late) 0 0 (start 1) 0

0 0 0 0 (wait-sensor) 0

0 0 0 0 (wait-sensor) 0
0 0 0 0 (wait-sensor) 0

0 0 0 0 (wait-sensor) 0
0 0 0 0 (start-diagn) (sensor-

() 0 (passive) (propeller(passive) data)
-broken) (propeller

-broken)

(b) Goal Plan • B-FULL -> MIXED (error case )

Table 2: Simulation Results (partially shown)
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its equibrium value.

VII. Conclusions

This paper has shown how the space-adapted mixing control system is advantageously
represented as discrete event models by employing techniques based on the DEVS formal-
lsm. Several fluid handling models have been successfully testing in the DEVS-Scheme
environment. Suitably operating on the structure of such DEVS models provides a ba-
sis for design of event-based logic control. Since the DEVS formalism is at the heart of

event-based control system design, such controllers can be readily checked by computer
simulation prior to implementation. Thus the DEVS formalism plays the same role with
respect to event-based control that differential and difference equation formalisms play
to conventional control. This principle and the applicability of the DEVS-based control

paradigm was illustrated here in the design of a fluid mixing system capable of supporting
laboratory automation aboard a Space Station. The inclusion of event-based control units
within robotic agents is discussed in (9, 10).
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Abstract

Recent work in Causal Reasoning has provided practical techniques for multiple
fault diagnosis. These techniques provide for a hypothesis/measurement diagnosis

cycle. Using probabilistic methods, they choose the best measurements to make,

then update fault hypotheses in response.

For many applications such as computers and spacecraft, few measurement points

may be accessible, or values may change quickly as the system under diagnosis

operates. In these cases, a hypothesis/measurement cycle is insufficient. This paper
presents a technique for a hypothesis/test-input/measurement diagnosis cycle. In

contrast to generating tests a priori for determining device functionality, it dynam-
ically generates tests in response to current knowledge about fault probabilities.

The paper shows how the mathematics previously used for measurement specifica-

tion can be applied to the test input generation process. An example from an effi-

cient implementation called MPC is presented.

I. Introduction

In recent years, AI techniques have proven useful for constructing fault diagnosis

tools. A particularly interesting subset of these techniques is based on Causal Rea-
soning. Causal reasoning tools use a model of how the unit should behave, assum-

ing no faults. This model can then be used to infer possible faults by comparing

the observed behavior to the behavior predicted by the model.

Recent work has yielded techniques for multiple fault diagnosis using such tech-

niques. The approach of (de Kleer and Williams), for example, provides an efficient

framework for hypothesizing faults, given a set of measurements. At each step in
diagnosis, it determines the most helpful measurement to make next. This provides

a hypothesis/measurement diagnosis cycle.

A fault-isolation procedure based solely on a hypothesis/measurement cycle is often

insufficient. Many complex systems such as computers and spacecraft are packaged

in a way that makes measurement of most internal points time-consuming and ex-

pensive. Additionally, values within the system may not be static. For example, in
a microprocessor-based system, data is sent over the databus to peripheral devices.

Without sophisticated test equipment, the actual databus value cannot be measured

directly, because it is present for only a fraction of a microsecond. For these rea-

sons, it is often preferable to restrict measurement, when possible, to a few easily-

accessible points. In this style of diagnosis, multiple test inputs are generated to

observe the system in multiple states, rather than multiple measurements taken

with the system in a single state. Recently, researchers have introduced off-line
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techniquesfor purposessuch as post-assemblycheckout(Shirley). However, little
hasbeenpresentedaboutdynamicallygeneratingtests for isolating multiple faults.

The following sections present a technique for adapting the mathematics of
hypothesis/measurementtechniquesfor performing dynamic test input generation
for multiple-fault isolation.SectionII describesthe causalmodels for which this
techniqueapplies.SectionIII presentsthe approachto the test generationand se-
lection processes,and the techniquesadopted for deducing the most probable
faults. Finally, Section IV presentsan examplediagnosisusing an implemented
test-generation/fault-isolationsystem.

II. Causal Models for Multiple-Fault Diagnosis

Central to the causal-reasoning scheme is a causal model describing how the sys-

tem under diagnosis properly functions. The causal model contains a description of

the important points within the system, referred to as elements, and how the val-
ues of these elements cause and effect each other. Consider the system shown in

Figure 1. It is a modified portion of an experiment control electronics subsystem

concept being developed by Martin Marietta. This subsystem will be used as an ex-

ample in the following sections. In the model, elements correspond to inputs and

outputs of modules, as well as to a few module-internal points. Such a system can
be modeled with our DEFCAUSAL syntax. For example, one operation of the Re-

mote Interface Unit (RIU) is to write data to port EXP-CMD-3 when a :write-3

TDRSS

_lay
satellite

tdrss-in

_7/__=_T_ C°mputer

tdrss-out cu-cmd _ ] cu-data

multiplex bus

command unit

exp data 1 exp cmd 1

exp data 4
exp cmd 4

bus control unit

remote interface unit

Figure 1. Example system for diagnosis Part of experiment
control electronics subsystem. Commands sent and data gathered
via the TDRSS relay satellite.
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commandis receivedon BCU-CMD.This relation is shownbelow(valuesstarting
with a "?" are variables).

(defcausal RIU

(8CU-CMD (:write-3 ?data) :momentary)causes

(EXP-CHD-3 ?data :continuing))

Another causal relation describes how the On-Board Computer (OBC), when in the

:experiment mode, sends commands on the Command Unit (CU) line. The com-

mands are sent from the OBC command-sequence memory:

(defcausal OBC

(OBC_MEM ?memory)

(MODE :experiment)

(ELAPSED-TIME ?t) causes

(CU-CHD (address ?t ?memory) :momentary)).

The :momentary and :continuing flags indicate the temporal relations of the causes
and effects.

III. Dynamic Test Input Generation

An important pai't of diagnosis is to gain knowledge about the internal state of the

malfunctioning system. This knowledge helps to decide which among several fault

hypotheses is actually correct. In systems with many measurable internal points,

this knowledge is gained by direct measurement, e.g., with voltmeters, logic
probes, etc. When internal points are inaccessible, we must adopt a different

means of obtaining this information. Our approach is based on a concept of path

generation. In this approach, paths through the system are generated, which, if

tested, will yield information about the internal system state. Our approach incor-

porates this idea with the following processes: (1) A Candidate Generator, which
uses the measurements resulting from tests to produce fault hypotheses and their

associated probabilities; (2) a Path Constructor, which suggests test paths through

the model to gain information about the hypothesized faults; (3) a Path Selector,

which chooses the path most helpful in discriminating between fault hypotheses;

and (4) a Causal Planner, which produces a test input sequence to activate the seo

lected path. Figure 2. presents a diagram of how these processes interact in a test-

generation]fault-isolation system.

Candidate Generation

The Candidate Generator derives the fault hypotheses (candidates) implied by ob-

served symptoms. It assigns probability estimates to each candidate.

Upon input of a symptom (an unexpected value at an observed element), the
Causal Planner determines which causal relations imply the correct value, rather

than the symptom value, was to be expected. This set is known as the active rela-

tions set. The Causal Planner produces this set as follows: given the correct out-

puts as goals and the inputs which were present when the symptom was observed
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feasible

paths to test

I

path to test

path causal

selector model

causal relations

[ causal ] test input sequence

"1 planner I

t

fault hypotheses

measurements

Figure 2. Test generation/Diagnosis architecture.

as constraints on the solution, it generates a plan indicating the required inputs.

During planning, the planner selects a causal relation to achieve each subgoal.

When a solution is found, the set of relations selected in planning comprises the

active relations set. This set can be described as a directed graph, relating input

values, through intermediate values, to the desired output value. Assume, for ex-

ample, that a value of 35 is desired on the TDRSS-IN line of the system of Figure

1. The resulting active relations set is shown in Figure 3. The active relations set

describes the mechanisms which if functioning properly, would provide the correct

behavior. When a failure symptom is observed, therefore, at least one of the active

relations must not be functioning as specified. Conversely, if the correct output
results, there is evidence that the active relations set is without fault.

One useful technique for generating candidates based on causal information has

been described by (de Kleer and Williams). The technique maintains a set of mini-

mal candidates, each of which must be able to account for all observed symptoms.

Probability values are assigned to each candidate, using Bayesian probability con-

cepts. Candidate generation, in our approach describing faults in terms of faulty

active relations, is taken directly from (de Kleer and Williams), so will not be re-

peated here. A slight modification of the probability assignment approach is pre-
sented here.

A test passes if the value predicted by the model is observed at the test point. Af-

ter each test is run, the probabilities of all candidates are updated, based on

whether the test passes or fails. The probability that all of the relations in the

candidate are faulty is assigned to each candidate. The probability of candidate Cj,

with respect to its previous probability P(Cj) is, by Bayes' rule (if the test fails)
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I mo,_p,oxbus=_cu35b-_co_a.=35I r,0 q ,_ssi°=35I

tw.u-cmd = read4 exp-data-4 = 35

116
multiplex-bu_ Iobc-mode = configure

] r5 / tdrss-out = (mode configure) I

r4_ obc-mem = I,REAIM _l_r3[-_ !_..ut =<_, ,_,_4_
"N_ r2 (mode experiment)]o_-mo_--exr_imen,_ [ _-ou,-

Figure 3. Active causal relations (ri) indicating why TDRSS-IN should equal 35.

OBC memory is loaded with "rend-4" in location 1. Then, in the "experiment" mode,

when tim_l, the OBC sequenc_ sends the command, which sends the result to TDRSS.

P(Cjl fails) =_failsl Cj) P(Cj)
P(fails)

where

P(failsl Cj) = O if Cj_'active-relations

1-r if Cj_active-relations

Cj_lactive relations

P(fails) =Z P(cj)(1 - r)

J

and, if the test passes,

P(CjI passes) : P(passesl Cj) P(Cj)

P(passes)

where

P(passesl Cj) : I if Cj_(active-relations

r if CjO active-relations

CjOactive relations Cj_active relations

P(passes) =SP(Cj) r + Z P(Cj)

J J
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As reflected above, even if a candidate is the fault, the correct value will in some

cases result at the test point under the conditions of the test. This effect is ap-

proximated above with a constant, r, which indicates the probability that a particu-
lar relation will so behave.

Path Construction

Path construction is the basis of our test generation approach. The purpose of

path construction is to generate a path using causal relations from a point internal
to the system to a measurable point. By measuring the result at the output point,
evidence about the internal state will be obtained.

When generating a test, we wish to obtain knowledge about which active relations

have failed. The test path will therefore traverse causal relations from the active
relations set. For example, given the active relations of Figure 3, each test path

would pass through at least one of the relations rl through rl0. If an incorrect

value results at the end of a path, there exist faults within the relations traversed

by the path. Otherwise, evidence indicates faults probably do not exist in the path.

The process of path construction is depicted in Figure 4. The causal relation ri
takes the values of the elements ei and causes the value at elements ei+l. Assume

that the relations r' are not within the active relations set. If ei has the expected

ri

potential test path ...-_
t_

.. --" measurable pomt"

ri+l symptom point

Figure 4. Path Construction for isolating possible fault of relation ri (see tex0.

value, but ei+l does not, ri must be faulty. To discriminate between ri and the re-

lations rj>i, paths not passing through rj are needed. Paths through ri and r'i+l

will therefore be constructed. Similarly, to discriminate between ri and rj<i, paths
through r'i-1 and ri are constructed. All of the constructed paths must terminate

at a measurable element, so that measured values can be used to gain the re-

quired information.

To this end, the path constructor generates all paths through relations ri of the

active relations set, with and without alternative relations r', terminating at mea-

surable points. When a path is activated by a test input, the value at its measur-

able point is the test result.

Path Selection

The Path Selector chooses the path most useful to test, and gives it to the Causal

Planner as a test goal.
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The results of a particular test will give evidenceabout whether a fault exists
within the active relationsof the test. Therefore,to determine the usefulnessof a
path, it is necessaryto know which causal relations needto be active to run the
test. Figure 5 depictsthis situation. The large triangle of Figure 5 representsthe
active relations which shouldhave causeda correct value at the symptom-point.
The small triangle representsthe relations contributing to the expectedvalues
neededfor the relation ri-1. If the path r' were to be tested,the relations repre-
sentedby the large dashedtriangle of Figure 5 wouldbe under test, becausethey
are all neededto activate the path r'. The way to determine this set of relations is
to run the CausalPlanner,as describedin "CandidateGeneration."Given a large
modeland a large set of potential paths (a commonoccurrence),the time to evalu-
ate all the optionswould be prohibitive (In the examplemodel,the planner runs
for about 5 secondsfor eachplan). An approximationis therefore used.The rela-
tions within the small triangle are alreadyknown, becausethey were determined

test ! " " "" "" "" " x, ,,
inputs -,

...... -. "" active relations set
,, --'----------- --- . symptom

original 1-'''___"'-- "" _" "
inputs _ active relations_._ "£"°'2" _"U" _" ""_''-: '"- =.',. mcasurable

for potentialtest path point

Figure 5. The active relations set for the test path is approximated by the relations
comprising the small triangle union the relations forming the potential test path.

in finding the active relations leading to the original symptom. The union of that

set and the set of relations used to construct the potential path can therefore ap-

proximate the active relations set. This approximation may skew path selection, by
affecting the probability of the test passing, as indicated in the equations above.

Fortunately, it will not affect accuracy of the test results, because the planner will

later be run for the selected path to generate the test input. This will determine
the exact active relations set.

At this point, the potential paths, each with the set of causal relations it tests,

have been determined. The final step in path selection is to choose the set of rela-
tions most useful to test. Techniques similar to those presented in (de Kleer and

Williams) apply to path selection. The essentials of tlm process are discussed here.

The best test is defined as that which minimizes the expected entropy of the can-

didate set, using the Information Theory definition of entropy

candidates

H =- _ P(Cj) log P(Cj).

J

39



As the probabilities move toward 0 or 1, this sum is minimized. The expected en-
tropy resulting from a given test is

H = H(passes) p(passes) + H(fails) p(fails).

In terms of the definition of entropy,

" candidates
H(passes) = -_P(Cj I passes) log P(Cj

J
I passes)

^ candidates

H(fails) =-_P(Cj I fails) log P(Cj I fails).

J

The conditional probabilities of each candidate are as given in "Candidate Gener-
ation." The test which minimizes H is selected as the best test to run next.

The final part of test generation is implemented by giving the Causal Planner the

desired value of the measurable point (the output of the selected path) as a goal.
The constraints on the plan are that the approximated active relations set is in-

cluded in the solution. When the 'planner terminates, the plan produced is the test
input.

IV. MPC- An Implementation of Test Input Generation

A computer program implementing the test-generation/fault-isolation architecture

of Figure 2. has been implemented as part of the MPC (Multi-Purpose Causal)
tool. It is implemented in Lisp on a Symbolics 3670. MPC accepts models described

in the DEFCAUSAL syntax and currently has an interface requesting tests and ac-

cepting measurement results. It has been tested on several models, including an
expanded version of the example presented here.

An example diagnosis session using MPC will now be described, indicating the op-

eration of the various test-generation subsystems. Assume that the sequence of
TDRSS commands (mode :configure), (write 1,(write-3 35)), and (mode :experiment)

were sent to the system of Figure 1. As shown in Figure 3, a value of 35 on the
EXP-CMD-3 control line would be expected. Assume that this value was not ob-

served. MPC is therefore given EXP-CMD-3 as the initial symptom point. Ten can-

didates are generated, one for each of the potentially faulty relations shown in Fig-
ure 3. The candidate probabilities are as follows:

{rl} = .100, {r2} = .100, {r3} = .100, {r4} = .100, {r5} = .100,

{r6} = .100, {r7} = .100, {r8} = .100, {rP} = .100, {rl0} = .100.

Paths from the points associated with these candidates to measurable outputs

(EXP-CMD-1 - EXP-CMD-4 and TDRSS-IN) are generated. The most useful path,
according to the entropy-measurement equations described in "Path Selection," is

the path from the BCU-CMD element to the measurable point EXP-CMD-1. This

selection corresponds to the intuitive "divide the problem in hal_' approach often
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used by technicians. To generate a test of this path, the causal planner is invoked,
and is constrained to use the causal relations rl through r6 in the plan, as they

were used to cause the point of interest BCU-CMD, as can be seen in Figure 3.

The resulting plan is

TDRSS-OUT = (mode :configure)

TORSS-OUT = (write I, (write-1 35))

TDRSS-OUT = (mode :experiment),

MPC then prompts

Is the value at EXP-CHD-1 equal to 35?

Assume that the answer is "yes."The updated candidate probabilities are

{rl} = .039, {r2} = .039, {r3} = .039, {r4} = .039, {r5} = .039,

{r6} = .039, {r7} = .192, {r8} = .192, {r9}--.192, {rl0} = .192,

indicating that the candidates describing the relations on the path from the experi-

ment back to the TDRSS are most suspect. The paths from the active relations are

once again evaluated. Based on the new candidate probabilities, however, the most

useful path is from BCU-CMD to TDRSS-IN, but using a different causal relation

from BCU-CMD. The path selected goes through the relation rll, using EXP-

DATA-l, rather than the original EXP-DATA-4. The resulting plan is

TDRSS-OUT = (mode configure)

TDRSS-OUT = (write 1, read-l)

EXP-DATA-1 = 35

TDRSS-DUT = (mode experiment),

followed by the prompt

Is the value of TDRSS-IN equal to 35?

If the answer to the test is "yes," the probabilities indicate a strong preference for

a single candidate, indicating that r7 is the faulty mechanism:

{rl} = .022, {r2} = .022, {r3} = .022, {r4} = .022, {r5} = .022, {r6} = .022,

{r7} = .543, {rS} = .109, {r9} = .109, {rl0} = .109.

If this amount of convergence is sufficient to terminate testing, MPC reports its

findings. Because R7 is implemented in the RIU module, RIU is reported as the

suspect module. These results were obtained by using a value of .2 for r in the

probability equations. With a smaller value, the convergence on the candidate {r7}

would have been faster.
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Conclusions

The test generation architecture implemented in the MPC system contributes a

new tool to the set of causal reasoning capabilities now available. For systems in

which few points are accessible, or in which transient effects are important, it pro-

vides a means to dynamically generate tests in response to observed symptoms.

The MPC approach is an extension to several other causal-reasoning efforts. Shar-

ing some of the techniques of (Shirley), it generates tests to narrow down fault
hypotheses, rather than to test specific components. It makes use of the probabilis-

tic hypothesis generation and belief ideas of (de Kleer and Williams), but for test-

generation purposes. This use of probability avoids the need for the "evidence

model" required in the approach described in (Schaefer).

The current approach assumes that when a causal relation fails, the physical fail-
ure is in the device designed to implement the relation. Occasionally, however, an-

other device may have a failure, such as a short circuit, which interferes to cause
the relation to fail. Using the model to explore these possibilities, making use of

"Pathways of Interactions" techniques similar to (Davis), is a topic of ongoing re-

search. Other extensions include more sophisticated techniques for explaining the

significance of test results to the user.
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ABSTRACT

The U.S. Bureau of Mines is currently investigating ways to combine the control capabilities of
fuzzy logic with the learning capabilities of genetic algorithms. Fuzzy logic allows for the
uncertainty inherent in most control problems to be incorporated into conventional expert systems.
Although fuzzy logic based expert systems have been used successfully for controlling a number of
physical systems, the selection of acceptable fuzzy membership functions has generally been a
subjective decision. In this paper, high-performance fuzzy membership functions for a fuzzy logic
controller that manipulates a mathematical model simulating the autonomous rendezvous of spacecraft
are learned using a genetic algorithm, a search technique based on the mechanics of natural genetics.
The membership functions learned by the genetic algorithm provide for a more efficient fuzzy logic
controller than membership functions selected by the authors for the rendezvous problem. Thus,
genetic algorithms are potentially an effective and structured approach for learning fuzzy
membership functions.

INTRODUCTION

In recent years, rule-based systems have become increasingly popular as practical applications
of artificial intelligence. These expert systems have performed as well as humans in several problem
domains iT, however their lack of flexibility in representing the subjective nature of human
decision-making limits their performance in control problems. The uncertainty inherent in human
decision-making can be incorporated into expert systems via fuzzy set theory 18. In fuzzy set theory,
abstract or subjective concepts can be represented with linguistic variables. Linguistic variables have

• " " F s I,12,'13been used in expert systems m the form of fuzzy logic controllers ( LC )

FLCs are rule-based systems that use fuzzy linguistic variables to model a human's
"rule-of-thumb" approach to problem solving. FLCs have been used in a number of control
problems _6. These "fuzzy expert systems" include rules to direct the decision process, and
membership functions for categorizing the precise numeric variable values as linguistic variables and.
vice versa. The rule set is gleaned from a human expert's experience and the membership functions
are chosen by the FLC developer to represent the human expert's interpretation of the linguistic
variables. A change in the membership functions alters the performance of the controller because
it is the membership functions that determine when a given rule is eligible to be put into effect.
Thus, the performance of the FLC is restricted by the choice of membership functions (given a set
of rules)•

Procyk and Mamdani 15 introduced an iterative procedure for altering membership functions to
improve the performance of an FLC, but in general, little has been done to develop a method for
choosing membership functions that optimize the performance of an FLC. A standard method for
determining the membership functions that produce maximum FLC performance is needed, yet
selecting such a method poses a substantial problem due to the nonlinearity present in the search.
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A searchtechniquethatis finding increasingpopularityin thefield of optimizationis thegenetic
algorithm(GA)6. GAs aresearchalgorithmsbasedon themechanicsof naturalgenetics;they use
operationsfound in natural geneticsto guide their trek throughthe searchspace. GAs search
throughlargespacesquickly, requiringonly objective function value information to guide their
search,an inviting characteristicsincethe majority of commonlyusedsearchtechniquesrequire
derivative information, continuity of the searchspace,or completeknowledgeof the objective
function to guide their search. Occasionallytheserestrictionsprove to be inconvenientif not
insurmountable.Furthermore,becauseof theprocessingleverageassociatedwith GAs, theytakea
moreglobalview of thesearchspacethanmanymethodsencounteredin engineeringoptimization
practice5. Thesefavorablecharacteristicsof GAshavebeentheoreticallyinvestigatedby Holland's;'
monograph.Empiricalinvestigationsby Hollstien 8 and De Jong 4 have demonstrated the technique's
efficiency in function optimization. De Jong, in particular, establishes the GA as a robust search
technique--one that is efficient across a broad spectrum of problems--as compared to several
traditional schemes. Subsequent application of GAs to the search problems of pipeline engineering,
very large scale integration (VLSI) microchip la)rout, structural optimization, job shop scheduling,
medical image processing, and machine learning ° adds considerable evidence to the claim that GAs
are broadly based.

The robust nature of GAs make them inviting tools for learning fuzzy membership functions.

A GA has in fact been successfull_ used to learn high-performance fuzzy membership functions
employed by a liquid level FLC . In this application, an FLC was developed to control a
mathematical model of a vessel containing liquid. The simple system is governed by a first order
ordinary differential equation. All control decisions performed on the system involved altering one
control variable based on the state or condition of two decision variables.

In this paper, an FLC is developed to control a mathematical that simulates the autonomous
rendezvous of two spacecraft, one actively performing the rendezvous (the chaser), the other
passively orbiting (the target). The rendezvous problem has received attention in the literature 14and
is a challenging control problem. The FLC is capable of performing the rendezvous of the vehicles
as predicted by a mathematical model of the rendezvous system. Next, a GA learns more efficient
fuzzy membership functions to be used with the FLC rules. Based on the results presented, GAs
appear to be effective, versatile, and straightforward enough to learn high-performance membership
functions in complex control problems.

THE PHYSICAL SYSTEM

Spacecraft rendezvous operations are of importance to many forthcoming space activities. Of
increasing interest are those operations which are conducted autonomously, i.e., without a human
pilot operating the control systems of the chaser spacecraft. This paper is concerned with the
"terminal" phase of the rendezvous maneuver prior to docking.

Since terminal navigation is accomplished using sensors onboard the chase vehicle to measure
relative range and closure rates, a relative coordinate system is a logical choice. When the equations
of motion are expressed in a relative coordinate frame, the coordinates are given explicitly as
functions of time. In this study, the relative coordinate system (Figure 1) is fixed to the target
vehicle with the y-axis directed radially from the earth, the x-axis tangent to the orbit in the
direction opposite the target's motion, and the z-axis normal to the plane of the orbit and forming
the customary right hand system.

The complete differential equations of relative motion are easily derived 9. When the distance

between the spacecraft is small compared to the distance from the target to the center of the earth,
the three_equations of relative motion reduce to the Clohessy and Wiltshire (sometimes called Hill)
equations_:

- 2w_' = F×/m,

+ 2wx - 3w2y = Fy/m,

_"+ wZz = Fz/m ,
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whereco is the angular velocity of the relative coordinate system origin rotating about the earth; F x,

Fy, and F z are thrust forces; and m is the mass of the chaser vehicle.

In the present study the equations of motion are numerically integrated using a
predictor-corrector linear multistep method, specifically the explicit Adams-Bashforth 3-step method
for the predictor and implicit Adams-Moulton 3-step method for the corrector 2.
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Figure 1.--The coordinate system is fixed to the target spacecraft.

A FUZZY PROCESS CONTROLLER

There are numerous approaches to developing FLCs. Generally, a compo_itignal rule of
inferencelZ--a mathematical statement describing how the linguistic variables are to be manipu-

lated--is employed to control the problem envirtmment. In this paper, a hands-on, rational approach
to the development of FLCs is taken. A step-by-step fuzzy procedure for controlling the rendezvous
system is provided. This procedure is written in a generic form so that it may be easily adapted for
the development of other FLCs.

The first step in developing the rendezvous FLC is to determine which variables will be
important in choosing an effective control action. Six decision variables are readily identified as
being important in the rendezvous control system. First, the current position of the chaser spacecraft
relative to the target vehicle (identified with three variables x, y, and z) is important because it is
this position that the FLC must drive to a setpoint (a close rendezvous with the satellite). Second,
the time rate of change of the position (identified with three variables x, y, and z) is important
because it describes the relative velocity of the chaser spacecraft and becomes pertinent to the
decision as the setpoint is approached.

Once the decision variables have been chosen, the control variables must be identified. In the

rendezvous problem there are only three parameters that can be adjusted to alter the position and
velocity of the spacecraft: the specific thrust in the three respective directions, T x = Fx/m, Ty --

Fy/m, and T z = Fz/m.

Once the important decision and control variables have been identified, the linguistic variables
that will be used to describe these variables must be defined (fuzzy classes). For the terminal
rendezvous system, six fuzzy classes are used to characterize each of the six decision variables:
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NEGATIVE-BIG (NB), NEGATIVE-SMALL (NS), NEGATIVE-CLOSE (NC), POSITIVE-CLOSE
(PC), POSITIVE-SMALL (PS), and POSITIVE-BIG (PB). Five fuzzy classes are used to characterize
the specific thrusts, Tx, Tv, and Tz: NEGATIVE-BIG (NB), NEGATIVE=SMALL (NS), NO
CHANGE (N_C), POSITIVE-SMALL (PS), and POSITIVE=BIG (PB). These fuzzy classes were
chosen because they are similar to the descriptive terms a human operator might use when attempting
to rendezvous the spacecraft.

The choice of fuzzy classes described above allows for the possibility of 36 different conditions
that could exist in each of the x, y, and z coordinate direction when the rules are of the form
(example for x direction):

IF[xis A ANDxis8 ]=>THEN[T xisC ]

where A , /3 , and C are fuzzy classes characterizing the respective variables. The individual
coordinate directions are considered separately in this rule which would apply when x, y, or z were
large since a human operator would likely consider only the two decision variables in a single
coordinate direction at a time. Additionally, rules are added to take into account the coupling of
x and y, but only when the chaser is near the target. The 108 rules of the above form (36 rules for
each of the 3 coordinate directions) are certainly not adequate to control the spacecraft since the
equations of motion are coupled (the x and y equations), requiring the FLC to consider the x and y
coordinate directions collectively. This coupling effect becomes particularly important when the
chaser spacecraft is near the target. Therefore, a set of "coupled rules" is needed. These rules are
of the form:

IF[xisA AND yis /3 ANDxis CANDyis D]=>THEN[T×is E ANDTyis F ]

where A, 8, C, V, E, and /: are fuzzy classes characterizing the respective variables. These rules
are written for all of the possible combinations of the terms when the four relevant decision variables
are in the NEGATIVE-CLOSE or POSITIVE-CLOSE classes. Thus, there are 16 coupled rules which
when combined with the 108 original rules provide 124 total rules.

The driving force behind an FLC is the idea that some uncertainty exists in categorizing the
values of the control variables; the linguistic variables mean different things to different people.
As a result, there must exist some mechanism for interpreting the fuzzy classes. This mechanism is
the fuzzy membership function. The fuzzy membership functions used in the rendezvous FLC to
characterize relative positions are shown in Figure 2. Similar membership functions were used to
characterize relative velocities and thrusts. Fuzzy membership functions allow the precise numeric
values of the decision variables to be transformed into a fuzzy class and the fuzzy control actions of
the production rules to be transformed into precise, discrete control actions. Actually, fuzzy
membership functions are approximations to the confidence with which a precise numeric value is
described by a fuzzy class, and fuzzy membership function values (p) are numeric representations

of these confidences. For example, an x of 1300 ft might be viewed as POSITIVE-BIG (PPB (1300)
-- 0.18), POSITIVE-SMALL (pps(1300) = 0.43), POSITIVE-CLOSE (#pc(1300) -- 0.0),
NEGATIVE-CLOSE (#_c(1300) -- 0.0), NEGATIVE-SMALL (/_Ns(1300) -- 0.0) or NEGATIVE-BIG
(/z)_a(1300) = 0.0). When a fuzzy membership function has a value of p -- 1, the confidence level of
the-precise numeric value being accurately described by the fuzzy class is high. On the other
extreme, when p = 0, the confidence level of the precise numeric value being accurately described
by the fuzzy class is low. It is important to realize that for each precise decision value, each fuzzy
class has a membership function value, i.e., x = 1300 ft is POSITIVE-SMALL with a certainty of
0.43, POSITIVE-BIG with a certainty of 0.18, and described by each of the other classes with a
certainty of 0.0.

Now that the precise numeric conditions existing in the rendezvous system at any given time can
be categorized in a fuzzy class with some certainty, a process for determining a precise action to take
on the rendezvous system must be developed. This process involves rules which must provide a fuzzy
action for any condition that could possibly exist in the problem environment. Therefore, a human
expert provides a fuzzy action for each condition possible in the environment (there are 124 rules
in the rendezvous FLC). The formation of the rule set is comparable to the process that must exist
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in thedevelopmentof anyexpertsystem,excepttherulesincorporatelinguisticvariablesthathuman
operatorsaregenerallycomfortableusing.An exampleof afuzzyrule usedin therendezvoussystem
follows:

IF [y is NEGATIVE-BIG AND y is NEGATIVE-BIG] =)THEN [Ty is POSITIVE-BIG].

This sample rule simply says that if the chaser spacecraft is well below the target vehicle and moving
rapidly toward the earth, the thrust in the y direction should be increased as much as possible.

:Z
01
0¢
hi
¢Z]

W
¢-i

- POSITIVE-BIG

POSITIVE-SMALL

POSITIVE-CLO_

--- NEGATIVE-ClOSE

...... NEC,,ATIVE- SM/d.L

NEGA'ITVE-BIG

,.o . ;, _.

... ;, ,
o.?.F\ ..':" "..... , ', /!:iE\... ...i i /

t- \ 7 ',i ,'
o-21- :\ I. _I A
o.i 1- : \ _. y /,\
0.0 t 'l ",. J tJ'_ e.
-2ooo -lr, oo -looo -r,oo o 5o0

Xl (rnofo_)

%

I

1000

/

'\711

/ ,\
1500

Figure 2.--The fuzzy membership functions shown provide a mechanism for converting a numeric
value of position (xi = x, y, z) into a fuzzy class.

At this point a means for converting a precise set of conditions existing in the rendezvous system
to a set of fuzzy conditions, and a set of fuzzy rules prescribing a fuzzy action associated with a
particular set of fuzzy conditions have been developed. There still remains the task of converting
the 124 fuzzy actions provided by, the fuzzy rules into a single, precise action to be taken on the
chaser spacecraft system. Larkin '1 found that a procedure known as the center of area (COA)
scheme is an efficient method for determining this precise action. In the COA method, a single
action is defined by weighting the 124 individual actions described by the rules in proportion to the
confidence that exists in each rule. The rules with high degrees of membership play proportionately
higher roles in determining the action to be taken on the system.
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Figure 3.--The author=developed (AD) FLC is able to successfully rendezvous the spacecraft in
approximately 300 seconds.
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As a demonstrationof theeffectivenessof this fuzzy approach to control, consider a computer
program that implements an FLC for manipulating a mathematical model of the rendezvous system.
Figure 3 shows the position of the chaser relative to the target as a function of time for one
particular initial condition for the problem environment. The FLC uses only the set of 124 fuzzy
rules to govern its selection of actions. The FLC is able to rendezvous the spacecraft in
approximately 600 seconds. In the remainder of this paper, a technique for improving the selection
of membership functions (a GA) is introduced and applied to the rendezvous FLC.

THE MECHANICS OF A SIMPLE GENETIC ALGORITHM

GAs are powerful search algorithms based on the mechanics of natural genetics. They ensure
the proliferation of quality solutions while investigating new solutions via a systematic information
exchange that utilizes probabilistic decisions. It is this combination which allows GAs to exploit
historical information to locate new points in the search space with expected improved performance.

GAs are unlike many conventional search algorithms in the following ways:

1) GAs consider many points in the search space simultaneously,
not just a single point;

2) GAs work directly with strings of characters representing the
parameter set, not the parameters themselves;

3) GAs use probabilistic rules to guide their search, not
deterministic rules.

These differences establish inviting characteristics for a search technique. Namely, these differences
preclude the requirement of derivative information and continuity of the search space. For this
reason, GAs avoid convergence to local optima.

A simple GA that has given good results in a variety of engineering problems is composed of
three operators: (1) reproduction, (2) crossover: and (3) mutation. These operators are implemented
by performing the basic tasks of copying strings, exchanging portions of strings, and generating
random numbers; tasks that are easily performed on a computer. Before looking at the operators,
consider the overall processing of a GA during a single generation. The GA begins by randomly
generating a population of N bit strings each of length l. Each string represents one possible
combination of the parameter set; one possible solution to the problem (in this case, one particular
set of fuzzy membership functions). Although the coding of parameter sets to bit strings may at first
seem to be a problem, many imaginative codings exist for representing large parameter sets. Each
of the N strings is decoded so that the character strings yield the actual parameters. The parameters
are sent to a mathematical model of the rendezvous process, evaluated with some objective function
(i.e., told how good an FLC the parameters produce), and assigned a fitness value which is simply
a measure of relative worth (a reward based on the quality of the solution). This fitness is then used
when employing the three operators that produce a new population of strings (a new generation).
Hopefully, this new generation will contain more efficient membership functions. The new strings
are again decoded, evaluated, and transformed using the basic operators. The process continues until
convergence is achieved or a suitable solution is found.

Reproduction is simply a process by which strings with large fitness values, good solutions to the
problem at hand, receive correspondingly large numbers of copies in the new population. In this
study use is made of tournament selection. In tournament selection, pairs of strings compete with
each other on a head-to-head basis for the right to be reproduced in the next generation. The
participants in these competitions are selected in a probabilistic fashion based on the relative fitnesses
of the strings. Once the strings are reproduced, or copied for possible use in the next generation,
they are placed in a mating pool where they await the action of the other two operators.

The systematic information exchange utilizing probabilistic decisions is implemented by the
second operator, crossover. Crossover provides a mechanism for strings to mix and match their
desirable qualities through a random process. After reproduction, simple crossover proceeds in three
steps. First, two newly reproduced strings are selected from the mating pool produced by
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reproduction. Second,a positionalongthe two strings is selecteduniformly at random. This is
illustrated below wheretwo binary codedstringsA and B of length six are shown aligned for
crossover:

A= 11--'-_ 101

B 0011011.

Notice how crossing site 3 has been selected in this particular example through random choice,
although any of the other four positions were just as likely to have been selected. The third step is
to exchange all characters following the crossing site. The two new strings following this crossing
are shown below as A' and B':

A'=ll0011
B'=001101.

String A' is made up of the first part of string A and the tail of string B. Likewise, string B' is made
up of the first part of string B and the tail of string A. Although crossover has a random element,
it should not be thought of as a random walk through the search space. When combined with
reproduction, it is an effective means of exchanging information and combining portions of high
quality solutions.

Reproduction and crossover give GAs the majority of their search power. The third operator,
mutation, enhances the ability of the GA to find near optimal solutions. Mutation is the occasional
alteration of a value at a particular string position. It is an insurance policy against the permanent
loss of any simple bit. A generation may be created that is void of a particular character at a given
string position. For example, a 'generation may exist that does not have a one in the third string
position when, due to the chosen coding, a one at the third position may be critical to obtaining a
quality solution. Under these conditions, neither reproduction nor crossover will ever produce a one
in this third position in subsequent generations. Mutation, however, causes a zero in the third
position to be changed to a one occasionally. Thus, the critical piece of information can be reinstated
into the population. Although mutation can serve a vital role in a GA, it should be noted that it
occurs with a small probability (on the order of one mutation per thousand string positions), and is
secondary to reproduction and crossover.

This has been a brief overview of a simple three-operator GA. For a more complete description
of GAs including discussions of coding schemes, high-order operators, and fitness assignment,
reference should be made to Goldberg 6.

GENETIC ALGORITHM LEARNS FUZZY MEMBERSHIP FUNCTIONS

In this section, a three-operator GA learns membership functions that produce a rendezvous FLC
that is more efficient than the author-developed FLC. The GA is essentially assigned the task of
learning the proper definition of the linguistic variables as required for optimal performance when
used with the given rule set.

An objective function was developed that tended to force the GA to locate membership functions
that drove the relative position of the spacecraft to zero and held it there. The objective function
tracked the vehicles for 8000 seconds. For a given set of membership functions, an error (where
error is the sum of the absolute values of the relative distances between the chaser and the target
taken over time) was calculated for a particular initial condition with the intent of using a GA to
minimize this error term. So that a general purpose set of membership functions would be
developed, four different initial conditions were considered in the evaluation of each bit string. The
four initial conditions were chosen to ensure that the FLC could rendezvous the spacecraft as
effectively when the chaser was approaching the target from a higher orbit as it could when it was
approaching from a lower orbit.

49



TheGA learned membership functions that provided for better control than those defined by the
authors in the previous section. Figure 4 compares the GA-FLC to the author-developed FLC for
one of the four initial conditions considered. In each initial condition case, the GA-FLC completed
the spacecraft rendezvous more favorably than the author-developed FLC.

The desirable characteristics of the rendezvous must be conveyed to the GA through the objective
functions. In this study, the objective of the GA was simply to reduce the total distance between
the two vehicles summed over a period of time. The GA accomplished this goal. The FLC can be
forced to exhibit other properties by altering the objective function. For example, if it is important
to prevent the spacecraft from overshooting the target in the x-coordinate, the GA can be dissuaded
from locating such solutions by incorporating a penalty into the objective function (see Goldberg 6
for information on penalty methods in objective function formulation).

3000

25OO

A

t*
e2ooo
q)

E
v 1500
e.
o

-o-
loo0

O
o.

5OO

l .... /_)-_.Je ]

-..'.

°',.
,...,

I I ........... ,J..

SUMMARY

In this paper, a GA was used to improve the performance of an FLC. Initially, an approach to
FLC development was outlined. The approach was developed to be straightforward and intentionally
avoided an abundance of fuzzy mathematics. Next, this approach was used to develop a fuzzy system
for controlling the rendezvous of a spacecraft. The FLC was able to maintain control over the
spacecraft (as simulated by a computer) by relying exclusively on fuzzy rules to determine its next
action.

Altering the membership functions used in an FLC affects the performance of the controller, and
the selection of appropriate membership functions can be cast in the light of a search problem. A
simple three-operator GA was used to learn high-performance membership functions for the
rendezvous FLC. The GA-FLC outperformed the author-developed FLC on four specific initial
conditions chosen to represent a cross-section of potential initial conditions.
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Abstract

The application of Artificial Intelligence to electronic and process control can help attain the
autonomy and safety requirements of manned space systems. An overview of documented

applications within various industries is presented. The paper then presents a discussion of the
development process and associated issues for implementing an intelligence process control

system.

1.0 Introduction

Intelligent process control can be defined as the application of various artificial intelligence
techniques to the control of chemical and electrical processes. Intelligent process control can
provide input data validation, fault detection, diagnostics, and fault recovery implementation.
Space systems to which this technology may apply include Space Station environment control
systems, on-board process experiments, cooling systems for various space based systems, and
future space based fuel production systems. This paper presents an overview of intelligent process
control technology, and how it can be applied to various space systems.

The development of intelligent process control systems can help meet the autonomy and safety
requirements of manned, space systems. For example, space station autonomy requirements
specify that (6):

1. Systems be "capable of detecting and reacting to selected anomalous conditions."
2. Vital system functions must be maintained during abnormal operations.
3. "Platform systems.., be capable of autonomously placing the platform in a safe

condition."
4. Platform systems collect and transmit system information to the ground.

The first three requirements can be addressed by integrated, in-line intelligent control systems.

2.0 Applications Overview

The application of intelligent control technologies to space systems can have significant payoffs
in several major areas, including:

1. Improved system reliability due to intelligent monitoring;
2. Rapid fault correction due to diagnostic and repair expert systems; and
3. Increased system efficiency due to intelligent resource management, and automated fault

recovery strategies.

This section describes related commercial process control projects and how similar technologies

can be applied to space applications.

PRECEDING PAGE BLANK NOT FILMED
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The first area to which intelligent process control can be applied is intelligent monitoring of
space based process systems. Embedded knowledge bases can act in a supervisory role to existing
feedback controllers. The knowledge base can monitor input data to detect problems with sensory
equipment or with the process itself. An expert system to validate sensor input has been developed
by DuPont (8). The expert system monitors analyzer operations and notifies the operator when a
fault arises. Other applications of intelligent process monitoring have been described in nuclear
(7), chemical (3,9), food processing (5), and circuit board manufacturing (4) industries. Each of
these applications includes the validation of sensor input. Once a thorough understanding of the
system model is developed, rules concerning "feasible" input data can be developed. Factors
which may indicate sensor problems include:

1. Inconsistent readings between related inputs,
2. Unreasonable input data, based on system bounds (i.e., negative fluid levels, etc.),
3. Sudden step changes in signal value, and
4. Unexpected "noise" levels in sensor values.

Some of these factors may also indicate problems with the actual process. The knowledge base
must be designed to distinguish between sensor and process problems. Other factors (assuming
valid sensor readings) which may indicate process problems include:

1. Unstable trends,
2. Values outside given thresholds, and
3. Performance measures determined from related process variables.

One method for detecting sensor and process problems is Statistical Process Control (SPC).

SPC techniques can be integrated into the intelligent process control system's knowledge base.
The use of SPC methods can be used to detect process trends before warning thresholds are
exceeded, to detect shifts in the overall process, and to identify unrealistically constant input
values. The application of SPC techniques to intelligent process control is described by Bailey (1)
and by Blickley (2).

Once a problem is detected, the second major function of an intelligent process control system
begins: diagnostics. Each of the above mentioned applications included fault diagnostics.
Particularly in space applications, rapid diagnosis of system problems is critical. Diagnostic
modules of intelligent process control systems are based upon system design knowledge,
maintenance and repair information, and an accurate process model. Much of this knowledge is
collected during ground testing of the system before it is launched. The diagnostics knowledge
base should be thoroughly tested and validated with the ground system to ensure accurate
diagnoses of problems once the system is deployed.

Accurate diagnostics are crucial to the implementation of system recovery or repair procedures.
These procedures can be incorporated into an intelligent control system at two levels: advisory or
integrated. An advisory level system suggests recovery strategies based upon the determined
diagnosis. The user can then implement the suggested procedures or implement alternative
procedures. An integrated in-line system would automatically begin recovery procedures where
possible. Only in extremely well defined systems with time critical recovery requirements should
an integrated in-line system be used. Even then, command personnel should be notified of all
actions taken by the automated system.

One of the most important steps in developing an integrated intelligent process control system
is the testing and validation of the knowledge base. Standard algorithm or model validation

techniques are not generally applicable to knowledge-based systems. Although there have been
several documented implementations of advisory level intelligent control systems, there has been
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very little evidenceof knowledgebasetestingproceduresor of integratedintelligent control
systems.

3.0 Application Principals

The common experiences among intelligent process control applications help define some basic

principals in designing such a system. The basic steps to developing an intelligent process control
system are:

1. Develop an accurate process system model
2. Determine techniques for detecting problems
3. Develop a method for discriminating between sensor and process problems
4. Collect diagnostics knowledge
5. Generate recovery strategies and associate with diagnostics
6. Construct the knowledge base

7. Implement required data acquisition routines
8. Test and validate the knowledge base
9. Integrate the on-line data acquisition with the knowledge base and inference mechanism.

10. Integrate the recovery strategy and other control outputs with the actual control devices.

Figure 1 illustrates the functional components of a system developed via this process.

External System

ii...........................................................ii

°=a °a'a----
-a Acquisition] I Fusion

__ I  au,
Recovery = [i:iI Recovery I]

tImplementation ::::! Planning [::

Classical Control Routines

Figure 1. Intelligent Control System Top Level Structure

This process indicates that knowledge base construction is just a part of the overall
development. Resources must also be committed to the test and validation of the knowledge base.
As mentioned previously, the area of knowledge base testing and validation has not been
extensively researched. For current research efforts, the author uses a combination of system

modeling and iterative integration. Figure 2 illustrates this development process. A graphical
simulation tool (developed in-house) is used to generate test scripts and to simulate system

components. These simulated system events and components axe used in three ways:
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1. To allow the control systemdeveloperto test various systemeventsequencesduring
knowledgebaseconstruction.

2. To testdifferentrecoverystrategiesandtheir impacton theindividualsystemcomponents
aswell astheoverallsystem.

3. To testactualin-linesystemcomponentsindividuallyduringsystemintegration.

The scenariogenerationtool is integratedwith theknowledgebaseaswell asthesystemmodel
componentin orderto allow interactive,dynamicdeterminationof scenarioevents.Forexample,
if the knowledgebasedoesnot diagnosethe correct fault given a certain seriesof events,the
scenariogenerationwould stopto allow the developerto correct the problem. Otherwise,the
scenariowould continue. Probabilisticbranchingin thescenariopathcanbeusedto introduce
randomeventsinto thetestsequences.

Oncetheknowledgebasehasbeenfully validated,theprocessof integrationmustbegin. This,
too, can consumeconsiderableresources. First, the hardwareand/or softwarelinks must be
developedfor accessingthereal-timedata. Thisoften involvesintegratingspecificdataacquisition
routines with the inferencestructure. SRShasutilized the open architectureof the Nexpert
OBJECT (from NeuronData Corporation)expert systemdevelopmentshell to integratedata
acquisitionanddirectmemoryaccesshardwarewith the intelligentcontrolknowledgebase.The
ability to incorporateuserdefinedexternalroutinesis alsoimportantfor a commonlyoverlooked
link in theoverall system: thedatafusionlink. Often, thedataobtaineddirectly from sensorsis
not in a form amenableto theknowledgebase. In theseeases,externalfilters, statisticalanalysis,
orotherdatafusionalgorithmsareusedto abstracthigherlevel informationfrom therawdata.

Theoutputlinks areevenmorecritical to anintegrated,in-line system.Theseroutinesmust
translatea knowledgebaseoutputto control hardwareinputs. Any errorsin the output routine
definitionscanjeopardizetheintegrity of the system.Thesimulatedsystemmodelscanalsobe
usedduring this final stageof developmentsinceactualcomponentscanbe integratedandtested
individually to ensurethat heuristically derivedcontrol outputs producethe desiredsystem
response.

4.0 Conclusions

This paper has presented an overview of some general issues involved in developing control
systems utilizing embedded knowledge base processing. Although significant research has been
conducted in the application of heuristic processing to system monitoring and fault diagnostics,
further research is required in the areas of knowledge base testing methodologies and integrated,
in-line systems. The use of scenario generation and system modeling tools for knowledge base
testing was presented as a currently used approach. Also, the issues of integrating the knowledge
base with the external systems were presented.
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INTRODUCTION

Materials science and engineering provides a vast arena for applications of artificial

intelligence. Advanced materials research is an area in which challenging requirements confront

the researcher, from the drawing board through production and into service. Advanced techniques

results in the development of new materials for specialized applications. Hand-in-hand with these

new materials are also requirements for state-of-the-art inspection methods to determine the

integrity or fitness for service of structures fabricated from these materials.

The many facets of materials science and engineering form a complex mixture of interests

in compositional variances, processing parameters and service environments. All need to be

considered in designing and implementing an advanced material for a particular function. It is

anticipated that artificial intelligence can provide many benefits in sorting out some of the

complex relationships which help to produce ideal materials for extreme conditions. Sorting out

compositions from process parameters is complicated and normally requires expertise from many
sources. These sources can often take the form of humans who have vast experience in a specific

area and thereby are domain experts in a very focussed area. This knowledge may be accessible

from either the persons themselves or from the published literature. On the other hand, with the

rapidly evolving materials technology in today's society, one often must include current results
from actual or simulated experiments to obtain the knowledge required to attain specific goals.

Selection of the expert system implementation or platform most suited to meeting required

goals also presents interesting challenges in the materials world, because the knowledge or

awareness of artificial intelligence is quite new and only within the last few years has any real

effort been made to incorporate new AI technologies into the realm of new materials

technologies) _

Two problems of current interest to the Materials Processing Laboratory at UAH are an

expert system to assist in eddy current inspection of graphite epoxy components for aerospace

and an expert system to assist in the design of superalloys for high temperature applications. Each

project requires a different approach to reach the def'med goals. The first project has been in

existence several months now, while the second will be undertaken during Spring of 1990. Hence

this paper will describe results to date for the eddy current analysis, but only the original

concepts and approaches considered will be given for the expert system to design superalloys.

EDDY CURRENT INSPECTION OF GRAPHITE EPOXY FILAMENT COMPONENTS

Composite materials have many beneficial characteristics which enhance their role in

today's aerospace systems. Lightweight, but still very strong, even at high temperatures, graphite

epoxy f'daments have been fabricated to replace structures traditionally constructed of metals.
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Most activity hasoccurredin the airframe andmissile industries,with some interest currently

being developed in Space structures. A major component of the Space Station is the truss

structure, which is still being proposed to be made of graphite epoxy composites. Several

problems still exist in selecting graphite epoxy for an aerospace structure. No accurate structural

models based on traditional fracture mechanics can predict reliabilities for these structral

members in the presence of flaws. Determining flaws also presents a major difficulty. Flaws can

arise from fabrication errors, impact damage during assembly, and obviously in Space, impact

damage and erosion from atomic oxygen. A major need exists in being able to measure the

integrity of the graphite-epoxy structures during fabrication and in Space. Many research groups

are involved in developing NDE techniques to detect flaws in graphite epoxy structures. Primary

interest is to not only to determine that there is a flaw, but more importantly, the size and nature

of the flaw. This project seeks to develop the capability to utilize simple heuristics types of logic

to determine the flaws in real time, as compared to the more time consuming methods based

upon statistical and computationally intensive methods. _s

Eddy current inspection is a nondestructive testing technique which utilizes a high

frequency electromagnetic field to induce eddy currents in the material under test. The magnitude

of the eddy currents induced in the materials provides a response of the material which should

indicate a measure of the integrity of the material. Since graphite fibers have a measurable

conductivity, eddy current methods can be applied for inspection purposes. Unfortunately, due

to the very low conductivity, the signals are weak. Several methods have been developed to

increase the signal-to-noise ratio, including signal processing schemes and design of special eddy

current transducers. A horseshoe or E-probe design has advantages in that it can concentrate more

magnetic flux within the fiber, in addition to providing directional selectivity. Finite element

models of the two types are shown in Figure 1, where a.) is the normal pancake probe and b.)

is a horseshoe or E-probe. 7"9

A number of defects exist for composite materials, as shown in Table 1.The goal of the

expert system is to assist in the determination of the nature, size and location of the flaws using

knowledge which relates changes in resistance and reactance of the component being tested to

identify a flaw type and depth. Knowledge is incorporated into the expert system through

heuristics gained by measurements on known flaws and through finite element calculations on

simulated defects. The location and size of the flaw will be determined to a large extent by the

scanning parameters.

The eddy current inspection facility is a robot-scanned facility using an Indellidex 550

Robot. The scanning manipulator has 5 degrees of freedom and uses a programmable computer

controller for trajectory and task programming. At this time no off-line programming tools exist.

The system supervisor and the platform for the expert system is a Macintosh II using a Maclvory

engine. The robotic cell layout is shown in Figure 2. A major part of the problem, in addition

to the expert system development, is the integration of the components making up the cell into

a flexible and productive inspection facility. Developing off-line programming tools for the

facility will become a major goal in later work.

The overall expert system architecture is shown in Figure 3. As mentioned earlier, the

knowledge base consists of two types, computed and measured. This type becomes the principal
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form of knowledge in domains where few experts reside, but the availability of knowledge

applicatble to a specific domain required for real-time processing of signals will most often take

the form of a measured quantity.

The Macintosh II platform was chosen for its enhanced user interface and graphical

environment. The Maclvory board set represents a state-of-the-art symbolics processor residing

inside the Macintosh computer. The two enviroments axe accessible through program calls, but

do not run on top of one another. The rationale for choosing this platform for the expert system

was to establish the capability of the system to support the various tasks required in taking eddy

current data, processing computationally and symbolically to determine flaw sizes and locations,

and then to generate three-dimensional graphic representations of the structure and the flaws. The

over-all task description is very robust and represents a good test of the capabilities of the

Maclvory enviroment. In any case, the computer controller for the robot can perform as the robot

cell controller, allowing for the Macintosh to function solely as a data acquisition and analysis
module. Both cases will be tested.

Expert System for the Design of Superalloys

This section presents some of the concepts which evolved in developing a proposal to

create such an expert system. The primary rationale behind the choice of an expert systems to

be applied to the problem is that there is a lot of experimental data existing in the literature

which presents a very complicated, and often ambiguous description of the essential elements or

processing required to prepare a superalloy with specfic attributes. For example, in the proposed

study, in order to basically weed out what are the most important parameters for stability to

hydrogen environment, the literature repeatedly contradicts itself, i.e. there is a conflict between

the experts.

Figure 4 shows the original concept for an expert system to assist in the design of

superalloy systems. To implement such a robust system, will obviously take several man-years

of effort. However, by developing the overall concept in modules which can provide a useful

benefits for functions such as stability in hydrogen environments, the capabilities are appreciated.

Rapid prototyping only one of the modules at a time will allow the system to evolve in

conjunction with the ability to generate experimental data also.

Expertise for designing superalloys exists in a few researchers and within organizations

desiring proprietary handling of data. Consequently the knowledge required for this effort is not

only scattered, but also, in some cases, of such proprietary nature that one company will not

share their knowledge with another organization. Computations on phase formations and kinetics

of metallurgical reactions for particular compositions also are required for microstructural

predictions. Hence the problem solving approach consists of heuristics, data from established

databases, and computations as required. Choosing an expert system shell to prototype the system
was difficult.

Several expert systems shells were considered for this project. Among all the choices

available, Nexpert Object was chosen because of its capabilities. Both forward and backward

chaining are allowed, program calls to computational or other types of procedures are allowed
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and a very easy to usehumaninterfaceallows for simplerule constructionand inferencing.
Dynamicinferencingthroughitsnon-monotonicreasoningcapabilityareessentialinordertodeal
with the complexitiesof superalloys.

The projectwill beginin January,1990with thegoal to developa prototypesystemto
designa superalloysystemwith optimal stability againsthydrogenembrittlementwithin six
months.The resultswill be interesting.Successfulcompletionof the preliminary goalswill
obviously provide a foundationupon which to add other modulesin order to build up the
capabilitiesof the system.Also we anticipatethat otherexpertsystemsfor advancedmaterials
designwill be attemptedin thenearfuture.
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TABLE 1

DEFECTS IN COMPOSITE MATERIALS

FABRICATION DEFECTS

VOID CONTENT

STATE OF RESIN CURE

FIBER/MATRIX INTERFACE

FOREIGN INCLUSIONS

TRANSLAMINAR CRACKS

DELAMINATIONS

FIBER ALIGNMENT

SERVICE DEFECTS

MOISTURE INGRESS

ULTRAVIOLET DEGRADATION

TEMPERATURE EXTREMES

MATRIX CRACKING

DELAMINATION

FIBER/MATRIX DEBONDING

FIBER BREAKAGE

IMPACT DAMAGE
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FIGURE 1. Finite element models for a.) pancake probe and b.) E-probe for 5 megahertz

electromagnetic coupling to graphite fiber. The coil is wrapped around the center bobbin in both

cases. Note that the pancake probe produces a field 360 ° around the centerline, while the E-

probe produces a flux across the direction of the fiber.
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An Architecture for Intelligent Task Interruption
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Corporate Technology Center

FMC Corporation
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Santa Clara, CA 95052

Abstract

In the design of real-time systems the capabiltiy for task interruption is often
considered essential. In this paper we examine the problem of task interruption in

knowledge-based domains. We propose that task interruption can be often avoided by

using appropriate functional architectures and knowledge engineering principles.
Situations for which task interruption is indispensable we describe a preliminary

architecture based on priority hierarchies.

1 Motivation
Real-time systems require that decisions be made dynamically in response to

incoming sensor data with desired responsiveness within the specified time deadlines.

Often real-time solutions should degrade gracefully. Knowledge-based real-time

systems perform several functions such as sensing information, processing information
to determine the situation status, evaluating the situation, plan for needed actions, and

executing the planned actions while monitoring the status of the plans, the system, and

the situation. In such systems time stress arises from sources external (in terms of high

data rate, unanticipated demands on problem solving, and unexpected deadlines) and

internal (knowledge based processing is computationally intensive and the computation

time is often unpredictable) to the knowledge based system. All practical systems have

limited resources and given the unexpected demands requires intelligent resource

management schemes.

Resource management involves making resources available to tasks that need them

and reclaiming resources from tasks that do not need them. To accomplish resource

management, amongst other things, the capability to interrupt tasks, suspend execution,

and later resume execution may be needed. Given the tasks to be interrupted, real-time

operating systems provide efficient low level mechanisms to implement task

interruption. In knowledge-based systems the determination of the task to be
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interrupted has to be inferred in runtime and is based on the specific context. Runtime
reasoning to determine which task to interrupt and is computationally expensive and
alternative solutions are desired.

2 Issues of Task Interruption in Real-Time Knowledge-Intensive
Architectures

An hospital is something all of us can relate to, therefore, following [Hayes-Roth 1987]

we use a hospital situation as an example to describe issues of task interruption.
Hospitals are well designed functional structures, they have finite resources

(heterogeneous), perform various tasks, and respond to time critical situations. The

function of a hospital is to provide health maintenance services to the community it

serves while controlling the cost of providing such services. A hospital situation has the
following characteristics relevant to task interruption.

1. Finite Resources: Resources of an hospital are its physicians, surgeons,
nurses, pharmacy, operating theaters, operating budget, etc. The
resources in each category are finite and often cannot be interchanged.

2. Environment Demands: The hospital receives a continuous stream of
patients. Different patients have different treatment requirements• During
certain seasons the demand for one type of treatment may increase
significantly. During certain calamities the demand on certain facilities
may suddenly increase. The hospital are required to adapt to such
external changes.

3. Internal Demands: Apart from the constraints of finite resources the
internal systems are subject to failure (e.g., strike by nurses). Thus the
available internal resources are dynamically changing.

4. Emergency Situation: Not all patients are attended to within uniform time
interval. Some patients make appointments• However, there is often a
stream of critical patients who need immediate care. The way a hospital
solves this problem is by providing an architectural solution; i.e., an
emergency ward. An emergency ward is staffed and operated under a
different set of resource allocation policies.

5. Categorized External Demands: Given the inflow of patients to a hospital
a single receptionist desk will quickly overflow. The problem is solved by
recognizing that incoming patient have different needs. Often patients
themselves know the general nature of problem. Again a hospital provides
an arch'tectural solution: it has several spec_ahty wards and screening
nurses. An incoming patient can directly go to a speciality ward or go to
the screening nurse from where he is directed to an appropriate spec=ality
ward.

6. Resource Contention: At any given point in time there are only a limited
number of doctors, nurses, operating theaters, and anesthesiologists
available. Since hospitals attempt to minimize operating costs the
resources are scheduled based on an expected resource demand profile.
Whenever external demands exceed the average demand the available
resources fall short of the need. This leads to contention of resources.
Also internal failures can cause less than allocated resources to be
available thus causing resource contention even during a normal demand
situation.

7. Resource Facilitators: Certain resources such as Nurses are like resource
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facilitators - they make sure that resources needed to attend to a patient
are available to a doctor when needed. Also in situations of resource
contention nurses or interns can relieve a surgeon for a limited period of
time. Thus having resource facilitators helps in achieving graceful
interruption.

8. Anticipatory Scheduling of Resources: Apart from providing architectures
for efficiently applying resources, hospitals delibera{ely schedule
resources to reduce the effects of unanticipated upsets in resource
demands. Thus instead of being reactive to resource demands, the
demands and the readiness of resources are anticipated based on past
models and and activities are scheduled accordingly. For example, major
surgeries are often scheduled in morning hours. Blood transfusion and
anesthesiology is not scheduled during weekends [Hester, 1989].

9. Taxonomy of Tasks from Interruption viewpoint: A patient (i.e. a task)
needs a wide range of heterogeneous services. In a hospital situation
these services are provided by various specialists. To look into the
problem of interruptibility instead of thinking in terms of surqeons (i.e.
_esources) being interruptible it is useful to think of activ_ies being
interruptible or non-interruptible. Typically, most of the activities of a
physician might be interruptible. In other cases the activity need not be
interrupted while in other cases the activity cannot be interrupted.

10. Context Dependency: The above example gives a default classification of
activities. In reality the interruptability determination is made with respect
to the context. For example, contrary to expectations a surgeon's activity
is often interruptible. In fact the interruption is facilitated by the presence
of numerous interns and highly skilled nurses. Depending upon the stage
of the surgery a surgeon can be pulled out to assist on a relatively more
complex and urgent case.

11. Task Interactions: A certain patient is undergoing a course of treatment.
The patient develops a new abnormality requiring administration of new
drugs. Do we stop the ongoing treatmentcompletely? Can the new drugs
unfavorably interact with the new treatment?Such issues need careful
examination.

12. Task Interdependency: A patient is undergoing an intricate surgical
procedure. Can the anesthesiologist be pulled away for another case?
This will depend upon the stage of the surgery and the future needs of this
procedure.

In summary:

1. Responsiveness and resource contention problems do not necessarily

require interruption. Architectural and appropriate resource scheduling
solutions are preferred over task interruption.

2. In situations of emergency (time critical situations) where the demand
considerably exceeds available resources task interruption may be
needed.

3. Determining interruptability of a task is highly context dependent.
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3 Intelligent Task Interruption
The Task Interruption problem can be defined as follows: Given n c0ncurrent!yac.t_!ve

tasks T1, T2, .... , Tn (where each task is characterized by its resource needs and

completion deadlines) and a new task T waitinq for execution the following question

need to be answered: Should we interrupt any of the existing tasks and which one?

Task Interruption in realistic situations requires use of situation and domain specific

knowledge to determine whether and who to interrupt. To perform efficient interruption

we need two things:

1. A Problem Solving model to enable deciding whether, who, and where to
interrupt. The model should take into account logical and temporal
dependencies between the on going activities.

2. An architecture to support efficient interruption thus addressing how to
interrupt.

In this paper the architecture support will be not be discussed in detail. Various

architectural designs will be briefly mentioned where appropriate.

4 Why Interrupt? or The Goals for Interruption
The problem of deciding whether to interrupt a task should be put in context of the

objectives of the situation. Some of the objectives and possible solutions are discussed
below.

1. Responsiveness. In real-time systems improving responsiveness for a certain a
category of tasks is important. In conventional software systems responsiveness is

achieved by sending an interrupt signal to the appropriate hardware. In AI architectures

responsiveness can be improved without interruption. Following designs lead to

improved responsiveness;

• Task Grain Size Control: In agenda based architectures (Figure la) tasks
are posted on a agenda and scheduled for execution. A task is executed
only after the previous task was completed. The waiting time of a task on
the agenda is equal to the product of number-of-tasks-ahead in the task
queus and the average-task-execution-time. The agenda gets a chance to
deallocate a task every average-task-execution-time seconds. Thus

responsiveness can be increased by decreasing the task granularity.
Large tasks can be decomposed and expressed as a sequence of such

micro-tasks. For example, hospitals have time-based agendas for nurses.
By appropriately decomposing the size of the tasks they can do (such as
administor medicine, take temperature) their responsiveness is increased.

• Priority Channel Architectures. In priority channes architectures different

channles are provided for events of different priority (Dodhiawala et al.,
1989). A channel defines computation through all the stages of problem
solving (very much like a thread) (Figure l b). Tasks on a higher priority

channel are given prcedence over tasks on lower priority channel. Thus the

responsiveness for high priority tasks is much better. For example, an
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accident victim will probably be put on an emergency channel.

Multiple Priority Task Queues: Instead of having a single task queue one
can define multiple task queues based on the priority of tasks. In such a
scheme a cpu time slice will always be first given to the highest priority task

queue. In multiprocessor architectures instead of a cpu time slice we will
allocate adequate number of processors to appropriate task queue. The
allocation of processors can be either static or dynamic. In dynamic
allocation the responsivenss requirement can be changed to meet the
external demand and processors be allocated appropriately. The QP-Net

architecture provides the dynamic allocation feature [Sharma and
Sridharan, 1988]. As an example certain wards in a hospital, such as

intenisive care, get a high priority.

2. Redundant Tasks. AI tasks often have unpredictable execution times. In some

designs multiple solution tracks are simultaneously investigated and the best solutions

obtained within the deadline is accepted. For example, in some emergencies both the

hospital and the local fire department can get a call. This causes the problem of

deleting no more desired solution tracks. One way is to keep track of all of the
redundant tasks and then delete them later. Another possibility is to make these tasks

timed tasks with an allocated time budget. If the tasks do not complete within the time

budget then they self terminate.

3. Lack of Resources. In some situations it is possible that resources necessary for a

task may no longer be available (Dynamic reallocation of resources will cause this

situation). Thus it will be desirable to remove the task from the list of active tasks, This

problem is of importance in control systems tasks where certain actions may continue

ignorant of the status of resources. A solution is to check for the resources periodically

and self suspend/terminate when such resources will no longer be available.

4. Remove Undesired/Harmful Tasks. In some contexts certain tasks if allowed to

continue will cause unacceptable consequences. In such cases these tasks have to be

identified and interrupted. Task interruption will also be needed in case of conflicts
between the tasks.

5. Free-Up Resources. If the resources needed for a task cannot be made available

by rescheduling and the tasks cannot wait then certain number of tasks will have to be

interrupted.

In summary:

1. For most of the traditional reasons for interruption it is possible to avoid

task interruption by utilizing appropriate architectural and task model

designs. Given the cost of interruption such alternatives are preferable.

2. Situations where task interruption is needed are: task conflicts (logical),
removal of potentially harmful tasks, and for freeing-up resources for more
critical tasks.
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5 Who to Interrupt?
The question of who to interrupt needs to be answered in basically two cases: (1)

There is a logical conflict between tasks, and (2) There is a need to free-up resources

for more critical tasks. To solve this problem we will have to develop an approach for
selecting one set of tasks over other. Such a selection needs to based on the

significance of the tasks to the overall goals of the system. We thus need to develop

certain approaches for expressing and reasoning about the significance.

Task Siqnificance Principle: The information on task significance can be used as

follows: If there are n active tasks (T1, T2 ...... Tn) and a new task T is awaiting

execution then interrupt enough number of tasks of significance less than T so as to
release sufficient resources for T.

5.1 Representation Issues of Task Significance
The significance measure of a task should express the following types of knowledge

about the tasks:

1. Certain domain specific preferences or priorities. For example, in most
domains the safety issue will have a precedence over productivity issues.

2. Sensitivity to real-time factors such as task deadlines. Thus even though
two instances of same task (defend against an enemy missile) may have
same preference but the one with a shorter deadline takes precedence
over the other.

.

.

.

Sensitivity to Context. Most real-time systems operate in different modes.
For example a certain fighter plane can be either in attack mode or egress

mode. Depending upon the mode the tasks may have different
preferences.

Task Interactions. In complex systems the effect of execution or
termination of a task can propagate various side effects. In real-time
systems the unpredictable dynamics of the environment makes it
infeasible to anticipate and compile all possible interactions. The exact
nature and the extent of the impact of these side effects has to be
determined during run-time.

Task Dependencies. The basic principle here is that if a significant task
depends upon the result of a specific task then that task is significant too.
For example, if we interrupt the supporting tasks then the context and
resources for several other tasks may be lost and they may have to be
interrupted as well. In this dependency analysis we need to examine the
criticality with respect to the new_task T as well. Moreover, the task

dependencies can be time dependent. For example, given three tasks Ti,
Tj, and Tk task Tj may require that task Ti be executed by some time tl,

and task Tk may require that Ti be executed within the window (t2, t3).

In summary:

1. Significance of a task depends upon the runtime environment of a system.
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Determining task significance requires extensive runtime analysis. The

problem being that the computational cost of such analysis may be
prohibitive to real-time performance".

2. Even if the computation of significance can be done in real-time the
determination of the impact of task interaction and dependencies will be

imprecise. This is due to the unpredictable and dynamic nature of the real-
time environments.

5.2 Reasoning Issues Related to Task Significance

Given significance measures of various tasks one can then use the Task Significance

Principle as a reasoning guideline, In dynamic systems where the significance of tasks
can change rapidly the recomputation of the significance of all the tasks can be

prohibitive. To appreciate the implication of the last point let us consider two measures

of significance: a cost/benefit measure and a utility measure.

Cost/Benefit Measure. Assume a new task T on the waiting queue and N tasks on
the active queue. Should we interrupt an active task in favor of new task T? In a

cost/Benefit decision making framework it will be argued that this question should be
answered based on the following considerations:

(1) What is the benefit of executing T?

(2) What is the penalty of not executing T?
(3) If T will be swapped with an active task Ti then

what is the penalty of terminating Ti.

T should replace a Ti if there exists a Ti such that:

(1)-(3)>(2)

This requires computing at least N such relationships. The bigger problem arises in

computing each of the terms (1), (2), and (3). Since the benefit and penalty depends
upon the interaction between the task and the resources needed for T may be obtained

by interrupting more than one active tasks the complexity of the problem becomes quite

hairy. Apart from the complexity arising from the combinatorics of the problem there is

also complexity due to interactions based on phenomenological knowledge.

Utility Measure

One way to escape the problem of performing runtime analysis is to define some

measure of utility of allocating resources to tasks. Thus if the system has say a
maximum of N tasks then we can define utility of allocating computational resources to

these tasks. At any given moment let us assume there will be M (< N) tasks on the

scheduling queue. Let us assume that we can only allocate resource quantity R. Then
we will select the subset of tasks from M such that the total resources is less than or

equal to R and the utility is maximized. Every time we reschedule resources we will

recompute the utility. Apart from the problem of how we define these utility functions we
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have the following problems:

1. We will have to evaluate 2**N configurations to find out the maximum
utility subset.

2. The utilities typically will not be static but context dependent. Thus we
may have to compute utility functions themselves. In a tightly coupled
system these utilities may depend on several parameters thus creating a
modelling nightmare.

In practical systems another problem arises. Not all tasks are equal and representing

them on a uniform scale can lead to anamolus results. For example, suppose we have

the following preference rule for a passenger plane:

Ground Lending is preferred to Crash Lending is preferred to

Total Crash

Using utility theory we can get the following undersired result:

Ground landing with probability pl

or Total Crash with probability p2

is preferred to

Crash Landing with probability p3]

In summary:

1. We need a measure of significance which is easy to model, compute, and

change dynamically. The significance measure will have to be sensitive to
contexts, task interactions, and dependencies.

2. To efficiently search for preferred tasks we need a computational
architecture.

6 TIPS: A Preference Based Architecture for Task Interruption
TIPS is an agenda-based architecture. It consists of a waiting queue (see Figure 2),

an active tasks queue, a tasks scheduler to schedule tasks on the waiting queue, an

interrupt scheduler, and a resource scheduler. In general, there can be more than one

waiting and active tasks queue for each task category. For example, one can have an

emergency waiting and active task queue similar to channels design in RT-1

[Dodhiawala et al., 1989]. In such a case the resource scheduler will first always check

the emergency queues for work to do. In general, resource scheduler allocates cpu time
slices (in multiprocess systems) or processors (in multiprocessor systems). The task

scheduler is same as the scheduler in agenda based systems. It prioritizes tasks on the

waiting queue. The interrupt scheduler basically solves the problem of determining

whether an interrupt is needed and who to interrupt.

Interrupt scheduler will not solve the problem of responsiveness and other aspects of

real-time systems for which interruption is really not needed. It is assumed that for

responsivenss appropriate functional architectures will be used such as RT-I. Also the

computation of deadlines and resource requirements are solved by the problem solving
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architecture.

Input Buffer

_ Scheduler "_ Agenda

Task Generator

(External Environment) ,_ '_uPlter I
_'tActive Tasks Agencla J

Figure 2. A Preliminary Architecture for TIPS

6.1 Design of Interrupt Scheduler

Interrupt scheduler uses a model of domain contexts, goals, and tasks defined at

compile time. The model is hierarchical and consists of at least three layer as shown in

Figure 3. Figure 4 shows an example from the Howitzer domain. There are two aspects
to the hierarchical model:

1. Preferences of priorities of the tasks are defined with respect to the goals.
In general priorities of elements in layer k are defined with respect to the
elements in layer (k-l).

2. The hierarchical model is also used as a control structure for determining
who to interrupt.

Top Level
Goal

G1 G2 G3 G4 G5

C1 C2 C3 C4 ............................... Cn

Figure 3. A Preference/Priority Hierarchy
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Mission Success

Mission Objectives Survivability Optimal Weapons Use

Task1

Figure 4. Goals-Task Priority Hierarchy Example

Modeling Task Priorities

The following discussion is based on Saaty's treatment of priorities in hierarchical

systems [Saaty 1980]. We will not review Saaty's theory here but simply illustrate it by

examples. Some of the basics are as follows:

1. Let C1, C2, C3, ..... Cn be n tasks or goals. Then priority of Ci is defined

as a function which maps C -> [0, 1]. If wi is priority of Ci with respect to a

high level goal then

wl + w2 +w3 + .... +wn = 1

2. Let xPy denote that x is preferred over y. xly implies x and y are equally

pereferable. Then following relations hold:

if xPy then wx > wy

if xIy then wx = wy

if xPy, yPz then xP= and also that wx > w=

In case of hierarchical structure shown in Figure 3, the priority of the first task with

respect to the top node is given by:

WC1 - WCI(G1)*WG1 + WCI(G2)*WG2 + ..... +WCI(G5)*WG5

Where,

WC1 = Priority of C1 with respect to Top Level Goal

WCI(Gi) = Priority of C1 with respect to goal Gi
WGi = Priority of Goal Gi with respect to Top Level Goal

Task Priorities under Change of Context

If the context changes then the preferences of goals changes with respect to the

overall objective. Given new goal level priorities new task level priorities can be
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computed.

Example

Consider the aircraft landing example shown in Figure 5. Under the current context

the priorities are shown in Figure 5a. In this context it is more important to find an airport
with adequate landing facilities. Expedient landing will help passengers feel better but

that is less important. In this case the priorities computation lead to the choice of airport
D. The task for performing landing at airport A is initiated.

After a while the pilot gets a low fuel level alarm and changes his priorities in favor of

expedient landing. He only needs to change the priorities at the goal level. This new
prioritization leads to selecting airport D.

6.2 Task Models

We are essentially considering two types of tasks: tasks that are interruptible and the
tasks that are not interruptible. Tasks can be composed of other tasks or micro tasks.

Micro tasks once started execute to completion. The size of the micro tasks is such that

their execution time is less than the overhead time associated with task interruption.

(Task new-task

:precondit ions

:body

:sponsor

:goal

:context

:priority

:children-tasks

:Dependent s

:Supporters

:Exclude- Li st

:deadline

:exe cut i on -time

:resources-needed

:status )

(Micro-task new-micro-task

:precondition

:body

:sponsor

:goal

:context

:priority

:deadline

:execution-time

:resources-needed
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: status)

6.3 Control Scheme

The control scheme works on the following principles:

1. Resolve Conflicts Locally First. If a task appears on the waiting list and was created

to support goal Gi then compare the priority of the new task with respect to tasks
currently active for supporting Gi. If necessary, swap the new tasks with one or more of
the active tasks for Gi.

2. Fallback to the next hiqher level in the hierarchy. If the conflict cannot be resolved

locally then it is necessary to resolve conflicts at the higher goal level.

3. Observe Task dependency and interactions constraints to prune the alternatives.

The task dependency and interaction constraints are defined as a part of the task

models (see slots dependents, supporters, exclude-list in task model).

4. Use the most comprehensive priority value. It is possible for the same tasks to exist
on the active tasks list/agenda/schedule/queue multiple times based on the different

goals it needs to serve. In that case the total priority of the task should be used.

This is how the scheme will work. In the beginning the system starts with a goal G. In

fact the system may start with several goals G1, G2, G3 .... For each of the goals

priority is defined - the interpretation of preferences being the relative resources to be

allocated to pursuing these goals. New tasks are either spawned by the goals or are
created in support of the goals. The priorities of these tasks are defined at the time of

task creation. These priorities can either be default priorities or may be based on the

context at the creation time. We then use four principles defined above to solve the

interruption problem.

7 Conclusion

In this paper we have described an analysis of task interruption and a paper design.
We believe in the richness of task interruption process. It is our premise that task

interruption should be avoided for time critical situation by using appropriate

architectural and data structural features. For situations where interruption is essential

we have argued in favor of minimizing runtime reasoning. We have described

knowledged-based architecture (TIPS) which attempts to explore various features to
reduces runtime reasoning. These features are: preference models for tasks, a domain

specific task context tree, and a hierarchical control mechanism. Table 1 summarizes

major points of this paper.
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Table 1. Designs Issues and Solution Options for Interrupt Based
Architectures

Design Issue Design Options

Why Interrupt?

Responsiveness

Free-up Resources

Tasks Not Needed

No Interrupt,

Control of Task Grainsize,

Special architectures

(RT-I, QP-Net)

Reschedule tasks,

Interrupt in favor of

Critical tasks

Soft/Hard Interrupt

Who to Interrupt? Preference/Priority Based Selection,

Context Tree,

Hierarchical Task Selection

(TIPS)

Where to Interrupt? Special Task Models

Predefined logically safe states

(between two micro-tasks)

On demand (special cases only)

How to Interrupt?

No Interrupt

Soft Interrupt

Hard Interrupt

Task Size, Micro-tasks,

Dynamic Allocation

Remove from Agenda or

Active Tasks Queue

Utilize RTOS support
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Abstract

Domain-specific knowledge necessary for commonality analysis falls into two general

classes: commonality constraints and costing infornration. Notations for encoding such

knowledge should be powerful and flexible and should appeal to the domain expert. The

notations employed by the CAPS analysis tool are described herein. Examples are given to

illustrate the main concepts.

1 Introduction

Commonality is the extent to which a system employs common designs to fulfill

similar functions. A system which uses a large number of individually tailored

components for specific functions thus possesses little commonality, whereas a

system which maximizes the number of applications of each component is said to

possess a high degree of commonality. The knowledge which allows an engineer to

decide which components are able to serve in multiple applications, and thereby

to eliminate unnecessary duplication of functionality, is very domain specific.

Commonality knowledge capture is therefore greatly aided by a notation which

appeals to the domain expert and which provides a natural way to describe

commonality considerations.

With Prolog, we are able to communicate this type of information in a way which

is difficult to reproduce with other types of notation. For example, to say that

"Work SuPporied bY NASA grants NO%01-002-099 and NAG8-718.
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motor A can serve in motor B's stead provided A has at least as high a power
rating as B, weuse the following Prolog statement:

can_substitute(A,B) "-

motor(A), motor(B),

power(A,A_power), power(B,B_power),

A_power>=B power

The above Prolog production (rule) states that "A can substitute for B provided

A is a motor, B is a motor, A's power rating is A power, B's power rating is

B power, and A power > B power". Prolog requires, of course, that the pred-

icates "motor" and "power" be defined. Defining the former requires that we

name each motor with its own symbol, say ml, m2, etc. We then define the

predicate "motor" with a series of declarations as follows.

motor(ml)

motor(m2)

mot or (m3)

etc.

The power ratings of the various motors are communicated in a straightforward
fashion, as follows.

power(ml,l.7)

power(m2,3.3)

power(m3,3.3)

etc.

Thus Prolog is a reasonable tool for communicating commonality constraints.

Its drawbacks are many, however. Apart from its strange syntax, Prolog carries

with it the overhead of explicitly declaring predicates like "motor" and "power"

above, and using them in production rules. Also, the unification mechanism of

Prolog (see Clocksin and Mellish [1]) is too costly and too general for this specific

application. The knowledge to be communicated here is more along the lines of

"object A is related to object B" than "statement P is true provided statement Q

is true". A notation is needed which has the power of Prolog but is more familiar

in form and does not carry with it the necessity to embrace a wider domain of

application.
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2 The CAPS Language

A tool under development for NASA, entitled "Commonality Analysis Problem

Solver", or CAPS, has incorporated into its allowable input forms a notation for

communicating commonality constraints. This notation was designed with the

following objectives in mind: (1) it should be algebraic in nature, resembling the

query languages of relational databases; and (2) it should incorporate enough of

the power of the Prolog language so that the communication of a relationship

between objects is easy and natural.

The nature of the knowledge to be communicated here requires that two objects

be described for the purpose of relating one to the other. Therefore it is conve-

nient to use two separate algebraic expressions. Each of these expressions is a

database query which isolates a subset of the set of objects under consideration.

The two general forms are as follows:

for < ezpressionl> allow < ezpvession2>

for < ezpressionl > disallow < ezpression2>

The above notation either "allows" or "disallows" the substitution of objects sat-

isfying < ezpvession2> for objects satisfying < ezpvessionx>. Thus for a database

containing information on wrenches, the statement

for millimeters=lO allow inches=13/32

might be used to permit the cost analysis phase of CAPS to consider using a

13/32 inch wrench in place of a 10 millimeter wrench.

What CAPS borrows from Prolog is its view of free variables and the compari-

son/assignment operator. In Prolog, the "=" symbol is used both for comparison

and for assignment. If both sides of the equality can be evaluated, then a true or
false value will be returned in the usual way. However, if one side of the equality

is a free variable, i.e. a variable which has not been bound to a value during the

current firing of the current production, then the other side's value is bound to

it and a value of "true" returned. Using the same hypothetical wrench database

as above, consider the following statement.

for millimeters=x allow inches>=O.O394*x and inches<=O.O42*x

In this example, a larger set of wrenches is considered. The expression
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millimeters=x

refers to the entire database, since x is a free variable and hence can be bound

to any one of the values of the "millimeters" attribute. The key here is that

once x is bound in that first expression to a specific value applicable to a specific
wrench, the remainder of the wrenches in the database are then examined to see

if any of them satisfy the expression

inches>=O.O394*x and inches<=O.O42*x

As before, any which do are accepted as substitutes for the wrench in question.
The same process is repeated for each wrench in the database.

Unlike Prolog, which is case-sensitive and dictates that all variables begin with

a capital letter, CAPS is not case-sensitive and allows any identifier not already
bound to an attribute name, a keyword, or a value to be used as a free variable.

3 Semantic Issues

A database query is a single boolean expression which identifies a subset of the

elements in the database. It is a declarative statement about the properties of

the members of that subset. For example, with a relational database it would be

possible to fetch the entire set of wrenches for which

inches > 5/16 and inches <= 7/8

One could be sure then that in the subset fetched all wrenches would have the

stated property. The semantics of a CAPS "for" statement are not so simple,

however. Each "for" statement, instead of being a declarative definition of a

relation on a set of objects, is a command used to modify such a relation. The

relation in question is the substitutability relation oll a set of objects. During its

analysis of a given database, CAPS initially assumes that there are no allowable

substitutions except the trivial ones, in which each object "substitutes" for itself.

As each "for" statement is fired, the relation is altered to achieve a cumulative

effect. We say that the CAPS notation is "history sensitive" in that the effect

of each "for" statement depends not only on the statement itself but also on the

internal state of CAPS, and that internal state is a fimction of all prior CAPS
commands.
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The usefulness of this aspect of CAPS can be seen in the following example,

involving a database containing information on storage tanks.

for volume=x allow volume>=x

for liquid disallow gas

for gas disallow liquid

The net effect of firing the three "for" statements in the sequence indicated is to

allow larger tanks to substitute for smaller ones, but not to allow the substitution

of tanks designed to hold liquids for those designed to hold gasses, or vice versa.

Another semantic issue is that of binding times. The binding of a free variable

takes place many times during the execution of a single "for" statement. For this

reason CAPS must incorporate a very flexible strategy for binding variables to

values. To illustrate, consider the "define" statement, with syntax as follows:

define <identifier> as <ezpvession>

Here the identifier is associated with an ,nevaluated expression. If free variables

appear in that expression, they will take on whatever values are current when the
identifier is used in some subsequent computation, such as the firing of a "for"

statement. In the same way, if there are field names in the expression, they will

take on the appropriate values each time the identifier is referenced. Consider,

for example, the sequence of CAPS commands that follows.

define tel_power as power/weight

for rel_power=x allow tel power>=x

Here "rel power" is defined as the ratio of power to weight. Since these are

both field names, it makes no sense to evaluate rel power at the point where

it is defined. Rather, the expression "power�weight" is stored internally and

evaluated each time it is needed. In the example, if there are n items in the

database, the expresion is evaluated n 3 times to fire the "for" statement. The

wastefulness of this approach is clear, since there are in fact only n possible

values for "tel power". To avoid the extra complexity, CAPS allows its user to

add "tel power" as a new field in the database. The statement

add tel_power
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accomplishes this, provided "rel power" has already been defined as above.

To further illustrate, we use a variant of a type of commonality analysis problem

originally formulated by Thomas ([3]). Consider a database containing informa-

tion on utility interface plates. Each interface plate consists of a set of connec-

tions for utilities. The presence or absence of a given connection is represented

by a TRUE or FALSE value in a boolean field. For example, a database entity

having a TRUE value in its "potable water" field represents an interface plate

incorporating a potable water connection. The following set of CAPS statements

enforces the constraint that no interface plate may substitute for another unless

the substituting plate has at least those interfaces which are present on the plate
for which it substitutes.

allow all

for

for

for

for

for

for

for

for

for

for

avionics_air disallow not avionics_air

nominal_power disallow not nominal_power

high_power disallow not high_power

fire_detection disallow not fire detection

data_management disallow not data_management

thermal_control disallow not thermal_control

hygiene_water disallow not hygiene_water

nitrogen disallow not nitrogen

potable_water disallow not potable_water

hygiene_waste disallow not hygiene_waste

The first statement, "allow all", initially permits all substitutions. The sub-

sequent statements restrict the substitutability relation until it satisfies the re-

quirement. A cost analysis undertaken at this point will consider the elimination

of any interface plate design which incorporates a set of interfaces which is a

subset of those offered by some other design. Whether or not CAPS actually

recommends the elimination of such a design depends on the cost information
conveyed to it.

4 Communicating Cost Information to CAPS

CAPS has two separate mechanisms for determining costs. One of those is the

default costing mechanism, derived from the cost functions used in NASA's Sys-

tem Commonality Analysis Tool (SCAT) (see [2] and [5]). It consists of a set
of relatively fast compiled-in cost functions. These functions are fairly standard

and will not be discussed here. It is the data-dependent nature of costs that is

of interest in the context of knowledge representation, and in recognition of that
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fact CAPS incorporates a facility for describing highly tailored domain-specific

cost information.

The feature of CAPS which facilitates the tailoring of cost information is the

same defined variable feature discussed above, along with a set of predefined

functions which have meaning only in the context of a cost analysis. A CAPS

cost analysis has the task of grouping the elements of a database into subsets

which are components of a partition. A partition of the database into such

subsets amounts to a proposed solution to a commonality analysis problem. Each

such subset has a distinguished representative which is proposed as a substitute

for each of the other objects represented in the subset. During a typical CAPS

cost analysis, many such subsets and representatives will be considered. The cost

function employed by CAPS, whether it is a default cost function or user-defined,

allows CAPS to attach a cost to each (subset, representative) pair. Since there

is a need to identify costs associated with an entire component, rather than a

single entity within the database, speciM-purpose filnctions must be employed.

Following are a few such functions:

cmax(<field name>)

cmin( <field name>)

csum( <field name>)

csize

Maximum over all values of the

given field within the component.
Minimum over all values of the

given field within the component.

Sum of all values of the given

field within the component.

Number of objects in this component.

Consider, for instance, the following user-defined cost function:

define linear_cost as ddt&e + csum(quantity)*unitcost

In this example, (1) "ddt&e" represents the design, development, test and engi-

neering costs associated with the object, (2) "quantity" represents the number

of copies of the object which must be produced, and (3) "unitcost" represents

the marginal cost of producing each item, assuming no learning curve is used. I
All three are field names. To make CAPS switch from its default cost function

to this user-defined function, we use the following statement:

use linear_cost

l CAPS' default cost functions are capable of incorporating a learning curve_ and facilities arc provided for

building a learning curve component into a user-defined cost function as well.
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During the analysis of the cost of a given component, the fields "ddt&e" and

"unitcost" will apply only to the chosen representative, whereas "quantity" will

range over the entire component, since it is used as an argument to "csum".

As a final example, consider the interface plates database discussed in the fore-

going section. In that example, the substitutability relation was designed so that

plate A was allowed to substitute for plate B if B's set of interfaces was a subset

of the set of interfaces on plate A. This assumption precludes the possibility of

altering plate A in such a way that it incorporates additional interfaces in or-

der to take on the functionality of plate B, or of manufacturing a new interface

plate incoroporating all interfaces present on both plates. If that approach is

taken, it is no longer necessary to restrict substitutability so strictly. We simply

adjust our concept of what it means for one plate to "substitute" for another.

Regardless of which plate is chosen as the "representative" of a given component,

it is assumed that a plate will be produced which incorporates the entire set of

interfaces present on all plates in that component. We need, of course, a way of

measuring the cost of producing such a plate. The following sequence of CAPS

statements defines a cost function which is compatible with this strategy.

define combined_interfaces as

cmax (av ionic s_air)

cmax (high_power)

cmax (dat a_management )

cmax (hygiene_water)

cmax (potable_water)

+ cmax(nominal_power) +

+ cmax(fire_detection) +

+ cmax(thermal_control) +

+ cmax(nitrogen) +

+ cmax(hygiene_waste)

define new_plate_cost as ddt&e +

csum(quantity) * combined_interfaces

use new_plate_cost

What makes the formula work is the fact that boolean attributes are assumed to

have numerical values: 0 for false and 1 for true. Thus "cmax(avionics air)" has

the value 1 if any of the interface plates in the component under consideration

has an avionics air cooling interface. The parenthesized sum therefore amounts

to a count of interfaces which would need to be present in any plate used as a

substitute for all those present in the current component. Weighting factors can

easily be added to the various terms to provide a more realistic estimate of the
cost.

We can restrict the total number of interfaces on a given plate to a fixed number,

say 7, using a "choke term" which causes the cost function's value to become

unacceptably large should the program attempt to combine a set of plates which

would require as its substitute a plate having more than that number of interfaces.

Such a choke term appears in the following example, where the cost function is
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identical to the aboveexcept for the addition of the choketerm.

define choked_plate_cost as ddt&e +

csum(quantity) * combined_interfaces +

1.0E9*(combined_interfaces>7)

use choked_plate_cost

In this scenario, we no longer need to restrict substitutability in any way. A

simple "allow all", then, would sumce to communicate to CAPS the lack of any

constraints. That would not be the most prudent way to enter the cost analysis,

however, because fewer constraints typically mean a more lengthy analysis. A

natural way to constrain substitutability is to always choose the plate with the

larger number of interfaces. This can be done as follows.

define number_ _

for number of

of interfaces as avionics_air + nominal_power +

high_power + fire_detection + data_management +

thermal_control + hygiene_water + nitrogen +

potable_water + hygiene_waste
interfaces=x allow number_of_interfaces>=x

After the above constraint is imposed, the solution proposed by CAPS will always

use as a representative for each component the interface plate needing the fewest

additional interfaces in order to serve as a replacement for all other plates in that

component.

5 Conclusion

CAPS incorporates into its design notations and operations uniquely suited for

describing commonality constraints and cost information in preparation for a

comparative cost analysis. The notations are intuitive and easily understood,

yet powerful enough to make CAPS applicable to a broad range of commonality

analysis problems. For more complete information on the CAPS tool, see [4] or
contact the author for more recent documentation. Generalizations of the CAPS

notation to more general database apphcations are presented in [6].
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Abstract

This paper describes the design, development, and implementation of a prototype expert
system which could aid designers and system engineers in the placement of racks aboard
modules on Space Station Freedom. This type of problem is relevant to any program with
multiple constraints and requirements demanding solutions which minimize usage of limited
resources. This process is generally performed by a single, highly experienced engineer who
integrates all the diverse mission requirements and limitations, and develops an overall
technical solution which meets program and system requirements with minimal cost, weight,
volume, power, etc. This "systems architect" performs an intellectual integration process in
which the underlying design rationale is often not fully documented. This is a situation which
lends itself to an expert system solution for enhanced consistency, thoroughness,
documentation, and change assessment capabilities.

1.0 General Configuration Definition Issues

One of the major issues faced by any aerospace program is the need to consistently apply
requirements, constraints, and resources to optimize the layout of equipment in an end item deliverable
piece of hardware in the midst of changing environments. The change mandates can result from changing
customer requirements, newly derived requirements, reduced program budgets, technological influences
or personnel changes. All these changes tend to impact engineering processes, often rendering current
approaches inappropriate or current solutions inadequate. In the remainder of this section we present a
list (by no means exhaustive) of general issues which must be faced throughout a program's life cycle :

• Fleeting expertise : Turnover of domain experts represents a serious drain on program continuity
and often causes work to be adversely impacted since significant portions of domain knowledge and
program history often reside with individuals.

• Productive use of resources : Much layout work is both repetitive and resource intensive in nature.
Allowing for automation of such repetitive tasks to be accomplished early in the process results in
more resources being available for "real" engineering work to be performed later. This is usually a
direct result of complimenting engineering expertise with tools which allow problems to be solved at
a more abstract level and to off-load the repetitive portions of the task to the automated process.
For example, engineering resources may be diverted to cost proposed changes, document accepted
changes, and implement new procedures. Because of this type of required reaction, program
continuity and productivity can be affected.
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• Documentation of engineering rationale : All major programs have periodic requirements to review

progress and to answer not only the question of "What has been done?', but also "Why was it done

this way?', and "Why can it not be done this way?'. The last two questions require the
documentation, presentation and defense of engineering rationale. The problem is to provide a sound

defense in areas where adequate documentation is generally missing, the expertise may have been

lost, or rules may not have been codified, consistently applied, or documented.

• Multi-discipline inputs : Decisions made during the configuration process typically originate across

several disciplines and organizational boundaries. Disciplines may or may not be aware of the impact

of their decisions on other disciplines. These multi-disciplinary inputs to the engineering process
highlight the need for a uniform approach to acquiring and representing those inputs.

• Explicit decision parameters and criteria : For engineering problems of any significant complexity,

there is a need for the consistent application of clearly defined problem parameters and dynamic

criteria to the engineering process. This is particularly true when these parameters and criteria

come from various disciplines.

• Limited alternatives : Often the iterative engineering process is not fully utilized beyond a baseline

"satisficing" solution (where the result is not optimal but merely satisfies most of the criteria).
Little time is left to consider alternative analyses, configurations, or development paths. Better

options may be overlooked because no tool/capability exists for quickly modelling and analyzing
engineering alternatives.

• Problem of scale : Unfortunately, major program setbacks often occur because engineering

solutions which worked well for small problems (or subsets of the larger problem) do not scale up
well. This is particularly true when manual engineering approaches which were controllable and

acceptable for the smaller problem are applied to large integrated programs_

As mentioned, the above list is not intended to be exhaustive, but is presented to serve as a
reference for the next section.

2.0 Rack Layout Problem Description

As an initial test problem we have selected the Space Station Freedom module configuration task.

This effort is similar to that required in many aerospace configuration layout applications in terms of

complexity, constraints, and resources. It is above average in the number of expected major changes
and long period of implementation. These factors make the configuration problem an ideal candidate for a
knowledge based system.

The particular test domain area is that of rack placement aboard station modules. The racks

provide the physical packaging for station services and functions. The objective of the rack placement

process is to position a group of racks aboard modules in a configuration that minimizes utilization of

resources, optimizes operational efficiency, and meets as many requirements and constraints as

possible. The rack layout problem is representative of various configuration layout problems faced

within many aerospace programs. Currently three other potential applications for this type of system

have been identified within Work Package 1 of the SSFP, and it is expected that a number of additional

spinoff applications will surface. Also, work performed on this project could be applied to areas

external to the SSFP (other suggested areas include the outfitting of Commercial Aircraft and the
Manned Mars Mission).

We are currently researching knowledge-based systems approaches to aid in this problem. The

purpose of the research is to attempt to overcome the following perceived problems.
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Fleeting Expertise : Currently, only one person in the Space Station program is identified as an

"expert" on rack placement.

Claim : Development of an expert system to document the analysis, criteria, and engineering
processes used by the expert will allow knowledge needed to solve the problem to be preserved and
to be available for review by "non-exports".

Productive use of resources : The current manual approach to this process is quite time consuming

and labor intensive. Rack layout reconfiguration for the station must be performed in step with
other changes to the program. Due to lack of time, changes to rack configuration often represents
an "acceptable" rather than an "optimal" solution.

Claim : The expert system is expected to significantly reduce the amount of time required to
produce a new configuration. Additionally, the rules and procedures used by the system will be
applied consistently through the automated program. Also, the expert system doesn't =forget" the
rules or procedures during periods when the expert is busy with other task. Indeed, such an expert
system could be used to train less skilled personnel to perform the task and can be used by the
expert to explain the required analyses and procedures for the rack placement process.

pgfense of engineerino rationale : SSFP has a requirement for periodic reviews where design

decisions must be justified.

Claim: In a rule-based system, the engineering rationale for a particular configuration is implicit in
the set of rules used to generate that configuration. This engineering rationale provides placement
justification and explanation. One of the objectives of the current work is to extract intelligible
rationale from the set of rules used to generate the configuration.

Multi-discioline inputs: A large number of constraints exist between racks within and across
modules. When these constraints are imposed on a large number of racks, a difficult constraint
problem emerges. This problem is compounded by the fact that these constraints are imposed by
different domain areas (such as power, thermal, cost, safety, etc.) and may be physical, functional,
or operational in nature.

Claim : Experts from all applicable domain areas provide input to the rules and procedures used for
the automated placement process. An additional advantage is that a unified approach to the
acquisition, analysis, and representation of this domain knowledge can be developed and more easily
verified by the experts from the various disciplines.

Exolicit decision parameters & criteria : The lack of a uniform approach to explicitly identify

applicable parameters and then consistently apply domain rules for rack placement hinders both the
ability to quickly produce optimal rack layouts, and the ability to provide justification for a
particular configuration.

Claim : The objects, rules, and associated parameters can be printed, queried interactively, and
dynamically changed. This makes explicit the answers to questions such as:

What Impact did the rule ....

"IF
the rack is rated as 'noisy',

THEN

don't place it near the crew
sleeping quarters."

... have on the decision to place the rack?
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Limited alternatives : Currently, analysis of rack configurations takes anywhere from several

hours for the simplest changes to several weeks for more common changes. As expected, this does

not leave much time for analyzing "What if...? situations."

Claim : Once the applicable parameters have been identified, and domain expertise has been

captured, this expert system would support the ability to "tweak" priorities and constraints

allowing engineers to analyze alternative configurations. The comparative "goodness" of rack

configurations could be determined, and the tool could be used to suggest or support engineering

change requests. Obviously, this does not imply that human expertise would no longer be needed.
Rather it implies that more engineering analysis could be performed and human intuition could be

used to fuller advantage by allowing the engineer to work at a higher level of abstraction.

problem of _cale : Currently the Phase 1 SSFP calls for only two modules and 4 nodes on the

American portion of the program. Even this first phase of the program requires over 144 racks

which must be assigned within a full range of physical, functional, and operational constraints. The

multiplicity of constraints and the number of racks makes a manual approach to solving the problem

nearly intractable.

Claim : While the number of racks and other "real world" objects is expected to remain relatively

constant, it is anticipated that the number of constraint and control rules in the knowledge base will

expand. No reliable data was available to estimate the bounds on the number of these rules. The tool

selected for implementation set no upper bound on the size of the knowledge base (other than

memory limitations). Speed was not a primary issue in this application, but reasonable response

time was expected. The expert system incorporates domain expertise to control the focussing of

rules which helps to limit the solution search (see the control layer in figure 1). Additional
constraints can be easily added (or deleted) as knowledge about the racks and their interactions
increases.

3.0 Implementation

The Nexpert expert system building tool from Neuron Data was selected for this project because it

offered a number of desired features. Nexpert is a hybrid system supporting the representation of

knowledge in objects and rules. It supports full inheritance and procedural attachment of methods as

well as forward and backward rule chaining capabilities. It interfaces to user developed external

routines as well as PC databases and spreadsheets. In addition, links to large databases such as Oracle
and Informix are supported. Within this project we are currently a beta test site for a

Hypercard/Nexpert "bridge" which allows communication between Nexpert and Hypercard facilities on
the Macintosh II platform. Much of the explanation and training research is currently being performed

using Hypemard. Nexpert is C based, runs on a wide range of hardware platforms, and offers a number

of relatively inexpensive delivery options.

The prototype system software was implemented using a layered architecture to represent system

knowledge (see figure 1). This layered amhitecture separates different types of knowledge and aids in

development, debugging and maintenance of the system. Chandrasekaran [Ref 3] proposes a similar

architecture in which tools might be developed for "problem classes" such as diagnosis or design. He

proposes that particular problems within these "problem classes" share similarities and that "generic"

approaches to solving them might be appropriate.

Data resides in the lowest layer. The data is currently stored in a spreadsheet format, but facilities

exist in the Nexpert tool to retrieve data from a number of sources including PC spreadsheets, PC

databases, Oracle and Informix. Data is used to support the next layer representing objects and their

associated attributes. These two bottom layers together might be thought of as Object-Attribute-Value
(O-A-V) triplets. "Real world" entities such as modules, racks, standoffs, utilities, etc., are
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represented as objects in the system. Most of this type of knowledge was obtained directly from SSFP

documentation. It should also be noted that this data might be obtained during the inference process or

from some external source. This external source might well be an external routine which calculates a

value and returns it to the object. This is analogous to attaching a "method" to as object.

The constraint layer contains all the constraint knowledge about the particular domain under

consideration. This constraint knowledge is stored in rules and is a relatively "fiat" knowledge base

since this type of knowledge is concerned primarily with only a few "focal" objects. This knowledge

base consists of a collection of "microscopic" rules to be used in solving the problem, and do not embody

higher level "control knowledge" which a human expert would follow in applying the constraints.

The control knowledge (or meta knowledge) at the next level controls the direction of focus for the

constraint knowledge. This level "prunes" the search space so that inappropriate constraint knowledge

is not considered. Control knowledge is used to apply the constraint knowledge in much the same way a

human expert would. An interesting offshoot of this project has been that the codification of this type of

knowledge often helps to better define the problem solving process. This layer is also important in the

explanation/justification of design decisions since explanations of design decisions made by the system

need to be conveyed in much the same manner as a human expert's explanation.

The user interface represents the user's view of the system. For this application we have designed

a "point and click" user interface in which the user manipulates racks within a module configuration.

This interface provides input to the control layer about rack(s) to be moved. The control layer applies

appropriate constraint knowledge at the next level. The constraint layer, in turn, obtains needed
information from the lower levels. The final result (no constraints violated, "soft"

constraints violated or "herd" constraints violated) is passed to the user interface where the

user can query the system about the particular decision and what support was used in making the

decision.
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The explanation/justification layer supports access to all the lower levels of the amhitecture.
Queries can be made of objects, constraint knowledge or control knowledge. Explanations differ in
content for these different layers and in level of detail based on the level of expertise of the user. A
more detailed discussion of this layer can be found in [Ref 1].
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Figure 1

4.0 Issues

As with any expert system project, there were a number of issues critical to success. Some of
these issues are described below:

ExDert availability: From the project's inception, a "domain expert" was identified and has been

available at every step in the development process. This expert understands the problem to be
solved and is able to articulate his method(s) for solving the problem.

Knowledge Acouisition: The data required for this project comes from both SSFP documents and
domain experts. Traditional interview techniques with the primary rack placement expert as well
as other experts in related fields have been very successful. Domain experts have recognized the
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potentialutilityof such an expertsystem and have supporteditfully.In additionto interviews,the

domain experts submitted "test cases" for the system to solve along with their

conclusions/justificationsas to why the move was good or bad (orcould/couldnot be made). These

testcases helped identifymany weak areas in the system and helped to buildthe explanation

facilities[Ref I]. Earlyinthe developmentprocesswe began to use the system itselfto acquire

domain knowledge by runningtestcases againstthesystem, ThisapproachuncoveredweaX areasin

the captureddomain knowledge or incorrectassumptions. Thus, the toolitselfhas been used

extensivelyin the acquisitionprocess.

Verification and Validation: Test cases supplied by the domain experts as well as "working"
interviews in which the system is used to test particular rack configurations have been used to test
the system for correctness as well as its ability to provide meaningful decision justification. No
work has been done to perform tests on the knowledge base for rule subsumption, rule contradiction,
or cycles. Much of the system testing will continue to be empirical in nature.

5.0 Future work

One result of both the data acquisition and validation activities was that a larger number of people
became aware of the project and began to look for ways to apply the work performed in the project to
particular problems in their domain. As a result we anticipate that a number of spinoff projects will
emanate from this IR&D work. Problems similar to the rack placement problem include resource
allocation problems in which rack resource requirements are matched with resources supplied in the
module to maximize the resource utilization. Another similar problem deals with the placement of
payload racks (experiments, etc) within the lab module. This task must be performed repeatedly since
experiments will continually be moved in and out. Another spinoff of this work may be in the training
area. Much of the work being done to provide intelligent design justification and explanation could carry
over into training new engineers on the SSF program.

As a component of a training system as well as design justification, we plan to interface this system
with simulation systems to provide "deeper" justification or explanation by allowing the user to
perform a simulation of a particular configuration during the design process. Adeli [Ref 2] reports on
efforts to couple AI techniques with traditional mathematical techniques to aid in the engineering

process.

6.0 Summary

Systems incorporating AI technologies to aid design will enhance the engineering process and will
ensure that the decisions (and rationale behind them) are available in an intelligible format for future
applications. Research in this area and prototype systems such as the one described here will help to
clarify and define the engineering design knowledge capture requirements.
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ABSTRACT

A knowledge-based interactive problem solving environment called KIPSE1 is
presented in this paper. The KIPSE1 is a system built on a commercial expert system shell,
the KEE system. This environment gives user capability to carry out exploratory data
analysis and pattern classification tasks. A good solution often consists of a sequence of
steps with a set of methods used at each step. In KIPSE1, solution is represented in the
form of a decision tree and each node of the solution tree represents a partial solution to the

problem. Many methodologies are provided at each node to the user such that the user can
interactively select the method and data sets to test and subsequently examine the results.
Else, users are allowed to make decisions at various stages of problem solving to subdivide
the problem into smaller subproblems such that a large problem can be handled and a better
solution can be found.

I. INTRODUCTION

One of the major goals in computer-based problem solving is to provide computer
users more flexibility and guidance in using the available computing resources. To facilitate
user select proper methodologies and decide what computing tools to use in solving
problems of a particular problem domain, specialized knowledge of expertise needs to be
incorporated. A current research thrust in achieving this goal is to build a knowledge-based
problem solving system where numeric processing is integrated with symbolic processing
(4, 7, 10).

A problem solving environment (PSE), as broadly stated in (3), is an integrated
multitasking system that supports and assists user in the solution of a given class of
problems. Normally, within a more established discipline area or domain, collections of
numerical programs in various forms and capabilities are available for use. These programs
may be in the form of callable subroutines that can be accessed within an application
program or through the use of specialized high level languages. There are currently many
examples of PSE available in some problem areas. For instance, in the area of statistical
computing, there exist packages such as SAS, BMDP, and others. In the arena of
CAD/CAM where numeric computing routines for data display and geomewic information

manipulation are incorporated, there exist systems such as AutoCAD, GeoMod, just to
name a few. Although these PSEs employ well-proven techniques of the problem area and
may relieve the burden of code writing from the user, knowledge about the numeric
algorithms and techniques used in these programs and facilities that allow a user to
interactively define the process and examine the various results are not readily available to
the user.

To augment PSE with capabilities to incorporate knowledge to manage symbolic
manipulations, numerical routines, and problem solving strategies AI techniques are used.

PRECEDING PAGE BLANK NOT FILMED
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AI techniques,specifically,methodologiesfrom theexpertsystemstechnologyenhance
greatly the capability of PSE which include strategiesfor finding nondeterministic
solutions, techniquesfor constraint propagationand search,and various knowledge
representationschemessuchassemanticnetsandframes.

Many featuresareneededin aknowledge-basedPSE.Basically,it shouldcontain
thefollowing components:afriendly userinterface,abankof numericprograms,akernel
for systemcontrolwith avarietyof datastructuresfor handlingdifferentdatatypes,output
displayfor bothtextandgraphics,preprocessorandpostprocessormodulesfor interfacing
thevariousnumericprograms,andaknowledgebase.In SectionII, a PSEarchitecturefor
dataestimationandpatternclassificationis presentedand its componentsexplained.In
Section III, the detailed implementationissuesof our systemKIPSE1 arediscussed.
SectionIV discussessomefeaturesof the KIPSE1system.Concludingremarkswill be
givenin SectionV.

II. A PSE ARCHITECTURE FOR DATA ESTIMATION AND PATTERN
CLASSIFICATION

Problemsolvingprocessis ahighly intelligentbehavior.It is domaindependentand
userinvolvement is extensive.For anynew problems,the questionsthe userwants to
answerareusuallynon-routineandmany time very difficult (2). To model the general
problemsolvingstrategyandto builda systemfor all problemareasisalmostimpossibleor
atleastvery inefficient.Therefore,onlyPSEconcentratedona specificapplicationdomain
is built in practice.As anenvironmentthe userinvolx_ementissuerequiresthat it be
convenienceof usewitheffectiveuserinterfaces.

A PSEfor dataestimationandpatternclassificationtasksthatarecommonin many
areasof applicationhasbeenproposedby theauthors.A dataestimationproblemis given
belowto illustratethis.In dataestimation,oneis oftenaskedto find amathematicalmodel
to bestexplain the givendataset.Many statisticalpackages,which mayresidein many
differentcomputersystems,canbeusedfor thispurpose.Forexample,themultiple linear
regressionP1Rroutinein theBMDPstatisticalpackageandtheregressionREGroutinein
the SAS packages.After choosingthe package,userstill needsto havesomestatistical
knowledgeabouteachmodel,its assumptions,requirements,andsoon, in orderto pick
theright model.Useralsoneedsto know thespecificlanguagefor eachpackagein orderto
usetheseroutines.Manypagesof numericaloutputaregeneratedfrom theseroutinesanda
casualuserusuallyneedsexpertassistancefor a meaningfulinterpretationof theresults.
Theprocessmayrepeatmanytimesbeforeanacceptablesolutionis determined.A system
which integratesall thesein oneenvironmentwill greatlyincreasetheproductivityof the
user in solving the problem. The PSE architecturefor data estimation and pattern
classificationis showninFigure 1.

Theentireproblemsolvingprocesscanbedividedin thefollowing steps:problem
formation, processgeneration,processsetup,and postprocess.At the first stage,the
problemformation includesproblemparameterdefinition, dataformat conversion,and
systeminitialization.In theprocessgenerationstep,thestrategyfor solvingtheproblemis
formulated by the userbasedon the domainknowledgeand previous results.Oncea
processisdefinedto performcertaintask,thesystemwill automaticallysetup theinterface
to theapplicationprogramandinitializethecomputingprocesses.During thepostprocess
stage,usefulinformationfrom thecomputingroutinesareextracted,convertedinto proper
formatandstoredto thedatabasefor laterretrieval.Outputdisplayroutinesareinvokedto
displaytheresultsbothin textandgraphicalforms.A rule-basedresultinterpreteris used
to interprettheresults.Userexaminestheresultsandmakesdecisionto eitherredesignthe
processor stop.
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Figure 1. An Architecture for PSE for Data Estimation and Pattern Classification

III. SYSTEM IMPLEMENTATION

It has been determined from our past experiences in designing various expert
systems that higher end expert system shells can provide the necessary tools for the
implementation of the KIPSE 1. The system requirements essentially consist of 1)powerful
data structure to represent complex process, 2)flexible knowledge representational schemes
to represent domain knowledge, 3)user interface with graphical capability, and 4)interface

to other computer systems.

The KIPSE1 system is built on top of the Intellicorp's Knowledge Engineering
Environment, the KEE system. Frame-based structure is used to represent the attributes of
individual process. This frame-based structure is an object-oriented system where objects
are structured as units with slots. Attributes are specified in slots. Slots may contain
descriptive, behavioral, or procedural information, and relations are expressed using slot
values (5). The KIPSE1 is organized as a hierarchical tree structure where each individual

process is incorporated as a node within the structure. As an example, the structure of
pattern recognition (PR) process is shown in Figure 2. At each node the control of the
problem solving is coded in one of attached procedures associated with that node. Figure 3
shows an example of a procedural method written in Lisp. This procedure is the control
procedure for the classifier design process.

The objective of pattern classification problem is to determine to which class a given
data sample belongs. The process of designing a pattern recognition system can be divided
as data gathering, normalization, data structure analysis, classifier design, and testing (error
estimation) (11). The main purpose of the data structure analysis is to explore the data set
structure in order to design the classifier in a later stage. The operations in this stage include

feature extraction, clustering, statistical tests, and modeling. The classifier design is also
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calledtrainingor learningstagein whichdatasamplesarecollectedfrom variousclasses
and the classboundariesaredetermined.Thereare severalcommonclassifier design
methodsusedin this stage.They includelinearclassifier,quadraticclassifier,piecewise
linearclassifier,andnonparametricclassifier.

Pattern. Recognition

Data Gathering

Problem. Formation _

Normalization

I L__i_tractio n

ata'Structure'Analysis __cal.Tests

Linear. Classifier

lassifier. Design_Q uadratic-Classifier

Piecewise. Linear. Classifier

--Nonparametric.Classifier

Testing

Figure 2. A Structure for the Pattern Recognition Process

Our philosophy is to provide as many methods as possible to the user to try out at
each node. Just as no general data structure is suitable for all problems, there is no general
method applicable for all the pattern recognition problems. The best that one can do is to
provide a good environment with all available methods so the user can pick up right method
for the problem under consideration based on both the nature of that problem and the user's
previous experience. A user might even try different methods, compare the results, and
select the best one among the various trials. For those users who are not familiar with those

methods provided in the system, heuristic rules are provided to help the user find
appropriate one to use based on the general nature of the problem and usage requirements
and limitations of each method.

The KIPSE1 system is menu-driven. Figure 4 shows the screen menu for the

selection of classifier design methods as an example of a stage of running process. Four
types of classifier methods, which include linear, quadratic, piecewise linear, and
nonparametric classifier are provided to the user. In addition, expert knowledge is available
in the HELP option.

Different types of knowledge are imbedded in the environment. In addition to the

one of selecting a method as mentioned above there is specific knowledge for helping user
to choose right parameters for each selected method, knowledge to help interpret the
results, and knowledge for error handling. These knowledge types are coded explicitly in
the rule form and is structured as shown in Figure 5.
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0ambda (self node)
(let (process)

(serf process (pop-up-cascading-menu-choose (make.cascading.menu
:POP-UP '(C Linear Classifier" 'Linear.Classifier)

C Quadratic Classifier" 'Quadratic.Classifier)
C Piecewise Linear Classifier" 'Piecewise.Linear.Classifier)
C Nonparametric Classifier" 'Nonparametric.Classifier)

:PARENT *kee-root-window*

:TITLE "CLASSIFIER DESIGN: Choose One of the Following Method")))

; Display the menu on the screen, ask user to choose method
(cond ((not (equal process 'help))(put.value self 'process process))

; Save user selection in slot process
(t (query '(THE PROCESS OF CLASSIFIER.DESIGN IS ?X)

'Classifier.Design.Help.rule.class)
; Help user find right process using the knowledge provided by the expert

))
(unitmsg (get.value self 'process) 'control node)

)

Figure 3. Control Procedure for Classifier Design Process

CLASSIFIER DESIGN: Choose One of the Following Method

Linear Classifier

Quadratic Classifier

Piecewise Classifier

Nonparametric Classifier

HELP

Figure 4. A Running Menu

rocess.Generation. Rule.Class

Rule-Class_Process Setup. Rule.Class
j Results. Interpretation. Rule. Class

Postprocess. Rule. ClaSS_Error. Handling. Rule.Clas s

Figure 5. The Structure of the Rule System

Rules are used to represent knowledge. An example of a rule is given here. This is
a result interpretation rule used in the clustering process. The purpose of the clustering
process in pattern classification or recognition is to find a method for combining objects
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into groups or clusters such that objects in each cluster are similar. Similarity is defined by
a measure of similarity provided by the user. If this measure is set improperly, say, it is too
small, many meaningless small clusters will result. In this case the measure needs to be
adjusted. From the domain expert it has been determined that the total number of clusters in
most cases should be kept under four. A rule that convey this expert knowledge may be
included as shown in Figure 6.

CLUSTERING.RESULTS.INTERPRETATION.RULE.001

(IF (THE RESULTS OF CLUSTERING IS ?X)

(LISP (> ?X 4))

THEN

(THE PERFORMANCE.EVALUATION OF CLUSTERING

Figure 6. An Example of Rule

IS NOT.ACCEPT)

IV. SYSTEM FEATURES

In this section, some of the basic features of the system are discussed. They are
ease to integrate new software, availability of various methodologies, and user involvement
in generating hierarchical decision tree.

An important feature of the system is its extensibility. General procedure is set up to
integrate any software to the system. As explained earlier, a new software is defined as a
new node in the system tree structure. The process of adding a new software is equivalent
to inserting a new node to the proper position of the existing tree structure.

The information associated with each node is categorized into two classes. One is
the global information used in interacting with the system. It includes software location,
description, usage, results, performance evaluation, and the rule class that provides
conditions for accessing the methods. Another category is the local information relating to
actual computing process initialization. It includes preprocess, postprocess, result
interpretation rule class, and error handling rule class. The general node structure is shown

in Figure 7.

As an example, to integrate the method of multiple linear regression, say, the P 1R
routine of the BMDP package, which resides in a node called 'ucaicv' on the network, the
following relevant information is stored in the pertinent node of P1R and shown in Figure
8.

It has long been noted in the field of pattern recognition that the key to problem
solving does not rely only on the sophistication of the available algorithms but also lies
heavily on the proper representation of the pattern structure of the data (6). Quite a few
complex problems can be broken down into simpler problems. Each subproblem becomes
easier to be solved. As stated in (1), hierarchical structure from a very important data
representation and decision tree are naturally suited for problem solving with such a data
representation.

In the KIPSE1 system both the problem and its solving process are also represented
in the form of frame of structure. One of the important features of the KIPSE1 is that it
provides a mechanism to allow user to break a problem node down into several subproblem

nodes. These problem nodes can be organized hierarchically by setting up two special slots:
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parent slot and children slot. Each problem node captures the partial decision process and
the decision tree represents the problem solution.

Program Location

Program Description

Functional Description

Help Rule Class

Results

Performance Evaluation

Control Procedure

Preprocess Procedure

Process Setup Rule Class

Postprocess Procedure

Results Interpretation Rule Clas_

Error Handling Rule Class

Figure 7. A General Node Structure

UCAICV

A routine in BMDP _ statistical package

Multiple Linear Regression

PIR. GENERATION. RULE. CLASS

(results)

(performance evaluation)

PIR. CONTROL

PIR. PREPROCES S

PIR. SETUP .RULE. CLASS

PIR. POSTPROCESS

PIR. RESULTS. INTERPRETATION. RULE. CLASS

PIR. ERROR. HANDLING. RULE. CLASS

Figure 8. An Example of Integrating an External Program to the System
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Several strategies are incorporated into the system. They include ad hoc strategies
defined by the nature of the problem based on a priori experience, by visualization of input
data set, by performance evaluation, and by exploration and trade-off study.

A decision tree solution to a data estimation problem is shown in Figure 9. The
original set of 91 data points has been partitioned into four subproblem spaces of 22, 20,
24, and 25 data points. Shown along each node are the regression equation associated with
the sample data set, the respective mean squared error, and the decision made to subdivide
the problem space.

Z=4+l.2x+l.8y

MSE=3.4

Z=6+0.8x+3.1y

MSE=2.4

Z=2+l.7x+0.8y

MSE=2.0

22 20 24 25

Z=12+.6x+l.3y Z=8+.8x+2.1y Z=3+l.4x+.9y Z=l+l.8x+l.8y

MSE=I.2 MSE=I.8 MSE=I.5 MSE=0.8

Figure 9. An Example of Solving a Data Estimation Problem Using Decision Tree

V. CONCLUDING REMARKS

A knowledge-based interactive problem solving environment for data estimation
and pattern classification has been presented. The entire problem solving process is viewed
as a multi-step decision making process. It is a learning process that at each step some kind
of exploratory actions take place. The KIPSE1 provides this powerful problem solving
capability. It is easy to use, easy to expand, and special knowledge is include to assist the

user throughout the problem solving process. The system has been implemented on top of
a powerful commercial expert system development shell. Its flexible knowledge
representation and useful interface facilities have provided means to organize the numeric
computing tools, to incorporate symbolic knowledge, and thus create a powerful problem
solving environment.
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Abstract

This paper presents a system architecture which incorporate both graphics and text into
explanations provided by rule based expert systems. This architecture facilitates
explanation of the knowledge base content, the control strategies employed by the system,
and the conclusions made by the system. The suggested approach combines hypermedia and
inference engine capabilities. Advantages include: closer integration of user interface,
explanation system, and knowledge base; the ability to embed links to deeper knowledge
underlying the compiled knowledge used in the knowledge base; and allowing for more direct
control of explanation depth and duration by the user. User models are suggested to control
the type, amount, and order of information presented.

Introduction

One of the earliest claims of expert system developers was that the resulting systems
could "explain" their actions. These claims were often effectively backed up by the textual
presentation of traces of rule firings which could explain "how" the system had made a
decision.[Pople, '77] Additionally, systems could answer "why" the system was asking for
information by presenting as explanation an English text description of the rule which
required the information [Clancey, '83]. However, complete explanation requires
addressing the problems of what, how, when and to whom knowledge is to be communicated.

[Wick and Slagle, '89] suggest that explanation capabilities could be greatly enhanced by
the introduction of supplementary knowledge and by allowing variations of queries over
time. For example, the user could ask not only "Why do you want to know this now?', but
could also ask "Why would you ever ask me for this information?'. Similarly the user could
ask not only "How did you know?", but also "How could you find out?'. To answer these
questions the system must keep extended histories, or traces, of actions taken by the expert
system and based on dependencies be able to generate responses of a forward looking nature.

[Chandrasekaran, Tanner, and Josephson, '89] emphasize that explanation should be
provided not only at the low levels (exemplified by presenting the conditions associated with
a single specific rule) but that high-level explanation of overall system goals should also be
available. Their suggestions are supported by work on automatic generation of textual
explanations through specialized grammars [Bridges and Johannes, '89] . An underlying
truth here is that humans tend to be much better at explaining their actions because they are
able to convey both their abstract goals and detailed information -- but with the significance
of the details "slanted" towards satisfying the stated goals. Therefore, the grammar used by
humans during explanation goes beyond that used for simply explaining system details.

It has been suggested that much of the difficulty in developing expert systems is that the
early recorded sessions provide better explanation knowledge than actual problem solving
knowledge. To obtain better explanations, the overall system must be designed and developed
with explanation as an integral part in all project stages. Particularly for rule based
systems we advocate working with a representation of "IF, THEN, BECAUSE" rules as opposed
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to "IF, THEN" rules. By giving early knowledge aquistion sessions very heavy weight, useful
explanation knowledge can be gathered. Subsequently, this explanation knowledge can be
used for verification of solutions provided by the expert system.

A final point needs to be made in this introduction. There is a difference between
"justification" and "explantion". For justification we must provide a formal proof of
completeness. For explanation, we must focus on and explain only the part of a solution that
was not understood. [Clancey, '83]

An Architecture for Explanation

Figure 1 presents a knowledge based system architecture which emphasizes explanation
capabilities on an equal par with capabilities provided to solve the original problem. The
three main components of the architecture are an expert system intended to solve the
"original" problem, an explanation system, and a user interface which acts as a bridge
between the two. We will now discuss these three major components and suggest finer
grained architectures for each.

The Expert System

The expert system architecture presents a bottom-up separation of four main layers
for conventional data structures, object definitions, fiat domain knowledge rules, and meta
(or control) rules. This is the system proposed to solve the original task. Imposing the
defined structure aids in system development, delivery and maintenance. For example, it
aids in development (particularly for larger systems) by allowing for clear delineation of
tasks among multiple members of a development team and by making interfaces explicit.
The imposed structure aids in delivery by forcing incorporation of conventional database
technology (and therefore exploits existing databases) at the lowest level and by separating
the interface layer for early attention. By including the general architecture in the support
documentation, maintenance tasks requiring different skills can be anticipated.

The lowest level of the expert system represents an underlying database with basic
facts about the problem or about the current state of the world as the knowledge base knows
it. At the next highest level, an object hierarchy is provided and the object definitions are
all linked to conceptual definitions. The values for object attributes are updated through a
link with the underlying database. A common mistake in the past has been to assume that the
object layer was the lowest layer required for expert systems. This mistake delayed the
integration of many systems with conventional databases and often resulted in significant
efforts to rewrite the system or duplication of data. The third layer represents a relatively
flat body of rules which typically represent a hierarchy of symptoms or contraints and are
the result of knowledge engineering. Strategies for applying the constraint rules are
represented in the fourth level by another hierarchy of meta-rules (these typically control
the inferencing process at a very high level and depend on the built in mechanisms of
forward or backward propogation for results at the constraint level).
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Figure 1 : An Architecture for Explanation

It turns out that imposing a structure upon the expert system can help provide
structure to explanations. For example, more sophisticated implementations can use this
imposed structure along with knowledge about each layer and the user to guide planning for
explanation construction.

The Explanation System

The second major component of the architecture is the explanation system. Although our
architecture would facilitate such an implementation, we do not insist that the portion of the
system which provides explanation be a "complete" separate expert system. That is, we do
not insist that the explanation system be capable of solving the original problem, as does
[Wick and Thompson, '89].

At the lower levels in the architecture, the explanation system layers correspond to
those in the expert system. For example, the bottom layer consists primarily of simple
information about the data values layer of the expert system and contains typical
information typical of that found in a "data dictionary", such as data value types, ranges,
sources, etc. The next layer corresponds to the object definition layer in the expert
system. It contains information about the objects and knowledge about fundamental
mechanisms such as inheritance through the class structures of the implementation system.
At the next two levels (the flat domain knowledge and control knowledge layers) the
explanation system can contain even more information than the corresponding expert system
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layers. The internal architecture for these layers is dependent upon the depth of background
material included, the representation used for depicting strategy, and the extent of any user
models.

To understand how the architecture may change it is important to specify the type of
explanation is to be supported. In the following three sections we present approaches
working within the depicted architecture for explaining knowledge base content, strategies,
and decisions. [Chandrasekarn, et al, '89] provide details regarding this three pronged
approach for explanation from introspection of knowledge and inference.

Explaining Knowledge Base Content

The architecture presented provides for explanation of knowledge base content at all
levels. Starting with the lowest level, an underlying database represents basic facts about
the problem or about the current state of the world as the knowledge base knows it.
Explanation content for the database is typical in that it should provide information on the
data sources, last update, units of measure, and validity intervals.

At the next highest level, an object hierarchy is provided and the object definitions are
all linked to conceptual definitions. Graphics depicting component and subcomponent details
are used where appropriate. Information provided about each object class include its
importance in the problem to be solved and how it is used in the problem solving process.
Each object attribute is similarly treated with the addition that each object attribute is also
flagged to indicate whether its value is simply read in from the database or can be changed by
the problem dynamics. The idea of assigning values of LABDATA to data that typically
requires no explanation other than source was suggested in [Davis and Buchanan, '77].
Where attributes can have multiple values, the meaning of the multiple values is explained,
along with expected consequences on the problem solving process.

The constraint rules form the third level of the knowledge base and serve to emphasize
that in a rule based system oriented towards explanation the rules themselves should be
thought of as objects. For explanation of content, one successful implementation uses an
"index" that graphically shows the constraint hierarchy as composed of only keyword
phrases. Additionally, each rule should be captured in hypertext form, so that the user can
select any rule from the keyword hierarchy, then any part of the rule can be selected to
explain the contents in more detail. Rule attributes include static English text which
restates the rule, the rule originator, last update, a list of pointers to any related "cases" or
"tests" from which the rule was derived, the relation to other rules, an understandable
English text prompt used in conjunction with the rule when requesting information, and a
graphical representation of the rule where possible. For systems which use confidence
factors, it is imperative to note that the confidence factors themselves convey knowledge that
should be explained.[Davis and Buchanan, '77] A confidence factor of one indicates that a
"shallow" explanation may suffice since the rule is most likely definitional in nature, while
confidence factors not equal to one represent the application of judgement and the relevant
ranking of its importance and therefore requires more explanation.

Explaining the Knowledge Based System Strategy

Explaining a strategy involves in part the explaining of a perspective for relating rules
hierarchically and then showing how these relations provide leverage for managing a large
amount of data or number of hypotheses. The meta-rules at the fourth level of the expert
system form the core of solution strategy and can also represented in the explanation system
by a graphic hierarchy. At this level the source for the rules becomes critical as these are
the rules which control the order for checking the constraints at the next lower level.
These rules explicitly determine which constraints are checked under varying
circumstances. The strategies implemented intentionally mimic those used by experts
from various areas within the domain and are one of the areas where having multiple
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experts can be an advantage and where explaining the source of a rule can make a significant
difference in acceptance of the final system.

It is clear that strategy and structure are intimately related in the expert system. The
explanation system should make this as explicit as possible. For example, where screening
clauses are used in the system for internal control as part of a rule, the rationale behind
their placement should be documented and available for explanation.

Explalnlng Knowledge Based System Declslons

The ideal situation when explaining decisions is to employ any material a person may
use, the point being to represent the "bottom line" as clearly as possible. For example, the
rule hierarchies presented to explain the knowledge base content can be enhanced by
highlighting information (the computers equivalent of pointing) used in the decision
process. Where graphical keyword "indices" are available, they can be used to highlight a
single keyword representing a rule or group of rules while presenting the constraint
hierarchy. This will often serve as sufficient explanation for domain experts, while
hypermedia links from the keyword hierarchy provide the "back pocket" type of information
needed for explanation to other audiences.

Following the example set by [Brown, Burton, and de Kleer, '82], system developers
should attempt to anticipate what are most likely to be the more difficult areas involved in
making the decisions and provide even more depth and tutorial information for explanation
of decisions in some areas. The areas can be highlighted by assigning individual measures of
complexity or importance to individual rules and viewing the hierarchy of rules with
aggregate weighting above a threshold value.

Even artificially constructed "trees" representing the HOW information for decision
explanations can be very useful. That is, the tree presented as explanation need not reflect
the reasoning process in it's entirety (Wick and Thompson's work argues that it may not
reflect it at alll). However, we feel that it should demonstrate at least a "feeling" for the
structure of the problem space and the nature of the search strategy used.

One of the more difficult tasks may be tying explanations to a general abstract level or
task (such as in Dr. C's work), especially for strategy rules. Developers of explanation
systems must realize that any rule, no matter how obvious or clear, is only a single step in
the explanation. Other steps include setting strategy context (such as generic task
identification), focusing on state information (particular values of object attributes at a
point in time), and elucidation of outcome.

The User Interface

The user interface is the third major component of our suggested architecture and spans
the gap between the expert system and the explanation system. In the past, most export
systems have typically relied on simple menu driven interfaces and textual presentation of
explanations. Notable exceptions to this include the STEAMER [Hollan, Hutchins, and
Weitzman, '84] system which used an underlying simulation model with incorporated
graphics and the General Electric DELTA expert system for diagnosing diesel electric
locomotive failures which incorporated video storage as part of the system [Bonissone and
Johnson, '83]. More recent work by [Sue, '89] has focused on a mixture of text and
graphics in the explanations.

We suggest that the interface should be some implementation of hypermedia. The recent
emergence of robust hypermedia systems argues favorably for the integration of graphics
and text. An ancient Chinese proverbs states "It is better to see a thing once than to read
about it one hundred times." The wisdom of this statement has been proven repeatedly by
people who while trying to explain their actions to others resort to the use of a graphic as
part of their clarification [Berry and Broadbent, '87]. Therefore, perhaps the best
rationale for incorporating graphics and text is simply to mimic reliance upon them as
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humans do. By using figures which have been scanned in, and then adding "buttons" or links
to additional information and text fields we can allow for perusal of a tremendous amount of
information at a level dynamically controlled by the user. It is important to realize that the
links created for explanations tend to be more specific than those created for a purely
informative stack -- at least at the beginning of the explanation. However, as the user
traverses links away from the starting point the bounds on what type of information is
presented is left up to the system developers (for example, it may be desirable to restrict
the amount of autonomy afforded to students where the explanation system also serves as
part of an intelligent tutoring system).

Modern portable computers, optical discs, and graphics software make it possible to
quickly and easily capture and integrate graphic material. The architecture suggested
combines database, hypermedia and inference engine capabilities. These capabilities are
readily available on conventional PC hardware and recent announcements in the area of
integration across diverse packages makes it practical to expect easier access to such tools.

User Models and Explanation in Intelligent Tutoring Systems

An additional level of complexity is added to the problem of explanation when we
introduce the need for models of the user so that the information presented will be both
understandable and timely. Related work [Wenger, '87] in the rapidly expanding field of
intelligent tutoring systems demonstrates repeatedly that it is the communication of
knowledge (not just data) that is important and that the presenter of knowledge must make
allowances for student abilities. Most explanations are presented to a single individual, or
at least to a group with focused attention in a common setting. For example an expert
system developed as an engineering aid may be used repeatedly by individual engineers who
are experts in the domain. However; when explaining the actions of the system (which have
led to specific decisions) during a formal review, the experts must be able to integrate
background information, current focused information, and their overall goals into
explanations at a level their audience will understand. The point is that the same
explanations given by the system to the expert during its normal use will not suffice as
explanations given to a broader audience. The task of trying to model even the typical user
(in an effort to know what to present and how to present it) is often not straightforward.

We would like to continue to investigate the use of expert systems as intelligent tutors.
Conceptual definitions of objects and rule hierarchies are used extensively in explanations,
and serve as excellent starting places for those using the system as a tutor. These
hierarchies can be used for quickly identifying areas of interest to different users and for
providing a type of dialogue from which students can ask for more detailed explanations
[Moore and Swartout, '89].

Any good explanation must "make contact" with previously known concepts. It's a good
idea to include a core of short tutorials on the fundamental concepts in an explanation
system. These provide the needed basics upon which everyone can view the explanations.
They also provide a good example of what should not be included in the system used to solve
the problem, but should be included in the explanation system.
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Capturing the "Link" between Compiled and Deep Knowledge

The deliberate separation of the explanation system component from the expert system
highlights the fact that knowledge required for explanation often lies outside of the
knowledge incorporated into the expert system designed to solve the original problem. One
basic reason for this is that the expert system represents compiled knowledge. The idea
here is similar to that found in conventional compiled languages where efficiency is gained
by stripping away non-executable code such as comments. In several ways, explanation
knowledge is very similar to the knowledge often gathered into documentation for
conventional programs. Just as conventional program documentation has many levels, the
explanation system is a knowledge based system with multiple layers (although not always
true in practice, there should be major differences between a user guide and detailed
programmers guide to the same software).

It is the high level and abstract knowledge (such as originally intended use, goals, or even
current events such as budgetary constraints) that is often compiled out of the final version
of a knowledge base. As a result, explanations associated with expert system will most
likely be later questioned regarding completeness, accuracy, or accountability -- and the
true explanations may not be available. We've found that the most difficult part of this is
indeed deciding how to tie explanations to the higher level goals, in many cases we
recommend simple English text statements as they seem most appropriate. The more
abstract problem solving goals (such as the strategy rules) are depicted using process flow
diagrams. A fairly simple mapping allows for capturing the link between the strategy
rules and the rules at lower layers.

Future Directions

It has been suggested [Brown, Burton, and de Kleer, '82] that links to conceptually
faithful simulations can provide for a form of continuous explanations and could thereby
represent a deeper knowledge of the domain. We would like to pursue this area by providing
links from the hypermedia interface to an application written for simulating processes in
the domain.

Construction of an appropriate grammar for describing the relationships among objects
and rules within the domain and specialized for use in explanations is being considered for
future research. The grammar definition would help ensure future applications would find
the embodied knowledge in machine intelligible formats and could be used to limit the scope
of explanations which must be generated. It has been suggested [Paris, '88] that explanation
for expert systems provides a rich domain in which to study natural language generation.
The simple architecture presented in this paper would be refined to accomodate a more
intelligent architecture for the explanations system.

Summary

An architecture has been suggesteed for combining an expert system, explanation system
and hypermedia based user interface. Components of explanation include explaining
knowledge base content, strategy, and decisions. By emphasizing explanation as a major
system goal which requires knowledge and effort aside from solving the original problem,
the systems can benefit : by being more readily received in the end user environment; by
also serving as a beginning platform for instruction; by providing links to the deeper
knowledge underlying that which would normally be compiled out of the knowledge base; and
by providing for smoother integration of interface, knowledge base, and data which helps
ensure they will continue to be used.
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Abstract

Space systems can be characterized as both large and complex but they often rely on reusable
subcomponents. One problem in the design of such systems is the representation and validation
of the system, particularly at the higher levels of management. This paper describes an auto-
mated tool for the representation, refinement, and validation of such complex systems based on
a formal design theory, the Theory of Plausible Design. In particular, this paper describes the
steps necessary to automate the tool and make it a competent, usable assistant.

1. Introduction

The process of design relies heavily on human creativity and judgement. Design

is particularly difficult when the artifact being designed is large and complex, such as

with satellites, computer systems, etc. At the highest level, the design, development
and evolution of such complex systems must be managed through appropriate valida-

tion and assessment techniques. Although numerous tools exist to aid in the detailed

design and development of individual components through CAD technology, there is

little automated support for management and development of complex systems at the
higher levels.

The design and development of artifacts can be viewed as the process of satisfying

a set of constraints or requirements. Constraints are satisfied either by detailed ela-
boration into subcontraints and/or by providing evidence that the constraint is
satisfied. As an example, a new satellite program begins with the specification of the

scientific aspects of the satellite, termed the mission requirements. The mission require-
ments must be refined so that the end-product will meet the scientific objectives.
Thus, if the mission requirements demand a sensor with a particular sensitivity, the

designer (or program manager) may choose an off-the-shelf component, with a track

record of high sensitivity. The documented track record then provides evidence that
the sensor sensitivity requirement has been met. However, there may be other con-
straints that interfere with the choice of the sensor. The selected sensor may require

too much power, may be too large or heavy for the satellite, or may be so delicate that

it will not survive the intended launch procedure. The fundamental problem in the

development of complex systems is the representation, refinement, evolution, and
assessment, and ultimately the validation of a myriad of diverse constraints.

This paper addresses this problem by describing an automated tool that relies on

the Theory of Plausible Design, TPD [D89]. A plausible design, at any stage in the

design process, is represented by a set of constraints with associated plausibility states

organized into a directed, acyclic Constraint Dependency Graph (CDG). The
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plausibility state takesthe following values:unknown, assumed,validated,or refuted.
The final two states,validatedand refuted, areestablishedthrough the presentationof
evidencefor or againstthe constraint, respectively.The CDG representsthe successive
refinementof constraintsinto subconstraintsand supportsthe automaticcomputation
of the plausibility statefor eachconstraint.

The contribution of this paperis the descriptionof how TPD canbe usedasthe
formal frameworkfor an automatedtool to manage,develop,refine, assess,and vali-
date complex systems. TPD providesthe frameworkfor the tool through the CDG
with automaticpropagationof plausibility states.The remainderof this paperis organ-
ized asfollows. TPD is presentedin Section2 alongwith severalexamples.The chal-
lenge is first to implement the CDG and plausbility statepropagationand then to pro-
vide appropriateinterfacesand structureto makethe tool easyto useand to facilitate
the developmentof correctsystems.The major componentsof the automatedtool are
presentedin Section3. The paperconcludeswith adiscussionof the work in progress,
in Section4.

2. The Theory of Plausible Design

The Theory of Plausible Design represents a design as a set of plausibility state-
ments. Each plausibility statement contains a representation of the actual constraint,
expressed in English or other, perhaps formal, language. The plausibility statement
also includes the plausibility state for the constraint. When a constraint is first formu-

lated, the state is initialized to unknown. At this point, the designer may provide direct

evidence that the constraint can be satisfied. On the other hand, the designer may
develop one or more alternative refinements such that if the refinements can be

satisfied then the original constraint will be satisfied. When a constraint is refined into

one or more subconstraints, the plausibility state of the original constraint depends on
the plausibility state of subconstraints. The details of how a given constraint is related

to the alternatives described in its subconstraints is given by a well-formed formula

connecting the subconstraints with and and or. Eventually, every constraint at the

lowest level of detail (i.e. a constraint with no subconstraints) must be validated by

the presentation of evidence. Evidence can be quite precise (e.g. a proof), heuristic

(e.g. expert opinion), or experimental (e.g. results from simulation). One strength of

TPD is the automatic propagation of the plausibility state from the lowest level up-

wards to all affected constraints. The propagation of plausibility state enforces the se-
mantics associated with the well-formed formula of the non-leaf constraints. In addi-

tion to effectively capturing the current design state, TPD provides a paradigm that

captures the design histo_ and integrates various forms of evidence to validate con-
straints.

One important and equivalent view of the design is the representation of the

plausibility statements (or constraints) with the Constraint Dependency Graph (CDG).

In this view, the nodes of the graph represent the constraint, the plausibility state of
the constraint, and the evidence that either refutes or validates the constraint. The arcs

of the CDG represent the subconstraint relationship and includes a graphical represen-

tation of the and and or relationship. As an example, consider the CDG presented in

Figure 2.1. The upward arcs that meet at a single point indicate that the subcon-
straints must all be validated in order to validate the constraint (i.e. the and rela-

tionship). Multiple sets of inward arcs indicate the or relationship.
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A Sample Constraint Dependency Graph
Figure 2.1

At the lowest level of the CDG, individual constraints are validated or refuted

through the presentation of evidence in favor or against the constraint, respectively.
Once the plausibility state of constraints at the lowest level is either validated or re-

futed, then the state is propagated to the next higher level according to the appropriate
connectives (and or or) implied by the CDG. For example in Figure 2.1, constraint C1

may be satisfied if C2 and C3 are satisfied or if C4 is satisfied. If evidence is presented
for C4 to be validated, then the plausibility state propagation would then record C1 as

validated. Similarly, if evidence were presented to refute both C2 and C4, then the
plausibility state of C1 would also be refuted. These three scenarios are shown in Fi-
gure 2.1.

A significant problem faced by the program manager is that of assessment. Note
that the process of design happens over time and that the assessment function relies

primarily on the performance of human experts. The primary objective of the review
team is to certify that the current design representation meets the original constraints.

Among the major obstacles that the review team must overcome are the lack of direct
connections from the current components of the design to the original constraints and
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the information that describesthe interactionsamong current designedcomponents.
TPD and the resulting designparadigmprovidessolutions to both of theseobstacles
by capturing a full history of the design and maintaining the interactions between
componentsof the designat all phases.

3. The Automated Design and Assessment Tool

TPD provides a powerful framework to manage the design of complex systems.

However, the automation of TPD to serve as a competent assistant (e.g. to the pro-

gram manager) presents a number of challenges. The specific components of the tool

that address these challenges are presented here. First, the components intended to

support TPD directly are presented in Section 3.1. Then the opportunities for using
application-specific structure in the form of a semantic network are presented in Sec-

tion 3.2. Finally, the use of previous, plausible designs as a knowledge-base to guide
and to facilitate the design process is discussed in Section 3.3.

3.1. Automating the Theory of Plausible Designs

TPD is intended to capture the design process and the design rationale through

the constraints represented in the CDG. The TPD tool must interface (upward) to the

designer and (downward) to other automated design/development systems. The user
interface is a graphical interface with support for easy creation and manipulation of the

CDG and a variety of abstraction mechanisms. The CDG is displayed graphically with
the plausibility state at each node clearly highlighted. The

design/refinement/validation process is driven by the current state of the CDG and

thus the work remaining to complete the design is easily presented to the designer.

During the development of a satellite or other complex system, the program
manager may develop the system specification (from the mission requirement) and

then rely on other development groups (or subcontractors) to develop the satellite, the
launch vehicle, and the ground system, for example. In this case, the current state of

the CDG represents the specification of the entire system under design. The
(downward) interface provides the appropriate constraints from the lowest level of the
CDG as the formal specification for the detailed design and development of the sub-

component to be communicated to the subcontractors. Then, after the subcomponent

is designed or implemented (e.g. in another automated system), standard practices of

testing, simulation, etc. can be used to successfully validate that the completed design

(or system) satisfies the associated leaf constraints. This evidence is then recorded in

the CDG to complete the design.

The emerging design maintained by the TPD tool is valuable in as much as it ac-

curately reflects the subtle interaction among constraints. Said another way, the

benefits of TPD and the confidence in a validated plausible design require that all of

the appropriate connections among constraints be explicitly recorded in the CDG.

The tool includes a synonym facility that can make suggestions concerning potentially

relevant constraints. As an example, the constraint concerning the sensitivity of the

sensor ultimately affects the power system, the control system, and the size and weight

of the satellite. These connections can be suggested by the tool based on the recogni-

tion of synonyms present in the statement of the constraint and subconstraints associ-

ated with the actual sensor selected. The final responsibility for a correct CDG ultima-

tely rests with the designer. The synonym facility just tries to help.
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3.2. Application-Specific Structure

In general, a single CDG represents the system at any particular state in the
design. The CDG may be arbitrarily deep, depending on the level of refinement of the

various constraints. The CDG may also be arbitrarily large, depending on the com-

plexity of the system. The CDG is built according to the refinement and interrela-

tionship among constraints. As in the example concerning the sensor sensitivity, a

single constraint may influence many other components of the system. Thus the CDG

can include arbitrarily complex interconnections. The challenge then is to manage this
complexity through the use of abstraction. The problem is: how can the tool help the

designer focus his attention?

When the TPD tool is used for a particular application, additional structure can

be used to facilitate the development process. The structure is introduced at a level
above the CDG through the use of a semantic network. At the meta level, the nodes

of the CDG can be grouped in a variety of ways. As an example, consider the semantic
network in Figure 3.1. The individual constraints are all members of the most general

class, Constraint (at the top of the semantic network). Additionally, the constraints

can be placed in any or all of the subclasses. One way to group constraints is accor-

ding to the subsystem that they belong to. For a satellite, the subsystem structure is

shown on the left side of Figure 3.1 with three subclasses shown for Power, ACS (atti-

tude control subsystem), and the Instrument Package. This set of subclasses is marked

as being a "Subsystem" classification by the labeled arc. Similarly, the constraints can

be classified according to evidence type, as shown on the right side of the figure. A

given constraint could then be entered into the appropriate subsystem class and also

into the appropriate evidence type class. If the evidence type is "expert opinion", then

the constraint can also bc entered into the subclass according to the actual expert. The

structure shown in Figure 3.1 can be used to highlight the CDG according to the

needs of the user. For example, if the user wants to work on the power subsystem, the

user can request that only the constraints that are in the Power subclass in Figure 3.1

bc shown. The remaining constraints in the CDG can then be made invisible. Simi-

larly, the user may wish to highlight all constraints that were validated by Bill Smith.

Then the constraints with an evidence type of "Expert Opinion" that were validated by

"Bill Smith" could be highlighted (perhaps in color). The application structure can be

subdivided (or classified) in many other ways. The strength of this approach is that the

additional structure can bc easily introduced at the recta level as shown in Figure 3.1
and then can be used to drive the user interface.

The structure of the CDG and also of the meta level suggests that a database style

query language can be used to navigate around these structures. Within a CDG, a

query language can be used to locate all subconstraints, all superconstraints, all as-
sumed constraints, etc.

3.3. The Design History

If the TPD tool is used to develop multiple satellite systems, for example, then

the design history serves as a valuable knowledge base. In particular, the previous

designs can serve as a library for reusable subcomponents and also as a rich source of

suggestions to solve design problems. For the first part, any subcomponent for which

there exists a plausible design (e.g. a detailed design for the sensor), can be incor-

porated into the current design. This process is facilitated both by the application-
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specific structure and by the synonym facility. Each constraint in the CDG of the sub-

component can be labeled with the appropriate keywords (e.g. to indicate the ap-
propriate subsystem of the satellite). Then, when the CDG for the subcomponent is

merged with the CDG of the design in progress, the synonym facility can suggest the
appropriate connections and can also populate the meta level classes.

Another powerful use of the history database is for access to lessons learned. A

previous mission may have encountered a similar design problem and may have solved
it. By the appropriate pattern matching process, the current CDG can be matched

against portions of the CDG from previous designs. The evidence used to validate the

previous design can then be suggested as a way to validate the current design. Note

that the pattern matching process required to access the history, is very complex, in

general. However, within a specific domain with well-defined subsystems and com-

ponents, a useful pattern-matching facility can be implemented. Once the appropriate
portions of the history are located, then the CDG and the evidence used to validate or
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refute previousdesigncanbe usedto drive the current designand suggestpossibletes-
ting procedures.

Finally, the tool is part of a knowledge-basedframework that supports various
designmethodologies. The choiceof what to do next canbe viewedasthe choiceof
which part of the CDG to concentrate on. The user may choose a top-down or
bottom-up methodologyor somecombination. The usermay be driven accordingto
the constraints that currently have a "refuted" plausibility state. The criteria used to
guide the design can be easilyrecorded in rules that act on the current state of the
CDG. The useof the TPD tool to supportdesignmethodologiesis describedin more
detail in [DL90].

4. Work in Progress

Plausibility theory has been formally defined and a number of case studies have

been developed. However, so far all such plausible designs have been developed manu-

ally. The use of TPD as the basis for an automated tool is currently being investigated
in conjunction with Orbital Systems, Ltd. for an Air Force project [090]. The

strength of TPD stems from the automatic maintenance of plausibility states. When
the CDG is correctly represented, then the presentation of evidence to validate (or re-

fute) subconstraints is automatically reflected in the entire CDG. All affected con-
straints are immediately identified. This paper describes the steps required to make the
tool usable. The design and development of the tool is currently underway. The work
with the Air Force includes the collaboration of a variety of space system customers

through the clientele of Orbital Systems, Ltd.
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ABSTRACT

Reasoning visualization is a useful tool that can help users better
understand the inherently non-sequential logic of an expert system. While
this is desirable in most all expert system applications, it is especially so for
such critical systems as those destined for space-based operations. A
hierarchical view of the expert system reasoning process and some charac-
teristics of these various levels is presented. Also presented are Abstract
Time Slice displays, a tool to visualize the plethora of interrelated informa-
tion available at the host inferencing language level of reasoning. The use-
fulness of this tool is illustrated with some examples from a prototype pot-
able water expert system for possible use aboard Space Station Freedom.

Introduction

We interact with expert systems for a variety of reasons: to develop/debug them; to

analyze them; to use them to obtain answers in their programmed area of expertise; to
learn a tutored subject from them; or just to understand the underlying inferencing process.
During all these uses, one can benefit from an understanding of the reasoning process of
the expert system. While it can be argued, that this understanding is useful for all expert
system applications, it becomes increasingly important for systems in critical application
environments, such as space-based systems.

There axe two major impediments to obtaining this understanding. First, humans have
a basic limitation on the number of concepts that can be maintained in immediate attention,
the combination of short term memory and the processing done therein. This limit is the
oft cited seven + two "chunks", where a chunk is some unit concept. Second, the informa-

tion germane to acquiring this understanding is usually presented at too low a conceptual
level. There is so much detail presented that one expends significant mental effort trying to
combine the detailed information into a coherent "picture", a higher level conceptualization
(7). The first limitation is innate. The second limitation arises because current information

presentation methods present too much information at too detailed a level. If the informa-
tion were to be presented at an appropriately higher conceptual level, the basic human cog-
nitive limitation could be at least partially circumvented.

PRECEDING PAGE BLANK NOT FILMED
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As anexample,considera setof real numbersrelatedby theequation,
y=cos(10*PI*x/100)exp(-x/20),x=0,99,anexponentiallydecayingsinusoid.If this setof
numbersis conveyedasthelist in Figure 1,

O0 1.00000 0.904673 0.732029 0.505911 0.253002

05 -3.40425e-08 -0.228926 -0.414205 -0.542300 -0.606420

10 -0.606531 -0.548712 -0.443998 -0.306851 -0.153453

15 5.63291e-09 0.138850 0.251228 0.328922 0.367813

20 0.367879 0.332811 0.269298 0.186114 0.0930739

25 -9.67717e-08 -0.0842171 -0.152378 -0.199501 -0.223090

30 -0.223130 -0.201860 -0.163338 -0.112884 -0.0564522

35 1.15318e-07 0.0510803 0.0924217 0.121004 0.135311

40 0.135335 0.122434 0.0990693 0.0684676 0.0342401

45 -I.04287e-07 -0.0309818 -0.0560566 -0.0733924 -0.0820701

50 -0.0820850 -0.0742601 -0.0600886 -0.0415277 -0.0207676

55 -3.78490e-08 0.0187914 0.0340001 0.0445147 0.0497780

60 0.0497871 0.0450410 0.0364456 0.0251878 0.0125962

65 -2.66556e-08 -0.0113976 -0.0206221 -0.0269996 -0.0301919

70 -0.0301974 -0.0273188 -0.0221053 -0.0152772 -0.00763999

75 1.40223e-09 0.00691299 0.0125079 0.0163761 0.0183123

80 0.0183156 0.0165697 0.0134075 0.00926608 0.00463387

85 8.10506e-09 -0.00419293 -0.00758645 -0.00993257 -0.0111070

90 -0.0111090 -0.0100500 -0.00813209 -0.00562015 -0.00281059

95 6.15401e-09 0.00254315 0.00460141 0.00602442 0.00673673

Figure 1

roughly equivalent to the textual traces available from most current expert system shells,
one would be hard put to mentally determine the interrelationships of those numbers. If
instead this data is presented in a graphical form as in Figure 2,
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the interrelationships of the data values are immediately obvious. The detail of the exact
individual values has been lost, but information on a higher conceptual level has been
obtained, and with much less work on the pan of the observer.

This is exactly the problem facing the individual trying to understand the reasoning
processes of an expert system. Current environments present too much data at too low a

level of detail for easy understanding of the processes involved. This problem in another
form is the basis for the explanation systems/language generation systems field (4, 6). For
similar reasons, in the realm of procedural programming, algorithm animation research is

flourishing in order to illustrate the underlying processes of various sequential algorithms
(3,5, 11).
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This paperfocuseson thereasoningprocessesof expertsystemsanda tool for visual-
izing a subsetof thoseprocesses.While therearevariousparadigmsfor expertsystemrea-
soning(1, 12), it wasdecidedto initially focusthis researcheffort on theforward-chaining
rule-basedparadigm.Per this focus,CLIPS,a readilyavailableexpertsystemshell, was
chosenasthe researchvehicle.

Levels Of Reasoning

The reasoning of an expert system may be viewed on a continuum from that of the
microcode of the hardware up through the programming language in which the host
inferencing language is implemented on up to a "black-box" view of the application in
which one sees only inputs and outputs. Pragmatically, the lowest level view which is of
interest is that of the host inferencing language in which the expert system is implemented
since this is the most primitive level at which the reasoning of the application may be
specified.

Given an existing (or planned) expert system application, it can be viewed as having
two distinct reasoning components. One is that of the application itself and is represented

by the most abstract processes that define the reasoning of the expert system application.
The result of the reasoning of this component consists of the inputs and outputs of the

application, some subset of which are provided by and/or to the user. These inputs and out-
puts comprise the black-box view of the application. The other component is that of the
inferencing language in which the application is (or will be) actually implemented. This is
the part seen more by the expert system developer.

At the reasoning level of the host inferencing language, the reasoning is in terms of
the primitives of that language. In most rule-based expert systems, these primitives are the
facts and rules. The operations on these primitives are the assertion and retraction of facts,
an initialization operation which asserts a set of predefined facts, the input and output of
information, and the activation, deactivation and firing of rules to/from the agenda. While

some rule-based expert system development languages (e.g. ART) also include the opera-
tion of existing rules defining new rules, for this research effort that operation is not con-
sidered.

The specifics of the application do not affect the actual reasoning primitives or the
operations upon them, just the sequence order of their occurrence. Thus, at this reasoning
level one can provide an ad hoc reasoning visualization. Users of this level would be sys-
tem implementors desiring a gestalt of the low level reasoning in order to detect anomalous
behavior and indications of application (in)efficiency.

At the highest level, that of the abstract reasoning process, the application reasoning is
viewed in its most abstract form. This typically corresponds to metarules in more complex
applications. At this level one is considering the application as conceived by the designer,
not as it will be implemented.

Between these two endpoint levels are various mixtures of the two which are concep-
tually grouped into a realized application level. At this level the reasoning primitives are
application oriented, even if they are associated with host inferencing primitive operations.
One is interested in the concepts which rule firings represent, not merely that rules have
fired. However, the visualization of the reasoning processes involved is in a form that is

related to the inferencing language implementation of the application as opposed to the
abstract reasoning processes, devoid of implementation considerations. This distinction
between the abstract and realized application levels is similar to the conceptual versus
implementation distinction made by Buchanan and Smith(2). For visualization of these
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application based reasoning levels an ad hoc method is not possible. Instead, one must pro-
vide flexible facilities to allow users to construct their own custom visualizations(9).

The above discussion leads to the proposal of a hierarchy of reasoning levels. Con-
ceptually, one can identify a continuous hierarchy of the reasoning process, based on a
decreasing amount of detail, grouped into three ranges as shown in Figure 3. This hierar-
chy is viewed as a continuum since the abstract application level covers a range of detail
as does the realized application level. One may also consider a range of detail at the host
inferencing language level (e.g. all rules, some rules only, rule groupings). Note that this
is but a more abstract view of our previous work on this subject(10).
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Figure 3

In focusing on the lower level primitive reasoning of an expert system, such as would
be of interest during development/debugging and efficiency analysis, one is interested in
the reasoning at the host inferencing language level. A model of a rule-based host
inferencing language may be represented as the 4-tuple

Mhi I = [F, R, A, O]

where

F = the set of facts, initially empty

R = the set of rules with antecedent patterns to be matched by facts _ F

A = the agenda; an ordered set of instantiations of rules _ R matched by facts
F; initially empty

0 = the set of operations that modify F or A, or perform I/O

The operation set, O, consists of fact assertion, fact retraction, rule activation, rule
deactivation, rule firing, input, output, and an initialization operation which causes

predefined facts to be asserted.

Fact assertion and retraction are associated with the execution of the consequents of a
rule instantiation that has been removed from the agenda for "firing". The initialization

operation may be considered a pseudo rule firing in this respect since it also asserts facts.
I/O is associated only with a rule firing.

Rule activation and deactivation are associated with changes to the set F. If a fact is
added to F such that some rules e R are completely matched resulting in new instantia-
tions of those rules, these instantiations are added to the set A. That is rule activation. If a
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fact _ F is retractedandthepreviousassertionof that fact hadresultedin theaddition of
instantiationsof somerules beingaddedto the agenda,thenanyof thoseinstantiations
remainingon the agendaareremoved.That is rule deactivation.

Of particular interestat thisreasoninglevel is the traffic over timeon both the fact
list and theagenda,and thecause/effectinterrelationshipsof that traffic. Onewould like to
seea gestaltof the overall flow of thehost inferencinglanguagereasoningprocessand
thus identify variousaspectsof operation,bothnormalandabnormal.Onewould like to be
able to seesequencesof rule groupfirings indicatingphasedrule operationsalongwith the
phasingcontrol.Errant rule firing from inappropriaterule groupsis alsoof interest. Also
desirablewould be the ability to identify excessactivationsanddeactivationswhich may
becausedby inefficient consequentsequencing.Factand rule effectivity and agenda
traffic density shouldalsobeeasilyobservable.The informationof interestat this reason-
ing level is similar to the informationof interestto a personmonitoringa wide areanet-
work system.The contentof the actualdatamovingaboutthenetworkdoesnot matter.
What is of concernis beingableto tell that it is moving correctlyandefficiently andthat
currentandhopefully evenpotentialproblemscanbe identifiedeasily.

Abstract Time Slice Displays

Abstract time slice (ATS) displays provide solution to the problem of the visualization
of the host inferencing language reasoning level of a forward-chaining rule-based expert

system. In providing a visualization of the above described reasoning there are two key
issues, presentation at the appropriate level of detail and prevention of information over-
load even at that appropriate level. The appropriate level of detail is defined as that level at
which the user immediately grasps the concept being presented. There should be little or

no mental processing involved in assimilating the symbols. For presentation at the
appropriate level of detail, ATS displays use unique symbols to represent the individual
primitives and operations of the host inferencing language reasoning model. This obviates
the need for the user to perform text to concept transformation. Instead the information is

presented graphically. To prevent overload, ATS displays are static, thus providing support
to the user's limited short term memory. They depict rules being activated and deactivated
as the result of facts being either retracted or asserted (not respectively) as a result of other
rule firings. They also show I/0 as a result of rule firings. All of this information is

displayed in an interrelated manner over time.

The program that generates ATS displays presently runs as a separate program taking
as input two files, a segmented list of the rule names in the application and a file contain-
ing the full trace output from a run of the application. ATS outputs five files, the main
display file and four adjunct files. The main display file is an ASCII file of PostScript code
that creates the ATS displays on a laser printer. The adjunct files contain the details of the
facts and I/O on both a time-slice and a sequential time-compressed basis. Since this capa-

bility is ad hoc and at the host inferencing language level, it could be integrated into
CLIPS itself providing file output and/or direct graphical display. To understand the ATS
displays, a few symbols must be defined. These are displayed and notated in Figure 4
while Figure 5 depicts various other information in the displays.

The causative symbol at a particular time slice indicates that some fact operation has
caused either a rule activation or deactivation to happen (at some later time slice). A solid

line connects the causative symbol to the effect caused.

The causing symbol indicates that some fact or I/O operation has been caused as a
direct action of a fired rule's consequent. A solid line connects all of the actions caused by

a particular rule firing, thus giving some indication of the scope and activity of a fired rule.
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The causing symbol is also used to indicate a rule activation/deactivation associated with a
fact operation.

The symbols for a rule activation, deactivation and firing are shown. A dotted line
after a rule activation symbol is used to indicate a rule pending on the agenda. Since it is
possible that more than one instance of a rule may be pending on the agenda at a given
time, this is indicated by a widening of the dotted line. This indication is meant to be qual-
itative, not quantitative.

At the left of the rule portion of the display are symbols indicating agenda traffic. A
hollow right arrow indicates a rule activation, while a hollow left arrow indicates a rule
deactivation. A solid left arrow indicates a rule firing. Thus, the information inherent in the
rule symbols elsewhere has been collapsed on the left side of the rule display. Note the
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consistency between the hollow and solid symbols for both indications of rule activity.
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The rule names are listed across the top of the display while the leftmost columns
indicate time, I/O, and fact information respectively. The time column is straightforward. A
time slice is defined to be one trace output line. The I/O column contains both CLIPS
directives, such as '(reset)' and '(run)', and actual application UO. The CLIPS directives
are indicated by a leading left parenthesis. Actual I/O is indicated by an imposed leading
'>'. In the fact column is the information of the fact number and the first few characters of

the fact itself. For the full details of the fact (or the I/O) one can refer to one of the

adjunct files. Additionally, if the fact has been retracted, there will be an asterisk after the
fact number and the retraction time in brackets after the initial fact characters. There will

also be, at the retraction time, an indication of that fact number being retracted.

To aid in visual grouping of the abstract symbols, the user may specify in the seg-
mented rule list the order of the rules defined and a spacing between their display. Thus,

one could tell when rules of different types are active and, based on one's knowledge of
the intended reasoning, be able to identify rules firing out of place.
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Examples

In Figure 6 one can see several instances of rules activating due to some fact opera-
tion and then deactivating due to another fact operation within the consequent range of the
same rule. Investigation showed that this was caused by inefficient consequent sequencing
in the rules involved. Rearrangement of the consequents of the affected rules resulted in
the disappearance of the excess agenda traffic.
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In Figure 7 the rules in the far right group are phase and sequencing control rules.
The sequencing control rules are those that are cycling on a short time frame. The phase
control rules are those that go on the agenda and then sit for a long time before firing. It
can also be seen that after this transition the grouping of the remaining rule firings has
changed.

In Figure 8 a rule is firing without any effects from its consequents, neither I/O or
fact operations. While this appears to be an error, analysis showed that this rule was assert-

ing a fact already in the fact list. Thus, CLIPS did not show that fact as being reasserted.
In general, fact reassertion is inefficient and indicates a possible need for rule logic
modification.

ATS displays were used during the development of a demonstrational prototype of an
expert system application for controlling the potable water subsystem of the Environmental
Control and Life Support System (ECLSS) aboard Space Station Freedom(8). There were

two main contributions of ATS displays to that effort. First was the identification of inap-
propriate fact list changes causing rules to deactivate immediately after being activated.
Second, the displays provided a picture of the overall patterns of rule activations giving a
quick "state of health" view during subsequent knowledge base enhancements.

Conclusions

ATS displays have shown themselves to be useful for reasoning visualization at the
host inferencing language level of a forward-chaining rule-based expert system by provid-
ing a global interrelated view of the large amount of available information. This
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visualization is particularly useful during the development/debug and analysis phases of the
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ABSTRACT

MITRE Corporation's A Review of Space Station _ Freedom

Program Capabilities for the Development and Application of Advanced
Automation (1) cites as a critical issue the following situation, extant at

the NASA facilities visited in the course of preparing the review:

The major issues noted with regard to design and research

facilities deal with cooperative problem solving, technology
transfer, and communication between these facilities. While

the authors were visiting lab and test beds to collect infor-

mation, personnel at many of these facilities were interested in

any information they could collect on activities at other

facilities. A formal means of gathering this information could

not be identified by these personnel. While communication

between some facilities was taking place or was planned, for

technology transfer or coordination of schedules (e.g., for SADP

demonstrations), poor communication between these facilities
could lead to a lack of technical standards, duplication of effort,

poorly defined interfaces, scheduling problems, and increased

cost. Formal mechanisms by which effective communication

and cooperative problem solving can take place, and
information can be disseminated, must be defined.

It is our purpose here to offer a proposed solution to the

communications aspects of the issues addressed above; and, to offer at
the same time a solution which can prove effective in dealing with

some of the problems being encountered with expertise being lost via
retirement or defection to the private sector. The proffered

recommendations are recognizably cost-effective and tap the rising

sector of expert knowledge being produced by the American academic

community.
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INTRODUCTION

It is well to note two factors at the outset of our examination of
"communications" links among the various NASA research centers
engaged in preparing for the launch of Space Station Freedom [SS
Freedom]. The first is that "communications" as a concept in the
artificial intelligence [AI] community has radically different
implications than those toward which conventional management

systems tend. The second is that developing trends in management
science allow for this different notion of "communications"--indeed,

the literature strongly encourages such differentiation of goals, via

structural changes and adaptations.

Miles and Snow (8) trace the early benchmarks of mangement

styles from 1800 to their belief of what organizations will look like in

the year 2000. They have seen developments occur every 50 years

from 1850, with the advent of functional structures to produce limited

lines of goods, to the 1950's when, largely through military
innovations as a result of World War II and the subsequent space

explorations at NASA, the matrix form of management evolved to

handle complex tasks associated with both standardized and highly

innovative goods being produced by the same organization. Miles and

Snow posit a new structure, the dynamic network, arising by 2000 in

order to handle not only production but very specialized design of

goods within the framework of a global marketplace. Structure itself

will then become temporary, manifested by design problems, and will
require immense levels of motivation of workers in order to obtain

optimum performance.

In many ways, the work of Miles and Snow parallels the insights

into the development of science from Newton [natural science, subject

to laws] through the later discoveries of relativity and quantum

mechanics and on into the current schools of epistemic priority of

mind over nature [transcendental science]. (9) That is to say, that as

technology advanced to a degree which allowed for an increasingly

reductive view to be taken of nature, eventually all conventional

observations became either known or predictable [Hawkings, quoted

in Gleich (6)]. What is emerging is the study of the larger view taken

of physical phenomena by scientists of chaos. Management theorists

have gone so far as to "adopt" the highly scientific meaning of this new

field taxonomically, as in Tom Peters's (10) latest work, Thriving on
Chaos.
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ISSUES

The purpose of this lengthly digression in a brief exposition is
seminal: just as theoretical and experimental science have evolved

into a more fluid study of chaos and the fundamental notion of a "grand

unity" or "superstring" that encapsulates physical order completely, so

management scientists and systems engineers, faced with the

inevitability of global organizations, have sought out "dynamic

networks" to enable them to cope with vast and changing
complexities. Zee (12) goes so far as to diagram the "Drive Towards

Unity" in physics.

From the 1950's onward, two forms of higher order

programming languages have developed. One of these forms is the

conventional, highly-driven, precisely-algorithmic and computational

group of languages, FORTRAN, Pascal, C and Ada. These languages

represent a kind of ideal in man's harnessing machines to take over
the iterative tasks required for the further development of predictable

technological models. The second group of languages is knowledge-
based and object-oriented [vs. computational] to an extent that renders

comparison of the two methodologies rather difficult.

While both are referred to as "computer languages,": the second

category actually "reason" rather than taking sums or differentiating

equations. Pagels (9) once asked Minsky, who with McCarthy is

responsible for LISP, the language of AI endemic to American research
facilities:

why he...chose to call their enterprise "artificial intelligence"

rather than "cognitive science," which [Pagels] thought more

appropriate. [Minsky] replied characteristically, "If we ever
called it anything other than artificial intelligence, we wouldn't

have gotten into the universities. Now that we're in and the

philosophers and psychologists know that we're the enemy, it's
too late.

The point here is that two very different world views have been rather

'_]umbled" together into a single field called "computer science"; and,

that when Pagels refers to computers as "the primary research

instrument of the sciences of complexity" (9) he is referring to the

devices of cognitive science and not the devices of computation.
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This author was once asked by a distinguished professor under
whom he was working if he had come across a good definition of
"software engineering" in the course of research. After much
investigation over a year's time, no really good definition that did not
encompass some degree of skepticism (2) emerged. Clearly, most

practitioners of software engineering are working in the fields of
general government, military or industrial applications; and, this

limits their viewpoints towards the algorithmic languages, which can
certainly be structured, if not exactly constructed. And, because this

author's professor works almost exclusively within the fields of

simulation, robotics and other AI applications, there was no common

ground.

That NASA is clearly aware of these differences is implicit in the

amount of time, energy and brainpower, to say nothing of the dollars,

that it has devoted to the further development of LISP cultures

through such agencies as DARPA and the various research centers

NASA and the Department of Defense [DoD] have scattered throughout
the United States.

"Communications" among these centers is critical for three

reasons. There exist within the mangementment of any enterprise,
public or private, as America moves into the 1990's, three crises:

COMPETENCE: the loss of expertise that is not being replaced

by technically-oriented majors in United States universities;

COMMUNICATIONS: in the broadest sense, management's

ability to direct and motivate its workforce; and,

COST: the final critical issue, which entails getting the most

effective output from every dollar of resources input with the
aim of keeping a dynamic, project matrix organization afloat in

a highly unstable and often unfriendly environment.

Of course, the paradigmatic solution to these issues of

competence, communications and cost will be the knowledge-based

[expert] modules, the inferencing engines and the neural networks

[communication over a global span] inherent in the Fifth Generation of

computers. The United States is uniquely placed to capitalize on the
technologies that have arisen within its research laboratories [both

governmental and private] and its academic circles. That NASA is

keenly aware of the importance of the issue is evidenced by the
findings of the Space Station Advanced Automation Study: Final

Report (4) of 1988.
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RECOMMENDATIONS

The first recommendation, in light of the foregoing analysis of
SS Freedom as a dynamic organization, heavily tied to AI

implementations, is that the structural design of the various research
centers be investigated. Galbraith (5) recognizes the necessity for two
types of structures within management frameworks of complex
organizations. There must be first an "operating" side, which one
might equate with the algorithmic philosophy of Ada, to handle the
day-to-day iterative production; but, there needs to be a second group
of "innovating" suborganizations to generate as well as to handle the

implementation of new ideas. The innovating organization should be
buffered from external pressures by an orchestrator: a power figure
with the ability to enforce decisions that favor the changes, even when
unpopular for reasons of politics or cost; they should be routinely
managed by a sponsor: a management figure who handles budgets,
recquisitions and the like; and, finally, they must be lead and inspired
by a champion: the person whose first responsibility is to guide the

production process from idea to complete and tangible innovation.

The necessity for a champion is recognized by the Friedland
group (4) in its insistence that each considered project first and
foremost own the "presence of a strong user champion for the
application" before being given further study for implementation at
Baseline. At the same time, the Friedland group deal with institutional
issues that confront the success of implementing AI innovations into
SS Freedom. The issues are either mythaic or political in nature; and,

as such, could best be addressed effectively by an orchestrator.

Thus, the conclusions of the first recommendation here, that all
AI research work structures be examined within the NASA networks,

is that similar models be adopted throughout the NASA system in
order to protect on-going knowledge-based systems [KBSI projects.
There is the strong recommendation from the Friedland report that
an Operations Management System [OMS] to eventually take control of
the complete SS Freedom system be investigated. Further, the Bayer

report establishes 1996 as a benchmark year for demonstration of a
distributed system for SS Freedom. In light of NASA's experience
with AI systems, which far outstrips that of any Japanese agency, for
instance (11), particularly where innovation is held to be a primary
factor, this should be an obtainable goal. But, it is key to establish

separate AI cultures within conventional management structures in
order to protect America's technological lead.

The second recommendation is the establishment of a program

similar to the Presidential Management Internships which serve to

attract graduates of MBA programs into government careers. The
candidates for acceptance as "Presidential AI Interns at NASA" would
be graduate scholars finishing their degrees with experience and
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strong LISP backgrounds. These scholars could be rotated on a three-
month basis from one Research Center to another, each serving for

the time in one of the innovating AI cells.

There would be established a central office for NASA to act as a

clearing house for coordinating reports of on-going work and progress
within each of the NASA centers and within each of the

suborganizations engaged in an AI activity at those centers. As part of

the rotational program, the scholars would meet for roundtable
discusions at the end of their service time at each center. The bottom

line for this idea is that AI does not operate algorithmicaUy and cannot

be transmitted by driven means. It is best expressed in the spirit of

that which it emulates, the human intelligence; intelligent exchanges

among experts in the LISP and AI fields will rectify the causes of

concern that were evinced in the Mitre Corporation study. Until such

time as the DMS and OMS are operational, this kind of program would

not only ensure that a full level of communication of the state-of-the-
art progress at the various NASA AI centers was in effect. It would also

fill the gap of vanishing competence.

In terms of the cost effectiveness of such a program, the current

level of adoption and experimentation with AI in the private sector is

the clearest indication that AI is an imperative in the face of global
competition. The Rise of the Expert Company (3) gives a fascinating

account of developments within aerospace and computer firms as well
as government agencies. Friedland cites several examples of

improvement in operations for both cost savings and quality.

CONCLUSION

While it is impossible to fault the logic or the politesse of

Friedland's group and their conclusions, the case for AI as an

imperative rather than as an option on SS Freedom--if that enterprise
is to flourish--has perhaps not been stated strongly enough.

Elsewhere, this author has undertaken a comparative study of Ada, C

and LISP (7). The conclusions from that study lead one to espouse the
notion that if America maintains its current innovative lead in

technology, it will do so through AI. NASA and DoD can find ready

customers in the private sectors of the United States, the Pacific Rim

countries and the new European group, for AI design innovations.

Encouraging the sound management of current AI resources at NASA,

and funding new efforts, is urgent. As Pagels (9) notes:

...the nations...who master the new sciences of complexity will

become the economic, cultural and political superpowers of the

next century.
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ABSTRACT

The Expert System Development Methodology (ESDM) provides an approach to developing
expert system software. Because of the uncertainty associated with this process, an element of risk
is involved. ESDM is designed to address the issue of risk and to acquire the information needed
for this purpose in an evolutionary manner. ESDM presents a life cycle in which a prototype
evolves through five stages of development. Each stage consists of five steps, leading to a

prototype for that stage. Development may proceed to a conventional development methodology
(CDM) at any time if enough has been learned about the problem to write requirements. ESDM
produces requirements so that a product may be built with a CDM. ESDM is considered
preliminary because it has not yet been applied to actual projects. It has been retrospectively
evaluated by comparing the methods used in two ongoing expert system development projects that
did not explicitly choose to use this methodology but which provided useful insights into actual
expert system development practices and problems. This fiscal year, the methodology will be
field-tested by applying it to two pilot projects.

INTRODUCTION

An expert system is a computer system that simulates, to the extent possible or practical, the
way human experts solve cognitive problems, i.e., those for which no algorithm is known to solve
the problem, but that are routinely solved by a domain expert using rules of thumb or heuristics.
The task of developing an expert system is, therefore, to acquire information from the domain
expert as to how the cognitive tasks are performed and then model the information in a form
suitable for the computer. Because of the uncertainty associated with this process, an element of
risk is associated with developing expert systems. ESDM has been designed to address the issue

of risk and to acquire the information needed for this purpose in an evolutionary manner.

Note that it is not possible to develop specifications for an expert system before the expert's
reasoning processes have been analyzed. This lack of specifications presents the manager with
special problems in controlling an expert system development project. These problems are
addressed in ESDM.

Analyses reveal differences between expert systems and conventional software development.
Compared to conventional development, the expert system life cycle more nearly resembles rapid
prototyping. The major differences between the expert system life cycle and the rapid prototyping

of conventional development are

Greater uncertainty in feasibility and suitability of the problem to an expert system
implementation

PRECEDING PAGE BLAZ';K NOT FILMED
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• Highly iterative nature of expert system development

The major similarity is that the system produced is a prototype. More specifically, all
systems produced by ESDM are considered prototypes. ESDM does not produce any of the
standard products (e.g., feasibility study, requirements analysis) that are produced for a
conventional software system.

The methods used to implement expert systems differ from those used for conventional
systems. However, once the uncertainty of the feasibility of an expert system is reduced to a low
level (i.e., after several iterations of prototype development), it will be possible to undertake
development of an expert system in a conventional development cycle and to expect it to present no
more difficulty than any other system. ESDM precedes conventional development and terminates
when requirements can be produced.

ESDM is intended to be applied to the development of National Aeronautics and Space
Administration/Goddard Space Flight Center (NASA/GSFC) expert systems. It is based on a
survey of existing methodologies and an analysis of the expert system life cycle. Dr. Barry Boehm
introduced a risk-driven methodology for conventional system development in his spiral model for
software development (1). ESDM, while independently generated, is also a risk-driven
methodology that can be represented as a spiral model. ESDM focuses more on knowledge
acquisition rather than on product development. Figure 1 illustrates the spiral nature of ESDM.

PROTOTYPING STAGES

(DIRECTION OF DECREASING OVERALL RISK)

F1B.O

ROBUST

RISX EVALUATED

Figure 1. Spiral Model of ESDM
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ESDM wasdevelopedto addresslargeprojects.Therefore,whenapplyingESDMto
projectsthataresmall,ESDMrecommendationsshouldbeusedasaguidelineandadaptedto suit
thesmaller-sizeproject.

Theproposedmethodologyis consideredpreliminarybecauseit isuntested.It is a synthesis
of methodologiesthathavebeenusedin conventionalandexpertsystemsoftwaredevelopment.A
standard(4), auserguide(6), areferencemanual(3), andasetof trainingmaterials(5)havebeen
developedto describethemethodology.Themethodologyhasbeenretrospectivelyevaluatedby
comparingthemethodsusedin two ongoingGSFCexpertsystemdevelopmentprojects:the
RangingEquipmentDiagnosticExpertSystem(REDEX)andtheBackupControlModeAnalysis
andUtility System(BCAUS) (2). Theseprojectsdid notexplicitly chooseto usethemethodology
butprovidedusefulinsightsintoactualexpertsystemdevelopmentpracticesandproblems.This
fiscal year, the methodology is being field-tested by applying it to two other GSFC expert system
development projects: the Generic Expert System and the Systems Test and Operations Language
(STOL) Intelligent Tutoring System (ITS). Next fiscal year, the methodology will be revised
based on the results obtained.

DECISION POINTS OF ESDM

ESDM consists of five stages, each accomplished in five steps, and is geared to reducing the

uncertainty of feasibility and risk in development. The ESDM life cycle is illustrated in Figure 2,
which shows five decision points that determine whether work must move to one or another of the
five ESDM stages. In contrast with CDM, iteration of a stage or iteration of steps within a stage
may also occur. (Iteration of steps is not shown explicitly in the figure.) Higher risk issues are
addressed In'st, and lower risk issues are addressed with each subsequent stage. Earlier stages
focus on knowledge acquisition, and later stages focus on performance issues. The stages and
stage products described serve as a guide and should be adapted to suit the goals and objectives of
each individual project. If an alternate area is of higher risk for the project, this area is prototyped
first.

In addition, there are three risk-based decisions, as follows:

Apply ESDM? Are expert system development techniques suitable for the
problem?

Stop ESDM? Has enough been learned to decide whether to move to a CDM or
to abort development? If the answer is no, then a stage is selected. A stage may be
repeated or a new stage selected. If the answer is yes, the next decision is
addressed.

Move to a CDM? Should development move to a CDM or be aborted? Are the
requirements now known, or is the risk too high to continue?

Development need not proceed through all five stages if these questions can be answered in
an earlier stage. ESDM provides a metric--the Test for Application of Risk-Oriented Technology
(TAROT)--to provide guidance to both managers and developers at each decision point. TAROT
assists in evaluating a project for suitability to an expert system implementation and in estimating
the risk involved. At the completion of the project using ESDM, a transfer to product cycle is

undertaken and development continues using a CDM.

149



APPLY

ESDt4_

NO

NO

NO

NO

NO

FEAmelUlI_

COGNITIVE

FUNCllC_NS BE

YES

RESEARCH

COGNITIVE

FUNCTIONS BE

YES

WE BUILD A

FUNCTIONALLY

GOMPt.ETE

YES

WE BUILD A

ROIBUST AND

YES

WE 8UID A

SYSTEM THAT

SI4OULD BE

,<

SET OBJECTIVES FOR

STAGE SET BUOGET

AND SCHEDULE. GET

RESOURCES. SET

COVTRC_.

STAGE I_CU[_;/

MANAGEMENT

P!.._ _P_

DEVELOP PROTOTYPE
iN _ $TE_ OF E$1_I"

FOI_tI__IZE_ IMPCEMENT_IDENTII_ C_E PT1JALIZE

N_ TEST

DESIC_I REPORT.

OPERATIONS GUIDE,
_ TEST

Figure 2. The ESDM Life Cycle

150



FIVE STAGES IN EXPERT SYSTEMS DEVELOPMENT

The proposed ESDM consists of five stages of prototype development (8). Each stage
consists of five steps (7). The stages are discussed in the following subsections; the steps for each

stage are discussed in the next section.

Stage 1: Feasibility

Model one or more key cognitive functions performed by domain expert.

A key cognitive function is one that is central to the overall problem the expert solves.
Selecting a key function is important but not crucial because ESDM is highly iterative.

Stage 2: Research (Extensibility)

Model remaining functions.

The goal of this stage is to determine the extent to which the remaining cognitive functions
performed by the domain expert can be modeled.

Stage 3: Field

Model additional functions required in the field.

This stage determines how to model the remaining cognitive functions performed by the
expert. Specifically, this stage determines what combination of conventional and expert system
techniques should be used to construct an automated replacement of the manual system. The goal
of this stage is to design and construct a fieldable prototype that can be tested and used in a realistic
setting. Performance issues have not been addressed yet.

Stage 4: Production

Address performance objectives.

This stage determines if it is possible to ref'me the design of, recode, or transport the system
to a new host to achieve the desired scope of expertise and performance objectives. The successful

production prototype is able to solve nearly all required problems and is robust and is easy to use.

Stage 5: Operational

Analyze and evaluate risks and costs of deploying the production prototype.

To reach this stage in ESDM, the development team has learned it is possible to build a

prototype that simulates the functions performed by the domain expert. A knowledge acquisition
process is still involved in this stage, but the focus is now on the use of the product rather than on
the structure of the product.

FIVE STEPS IN EXPERT SYSTEMS DEVELOPMENT

Within each stage of expert system development, five steps are required to produce the stage
prototype. These steps are highly iterative and are not necessarily performed in a simple,
sequential manner--developers often work on several steps concurrently. Only in a general sense
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does the work progress from one step to the next. Typically, work can and does move from a later
step to an earlier step as knowledge is acquired.

Step 1: Identification

Determine problem characteristics.

In this step, the knowledge engineer identifies the problem the expert system will solve for
the current stage. In the feasibility stage, the sources of expertise are identified. These sources

may include one or more experts, reports, or manuals. Knowledge acquisition for the stage begins
at this point.

Step 2: Conceptualization

Find concepts to represent the knowledge.

Knowledge acquisition continues in this step and includes identifying the concepts, objects
the expert reasons about, the relationships between objects, control flow, constraints, and

problem-solving strategies used by the expert. The knowledge is organized and modeled using a
technique suitable to the problem (i.e., tables, informal rules, flow charts, hierarchies).

Step 3: Formalization

Map these concepts to formal representations based on the selected implementation tool or
language.

This step involves formalizing the concepts chosen in the conceptualization step, designing

the system, and selecting the hardware and software tools for implementation. The suitability of
the tool or language selected for representing the problem determines the difficulty of subsequent
steps.

Step 4: Implementation

Formulate rules that embody knowledge.

In the implementation step, a prototype is coded from the formal representations developed in
the formalization step using the selected software tool or language.

Step 5: Test

Validate rules that embody knowledge and verify that the prototype implements the design.

This step involves evaluating the prototype's performance through testing. In the early
stages of ESDM, the prototype's performance is compared against that of the domain expert. In
later stages, performance issues are evaluated (e.g., robustness, speed of execution, ease of use).

TRANSFER TO PRODUCT CYCLE

An ESDM project terminates and proceeds to CDM when the risk of feasibility and use are
reduced to an acceptable level and when requirements can be sufficiently defined to continue
development in a sequential manner. The findings of ESDM serve as the basis for CDM and are

formalized and transferred in a formal transfer review meeting. Expert system project personnel
should assist in, monitor progress of, or perform the conventional product development to handle
problems or issues that might arise.
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An ESDM projectterminatesanddevelopmentis discontinuedif therisksof either
implementationor useareconsideredunacceptable.A final lessonslearnedreviewmeetingis
conductedto preserveknowledgeacquiredon theprojectandto explainthisdecision.

THE ESDM PRODUCTS

The products produced at the start of an ESDM project include the following:

Concept and Project Initiation Report--A high-level strategic plan for the

project. It explains the results of initial risk and suitability analysis, describes the
system to be automated, and justifies the project.

The products produced in ESDM in each stage of development include the following:

Stage Project Management Pian--A lower level, more detailed plan than the
Concept and Project Initiation Report. It is produced at the start of each stage and
describes work to be completed for that stage.

Knowledge Engineering Report--A summary of the knowledge acquired and
the lessons learned during the stage, as well as recommendations for later stages of
work.

Prototype Design Report--A detailed description of the rules or other

knowledge structures used in the prototype.

Prototype Operations Guide---A description of prototype operation for
subsequent testers.

Test and Evaluation Report--A description of the test results. Evaluates the

prototype.

• The prototype.

The products produced at the end of a project include one of the following:

Technology Transfer Report--Produced following the decision to continue
development with CDM. The report summarizes project findings and lessons
learned, and presents recommendations for CDM development.

Project Termination Report--Produced following the decision to abort
development. The report justifies this decision, summarizes lessons learned, and
documents results of knowledge acquisition.
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Abstract

Conventional control systems have traditionally been utilized for space-based power

designs. However, the use of expert systems is becoming important for NASA applications.
Rocketdyne has been pursuing the development of expert systems to aid and enhance control
designs of space-based power systems. The need for integrated expert, systems is vital for the
development of autonomous power systems.

Introduction

The Rocketdyne Division of Rockwell International Corporation, Canoga Park, Califomia,

is pursuing research on space-based and lunar power systems design. Large scale power systems
for NASA's future space and lunar missions pose significant challenges for autonomous control
on-orbit. Conventional computer control techniques utilize highly structured algorithmic control
code which can deal with a predetermined set of specific contingencies. In addition to control

algorithms and power load flows, security analysis, system maintainability, and predictive
shnulations can also be used for power system control.

Conversely, expert systems and artificial intelligence technology offer great flexibility for
control systems due to their response to unspecified situations. Research in the field of expert
system applications for power systems is being pursued. However, acceptance and verification
of these systems is an emerging discipline that does not have established criteria. Because expert
systems may be less deterministic, control designs that depend solely on them may have reduced
reliability. Integration of conventional control techniques with expert systems, or hybrid
systems, could increase reliability of power systems utilizing this architecture.

Promising applications of hybrid systems include monitoring and diagnosing power
systems. The potential use for hybrid systems is significant and offers great flexibility for
system control. Additionally, challenges are introduced for development, test, and verification
of expert control systems. This paper will describe research at Rocketdyne in the area of expert
systems and hybrid systems.

Previous Research

Rocketdyne has been researching the development and integration expert systems for the

evaluation of autonomous power applications. This research was conducted in the Space Power

Electronics Laboratory (SPEL) facility at Rocketdyne. The SPEL contains a breadboarded

space power distribution testbed where power system control methodologies can be evaluated.
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Using the SPEL, developmentand testingof expert systemsfor hybrid computationhas
beenexplored. One expert system(ES) project concentratedon a single power switchgear
component:a remotebusisolator (RBI) [3]. The ES developed could detect an anomaly within
the RBI, based on power measurements of the component. From the resulting analysis, a single
fault could be diagnosed for the RBI.

Building on this research, an expanded expert system effort was started [4]. Power
hardware was added and diagnostic capabilities of the expert system were extended. The scope
of the project was increased and new expert system development and interface environments

were selected and used. This expert system, the Diagnostic Expert System (DES), diagnosed a
larger component within the SPEL that was more complex than a single remote bus isolator
(RBI): a power distribution control unit (PDCU).

The failures detected by this diagnostic system included short circuits, over-currents, loss of

power, power surges, and loss of communication. The expert system integrated power system
diagnosis with basic control algorithms.

While the capabilities for the DES were increased, there were problems during the
development and execution. Accessing and converting the testbed measurements to an object-
oriented structure resulted in timing problems. Additionally, not all knowledge acquired during
the project was incorporated, due to the specific scope of the project. Expansion of DES needed
to address additional fault diagnosis and detection, increased interactions with power system
simulations, and study the effects of system loads and multiple failures.

Current Research

Based on the above assessments, the third expert system project was started at Rocketdyne,
enhancing the capabilities of the DES. Increasing the scope over previous work was the first
step of the project. The expert system's utility was also changed. This change was based on a

recommendation that an expert system design relying solely on knowledge-base diagnoses
would not be sufficient for intelligent implementation in a dynamic environment, such as a
power system.

The expert system project would need commonality with existing or projected space-based
power systems standards. For example, using an 80386-based computer would be more

appropriate than using specialized artificial intelligence hardware. Because of emerging NASA
software standards, integration with Ada control software needed to be explored and this priority
maintained as the expert system developed. As expressed by current power system researchers,

it will be a step-by-step approach to have expert systems be part of a closed loop control design
for power systems [9]. Based on the above considerations, the enhanced expert system is called
IPAC for Integrated Power Advisory Controller.

Facilities

For the development of IPAC, the SPEL testbed was used as shown in Figure 1. Two power
sources, a simulated Photovoltaic source and Solar Dynamic source, produce single phase 440
volt electrical power distributed at a frequency of 20 KHz, which is being converted to dc.

Real and reactive programmable load elements are used to draw electrical power through the
distribution grid enabling test engineers to emulate various user load profiles. The power
distribution network is comprised of main bus switching units (MBSUs) and power distribution
control units (PDCUs). The MBSU is an assembly used to supply electrical power to main
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Figure 1. Electrical Power Testbed
in Space Power Electronics Laboratory.

feeder lines (power buses). The PDCU is an assembly used to distribute power directly to user
loads. The fundamental building blocks for each of these assemblies are remote bus isolators

(RBIs) and remote power controllers (RPCs).

The SPEL testbed was built using RBIs and RPCs. The current configuration divides the
testbed into two sides representing the port and starboard sides of a space power system, with

redundant power sources. This configuration is partitioned as shown in Figure 2 to distinguish
outboard and inboard components. Outboard electrical components model distribution of
electricity from the power sources to the first major switching assemblies. Inboard electrical

components place distributed power into the feeder network.

Communication with components on the SPEL testbed is performed using a Mil-Std 1553

data bus. The component measurements transmitted are voltage, current, phase, temperature,
and status. Due to power requirements of some NASA missions, the testbed is planned to be
operated in parallel with a dc testbed. Changes to the dc testbed include new dc switchgear

components and configurations.

Hardware and Software

The hardware used for IPAC, located in the SPEL, consists of a Compaq 386/20 personal

computer and the SPEL testbed. The computer has 4 Megabytes of Extended Memory, a 60
Megabyte hard-disk, and a 80387 math co-processor. The computer has serial and parallel ports
which can communicate with Mil-Std 1553 data bus and a RS-232 bus connected to the SPEL

testbed. This computer hosts the expert system software, as well as the Mil-Std 1553 data
communication software.
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Port Starboard

Outboard MBSU Outboard MBSU

Inboard MBSU Inboard MBSU

b m
Inboard PDCU Inboard PDCU

Figure 2. Testbed configuration.

Interacting with the SPEL is the expert system software. The expert system shell is Nexpert
Object. This object-oriented environment is appropriate for dynamic representation of
hierarchical power systems. An interactive graphical database program is the user interface for

the expert system. This program, Ease +, can display dynamic updates of acquired data or
consultation results. This interface reads data buffers generated by the component measurements
on the SPEL testbed. An overview of IPAC's environment is shown in Figure 3.

Testing

To allow for increased capabilities for IPAC, knowledge acquisition using the SPEL testbed
was started. The testing techniques are similar to ones used in previous research [4]. In
particular, predictive indicators of faults are being assessed. The more accurately a fault can be

defined, the better a power system may be utilized [7]. This philosophy translates to monitoring
multiple points on a bus to detect variations within the power system. Basic diagnostics that
were researched for a PDCU are now being applied to a MBSU. Switchgear interactions, load

profiles, and multiple failures are being added to the test sequences. Some tests used last year
are being conducted again to verify the results and look for additional indicators or responses.

A preliminary result from continuing knowledge acquisition reveals the testbed is govemed
by meta-knowledge that will be incorporated into the expert system structure. This knowledge
consists of information that distinguishes which diagnostic or numerical methods programs or
both should be used to check for anomalies. Constraint suspension models would indicate

shnilar results, but these models address only functional representation [2]. IPAC's knowledge
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is based on both functional and physical models. While similar research is being conducted at
other facilities [6,8], IPAC is utilizing Rocketdyne's experienced power engineers and state-of-
the-art facilities and technologies. These strengths are allowing IPAC to be developed and to
evolve beyond expert system diagnostics to a total integrated power system environment.

Knowledgebase Structure and Development

To accommodate the growth in IPAC's knowledge, the structure and interactions of the DES
knowledge base was changed. The DES used Ease+ only to access testbed measurements during
execution, and then load the command knowledge-base. The command knowledge-base would
then peffonn measurement validation and load appropriate knowledgebase(s) for various
diagnoses and analyses (ie: communication failures, short circuits, degradation, etc.). This
structure was not the most efficient for detecting some faults conditions on the testbed and for

utilizing multiple knowledgebases.

IPAC's new structure alleviates these and other problems. First, the user is allowed to
access three options for data during a session:

• Current testbed measurements
• Archived testbed measurements
• Simulation measurements

Data is continuously polled during a session. Depending on the option chosen, switchgear
measurements will be accessed from the appropriate source and validation of these values will

occur within the user interface software. This scheme is faster than using the knowledge-bases
to check for correct values. While the data is being verified, critical conditions, such as short
circuits, are being evaluated. This structure allows timely advisement to the user of critical
problems. Once measurement validation is completed, appropriate knowledgebase(s) or
programs will be loaded.

The knowledge-base(s) or numeric programs to be loaded are dependent on meta-rules
within IPAC. These rules form a quasi-blackboard environment that accesses the modular
programs. There are three classes of programs that can be accessed as shown in Figure 4:
System Monitor, Fault Detection and Diagnostics, and System Simulation. The system monitor
class contains trend analysis, component degradation, and numeric analysis programs. The fault
detection and diagnostics system class contains expert systems that detect anomalies within the
power system including the following:

• Communication failure detection

• Control power failure detection
• High Impedance detection
• Low Impedance detection

The system simulation module will be discussed below. Individual programs can be called
from the quasi-blackboard. In the case of insufficient information, all programs will be run.
Additionally, the quasi-blackboard environment can access archived data f'des and create new
files for predictive simulations, access the SPEL testbed for testing and verification, and access
the power system simulation.

When faults or possible problems are detected within the programs, advisory messages and
reconfiguration suggestions are sent to the user, via the quasi-blackboard. Conflicting advice
will be evaluated and adjusted by IPAC. The data is updated continuously throughout the user's
session and the IPAC environment interacts with Ada control software to access the testbed.
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Interaction with a Power Simulation

An option within IPAC is the ability to access a power system simulation. The IPAC
interaction with a VAX-based power system simulation adds many capabilities to the overall
program. Data from a simulation could be used as input to the diagnostic part of IPAC for

monitoring and detection purposes. There has been research in the areas of power system
simulation interaction with expert systems [1,5]. Additionally, interfacing with a UNIX
environment, autonomous data reduction, and database protocol have been studied [9,10].

With these considerations in mind, the simulation interface to IPAC is being developed. As
shown in Figure 3, a DECnet interface that will be used to access the simulation. Once the
power system shnulation is accessed, a power system scheduler and load flow can be executed.
A template is available to specify the topology of the simulation including:

• Number of busses
• Bus connections

• Available power
• Number and type of loads
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By employing the template and activating the simulation executive, a user could then
receive power system information through databases. This information would include
component measurements and failure modes that were detected. Power system scenarios on the
simulator could be compared with data from the SPEL testbed and IPAC for evaluating

predictive shnulations. Work is continuing in this area.

Summary

The flexibility and adaptive diagnostic capabilities provided by an autonomous computer
system, that combines classical control with artificial intelligence techniques, is being explored
in the Rocketdyne SPEL. IPAC, the expert system portion of this hybrid environment, is being
expanded as knowledge is gained on failure modes and hardware responses in the SPEL testbed.
It is already emerging that the classical algorithms are superior in some categories of faults,
while the heuristic rule base of IPAC appears better suited to others. As experimentation
continues, both with real hardware and interactive simulations, the viability of this combined

approach will be better determined. The results to date show considerable promise, and appear
to offer a productive line of research.
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ABSTRACT

This research demonstrates the use of the Multigraph Architecture (MGA) for studies on the Environment

Control and Life Support System (ECLSS). The objective of this effort has been the following: (1) to create

an updated set of models of the Potable Water Subsystem (PWS) by using the graphical model building

tools of the Multigraph Programming Environment (MPE), (2) to derive a real-time alarm simulator from
the models, and (3) to demonstrate the effects of sensor allocation on the diagnosability of the PWS. This

work may serve as a preliminary study for the detailed analysis of the sensor allocation and diagnosability

problems in the ECLSS.

PROBLEM STATEMENT

Real-time monitoring and diagnostics is a necessary component of critical and complex systems such as

ECLSS. Their task is to provide an extensive fault detection capability combined with diagnostics of reason-

able depth. The function of ECLSS requires the diagnostic system to operate continuously in a dynamically

changing environment. Diagnostic hypotheses must be generated in an evolving fault scenario so as to allow
corrective measures that can prevent the development of catastrophic failures.

Construction of real-time diagnostic systems is not straightforward. The diagnostic reasoning is subject

to time constraints, has to indicate modeling errors, and must be robust enough to handle sensor failures.

In dynamic systems where the presence of feedback loops are inevitable, the diagnostic system must apply

temporal reasoning. These and similar requirements make the application of "associative" approaches - that
associate patterns of observations (symptoms) with the underlying causes - unfeasible [1].

Model-based approaches have the potential of solving the challenging problems of real-time diagnostics.
Core components of model-based diagnostic systems are: (1) well defined model of the system to be diagnosed,

and (2) diagnostic reasoning algorithm, which interprets the observations in the context of the model. The

purpose of the observations is to detect anomalies in the system behavior. Fault detection algorithms use
the incoming data from sensors that are allocated in the plant and process them to check whether various

operational constraints are satisfied.
Performance of a particular diagnostic system depends on the number and reliability of sensors providing

input data for the fault detection system. Having a large number of reliable sensors "close" to the possible
fault sources makes the diagnostic reasoning simple and the result accurate. The obvious limitation in

improving the diagnostic performance by increasing the number of sensors is cost. Sensors are usually scarce
resources that have to be carefully allocated. A realistic design approach can not be based on the unlimited

availability of these resources. On the contrary, tile question is how to allocate a limited number of sensors

of limited reliability so as to achieve the best diagnostic resolution?

The objectives of this study have been to create models for the fault diagnostic system of PWS, to use
the models for simulating real-time alarm sequences, and to demonstrate the relationship between sensor

allocation and diagnostic resolution.

PRECEDING PAGE BLANK NOT FILMED
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MULTIGRAPH ARCHITECTURE

Over the last five years Vanderbilt has developed a technology for the design and implementation of model-

based real-time systems. The basic principles used in the construction of the Multigraph Architecture (MGA)
are the followings:

Model-based systems include: (1) multiple-aspect models of the system to be monitored, controlled,

and diagnosed, (2) models of the components of the monitoring, control, and diagnostic system itself,
and (3) models of their interaction.

• The models form a new level of abstraction in the system architecture, and are actively involved in the

system operation.

Driven by the external events that are received by the system, the models are continuously inter-

preted and reinterpreted. Interpretation of the models of the monitoring/control/diagnostic system
components generates their actual implementation on a lower level. The lower level implementations

determine the actual behavior of the system at a given time. Therefore, a model-based system can

dynamically change its behavior if the state of the model changes on a higher level. This is one of the
ultimate advantages of the model-based approach. It provides a very high-level of flexibility in a very

simple manner.

Most of the complexity of the model-based system is concentrated on the models. The rest of the

system is a set of very generic, highly "reusable" procedural code providing the run-time support for

the system. Due to this, the development technology of model-based systems can be supported by

extremely efficient graphical model building, and automatic model verification tools.

The Multigraph Architecture (MGA) includes two main components, a graphic programming environ-
ment (Multigraph Programming Environment, MPE) [2] and a parallel execution environment (Multigraph

Execution Environment, MEE) [3]. MPE facilitates building and maintaining multiple-aspect models of het-

erogeneous systems. The iconic graphic editors of MPE represent models in the form of graphic pictures and
generate their symbolic representation in terms of specific declarative languages. MEE is a macro-dataflow

model, which provides a unified environment for the execution of the functional components of model-based

systems. Important feature of the Multigraph technology is that executable systems are automatically gen-
erated from the models, providing very high level software productivity.

MODELING TECHNIQUE

Any complex electro-mechanical system such as the ECLSS can be viewed from many different aspects. One

such aspect is its function, another is its structure. A hierarchical decomposition of the functional aspect
yield_ tile lIierarchical Fur, rtional Model (HFM). Similarly, a hierarchical decomposition of the s4.rtlctural

aspect yields the Hierarchical Component Model (liCM). The ttierarchical Fault Model (HFaM) is derived
in th( co,_text of the IIFM and the ItCM.

Hierarchical Functional Model

The individual nodes in the HFM are referred to as processes. A process in the HFM can be thought of
as an abstract entity that performs a specific function. It is possible to model certain viewpoints of every

process. They are the structural viewpoint and the failure propagation viewpoint.
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Structural Viewpoint

The structural viewpoint of a process represents information about its internal structure.

items are acquired for each process:

The following

• Input/Output Process Variables,

• Process States,

• Alarms, and

• Subpro cesses.

Failure Propagation Viewpoint

While performing its function, a process may violate some of its functional constraints due to the presence
of faults. When such a violation occurs, the process is said to contain a failure-mode. The presence of a

failure-mode can be detected by an alarm derived from a sensor associated with the process. A process can

exist in a number of different states. The following items are acquired for each process:

Failure-mo des.

Failure-mo de Alarm associations. Each failure-mode alarm association has associated with itself,

the list of process states in which it is active.

A fault propagatiolz graph (FPG). The FPG of a process denotes a causal relationship between its
failure-modes and the failure-modes of its subprocesses. Each causal link in the FPG originates from

a failure-mo de of a subprocess and propagates to a failure-too de of either a subprocess or the parent.

A causal link is weighted by four parameters, the fault propagation probability, the minimum fault

propagation time, the maximum fault propagation time, and the list of process states in which the

link is active. An AND type of causal link is also permitted in the FPG. This link has as ancestors,

more than one subprocess failure-mode, and as destination more than one subprocess failure-mode

and/or parent failure-mode. In case of the AND type of causal link, the fault propagation probability

implies the probability of occurrence of the destination failure-mo des after all the ancestor failure-mo des
have occurred. Similarly, the minimum and maximum fault propagation times are the minimum and

maximum times during which the destination failure-modes will occur after all ancestor failure-modes
have occurred.

Hierarchical Component Model

A component in the HCM is an actual piece of hardware that can assist a variety of processes in performing
their functions. The source of faults in a system are any of the components in the HCM. Each component

upon becoming faulty, can exhibit a number of failed-states. The following items are acquired for each

component:

• Component failed-states and

• Subcomponents.
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Figure 1: Process fault model

Function-Comp onent Interactions

A failed-state in a component can lead to a number failure-modes being present in some of the processes in
the HFM. The set of causal relationships between the failed-states of the components, and the failure-mo des

of the processes, is acquired. A causal link is weighted by three parameters, the fault propagation probability,
the minimum fault propagation time, and the maximum fault propagation time.

Hierarchical Fault Model

The fault model of a process is the fault propagation viewpoint of the process model, and the set of causal

links between the component failed-states and the process' failure-mo des and failure-modes of all the process'
existing subprocesses. The HFaM is the collection of all such process fault, models. An example of a process
fault model is shown in Figure 1.

REASONING TECHNIQUE

The occurrence of a fault in the system implies that a component or a set of components exhibit failed-states.
The existence of failed-states leads to the existence of failure-modes in some processes. Among the set of
existing failure-modes, those with associated alarms are detected by the ringing of those alarms. These

ringing alarms start the diagnostic activity. The diagnostic reasoning technique selects the highest process

in the HFM containing ringing alarms, and runs a Faulty Component Identification Algorithm (FCIA) on
the fault model of the process' parent. The FCIA back-propagates along the ringing alarm failure-modes,

and using structural and temporal constraints, identifies a set of possible fault source components [4]. The
FCIA is guaranteed to produce a result in real-time because it possesses a polynomial time complexity. This
time complexity is O(n3), where n is the number of existing failure-modes in the FPG of that process.

Certain factors affect the number of fault source candidates identified by the FCIA. A single fault case is
where one component is responsible for the failures in the system. If a single fault case is identified by the
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Figure2: PWSC_)mponentHierarchy

FCIA,thenumberof identifiedfaultsourcecandidatesdependsonthefaultmodel.Theprimaryfactoris
thenumberandallocationofalarmsto failure-modesin theFPG.Sincealarmsarederivedfromsensors,the
numberof sensorsallocatedfordiagnosticpurposesaffectsthediagnosticresult.If thenumberofsensorsis
low,thenthenumberofidentifiedfaultsourcecandidatescanbehigh.Ontheotherhand,if thethenumber
ofsensorsaresufficientandareallocatedto therightfailure-modesinaFPG,thenumberofidentifiedfault
sourcecandidatesinasinglefaultcasecanbeone.Theother factor affecting the number of identified fault
source candidates is the internal structure, i.e. the FPG and the component failure-mode associations, of

the fault model of each process in the HFM.

PWS MODELS

The Potable Water System (PWS) of the ECLSS is decomposed from its structural aspect, resulting in a

component hierarchy [5] shown m Figure 2. It is also decomposed in its functional aspect, resulting in a

function hierarchy [5] shown in Figure 3.

SYSTEM DIAGNOSABILITY

Designers of modern industrial and space systems would like to use a lesser number of sensors for diagnostic

purposes, in order to reduce costs. This is especially true in space systems because the total weight as well
the total cost of sensors has to be reduced. Before they decide to eliminate a sensor, they would like to know

the effects of its removal on the diagnostic result, tlence an approach that studies the diagnosability of a

system given a particular sensor allocation is very useful to space system designers.

Some of the important terms in diagnosability studies are provided.

• Sensor Allocation: The number of sensors in the system, and the places in the system where they

have been installed.

ORIGINAL PAGE iS
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Figure3: PWSFunctionHierarchy

• Diagnostic Result: The set of fault source components diagnosed under no time constraints.

• Time Constrained Diagnostic Result: The set of fault source components diagnosed within a
specific time constraint.

• Single Component Diagnosability: The diagnostic result when the single component in question
is the fault source.

• Multiple Component Diagnosability: The diagnostic result when the specified multiple compo-
nents are the set of fault source components.

• Unique Diagnosability: The diagnostic result is the same as the set of actual fault source compo-
nents. In single fau]l cases the number of components in the diagnostic resul: and the actual set of
fault source components is equal to one.

The single component diagnosability, multiple component diagnosabilit y, and unique diagnosability defi-
nitions can be extended to include the case of time constrained diagnostic result.

Diagnosabilit y Studies

A variety of studies can be performed on the system in order to determine its diagnosability. Given a

particular sensor allocation, the diagnosahility of components can be obtained. By eliminating a sensor from
the allocation, the differences in the diagnosability of components can be determined. If the differences are

minimal the designer has the option of eliminating that sensor. Finally, a study can be performed to find an
optimal sensor allocation that provides unique diagnosability.

Simulation Method

The simulation method is used to demonstrate some aspects of the diagnosability studies. This method

involved developing a fault simulator that simulates actual fault scenarios. The fault model of the system,
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whichincludesthesensorallocation,servesastheinternaldatabaseforthesimulator.Thisinternaldatabase
is automaticallygeneratedduringthediagnosticruntimesystemgenerationphasebythediagnosticinter-
pretor.Thesimulatorisstand-aloneprogramthat.canacceptasinput,a setof faultsourcecomponents
with their selectedfailed-states.Thepatternof ensuingalarmsis derived,andissimulatedin real-time.
Thisreal-timealarmpatternservesastheinputto thediagnosticprocess.A diagnosticresultisgenerated
onreceiptof thesimulatedalarmpattern.

Thediagnosabilityof anycomponentcannowbeobservedfor anygivensensorallocation.Foragiven
sensorallocation,thefaultscenarioor thereal-timealarmpatternwiththecomponentunderquestionbeing
thefaultsourceisobtained.Thisreal-timealarmpatternservesastheinputforthediagnosticprocess.The
generateddiagnosticresultisstoredandcomparedwiththediagnosticresultsfromothersensorallocations.
Theeffectsofdifferentsensorallocationsonthediagnosability ofacomponentcanbestudiedin thismanner.

Anotheruseof suchasimulatoris to studytheeffectsofaddingor removingasensoronthediagnostic
process.Initially thedesignercanselectasensorof interest.Thesimulatordeterminesall thecomponents
that areaffectedbythepresenceandabsenceof thissensor.Twofaultsimulationsaregeneratedfor each
of theaffectedcomponents,onewith thesensorbeingpresentandtheotherwith thesensorbeingabsent.
Thediagnosabilityof eachcomponentin bothcasesisdeterminedonthebasisof thetwosimulations.A
statisticalmeasurebasedonthediagnoticresults,canthenbeusedto determinewhetherornot thesensor
shouldberetainedin thesystem.

Thesimulationmethodisaneffectivefirststepin demonstratingtheneedfor andeffectivenessof diag-
nosabilitystudies.It isquiteeffectiveindeterminingthediagnosabilityofacomponent.It sometimesproves
usefulin helpinga designerdecidewhetherto retainasensorin thesystemor not. However,theprocessof
findingthediagnosticresultfor all componentsbeforeandaftertheremovalof a particularsensoris very
cumbersomeandtimeconsuming.Thesameprocesshasto berepeatedfor anyothersensorallocation.If
thedesignerwantstodetermineanoptimalsensorallocationthatwillachieveuniquediagnosabilityinsingle
fault cases,he/shehasto simulateall possiblesensorallocationsbeforefindingthe answer.Thisprocess
hasanexponentialtimecomplexitybecausethenumberof possiblesensorallocationscanbeO(2"), where
n is the total number of failure-mo des in the system. This complexity is clearly unacceptable for large-scale

systems. An analytical method of a more manageable time complexity is definitely required for solving the

problems of system diagnosability.

PWS DIAGNOSABILITY STUDY

An example that presents the effects on system diagnosability when a sensor is removed, is presented. The

relevant portions of the fault model of the chosen process, Absorption-of-Particles is shown in Figure 4.

Initial Sensor Allocation

The sensor allocation for the failure-modes of the Absorption-of-Particles process and the failure-modes of

its subt,rocesses follows:

• Sensor Allocation in Subprocess Phase-1.

sudden-bad-absorption: Sensor SO, Alarm A0. slow-bad-absorption:

absorption: Sensor $2, Alarm A2.

• Sensor Allocation in Subprocess Phase-2

sudden-bad-absorption: Sensor $3, Alarm A3. slow-bad-absorption:

absorption: Sensor $5, Alarm A5.

Sensor S1, Alarm A1. reverse-

Sensor $4, Alarm A4. reverse-
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Figure 4: Absorption-of-Particles fault model

• Sensor Allocation in Process Absorption-of-P articles.

sudden-bad-absorption: Sensor $6, Alarm A6. slow-bad-absorption: Sensor $7, Alarm A7.
Sensor $8, Alarm A8.

bad-flo_

The single component diagnosability for the two associated components when only one failed-state is
simulated at a time is:

• Absorption Bed 1:

Heat Damaged: Absorption Bed 1 Heat Damaged. Loaded: Absorption Bed 1 Loaded. Perforated:

Absorption Bed 1 Perforated. Clogged: Absorption Bed 1 Clogged and Absorption Bed 2 Clogged.

• Absorption Bed 2:

Heat Damaged: Absorption Bed 2 Heat Damaged. Loaded: Absorption Bed 2 Loaded. Perforated:

Absorption Bed 2 Perforated. Clogged: Absorption Bed 2 Clogged and Absorption Bed 1 Clogged.

The explanation of the diagnostic result is provided for the cases of absorption bed 1 and 2 being in the

heat damaged failed state. If the absorption bed 1 is heat damaged, the alarms generated by the simulation

in order are: A2, AS, A6. The alarm A2 is associated with failure-mode reverse-absorption in the phase-1

process. There exists a failure-propagation link from this failure-mode to the reverse-absorption failure-
mode in the phase-2 process. Alarm A5 is associated with the reverse-absorption failure-mode in the phase-2

process. There exists a failure-propagation link from this failure-mode to the sudden-bad-absorption failure-

mode in the Absorption-of-P articles process. Alarm A6 is associated with the sudden-bad-absorption failure-

mode in the Absorption-of-Particles process. The FCIA decides thal alarm A2 is the primary alarm since

this alarm could have caused alarms A5 and A6. The ancestor components of the failure-mode associated

with the primary alarm are the initial set fault source hypothesis. In this case it is absorption bed 1 in heat

damaged failed state. After ascertaining the fact that if absorption bed 1 was heat damaged the times at
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whichalarmsA2,A5,andA6couldhavebeengeneratedarenotinconflictwiththe actual generation times,

the absorption bed 1 in heat damaged state is returned by the FCIA as the diagnostic result.

If absorption bed 2 is heat damaged, the alarms generated by the simulation in order are: AS, A6.

The FCIA decides that alarm A5 is the primary alarm. The possible ancestor components of the failure-
mode associated with this alarm are absorption bed 1 being heat damaged and absorption bed 2 being heat

damaged. However, if absorption bed 1 was heat damaged, alarm A2 would have been generated. Since

this did not happen, absorption bed 1 being heat damaged is removed from the list of identified fault source

components. Therefore, the final diagnostic result is absorption bed 2 being heat damaged.

Final Sensor Allocation

The sensor $2 associated with alarm A2 and attached to failure-mode reverse-absorption in the phase-1

process is removed. The resultant sensor allocation follows:

• Sensor Allocation in Subprocess Phase-1.

sudden-bad-absorption: Sensor SO, Alarm A0. slow-bad-absorption: Sensor S1, Alarm A1. reverse-

absorption: No sensor.

• Sensor Allocation in Subprocess Phase-2

sudden-bad-absorption: Sensor $3, Alarm A3. slow-bad-absorption: Sensor $4, Alarm A4. reverse-

absorption: Sensor $5, Alarm A5.

• Sensor Allocation in Process Absorption-of-P articles.

sudden-bad-absorption: Sensor $6, Alarm A6. slow-bad-absorption: Sensor $7, Alarm A7. bad-flouz.

Sensor $8, Alarm A8.

The single component diagnosability for the two associated components is when only one failed-state is
simulated at a time is:

5.

• Absorption Bed 1:

Heat Damaged: Absorption Bed 1 Heat Damaged and Absorption Bed 2 Heat Damaged. Loaded:

Absorption Bed 1 Loaded. Perforated: Absorption Bed 1 Perforated. Clogged: Absorption Bed 1

Clogged and Absorption Bed 2 Clogged.

• Absorption Bed e:

Heat Damaged: Absorption Bed 2 ]teat Danmged and Absorption Bed 1 Heat Damaged. Loaded:

Absorption Bed 2 Loaded. Perforated: Absorption Bed 2 Perforated. Clogged: Absorption Bed 2

Clogged and Absorption Bed I Clogged.

A graphical tabulation of the diagnosabilit y results in both cases of sensor allocation is shown in Figure

The explanation of the diagnostic result is provided for the cases of absorption bed 1 and 2 being in the

heat damaged failed state. The sensor $2 has been removed, therefore alarm A2 no longer exists, and the

failure-mo de reverse-absorption in the phase-1 process has no associated alarm. If either the absorption bed

1 or the absorption bed 2 was heat damaged, the alarms generated by the simulation in order are: A5, A6.

The alarm A5 is diagnosed as the primary alarm. The ancestor compone_ts of this alarm are absorption

bed 1 being heat damaged and absorption bed 2 being heat damaged. Since there is no alarm A2 in the
fault model, the hypothesis absorption bed 1 being heat damaged has to retained. Hence if either of the two

components is the fault source, the diagnostic result contains both of them.
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Figure 5: Diagnosability results

1 Acknowledgements

This work was supported by a grant from the BOEING Aerospace Co. Huntsville, AI. The authors would

like to thank J. Ray Carnes of BOEING Computer Services for his insight, advice, and expertise. Charles

Reeves, Roger Vonyouanne, and Art Brown provided the domain expertise for developing the various models.

References

[1] T. Laffey, P. Cox, J. Schmidt, S. Kao, and J. Read, Real-Time Knowledge-Based Systems, A.I. Magazine,

Spring 1988, pp 27-45.

[2] G. Karasi, Declarative Programming using Visual Tools, Internal Report, Electrical Engineering, Van-

derbih University.

[3] C. Biegl, Design and Implementation of an Ezecution Environment for Knowledge Based systems, Ph.D.

Dissertation, Electrical Engineering, Vanderbilt University, August 1988.

[4] S. Padalkar, G. Karsai, and J. Sztipanovits, Graph-Based Real-Time Fault Diagnostics, Proc. of the

Fourth Conf. on A.I. for Space Applications. pp 115-123, Huntsville, AL, 1988.

[5] W. Blokland, S. Padalkar and J. Sztipanovits, Study and Approach to Artificial Intelligence Testing:

Modeling the Potable Water System of the Environmental Confrol And Life Support System (ECLSS),

Vanderbilt University, 1990.

174
_: i' '_i_ _i:,) "_, ._ ,_



Attitude Determination and Control System (ADCS)
Maintenance and Diagnostic System (MDS)

A Maintenance and Diagnostic System for Space Station Freedom

David Toms and George D. Hadden

Honeywell Systems and Research Center

3660 Technology Drive

Minneapolis, Minnesota 55418

Jim Harrington

Honeywell Space Systems Operation

13350 US Highway 19 South

Clearwater, Florida 34624

Abstract

This paper describes the Maintenance and Diagnostic System (MDS) that is being developed at

Honeywell* to enhance the Fault Detection Isolation and Recovery system (FDIR) for the Attitude

Determination and Control System on Space Station Freedom. The MDS demonstrates ways that

AI-based techniques can be used to improve the maintainability and safety of the Station by help-

ing to resolve fault anomalies that cannot be fully determined by built-in-test, by providing predic-

tive maintenance capabilities, and by providing expert maintenance assistance.

The MDS will address the problems associated with reasoning about dynamic, continuous infor-

mation versus only about static data, the concerns of porting software based on AI techniques to

embedded targets, and the difficulties associated with real-time response.

We have built an initial prototype of this MDS and are continuing development on it. The proto-

type executes on Sun and IBM PS/2 hardware and is implemented in the Common Lisp; further

work will evaluate its functionality and develop mechanisms to port the code to Ada.

Introduction

The systems on Space Station Freedom (SSF) will require high levels of reliability, fault tolerance,

and ease of maintainability. Our ability to satisfy these requirements can be enhanced by using so-

phisticated software techniques to further automate tasks. Many of the software techniques appro-

priate in this area grew out of, or are being developed by, research in artificial intelligence.

This automation is particularly useful for remote systems on SSF. Remote systems are defined as

systems physically separated from the crew quarters. The Attitude Determination and Control Sys-

tem (ADCS) is one such remote system. All of the ADCS hardware, except for the Standard Data

Processor (SDP), resides on a section of truss assembly approximately 25m from the habitable

modules. The only means of repairing the ADCS hardware is for a crew member to perform extra-

vehicular activity (EVA) or to use one of the SSF robot systems, such as the Flight Telerobotic Ser-

vicers (FTS) (not as dangerous as going EVA, but time-consuming and tedious).

Since the ADCS is a remote system, causing maintenance to be expensive, it becomes important

to be able to reliably determine which ADCS element is faulty and to be able to predict when a

failure might occur (or that a component is degrading). Accurate fault information is required to

plan a maintenance action and optimize the time spent on the maintenance action.

* Work on the MDS is funded by NASA contract NAS 9-18200, through McDonnell Douglas Space Systems Company contract

#87916007. The McDonnell Douglas Technical Monitor is Gerry Ridout.
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The Maintenance and Diagnostic System (MDS) could provide additional information to the Fault

Detection, Isolation, and Recovery (FDIR) system to aid in the fault isolation process. The MDS

derives this additional information by reasoning about data in a global way; this is not possible with

built in test (BIT) within an individual ADCS Orbital Replaceable Unit (ORU). The MDS software

will collect, store, and analyze the health monitoring data from each active ADCS element to pro-

vide additional information for fault analysis. In addition to fault isolation, it is expected that the

MDS will also be able to verify and flag ADCS BIT false alarms.

One of the goals of the MDS is to predict when a fault might occur. Fault prediction is a difficult

problem to solve. However, most of the components within the ADCS are modifications of stan-

dard hardware, and a significant database of failure modes exists. The successful implementation

of predictive capabilities in the MDS would provide significant benefits:

• Additional information is gained, leading to the identification of a faulty element (thus reducing the time and
cost of fault isolation).

• Maintenance actions can be planned for a time when a crew member is "in the neighborhood" (thus reducing
maintenance cost).

• Replacing or repairing the system before it malfunctions could prevent further damage to other systems as well
as providing more reliable systems operation.

• Safety could be enhanced by predicting and preventing problems that would have occurred during a critical ma-
neuver such as berthing.

Once a fault has been isolated, the MDS can be used as a maintenance aid, to instruct crew mem-

bers on test and replacement procedures.

This paper discusses the overall architecture of the MDS, the general approach being used to de-

velop each of its capabilities, and specific plans for the prototype currently under development.

ADCS/Space Station Freedom Overview and Maintenance Philosophy

The software for the ADCS will reside in the Guidance Navigation and Control (GN&C) SDP. Be-

sides the software in the GN&C SDP, the ADCS also consists of six Control Moment Gyros

(CMGs), three Star Trackers (STs), and three Inertial Sensor Assemblies (ISAs). The ISAs and STs

are the sensors supporting the Attitude Determination Function (ADF); the CMGs are part of the
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Attitude Control Function (ACF), along with the Reaction Control System (RCS).

resentation of the ADCS within the GN&C SDP is portrayed in Figure 1.

[ I

Functional rep-

Operating System/Executive

I

Figure 1. Functional Overview of MDS in ACDS

The minimum configuration of the ADF is the operation of one ISA and one ST; during docking,

berthing, and other critical operations, additional ISAs and STs would be brought on line. The pri-

mary purpose for running in the minimum configuration is to conserve power.

The primary error checking parameter currently designed for the ADF, besides the BIT, is the chi-

squared product (_d) formed from the primary Kalman filter used for attitude determination in the

ADF. The BIT could indicate that both the ISA and ST are working within performance bounds;

however, the _ could indicate significant error in the calculations based on the data returned from

the ISA and ST. Without additional information, it is not possible, however, to determine which of

the two elements is causing the problem.

Another problem that occurs in a Kalman filter is that one of the units (either the ST or the ISA) is

degrading slowly. The Kalman filter can continue to add a bias to the ORU's data that will keep

the system (and the _) within established limits masking the degraded performance of the ORU.

The coefficients of the _ can be monitored along with additional data generated by the Kalman fil-

ter to detect when this condition is arising.

ORUs are defined at a very high level: STs, ISAs, and CMGs are each considered an ORU. The

CMG is a special case in that it has two additional ORUs mounted on it (the CMG electrical as-

semblies). By definition, no diagnosis or repair will be done below the ORU level. We do, howev-

er, expect to use the internal structure of the ORUs in our reasoning and not treat them as black

boxes.

As one would expect, there are stringent requirements for mean time between failure (MTBF), er-

ror detection, and false alarms. BIT is required to detect 70% of the errors in the continuous mode

and 95% in the commanded mode. It is required that each system must generate no more than one
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false alarm every 3000hr. (This, of course, raises questions such as what exactly is considered a

system, and whether or not an error in the BIT firmware counts as a failure or a false alarm.)

MDS Approach and Top Level Architecture

Our approach to both diagnostics and prognostics uses the concept of a global view of the ADCS.

By this we mean the ability to view the state of all ORUs in the ADCS, monitor communications,

correlate health status from multiple systems, and reason about this information. This global view

of the system will give us the capability to address problems that BIT might not handle adequately,
much as in the previously mentioned chi-square test.

The MDS is being designed to operate on and with a real-time control system, and will receive a

regular "flow" of information from continuous BIT and discrete signals. It has to choose what in-

formation to reason about, handle changing information, and know when to look for and request
additional infoi_ation.

This real-time aspect of the MDS implies the need for it to handle real-time concerns stlch as speed,

responsiveness, and timeliness. Further, this data has associated time-values, which complicates

the data with temporal concerns such as degraded validity over time, etc.

The MDS needs access to this continuous information flow within the ADCS in order to maintain

this global view. However, there are hardware constraints in SSF; memory and processing cycles

available on the SDPs will be limited. This combination of requirements and constraints led us to

partition the MDS architecture into two basic functional areas. The first is an on-line system, em-

bedded within the SDP. The functions of the on-line MDS are intelligent data gathering, data com-

pression, data transmission, and some reasoning. The other is an off-line reasoning system. The

functions of the off-line MDS are diagnostics, prognostics, and maintenance aiding. In order to ob-

tain the required computing power and mass storage capability it is likely that the off-line MDS

would be on the ground. Figure 2 shows a general architectural view of the MDS system•
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Figure 2. Basic On-line and Off-line Architecture
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This partitioning provides the MDS with a natural mechanism to both handle data from a continu-

ously operating real-time process and to reason in depth about the state of the system at any given

time. Basically, the on-line MDS handles the real-time monitoring, screening and intelligently

screening data generated by the ORUs. The current approach to this uses a dynamic thresholding

approach, much as used in [Washington and Hayes-Roth, 1989]. The off-line MDS handles diag-

nostics, prognostics, and maintenance aiding, described in following sections.

Diagnostics

A diagnostic technique can be evaluated on its breadth and depth of coverage, its robustness and

ability to degrade gracefully with ambiguous knowledge, its generality and adaptability to chang-

ing system configurations, its efficiency and ease of modification with the target system, and its

ability to handle uncertainty. Possible diagnostic techniques include fault trees, explicitly coded

fault models, heuristic classification, simulation, functional/causal modeling, and structural mod-

eling.

All these techniques can weigh decisions based on various information sources, including histori-

cal information, FMEA (Failure Modes and Effects Analysis), and individual component reliabil-

ity (predicted MTBF). Discussions of diagnostic approaches can be found in many places,

including [Chu, 1988] and [Pau, 19861.

In general, heuristic classification, or "classical" expert systems, have many benefits. A key benefit

is that they can capture "experiential" knowledge that is hard to come by and may be hard to char-

acterize in other solutions. They provide an explicit separation of control logic and diagnostic

knowledge. This makes them relatively maintainable, and often the diagnostic logic can be re-used.

They can be easily extended, which might make them attractive given long-term extensibility

goals. And, they provide viable solutions in situations where no model of the system exists.

There are, however, problems associated with the classical, shallow knowledge-based expert sys-

tem diagnostic approach. First, they require a large amount of knowledge engineering up front to

make them robust, because they require large amounts of explicit domain-specific information to

solve diagnostic problems. Also, the requirement for explicit knowledge about fault situations

makes these systems relatively "fragile" at the edges; if a situation isn't at least partially foreseen,

the system could abruptly fail rather than use existing information to degrade gracefully. This re-

liance on prior knowledge of a system's explicit faults in given situations can cause problems, es-

pecially in newly designed systems, or any other system that might not have sufficient explicit fault

knowledge immediately available.

Reasoning methods based on connectivity models overcome many of the problems with knowl-

edge engineering and robustness, given that design information will be available with which the

model can be built. The major drawback can be that connectivity models fail to characterize all

types of fault models completely. This can result in overly ambiguous or incorrect answers in spe-

cific types of cases.

Functional qualitative models can alleviate these problems but have higher initial development

costs and higher maintenance costs. They are also susceptible to the possibility of computational

intractability due to the combinatorial explosive search. Another problem is ensuring the "correct-

ness" of the model, particularly in the cases where good models of the process do not exist (e.g. in

some of the ISA failure modes).
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Webelievethathybridapproachesbasedonmultiplereasoningtechniquesarethemosteffective.
A particularapproachmayrelyononedominant,controllingtechniqueanddrawon andweight
theoutputsof othertechniquesasneeded.Hybrid approacheshavebeenusedwith excellentsuc-
cessin diverseareas. This hybriddiagnosticapproach,usingheuristicanddesign-derivedfault
modeknowledgeasit is available,canprovideoptimaldiagnosticcapability.

TheMDS is beingdesignedwith ahybridarchitecture,ableto combineavarietyof reasoningtech-
niques.Usingvariouskindsof knowledgeisespeciallyeffectivein asystemthathasbeendesigned
with bothestablished,proventechnologiesandnewdesign,suchasADCS.TheISAs,for example,
arebasedonpreviousdesignsfor whichextensiveperformanceinformationis available,theCMGs
arebasedonaprototypedesigndevelopedfor MarshallSpaceCenter,andtheStarTrackersare
basedonanexistingdesign.

Also,sincethisarchitecturecancombineanarbitrarynumberof reasoningmethods,it providesan
excellentframeworkto handleextensions.

Prognostics

Earlier in this paper we discussed the reasons for using prognostic reasoning (also referred to as

predictive maintenance). Briefly, these are: 1) faster fault isolation, 2) ability to plan maintenance,

3) reduction of the possibility of cascading faults, and 4) enhanced probability of operation (pro-
viding greater safety) during critical maneuvers.

Traditionally, predicting device failure has been notoriously difficult, for both mechanical and

electronic devices (although mechanical devices are usually easier). The primary reason for this is

that it is difficult to correlate the long-term behavior (fault signature) with a particular failure mode.

There are however a few exceptions which our system looks for explicitly. One example we have

found is the Ring Laser Gyroscope (RLG) in the ISA. This device has a predictable relationship

between input current and output power. There are situations in which monitoring the character-

istics of this relationship will allow us to predict future problems with the lasers. Another example

is the fault signatures of the CMG wheel bearings. We believe that particular types of vibration pat-
terns might indicate upcoming problems.

The interesting thing from an artificial intelligence point of view is that there is no model for these

effects. That is, we cannot evaluate these systems from first principles. Naturally, this makes a

model-based approach to this problem relatively difficult. We are in the process of acquiring other
predictive maintenance scenarios from experts in the ADCS, but our expectation is that these will
be rare and dissimilar.

Our initial approach to prognostics, therefore, is somewhat "brute force." The on-line system has

two major functions. The first function is to look specifically for BIT status signatures which might

indicate future problems and make appropriate recommendations to the off-line system. The sec-

ond thing is to send a minimal (but sufficient) set of device status data to the off-line system so that
it can do more extensive trending analysis.
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Maintenance aiding

Once a failure has been found, or if a problem is predicted, a correction may or may not be in order.

The MDS has the context to support access to intelligent, on-line technical information for main-

tenance aiding, and the initial prototype demonstrates this capability.

One of the ways the MDS provides this access is to present a checklist to the user for subtasks that

need to be done to perform the maintenance action. As these are accomplished, the user uses the

mouse to check off a box. If there are ordering constraints among the subtasks, the MDS forces

them to be met. In other words, the user can not move on to a new subtask unless the ones that must

be done before it have been finished. In the initial prototype, the user can also ask for help, at which

point a bitmap is displayed.

Another capability that we might add is preventive maintenance (PM) aiding. A PM procedure is

usually complex enough that it is necessary to provide the user with more than a simple checklist.

Normally, one finds that the procedure can vary quite a bit depending on what is found during the

PM [Hadden]. At this point, as far as we know, no PM procedures have been specified for sub-

systems in SSF, the philosophy being that they will not be necessary. If this continues to be the

case, then obviously there will not be a need to provide PM aiding.

In the future, we will extend the initial prototype in many ways. First, we will expand the help op-

tions so that the user will be able to control how much help is presented and at what level. We will

also allow the user to request explanations for what is being done, explanations both in the sense

of"Why is this necessary, given the current goals?" and "How do I perform the requested action?"

This latter extension might take the form of a finer-grained action list.

MDS Prototype

We are currently developing a prototype MDS to:

• Test our approaches in an environment "similar" to the fielded environment

• Implement an approach to fit the MDS within the ADCS architecture

• Provide a mechanism to get feedback from engineers on the program, and test diagnostic and prognostic com-

ponents

The prototype MDS provides the same "look and feel" that a crew member would have on SSF,

given the current NASA user interface definitions. These user interface definitions encompass the

display, interactions with the crew, and, to some degree, control. Figure 4 shows the basic look of

the current prototype.

We expect the final prototype to reside on two machines, one Sun workstation and one IBM PS/2,

reflecting off-line and on-line MDS components, respectively, and to communicate directly with

the real-time ADCS simulation systems (possibly on 386-class personal computers). Figure 5

shows this configuration.

We chose the IBM PS/2 to run the off-line software to remain consistent with the Software Support

Environment (SSE) tools currently under development. The simulations that the prototype will

communicate with are being developed to functionally represent the CMGs, STs, and ISAs.
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Figure 5. MDS Prototype

The initial demonstration prototype also resides on two machines, but does not yet communicate

directly with simulations. Instead, we have simulated the ORUs (or rather the salient outputs of the

ORUs) in software on the Sun workstation.

The prototype software for both our Sun and PS/2 environments is primarily implemented in Com-

mon Lisp and the Common Lisp Object System (CLOS), which provides us with many existing

Lisp tools, the ability to use foreign functions (languages other than Lisp), and standard user inter-

face calls.

This use of object-oriented software was partly driven by long-term goals for SSF for diverse and

nearly unconstrained growth while in orbit, which imposes requirements for easy reconfiguration

and transparency to continued technological upgrades.

Conclusions and Future Plans

Work on the prototype ADCS MDS has just reached the implementation stage. An infrastructure

to simulate continuous ORU output data, an on-line implementation that intelligently screens data,

a prognostics capability that acts on known predictive signatures in an individual way, and a main-

tenance aiding system are currently operational.

This MDS prototype is now being used to incrementally develop the diagnostic approaches and

further prognostic capabilities.

Upcoming use and evaluations will determine the specific direction we take, but several areas will

definitely be developed in the near future, including:

• Use of the MDS with the high-fidelity ORU simulators. This is a needed step to properly develop and evaluate

the system.

• Development of a translation path from Common Lisp to Ada or the standard SSF expert system shell. This is

needed to show compatibility with SSF embedded software standards.

In the future, the MDS replacement procedures may be useful in allowing an autonomous robot to

perform the maintenance operations with only supervision (in contrast to tele-operation) by a crew

member.
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This paper describes a proposed role for knowledge-based

systems within NASA's Software Support Environment (SSE) . The SSE

is chartered to support all software development for the Space

Station Freedom Program (SSFP) . This includes support for

development of knowledge-based systems and the integration of

these systems with conventional software systems. In addition to

the support of development of knowledge-based systems, various

software development functions provided by the SSE will utilize

knowledge-based systems technology.
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INTRODUCTION

NASA' S SOFTWARE SUPPORT ENVIRONMENT

In order to provide a complete and consistent support

environment for software development for the Space Station Freedom

Program (SSFP), NASA initiated the Software Support Environment

(SSE) project. The SSE is intended to support the life-cycle

management of operational software (both ground and flight

software) as well as the life-cycle management of the software for

the SSE itself. The SSE software consists of both Commercial Off-

The-Shelf (COTS) applications and custom software augmented by

methods, procedures, standards, documentation, and training

materials to support users of the environment. The SSE will

evolve over the life cycle of the SSFP in order to be responsive

to its user community's needs.

THE RELATIONSHIP OF KNOWLEDGE-BASED SYSTEMS TO THE SSE

The uses of knowledge-based systems technology within the SSE

may be classified as either:

PRECEDING PAGE BLANK NOT FILMED
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• support for the development of knowledge-based

systems products and the integration and deployment

of these products with conventional software systems,

or

• support for SSE operations.

Figure 1 illustrates the relationship of knowledge-based

systems technology to the SSE and SSFP.

SSFP

Knowledge-Based "_

SFP Applications_

nowledge-Based Systems_

Development Tools J

Knowledge-Based Systems I
Standar(_ _, Methods I

Knowledge-Based _

SSE Applications J _ Base J%

_,. ProcessManagement ...) _'_'_-j.,,_

k,. SSE Subset Generation,.) ___..,_""--_

kQualification for ReuseJ

Figure I. Two Uses of Knowledge-Based Systems

Technology in the SSE

The remainder of this paper describes SSE support for and use

of knowledge-based systems in more detail.

KNOWLEDGE-BASED SYSTEMS DEVELOPMENT

Increased feasibility of knowledge-based systems technology

within an operational environment has produced a significant

demand for automated development support. A large variety of

commercial software systems are available that support the

development and deployment of knowledge-based systems. In order

to provide criteria for selecting existing tool sets or developing

custom tools, an initial set of functional requirements for these

tools has been developed. Based upon these requirements, a

preliminary design of the knowledge-based support tools was also
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produced. In order to supplement the knowledge-based systems

development environment, the SSE will provide support for an

expert systems development methodology. A description of the
status of these efforts follows.

REQUIREMENTS ON THE SSE FOR A KNOWLEDGE-BASED SYSTEMS DEVELOPMENT

ENVIRONMENT

The SSE contractor has defined a set of functional

requirements for the SSE's knowledge-based systems development

environment. These requirements are documented in detail in

[LMSC-I] and summarized in [LMSC-4].

According to these requirements, the SSE will provide the

necessary support to develop and deploy knowledge-based

applications. This support includes capabilities for developers

of applications to choose from a variety of knowledge

representation schemes and reasoning strategies. The five broad

categories of requirements include knowledge representation,

reasoning strategies, external software integration, development,

and delivery.

Knowledae Representation Raauirements. The knowledge-

based systems support tools will provide several different

integrated knowledge representation schemes. One of these is

production rules which are constructed from conditional patterns,

priorities, and resulting actions. External procedures may be

invoked from either the pattern or action part of a rule. A

second form of knowledge representation is performed through

object manipulations. Objects will support strong typing,

multiple inheritance, uncertainty, truth maintenance, and external

procedure calls.

Reasonina Strateaies Reouirements. The knowledge-based

systems support tools will provide for reasoning using forward-

and backward-chaining of rules. Reasoning strategies will include

reasoning about uncertain data, hypothetical reasoning, constraint

checking, and access to external procedures through rules and

objects.

External Software Intearation Reauirements. The

knowledge-based systems support tools will provide interfaces to

external software systems. This includes the capability to

execute functions attached to objects and rules which are

implemented in other languages, particularly Ada. The knowledge-

based systems support tools will include an interface to the

knowledge base which may be accessed asynchronously from other

languages.

Development ReQuirements. The knowledge-based systems

support tools will provide an environment for developing, testing,

debugging and validating knowledge-based applications in an
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integrated environment. This environment includes an integrated
knowledge base editor with incremental compilation capabilities.
Debugging support includes the capability to trace the execution
of rules within a knowledge-based system through the use of break
points. Users will have the ability to interactively query a
knowledge base and change its content. Additionally, users will
have access to on-line help and explanation facilities. And,
finally, the environment will provide the capability to save its
current state in a file to be recreated at a later time.

DeliveEy Requirements. A user of the knowledge-based

systems support tools will have the capability to deploy

knowledge-based applications onto SSFP flight hardware and ground

elements of the Space Station Information System. Knowledge-based

systems may execute either as an interactive adviser or as an

embedded subsystem of another application. Deployed versions of a

knowledge-based application need not contain code for functions of

the knowledge-based system support tools which are not required by

a particular application. There will be no built-in restrictions

on the size of a knowledge base and no restrictions on the number

of users of the static portion of a knowledge base.

Note that deployment of knowledge-based applications onto

SSFP flight hardware implies certain performance constraints. The

exact nature of these requirements has not been investigated at

this time.

THE PRELIMINARY DESIGN FOR KNOWLEDGE-BASED SYSTEMS SUPPORT TOOLS

A high-level preliminary design of the SSE software is

presented in [LMSC-3] . This document provides a context for the

design of the knowledge-based systems support environment which is
described in more detail in [LMSC-I] This document furthers the

perspective that, in terms of an overall software system, a

knowledge-based application is just another software component.

However, the development of a knowledge-based system distinguishes

it from traditional software systems in that the use of

interactive development environments provide the capability to

build successively more sophisticated prototypes of the desired

system. Once a prototype of a knowledge-based system has reached

a sufficiently mature form, it may be deployed in the form of an

Ada package which may be embedded in a larger system.

Figure 2 depicts a Buhr-style diagram portraying high-level

view of the knowledge-based systems support tool. The major

components include a development interface which allows the user

to interact with the environment to develop and deploy an

application and an inference engine which supports object

management, pattern matching, and execution management.
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Figure 2. Knowledge-Based Tool Preliminary Design

METHODS SUPPORT FOR EXPERT SYSTEMS DEVELOPMENT

The SSE contractor is in the process of defining

methodologies to be supported by the SSE as described in [LMSC-2].

Due to important differences in the life cycle of expert systems,

the contractor has also prepared a supplementary document [LMSC-I]

that describes the differences between the methodological support

for traditional software systems and that needed for expert system

development. The supplement emphasizes iterative knowledge

acquisition, the use of prototypes, validation techniques, and

user interfaces for expert systems.

IMPLEMENTATION OPTIONS

Some of the options for implementing SSE knowledge-based

systems development tools that are under consideration include the

purchase of an existing COTS product or the enhancement of a

public domain product known as CLIPS. The final decision will

depend in part on a comparison of the short-term benefits for

developing or modifying a given product to meet the requirements

compared to the long-term benefits of using that product.

Adherence by the tool to any existing or emerging standard should

play a role in the selection.

USE OF KNOWLEDGE-BASED SYSTEMS BY THE SSE

The SSE is itself a large, complex software system. As such,

it provides many opportunities for utilizing knowledge-based
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systems technology. Although not all areas where knowledge-based

systems may be used have been identified, some of the candidate
areas are described below.

SUBSET GENERATION

One important function of the final SSE system is the

capability to automatically configure new Software Production

Facilities (SPFs) and individual projects at SPFs. This

capability is referred to as subset generation because each SPF

contains some subset of the complete set of SSE capabilities. The

subset generation capability is somewhat similar to DEC's XCON as

described in [Waterman] and [Barker]. XCON provides for automated

configuration of VAX computer systems. XCON performs these

configurations in a fraction of the time that a technician would

take to perform the same task. XCON is implemented in the

language OPS5.

Much like XCON, the SSE subset generator will produce

candidate configurations for SPFs and individual projects at SPFs

based upon the needs at that site. Human users will then analyze

the resulting SPFs to determine the validity of the configuration.

Once it has been determined reasonable, the subset generator

function will provide at least partial automated support in

configuring the SPF.

SOFTWARE LIFE-CYCLE PROCESSES

A second area that is a candidate for use of knowledge-based

technologies is the automation and control of software life-cycle

processes. This goal evolved from a desire to coordinate

unconnected tools into an integrated development environment such

as that described in [Bisiani et al]. These goals were combined

with the SSE goal of providing consistent life-cycle management

for all SSFP software producing a desire to manage development

processes through process programming. Some research indicates

that a mix of procedural and rule-based approaches are best for

describing such processes [Taylor] . To supplement this view,

there is an emerging body of theory relating to process

programming which is described in [Tully].

The management of life-cycle processes as they are applied to

development products will require an interface between the

knowledge-based application and the SSE project object base. One

recommended approach outlined in [McKay] is to provide a

standardized interface to the project object base through the use

of an Information Resource Dictionary System (IRDS) . The IRDS

standard (ANSI X3H4) allows the development of a semantic model of

a project object base in an entity-relationship form.

190



REUSABLE L IB RARY

A critical need for the SSE is to provide a useful library of

reusable components. Unlike typical reusable libraries, the SSE

reusable library will include not just reusable code but reusable

objects from all phases of the software life cycle. The two

primary uses of knowledge-based systems technology as it applies

to reusable libraries are the qualification of components for

inclusion in the reusable library and the search for reusable

components based upon functional requirements.

CONCLUSION

SUMMARY

This SSE support for development of knowledge-based systems
has been described and references for further information has been

provided. Additionally, some of the planned uses of knowledge-

based systems within the SSE have been described.

FUTURE DIRECTIONS

Future directions for support of knowledge-based systems are

currently dependent on the recognition of new requirements based

upon the needs of SSFP contractors. Future directions for the

utilization of knowledge base technology within the SSE are also

dependent on the determination of need as well as the

identification of emerging uses of knowledge-based systems that

support software engineering. Some examples include:

• Project management support as described in [Bimson]

• Performance tuning of the SSE System such as is

described for UNIX ® in [Samadi].

Work Pack Contractors may influence the directions of the SSE

by contacting an SSE support representative or submitting an SSE

Change Request.

®UNIX is a registered trademark of AT&T Bell Laboratories.
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Abstract

The Environmental Control and Life Support System (ECLSS) is a Freedom Station
distributed system with inherent applicability to extensive automation primarily due to its
comparatively long control system latencies. These allow longer contemplation times in which to
form a more intelligent control strategy and to prevent and diagnose faults. The regenerative
nature of the Space Station Freedom ECLSS will contribute closed loop complexities never before
encountered in life support systems.

A study to determine ECLSS automation approaches has been completed. The ECLSS
baseline software and system processes could be augmented with more advanced fault management
and regenerative control systems for a more _iutonomous evolutionary system, as well as serving
as a finn foundation for future regenerative life support systems. Emerging advanced software
technology and tools can be successfully applied to fault management, but a fully automated life
support system will require research and development of regenerative control systems and models.

The baseline Environmental Control and Life Support System utilizes ground tests in
development of batch chemical and microbial control processes. Long duration regenerative life
support systems will require more active chemical and microbial feedback control systems which,
in turn, will require advancements in regenerative life support models and tools. These models can
be verified using ground and on orbit life support test and operational data, and used in the

engineering analysis of proposed intelligent instrumentation feedback and flexible process control
technologies for future autonomous regenerative life support systems, including the evolutionary
Space Station Freedom ECLSS.
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Introduction

When the baseline Space Station Freedom is completed in 1999, a milestone in regenerative
life support systems for human exploration will be achieved. It will be the fLrSt complete on-orbit
closure of drinking water, wash water, and oxygen loops which is a step along the way to
independence from Earth's resources. Long duration interaction of these subsystems and humans
in a micro-gravity environment will be a major achievement for the Enviromr_ntal Control and Life
Support System (ECLSS) designers and engineers.

A great deal of knowledge will be gained for development of advanced regenerative life
support systems by the lessons learned in ground and on orbit operation of the baseline ECLSS.
This knowledge and familiarization with the characteristics of regenerative life support systems will
serve as a basis for advanced automation of these systems.

At present, regenerative life support knowledge is contained in the designs and operational
data of previous life support systems and tests, the development documentation of the baseline
ECLSS, and in the experiences of the systems engineers and medical experts involved. Many of
the previously unknown complexities encountered in a long duration regenerative life support
system will be manually dealt with in the baseline ECLSS. The underlying causes of these
complexities must be understood and modelled in order to build more robust life support systems
for long stays in space.

This objective of this report is to clarify approaches to automation of the Environmental
Control and Life Support System. In doing so, the report progresses as follows:

• The Baseline ECLSS - an overview of life support system requirements and the
Freedom Station's approach to meeting these requirements.

• Autonomous Regenerative Life Support System - methods of building upon the ECLSS
for increased near and long term life support knowledge and automation.

Three automation areas will be discussed. The first two, advanced fault detection,

isolation, and recovery (FDIR) and intelligent instrumentation are possible augmentations to the
baseline ECLSS software with minimal hardware impacts. The third, advanced regenerative life
support control systems, is an approach for using the baseline ECLSS as a test bed for

development of more autonomous, long duration life support systems including that of the
evolutionary Freedom Station.

The Baseline Environmental Control and Life Support System

Life Support Systems are required to provide the habitable environment for the crew and

life sciences payloads. This environment includes water for drinking and washing, and

atmospheric gasses. Previous life support systems have typically met these requirement by
maintaining sufficient supplies of pressurized gases and fluids, though closed loop options have
been investigated (5).
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ProcessDescription

TheTemperatureandHumidityControl,WaterRecoveryManagement, and Air
Revitalization Subsystems aboard the Space Station combine to meet the water and air supply
requirements as in figure 1. These requirements are met by closing the air and water loops to an
extent never before implemented in space. Even so, the conlrol system is essentially open loop, a

batch filtering process. Little chemical or microbial data is fed back into the control system for use
in adjusting flexible processes for maximum efficiency.

The system is tested on the ground for sufficient cleaning and recycling set types and levels
of fluids in the air and water, and is periodically verified on orbit using batch laboratory analysis

procedures. This alone, the actual integration of these multiple interacting subsystems to meet
specified requirements, will be a great achievement. Lessons learned in the on-orbit integration of
these batch processing systems will be invaluable in determining micro-gravity interactions and
recombinations of chemical and microbial constituents throughout the revitalization systems.

Water

Reclamation

Internal

Space Station

Atmosphere

Oxygen
Generation

Hygiene

Water Recovery

Figure 1 - The ECLSS Functional lnleractions
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Software Architecture

An overview of the approximate software architecture for the ECLSS is illustrated in figure
2. Two software processes which were determined prime candidates for automation are 2.3 Real-

time & Off-line Subsystem FDIR (Fault Detection, Isolation, and Recovery), and 2.4 Component
• Performance and Trend Analysis. Both of these processes will contain parts initially in the ECLSS

Ground Sustaining Engineering, with migration on board when flight data management resources
permit.

/

• I NODE

3.0)

crew fluid resources

. _,,our_ors ,,d so=ai_i._!

performance
• and trend

/" 4.0)Chemlcal

Figure 2 - ECLSS Software Architecture
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BaselineChemical and Microbial Monitoring and Control

Most of the active chemical and microbial monitoring and control of the ECLSS will be a

batch manual process involving the crew, ground support labs, and life sciences equipment. There
are a few exceptions, confirming that the addition of regeneration technologies introduces
requirements for in line chemical and microbial instrumentation and control technologies in the life

support system, previously more the domain of life sciences.

The potable recovery, urine pre-treatment, and hygiene recovery, processes in the baseline
system use some chemical and microbial feedback control. Trace orgamc carbon levels are
monitored on their outputs, and if the measurement violates the required maximum, the water is not
released downstream but is cleaned again by the systems' filters. Iodine and pH levels are also

monitored at this point for adjustment of the assembly processing. This data will also be available
for ground support monitoring and trend analysis. These process control water quality monitors
do not provide distinction between organics or their individual levels (4). Also, the viral and
inorganic constituents such as metals gathered from the THC slurper or the cabin air ducts are not
determined or used by the control system.

More in depth analysis of the chemical constituents of the water is available by manual

sampling of the output of the Water Recovery Management processes with on board mass
spectroscopy in the Batch Water Quality Monitor (BWQM) and laboratory analysis. Also,
extensive ground testing of water samples returned from the Space Station will be used to verify
and support the ECLSS. Anomalies require manual replacement of fdters or complete flushes and
reinitialization of the system, little automatic adjustment of flexible process control subsystems,

such as adjustment of chemical additive amounts, flexible filter sizes, or trace contaminant
processes, is available.

Autonomous Regenerative Life Support System

In general, future autonomous regenerative life support systems, including the evolutionary
ECLSS, will be required to supply water and air, within specific chemical and microbial limits, for
extended durations without crew or ground support adjustment. The control system and plant will

be intelligent and robust enough to autonomously withstand unexpected crew and payload
anomalies. These requirements will be achieved with a minimal set of instrumentation and

processing assemblies.

These requirements may be met by augmenting the baseline ECLSS with various
technologies. Software hooks, and hardware scars in the baseline will be necessary to minimize
the impact of integrating these technologies after Assembly Complete. Increased automation of the
ECLSS is possible, but evolution to complete automation, defined as above but requiting some
simple unit replacement occasionally, may not be feasible due to the degree of fundamental process

adjustments and control strategies required. But the ECLSS can be used to dramatically increase
the state-of-the-art in regenerative life support systems.

A block diagram illustrating the components of an Autonomous Regenerative Life Support

System is provided in figure 3.

197



Setpoints w

- air constituents
- water constituents

Autonomous Regenerative
Control System

- optimizing resources
- model based monitoring,
diagnosis, and
health maintenance

v

Flexible Life Support
Processing Systems

- maximum utility
- minimum hardware

T i

Intelligent Instrumentation

- real time (~sec)
- chemical constituent levels
- microbial constituent levels

Figure 3 - Advanced ECLSS Block Diagram

The major areas for advanced technology application are:

• Automatic Fault Detection, Isolation, and Recovery (FDIR) and Health Maintenance

• Advanced Intelligent Instrumentation

• Flexible Life Support Processing Systems

° Regenerative Life Support Modelling and Analysis Systems

Automatic Fault Detection, Isolation, and Recovery (FDIR) and Health Maintenance

There are several advantages to beginning ECLSS automation with upgrades in the
automatic fault detection, isolation, and recovery (FDIR) and health maintenance (failure prediction

and prevention) processes. These processes are software oriented and theoretically, software is the
most flexible part of the system and most amenable to upgrades.

FDIR and health maintenance processes require the implementation of emerging software
technologies. These processes can be verified in the ground support environment and migrated to
the flight ECLSS to increase the Station's flight autonomy. This approach to increasing ECLSS
autonomy is described in (2) and (3) and will be the focus of the ECLSS Advanced Automation
Project.
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Structural and functional models of the ECLSS subsystem processes can be used to

diagnose and isolate failures. Model based approaches to diagnosis are computationally intensive

but perform autonomous, in-depth diagnosis of faults. The process control nature of the ECLSS
allows the use of emerging model based reasoning tools in automating the system, while storing
knowledge in component model form (7). The system also may be upgraded for automatic
diagnosis of regeneration analysis with the future inclusion of chemical and microbial transfer
equations.

Model based fault diagnosis using these models is analogous to the biomedical engineer
who notices a trend in the chemical and microbial levels at a certain point and uses a mental model

of the behavior of the upstream processes to determine the original anomally. For instance a
biological culture in the cabin air duct may cause chemical instabilities in the potable water system,
which is downstream (through the THC unit) of this duct. The only way of isolating this fault is
through knowledge (a model) of the chemical and microbial behavior of each component, along

with knowledge of their structural interconnections.

Advanced Intelligent Instrumentation

Long duration life support systems will be required to monitor a large range of chemical
and microbial constituents in real time. This information will be used in advanced feedback

control, maximizing the revitalizing effectiveness while minimizing the use of life support

processing and resources.

Minimization of system resources implies that chemicals, filters, catalytic gases, and whole
subsystem processes can be bypassed or reduced. Maximum revitalizing effectiveness requires
adjustment of the life support processes based on the range of chemical and microbial contaminants
to be stabilized. The strategic placement of intelligent instrumentation which feeds back chemical

and microbial constituents will allow these operations to take place.

Airborne microbial monitoring devices may be needed. The ECLS system uses a trace

contaminant monitor which produces gas species data only. Cabin air contaminants and
recombination in micro-gravity may need to be known by an advanced control system which could

operate to control the contaminants.

Real time, in line chemical and microbial analysis instruments must be developed. This is a
tough problem that may be solved by the successful combination of medical, life sciences
instrumentation with advanced software technologies. Minimal Space Station Freedom
augmentation implies a device which is the same size or smaller than the Process Control Water

Quality Monitor.

A modelling system would be necessary in order to optimally design and place these
monitors in the subsystem interconnections. The model would allow specific constituent levels to
be available to the control system, the optimal placement analysis of feedback pick off points for

system microbial stability and other considerations.
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FlexibleLife SupportProcessing Systems

Maximization of the range of chemical and microbial effectiveness with minimal system
hardware will require process control subsystems which would be able to adjust their processes,
for instance the filter type or size, based on the constituent levels of the input and the set point
requirements of the output. The filter, or other component for fluid or gas cleanup, would only be
used when needed, prolonging its useable life. Multiple, exchangeable component types in the

same subsystem would allow a single subsystem to clean a broader range of fluids, minimizing the
necessary hardware. The potable and hygiene loops may be able to be combined in this manner.

The amounts of chemicals added, such as urine pre-treatment biocides and iodine, could be
adjusted based on intelligent instrumentation feedback. Minimization of these additives would
require less supply, and may limit the chemical and microbial combinatorics of the downstream
subsystems.

Regenerative Life Support Modelling and Analysis Systems

A high fidelity modelling system would be necessary for optimal placement of feedback
instrumentation, engineering analysis of flexible life support processing requirements, and
development of biological fault isolation techniques. If the pressure, temperature, chemical, and

microbial transfer equations of each regenerative agent, such as a urine processing assembly,
biological culture, or crew member, could be developed, the entire system's long duration chemical
and microbial stability could also be analyzed.

Verification and upgrades of the models using ground and flight ECLSS configurations
would provide an advanced engineering tool for autonomous regenerative life support system
engineering. Evolutionary ECLSS, Lunar Base, and Mars Excursion Vehicle life support systems
developers could then perform advanced, autonomous, and optimal control system analysis as well
as long duration studies using this structured knowledge. Studies could indicate the relative
behavior and stability of adding a two bed molecular sieve, CELSS greenhouse module, or Lunar
Oxygen mining subsystem.

Gravity constants used throughout the wansfer equations would predict changes in
subsystem behaviors due to changes in gravity. Biological agents which do not combine due to
weight differences in ground tests could produce unexpected results in space. Updating the model
transfer equations will increase the fidelity and stored knowledge of variable gravity effects on
biological agents in regenerative systems.

Conclusion

The Environmental Control and Life Support System aboard Space Station Freedom will be
a step ahead in the implementation of regenerative life support systems. The interactions of its

subsystems with each other and the crew will serve to greatly increase our knowledge in low
gravity regeneration complexities. The Space Station can be used as a test bed for verification of

chemical .and microbial, variable gravity transfer models which will prove essential in long duration
regenerauve life support system engineering and autonomy analysis.
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The fully automated regenerative life support system described cannot be built today. Quite
a few steps must be taken, and research performed in order to develop systems which can
autonomously remain stable for long durations. A first step is to build and deploy the Freedom
Station. The actual hands-on knowledge generated from ground and flight tests will allow

incremental builds upon the ECLSS toward automation and long term stability. Another step is the
inclusion of Life Sciences medical technology in Life Support engineering. Life support systems
which use regenerative techniques to meet their supply requirements will have to actively worry
about and control microbial recombination, and insure biological stability.

Long term autonomous, robust, and stable regeneration of atmospheric resources require a
proportional increase in control system activity and intelligence with the decreased size of the
buffer of air and water resources. Stabilizing thimble sized atmospheres for human exploration
will require a deeper understanding and active participation than maintaining the integrity of the
vast resources of Earth.
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Abstract

This paper describes a robot control package which utilizes on-line structural simula-

tion of robot manipulators and objects in their workspace. The model-based controller is
interfaced with a high-level agent-mdependent planner, which is responsible for the task-
level planning of the robot's actions. Commands received from the agent-independent
planner are refined and executed in the simulated workspace, and upon successful comple-
tion, they are transferred to the real manipulators.

1. Introduction

It is expected that robotic systems will play a crucial rule in the operation of Space
Station Freedom. Various repetitive tasks associated with the maintenance of the Station
are the most likely candidates for robotics and automation applications, since such applica-
tions would free up a considerable amount of crew-time for more useful activities, like
scientific experiments, etc.. Controlling these robots will be a very complex task due to
unusual operating conditions, like tight space, strong interdependence of various subsys-
tems onboard the station, and the unavoidable presence of humans near the robot's
working area. These requirements will necessitate the development of highly specialized
robot control systems for space applications. The goal of the research described in this
paper is to design and implement an autonomous robotic agent which can serve as a
component of such control systems.

HighleveltaskplannorI1
Joint coordinator methods:

path planning, grasping ...[

I ....
Hardware-level joint

controllers

Figure 1. Multilayer Robot Control System Architecture

It is customary to distinguish between three layers in robot control systems, as seen in
Figure 1. The bottom layer implements the low-level joint control systems. At this level the
controllers' inputs are individual joint position and speed signals, and their output deter-
mines the voltage or hydraulic pressure applied to the joint actuators of the manipulator.
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The middle layer of a hierarchical robot control system contains the modules which
are necessary for the coordinated motion of the individual manipulator joints. Operations

typically performed at this level include path synthesis, object grasping, and compliant
motion.

The components of the highest layer implement the task planning functionalities in the

system. Task planning means breaking down a complex goal into a sequence of simple
actions suitable for input at the path synthesis level.

An agent-independent high-level task planner has been described in [3]. The goal of
the work described in this paper was to provide a target environment for this task planner,
which is capable of executing the planner's action sequences using either a graphics simula-
tion environment or real robot hardware. The operation of this robotic agent is based on
the structural, geometrical modeling of the robot manipulators and the objects in their

workspace. The reason for this is that the techniques used to model solid objects provide
the most natural way to describe the robots ancl the workspace objects. Solid modeling
techniques might be used in different areas of the design and operation of robotics systems,
like:

- Design and testing of manipulators: In such applications the purpose of the modeling is
to study different approaches to fulfill the design specifications of the manipulator.

- Robot action planning: The modeling environment is used to build a representation of
the robot and the objects in the workspace, and to create and validate action plans by
simulating various actions in the model space.

On-line control of robot manipulators: The modeling tools are integrated into a hierar-
chical robot control system, and the action plans generated and tested in the model
space will be transmitted to the robot manipulators for execution.

2. Related Work .- A Robot Modeling Environment

The Intelligent Robotic Agent is based on a robot simulation and control environment

described in [2]. The main requirements against a geometrical modeling toolkit used in
robotics applications can be summarized as follows [1][4][7]:

- A set of solid prim#ives (like boxes, cylinders, cones, etc...) which can be used to con-
struct the manipulator and world models.

- A way to build structured objects from the primitives or other previously defined struc-
tured types.

-A set of methods to manipulate the models. These include methods for accessing and
animating objects, collision detection algorithms, and routines for forward and inverse
kinematics calculations, graphics display, and possibly dynamics calculation.

These goals were satisfied by implementing a robot simulation library. The basis for
this development was the ROBOSIM [5] robot simulation package. ROBOSIM in its

original form is a command line oriented graphical robot modeling package. It provides
commands to build the geometrical representation of robots and various objects and to
perform simple operations on these.

To enhance the object manipulation capabilities of the original ROBOSIM package, a
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simulation library hasbeen built which is capableof operating on the internal geometrical
model databasesbuilt up by ROBOSIM's commandinterpreter. This library includes the
following components:

The animation module provides the methods to "operate" the manipulators in the
model space. Its methods include routines for driving the arms' joints, straight line

motion, grasping, etc...

The inverse kinematics module aids the animation by providing the inverse kinematics

solutions for the robot arm(s) in the model space. By default it uses a numerical
method, but if the analytical inverse equations are available, the default method can be

replaced by these.

- The collision detection module is used by the animation module to check the validity of

the steps during a movement. If the step would result in a collision, a report is sent to
the animation module, describing the objects involved in the collision.

The robot interface driver module is used to duplicate the actions taken in the simula-
tion environment in the real robot's workspace. It generates calls to a low-level inter-

face library based on the simulated joint movements. Error reporting is also possible in
case the command fails in the real workspace.

- The graphics display module is used to display the workspace configuration and to
follow the actions in the simulated environment.

The structure of the modeling environment composed of the above modules and the

original ROBOSIM interpreter can be seen in Figure 2.

Model
Editor  haredM°de,lROBOSIM Data Base

Figure 2. Components of the Robot Modeling Environment

3. The Intelligent Robotic Agent

The purpose of the Intelligent Robotic Agent is to provide a user-friendly way to use
the tools of the Robot Modeling Environment described above. The agent was designed to
be able to receive robot action sequences either from a high-level symbolic task planner or
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directly from the user during an interactive session.The main requirements against the
agentare summarizedbelow:

- Symbolic Planner�User Interface Protocol: Regardless of the operating mode of the
agent (used by a task planner or by an interactive user), the same command interface
is being used. This command language provides symbolic manipulator and object
identifiers for a more user-friendly programming environment. The interface protocol
also includes extensive error reporting mechanisms.

To planner To robots

Interactive ]

Planner /
Interface / Low-level Manipulator

/ Interface

I........F/ConfiguraUon

Control

F._ P,_._.. Robot Modeling Environment

/dgoritlum

Agent Shell

Intelligent Agent

Figure 3. Intelligent Agent System Architecture

- Environment Configuration Interface: In order to ensure the consistency of the world
models with the task olanner, the agent includes a set of commands forming a con-
figuration interface wmcn is used by the planner (or by the user in an interactive
session) to build the geometrical representation of the workspace. The agent features

its own modeling language for creating elementary objects, building complex objects
from these, and to perform various transformations. In view of the considerable effort
already invested in creating models of various objects and robots in the ROBOSIM

language, the possibility of using existing ROBOSIM models is also provided.

-Agent Operation Interface: A set of commands is provided to operate the robot
manipulator models in the agent's data base. These include commands for various
types of motion (joint interpolated, straight line, etc..), path planning with collision
avoidance, and for grasping and releasing objects.

- Graphics Display: Probably one of the most useful features of any robot simulation
package is the possibility to view the manipulators in their workspace as they perform
various actions, in a safe, simulated environment. The agent includes a graphics display
feature which is usable during both the environment configuration and the agent
operation phases.

- Interface to Robot Controllers: The agent can operate in either of two modes. In the
first mode the actions received from the command interface are performed only in the
geometrical modeling environment. In this case the execution can be viewed on a

graphics display, and the agent will report any error conditions encountered during the
execution (collisions, joint violations, etc..). In the second mode the successful execu-
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tion of the above steps is followed by sending commands to a real robot hardware
interfaced to the agent to duplicate the actions taken in the simulated environment in

the real workspace too.

The above goals were satisfied by incorporating the services of the modeling environ-
ment into an interactive shell, and by creating a low-level interface package between the
simulation library's robot interface driver module and the controller of the manipulator
used in the system. The architecture of the Intelligent Agent can be seen in Figure 3.

The agent shell's task is to interpret the commands sent by the planner. It has a built-in
symbol table for storing the various objects in the workspace and the attributes associated

with these. After parsing the commands, the shell will invoke the appropriate functions of
the robot simulation library with an argument structure built using the lntormation storeo
in the symbol table. Any results or error codes returned by the library call are translated
into the corresponding message format and sent back to the planner, or printed to the user
during an interactive sessmn.

One important design consideration associated with the agent was the minimization of
the numerical calculations required from the task planner. To accomplish this goal various
attributes are associated with each object. These attributes include the object's current

position, predefined grasping points, and predefined joint parameter vectors for the robot
manipulator objects. These attributes are linked to the object, i.e. any transformation will
update their values. This means, that for example the task planner does not have to com-

pute numerical coordinates to move a robot manipulator to an object's grasping point, but
it can use the symbolic grasping point attribute whose value is always linked to the object's

current position.

The agent shell also includes a path planning algorithm, which is used to synthesize a
collision-free path between two locations in the workspace. This algorithm relies on the
collision detection feature of the simulation library and utilizes a simple search strategy to
find an alternate route in case a collision is detected during a motion segment. First the

endpoint of the failed motion segment is checked to see if there is any collision when the
manipulator reaches that point. If this is the case then the search fails, since the motion
segment can not be completed regardless of the route taken. Otherwise the search algo-
rithm will subdivide the failed motion segment by inserting an intermediate point selected

using a set of heuristic rules, and recursively repeat the above process. There may be
situations when this method will fail to find a path even if such a path exists, but the algo-
rithm described above has been observed to find a solution in the majority of the situations

examined so far.

The agent shell also supports the parallel operation of robot manipulators. An ex-
tended command line format makes it possible to enter commands for every manipulator

in the system at the same time, and these commands will execute parallelly.

4. An Application Example

The Intelligent Agent has been used as an interface between a robotic task planner
and a PUMA 560 mampulator. The architecture of the whole system can be seen in Figure
4. The low-level robot interface between the agent shell and the PUMA manipulator's

controller has been implemented in a distributed fashion, partly on the workstation running

the agent shell, and partly on an IBM PC AT. The reason for this solution was that parts of
this interface package have to meet certain real-time requirements.
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The confi_uration describedabove hasbeen used to executetask plans for repairing
electronic eqmpment. The operations included setting various switchesand dials on the
front panels otthe racks housing the equipment, and replacin_ faulty circuit boards. A
graphicsdisplayof the simulatedworkspaceof this applicationcanbe seenin Figure 5.

Explorer Graphics IBM PC AT PUMA 560

AI Workstation and Controller

Workstation (SGI)

\ / \__/ \ /

Task Agent Low-level Robot Manipulator

Planner Shell Interface

Figure 4. System Configuration for Intelligent Agent Application Example
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5. Summary and Future Research

An intelligent agent has been developed for the execution of robotic task plans gener-
ated by a high-level planner. The agent uses a well defined protocol for receiving environ-
ment configuration and manipulator commands from the planner and to send back status
reports. After translation, the agent uses the services of a robot simulation and control
environment to carry out the high-level commands of the planner. This configuration has
been used to examine the possibilities of using robots for repairing electronic equipment.

The advantage of this approach is its flexibility. It is easy to adapt the system to dif-
ferent workspace configurations or to different robot manipulators by changing the environ-
ment configuration commands sent to the agent. The well-defined planner-agent interface

simplifies the development and verification of new task planners, because the task plans
can be tested for validity by the agent, and the user can also see the effects of the planner's
output on the graphics display.

The most important area of planned future research is the upgrading of the low-level
robot manipulator interface. The current interface uses the PUMA manipulator's com-
mand language (VAL II [8]) to execute the robot movement commands, but a new version
is currently being developed which will bypass this command language and use the PUMA

controller's "real-time path control" feature to achieve an even better quality of joint
control. This new version will be built using the so called Multigraph Architecture [6],
which provides a dynamically configurable distributed macro-dataflow computational
environment. This will allow the selection of the joint control scheme and its parameters
from the agent shell, resulting in a highly optimized controller performance for every
application.
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Abstract

This paper focuses on the rationale and methodology used to incorporate graphics into
explanations provided by an expert system for Space Station Freedom rack integration.
The rack integration task is typical of a class of constraint satisfaction problems for
large programs where expertise from several areas is required. Graphically oriented
approaches are used to explain the conclusions made by the system, the knowledge base
content, and even at more abstract levels the control strategies employed by the system.
The implemented architecture combines hypermedia and inference engine capabilities.
The advantages of this architecture include: closer integration of user interface,
explanation system, and knowledge base; the ability to embed links to deeper knowledge
underlying the compiled knowledge used in the knowledge base; and allowing for more
direct control of explanation depth and duration by the user. The graphical techniques
employed range from simple static presentation of schematics to dynamic creation of a
series of pictures presented "motion picture" style. User models control the type,
amount, and order of information presented.

Introduction

The Space Station Freedom (SSF) Program is a complex task requiring the integrated
skills of thousands of people. There are many examples within the program of tasks
which require the cooperation and participation of several organizations to make critical
decisions. As automated expert systems are developed to aid in these decisions and to
capture the knowledge from several areas, we should be able to ask them for
explanation/justification of their results as we would human experts. The task of rack
integration is exemplary of tasks for which justification is required. The racks aboard
SSF provide a common element around which design, operational, manufacturing, and
logistics decisions are made. The basic task is to decide where racks of a given type
should be located aboard SSF. There are several types of constraints which influence the
final decision, ranging from operational (such as noisy racks should not be located near
crew sleeping quarters) to physical constraints dependent upon other design decisions
(such as the general rule that data management system racks, although shielded, should
not be unnecessarily located next to potential sources of electromagnetic interference).
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The expert system to aid in the integration of this task is documented in detail in an
accompanying paper at this conference [1]. This paper will focus on the benefits,
methodology, and some of the issues researched for making such systems more usable and
complete in the area of explanation.

Explanation

One of the earliest claims of expert system developers was that the resulting systems
could "explain" their actions. These claims were often effectively backed up by the
textual presentation of traces of rule firings which could explain "how" the system had
made a decision.[2] Additionally, systems could answer "why" the system was asking for
information by presenting as explanation an English text description of the rule which
required the information.[3] However, complete explanation requires addressing the
problems of what, how, when and to whom knowledge is to be communicated. In the past,
most expert systems have typically relied on textual presentation. Notable exceptions to
this include the STEAMER [4] system which used an underlying simulation model with
incorporated graphics and the General Electric DELTA expert system for diagnosing
diesel electric locomotive failures which incorporated video storage as part of the
system[5].

Wick and Slagle [6] suggest that explanation capabilities could be greatly enhanced by
the introduction of supplementary knowledge and by allowing variations of queries over
time. For example, the user could ask not only "Why do you want to know this now?.',
but could also ask "Why would you ever ask me for this information?'. Similarly the
user could ask not only "How did you know?", but also "How could you find out?'. To
answer these questions the system must keep extended histories, or traces, of actions
taken by the expert system and based on dependencies be able to generate responses of a
forward looking nature.

Chandrasekaran, Tanner, and Josephson [7] emphasize that explanation should be
provided not only at the low levels (exemplified by presenting the conditions associated
with a single specific rule) but that high-level explanation of overall system goals
should also be available. Their suggestions are supported by work on automatic
generation of textual explanations through specialized grammars [8]. An underlying
truth here is that humans tend to be much better at explaining their actions because they
are able to convey both their abstract goals and detailed information -- but with the
significance of the details "slanted" towards satisfying the stated goals. Therefore, the
grammar used by humans during explanation goes beyond that used for simply
explaining system details.

Most explanations are presented to a single individual, or at least to a group with
focused attention in a common setting. An additional level of complexity is added to the
problem of explanation when we introduce the need for models of the user so that the
information presented will be both understandable and timely. Related work [9] in the
rapidly expanding field of intelligent tutoring systems demonstrates repeatedly that it is
the communication of knowledge (not just data) that is important and that the
presenter of knowledge must make allowances for student abilities. For example an
expert system developed as an engineering aid may be used repeatedly by individual
engineers who are experts in the domain. However; when explaining the actions of the
system (which have led to specific decisions) during a formal review, the experts must
be able to integrate background information, current focused information, and their
overall goals into explanations at a level their audience will understand. (And insistence
on understanding is something formal review boards are well known forl) The point is
that the same explanations given by the system to the expert during its normal use will
not suffice as explanations given to a broader audience. The task of trying to model even
the typical user (in an effort to know what to present and how to present it) is often not
straightforward.
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Rationale for Incorporating Graphics

An ancient Chinese proverbs states "It is better to see a thing once than to read about
it one hundred times." The wisdom of this statement has been proven repeatedly by
people who while trying to explain their actions to others resort to the use of a graphic
for clarification. For the rack integration task we developed guidelines which dictated
that even the quick sketches of an expert should be included as part of the documentation
for any rules developed as a result of a knowledge engineering session. Therefore,
perhaps the best rationale for incorporating graphics is simply to mimic reliance upon
them as humans do.

A sequence of pictures is often very effective at presenting information as it changes
over time, and in many situations an appreciable amount of information can be conveyed
by a single picture. For example, figure 1 graphically illustrates the noise constraint
mentioned previously for the Habitation module of the Space Station. From the figure it
becomes obvious that "noisy" racks should be located at the aft end of the module, v_th a
buffer zone located between them and those at the opposite quiet end. Closer scrutiny of
more detailed drawings reveals that most of the subsystem related racks such as the Air
Revitalization System (ARS) and Thermal Control System (TCS) are located at the noisy
end of the module because of the mechanically oriented nature of those racks. However,
the galley/wardroom racks are also at the noisy end, indicating that noise associated with
the use of a rack is also enough reason to isolate it from the crew sleeping quarters.
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Figure I: Noise is e constraint in the Habitation Module

Modern portable computers, optical discs, and graphics software make it possible to
quickly and easily capture and integrate graphic material. The architecture chosen for
our research combines database, hypermedia and inference engine capabilities. The
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specific software packages used in the initial effort are Microsoft Excel, Neuron Data's
Nexpert Object, and Apple Computer's Hypercard. The hardware platform chosen was a
Macintosh II with 8 MB of memory.

Additionally, the recent emergence of very affordable hypermedia systems was also a
major contributor in our decision to incorporate graphics. By using figures which have
been scanned in, and then adding "buttons" or links to additional information we can
allow for perusal of a tremendous amount of information at a level dynamically
controlled by the user. It is important to realize that the links created for explanalJons
tend to be more specific than those created simply for an informational stack -- at least
at the beginning of the explanation. However, as the user traverses links away from the
starting point the bounds on what type of information is presented is left up to the
system developers. For the rack integration expert system we "flavored" the entire
network of information by relating to a hierarchy of interface, control, constraints, and
state information (the layered approach used here is typical of constraint satisfaction
problems we have dealt with in the past and is documented in detail in [1]).

In the following three sections we present our research applied to the three areas of
explaining knowledge base content, strategies, and decisions. Chandrasekarn, et al, [7]
provide details regarding this three pronged approach for explanation from
introspection of knowledge and inference.

Explaining Knowledge Base Content

For our research purposes we have pursued providing explanation of knowledge base
content at all levels. Starting with the lowest level, the underlying database represents
basic facts about the problem (such as the number of possible locations for racks in each
module) or about the current state of the world as the knowledge base knows it
(engineers often start their analysis from a baseline configuration of rack assignments
and attempt perturbations). For the database we provide information on the data sources,
last update, units of measure, and validity intervals.

At the next highest level, an object hierarchy is provided and the object definitions
are all linked to conceptual definitions. Graphics depicting component and subcomponent
details are used where appropriate. Information provided about each object class include
its importance in the rack integration task and how it is used in the problem solving
process. Each object attribute is similarly treated with the addition that each object
attribute is also flagged to indicate whether its value is simply read in from the database
or can be changed by the problem dynamics. The idea of assigning values of LABDATA to
data that typically requires no explanation other than source was suggested by Davis, et
al in [10]. Where attributes can have multiple values, the meaning of the multiple
values is explained, along with expected consequences on the problem solving process.
For example, the "RACK" class which represents the rack objects has an attribute
"noise_level_environment_required'. The values for this attribute are "sensitive',
"not very sensitive', or "not sensitive at all'. The effect is that racks which are
"sensitive" to noise can only be located in the quiet zone of the Habitation module (noise
is not a concern in the Laboratory or Logistics modules).

The constraint rules form the third level of the knowledge base and serve to
emphasize that in a rule based system oriented towards explanation the rules themselves
should be thought of as objects. A graphical depiction of the constraint hierarchy is
presented using only keyword phrases. Additionally each rule is captured in hypertext
form, so that the user can select any rule from the keyword hierarchy, then any part of
the rule can be selected to explain the contents in more detail. Rule attributes include
static English text which restates the rule, the rule originator, last update, a list of
pointers to any related "cases" or "tests" from which the rule was derived, the relation
to other rules, an understandable English text prompt used in conjunction with the rule
when requesting information, and a graphical representation of the rule where possible.
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Although our current system does not use confidence factors, it is interesting to note that
the confidence factors themselves convey knowledge that should be explained.[lO] A
confidence factor of unity indicates that a "shallow" explanation may suffice since the
rule is most likely definitional in nature, while confidence factors not equal to unity
represent the application of judgement and the relevant ranking of its importance and
therefore requires more explanation.

Explaining the Knowledge Based System Strategy

The control rules at the fourth level of the knowledge base are also represented in a
graphic hierarchy. At this level the source for the rules becomes critical as these are
the rules which control the order for checking the constraints at the next lower level.
These rules explicitly determine which constraints are checked under varying
circumstances. Not all constraints are checked for the varying types of racks. For
example constraints associated with zoning restrictions based on the type of science are
only checked for racks in the Laboratory module. The strategies implemented
intentionally mimic those used by experts from various areas within the rack
integration domain. For example, the strategy for checking the constraints associated
with moving a Laboratory payload rack were derived from knowledge engineering
sessions with a payload integration specialist. Because payloads are typically unique,
they have widely varying utility requirements. This is exactly one of the areas checked
first and is responsible for most problems with integrating payload racks. Justification
of this strategy is supported with a graphic depicting the low percentage of common
interface plates in the Laboratory module due to payload unique requirements.

Graphically representing generic tasks such as "hierarchical classification" or "plan
selection and refinement" has proven to be a very difficult task. Current efforts are
focusing on the use of simple conceptual sketches or icons presented in a cyclic manner
to emphasize the ongoing and dynamic nature of such tasks.

Explaining Knowledge Based System Decisions

The ideal situation here is to employ any material a person may use, the point being
to represent the "bottom line" as clearly as possible. For example, the rule hierarchies
presented to explain the knowledge base content can be enhanced by highlighting
information (the computers equivalent of pointing) used in the decision process. For the
rack placement expert system we incorporated the ability to highlight a single keyword
representing a rule or group of rules while presenting results from an analysis (see
figure 2). This often served as sufficient explanation for the domain experts, while
links from the keyword hierarchy provided the "back pocket" type of information
(previously shown in figure 1) needed for justification to other audiences.

Following the example set by [11], we have attempted to anticipate what are most
likely to be the more difficult areas involved in making the decisions and have provided
even more depth and tutorial type of information for explanation of decisions in some
areas. For example, the routing of utilities required by a rack is an area where many of
the verification test cases showed that the human experts had the hardest time explaining
their actions. For this reason, the assumptions and formula used for calculating weight,
volume, and length information for utilities are all well documented and incorporated in
explaining decisions affected by routing criteria.
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It is for use in explaining decisions that we are developing user models to control the
first level of explanation presented to the user. The interface presents only a CAN or
CAN NOT decision regarding placement of a rack in a given area and a brief explanation of
WHY NOT if the placement was disallowed. Whenever the user asks for further
explanation, a "novice" user is presented with a more detailed explanation of the type of
problems encountered. An "experienced" user is linked directly to the constraint
keyword hierarchy. At the present time, the explanation information presented is
mostly static -- prepared beforehand. One of our areas of interest in extending the
system is in dynamic creation of explanation objects which would change with the
circumstances associated with the knowledge base and with the user. We have made a
first step in this direction with the constraint keyword highlighting mechanism
mentioned above.

Capturing the "Link" between Compiled and Deep Knowledge

An admission on our part and hopefully a lesson for others is that our first pass at
using graphics to explain the knowledge base content was woefully inadequate. It was
only when a new member joined our team who was totally unfamiliar with the SSF
program that we came to realize this fact. Without knowing it we had been
unintentionally "compiling out" knowledge by not representing what we had come to
believe was "common sense". For example, we had neglected to document the reasoning
behind not allowing racks requiring windows to be placed on the wall facing forward in
the SSF orbit. These walls are more subject to meteor hits than the other walls and
since windows are regarded as built in safety hazards anyway, they should be located
where they are not likely to get hit. Obvious. Right. Another example is where different
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walls (the Starboard and Floor walls) use the same physical area for routing of utilities.
This imposes an additional level of constraints to be checked to satisfy the requirement
for separation of redundant systems as illustrated in figure 3.
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Figure 3: CheckJngfor redundancgconstraints requires
deeper knowledge of uttlity rouLing procedures

It is the high level and abstract knowledge (such as originally intended use, goals, or
even current events such as budgetary constraints) that is often compiled out of the
final version of a knowledge base. As a result, explanations associated with expert
system will most likely be later questioned regarding completeness, accuracy, or
accountability -- and the true explanations may not be available. For the rack
integration expert system we have used graphically oriented techniques to document the
source, intent, and actual meaning of the knowledge in the knowledge base. We've found
that the most difficult part of this is indeed deciding how to graphically represent the
higher level goals and in many cases we use simple English text statements as they seem
most appropriate. The more abstract problem solving goals (such as the control rules)
are depicted using process flow diagrams. A fairly simple mapping allows for
capturing the link between the control rules and the constraint rules.

Future Directions

The Apollo program provides proof that much of the data, information, and knowledge
associated with large aerospace programs can be lost to later generations. One of the
goals of the Space Station Freedom (SSF) program is to ensure that not only is basic data
and information available for future access, but also that knowledge available now is also
captured for later use by the program. However, while documentation for data or
computer programs often have very specific standards imposed upon them, the standards
for documentation associated with captured knowledge is still in the formative stages
[12]. One of our research goals is to investigate ways of testing how to document
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captured knowledge. It is fairly easy to understand that just as comment statements
form an important part of computer program documentation, explanation capabilities
can be used to determine how well a knowledge based system is documented.

We also recognize a need to expand the explanations of why a rack WAS allowed in a
given location, not just WHY NOT. The current approach uses the how capabilities of the
expert system shell to graphically demonstrate that the control rules were invoked and
which constraints were checked.

It has been suggested [13] that links to conceptually faithful simulations can provide
for a form of continuous explanations and could thereby represent a deeper knowledge of
the domain. We would like to pursue this area by providing links to an application
written for simulating the effects of different routing strategies.

Construction of an appropriate grammar for describing the relationships among
objects and rules within the domain and specialized for use in explanations is being
considered for future research. The grammar definition would help ensure future
applications would find the embodied knowledge was machine intelligible and could be
used to limit the scope of explanations which must be generated.

We would like to continue to investigate the use of expert systems as intelligent
tutors. Conceptual definitions of objects and rule hierarchies are used extensively in
explanations, and serve as excellent starting places for those using the system as a tutor.
These hierarchies can be used for quickly identifying areas of interest to different users.

Summary

This research has focused on incorporation of graphics into explanations for a
knowledge based system. The test domain chosen was that of rack integration for the
Space Station Freedom. This test domain is typical of a class of constraint satisfaction
problems and demonstrates that configuration tasks are particularly amenable to
effective use of graphics in explanations. Components of explanation include explaining
knowledge base content, strategy, and decisions.

By emphasizing explanation as a major system goal the systems can benefit: by being
more readily received in the end user environment; by also serving as a beginning
platform for instruction; by providing links to the deeper knowledge underlying that
which would normally be compiled out of the knowledge base; and by providing for
smoother integration of interface, knowledge base, and data which helps ensure they will
continue to be used.
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In the development of a safe, productive and maintainable space station, Automation and
Robotics (A&R) has been identified as an enabling technology which will allow efficient
operation at a reasonable cost. The Space Station Freedom's (SSF) systems are very
complex, and interdependent. The usage of Advanced Automation (AA) will help
restructure, and integrate system status so that station and ground personnel can operate
more efficiently. To use AA technology for the augmentation of system management
functions requires a development model which consists of well defined phases of:
evaluation, development, integration, and maintenance. The evaluation phase will
consider system management functions against traditional solutions, implementation
techniques and requirements; the end result of this phase should be a well developed
concept along with a feasibility analysis. In the development phase the AA system will
be developed in accordance with a traditional Life Cycle Model CLCM) modified for
Knowledge Based Systems (KBS) applications. A way by which both knowledge bases
and reasoning techniques can be reused to control costs is explained. During the
integration phase the KBS software must be integrated with conventional software, and
verified an validated. The Verification and Validation (V&V) techniques applicable to

these KBS are based on the ideas of consistency, minimal competency, and graph theory.
The maintenance phase will be aided by having well designed and documented KBS
software.

Introduction

The 0¢velooment of complex space systems is a costly endeavor; however, the operation of these

systems is where the majority of the cost will occur. For example in the National Space Transportation
System (NSTS), approximately 50% of the current program cost went into the design; however, by the end
of the program lifecyle operations will have accounted for 95% of the total program cost. The important
thing to remember while designing the system is that the ease of operations and maintenance will be the

long term life cycle cost drivers.

Building the space station will be more difficult than the shuttle. For example, it will exist in at

least 20 different configurations during the assembly phase, and at each of these minor milestones, it must
meet different requirements with different resources while still maintaining safety. The shuttle was built on

the ground by one major contractor while the station will be built in space by 4 NASA work packages, and
3 international partners.

All of these factors taken together point out that the space station will be one of the most complex

engineered systems ever taken into space. The Systems Engineering and Integration (SE&I) in the program
are of utmost importance. A&R has been recognized by congress, NASA, and the contractors as being an
enabling technology for designing a safe, efficient, reliable, and maintainable station. However, KBS have
no well defined standards for evaluation, development, and integration. Possible technical approaches to be

employed in each of these tasks will be explained. Without well defined engineering approaches few
engineers will be willing to give this technology a chance in a budget, and safety conscious environment.

" Work funded by NASA contract NAS %18200, the technical monitor was Jon D. Erickson.
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Motivation

The operation of the shuttle requires approximately 5,000 people to support a 10 day mission
every 90 days; the space station will be onorbit for 30 years, hopefully this won't require 45,000 people to
support. The operation of complex systems requires a lot of manpower. The traditional approach to
dealing with faults has been to develops malfunction procedures based on Failure Modes and Effects

Analysis Critical Item List (FMEA/CIL). This approach has been fairly successful in dealing with
common failures, with a few exceptions. For example out of 9 inflight Shuttle Remote Manipulator
System (SRMS) failures none were covered in approximately 200 FMEA/CIL sheets. We are able to deal
with the failures we anticipate; however, the unexpected failures resulting from faulty instruments, and

unexpected causality are very hard to isolate. Currently in the NSTS program these faults are isolated by
ground controllers who examine telemetry data, check system schematics, execute simulations in the
mission evaluation room, and basically do very difficult and thorough analysis in real time.

These demands upon the controllers have caused them to investigate, develop and use a KBS. The
first KBS in the Mission Control Center (MCC) is the Integrated Communications Officer (INCO). It has
been so well accepted by the controllers that at least four more KBS consoles are being planned: Guidance,
Navigation, and Control (GN&C), On-orbit propulsion, Electrical Power, and Life Support [1]. INCO has
produced major cost savings ($480K/Year) [2]. The personnel at Kennedy Space Center (KSC) have also
identified A&R as being one of the most important new technologies which should be developed for SSF
[3]. It is clear that the personnel involved in the operation of space systems consider automation very
important, and even necessary.

Development Model

In the automation development model (Figure 1) several distinct phases are identified which will
insure that safe, productive, and reliable automation applications are put into the SSFP [4]. Steps 1 to 3
help define what is clearly needed in terms of requirements, and the various changes that constantly occur in
major programs. The goals and objectives (step 4) are used to develop criteria for candidate selection. The

approaches of the subconlractors in meeting these requirements is feed into the A&R management function
where a decision is made along with the customer on whether or not a function is worth evaluating for
eventual inclusion into the baselined system. A detailed assessment of the support capabilities available in
the program will consider the maturity and availability of KBS tools in the SSE, analysis of the Master
Measurement and Command List (MMCL) for sufficient sensors and actuators to allow automated

operation, inter- and intra system dependencies, and what KBS technology is applicable to the problem.

During Phase B a thorough evaluation of the Space Station's (SS) functions identified 22

candidates which could be automated. Four different approaches were considered for doing these candidate
evaluations: linear weighting, fuzzy set method, Weight Outranking Method (WOM), and Multi-Attribute

Utility Theory (MAUT) [5-6]. The last two were used. MAUT requires a greater degree of definition of the
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system, and each candidate evaluation is independent of other candidates; however, it is generally more
accurate if criteria and relative importance are well defined. WOM causes each candidate to be relative to
each other candidate, and with a large number of candidates ranking can be difficult. If any further
evaluations must be performed MAUT would probably be the more useful measure considering the level of
design detail at present. This sort of analysis can also be used to determine the most applicable KBS or
traditional technique for implementing a given function. In many cases it will probably be a combination of
both. Based on this work there are two broad categories for which automation is being considered for
performing SS functions: Planning and Operations. Planning entails resource, logistics, and maintenance
management and scheduling. Operations involves: monitoring and analysis, Caution and Warning (C&W)
filtering, Fault Detection Isolation and Recovery (FDIR), Testing, Fault Tolerance and Redundancy
Management (FT/RM), and Command and Control (C&C). This analysis is also justified as part of the
required logistics activities; for example in MIL-STD-1388-1A, the following tasks are identified: 301,302,
303. Task 301 defines the requirements; task 302 identifies possible technologies for implementing these
operational requirements; and task 303 performs the trade-study to identify the most promising
implementation technique.

The next step is the development of a Design, Develop, Test and Evaluation (DDT&E) plan. This
is where the focus of activities moves from SE&I to the responsible development organization (usually
avionics/software). The main thing that most KBS should emphasize is that they should augment, not

replace existing systems, and be initially used in an advisory mode. When used in an advisory mode the
system can be evaluated with little risk.

Results of the DDT&E prototyping efforts will be used to assess the feasibility of onboard
implementation. Recommendations relative to placement of functions on the ground and onboard will be
documented. If the function is designed to go onboard then it will enter full scale development with the
Avionics Development Facility (ADF) as its target. For that part of the application which is designated as
ground software, an analysis will be conducted to determine hooks and scars, and a migration plan will be
developed that is consistent with program guidelines.

Life Cycle Model

The waterfall life cycle model is the most commonly used methodology for development of
software (DOD-2167, and the Software Management and Assurance Program (SMAP) 3.0). In the past
KBS have been developed using "rapid prototyping", "iterative" or the "add rules till it works" development
model. This method does not lend itself to requirements traceability, verification, validation,
maintainability or reliability. This "iterative model" should not be confused with the spiral approach which
is driven by risk reduction, rather than being "code driven". In a situation such as the space station program
where the hardware and software are being developed simultaneously it should be possible to develop KBS

using the flexible life cycle model allowed by SMAP, version 4.3. The most important thing this model
allows is a period of controlled prototyping to define requirements. This pre-requirements "prototyping

phase" is controlled, meaning that goals are defined a priori, and the results are documented in the
appropriate documents. Four sub-phases will be repeated until the Analysis sub-phase fails to identify new
tasks or problems requiring further prototype development. The four subphases are: analysis, knowledge
acquisition, design and implement, and test and evaluation (figure 2).

During the analysis phase Software developers will determine the scope of the problem and the
form of the probable solution(s). In later iterations, this analysis will be partially provided by testing from

the previous pass. The product of this sub-phase will be a set of tasks which the prototype is required to
perform at the end of the iteration. The knowledge acquisition phase will collect the knowledge that is
required to carry out the tasks. A description of this knowledge will be the product of this sub-phase. In
the design and implement sub-phase software developers will select algorithms, search routines, paradigms,
and knowledge representations that are necessary to produce solutions from the knowledge acquired in the
previous step. The series of design decisions and the final design solution are the product of this sub-phase.
During the test and evaluation sub-phase software developers will design tests to verify that the prototype
system is behaving as desired. The product of this sub-phase will include descriptions of the tests, and
interpretations of the test results. If the prototype system is performing suitably, then its current
functionality will be transmitted to the appropriate phases of the SMAP development model.

223



All other SMAP mandates and guidelines will be observed. Specifically, Verification and
Validation of expert system application software will be incorporated into all phases of software
development. Also, expert system application software will conform to the SMAP standards and practices
with respect to: application software integration, simulations, testing, delivery, interfaces, and acceptance.
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2. Modification of the SMAP LCM for development of KBS.

Given that SMAP 4.3 defines an acceptable life cycle model, the next major capability which
needs to be in place is an acceptable KBS tool which will work within the capabilities and constraints in

the SSFP: SSE, Ada, and SMAP. In the past most KBS products have been developed on symbolic
processing computers using LISP. While at one time serious consideration was given to developing space
qualified symbolic processors; this effort has been suspended. With the availability of KBS tools in ADA
(CLIPS, ART and TIRS) this has become somewhat a moot issue; however, the integration of these tools
into the SSF Data Management System (DMS) architecture is an open issue.

Systems Engineering

The space station has highly coupled and interdependent systems. Realizing that no one system
can or should have to maintain a world model, the concept of the Operations Management System (OMS)
was developed. The OMS consists of an onboard portion, the Operations Management Application (OMA),
and a ground based portion Operations Management Ground Application (OMGA). The basic function of
the OMS is to carry out the Operational Short Term Plan (OSTP) taking into consideration the stations
current state (resources, and constraints). The OMS is also responsible for station wide FDIR. While each

system is required to do internal diagnosis, and may for time or safety critical functions reconfigure
autonomously, the OMS has to be responsible for determination of across system impacts, and final
determination of the best reconfiguration. In the operation of the shuttle once one failure occurs, the

immediate question is what is going to fail next; the OMS should help with that analysis. Figure 3 shows
the relationship between the OMA and the systems. The OMS may also have to deal with multiple
automated systems using KBS techniques. If that ends up being the case then some type of fusion will be
needed; one popular KBS technique is that of a blackboard [7]. Blackboards provide a global data base for
multiple expert systems to access asynchronously, and allow cooperative problem solving. The theory of
systems [8] should be used in the development of automated systems in a much more methodical fashion,
for example decomposition, criticality analysis, information requirements analysis, and function and
requirements allocation tools should be used to help define well engineered automated systems [9]. How
systems theory can be applied to fault diagnosis is covered in [39].
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Software Engineering

Just as object oriented programming principals (i.e. software engineering) have popularized the
ideas of abstraction, objects, maintainability, and reusability, it appears that KBS S/W can also be

engineered to have the same desirable characteristics. There are two sorts of KBS reuse: knowledge reuse,
and reasoning (or inference) reuse (see Figure 4). Once the knowledge has been acquired in a useful form it
can be used for a variety of applications such as Fault Detection Isolation and Recovery (FDIR), Intelligent
Computer Aided Training (ICAT), Planning and Scheduling (P&S), and operations advisors. Once a way of
doing any of these applications is determined, it is possible to use the same inference mechanisms in a
variety of systems. Model Based Reasoning (MBR) has popularized this idea for FDIR, for example fluid,
heat and electrical flows are all similar and obey the same basic physical laws: KircholTs current and voltage
laws (i.e. conservation of energy). So once you know how to deal with a open or closed resistor by
extension you know how to deal with a stuck open or closed valve in a fluid system. MBR also brings a
host of other useful tools to the table, such as constraint propagation, and suspension, and qualitative
modeling [10-19, 41-42]. The biggest open issue in MBR is what level of modeling is best suited for a

particular problem. The simulations being developed fit into 4 categories: 1.) highly accurate mathematical
model with real dynamics, 2.) very accurate model, but without all of the coupling between elements, 3.)
table driven interface checking, 4.) very low fidelity. One of the big arguments with model based reasoning
is that it is computationally excessive, for example the Thermal Expert System (TEXSYS), which
implemented DeKleer's algorithm [18] for dealing with multiple faults, required 155,908 Source Lines Of
Code (SLOC), and a variety of computers (symbolic and traditional) to perform the monitoring and control
of the thermal testbed. While what TEXSYS accomplished was impressive (FDIR of 7 system level faults,

and 10 component level faults), it should be considered as only having scratched the surface of what MBR
can accomplish.

In almost all cases the most useful knowledge representation for physical systems is one based on
structure and behavior. Such a model is much more flexible, and multipurpose than rules, decision a'ees, or

a frame based system. Qualitative modeling can view components at a variety of resolutions, for example
in electronics: a diode can be considered from the following viewpoints: as a binary switch, or as a linear

approximation, a nonlinear approximation, in terms of electromagnetic fields (solving Maxwelrs
equations), going to the atomic level and considering quantum mechanics, or considering relativistic effects
(quantum electrodynamics). In most cases the first two models mentioned are sufficient. Qualitative
modeling also allows one to view systems (connected components) at different levels of detail, for example
an operational amplifier can be considered in terms of inputs, and outputs voltages, and amperages, or as a
differential amplifier. One is a result of the physical makeup of the device, the second interpretation results
from the fact that it is an engineered device designed to perform a function.

225



Automation Integration

Besides architectural compatibility and interfaces the major integration efforts for KBS must be in
the area of Verification and Validation (V&V). Traditional S/W V&V is largely a heuristic art that involves

path checking and test generation. The two main methods are the black box and glass box methodologies.
The black box is the interface checking functional requirements and limit checking verification, while the
glass box is more concerned with how the functions are accomplished, exercising all branches, and code
walk throughs. The importance of modularizing a program or rules can not be over emphasized, without it
one is faced with a combinatorial explosion of possible paths.

Space Station subsystems
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Figure 4. Knowledge and Reasoning reuse in KBS, by definition of vertical and horizontal commonality
can control development costs.

Current research gives many clear directions on how to do V&V of rule based systems [20-26].

Rushby [25] develops the idea of "minimal competency" which states: while an optimum solution may be
hard to define or verify, it is possible to define quite sharply what the minimum level of acceptable behavior

is. Nguyen's CHECK program [22] checks the consistency of the knowledge base in the following
fashions: redundancy, conflict, subsumption, unnecessary if rules, circularity, unreferenced and illegal
attribute values, unreachable conclusions and dead end goals or if conditions. Stachowitz [21] has extended
these conditions to deal with certainty factors [23]. The only difficulty is the integration of these techniques
into a tool which is usable in the SSFP. One of the biggest stumbling blocks in the way of using rule
based systems is that these V&V concerns are all trying to address the basic problem that rule based

systems are not bounded in time and space computationally because of the way the underlying data
structures are setup (Rete or Treat networks).

Since decision trees are derived from data, the data must be accurate; however, generating Ada code
from a decision tree is straightforward, and therefore the V&V should be easily accomplished using Ada
V&V methods. Model Based Reasoning can be done in procedural languages, so ADA should provide no
problem however the lack of tools does. The issue of V&V for MBR systems is basically to make sure the
simulation used is accurate. This simulation can be considered the knowledge base. The reasoning
techniques which interface with these simulation knowledge bases should be verified and validated separately
(just as rules and their interpreter in expert systems are validated separately).
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The other issue involved in the integration of KBS is interfacing with Ada procedural code. Since

there are a variety Ada KBS tools (CLIPS, ART, and TIRS) this should not be a major problem.

Diagnostics

Currently most of the space station's systems have baselined Built In Test/Built In Test Equipment
(BIT/BITE) as being the solution to performing FDIR. The main advantage of this technique since it is
performed in hardware, is its quickness. While this is a popular technique, the shortcomings of this
approach are fairly well known: false alarms, can not duplicates, retest okay, and failure to diagnose. In
fact the unreliability of BIT/BITE has prompted the generation of measures of how poorly it performs [27],
as noted "the experience with automatic detection and isolation systems, in the form of BIT, has not lived

up to expectations. False alarm, false isolation, and failure to diagnose errors are reported as a result of
system diagnostic inadequacies. With the existence of such errors, the evaluation of the operational
capability of BIT/BITE becomes a real challenge."

While BIT/BITE is not useless, it should definitely not he the only technique available for FDIR.
A more intelligent approach which considers the overall systems state will help remove false alarms by
verifying that each Orbitally Replaceable Unit (ORU) is receiving its necessary inputs with no noise or bad
signals. It is extremely important that the inputs and outputs of each ORU are well instrumented to help
with eventual automated diagnosis. Failure to diagnose errors in BIT/BITE can be solved by considering

long term trends such as sensor failures and calibration errors (this is a 30 year not 10 day mission).

It would appear that using BIT/BITE by itself won't solve our problems. We could create a "fault
dictionary" by using a simulation and a list of the kinds of faults anticipated. This can he considered an
automated FMEA/CIL search table. This results in a list of fault/symptom pairs, we can then invert this

list in a variety of ways: Bit string register level comparisons [28], machine learning [29], or even a rule
based expert system [30]. The problem with this approach when used on any reasonably complex system (a
space station for example) is that the creator of the diagnostics must settle on a small, fixed class of
expected faults so that acceptable fault coverage (statistically likely), isolation, and computing efficiency
can be realized. A fault is predefined, while it actually should be "anything other than the intended
behavior" [12]. Again it should be emphasized here that this sort of diagnosis is good as a second layer on

top of BIT/BITE to help with some of the ambiguities, and inconsistences that arise, but should not be the
only answer.

Perhaps decision trees [31-33] could help with writing down an efficient sequence of tests and
conclusions to guide a diagnosis. Decision trees are useful in other aspects as well; for example, they can
help flag useless and redundant tests, and depending on the algorithm used to generate them usually give the
most efficient sequencing of tests available based on information theory (entropy), but even this heuristic
can be in error by as much as 30 percent from the optimal solution [32]. Again the point is that they are a
way of writing down an answer which is already known.

Rule based expert system provide an' efficient computational mechanism [34] for using the

knowledge of expert troubleshooters. This approach is more intuitive, and perhaps more in tune with the
actual operation of the system than "fault dictionaries"; however, there is a strong system dependence (a new
set of rules is needed for every system), and minor changes in the system (upgrades) often render an entire
knowledge base obsolete, and the time needed to acquire the knowledge makes it hard to deliver a rule based
expert system at the time of delivery of the actual system (it hasn't been operated enough for technicians to
figure out how to diagnose it). A more subtle failing in rule based systems is a lack of clarity, a rule
saying "IF voltagel=100 and voltage3 = 0 THEN resistorl = open" gives no clue as to how the components
are connected or where these measurements are taken. This approach does not lend itself to maintainability

(without a schematic the rule is gibberish). Another failing of rule based systems is that often since there
are no requirements or specifications, failures often go unnoticed since there is no idea of what the "correct"
behavior should be. Many rule based "FDIR systems" do nothing more than sensor verification; however,
once a failure of a sensor is identified they are often incapable of performing any useful diagnosis due to a
lack of complete information [ 19].

The approach which is suggested here would combine elements of the previous approaches, but
would use as their backup Model Based Reasoning (MBR). Research in MBR has developed many
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mathematically sound methods for doing diagnosis, and has made significant progress in dealing with some
of the more difficult fault diagnosis problems: multiple faults, fault masking, unexpected causality
(dripping pipes for example or a solder bridge), unanticipated failure modes, and faulty instruments. None
of which can typically be dealt with in other FDIR systems. The research in this area has developed many
sharply focused techniques [10-19].

The initial efforts in Fault Tolerance Redundancy Management (b'T/RM) have used Digraph Matrix
Analysis (DMA) to capture connectivity or causality among components and to help develop and verify the
design of redundancy management algorithms and fault tolerant systems [35]. DMA can also help in the
determination of overall system reliability when used in conjunction with Failure Modes and Effects
Analysis Critical Item Lists (FMEA/CIL) work sheets. DMA will expose points of failure that have
system wide or safety critical consequences. The DMA tool uses the Warren algorithm [36] for transitive
closure to compute reachability. This reachability analysis is typically the first step taken when using a
MBR system.

Another tool being used in this effort is the Systems Testability Analyzer (STA) which is part of
the Integrated Diagnostic Support System (IDSS) which has been developed in Ada by Harris Corporation
for the NAVY. It uses a systems design to determine testability and ambiguity groups, and help improve
fault detection probability. The testability analysis flags areas where ambiguity groups arise (you can't
figure out which component is faulted), and suggests either further test in operations, or where to put
additional instrumentation during design [37]. The Adaptive Diagnostic System (ADS) utilizes an
opportunistic approach to doing FDIR. It starts with the simplest model, i.e. compiled, lookup table
knowledge, and proceeds through several intermediate stages until it does a full simulation. Two of the
intermediate knowledge levels are: analytical and logical. The analytical approach uses dependency models,
fault signatures, and BIT information to detect and isolate faults. The empirical approach uses production
rules, to help mask BIT/BITE false alarms. ADS can also update its own statistical parameters to
reorganize its search more effectively dependent on real world behavior of the system. The algorithm used
to generate the decision trees in STA are based on Artificial Intelligence (AI) search techniques and
information theory [31]. Ways in which MBR can extend these tools are being investigated.

Planning

Another area where automated systems could save a lot of manpower, is in planning and
scheduling the resources, manpower, and experiments on the SS. Planning and scheduling has received a
lot of attention in the literature [43-49]. This problem is basically intractable in the following ways: job
shop scheduling is NP-Hard, creating an optimal schedule is exponentially related to the size of a given
problem, determining if an arbitrary plan is feasible is NP-Complete, and determining an admissible first
step is NP-Hard [43-44]. The way in which constraints are represented can have a major impact on how
well solutions can be determined [45]. A Computer Assisted Scheduling System (COMPASS) has been
developed in Ada, using XWindows for the operator interface, which has many features desirable for NASA
programs such as: discrete and continous resources, returnable and consumable/producible resources, and
can reason about state dependent activities including both boolean and real valued state variables. This

system allows interactive, mixed initiative scheduling in several different contexts, multi-level scheduling,
multi-interval scheduling, and multi-agent scheduling [46].

Current Status and Future Plans

Honeywell continues in the development of the Maintenance Diagnostic System (MDS) which

will augment the existing FDIR system in the Attitude Determination and Control System (ADCS) by
isolating faults, aiding in preventive maintenance, and maintenance instruction [38]. A port from Sun
workstations to PS/2s has also been accomplished. The predictive maintenance aspect takes advantage of
empirical relationships, such as the fact that in the lasers in the ISA ring gyros have a fault signature that
can be recognized 2-3 months in advance. It turns out that if one plots the lasing power against the input
current there is a characteristic curve. However, when a laser starts to go bad its performance strays from
this curve in a fairly predictable fashion. It is this sort of trend analysis that KBS are ideally suited for.

As part of MDSSC's participation in the Advanced Automation Methodology Project (AAMP),

which is defining engineering methodologies and standards for developing KBS in the SSFP, the recovery
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part of an FDIR system for the Space to Ground Communication link is being developed. With the
possible movement of the FDIR functions to the ground at Permanently Manned Configuration (PMC) this
may be one of the most important links for the space station. This project is using existing tools already
developed at Johnson Space Center (and possibly General Electric), and augmenting them by adding the
recovery procedure generation function. An IR&D for doing ICAT on the C&T system is being initiated
this year.

An effort to enhance the Active Thermal Control System (ATCS) simulation with an external
control architecture is being initiated. This is an outgrowth of the Thermal Expert System (TEXSYS)
demonstration project. This task order will initially involve MDSSC Thermal personnel in developing the
simulation and interfaces, and LMSC in developing the control algorithms, and identifying interesting (not
easy to identify) fault modes. This system will be designed with an interface so that an external control
system can be implemented (either human, or some automated system).

The DMS contractor (IBM) has been asked to perform a common space station expert system
services trade study. This task would involve polling the space station community to provide inputs for a
white paper on common expert system services (emphasis on FDIR). They have also been asked to
develop a DMS system management FDIR function using KBS techniques.

QMR and DXPlain are two medical diagnosis expert systems which are being considered in a trade
study being undertaken by Crew Health Care System (CHeCS) personnel to pick a diagnosis system for the
station. A medical diagnosis expert system is important because there will not be a physician immediately
available all the time on the ground, and because there may be life threatening conditions when ground
support is unavailable (C&T or the Tracking Data Relay Satellite System failed).

Conclusions

This paper has described a technical approach which should allow the integration of KBS into the
SSFP. It is important to remember that KBS are actually "people amplifiers" and should be used to
augment both the human and machines capabilities [40]. The current status of several SSFP KBS projects
was briefly reviewed. The efficient usage of KBS technology in the SSFP should make the operation of the
station much easier and cost effective.
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Abstract

Advanced automation is required to reduce costly human operations support requirements for complex

space-.based and ground control systems. Existing knowledge-based technologies have been used successfully

to automate individual operations tasks. Considerably less progress has been made in integrating and

coordinating multiple operations applications for unified intelligent support systems. To ill[ this gap, we are

constructing SOCIAL, a tool set for developing Distributed Artificial Intelligence (DAI) systems. SOCIAL

consists of three primary language-ba.sed components defining: models of interprocess communication across

heterogeneous platforms; models for interprocess coordination, concurrency control, and fault maamgement:

and for accessing heterogeneous information resources. DAI application subsystems, either new or existing,
will access these distributed services non-intrusively, via high-level message-based protocols. SOCIAL

will reduce the complexity of distributed communications, control, and integration, enabling developers to

collccl|traLe on the design and functionality of the target. DAI system itself.

Introduction

Operational support of complex space-related systems currently entails expensive manpower require-

ments. Human labor costs are particularly high in manned space systems such as the Space Shuttle and the

planned Space Station: in these remote settings, scarce manpower that is dedicated t.o operational support

cannot be allocated to primary mission objectives. The econolnic viability of increasingly advanced space

systems hinges on significant increases in operational support automatiou [Ba88].

Standard engineering formalisn_s such as control theory and operations research can be used to auto-

mate simple control, monitoring, and scheduling tasks. Itowever, such methods do not generalize readily

t.o non routine contexts: assessing and responding to system failures; revising plans in the face of unfore-

seen conditions; and similarly difficult cognitive tasks. Over the last several decades, artificial intelligence
(A1) researchers have addressed these problems by developing symbolic modeling and automated reason-

ing techniques. These methods offer superior flexibility and generality for modeling human analytic and

decision-making processes and for solving combinatorially complex problems.

Expert. systems, model-based reasoning, and other knowledge-based tools and methods have been

applied to automate tasks including fault detection and diagnosis, planning and scheduling, data analysis,

and iuformatio, storage and retrieval. Several important prototypes systems developed in recent years are

being extended and validated in field tests, in preparation for integration into existing operational support

systems for colnplex networks [Ad89b,Br89,Ba88,Mu89,Ru88].

[ntegrat.ing and coordinating multiple knowledge-ba.sed applications related to a common domain are

critical problems that have received little attention until recently [Ad89a]. Existing intelligent applications
for operations support rely on system-specific interfaces to users, data feeds, databases, and conventional

automation software. These "standalone" systems also lack access and control facilities for working together

cooperatively on clearly related operations tasks, such as intelligent diagnosis and error-tracking. As increas-

ing numbers of intelligent support tools are deployed together ill common dolnains, the need for effective

tools for integrating such systems into a unified cooperative framework will become critical.

This paper describes SOCIAL, a development framework for distributed systems that is intended to

fill the technology gap. SOCIAL consists of three primary language-based tools: MetaCourier supplies

functionality for interprocess communication and control access across heterogeneous platforms; MetaAgents

defines control models for interprocess organization, data replication, concurrency management, and fault
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detectionandrecovery;MetaViewsdefinesa uniformdatamodelfor accessingandcontrollingpersistent
inforlnationstoressuchasdataandknowledgebases.Newandexistingapplicationelementsaccessthese
distributedservicesnon-intrusively,viahigh-levelmessage-basedprotocols.SOCIALtherebyreducesthe
complexityof distributedcommunications,control,andintegration,enablingdevelopersto concentrateon
thedesignandfunctionalityofthetarget,systemitself.

ThenexttwosectionsofthepaperdefinethecentralsystemintegrationissuesthatSOCIALaddresses
andreviewrelatedresearch.Next,SOCIAL'sarchitectureandusermodelaredescribedandillustratedwith
a hypotheticaloperationssupportexample.Theremainingsectionsoutlinethedesignandfunctionalityof
SOCIAL'sprimarylanguage-basedsubsystems.

Integrating and CoordinatingHeterogeneousIntelligent Systems

Severalbasicproblemsarisein integratingandcoordinatingmultipleknowledge-basedsystemsrelated
toacommondomain.First,differentactivitieswithinadomainsuchasoperationalsupportgenerallydep_'nd
oudifferentkindsofknowledge,skills,tools,andmethodologies.Knowledge-basedautomatedassistantstend
to requirecorrespondinglydiverserepresentation,reasoning,andinternalcontrolmodels.Integratingsuch
applicationsthusrequiresmethodsfor reconcilingoraccommodatingheterogeneousinternalarchitectures.

Second,differentta,skswithina givendomain,whiledistinctivein manyrespects,frequentlydisplay
importantcommonalities.Forexample,networkoperatorsandmanagerssharebackgroundinformation
andexpertiseconcerningconfigurationprocedures,althoughtheirrespectivedepthandapplicationofsuch
knowledgemaydiffer.A frameworkforintegratingmultipleintelligentapplicationsinagivendomainmust
facilitatesharingof knowledgeresources,includingsymbolicmodelsof domainstructures,behavior,and
operationalexpertise.Otherresourcesof commonutility acrossapplicationsincludeinterfacesto: users:
databases;targetsystemdatafeedsandcommand/controleffecters;andconventionalsoftwarefor data
analysis,performancemonitoring,and(low-level)automatedprocesscontrolandsatingsystems.

Third, the integrationstrategymustbenon-intrusive.Existing"standalone"knowledge-basedand
conventionalprogramsanddataresourcesrepresentsignificantinvestmentsin capitalequipment,software
development,andsafety(i.e.,frompriorvalidationandverification).It wouldbeprohibitivelyexpensiveto
discardsuchresources or to re-engineer them extensively.

Fourth, applications and resources are generally distributed across heterogeneous software and hardware

platforms connected by one or more (local area) networks. A generalized communications capability is needed

for data exchange and control access across intelligent applications. Moreover, this functional capability

should be accessible through a modular, high-level interface: minimizing the visibility of the mechanics

of distributed communication fosters maintainability of application code and accessibility for developers
unversed in exotic communication protocols.

The final and perhaps most critical problem is establishing cooperation between knowledge-based ap-

plications once they' are integrated into a unified framework. Coordination presupposes that applications

somehow know about one another, their respective capabilities, activities, intentions, and needs. In addition,

coordination also presupposes control and communications models for exchanging requests, commands, sug-
gestions, beliefs, and other information. Again, to facilitate maintainability and extensibility, it, is important
that application models and interprocess control mechanisms be partitioned from one another and from

distributed communication functionality.

Related Work

Distributed Artificial Intelligence (DAI) deals with the solution of complex problems by networks of

autonomous, cooperating computational processes [Hu87]. These processes, often called agents, can be dis-

tributed physically across computational resources and logically across an organizatioual structure. Typically,
cooperation is mediated by message-passing communication between agents.

DA1 research to date, has focused ahnost exclusively on domains in which single organizations of agents

cooperate to solve sinfle complex tasks [Bo88], including data fusion [Le83] and speech understanding [Bs87].
These "single problenf' DAI research efforts have concentrated on developing complex local control structures

for coordinating a network of homogeneous agents to converge to globally consistent problem solutions. For

exanrple, intelligent schedulers prioritize local agent tasks for execution according to heuristics or metrics

232



that gaugeprobableglobalproblem-solvingeffectiveness[Le83].Morecornplexplannerscreate,order,and
filteragenttasksadaptively,basedon hierarchies of local and global problem-solving goals [Ha86].

Single problem DAI architectures, while suggestive, are not directly applicable to the integration prob-

lems described above. DAI research has generally assumed: a single logical organization of homogeneous

complex agents, such as distributed blackboards; correspondingly uniform models for [ntra- and inter-agenl

communication and control; and homogeneous software and hardware platforms [Hu87,Bo88,Ja89]. All three

assumptions are violated in the complex DAI environments of interest here.

Recently, DAI research has broadened to consider domains such as operations support and battle man-
agement, which encompass collections of related problems of varying complexity. While requisite problem-

solving skills, knowledge and data resources may overlap considerably, the solutions to problems m these

domains may be independent or only weakly dependent upon one another. These characteristics favor

coarser-grained, more loosely-coupled DAI architectures, comprised of individual agents and organizations

of agents that focus on particular problen_s or problem sets disjoint from one another. A useful human

analogy is a legal or medical practice of consultants with different areas of specialized expertise.

Fine-grained scheduling and planning of inter_)rganization activities tend not to be critical issues in

these domains because agent organizations only depend weakly on one another. Instead, the critical design

issues are: (a) to integrate agents and agent organizations bounded by different knowledge representation,

reasoning, control, and communication models; and (b) to access and integrate existing conventional software
and data resources.

Initial "multiple problem" DAI applications have failed to address all of the issues raised in the last.

section in a generalizable manner. For example, KB-BATMAN integrates three intelligent decision aids

for a ,nilitary tactical command. However, the subsystems only communicate indirectly, through pairwise

interactions with a shared relational data base and in a fixed, predefined control pattern [Nu88].

OPERA assists in operations support for NASA's Space Shuttle Launch Processing System [He87,Ad89b 1.

Its hierarchical blackboard architecture successfully integrates and coordinates heterogeneous expert sys-

t.ems, which share external interfaces and knowledge bases [Ad89e]. However, OPERA applications are all

co-resident (i.e., physically non-distributed). Knowledge bases are restricted to a common representational

model. OPERA also lacks generalized tools for handling errors and accessing data feeds or databases.

Several DAI development tools support integration of intelligent applications with heterogeneous or-

ganizational models. ABE and AGORA provide predefined models for inter-organizational control (e.g.,

data.flow, blackboard, transaction-based) [Bs87,Ha88]. ABE also supplies a high-level graphic editor and

an interface to a commercial relational database management system. AGORA uses a shared memory com-

munication model, while ABE uses message-passing. Both tools employ virtual machine models that map

onto particular platforms and network communication services (e.g., MACH, Chaosnet). MACE [Ga86], a
message-based DAI testbed incorporates an elegant declarative language for modeling agents' roles, skills,

goals, and acquaintances. However, MACE offers limited tools for coordinating multiple agent organizations

and lacks support for heterogeneous processing platforms.

Architecture of the SOCIAL DAI Development Framework

SOCIAL is a generalized framework for developing both single and multiple problem DAI applications.

Its architecture, shown in Figure 1, consists of a layered, partitioned set of system building blocks and

development interfaces.

Developers use the high-level Application Interface to access predefined object classes, called Types.

Each Type represents a different, generic DAI control skeleton for intelligent agents or agent organizations.

Organization Types are skeletons for agents whose logical functions are to coordinate a collection of agents

(i.e., organizational members), and to manage their communications with outside agents and organizations.

DAI systems are constructed by instantiatmg (or specializing and instantiating) suitable agent Types and

embedding application elements within those "wrapper" objects. Application elements access the distributed

services of its embedding Type instance through discrete high-level message-based Protocols. A given DAI

system can integrate multiple heterogeneous agents and agent organization Types.

Agent Types are structured as an inheritance hierarchy of object classes, whose initial subclasses are
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shownin Figure 2. Discreteapplicationelements(e.g.,knowledgesources),areembeddedin basicRe-
ceptionistagentskeletons.Specializedsubclassesof theReceptionist.,calledGateways,areinstantiat.edfor
embeddingprotectedknowledgeor databases.TheManagerTypeis therootAgentOrganizationclass.
Managersubclassesincludevariantblackboardarchitecturesandotherorganizationalmodelssuchashave
beendevelopedinsingleproblemDA1research.TheseTypesaredescribedfurtherin theMetaAgentssection
of thispaper.

Agent and Agent Organization Classes

MetaCourler I

Network, Processor, and Operating System Platforms [

Figure .1: SOCIAL Architecture

MetaCourler Agent

Receptionist Manager

Database Knowledge Base Distributed Hierarchical
Gateway Gateway Blackboard Distributed

Blackboard

Figure .2: Agent Types in SOCIAL's Application Library

Each Type is comprised of other kinds of objects called Models, which define different aspects of dis-

lribul, ed behavior. Models are accessed through a separate Agent Development Interface. At present,

SOCIAL describes three types of Models, which are represented in terms of compilable object-oriented lan-

guages. The Met.aCourier language, SO(:IAL's basic substrate, defines a class of Models for distributed

comnmnications. MetaAgents defines a class of intra and inter-process control Models for agent and agent.
organizations. The MetaViews language defines a class of Models for accessing different models of data and

knowledge. Both languages exploit MetaCourier's distributed comnmnication services.

In effect, developers use the Application Interface to access a library of predefined DAI building blocks.

Most of these objects can be customized by setting mode switches that override default, services such as

error-handling behavior. Applications may sometimes require service options or new behaviors not provided

by' the library of existing agent Types. In these situations, the dedicated languages comprising the Agent
Development Interface can be used to extend the library by defining specialized Models and combining them

t.o create new agent Type subclasses.

Operations Support using SOCIAL

A hypothetical example of a DAI operations support system based on SOCIAL is illustrated in Figure

3. The target domain is a distributed ground control network such a,s a launch processing system, consisting

of user consoles, computers, data links, ground support equipment, and embedded sensors. Sensor monitor

programs would be realized as Receptionist agents, with asynchronous or synchronous communication Mod-

els, depending on individual polling requirements. A relational database for tracking problems would be

integral, ed using a Gateway agent. A Blackboard-based data fusion Manager Agent would coordinate sensor
polling, measurement interpretation, and anomaly detection. A diagnoser agent would generate and test
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faulthypothesesandissuerecoverysuggestionsto anExecutiveManagerAgent.Operationsuserswould
viewongoingactivitiesandissuequeriesorcommandsto theExecutiveanddatabaseGatewayagents.

[User Interface_ Agent ]_ _[ fError-TrackinglL DB)

1 /[magnoser Agent DL GatewayAgent

[ Executive Agenl I-_...,_ l /

I DataFusionAgent ]

 J't I ",.
iMon',orI t on,,orII on"orAgent 3 Agent lb Agent la

f Data Feed _ { Sensor-la 1]
Sensor-lb

(Network Op. Sys._ _,Subsystem

I ] MonitorAgent 2a

I Sensor-2a
Subsystem 21

Figure .3: Hypothetical DAI System for Operation Support based on SOCIAL

'File renlaining sections describe SOCIAL's underlying languages and Models, which enable Agent. Types

to provide distributed services for integrating and coordinating DAI application elements.

MetaCourier: A Language for Distributed Communication

A(lvanced operational support architectures for space and ground control systems will have to integrate
_.llmrging hardware and software technologies with existing applications (both conventional and intelligent ),
interfaces, languages, and hardware platforms. Cost and reliability concerns dictate an integration strategy

that minimizes intrusive modifications to existing system elements and allows them to be maintained and

enhanced indel)endently. Moreover, this strategy should maximize portability, to enable migration of system

components to newer, high performance processor platforms. Technology transfer and management risks a,'e

also minimized, by reducing adjustments to training and operational procedures, and standdowns for system

replacement and validation.

MetaCourier is a high-level object-oriented language for distributed communication that is designed to

achieve these system integration objectives [Pa88]. The leading alternative communication model, based on

the Remote Procedure (:all (RPC) facility, is asymmetric and pa.irwise-restricted: an active client process
iJ_vokes one (and only one) passive server process, which responds as required. In contrast, MetaCourier

services provide fully peer to peer transparent communication between distributed applications.

The MetaCourier language defines four major object cla.sses, Agents, Environments, Hosts, and Mes-

sages. Agents are intelligent, self-contained, autonomous processes. Host object attributes characterize the

structure of network nodes: their processors, operating systems, peripherals, network types and physical

addresses. Environraents depict software dependencies for Agents, such as language compilers, and editors.

Environments can be specialized to enhance communication performance for particular data types (e.g.,

sparse arrays), by defining custom encoding and decoding methods.

A MetaCourier Message defines the specific distributed communication behavior used by an Agent

when it executes in an Environment. Both asynchronous and synchronous message-passing Models are

available. An application Agent communicates with another by formulating a Message using the relevant
Model protocol, for example:

_synchronous :

Synchronous :

(Tell :agent sensor-monitor :sys Symbl "(poll measurement-Z)"

(Tell-and-Block :agent user-interface :sys Rac2

"(trigger-alarm sensor-I windo_-2)")
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MetaCourierhandlesmessagerouting,transmission,anddeliveryservicestransparentlyto thesource
andtargetagents'associatedapplications.Conceptually, tile Agents' associated Hosts and Environments

acl as filters that manage processing and network dependencies in the communication process (cf Figure

.t). Distributed control is achieved in a DAI application when Agents autonomously invoke other Agents.

(_oncurrency is realized when multiple Agents are invoked simultaneously (across multiple Hosts).

Environment Host Host Environment

_ _ Messages ___

Figure .4: Operational Model of MetaCourier Communication Process

The openness of MetaCourier's communications architecture distinguishes SOCIAL from other DAI

development frameworks, such as ABE, AGORA, MACE, ERASMUS [aa88], and AF [Gr87].

Status: MetaCourier can be used as a standalone development language. It is currently available for:
ANSI C and Colnmon LISP programming languages; MS-DOS, UNIX, VMS, Macintosh Multifinder, and
Lisp Machine operating systems; PCs, Macintoshes, Lisp Machines, VAX, Sun, and HP workstations. It

currently utilizes TCP/IP on Ethernet and Appletalk protocols, but is extensible to other OSI-compatible
t_etwork protocol suites.

MetaAgents: A Language for Agent Control and Coordination

The MetaCourier language offers a high-level interface that conceals the complexity of interprocess

comnmnication in distributed heterogeneous computing environments. Additional development capabili-
ties are needed for internal process control, peer to peer inter process coordination, and other distributed

control services. MetaAgents is an object-oriented language for defining control Models to address these
requirements.

The basic kernel MetaAgents Model protocols provide the equivalent of a traditional operating s)'st.em's

executive process control operations: agent creation, duplication, migration, and deletion. These protocols
provide development-level options for specifying how to control Type inheritance behavior across distributed

environments. The creation and copy protocols are critical because they allow new Agents to be defined
dynamically at runtime.

MetaAgents Models support high-level message and concurrency management services. MetaCourier

makes minimal assumptions about the ordering behavior of the low-level network protocols for message

delivery, providing protocols to enforce simple message ordering schemes such as First In First Out (FIFO)

delivery at particular nodes. MetaAgents Models define polices that use such guaranteed orderings to satisfy'
synchronization requirements of particular DAI applications [Pe89].

For example, MetaAgents supports an "atomic" broadcast protocol, which guarantees a globally in-
variant ordering of message delivery across all networks nodes. Atomic broadcast requires multiple phases

of nlessage exchanges; it, should therefore only be used selectively, in situations where partial orderings of
many to-many agent interactions are insufficient and where lower performance can be t,olera.ted. Atomic

b,'oadcasts are useful for maintaining consistency in transaction-oriented applications, such as where multiple
agents send messages that operate on distributed replicated data.

MetaAgents defines other complex communication Models [Bi89] using a Group-based conversation

abstraction: protocols are defined for agents to join a Group, to converse with other Group members via

directed messages or broadcasts, and to depart, the Group and the conversation. For example, a reliable

Group broadcast, protocol propagates information from one agent to other Group members such that. all

operational agents receive this information despite failures in the system.
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Groupsandbroadcastsareveryusefulfor replicatingdatafor concurrencyandfault management.
Bottleneckscausedbycentralizedcontrolcanbealleviatedbydistributingtaskelelnentsamougagentsthat
operateconcurrentlyonreplicateddataandcontrolstateinformation.Similarly,datareplicatedalongtime
criticalcout.rolpathscallhelptocompensateforcommunicationdelaylatenciesindistributednetworks(due
topacketlossandnodelodevariances)thatleadto violations of real-time processing constraints. Replicated

data can also be used to maintain redundant copies of critical state information to facilitate recovery' control

strategies for fault tolerant behavior in distributed systems. Group protocols also ensure orderly reintegration

of agents into DAI applications when dropped network links are recovered.

The following sections describe basic SOCIAL agent Types to illustrate the roles of MetaAgents Models.

H.eceptionists and Gateways

The Receptionist is the root or kernel MetaAgents Type tor single agents. It specifies basic commu-

nication services through MetaCourier or more complex MetaAgents protocols and Group protocols. A

Receptionist agent is responsible for serializing concurrent requests, for scheduling access to its embedded

application, and for detecting and recovering from possible error states that the application might enter. Re-

ceptionists manage the control transactions that implement fault tolerant behavior; agents departing fi-om a

Group due to failures of nodes or network links and agents rejoining a task processing conversation following

network recovery. Receptionists can also be designed to manage security functions, for restricting access t.o

specific application elements.

Databases and application programs are often constructed using commercial development tools such

as DBMSs and AI shells. SOCIAL simplifies the design of Receptionists in such cases by abstracting the

application independent aspects of tools' control and data interfaces into specialized, predefined Reception-

isl subtypes called Gateways. Gateway agents supply predefined interface protocols for formulating queries

or commands, concealing variations of syntax across coral)arable tools. Accessing a resource or program

through a (_ateway reduces to defining the application-st)ecific aspects of the interface, in particular, for-

mulatmg queries or commands whose arguments reference particular objects or attributes. Gateways for AI
development shells must provide bidirectional interfaces for control as well as for data, so that intelligent

applications can initiate queries or commands to other agents in the context of their own environments.

Manager

The distributed services provided by Receptionists enable application agents to interact through a

qoosely-coupled" model of cooperation. More sophistica:ted control is often needed to coordinate a set of

agents working together on one or several closely' related tasks, The MetaAgents Manager and associated

subTypes provide the requisite organizational control functionality.

A Manager regulates all commuuication between the agents within all organization via directed and

broadcast protocols, providing a shared memory and a locus for centralized oversight and control. The

Manager agent also mediates communication between external agents and organizational members, such

as requests for data or services. To accomplish these various routing functions, the Manager maintains a
"database" describing member agents and their relationships. Managers can be replicated to avoid processing

bottlenecks and single point failures, although this entails additional control and performance overhead.

Specialized Manager subtypes will realize specific tightly-coupled distributed control frameworks, such

as blackboard architectures [Ni86,Ja89]. The Manager Type does not restrict membership based on agent

Type. This means that organizations can be arbitrarily complex. In particular, SOCIAL supports hierarchi-

cal organizations, in which a Manager coordinates other Managers. Thus, SOCIAL's library of organization

Types can incorporate or subsume popular single problem DAI architectures, as well as hierarchical (multiple

problem) frameworks such as OPERA. More important, SOCIAL permits different elements of a complex

DAI system to be implemented using dil:Jerent agent and agent organization Types. MetaCourier provides
the substrate or "backplane" of distributed conmmnication services that enables high-level integration and

coordination. Developers can exploit SOCIAL's support of heterogeneity to implement application elements

using the most appropriate strategies for control and cooperation.

Status: The MetaAgents language design specification has been finished. Kernel process control protocols

have been implemented. Initial control Models, Gateways, and agent organization Types will be completed

by mid- 1990.
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MetaViews: A Language for Accessing Heterogeneous Data Resources

SOCIAL's Gateway agent Type facilitates non-intrusive integration of databases and knowledge based
systems implemented using standard, commercial DBMSs and AI shells. Gateway, interfaces and services for

distributed communication and process control derive from MetaCourier and MetaAgents Models. Additional
services are required for formulating and processing queries and commands. MetaViews will address this

problem through interface Models that are specific to particular DBMS or A1 shells. These Models will be

comprised of two elements: high-level interface protocols and services for translating between t.he protocols

and the tool language in question. The protocols represent SOCIAL's equivalent t.o a programming interfac, _
library.

Figure 5 depicts the functions performed by a MetaViews interface Model. The block on tile left

I,'pros,'nts an application agent A enlbedded in a Receptionist: the right hand box represents a dat.abase or

knowledge-based system B embedded in a suitable Gateway. A issues commands for controlling or accessing
B m t.erms of the functional protocols. A's Receptionist translator services convert those commands into an

efficient canonical data represention, which are dispatched via Meta(:ourier. B's Gateway translator services

converts canonical commands into the tool-specific language using the (inve.rtible) protocol library. A's

Recopt.ionist and B's Gateway use MetaAgents services to manage concurrent messages.

Receptionist Agent A

Application

MetaViews Interface
Protocol Library

MetaViews
Translation Services

MetaAgent
Control Services

MetaCourler
CommunicationServices

Gateway Agent B

DB or KBS

MetaViews Interface
Protocol Library

MetaViews
Translation Services

MetaAgent
Control Services

MetaCourier
Com municationServices

Commands and data in

Canonical Representation

Figure ..5: Operational Model of MetaCourier Colnmunication Process

MetaViews technology is extensible to integrate other kinds of information system tools, such spread-

sheets, computer-aided design tools, data analysis libraries, and data acquisition software.

Status: The MetaViews language design specification has been completed. Initial versions of MetaViews

Ihweptionist and (;ateway Models for ANSI C and (lomrnon Lisp fox' Oracle aud Sybase relational databas,,_.
KEE and CLIPS AI shells will be complete by' mid--1990.

Conclusions

Operations support, of complex systems exemplifies "'multiple problenf' Distributed Artificial Intelligence

(DAI) domains. These domains are distinguished by their heterogeneity. Domain problems vary in difficult','

and degrees of interdependence. Application software and data resources can differ substantially with respect

to structure, complexity, intelligence, and interfaces. Software and hardware platforms are also typically

heterogeneous. The central design concerns in such domains are: (a) to integrate these diverse elements

non intrusively; and (b) to supply flexible coordination models to allow iutelligent applications to interact
cooperatively as a coherent, unified system.

SOCIAL is a generalized tool for developing DAI systen;s. It simplifies design and maintenance I)3,
enforcing a clear separation between application-specific functionality and distributed services. Application

elements access services through high-level interfaces to predefined agent and agent organization Types. SO-
CIAL's interfaces reduce complexity by concealing tile mechanics of distributed comnmnication and control
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acrossheterogeneouscomputingenvironments."Standalone"applications,bothintelligentandconventional,
anddataresourcescanthusbeintegratednon-intrusively.Moreover,SOCIALallowsintelligentapplications
basedondifferentinternalcontrolschemesto beintegratedwithinasinglecomplexDAIsystem.

SOCIAl,partitionsdistributedservicesintodistinctobject-orientedModelsfor: distributedcommuni-
cation(thesubstratefor all higher-levelservices);controlservicesfor managingprocessesandconcurrency,
andtbr coordinatingagentsonparticular"singleproblem"DAI applications;anddatatranslation.The
SOCIALarchitectureis openandextensible,withseparatedevelopmentinterfacesto the libraryofgeneric
agentTypesandto thelanguage-basedModelsthat comprisethem.Thesehigh-leveltoolsfreedevelopers
t.oconcentrateonessentialDAI architecturalissues,suchasdesigningstrategiesfor coordinatingintelligent
Sll })sy_5 ten is.
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ABSTRACT

In this paper a tuple space based object oriented model for knowledge base representation and
interpretation is presented. An architecture for managing distributed knowledge agents is then
implemented within the model.

The general model is based upon a database implementation of a tuple space. Objects are then
defined as an additional layer upon the data base. The tuple space may or may not be distributed
depending upon the database implementation. A language for representing knowledge and inference
strategy is defined whose implementation takes advantage of the tuple space. The general model
may then be instantiated in many different forms, each of which may be a distinct knowledge
agent. Knowledge agents may communicate using tuple space mechanisms as in the LINDA
model as well as using more well known message passing mechanisms.

An implementation of the model is presented describing strategies used to keep inference tractable
without giving up expressivity. An example applied to a power management and distribution
network for Space Station Freedom is given.

1. Introduction

In this paper a tuple space based object oriented model for knowledge base representation

and interpretation is presented. The model provides a general knowledge language that is at once
expressive and extendable. This allows it to be applied to many different domains including
knowledge base management systems for expert system shells and architectures for distributed
knowledge agents.

The field of Distributed Artificial Intelligence (DAI) is very complex. Besides the problems
involving representing any particular agent, there is a whole new set of problems that are
concerned with how multiple agents communicate with one another. This problem is more than
just defining a mechanism but also involves protocols. How does one model of communication
enhance the ease of solving one problem over another model?
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The model presented in this paper supports DAI at a low level. This model presents a
framework for defining multiple knowledge agents that must coordinate and cooperate with one
another to solve some problem. This is different than most papers about DAI in that most papers
are concerned with problems of communication and cooperation protocols. This model defines an
architecture that supports the definition and implementation of diverse knowledge agents and their
necessary protocols as the problem requires.

1.1. Three Requirements for Representing Distributed Knowledge Agents

There are a number of requirements a model will need to represent distributed knowledge
agents adequately. Four interrelated requirements are identified and discussed here: Domain
independence and expressivity, control knowledge, and communication.

1.1.1. Domain Independence and Expressivity

Domain independence and expressivity of a model are very closely related. Domain
independence is concerned with the ability of the model to represent problems from any domain.
The particular representation and storage of knowledge is important to domain independence.
However, more than simply being concerned with expressing a problem in the model, domain
independence is concerned with the ability of the model to integrate with the various problem
domain environments. Expressiveness is concerned particularly with the ability and ease of stating
a problem in the model language and not how the problem might have to deal with the environment
of the problem.

The requirement for domain independence is concerned with the ability to represent a
problem in the model and integrate that problem solution into the problem environment. This really
implies that the language of the model must be extensible. It must be possible to enlarge the
language using the base language as a start. This includes the ability to change inference
mechanisms and define new models of inference. While most languages are concerned with
representing data, this language is also concerned with representing control knowledge.

To support this requirement the language of the model presented here is a rule language
built using object-oriented programming and extendable using the objects of the language. Rules
are a primitive object and are evaluated and interpreted based upon a generic view of data stored in
an independent database. A basic rule group object is provided with a forward chaining inference
mechanism. A rule group may also be used to control the execution of another rule group thus
enabling the definition of new inference mechanisms using the language. Additionally, more
specific rule groups may be defined as sub-classes of the base rule group to support different
inference mechanisms defined with meta-rule groups.

The other hand of domain independence is expressivity. There are at least two aspects to
expressiveness: domain knowledge representation and control knowledge representation.

The problem of expressivity is that as more expressivity is allowed, along with more
domain independence, the more intractable a language may become. The basic inference model for
knowledge based systems consists of a match-select-fire cycle. The match phase determines those
rules which are enabled and may be f'n'ed. The select phase selects one rule from the matched rules

and the fine phase fines, or interprets, the selected rule. This basic paradigm captures the model of
inference that knowledge base systems perform. To make this efficient, there are a number of
options to the knowledge base designer. The language may be restricted, for example providing
only universal quantification. Various compilation mechanisms may also be incorporated to make
the match phase as static as possible. Both of these mechanisms are performed in OPS5 using the
RETE network ([7, 8]).
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Themodelpresentedhereprovidesalargeamountof expressivitywhile movingfrom the
basicinferencemodelpresentedaboveto somethingmoretractablesuchasOPS5andtheRETE
network.

To providea largeamountof expressiveness,the languageof themodelprovidesaframe
systemfor representingstructuredknowledgeaswell assimplefacts. Rulesmay usedatafrom
frame knowledgeand fact knowledge. In [11], Hayes-Rothpresentsa numberof knowledge
categoriesthat areneededfor benchmarkingdifferent knowledgebasesystems.Thecategories
fact, rule, class,entity, relation, andstructureareprovidedby the modelpresentedhere. The
remainingcategoriesarenotprovidedfor butareplannedasfuturework.

1.1.2. Control Knowledge Representation

Another requirement is the representation of control knowledge. The interpretation of the
knowledge of different knowledge agents will need to be based upon the needs of the different
knowledge agents. Some may require forward chaining while some may require backward
chaining. Some may require more exotic strategies such as forward chaining with beam search.

There are two aspects of control knowledge identified here. One is the inference strategy
used over a rule group and may be provided by defining meta-rule groups or LISP code. The
other way of controlling rules is by providing a level of determinism into the ordering of rules
themselves ([1, 9]). The way this is done in most expert system shells is by adding variable
references into rules that provide control (e.g. IF [step = 1] ... THEN ...). This makes
maintenance of the rules very difficult. An alternative is to use a transition table, allowing any level
of non-determinism. Each entry in the transition table is used to index into the next possible rules.
This is equivalent to defining a regular expression over a rule group ([9]).

The mechanism provided here is a transition table. As a rule is fired, that rule (its name) is
used to index into the transition table to determine what rules are allowed to be fired on the next

cycle. If the particular inference strategy being used allows more than one rule to be fired in a
particular cycle, each of the fired rules is used to index into the transition table and the resulting
lookups are unioned together. Complete non-determinism may be provided by not using a
transition table and complete determinism may be provided by specifying only one rule as the next
rule for any particular rule fire. Any mix of determinism and non-determinism may be specified
using this mechanism. This is discussed further in section 2.

1.1.3. Robust Communication

The last requirement is for mechanisms for communication and coordination between
knowledge agents. There is definitely not a consensus on the best mechanism for communication
in the literature. The basic mechanism for communication and coordination provided here is a tuple

space model based on LINDA ([5, 14]).

The tuple space model allows the addition of knowledge agents without having to modify
existing knowledge agents about the communication interactions of the new agents.
Communication is performed by inserting and removing tuples from the tuple space. If a
knowledge agent is defined to take action based upon the existence of a tuple, the data-driven
nature of the database will notify the knowledge agent of the ability of the rule to fire.

In addition to the tuple space model, it is entirely possible to perform message passing and
other forms of communication by defining new functions that implement message passing to the
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knowledge language. Thus the tuple space, although probably the primary mechanism for
communication in this model, need not be at all restrictive to robust communications.

1.2. The Model Overview

Figure 1 shows the general architecture for supporting distributed knowledge agents. The
database, to support the common tuple space, is the only module common to the agents. Even
then, a common database is not a requirement if alternative forms of message passing are chosen.
The database interface and Knowledge Base Management System (KBMS) are instantiated once on
each physical platform.

In the figure a database is shown that exists independently of the KBMS. How the
database is implemented is not important to the operation of the KBMS. The database interface is

concerned with interfacing knowledge agents to the database. If a tuple is asserted to the database

by a knowledge agent, the database interface will both add it to the database as well as notify any
other knowledge agents that use that tuple of it. Rule Group 1 represents one knowledge agent and
Rule Group 2 represents another. Both of these knowledge agents happen to be defined in a single
instantiation of the KBMS system. Rule Group 3 and 4 are sub-rule groups and are part of the
knowledge agent consisting of Rule Group 1. Another way to think of it is that each rule group
represents a distinct knowledge agent where Rule Group 3 and 4 are strictly controlled by the agent
of Rule Group 1. If another knowledge agent existed on another physical platform, there would be
an additional instantiation of a database interface and KBMS. The database itself would remain

(whether distributed or not) the same.

DataBase
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Modules
DataBase
Interface

1
KBMS

_ule Group 1) _ule Group 2)
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Figure 1 -KBMS Architecture
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2. The Model: Its Design and Implementation

The model described here is based on a shared database, used to communicated between

various knowledge agents through the passing of tuple data structures. Frames are defined on this
base through a database interface to the knowledge agents, allowing data abstraction, inheritance,
and structuring. Each knowledge agent contains domain knowledge in the form of rules and data
and is controlled by the KBMS. The knowledge language of the KBMS provides the support to
implement knowledge agents and allows arbitrary function calls. Tractability is maintained by a
combination of rule compilation provided by the system and heuristic control knowledge provided

by the knowledge engineer. The following subsections describe the design of the KBMS in much
more detail.

2.1. The Base: The Database and Tuple Space

The first level of support for a KBMS is working memory, or the database. The
architecture presented here views the database as a plug compatible module. This provides the
ability to take advantage of existing databases and database management mechanisms such as
ORACLE or INGRES for example.

The KBMS takes a tuple space view of the world and requires that the database represent
them. A tuple is an ordered sequence of (possibly) typed fields. Conceptually, a tuple may be
thought of as an object that exists independent of the process that created it. This implies that a

place to store it is needed if it is to live a life independent of processes used to create and destroy it.
The tuple space is sufficient for representing First Order Logic (FOL) and also sufficient for

representing at least relational databases ([ 17]).

The tuple space has also been proposed as a mechanism for supporting distributed
processing (the LINDA model, see [5]). There are three basic mechanisms that a process may

perform on tuples in the tuple space: IN, OUT, and READ. The tuple fields in the IN and READ

operations may optionally contain variable arguments for matching. IN and READ block until the

tuple is present in the database. IN subsequently removes the tuple from the database while READ
does not. OUT installs a tuple in the database. The benefit to distributed processing that the tuple

space provides is the ability to add processes to the environment and have them communicate with
existing processes without first having to encode knowledge about existing processes directly into
their formalism. It has also been proposed that these basic tuple space operations are sufficient for

supporting other communication mechanisms such as those defined in contract nets and Actors.
On the other hand, the use of IN must be judicious in order to support the addition of other

processes that may also need to use the tuple. See [5, 14] for more details.

The database provides three operations similar to the tuple space operations, these are:

STORE, RETRIEVE/MATCH, and DB-REMOVE. The major difference between these operators

and the tuple space operators IN, READ, and OUT, is that these do not block. Another difference
is that while IN and READ will non-deterministically select one of multiple matching tuples,

MATCH will return all of them (RETRIEVE will also act non-deterministically). Although the

database operations defined here are not identical to the tuple space operations in the LINDA model
(they do not block), the operations, in combination with the data-driven nature of a KBMS are

probably sufficient for managing distributed processing protocols as LINDA does ([5]).

This view of the database allows for many different implementations of the database to be

used, including distributed databases. A distributed database would provide the ability to support
distributed knowledge agents defined using the knowledge representation presented here. Their
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communicationis thensupportedby thetuplespacemechanismasimplementedin thedistributed
database.

The implementationof thedatabasefor theKBMS describedherealsosupportsaform of
integrityconstraintsandarestrictedversionof views. An integrityconstraintis definedbyatuple.
Fieldsof thetuplemaycontainoneof four items: An actual field descriptor (formal argument); a
variable (to match an argument); a type specifier, meaning that the field may match naples with the
corresponding field of the same type; and finally, a type declarator, meaning that for all tuples
matched on the other three options, this field must be of the declared type. Views provide different
databases for storage and retrieval. This is quite different to the traditional use of views in most
databases. What this provides is a way to organize data into logical groupings. Currently, the use
of integrity constraints is global across all views, in the future this should use the view mechanism
just as any other storage or retrieval operation does.

2.2. The Next Level: Data Abstraction and Inheritance

The database interface is the module that links the database to the KBMS and vice versa.

The interface provides the necessary hooks for proper accessing and notification of data in the

database and of interest to the KBMS. The database interface provides the operations STORE !,

REMOVE !, MATCH [, and RETRIEVE !. It also provides a data and procedure abstraction
mechanism-a frame system ([10, 15]). Frames are used to extend the knowledge representation
language of the KBMS for supporting complex domains requiring novel abstractions and
inheritance.

Frames are an abstract organization of data into conceptual units. In this definition data
may be any object, it may be simple data or even procedural objects. A frame may have any
number of slots. Frames may be defined as children of multiple parents (making inheritance
potentially more complex) and may also have code attached to them that is executed whenever a
new instance of the frame or one of its children is created. Slots may have six optional aspects.

The most used aspect is the : value aspect. This aspect is where a value for the slot is located.
The : if-needed aspect is used to store code that is executed if a slot value is asked for. The

: if-added aspect is used to store code that is executed whenever the slot gets a new value.

There are two aspects that are used to constrain the value of the slot. The : constraint aspect is
used to store code that checks if an added value passes the constraint. Since this is user-defined
code there is no restriction on what it may do, only that it return a true or false status indicating the

result of the constraint. The :mustbe aspect constrains the value to be one of a list of formal

values or frames. Finally, the :distribution aspect is used to determine if the value of the
slot is for global distribution, accessible to all knowledge agents, or only for local use.

Frame data is stored in the database as 5-tuples of the form: ( frame <name> <slot>

<aspect> <value>). Obviously, there is no restriction on the value aspects, they can be any

normal data type as well as executable code. Facts are stored in the database as 4-tuples: ( fact

<name> :value <value>).

frames
current

Frame inheritance information must also be stored in the database so that inheritance over

may take place in response to different knowledge agent's requests for data values. The
implementation does not yet store this data in the database.

It is the responsibility of the database interface to both store and retrieve information and to
notify the KBMS of changes to data made by other knowledge agents. Thus, if knowledge agent 1
makes a change to the value of a fact and knowledge agent 2 uses that fact on the left hand side
(LHS) of a rule, it is the responsibility of the database interface (and distributed database) to notify

knowledge agent 2 of the changed fact. And vice versa, it is the responsibility of the system, when
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knowledgeagentsarebeingdefinedto notify thedatabaseinterfaceof which knowledgeagents
indexonwhich facts.

2.3. The Knowledge Base Management System

Now that the basic knowledge storing and retrieving mechanisms have been outlined, the

heart of the system needs to be defined.

The knowledge representation language is defined as a set of objects up to the level of
rules. A KBMS is then instantiated in the language using a combination of user-defined objects,
user-defined code, rules and KBMS domain knowledge (i.e. knowledge about what the KBMS

is). The KBMS instantiated here consists of the user-defined objects: rule-group and
knowledge-base. The default inference strategy is implemented in code, but can also be
implemented in the form of meta-rule groups. Rules for defining control strategy, for instance, are
defined. The domain knowledge consists of frame knowledge about rule groups, knowledge

bases, and knowledge of executable procedures.

To go one level further, an expert system is then instantiated from the KBMS. Here, rules
and rule groups are provided for the domain; domain knowledge is provided, as well as more

specific inference strategies for the expert system. To use an analogy from the flavors object
oriented system, the knowledge representation language is like a base flavor. It is necessary to
define a mixin to it in order to give it functionality. Finally, the flavor can be instantiated into a
user-definable object (e.g an expert system for fault diagnosis).

The knowledge representation language provides functionality to the level of rules. A rule
has the basic form of LHS ::> RHS, and may include else conditions. Quantified rules quantify

over some set, binding a variable to successive values and executing the sub-rule of the quantified

rule. Rules have the basic operations: evaluate-lhs, evaluate-rhs, interpret-lhs,
interpret-rhs, and interpret-else. These operations may return one of three values:

: ok, :ng, and : mi s s ing-patte rns. If the rule evaluates : ok is returned, if conditions are

not met :ng is returned, and finally, if patterns needed to check conditions do not yet exist (i.e.
values do not exist for referenced variables) :mi s s i ng-patt e rns is returned. These return

values are used by various control strategies that can be user-defined.

The current implementation of the knowledge representation language assumes the

existence of a rule-group definition that must include the slots: *lhs-tickled-queue*
and *rhs-tiekled-queue*. These slots are used to queue up rules whose LHS and RHS

(respectively) are potentially : ok. This allows a wide variety of control strategies to be defined
including forward and backward chaining as well as various combinations thereof.

The KBMS implemented here defines a knowledge base to consist of a number of rule
groups as well as domain knowledge. Each rule group provides mechanisms for defining aspects
of the inference strategy using either further rule groups or user-defined functions. A rule group
also has a mechanism for specifying the level of determinism desired over rule execution ([ 1, 9]).

Basically, the rule group inference strategy consists of a match, evaluate, and fire loop. The match
phase is supported by the database interface which automatically queues up potential rules on the
tickled-queues. The evaluate phase then checks the rules on the tickled-queues to determine which
ones belong in the conflict set. Finally, one rule is selected and fired. This approach is completely
non-deterministic in determining which rules get fired from the conflict set. In between the match

and evaluate phases a control phase is added. This control phase consists of the definition of a
regular expression that defines which rules may be fired next. In this implementation the transition
table derived from the regular expression is given instead of the regular expression itself. This is

much simpler from the user's perspective. For the user defining a number of rules and wanting to
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insert some control over them, it is easier to specify a transition table over the rules than it is to

define the regular expression that the transition table can be derived from. Furthermore, it is easier
to maintain a transition table than a regular expression during rule group modification.

The knowledge representation language, although not completely independent of the
KBMS, defines a very general mechanism for specifying knowledge and inference. The KBMS
defined here is also very general and allows for a wide variety of specification of inference
strategies over the knowledge. This can be done using the knowledge language or by alternatively
writing executable code directly (i.e. interpreted vs. compiled).

2.4. The Tractability of the KBMS

Considering the generality and expressivity of the knowledge language and the KBMS,
efficiency has the potential of getting lost. There are three ways of maintaining tractability in the
knowledge language.

The fixst way of maintaining tractability is to manage the match phase of the inference cycle
efficiently. The conceptual definition of the match phase is to check each rule and evaluate its LHS

(RHS) and if it is : ok then to queue it up. Obviously, this is also the slowest approach. The step
this implementation takes is to compile rules into a rule constraint network that maintains rules in a

form more suited for recognizing when data becomes available that has the potential of satisfying
the LHS (RHS) of a rule. Consider the LHS of a rule. During evaluation, all the referenced
variables must have values in order to determine if the LHS is satisfied. The rule constraint

network represents variables as nodes in the network and rules as rule-nodes (see Figure 2). As
variables get values, the nodes representing the variables are triggered. All the rule-nodes
connected to the node are then triggered. These rule-nodes are then checked to see if all the nodes

representing the LHS (RHS) variables have a value. If so, the rule represented by the rule-node is

then put on the appropriate queue. As can be seen, this method allows rules to be tickled that may
not be satisfied. The rule constraint network only checks to see if variables have values, not if they
have the right value. Thus the rules on the tickled queues must still be evaluated for satisfaction.

Rule 1 [ wheels of car = 4 ]

[ axels of car = 2 ]
[ size of car = small]
::>
[ type of car = passenger ]

rule

node 1 le-node 1) rhs-nodes Iwheels of car

node 2

axels of car

node 3

size of car

node 4 Itype of car

Figure 2 - Rule Constraint Network Example
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Quantified rules are also compiled into this form as the variables being quantified over are
given values. Thus, if a rule asks if there exists a symptom in the symptom-set and there are three
symptoms in symptom-set, then three instances of this graph structure will be created, one of
which may cause the rule to titre.

Altematively, rules could be compiled more completely so that variables are checked to see
if they have the right value. The complexity of the knowledge language implemented here makes
this a difficult task and it has not been determined that it would be cost effective. Languages with

less expressivity can be completely compiled much more easily (such as OPS5 using the RETE
network [7, 8]). The expressivity and tractability trade-off turns up once again.

The second way of maintaining tractability is by providing code for inference strategies
instead of providing rules defining the inference strategy. This is making use of the compiled vs.

interpreted option. This means that a programmer fluent in the language that the knowledge
language is implemented in needs to be available for both implementation and maintenance.
However, considering the expressivity of the knowledge language, this may be a cost effective
solution. It is very easy for the programmer to express what is desired without having to go into

contortions over representational limits.

The third way to maintain tractability is by the effective use of knowledge. This is to make

use of Raj Reddy's fifth principle: "Knowledge eliminates the need for search" ([16] see also
[12]). In other words, the domain to be represented needs to be analyzed for maximum efficiency
in terms of knowledge organization. For example, I can have two rule groups; one rule group
forward chains on various data and computes a value for the variable diagnos is. The other rule

group then uses the value of diagnosis to output the results to the user. If there are 50 rules in

each rule group that use the variable diagnosis, then 100 rules are triggered whenever the value
of the variable changes. If both of these rule groups are made to be sub-rule groups of a control

rule group, the first rule group can compute a value for diagnos i s. The control rule group can
then set the value for the variable the-diagnosis as the value of diagnosis, the-

diagnosis is then used by the second rule group instead of diagnosis. Now only 50 rules

get triggered at one time.

The representation of knowledge should make maximum use of divide and conquer
principles of knowledge organization. Another approach along the same lines is to provide strong
heuristic knowledge to eliminate the need for search. This can come in many forms including
domain guided inference strategies over rule groups as well as judicious use of control over the
execution of rules in a rule group (i.e. the transition table method over rules).

3. A Power Management and Distribution Knowledge Agent

In this example a knowledge agent for managing power and distribution for Space Station

Freedom is presented. The knowledge base consists of approximately 150 rules at this time.
Naturally, space limitations prohibits the presentation of the entire knowledge base. This example
should be sufficient to illustrate the representational capabilities of the knowledge language and

how it can be applied to defining multiple agents for distributed processing tasks.

The first part of this example consists of the definitions required by the knowledge
language to support the KBMS. The second part then describes the Power Management and
Distribution Knowledge Agent.
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3.1. Definitions for KBMS Support

These definitions define the user-accessible structure of a knowledge base and of a rule

group. The lisp frame is for defining various functions that may be called from rules.

(frame :name knowledge-base

:slots ((rule-groups :value nil)

(agents :value nil)

(name :value nil)))

( f tame :name rule-group

:slots ((rules :value nil)

(name)

(quantified-vars)

(rg-var)

(plan)

(plan-state)

(plan-table)

(viable-set :value nil)

(not-yet-viable-set :value nil)

(fire-set :value nil)

(local-variables)

(conflict-set :value nil)

(tickle-set :value nil)

(satisfled-set :value nil)

(unsatisfied-set :value nil)

(cant-fire-set :value nil)

(fired-set :value nil)

(untickled-set :value nil)

(*lhs-tickled-queue* :value nil)

(*rhs-tickled-queue* :value nil)

(termination-condition :value nil)

(control-strategy :value

#'default-control-strategy)

(conflict-resolution-strategy :value

#'default-conflict-resolution-strategy)

(execute :value #'execute)))

(frame :name lisp

:slots ((evaluate :value #'evaluate)

(evaluate-lhs :value #'evaluate-lhs)

(evaluate-rhs :value #'evaluate-rhs)

(interpret-rhs :value #'interpret-rhs)

(interpret-lhs :value #'interpret-lhs)

(interpret-else :value #'interpret-else)

(first :value #'first)

(second :value #'second)

(format :value #'format)

(length :value #'length)))

3.2. Power Management and Distribution Knowledge Agent

The main knowledge base is defined here. It is called pmad and uses a domain file

(domain.lisp) to define the various data structures (domain knowledge) relevant to the knowledge
agent. The knowledge base consists of three rule groups; a control rule group for controlling the
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diagnosis of hard faults, a hard fault rule group for computing a diagnosis, and a diagnosis rule
group simply for printing a diagnosis.

KB : pmad

DOMAIN : domain.lisp

RULE-GROUP : control-rg

This control rule group currently manages the collection of fault information for diagnosis. It controls the execution

of two rule groups." hard-fault and diagnosis,for performing and printing out diagnosis information respectively.

Eventually rules will be added to this knowledge agent for soft fault and incipient fault analysis.

CONTROL : ((start (Control-Rulel))

(Control-Rulel (Control-Rule2))

(Control-Rule2 (Control-Rule3 Control-Rule4

Control-Rule5))

(Control-Rule3 (Control-Rule3 Control-Rule4

Control-Rule5))

(Control-Rule4 (Control-Rule3 Control-Rule4

Control-Rule5))

(Control-Rule5 (Control-Rule6))

(Control-Rule6 (Control-Rulel)))

Control-Rulel

THERE EXISTS symptom-set in symptom-set-queue

< ::>

[ the-symptom-set = symptom-set ]

[ diagnosis-set = empty ] >

Control-Rule2

::>

[ clusters = power-domain :: cluster-symptoms

( the-symptom-set ) ]

Control-Rule3

THERE EXISTS cluster in clusters

< ::>

[ symptoms of symptom-setl = symptoms of cluster ]

[ symptom-setl = cluster ] >

ELSE

[ ready-to-diagnose = false ]

Control-Rule4

THERE EXISTS symptom in symptoms of symptom-setl

< [ hard-fault :: execute ( hard-fault ) = :ok ]

::>

[ diagnosis-set = diagnosis-set PLUS diagnosis ]

[ the-diagnosis = diagnosis ]

[ diagnosis = :unknown ]

[ diagnosis-rg :: execute ( diagnosis-rg ) ]

[ clusters = clusters MINUS symptom-setl ] >

Control-Rule5

[ ready-to-diagnose = false ]

[ FOR ALL diagnosisl in diagnosis-set

< [ diagnosisl = diagnosis-2 ]
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OR

[ diagnosisl = diagnosis-31 ] > ]

::>

[ the-diagnosis = diagnosis-no-power ]

[ diagnosis-set = diagnosis-set PLUS the-diagnosis ]

[ ready-to-diagnose = true ]
ELSE

[ ready-to-diagnose = true ]

Control-Rule6

[ ready-to-diagnose = true ]

::>

[ diagnosis-rg :: execute ( diagnosis-rg ) ]

[ symptom-set-queue = symptom-set-queue

MINUS the-symptom-set ]

[ symptom-setl = :unknown ]

[ clusters = :unknown ]

[ ready-to-diagnose = :unknown ]

RULE-GROUP : hard-fault.rg

This rule group takes information about a fault and, after determining if any testing needs to be done and doing it,
determines the fault and assigns diagnosis a value.

As can be seen, the control that is specifiable over a rule group may be quite complex. The whole transition table

for this rule group is not given (although this is one-third of it,for a rule group consisting of about 90 rules), but

the expressivity is still quite apparent.

CONTROL : ((start (init-rule))

(init-rule (Rulel))

(Rulel (Rule2))

(Rule2 (Rule3 Rule4.1 Rule5 Rule31 Rule31.1

Rule31.2 Rule35 Rule35.1))

Rule3 (Rule4))

Rule4 (Rule20 Rule32))

Rule32 (Rule33))

Rule33 (Rule34))

Rule4.1 (Rule4.2))

Rule4.2 (Rule4.3))

Rule4.3 (Rule4.4 Rule4.5 Rule4.6 Rule4.7

Rule4.8))

)

Init-rule

::>

[ symptom-set = symptoms of symptom-setl ]

[ possible-top-switches = empty ]

[ tripped-top-switches = empty ]

Rulel

::>

[ top-symptoms = power-domain ::

top-symptoms ( symptom-set ) ]

Rule2

[ lisp :: length ( top-symptoms ) >I]
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::>

[ type = multiple-tops ]

ELSE

[ type = single-top ]

Rule3

[ type = multiple-tops ]

[ THERE EXISTS symptom in top-symptoms

< [ lisp :: length

( switches-below of switch of symptom ) > 0 ] > ]

[ FOR ALL symptom in top-symptoms

< [ fault of symptom = fast-trip ]

OR

[ fault of symptom = over-current ] > ]

::>

[ FOR ALL symptom in top-symptoms

< [ tripped-top-switches = tripped-top-switches PLUS

switch of symptom ] > ]

[ THERE EXISTS symptom in top-symptoms

< [ possible-top-switches = switch of symptom PLUS

siblings of switch of symptom ] > ]

[ THERE EXISTS symptom in top-symptoms

< [ trip-type = fault of symptom ] > ]

[ type = multiple-top-current-trip ]

Rule4.4

[ type = multiple-tops ]

[ lisp :: length ( new-symptoms ) = 1 ]

[ THERE EXISTS symptom in new-symptoms

< [ THERE EXISTS symptoml in top-symptoms

< [ switch of symptom = switch of symptoml ]

[ fault of symptom = fault of symptoml ] > ] > ]

::>

[ diagnosis = diagnosis-54 ]

[ diagnosis ]

RULE-GROUP : diagnosis.rg

This rule group simply prints out some statements and communicates diagnostic information to the scheduling

knowledge agent depending on the particular diagnosis encountered.

d-rulel @@ backrush in load center

[ the-diagnosis = diagnosis-54 ]

::>

[ the-diagnosis = :unknown ]

[ lisp :: format ( t "~%The following load center

RPCs tripped on fast-trip~%" ) ]

. . o

[ the-diagnosis = :unknown ]
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The rest of the knowledge base for this knowledge agent.

Domain-Knowledge :

constants :

t ; :ok ; :ng; :missing-patterns ; yes ; no ;

hard-fault ;

diagnosis-rg ;

multiple-tops ;

single-top ;

multiple-top-current-trip ;

over-current ;

under-voltage ;

fast-trip ;

ground-fault ;

diagnosis-I ;

diagnosis-2 ;

diagnosis-no-power

facts :

empty = ( )

frames :

(fcreate-instance 'symptom-set 'symptom-setl)

Begin : control-rg

END-KB

+++++++++++++++++

domain.lisp

+++++++++++++++++

(frame :name power-domain

:slots ((top-symptoms :value #'top-symptoms)

(close-switch :value #'close-switch)))

(frame :name symptom-set

:slots ((symptoms)))

(frame :name symptom

:slots ((switch) (fault)))

(frame :name switch

:slots ((name)

(type)

(current)

(switches-below :value nil)

(switch-above :value nil)

(siblings)

(current-rating)

(fast-trip-percent)))

Lots of domain knowledge here to build instances of switches and sensors, etc. Knowledge of the topology is
encoded here. About 30k worth.
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4. Conclusions and Future Work

An architecture for defining and modifying knowledge base management systems that may
be used for applications in distributed AI has been presented. The architecture is very flexible and
relatively efficient. It has been used to define three very different knowledge agents: One for
solving a toy problem to compute how to send a package consisting of about ten rules; One for
solving the monkeys and bananas problem consisting of about twenty fairly complex rules, this
one was directly adapted from a solution given for OPS5; Finally the agent given in this paper and
consisting of around 150 rules.

The results we have noticed so far have shown that this architecture provided the ability to
easily implement a solution to a wide variety of problems. The monkeys and bananas problem has
driven out many areas of weakness in the implementation that are being dealt with. The speed with
which this architecture solves the monkeys and bananas problem is hardly even comparable to that
of OPS5 at this point. However, the result of implementing our fault diagnosis problem for power
management and distribution has turned out very well. Using simple forward chaining and lots of
control knowledge in the hard fault rule group has enabled us to provide a solution that is very fast

and easily maintainable. The maintainability is very important for this domain as the requirements
for Space Station Freedom have not been completely specified.

4.1. Future Work

This system is being implemented as part of a much larger system, KNOMAD _(____Qwledge
Management and Design System). We have identified a number of areas where knowledge needs
to be added to support a completely robust, domain independent environment for specifying
knowledge based systems. These include the addition of a constraint system, a temporal database,
and analytical and qualitative reasoning. These additions will then support planning, scheduling,
and causal reasoning at the least. Adding these components must involve how the KBMS will
access and use these components as well as how these components will use the existing database
and database interface mechanisms.

Work also needs to be pursued to determine the possibility of adding RETE-like structures
as a part of the rule constraint network.
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Abstract

This paper puts forth the concept of carrying out space-based

remote missions using a cooperative of low-cost robot specialists

rather than monolithic, multi-purpose systems. A simulation is

described wherein a control architecture for such a system of

specialists is being investigated. Early results show such co-ops

to be robust in the face of unforeseen circumstances. Descriptions

of the platforms and sensors modeled and the beacon and retriever

creatures that make up the co-op are included.

INTRODUCTION

An alternative to building one robot for remote planetary

operations, like the Mars Rover, is to build several robots whose

combined capabilities can do the same task. A single Mars Rover

will have extensive perception capabilities, robust navigation

capabilities, intricate sample detection and acquisition

capabilities, long-range fuel capability, and, in some designs, an

orbit-achieving propulsion system. But damage to any major

subsystem will halt the reconnaissance mission for months until

another Rover can be launched and landed on Mars.

An alternative approach is to use a cooperative of robots of

several sorts. One sort can carry fuel cells (fuel-bots), another

sort has strong farsighted visual perception (beacon-bots),

another sort has good mobility and dexterity and short-sighted

vision (rover-bot), another sort can attach itself to objects and

push and pull them (retriever-bot), and so forth. Each robot would

have the basic capability to stay out of harm's way (e.g.,

avoiding sand pits, dodging meteors), and could communicate with

the others via RF or some other wireless link.

Then, in the Mars Rover effort for example, the beacon-bots

and fuel-bots could be placed in strategic positions throughout

the reconnaissance area, serving as far-sighted eyes and gas-

stations for the rovers which, near-sighted, negotiate rough

terrain and acquire soil samples. The earth-bound human controller

will always be in the loop, evaluating the evolving situation and

sending high-level commands (but only every 40 minutes or so).

Losing one of the beacon-bots or fuel-bots will only limit the

overall system capability in a certain geographic area. Losing a

rover-bot or retriever-bot will only burden another rover or

retriever with more tasks to do of the same type. So this
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community of robots could be ultimately more cost-effective than

one large all-purpose, well-equipped robot.

This paper describes an ongoing investigation into robot

cooperatives for accomplishing remote operations. It builds on

research being carried out in situated reasoning, perception, and

planning for autonomous agents. Specifically, this work relies on

the ideas of reasoning via subsumption software architectures (3,

6) and reaction plans inspired by (13), and on the growing number

of low-cost integrated robot platforms that are becoming available

(e.g., (4), (5)). The idea of distributed robots is not new,

dating at least to early-eighties work by Sacerdoti who coined the

term disbots (12). But only in recent years has realizing such

systems on low-cost integrated platforms been possible.

This paper does not address many difficult issues associated

with distributed control. The assumption here is that a low-level

of cooperation can be achieved much like a hive gestalt, and

anything beyond that is handled by human intervention.

The next section details an object-oriented software

environment on a micro-Explorer for conducting experiments in

robot cooperation. These experiments are beginning to demonstrate

that such cooperatives will be robust and relatively inexpensive.

Through an example, the cooperating capabilities of the

"creatures" (see (3)) are characterized and the implications for

cost discussed. The last section describes follow-on work with

actual robots in MITRE's Autonomous Systems Laboratory.

THE CREATURE CO-OP EXPERIMENTAL ENVIRONMENT

Figure 1 shows a top or plan view of the layout of the

environment on a micro-Explorer computer screen to simulate the

action of a cooperative of robots with varying levels of

competence. The large circle is the work area within which all

robot action takes place. The open geometric figures are candidate

objects for retrieval. The filled-in circles are the creatures for

the described experiments: the smallest ones are beacons with

farsighted vision; the others are retrievers with circumferential

sonars, and arms (initially retracted) that extend from the body

to grasp or latch on to the object to be retrieved. The thin lines

extending from each creature show their current orientation (they

are all at 0 degrees; angles are measured counter-clockwise).

The right-hand pane shows a number of menu options available

to the experimenter and the bottom pane is used for text output

and user typein. The user can direct the creatures to retrieve

objects, move to new locations, go to sleep and wake up.
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An Example Of Creature Cooperation

The following example demonstrates the utility that can be

obtained with minimal competency "specialist" robots in a

cooperative effort. In this example, the large retriever (#3) has

the task to retrieve Cylinderl, and the small retriever at the top

of the screen (#i) is to navigate to coordinates in the bottom

part of the work area and return.

Selecting Start/Continue Creature generates a process for
each creature that for each simulation clock tick causes the

creature to continue to carry out a retrieval or a directed move

and to avoid any obstacles Without any retrieval or directed

moves pending, no action would be detected. But if the user puts

an object next to any creature, that creature would immediately

move a safe distance away.

After being given a target-object, retriever #3, blind but

for its short-range sonars, first sends a request via RF link for

the location of Cylinderl. Only beacons have the requisite ranging

and recognition capabilities. The beacon in the upper right of the

picture locates Cylinderl and transmits the coordinates to

retriever #3, which begins to dead reckon to the object. Retriever

#I simply heads for the desired location at the bottom of the

screen.

In Figure 2 both retrievers have encountered Triangle4. Both

creatures have a low-level survival routine that usurps control

from any higher level routine when an obstacle is sensed. The

"angle of escape" and "speed of escape" computed by this routine

are averaged with the "angle of purpose" and "speed of purpose" of

any higher level routines to allow the retriever to angle back on

track once the obstacle has been avoided. In Figure 3, retriever

#I is past the obstacles and is heading unobstructed for its
destination.

Retriever #3, however, is blocked since in attempting to

reach Cylinderl it is ping-ponging between the Triangle4 and

Block2. At this point, noticing that it is not making progress

(see Getting Stuck below), retriever #3 broadcasts a help request

indicating an obstacle near the coordinates of Triangle4. Any

retriever that is not busy with another task can process the help

request, and retriever #2 (to the right of Cylinderl) takes up the

task, broadcasting a request for a beacon to identify the object

near the coordinates of interest. Again, the beacon in the upper

right locates and identifies Triangle4 for retriever #2.

When retriever #2 is close enough to the triangle, it extends

its arm, latches onto the object, and begins the return trip to

the location from which it received the help request, thus pulling

the obstacle out of the way of retriever #3. Figure 4 shows

retriever #2 returning and retriever #3 continuing toward

Cylinderl. Retriever #I has arrived at the required destination.
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Figure 5 shows retriever #3, which is returning to its point

of origin with Cylinderl, encountering retriever #I, which is

returning to its point of origin. Both are blind but can avoid

obstacles with their sonars, so they jostle each other as they

move toward their destinations (see Figure 6). In Figure 7, both

creatures are again on their way to fulfilling their tasks which

are completed in Figure 8. The human user has simply specified two

high-level tasks, and the retrievers were able to achieve them

despite obstacles and the crossing of paths during the task

execution.

CQ-OP Objects and Operations

Table 1 shows the objects and operations used to achieve the

capabilities discussed in the text of this report. There are six

objects: three sensors, the generic one and the proximity and

vision types; and three creatures, the generic one and one with

and one without an arm. The types inherit data and operations from

the generic objects. Operations are prefixed by colons; operations

that are invoked after another operation are written with the word

:after and the precedent operation name.

Each creature is instantiated via its position and orientation

variables and the type and number of sensors it is given.
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_ _ ODeratlons

sensor associated-creature, type

proximity-sensor range-factor :sense-from coords

vision-sensor range :locate sought-object,

:identify-object-at

creature shape, number, cc-radius, :sleep, :wakeup

coords, sensor-list, name,

sleep

round-creature speed, direction, :feel-force,:sense,

target-direction, old-coords,:runaw ay,:move,
caution-speed, :turn new-direction,

obstacle-memory :locate object,

:locate-object-at coords,
:wander

round-creature-with-arm target-object, :see-if-stalled, :move-to,

target-location, arm-length, :sense, :retrieve,
arm-direction,

target-obj ect-grasped,
arm -extended?,

blocking-obstacles,
help-is-on-the-way,

creature-being-helped,
distance-and-time

:grasp object, :move,
:help-with obstacle

:after :set-blocking-obstacles

Table 1: Creature Objects and Operations

SENSORS

Sensors include a proximity sensor, analogous to a ringed set

of ultra-sonic sensors; and an imaging sensor. Circumferential
sound sensors are available with at least two low-cost commercial

platforms (see (4), (5)). The vision system is a line-of-sight

stereo system which yields range over a 2D matrix. In the

experiments, only beacon creatures have vision sensors and cannot

use them when the platforms are in motion.

proximity Sensor--The proximity sensor has a range-factor

which is a multiplier used with a creature's platform radius to

get the range capability of the sensor ring. That a larger

creature would have a greater proximity range seems intuitively

correct (a more massive object needs more of a safety margin,

speeds being equal).

The :sense-from operation simulates the action of the ring by

extending a ray from the current platform coordinates out to the

range limit, around the associated-creature's perimeter at 1

degree increments, and recording the angle to the nearest
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obstruction. This simple algorithm was adequate for this study

and has been since successfully implemented on a Hero 2000.

Vision Sensor--The vision sensor object has a limiting range.

The :locate operation simulates a clockwise scan of the work area

from the platform to locate and recognize an object. For each

object within range, a LOS determination is made, and if positive,

a "recognition" is made. Recognition is assumed to be a simple

discrimination among classes of objects known to be in the

environment. If the view is obstructed, the obstructing object is

recognized, and its name is returned. If the object is recognized

and it is the sought-object, then a ranging is made and the object

name and its coordinates are returned. Otherwise the process

continues until the whole work-area has been scanned, returning
nil if unsuccessful.

The vision sensor can be asked to identify an object at or

near a certain location. The :identify-object-at operation then

simply trains the sensor on the given coordinates and, if

unobstructed, returns the identity of the object nearest that
location.

CREATURES

The generic creature has a shape, an identification number, a

location, a list of on-board sensors, a name, and a sleep toggle

for ignoring certain commands. The cc-radius is the radius of the

equivalent circumscribing circle. For round creatures this is just

the radius; for other objects, an equivalent radius is computed at

instantiation. The :sleep and :wakeup operations set and reset the

sleep variable.

Round-creature--We begin with creatures whose notions of

motion are direction and speed. We believe many of the key ideas

embodied in this report extend in a straight-forward manner to a

space-based environment. The round-creature is a circular

platform capable of omni-directional traverse. The creature has

an organic 16-bit processor and 512k bytes of memory, which should

be enough computing capability and memory to carry out the
operations described below, and an RF broadcast transceiver

capable of data communication.

The round-creature has speed (distance units per clock tick)

and direction and can be given a target-direction in which to

:wander. Caution-speed is the speed used when an obstacle is

encountered, and obstacles are noted and placed into obstacle-

memory. The obstacle memory is cleared after every 12 obstacle

sensings (a kind of forgetting).

Sensing and Avoiding Obstacles--When the :feel-force

operation is invoked in the creature's continuous control loop,

the :sense operation is invoked, and if there is a positive

sensing, the :runaway operation is invoked. Runaway sets the
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direction to 180 degrees opposite the obstacle direction (by

invoking a :turn in the new-direction), sets the speed to caution-

speed, and executes the :move operation. Move advances the

creature caution-speed units along its direction. Thus, if an

obstacle or other creature approaches close enough, the creature

will move away until :feel-force returns nil.

The :sense operation invokes the :sense-from operation of the

creature's proximity sensors if any. When an obstacle is sensed,

the token UNKNOWN and the location of the creature at the time are

stored in obstacle-memory • Obstacle-memory is used to see if the

creature is not making progress (see Getting Stuck below).

Locating and Identifying Objects--To locate an object, a
round-creature asks its sensors each in turn to :locate the

object. Only the vision sensors are capable of this operation. If
the creature doesn't have such a sensor, it asks another creature

to locate the object, which in turn recursively ask other

creatures if necessary. This single request thread prevents

simultaneous creature responses as in a broadcast method. Most

often working creatures (e.g., retrievers) with only proximity

sensors can't identify the object to be located. More typically,

the request is to :locate-object-at the location which in turn

converts to a call to the creature's vision sensor to :identify-

object-at that location. In our typical setup, only beacons have

vision sensors, and one of them ends up identifying and locating

the object.

Round-creature-with-arm--This creature is typically endowed

with a swivel retrieval mechanism: an arm that swivels either

freely or under control about the platform axis, can be retracted

and extended, and needs only to make contact with the objects to

be retrieved (one can imagine simple or complex contact mechanisms

from velcro pads to magnetized grippers). The :sense command is as

described above but augmented to account for the objects in tow.

This creature is used primarily for retrieving a target-

object at a target-location. It keeps track of whether its arm is

extended or not, whether it has grasped the target-object and its

rate of progress through the distance-and-time recordings. If

impeded, the creature remembers the blocking-obstacles and whether

help-is-on-the-way (stored as a list of the helper and its target-

object). If it is helping another creature, it remembers the

creature-being-helped.

Retrieving Objects--Retrieving objects is effected as a

reaction plan, which is akin to the concept of a Universal Plan

(13), once a target-object has been established by the user or

another creature. Table 2 shows a retrieval plan. The

preconditions of the plan are checked and the appropriate action

is taken on each pass of the control loop.
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Precondition Action Comments

(and target-object-grasped
old-coords
(<(distance coords old-coords)

retrieve-speed))

Clear all memory
of retrieval data, detach and
close arm If helping
someone, clear helping data Done

(and target-object-grasped
(equal old-coords target-location)) move-to target-location Heading home

target-object-grasped set target-location to
old-coords;if helping
A, tell A to
:set-blocking-obstacles to nil
and to set help-is-on-the-way
to nil

(and target-location
(<= (distance coords target-location) extend arm and :grasp

arm-length) object, setting
(not (object-usurped target-object)) target-object-grasped

) to true

Turning for
home

Grab object

Target-object has a value :locate target-object,
and :move-to target-location Still trying

No target-object Stay out of trouble Creature idle

Table 2: A Reaction Plan For Retrieval

To understand the plan, read up from the "Target-object has a

value" precondition. When the creature is commanded to retrieve an

object (target-object is set to the object name), it first

:locates the target and then executes a :move-to the target-
location from its old-coords (the position at which it received

the :retrieve command). As soon as it is within an "arm's reach"

of the object and the object is not being grasped by another
creature, it grasps the object. Then it turns and heads for home,

making the target-location the old-coords (move-to looks for a

target-location). If the creature is helping another creature, it

tells the other creature at this point that it has removed the

blocking-obstacle and help is no longer on the way. When the
creature is within retrieve-speed of the old-coords, the arm

detaches from the object, is retracted and the retrieval is

complete.

Since the preconditions are checked during each cycle of the

control loop, the reaction plan provides robust operations,

allowing for a successful retrieval in the wake of many unforeseen

actions, e.g., the object moves, or another creature grabs the

object first.
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Getting Stuck--While retrieving, if the creature is blocked

and help is being provided by another creature, the creature just

sits and waits for the help. The obstacles are detected as part of

the :move-to operation where the first action taken is a local

sensing for obstacles. If any exist, a check is made to see if the

creature is being stalled (:see-if-stalled) and then a :runaway is

executed. Otherwise, a :move is executed at the resulting

direction and speed( :move is the same as described above but

taking any towed object into account).

To simply determine whether progress is being made, two cases

are modeled: one, where, in a certain time period, the distance to

the target-object has not changed appreciably; and two, where

there has been a large time lapse since we last invoked the :move-

to operation. The first case involves the instances where the

creature is executing :move-tos and :runaways, but is not really

getting any closer to the object. The second case involves

executing continuous :runaways because of many obstacles as in the

example above.

Each time a :move-to is invoked, the distance from the object

and the time are recorded as lists in distance-and-time. For the

first case, the difference between the current distance and the

distance achieved the last time a :move-to was invoked is compared

to a preset value. For the second case, if the elapsed time since
the last invocation of :move-to is greater than a preset value,

the creature is considered stuck. The values for this simulation

(normal speed = 5 and caution speed =I) were 3 distance units and

ten clock ticks respectively.

When :see-if-stalled determines the creature is stuck, the

last obstacle recorded in obstacle-memory is considered the

blocking-obstacle, and the :after operation for setting the

blocking-obstacles sends a ":help-with obstacle" call out to other

creatures. In the example, retriever #2 answered the :help-with

obstacle call from retriever #3.

CONCLUSIONS AND FUTURE WORK

The robustness of the cooperative becomes more evident the

more the simulation is run. Objects to be retrieved can be

mischievously moved by the user, obstacles can be put in

retrievers' paths, and in all but the most pathological of cases

(two retrievers latch onto the same object and have a tug-of-war

until the user intervenes), the creatures succeed. The current

placement of the beacons is such that with only two beacons set at

a diagonal across the work area, over half of the retrievals will

be successful.

Two creatures can be sent after the same object with the

result that the second creature chases and tracks the object until

the the other creature releases it. This behavior is interesting

to watch in the simulation but underscores the need for human
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guidance. Autonomous control of multiple agents is a current

research endeavor. The described simulation experiments indicate

that robot cooperatives will succeed well against unforeseen

events but only for a time by themselves.

An enormous amount of work in algorithms for robot navigation

has been done. Some of which are relatively simple to implement

(e.g., (I0), (8), and (I)), and we will be investigating them for

our systems. In this vein, we plan to give each creature a simple

map of the objects and the free space. We will then have the

creatures broadcast the results of the retrievals so that all

creatures can update their space maps, and thus better use

navigation algorithms.

We are now moving the experiments onto actual robot

platforms. Several low-cost commercial platforms are available

(see for example (7) and (4)). In MITRE's Autonomous Systems

Laboratory, we have two Hero 2000 robots for which many of the

round-creature-with-arm competences have been implemented, but we

are acquiring a more capable platform such as the Denning MRV-3.

The robots are being programmed using the REX/GAPPS system (II)

from Teleos Research. We plan to mount a stereopsis system which

produces ranging information at video frame rates (9) on one of

the Heroes (as a beacon); the Denning and the other Hero will be

retrievers. Experiments with these systems will help us understand

how well the co-op ideas stand the test of real systems in real

environments.
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Abstract

Currently, much of the information regarding decision ahernatives and trade-offs made in the
course of a major program development effort is not represented or retained in a way that permits

computer-based reasoning over the life cycle of the program. The loss of this information results
in problems in tracing design alternatives to requirements, in assessing the impact of change in
requirements, and in configuration management.

To address these problems, we are studying the problem of building an intelligent, active
corporate memory facility which would provide for the capture of the requirements and standards
of a program, analyze the design altematives and trade-offs made over the program's lifetime, and
examine relationships between requirements and design trade-offs. Early phases of the work have
concentrated on design knowledge capture for the Space Station Freedom. We have demonstrated
and are extending tools that helps automate and document engineering trade studies (the topic of
this paper), and we are developing another tool to help designers interactively explore design
alternatives and constraints.

1.0 Introduction - Overall Problem

Under NASA contract NAS2-12108, the Boeing Advanced Technology Center (ATC) is

conducting research leading to a corporate memory facility (CMF). A CMF would provide
facilities for capturing and using decision history and rationale throughout a major program's life
cycle. This effort is jointly funded by OASTs AI Program and the Space Station Freedom

Advanced Development Program.

Currently, much of the information regarding alternatives considered and trade-offs made in
the course of a major program development effort is not represented or retained in a way that
permits computer-based reasoning over the life cycle of the program. The loss of this information
results in problems in tracing alternatives to requirements, in assessing the impact of change in
requirements, and in configuration management (Boeing Computer Services, 1989a,b).

There is not an integrated set of capabilities to assist in generating and evaluating or
reevaluating program alternatives. The lack of this capability results in such problems as belated
reaction to changes in requirements and inability to consider a reasonable number of alternatives.

2.0 A Corporate Memory Facility

To address these problems, we are studying the problem of building an intelligent, active
corporate memory facility which would provide for the capture of the requirements and standards
of a program, alternatives considered and trade-offs made over its lifetime, and relationships
between these. The CMF would provide for requirements traceability, impact assessment,
automation and/or assistance in the generation and evaluation of alternatives, and configuration

management.

PRECEDING I_ACE _LA,_':X['_OT ":Lr_,rD
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TheCMF wouldsupportinteractiveproblemsolvingacrossdiverseareassuchasthe
aerospaceengineeringdisciplines(propulsion,weights,andaerodynamics).In operationaluse,a
CMF wouldreducelife-cycle flow timeandcostandimprovethequalityof programdeliverables.
Similarbenefitscouldberealizedby applyinginformationaccumulatedin theCMF for one
programto otherrelatedprograms.

In initial phasesof thiswork, theATC is studyingcorecorporatememoryfacility ideas,
preparingCMF technicalreportsdetailingstudyresults,andbuildingfeasibilitydemonstrations.In
conjunctionwith NASA, theSpaceStationFreedomProgramwasselectedasatestbed;within this
testbedweareconcentratingondesignknowledgecapture.In 1989theATC examinedaspectsof
thePowersubsystemandtheEnvironmentalControlandLife Support(ECLS)subsystem.We
alsousedourtoolsin aportionof the1989SpaceStationFreedomtechnicalauditto investigatethe
rationalefor apreviousdesigndecision.

Throughtheseriesof demonstrations,wehopeto showanovelintegrationandextensionof
designknowledgecaptureideasby:

a.Tailoringknowledgeacquisitionandprocesscontroltoolsfor engineering trade
studies, a significant and feasible part of design knowledge capture.

b. Digitally recording speech as an unobtrusive method of capturing design rationale at
the trade study workstation.

c. Developing an interactive design alternative generation aid.

3.0 Automating Engineering Trade Studies

We are focusing on trade studies in the design knowledge capture area because -

a. They exhibit a microcosmic path through the full cycle of design information, including
requirements linkage, generation and comparison of ahernatives, and decision
documentation.

b. Many design engineers are familiar with trade studies and are comfortable using them
to compare alternatives in quantitative terms.

c. Even though different methodologies for trade studies are available, little has been done
to automate them.

d. A trade study tool would be immediately useful in a variety of domains, regardless of
the success of the overall design knowledge capture or CMF effort.

e. Existing ATC tools could be extended to help perform portions of trade studies.

Trade studies are performed, in part, to avoid a designer's tendency to go directly to a design
based on past experience, rather than trying to find a design that may better satisfy overall program
requirements. Trade studies are often performed to help establish overall system configurations,
study the detailed design of individual configuration items to provide the most cost-effective
solution, and evaluate alternate solutions when the need for change occurs.

There are two general types of trade study criteria: limits which must be satisfied by any
candidate system (go/no go criteria or hard constraints), and attributes upon which a ranking can be
based (soft constraints)

Candidates are usually filtered using hard constraints and then ranked for comparison using
soft constraints. Trade trees are used to decompose large numbers of candidates into groups for
tractability. Paths through the tree show total configurations. Typical trade study criteria include
accuracy, lifetime, power output, stability, sensitivity, bandwidth, low weight, low power,
minimum dimensions, operational simplicity, electromagnetic compatibility, reliability,
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survivability, schedule, cost, safety, and risk. Criteria are usually weighted. The results are usually
shown in a trade study matrix - a table showing the alternatives, criteria, ratings, and weights.

After candidates are rated and scored, a sensitivity analysis can be performed. This shows the
sensitivity of the decision to changes in the value of attributes, weights, costs, and subjective
estimates.

In our early work on the CMF we demonstrated the capture of trade study information and
rationale (Figure 1). In the future, this information will be available through the Technical and
Management Information System (TMIS). We are examining several report formats based on
current trade study practices. The information necessary for these reports will provide the

foundation for the knowledge capture process.

Trade Study Process

(_ Current

In Progress

DKC

(__ TOOLS
_ Aquinas,

Axotl

Requirements
link

- Faster
- Automatic report generation
- Electronic capture and examination
- Multiple designer analysis
- TMIS link
- Voice capture

On-line library

Enables quality improvement: technical, cost, schedule

Figure 1. Automating the trade study process.

4.0 Design Knowledge Capture Tools

Two tools, Aquinas and Axotl, were used to build the first demonstration. An additional set of
tools (MANIAC, HyperCard, and MacRecorder) was used to capture voice rationale and associate

it with the Aquinas knowledge base for interactive playback.

4.1 Aquinas and Trade Studies

Aquinas interviewed experts in several lrade study domains and captured candidate and criteria
information leading to rank-ordered candidate selections. In the power domain, additional rationale
was captured as voice input. In the ECLSS domain, conflicting opinions from multiple designers
were captured, analyzed, and documented.
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Power subsystem - Chuck Olson, a design engineer in Boeing Aerospace, used
Aquinas to build two separate trade studies for the interface between a computer and
automatic circuit breakers. Brian Smith, another Boeing Aerospace design engineer,
offered advice on building an electronic trade study process assistant.

Environmental Control and Life Support subsystem - Jim Knox, a NASA

design engineer at Marshall Space Flight Center, used Aquinas to build a trade study
for carbon dioxide removal on Space Station Freedom in the year 2000. Allen Basckay,
another NASA design engineer at Marshall Space Flight Center, added additional
information to this trade study.

Technical Audit Item #85 - John Palmer, O'Keefe Sullivan, and Carl Case,

Boeing Aerospace, used Aquinas to document a 1986 decision about the placement of
the pressurized logistics module.

Aquinas is a workbench developed by the Boeing Advanced Technology Center for acquiring
and analyzing expert knowledge for solving diagnostic, structured selection, classification, and

other problems (Figure 2). In the CMF context, Aquinas is used to acquire knowledge about
requirements and alternatives from individuals or groups of experts, and then assists in merging
that knowledge into a single knowledge base. Weights may be assigned to both requirements and
their refinements. This knowledge may be merged automatically by Aquinas or by consensus of
the program staff using Aquinas as an assistant. Aquinas supports similar capabilities for
acquiring compound altematives.

Repertory
Grid

Tools

Hierarchical

Structure

Tools

Dialo fl Mana_]er

Uncertainty Internal Multiple Induction/ Multiple Constraints

Tools Reasoning Scale Learning Expert

Engine Type Tools Tools
Tools

Common knowledfle representation and user interface
Figure 2. Aquinas consists of several tool sets that assist different knowledge acquisition

tasks. General advantages of Aquinas include integration of multiple methods and
techniques, rapid prototyping and feasibility analysis, generation of expert enthusiasm,
multiple mediating representations, embedded testing, and life cycle support for verification,
delivery, and maintenance.

Aquinas, an expanded version of the Expertise Transfer System (ETS; Boose, 1984, 1985,

1986a,b), combines ideas from psychology and knowledge-based systems to support knowledge
acquisition tasks. These tasks include eliciting distinctions, decomposing problems, combining
uncertain information, incremental testing, integration of data types, automatic expansion and
refinement of the knowledge base, use of multiple sources of knowledge, use of constraints during
inference, and providing process guidance (Boose and Bradshaw, 1987; Boose, Bradshaw, and

Shema, 1989). Aquinas interviews experts and helps them analyze, test, and refine knowledge.
Expertise from multiple experts or other knowledge sources can be represented and used separately
or combined. Results from user consultations are derived from information propagated through
hierarchies.

Using Aquinas, rapid prototypes of knowledge-based systems can be built in as little as one
hour, even when the expert has little understanding of knowledge-based systems or has no prior
training in the use of the tool. The interviewing methods in Aquinas are derived from George
Kelly's Personal Construct Theory and related work (Kelly, 1955; Shaw and Gaines, 1987;
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Boose,1988). Kelly's methods and theory provide a rich framework for modeling the qualitative
and quantitative distinctions inherent in an expert's problem-solving knowledge.

Aquinas tools mentioned here are explained more fully elsewhere (Boose and Bradshaw,
1987; Boose, 1988; Kitto and Boose, 1988; Shema and Boose, 1988; Bradshaw and Boose,

1989).

Extended repertory grids in Aquinas are a compact and easily understood form of expertise
representation for many types of knowledge. Repertory grids can be analyzed, refined, tested, and
maintained more easily than a corresponding, larger rule or frame knowledge base. In Aquinas, we
have augmented repertory grid structures to include hierarchies, constraints, structures for eliciting
and reasoning about knowledge from multiple experts, multiple variable types, and accommodate
forms of machine learning. Generally, these analysis capabilities and compact, higher-level
mediating representations of expert knowledge make knowledge bases easier to inspect, analyze,
maintain, test, and improve. We use a test case-based approach within Aquinas for performance
measurement, verification, and maintenance, and automatic knowledge base improvement. This

method helps find holes and weaknesses in the knowledge base, and provides facilities for

verifying knowledge consistency, accuracy, and sanity range.

Refinement methods in Aquinas include implication and similarity analyses, completeness
checking, hole filling, cluster analyses, generalization, automatic rule p.roduction, internal testing
and debugging aids, and graphic representation transformation. Expertise from multiple experts or
other knowledge sources can be represented and used separately or combined, giving consensus
and dissenting opinions among groups of experts. Recent progress on Aquinas has been in the
areas of knowledge base performance measurement, knowledge base maintenance, interacting trait

constraints, consultation graphics, and eliciting strategic and procedural knowledge. Experiments
show how Aquinas can automatically improve knowledge bases and even suggest new problem-
solving information. Forms of interactive and automatic machine learning are also employed by
Aquinas (Boose, Bradshaw, and Shema, 1989).

Aquinas exists in several "C"-based versions that run on different microprocessor platforms
and a fuller development version that runs on Sun workstations and Xerox Lisp Machines.

4.2 Axotl System

In the first demonstration, Chuck Olson used Axotl to elicit an electronically-based model of

the trade study process.

Axotl, developed at the Boeing Advanced Technology Center, integrates a set of computer-
based decision analysis tools with a knowledge-based system. The decision analysis tools are
designed for problems requiring careful consideration of uncertainty and complex tradeoffs. In
the context of CMF, alternatives and requirements generated by Aquinas can be analyzed using
decision analysis representations to determine the suitability of various alternatives and to gauge
the impact of changes in design requirements or circumstances. Influence diagrams are used to

represent information, alternatives, and preferences both graphically, and mathematically. Our
experience has shown that they are an effective way of communicatang, important issues among
participants. Axotl also employs other forms of knowledge representauon that may prove useful as
part of a CMF. For example, Boeing has extended and generalized an AND/OR graph
representation for goals and activities ("activity graphs") that can be used to dynamically construct
and evaluate cyclic plans for achieving a set of process requirements.

Axotl is written in the ParkPlace Smalltalk-80 development environment on the Apple
Macintosh II. Versions of Smalltalk-80 exist for Sun, Apollo, Hewlett-Packard, IBM, and Apple

hardware.
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4.3 MANIAC, HyperCard, and MacRecorder

Together, MANIAC, HyperCard, and MacRecorder were used to record and play back voice
rationale.

In the first demonstration, design decision rationale was captured on a tape recorder during
Aquinas sessions. To demonstrate feasibility, parts of these recordings were processed using
MacRecorder on a Macintosh and stored in HyperCard. MANIAC, an ATC shell that controls
communication between Axotl, Aquinas, HyperCard, and other application programs, receives
commands from Aquinas to play back digitally recorded voice based on particular Aquinas
knowledge base objects. Designers and others who later examine the trade study decision rationale
can optionally play back this recorded voice information.

In future demonstrations we will link MacRecorder and Aquinas more directly so that
designers may enter and edit voice input directly while using Aquinas. This will be a relatively
unobtrusive way to enter rationale (as opposed to text entry) in a cost effective manner. Digitally
recorded voice information could eventually be stored and played back as design decision rationale
in TMIS in a manner similar to many digital phone message systems.

MANIAC is described more fully in (Bradshaw, Covington, Russo, and Boose, 1988).

4.4 CANARD

As part of the design process, competing alternatives are generated and evaluated for
suitability. The best alternative emerges as the result. Unfortunately, constraints, tradeoffs, and
other considerations made during the exploration of the design are usually lost, making it
impossible to review or easily modify them at a later time. If a modification to the design is
required, the designers may have to redo the entire task.

We started development of CANARD, an automated tool which uses possibility tables,
constraints, and knowledge bases to capture significant portions of the design process and assist in
the generation of alternative solutions consistent with design goals and design constraints (Shema,
Bradshaw, Covington, and Boose, 1989). Using a possibility table, a designer identifies the
components of an acceptable design, specifies possibilities for each component, develops criteria
reflecting preferences among possibilities, and supplies constraints governing compatibility
between components and overall design considerations. The designer next interactively explores
design alternatives by selecting possibilities for each component, modifying and/or adding
components and possibilities as insight into the solution is gained. He then analyzes and stores the
many alternative solutions for later retrieval.

For large problems, an iterative search procedure hypothesizes new constraints based on
examples of previously-defined design alternatives, and proposes new design alternatives based on
permutations of the constraint space. The tool keeps track of what has been tried and assists the
designer in covering important aspects of the possible solution space.

CANARD is written in the ParkPlace Smalltalk-80 development environment on the Apple
Macintosh II. Versions of Smalltalk-80 exist for Sun, Apollo, Hewlett-Packard, IBM, and Apple
hardware.

5.0 Example Trade Study - Technical Audit Item #85

In 1989 a technical audit was performed on the Space Station Freedom for the program's
content and implementation planning in relationship to performance, design, and validation
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requirements.Oneconcernraisedduringthetechnicalauditwasa 1986decisionaboutthe
placementof thepressurizedlogisticsmodule(PLM). UsingAquinas,wehopedto developa
processfor capturingthedecisionrationaleonthis topicandsimilarones.

First wedescribedourproblemandproposedprocessto a groupof designersat Boeingin
Huntsville,Alabama,whowereor whoareinvolvedwith theplacementof thePLM. Wethenused
Aquinasin two sessionswith two teamsof designers.Onesessionlasted1-1/4hours,onesession
lasted1-1/2hours.We elicitedtradestudymatricesfromeachteamandcombinedtheresults,
usingAquinasto showthecombinedrank-ordering.ThedecisionsdevelopedusingAquinas
agreedwithanddocumentedthecurrentplacementof thePLM.

Herewedescribethestepsthatwereperformedwith Aquinasfor thetechnicalaudit.

Step1.AquinaselicitedninealternativePLM locationsfrom Team1(Node1Zenith,Node1
Nadir, etc.).

Step2. Aquinaselicitedapreliminarysetof decisioncriteriaby usingtriadiccomparison.Groups
of threesolutionswerecomparedanddesignerswereaskedto givediscriminatingcriteria:

Think of an important new criterion that two of NODE.1 .ZENITH, NODE.1 .NADIR, and NODE .2.ZENITH share, but that the
other one does not. What is that trait? (Enter a CR to skip over.)
NEW TRAIT (EXTREME)** J_

What is that criterion's opposite as it applies in this case?
NEW TRAIT (OPPOSITE)**

What is the name of a scale or concept that describes BE'I-TER.MSC.REACH / WORSE.MSC.REACH?
NEW TRAIT (CONCEPT)** M_ REACH

Think of an important new criterion that two of NODE.1 .NADIR, NODE.2.ZENITH, and NODE.2.NADIR share, but that the other
one does not. What is that characteristic? (Enter a CR to skip over.)
NEW TRAIT (EXTREME)** CLOSE TO I-LABMODULE

What is that critedon's opposite as it applies in this case?
NEW TRAIT (OPPOSITE)** FARTHER FROM HAB MODULE

What is the name of a scale or concept that describes CLOSE.TO.HAB.MODULE / FARTHER.FROM.HAB.MODULE?
NEW TRAIT (CONCEPT)** HAB MODULE PROXIMITY

Step 3. The designers rated each alternative on each criterion. By default, Aquinas supplies
ordinal scales from 1 to 5. Designers may change the scale type (to nominal, interval, or ratio) or
range for convenience or more precision.

Step 4. The designers assigned a relative weight to each criterion. At this point an initial trade
study matrix was complete (Figure 3).
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4 1 4 1 2 3 2 2
4 4 1 1 1 4 3 2
1 1 1 1 2 4 4 4
4 4 1 1 1 5 5 4
2 1 2 1 5 4 4 5
5i5 5 5 5 3 3 3
1 5 1 5 3 1 3 3
12 34 56 7 8

1. NODEI.ZENITH
2. NODE1.NADIR
3. NODE2.ZENITH
4. NODE.2.NADIR
5. NODE2.PORT
6. NODE.3.ZENITH
7. NODE.3.STARBOARD
8. NODE4.PORT
9. NODE.4.NADIR
TEAM. 1.SOLUTION

TEAM1. SOLUTION TRAIT

1 1. (5) MSC.REACH: BETTER.MSC.REACH(1)/WORSE.MSC.REACH(5) [ORDINAL 1]
2 2. (1) HAB.MODULE.PROXlMI'I-Y: CLOSE.TO.HAB.MODULE(1)/FARTHER.FROMHABMO
4 3. (3) CG.SHIFT.IMPACT: LESS.CG.SHIFT(1) / GREATER.CG.SHIFT(5) [ORDINAL 1]
4 4. (1) JAPANESE.MODULE.PROXIMITY: CLOSERTO.JAPANESEMODULE(1) / FARTHER.
4 5. (2) GROWTH/PATH: BETFER.FOR.GROWTH.PATH(1) / WORSE.FOR.GROWTH.PATH(5
1 6. (5) PAYLOAD.BAY.BLOCKING: BLOCKING.PAYLOAD.BAY(I) / NOT.BLOCKING.PAYLO
5 7. (4) EXPOSURE.TOMICROMETEOROIDS: MORE.EXPOSURE.TO.MICRMETEOROIDS(1
9

Figure 3. Initial technical audit trade study matrix from Team 1.

Step 5. The designers used several of Aquinas' analysis tools to discover pattems in the collected
information. Implication analysis showed logical generalizations that, for this application, provided
a sanity check. A cluster analysis and similarity analysis showed the degree of similarity and
redundancy between alternatives and between criteria.

Step 6. Aquinas scored the alternatives by eliciting preferred criteria values from the designers.
For example, the designers said they would prefer alternatives that were better for the station
growth path and had less effect on the station center of gravity. For Team 1, Aquinas produced the
following results:

1 : NODE.2.NADIR
2 : NODE.1.NADIR
3 : NODE.2.PORT
4 : NODE2ZENITH
5 : NODE.4.NADIR
6 : NODE.t.ZENITH
7 NODE.4.PORT
8 NODE.3.STARBOARD
9 NODE3.ZENITH

(1.oo)
( 0.93 )
( 0.71 )
( 0.61 )
(0.54)
(0.54)
(0.48)
(0.48)
(0.31)

Step 7. The second team used Aquinas to independently develop and analyze their own trade
study matrix.

Step 8. Both matrices were combined and Aquinas again scored the alternatives, this time
showing the consensus scores as well as the contributions from both individual teams. The teams

are weighted in this example for purposes of illustration (Team 1 has received a weight of 40%,
Team 2 a weight of 60%). Teams or individuals may be weighted for technical or other reasons.

Combined results:

1 NODE_2_NADIR 0.89 TEAM_I 1.00 40% TEAM_2 0.82 60%
2 NODE_I NADIR 0.81 TEAM_I 0.93 40% TEAM_2 0.73 60%
3 NODE_2_PORT 0.71 TEAM1 0.71 40% TEAM_2 0.70 60%
4 NODE_2_ZENITH 0.54 TEAM_I 0.61 40* TEAM_2 0.65 60%
5 NODE_I_ZENITH 0.55 TEAM_I 0.54 40% TEAM_2 0.56 60%
6 NODE 4 NADIR 0.48 TEAM1 0.54 40% TEAM_2 0.44 60%
7 NODE 4_PORT 0.43 TEAM_I 0.48 40% TEAM_2 0.39 60%
8 NODE 3_ZENITH 0.40 TEAM_I 0.31 40% TEAM_2 0.46 60%
9 NODE 3 STARBOARD 0.28 TEAM_I 0.48 40% TEAM_2 0.15 60%

Given this information, Aquinas displayed the most dissenting opinion beside the consensus. The
dissenting opinion is found by computing a correlation score between each team and the

consensus; the team with the lowest correlation score is listed as the dissenting opinion. Dissenting
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opinions show the user the range of opinion about a decision, not just the top rated list. In this
case, both teams showed a high correlation - both teams were in substantial agreement. This can
give the user confidence that the top rated alternatives were sound choices.

Correlation scores for all experts:
TEAM_2 96
TEAM_I .90

TEAM_I has the most dissenting opinion.

TEAM 1 / Consensus
1 : NODE_2_NADIR 0.81 / NODE_2_NADIR 0.89
2 : NODE_I_NADIR 0.72 / NODE_I_NADIR 0.81
3 : NODE 2 PORT 0.71 / NODE_2_PORT 0.71
4 : NODE 2 ZENITH 0.66 / NODE 2 ZENITH 0.64
5 : NODE_4 NADIR 0.62 / NODE 1 ZENITH 0.55
6 : NODE_I_ZENITH 0.42 / NODE_4_NADIR 0.48
7:NODE 3 STARBOARDO.41 / NODE 4 PORTO.43
8 : NODE 4 PORT 0.34 / NODE_3_ZENITH 0.40
9 : NODE_3_ZENITH 0.21 / NODE_3_.STARBOARD 0.28

Near-future capability. We will be building a TMIS-based menu query mechanism that would
be able to answer several types of questions about a trade study:

Q. Why did NODE.2.ZENITH do better than NODE.I.ZENITH?
A. It rated higher on CLOSE.TO.HABMODULE (1 vs. 4 on a scale of 1 to 5) and CLOSE.TO.LAB. MODULE (1 vs. 4 on a scale

of 1 to 5)

Q. Why did NODE.1 .NADIR and NODE.2.NADIR do better than NODE.1 .ZENITH and NODE.2.ZENITH?
A. They always rated higher on BE'I-IER.MSC.REACH, BETTER.FOR.GROWTH, and

LESS.EXPOSU RE.TOMICROMETEOROIDS.

They sometimes rated higher on CLOSE.TOHAB.MODULE and CLOSERTO.JAPANESEMODULE

Q. If LESS.EXPOSURE.TO.MICROMETEOROIDS were the only criterion, how would the alternatives be ranked?
A. 5: NODE. 1.NADIR, NODE.2.NADIR, NODE.4.NADIR

4:-
3: NODE.3.STARBOARD, NODE.4.PORT
2: NODE.2.PORT
1:NODE.1 .ZENITH, NODE.2.ZENITH, NODE.3.ZENITH

Q. What are the most critical criteria?
A. (Perform a sensitivity analysis to determine critical criteria; list criteria with high weights.)

Results. Boeing and MSFC engineers who used the tool were very enthusiastic about its
potential. It was decided to try and use this methodology for other aspects of the station's
preliminary design phase.

6.0 Conclusions and Future Work

The Boeing Advanced Technology Center (ATC) is conducting research leading to a
Corporate Memory Facility (CMF). A CMF would provide facilities for capturing and using
decision history and rationale throughout a major program's life cycle.

Initially the ATC is preparing CMF technical reports and building feasibility demonstrations.
In conjunction with NASA, The Space Station Freedom Program was selected as an application;
within this domain we are concentrating on design knowledge capture. We examined aspects of the
Power subsystem and the Environmental Control and Life Support (ECLS) subsystem. We also
participated in one aspect of the Space Station Freedom technical audit.

Significant progress was made in helping automate the process of performing engineering
trade studies. Other steps in the design knowledge cycle - alternative generation, comparison,
evaluation, and documentation - were also demonstrated. In the next phase we will continue to
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extendour toolsto furtherautomatetradestudies,strengthenour links to TMIS, andcontinue
workonCANARD.
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Abstract

This paper proposes a scheme to capture the design knowledge of a com-

plex object including functional, structural, performance, and other constraints.

Further, the proposed scheme is also capable of capturing the rationale behind

the design of an object as a part of the overall design of the object. With this

information, the design of an object can be treated as a case and stored with

other designs in a case base. A person can then perform case-based reasoning

by examining these designs. Methods of modifying object designs are also dis-

cussed. Finally, an overview of an approach to fault diagnosis using case-based

reasoning is given.

1 Introduction

At the abstract level a design task involves finding a consistent assignment for a

set of variables that together define the object desired and satisfy the functional,

structural, performance, and other constraints placed upon the object. In other words,

a design task involves solving a constraint satisfaction problem where the constraints

define the functional, structural, performance, and other requirements of the object[6].

Unfortunately the constraints defining a new object are often incomplete, ill-defined,

or inconsistent. In such situations the design process involves the iteration of the

following steps: refinement of the object specification followed by partial constraint

satisfaction[2][3]. This process is repeated until a complete specification of the object
is achieved.

The design process can be systematic, as we briefly discussed, or ad hoc. Unfortu-

nately many of the designs to date were developed in an ad hoe manner. The method

of systematic design is not very well understood. As a result, there have been a num-

ber of recent efforts towards a better understanding of the design process[3] [6] [10][11].

In this paper we are interested in capturing the design knowledge of an object.

The purposes are twofold: (1) capturing the design knowledge makes it much easier
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to understand,modify, or enhancethe design,and (2) studying the designsof objects
and the knowledgewhich needsto be representedwill help in systematizingthe design
process.

In order to understand the designknowledgeand representation issuesinvolved,
wehave chosento study' the processof designingcomplex objects. Looselystated, a
complex object is anything with a nontrivial designconsistingof a number of parts
and their interconnections. Examplesof complexobjects include toasters and table
lamps at the relatively simple end and jet enginesat tile complex end. tIereafter a
complexobject is simply referred to asan object.

When representingan object we needto capture the decompositional,hierarchi-
cal, functional, structural, and physical knowledgefor that object[l]. We also need
to capture the designknowledgeincluding the decisionsmadewhile designingthe ob-
ject, the rationales behind thesedecisions,and anyalternatives that wereconsidered.
Given the designof an object, it may be relatively easy to capture the decompo-

sitional, hierarchical, functional, structural, and physical knowledge of that object.

However, the acquisition of design decisions, alternatives, and rationales is likely to

be quite challenging, especially for an ad hoc design.

All of this information about an object can be gathered together to form a partic-

ular design experience. A designer may study this design experience while designing

another object which is similar in some respect. The desire to examine past design

experiences makes case-based reasoning (CBR) a natural way to access these expe-

riences. CBR can be applied here by treating a design experience as a case and

building a case base of various design experiences. Background information on CBR

or, more generally, memory-based reasoning can be found in [5], [7], and [9]. Designs
can be indexed according to parts used, functionality, and other features. This allows

a designer to examine the design experiences of other objects with similar parts or

functionality to help in making design decisions. We also briefly address the issue of

diagnosing faults which cause an object to malfunction. We employ CBR to find the

cause of a malfunction by examining the causes of previous similar malfunctions.

The rest of the paper is arranged as follows. First, the physical representation of

an object is described since it is the object itself upon which everything else is based.

Next, the method of designing an object from constraints is discussed. The design

process produces not only the physical representation of an object, but also why it

was designed the way it was and how it satisfies its constraints. Then various types

of design modifications which may be required or desired are examined. Finally, a

brief look is given at fault diagnosis for complex objects.

2 Object Representation

Central to the idea of representing the design of a complex object is the representation

of the object. Indeed every other aspect of the design is at least indirectly dependent
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on the representationof the object. For example, the proof that an object has certain

desirable properties will likely contain a reference to the properties of a physical

component in the design.

There are two alternatives for representing an object: (1) have separate conceptual

and physical decompositions of an object with a mapping between them, or (2) com-

bine the conceptual and physical decompositions into a unified representation. When

the conceptual decomposition of an object matches with its physical decomposition,

the cognitive complexity of the system is reduced and hence the representation of the

object becomes easier to understand. Therefore we favor matching the conceptual

and physical decompositions of an object. To capture the relevant design knowledge,

we should be able to represent the decompositional, hierarchical, functional, struc-

tural, and physical knowledge for the object[l]. We use a frame-based scheme to

capture the above design knowledge since it is capable of representing the required

information and provides an easy means for manipulating this information.

Decompositional knowledge of an object is represented in a hierarchy. An object

is composed of parts, each of which can be composed of subparts, and so on. A

collection of subparts may be thought of as a component of the object. Relationships

between parts in the hierarchy are represented by using tlAS-PART and PART-OF

links. An object is ultimately realized by a collection of parts which are elementary

or are themselves complex objects with their own designs. A part is considered

elementary if it is essentially nondecomposable. Examples of elementary objects are

nails, screws, sheet metal, and glass. Physical knowledge is represented by describing

elementary objects in terms of size, shape, color, composition, mass, etc. This scheme

allows different objects to use the same part in their designs without having to each

give the physical representation of that part. It also allows the physical design of an

object to be examined in as much detail as is desired.

To take a simplified example, a lamp can be decomposed into the following parts:

base, cord, switch, shade holder, and shade. The switch is an example of a complex

object which has its own design. The base can be partially described as being white,

ceramic, cylindrical, and 12 inches tall.

The structural knowledge of an object is represented by explicitly specifying the

interconnections between the parts. This provides among other things a method

of specifying the orientation of one part with respect to another and the type of

connection (i.e. glue, weld, interlocking parts) between parts. The interconnections

between parts are represented by links. The specification of an interconnection link

is necessarily complex because of the nature of the relationship being represented.

Not only must the type of connection between parts be specified, but the spatial

orientation between connected parts must be specified as well. To use the lamp

example, it can be specified that the bottom of the switch screws into the top of the

base. Thus the physical design of an object is represented by a hierarchy of parts and
their interconnections.

Functional knowledge is represented by describing an object in terms of what it
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does. As mentioned earlier, every object serves some purpose. For example, the

purpose of a toaster is to toast things. The exact representation required to represent

functional knowledge has not yet been decided upon.

The taxonomy of objects is represented by classes and subclasses using IS-A and

SUBCLASS links, respectively. A particular object is an instance of some class of

objects. Thus objects which are similar can be located and compared. The collection

of the object designs forms the case base. An indexing scheme is needed to be able

to locate and examine objects with specific characteristics. This may be useful when

designing an object since choices of already existing objects can be examined by

the designer when deciding what to use for a particular part. Also, the PART-OF

links allow the designer to analyze how a part was used in other designs. Using this

information, the designer can decide whether an existing object will suffice or a new

object must be designed. As is described later, a new object may be created by

modifying the design of an existing object.

3 Designing from Constraints

The design of an object provides a consistent assignment for a set of variables that

together define the desired object and satisfy the constraints placed upon that ob-

ject. General classes of constraints include functionality, cost, performance, size, and

weight. An example of a cost constraint is "The lamp must cost no more than 30 dol-

lars at current prices." Obviously there are many other classes into which constraints

may fall.

The constraints for an object are specified first and then a design for the object

is developed to meet these constraints. There exists a gap between the constraints

and the design since there is often no reference to how each constraint is satisfied in

the design. Some sort of bridge is needed to link the design of an object with the set

of constraints which it must satisfy. This is especially important when a new object

with slightly different constraints from an existing object is desired. By identifying

the parts of the existing design dependent on the altered constraints, the new design

can be obtained by modifying the existing design to meet the new constraints.

As the complexity of an object grows, so do the number of constraints. A struc-

tured form of specifying constraints is needed to manage complex descriptions. The

method presented here uses top-down constraint refinement and bottom-up constraint

satisfaction, similar to the plausibility-driven design method described in [3]. Indeed,

the latter method will be used as a basis in formally developing the former method.

Initially, very general constraints are given for an object. These constraints, re-

ferred to as top-level constraints, generally include properties of the object as a whole.

Each top-level constraint is then refined into more specific constraints. It must be

shown that satisfying all of these more specific constraints will cause the top-level

constraints to be satisfied. Thus if constraint A is refined into constraints X, Y, and
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Z, it must be shown that A is satisfied if X, Y, and Z are all satisfied. Each of the

more specific constraints are then refined into even more specific constraints in the

same fashion. The refinement process continues until sufficiently precise constraints

are reached. These constraints are referred to as elementar 9 constraints. An elemen-

tary constraint corresponds to a feature which must be present in the design of tile

object. An example of an elementary constraint is "The lamp switch must have the

capacity for a 100 watt light bulb". An elementary constraint is satisfied if the design

contains that particular feature. Because of the nature of the constraint refinement,

the top-level constraints are satisfied if all of the elementary constraints are satisfied.

Once the constraints for an object have been specified, the design of the object

is then developed to meet these constraints. The designer specifies the design of the

object as a hierarchical decomposition of parts and their interconnections. In order

to prove that the object designed satisfies its constraints, it is necessary to show how

each elementary constraint is satisfied in the design. These relationships are also

needed to indicate the constraints with which a particular component of the design

is involved. This allows modifications to be made to the design without violating

constraints which were already satisfied.

Many of the major decisions made while designing an object regard determining

how the object should be decomposed to form its design. Some decisions concerning

the structure of the object may be made when the constraints for the object are

specified, however most decomposition decisions will probably be left to be made

when the design of the object is created. The physical decomposition of a similar

previously defined object may be used as a guide to decompose the object currently

being designed. The designer may instead choose to use selected components of the

physical decompositions of other objects in places in the current design. It is also

possible for the designer to incorporate innovative ideas into the current design. Thus

the designer has two sources of knowledge regarding how an object can be decomposed

- previous designs and innovative thinking.

It is therefore important for a designer to be able to access and examine the designs

of existing objects to help in making design decisions. However, this may still leave a

critical gap in the information needed by a designer. This gap is caused by the fact

that while a design describes the physical structure of an object, the rationale behind

the design is often not represented. Capturing the knowledge involved in designing

an object is of great importance in many areas, especially where the lifetime of the

project is expected to exceed the time of involvement of the designers, as in [4]. Thus

it is crucial to be able to retain not only the design of the object but also the reasoning

behind the design so that it can be referenced in the future. This problem can be

solved by including the decisions made while designing an object with the actual

design of the object. By having the rationale behind previous designs as well as the

designs themselves, a designer can make more educated decisions regarding the object

being designed.

When the design of an object is being created, there are usually many ways in

which various constraints can be satisfied. Thus at any given point in the design the
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designer may have a number of alternatives in choosing which part to use or how

a particular component should be decomposed. When a decision is reached, it is

important for the designer to document the object design with the justification for

that decision. This justification should include the choices considered, the reason why

the decision was made as it was, and reasons why other choices were not selected.

For example, while designing a lamp, a designer needs to decide on the switch to

use given the constraints "The lamp has a two position on-off switch" and "The lamp

switch must have the capacity for a 100 watt light bulb". By examining various types

of light switches available, the designer narrows the choice down to three switches - a

cheap two position sliding bar switch, a slightly more expensive two position sliding

bar switch, and a two position rotating switch. The designer is then informed that for

a two position switch, the sliding bar type is preferred over the rotating type of switch.

The third switch is ruled out because of this fact. The designer then chooses the first

switch citing the fact that it is less expensive than the second switch. However after

tests show that the second switch is considerably more durable than the first switch,

the designer chooses to use the second switch.

The justification of the decision to choose the second switch is stated as follows:

(1) In study X, it was found that the sliding bar type of switch is the preferred type

for two position switches. The rotating switch is ruled out because of this fact. (2)

The cheap sliding bar switch is chosen initially because of its cost. (3) Test Y showed

that the slightly more expensive sliding bar switch considerably outlasted the cheap

sliding bar switch. The former switch was then chosen replacing the latter switch

because of its quality.

In this way the evolution of an object including the rationale behind the design

can be captured in an integrated form which can then be analyzed and/or critiqued by

others. With the justifications, the design can be more easily understood by persons

not involved in designing the object.

It is important to note that objects which are not designed in the manner outlined

here can still have their designs represented. The design would only consist of the

physical design of the object as described in the previous section along with whatever

constraints and design decisions are available. This information could be obtained

from the available design documentation and supplemented by interviewing the de-

signers involved in the project. Without this, all previously designed objects could

not be represented, thereby rendering this entire scheme useless.

4 Design Modification

Some time after the design of an object is completed and judged to satisfy all of its

constraints, there may be a need to make modifications to the design. Modifications

may be necessary because a problem arose with the original design, some constraints

were left out of the original design, an improvement can be made, or an enhancement
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to the original designis desired.

Through the constraint satisfaction method everyeffort is madeto insurethat the
designdevelopedsatisfiesthe constraints imposedon the object. In developing the
designof an object, the designerwill likely useparts which havebeen previously de-
signedand whosefunctionality matcheswhat is neededin the designbeingdeveloped.
If it is discoveredthat the functionality of a part does not meet what was claimed,
a problem may arise in objects which use the part. If such a problem doesoccur
then the designof objects which usethe part must bemodified in order to satisfy the
constraints which wereviolated asa result of the part not performing as expected.

It may be the casethat someconstraints wereleft out of the original design. The
constraints may have been either overlookedor not thought to be important. As a
result, the designof the object turned out to not quite match what wasdesired. Thus
the constraintsomitted areaddedand the object is redesignedto incorporate the new
constraints.

The designof anobject canbe modified to reflect an improvement is somearea(s)
of the design. For example,a newpart maybecomeavailablewhich can replacea part
in the original designand is cheaper,faster, smaller, or more reliable than the part
originally used.Thus if an inexpensiveswitch which neverwearsout is developed,it
canbe substituted for the switch currently usedin the lamp design. An improvement
to the designcanbe accomplishedby changingthe constraints referencingthe old part
to referencethe new, improvedpart. The new part must still satisfy those constraints.

The reference to the old part is retained in order to reflect the history of the design.

Modifications can also be made to enhance the functionality of a design. For

example, the simple on-off switch on the lamp may be replaced by a three-way switch

to produce a more versatile lamp. Constraints indicating the enhancement are added

wher(_ appropriate and the design of the object is altered to satisfy the new constraints.

It must be insured that previously satisfied constraints remain satisfied after the

design ,nodification is made.

The difference between these last two types of modifications is that an improve-

ment makes a design better without changing its basic functionality while an en-

hancement extends the functionality of an object (but does not necessarily make it

better).

As is the case in the process of creating the original design, justifications of design

modifications should be included in the design. This is necessary to maintain the

complete history of an object design.

Modifying a design need not always replace an old design with a new one. Instead,

the old design must be allowed to exist as an object as long as it is still useful. This

is especially the case regarding enhancements to a design. The old and new designs

may re,,_ain interconnected if desired so that a change in one effects a change in the

other. On the other hand, the old and new designs can be made totally independent

of one another if significant changes are made to the old design.
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5 Fault Diagnosis

A common characteristic of every complex object is functionality - each complex

object serves some purpose. For example, the function of a toaster is to toast things

and the purpose of a lamp is to provide light. The design of an object is such that

the functionality desired is achieved. However it may be the case after some period

of time that the object does not function properly, i.e. the toaster does not toast or

the lamp does not provide light. In other words, there is a fault associated with the

object. The fault must be diagnosed in order to correct the problem. A fault can be

diagnosed using either deep level reasoning[8] or shallow level reasoning.

One method of diagnosing a problem is by using deep level reasoning to analyze

the design of the object and determine the cause of the malfunction. Thus by knowing

that the lamp does not provide light, analyzing the design of the lamp will discover

that the fault is caused by a burnt bulb, a broken switch, or a bad cord. Note that

the function of the light bulb must be included in the design of the lamp since it is

the bulb which actually produces the light. This method by itself may have difficulty

dealing with nontrivial malfunctions where the failure of one part leads to failure of

others. In any case, it is desirable to avoid having to analyze the entire structure of

an object every time a malfunction occurs.

Another approach to problem diagnosis is to use case-based reasoning to find

similar malfunctions which have occurred previously. This approach uses shallow

level reasoning since it does not try to reason from the physical design of an object,

only from past experiences with malfunctions. If a similar malfunction has already

occurred with that object, the corrections used to eliminate the previous malfunctions

are examined. If a successful correction is found and the circumstances are similar

enough, the correction is tried on the current problem. If the circumstances are not

quite the same, the correction may have to be adapted to apply to the current problem.

The success or failure of the correction is stored along with the circumstances under

which the correction was applied. In the case of a failure, an explanation of why the

correction failed (if known) is also stored.

If no cases of malfunctions with similar circumstances are found for the object,

similar objects can be examined. If possible, analogical reasoning could then be used

to adapt the corrections applied to one object to apply to the current object. If no

past experience can be used in the current situation, a diagnosis by an expert or one

based on the design of the object (using deep level reasoning) must be formulated.

As time goes by and varied types of malfunctions occur, the case base grows and the
fault diagnosis capability for an object improves.

6 Conclusion

This paper introduces a design scheme which integrates the process of designing com-

plex objects within a framework that allows for the capture of the design knowledge
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that went into the design. The framework is intended to be sufficiently generalso
that any object canbe represented.The presenceof a broad domain modeleliminates
most of the redundancyand wastedeffort causedby the inability to integrate rigidly
defineddomains.

Case-basedreasoningis usedto provide designerswith knowledgeof parts, past
designs,and the rationale behind thesedesignsto assist in the designprocess.CBR
is also usedto help diagnoseproblemswhich occur in an object while it is in use.

Future work will be focusedmainly on formalizing many of the ideas presented
in this paper. The processof designingobjects will be investigated further to pro-
vide more insight into what is required to fully capture the knowledge utilized when

designing an object.
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Abstract

The Hubble Space Telescope Operational Readiness Expert

Safemode Investigation System (HSTORESIS) is a reusable knowledge

base shell used to demonstrate the integration and application of

design knowledge captured from multiple technical domains. The

design of HSTORESIS is based on a partitioning of knowledge to

maximize the potential for reuse of certain types of knowledge.

Introduction

The Hubble Space Telescope Operational Readiness Expert

Safemode Investigation System (HSTORESIS) is a knowledge based

system which demonstrates the integration and application of

design knowledge captured from multiple technical domains. The

domains of interest are the electrical power and pointing control

systems of the Hubble Space Telescope (HST) . The types of design

and engineering knowledge contained in HSTORESIS pertain to the

analysis and resolution of system anomalies known as safemode

events.

HSTORESIS is motivated by the HST Design/Engineering

Knowledge-base (HSTDEK) project. The primary goals of the HSTDEK

project are to enable major NASA projects to capture design and

engineering expertise and to support the use of the captured

knowledge in multiple applications [2]. HSTORESIS addresses these

goals by providing a reusable knowledge base shell which can

access a variety of device models and rule bases to allow a user

to solve a variety of problems.

The following sections discuss some key technical issues

addressed in HSTORESIS and describe major features of HSTORESIS.

Knowledge Partitioning

It has been said that one important approach to managing the

computational cost of causal reasoning is structural abstraction

[3]. In this spirit, the design of HSTORESIS is based on a
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partitioning of the knowledge typically contained in a knowledge
based system. The knowledge partitioning helps manage the
computational cost inherent in rule based systems and increases
the opportunities for knowledge reuse.

It is not practical or possible to procedurally define all of
the behaviors of a complex device even though, from an engineering
perspective, each subcomponent may be precisely defined. In order
to reason about a device as complex as the HST, a system must
include both procedural or algorithmic knowledge and heuristic or
partial knowledge. Traditionally, applications using the
production system approach tend to merge both types of knowledge
into one rule base.

Merging procedural and heuristic knowledge contributes to
system brittleness and reduces the opportunity for knowledge
reuse. To overcome these problems, HSTORESIS provides the hooks
for the knowledge engineer to partition a knowledge base into
procedurally oriented device models and heuristically oriented
production system rules. This knowledge base partitioning allows
more than one set of heuristics, or production rules, to be
applied to an HST component or subsystem. This increases the
potential for knowledge reuse.

For simple systems, the encoding of the procedural knowledge
in device models is often sufficient to describe the system's
behavior. However, because of its complexity, the HST is not a
fully described system. Some of its behaviors cannot be
procedurally described. For example, a design engineer might know
from experience that if a reaction wheel spins at 2,200 rpm for
more than two minutes the rotor bearings will experience excessive
wear. The engineer might therefore recommend that maneuvers be
avoided that would cause the reaction wheel to over spin for more
than one and a half minutes.

The important distinction is that heuristic knowledge is only
approximate and is subject to different interpretations in
different situations. For example, how much bearing wear can be
tolerated might depend on the importance of making a particular
maneuver or the nearness in time to a service interval. In
contrast, the calculation of angular momentum or the mass of the

reaction wheel is a fixed characteristic of the device.

The reason for making this distinction is that the procedural

knowledge has a greater potential for reuse. This reuse can be

achieved in two ways:

• By having more than one set of heuristic rules reason over
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the same device model, and

• By combining device models to create new models. (This type

of reuse, composite models, is possible because both single

and multiple inheritance are supported by the object oriented

programming tool used by HSTORESIS.)

Figure I. Example of Reuse in HSTORESIS

Figure 1 illustrates both types of reuse. In one case, two

rule bases (the bubbles labelled RB) reason over one model. The

model itself is a composite of two other models.

In contrast to the procedural knowledge, the heuristic

knowledge is subject to more change over time. For this reason,

the proposed partitioning will make knowledge bases easier for the

knowledge engineer to maintain and modify.

Reusable Interface

An analyst interacts with the knowledge contained in

HSTORESIS through the Interface Management System. The basic

script that the analyst follows to define a problem for analysis

is suggested by Figure 2. The analyst selects a device model from

a menu of all models known to HSTORESIS. The analyst also provides

a time interval over which the device model is to be analyzed.

The Interface Management System retrieves from the selected

device model a list of associated engineering data. A query is

then made of an external source to retrieve values for the

engineering data for the time interval selected by the user.

The final part of the problem description provided by the

user is the rule base to be applied to reason about the device

model. Each model knows what rule bases are associated with it,

and the list of associated rule bases is provided to the Interface

Management System for presentation to the user via a menu.

Three major design criteria implemented by the Interface

Management System are to:
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• provide a point-and-click style of interface that minimizes

use of the keyboard and maximizes use of the mouse,

• provide a set of reusable display objects that give a

consistent look and feel across applications, and

• establish a protocol that application developers may follow

to access and use the display objects.

Interface Management System

User Interface

Model Interface

l I

Rule Bases Device Models Telemetry Monitor
Sets

Figure 2. The HSTORESIS Concept

Examples of the types of display objects that are available

include buttons, query panels, menus, telemetry monitor display

panels, message windows, and time displays. Graphical images are

also included. For example, one graphical image depicts the

orientation and location of the HST relative to the earth, moon,

and sun. More will be said later about the protocol available to

application developers for using display objects.

HSTORESIS implements a display page library. A display page

consists of a collection of display objects accessible by the

user. Display pages may be built by a user and saved in a display

page library. Display pages are indexed by user name and problem

type. A user may build, modify, and save any display pages owned

by the user. Display pages owned by other users may not be

changed, although pages belonging to other users may be copied

into the current user's work space and then modified, if desired.

The complete set of display objects provide a powerful tool
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for use by the application developer. The objects are implemented

using object oriented programming techniques and can be accessed

via a simple messaging scheme.

The Interface Management System manages the creation and

display of the objects, the collection of answers from the user,

and the return of the user inputs to the messaging object. Two

important benefits derive from this. First, the amount of

interface programming that an application developer must do is

significantly reduced. Second, the reuse of the set of display

objects provides a consistent look-and-feel for the user across

problem solving sessions.

Reusable Telemetry Database

The source of information about the behavior of the HST is

engineering data obtained from monitors on board the HST. Data is

collected and communicated via telemetry to a ground station.

There are approximately 5,500 telemetry monitors associated with

the HST. The interesting technical issues concerning the monitors

are how to represent them in a knowledge base and how to obtain

descriptions of the monitors associated with a device model.

IMonitors i

d"

I ven si

Icoun orsi

Figure 3. Monitor Classes

The solution to the representation issue is illustrated by

the design in Figure 3. All 5,500 telemetry monitors conform with

the design.

Event monitors have values that are either bi-level or multi-

level. Bi-level monitors have measurements with only two states

(e.g., on or off). Multi-level monitors have measurements with

more than two states (e.g., high, medium, or low).

Analog monitors are either counters, table look-ups, or
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polynomials. Counters represent uninterpreted telemetry counts. If

a counter has a value of three, then three is the correct meaning

of the value. A table look-up requires retrieval from a table of

the analog value corresponding to the monitor value. For example,

a monitor value of three might correspond to an analog value of

1.67 volts. A polynomial fit is a monitor whose value is inserted

into a polynomial equation. The meaning of the monitor's value is

the solution of the polynomial equation. For example, if a

polynomial equation for a monitor has the coefficients of 1.5,

0.03, and 2.1, then a monitor value of 3 has the meaning:

1.5"30 + 0.03*31 + 2.1"32 = 20.49.

Given the design, the problem of extracting the descriptions

of the desired telemetry monitors becomes simply a matter of

generating a list of the desired monitors, locating them in a

master database of monitor descriptions, and then creating a

knowledge base from the descriptions of the monitors. All of this

is automated by HSTORESIS which eliminates the need for manually

producing the descriptions.

Reusable Device Models

Within HSTORESIS, a satellite telemetry point is represented

as an object with its own data and set of behaviors. In one sense,

the instantaneous state of the HST is represented by the

collective output of its 5,500 telemetry monitors. However, this

representation is extremely weak since it lacks information about

component connectivity and component behavior. Although rules can

be written that reason exclusively in terms of telemetry values,

human experts do not usually think in these terms.

By extending the above analogy one step further, the state of

each major component of the HST is represented by the values of

some set of monitors. The mapping between a set of monitors and a

component forms the nucleus of device models used in HSTORESIS.

The monitor mappings, however, are only part of the model

abstraction. A complete device model will include all of the

following:

• a mapping between the model and a set of monitors,

• pointers to the rule bases that are capable of reasoning

about the device,

• behaviors (methods) that represent the conceptual or physical

functioning of the device/component, and

• features (slots) that hold state information that is not

included in the satellite telemetry stream.
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The first two items are used dynamically to establish

bindings between the HST telemetry database, the HSTORESIS device

model, and the user interface. The final two items encode the

procedural knowledge that relates to the device. For example, if a

reaction wheel were being modelled, an example of the final two

items might be a method for computing angular momentum, or

features like the wheel's mass or composition.

I User Interface I

Model Manager

Telemetry Interface

mm m m m mm mm mm m mm ...

Figure 4. HSTORESIS Architecture

Figure 4 illustrates how these ideas have been incorporated

into HSTORESIS to transform raw telemetry data into a level of

abstraction which is closer to the mental representations that

human experts use. The telemetry interface stands between the raw

telemetry data and the telemetry object abstraction. The model

manager lies between the telemetry objects and device models

(indicated by bubbles labelled with an M). The user interface

layer provides the user with direct access to the rule systems

that reason over device models.

Graphical Object and Rule Integration

An important feature of the Interface Management System,

mentioned previously, is the protocol for accessing graphical

objects. The protocol supports development of rules that can both

deliver information to and solicit information from the user. The

use of graphical objects can be described by referring to Figure

5, which depicts a schematic of the screen layout for HSTORESIS.
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Menus/

Options

System/Rule Base

Message Log Window

Time/Data

Display

User's Workspace

Applications Developer's

Programmable Area

Figure 5. HSTORESIS Screen Layout

The System Menus/Options area permits the user to access

application independent menus and options for defining a problem

set, editing the workspace, and launching and managing a query.

Queries that can be made by a user are determined by the rule base

selected by the user to be applied to a set of telemetry data.

User queries are controlled by start, pause, and step options. The

basic visual metaphor for interacting with this area is a button.

The Application Developer's Programmable Area is reserved for

the display of application specific options. The application

developer is provided with a simple protocol for programmatically

displaying and removing options that are application specific.

Again, the basic visual metaphor for user interaction with this

area is a button. An application developer may choose to provide

buttons in this area that correspond to a set of queries that a

rule base can answer about the telemetry data to be analyzed.

The System/Rule Base Message Log Window area is reserved for

the display of system messages (e.g., warnings) and the results of

inferencing. The Log Window provides the user with icons for

controlling which message is displayed. Messages may be scrolled

through the window, or a specific message may be selected for

display. A counter indicates how many messages are available and

the number of the message which is currently displayed.

The Time/Data Display depicts three items. The spacecraft

time is indicated. The frame of the telemetry data that is
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currently being analyzed is indicated. A slide bar indicating the

percentage of telemetry data that has been (or remains to be)

analyzed is also provided.

The User's Workspace allows the user access to display

objects that can be used to monitor the state of the device model

as the analysis session progresses. Some of the objects that may

appear in this area are monitor display objects, graphical images

such as the one used to depict the relationship of the HST to the

sun, earth, and moon, and pop-up objects such as query panels.

Most of the interaction between the user and HSTORESIS will occur

in this area.

Pop up query panels permit rules or other objects to ask

questions of the user. Query panels are also used to obtain

information from the user at the start of the analysis session.

The user must provide a user name, a device model, and a time

interval over which the analysis is to be made.

Pop up dialog boxes permit rules to provide information to a

user. Optional buttons may be associated with a dialog box to

provide additional capabilities for the user. Figure 6, for

example, depicts a rule that creates a pop up dialog box with a

button labelled "Recovery" which permits access to information

about recovery from an event called "RWA-Speed-Limit-Test"

(IF

(TEXT (RWA-SPEED-LIMIT-TEST HAS FIRED))

THEN

(LISP

(UNITMSG '(SIS-SCREEN-MANAGER SIS-SCREEN-MANAGER-KB) 'IN-BOX

'DISPLAY-POP-UP-MESSAGE :TEXT

"RWA Speed Limit Failure: check for:

~%Too large vehicle maneuver

~%momentummanagement performance

~%misconfigured software

~%other database problems."

:BUTTON-VALUES

'(("Recovery"

'(UNITMSG '(SCREEN-MANAGER SCREEN-MANAGER-KB) 'IN-BOX

'DISPLAY-POP-UP-MESSAGE :TEXT

"i. Monitor wheel speed in sun point until

it returns to normal.

~%2. Dump memory to re-verify the database

~%3. Work through Section 8.0 recovery

procedure."))))))

Figure 6. Sample Rule

A more interesting use of pop up dialog boxes is to provide a

nonlinear text or hypertext functionality. For example, the rule
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in Figure 6 could be modified to provide a button connected to a

function that could access the "Section 8.0 recovery procedure" in

the appropriate design document. Then, reviewing the recovery

procedure would be as simple as clicking on a button. An obvious

extension to this capability is providing access to a video disc

containing schematic drawings or other graphical images pertinent

to the analysis being performed.

Conclusions

HSTORESIS demonstrates a successful approach to integrating

knowledge from multiple domain experts into a single knowledge

base system. An adaptive, knowledge-based interface facilitates

interaction between a user and domain specific rule and knowledge

bases. The application demonstrated by HSTORESIS is analysis of

safemode events, which is diagnosis problem. However, HSTORESIS

could easily be extended to other applications such as training,

scheduling, design, etc. Additionally, HSTORESIS provides a

capability for accessing on-line design documents in a nonlinear

manner. This allows the user to access design knowledge not

specifically contained in the HSTORESIS knowledge bases.
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ABSTRACT: The phrase "expert systems" will disappear within ten

years. Somewhat less likely to suffer the same fate will be the

term "knowledge acquisition." The field of software engineering

will expand to include both of these terms, wherein expert

systems will be a form of advanced software engineering. The

incorporation will permit more complex domains to be addressed,

and the unique qualities of expert systems will render the

resulting software more transparent. System specification and

requirements analysis will be augmented by knowledge acquisition

techniques to enable prototypes to appear earlier for customer

inspection, with the end result being a software product for

which the customer has a real need, and which performs up to her

expectations (Ref. 2)

The current qualities of expert systems will become embodied

in various components of software engineering methodologies and

end products. The most likely candidate for this process in

Computer Aided Software Engineering (CASE) tools. For once, we

in the software engineering world will not have to continue to

be the shoemaker's children. We have constructed powerful,

useful, and extensible automated tools for our own use, rather

than only building them for others. The features of expert

systems will be used in most parts of CASE, including needs

assessment, requirements analysis, design, implementation,

testing, and maintenance and enhancement. Project planning,

documentation and software quality assurance will also benefit.

The growing interest in "reverse" software engineering, of going

from existing ill-structured and non-documented code to modular

design representations, will be a ripe field for expert system
contributions. The critical nature of user interfaces will be

addressed by our expertise in transparency and explanation-based

learning of expert systems.

Many of the above "predictions" are not really futuristic at

all. They were incarnated in the process of constructing an

automated test analysis computer system for the Space Shuttle

Main Engine (SSME) by the Rocketdyne Division of Rockwell

International (Refs. 3,4,5). The development effort was

successful in bringing the system SCOTTY on-line in June, 1988

at somewhat over 25% of the eventual full system, in terms of

thoroughness of the SSME test analysis procedure. Progress has

continued to date, and has spawned other automated SSME systems,

plus ones related to other Rocketdyne programs such as

expendable launch vehichles, the engines for the National

Aerospace Plane, and the Space Station power system.
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This successful development was made possible by an optimal

mix of vision, personnel, tools, procedures and management. The

personnel included an excellent young mechanical and aerospace

engineering staff, and a knowledge engineer with both industry

and academic credentials. The tools were recommended by the

knowledge engineer, and included both an industrial-strength

inductive Expert System Building Tool, running on a multi-

processor supermini computer from Concurrent Computer

Corporation, as well as a PC-based CASE tool.

Management direction was given by an enthusiastic senior

technical manager who was very well respected in the company,

and who had realistic expectations about expert system

abilities. He also ensured that the personnel and financial

committments to the program were long-term ones.

Since the knowledge engineer had a substantial background in

software engineering, both as a practicing professional and as

an academic since 1963, it was natural that the "front-end" of

the development effort would receive considerable attention.

The desireability of this front-loading has manifested itself

innumerable times throughout the software industry in the

savings accrued in the "back-end" of the software life cycle.

Maintenance, including all three types: corrective, perfective,

and adaptive, has long been recognized as the real cost driver
in software.

Consequently, a great deal of attention was paid to the

interactions among the expert, the user, the protoype system,

and the knowledge engineer. Many alternatives were considered

for this knowledge acquisition process. The recent book by

Karen McGraw and Karan Harbison-Briggs (Ref. i), with a preface

by this author, would have been invaluable. Figure 1 for some

knowledge acquisition alternatives is from the book.

KNOWLEDGE SOURCE KNOWLEDGE ACQUISITION MODE

I_ILIAN IIXPtl_T

DA'_

Figure i. Variations in Possible Knowledge Acquisition

Mode

(Reprinted with permission of Prentice-Hall

from Knowledge Acquisition: Principles and

Guidelines by Karen McGraw and Karan

Harbison-Briggs, 1989.)
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Initially, in 1984, a small PC-based inductive system was

used to demonstrate a feasibility prototype. This took only a

few days, with the expert quickly learning the tool, and

appreciating the power, vs. having to codify his own rules. The

order-of-magnitude increase of having the expert express his

knowledge as examples, and then having the ESBT generating the

rules was obvious, and has been well-documented many times since

then. It was also obvious that a more powerful tool would be

required for a production test analysis system. The vendor of

the small tool was just ready to announce such a product, which

was a near-ideal fit. In addition to induction, it also

generated Fortran code, which is the lingua franca of the

engineering world. This is critical as the code output by the

ESBT is readable, i.e., not "magic", and it is trivial to

interface it to the 100K+ lines of Fortran code which already

exist for SSME software support, plus new codes which would
surely be written in the future.

Good management practices and documentation guidelines

dictated that all of this effort be tracked. Requirement

documents were generated, as were data flow diagrams and

structure charts. These were invaluable in not becoming lost as

SCOTTY grew in complexity. Moreover, the tools used in CASE

were easily grasped by the mechanical engineers. The fact that

expert system tools were being used did not obviate the fact

that it was still very much of a software engineering process,

albeit in a complex domain.

In the future, it is clear that expert systems and software

engineering will intertwine even more closely. A few such

considerations include data bases, and automatic code generation

from structure chart modules. In the case of the latter, the

author and a colleague were the first to build an interface

which permitted the ESBT to interact with the millions of bytes

of test data from the 1000+ previous SSME tests. This interface

has now been expanded by a joint venture between Intelligent

Terminals Ltd. and Concurrent Computer Corporation to become a

commercial product. In the case of the latter feature --

automatic code generation -- it will not be long before a CASE

vendor adds inductive programming to the tool chest.

In summary, a prediction was made that the terms "expert

systems" and "knowledge acquisition" would begin to disappear

over the next several years. This is not because they are

falling into disuse; it is rather that practitioners are

realizing that they are valuable adjuncts to software

engineering, in terms of problem domains addressed, user

acceptance, and in development methodologies. A specific

problem domain was discussed, that of constructing an automated

test analysis system for the Space Shuttle Main Engine. In this

domain, knowledge acquisition was part of requirements systems

analysis, and was performed with the aid of a powerful inductive

ESBT in conjunction with a CASE tool. The original prediction

is not a very risky one -- it has already been accomplished!
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Position 1: The process of generating solutions in problem solving is viewable as a design task.
Position 2: Case-based reasoning is a strong method of problem solving.
Position 3: A synergism exists between case-based reasoning and design problem solving.
This paper presents and defends these three positions.

1 Introduction

The Problem

Design issues are omnipresent in everyone's day-to-day activities. People design business
deals, they design sports strategies, they design physical objects, and they design an innumerable
array of other tangible and intangible things. The issues which make designing difficult are
basically two-fold: the design must serve some function, and it must do so while satisfying some
set of constraints.

The Paradigm

Case-Based Reasoning (CBR) is a rather unique paradigm of artificial intelligence which
weaves the history of experience into problem solving. Unlike other techniques which blindly and

repeatedly solve new problems from scratch, CBR consults a memory of past cases to avoid re-
solving recognizable problems. The quality and efficiency of reasoning gradually increases as new
cases are acquired, analyzed, and added to the CBR memory.

The Solution

Experience is the most important factor which hones design skills, enabling the mastery of a
core set of principles, rules, laws and techniques. Design experience is inseparable from design
expertise, therefore it seems only natural that the next generation of intelligent computer-aided

design tools should utilize CBR techniques.

The Apologia

The remaining sections of this paper build a case for case-based reasoning. The domain of
discussion is CBR in engineering design. The goal is to get the research community involved in
some issues and to get practitioners involved in some applications. By accelerating the inevitable
(i.e., the use of CBR in design), beneficial applications for space technology can be realized
sooner rather than later.

Section 2 describes a hypothetical session with an intelligent CBR design tool. The section
whets the appetite and motivates the need for such a system. Section 3 details our current view of
the engineering design process, without intelligent computers. Section 4 presents our proposed

view of the same process, with intelligent computers.
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Section5 introducesthefetusof our research:thefunctionalmodelof the CBR Designer's
Assistant. Section 6 describes each module in more detail. Section 7 compares our model with
other research projects and gives a compendium of work in the field. Section 8 concludes with
some discussion and recommendations.

2 The Scenario

To help set the stage, a typical interactive session between a designer and an intelligent
computer will be presented. Let us call the system the CBR Designer's Assistant.

A design task is defined for a part belonging to a family of parts. The design requirements
and constraints are presented to the designer, who comes to the design workstation and enters the
CBR Designer's Assistant environment.

The designer requests assistance in performing a new design. A search is initiated in the
CBR memory for previous cases of designs with the same or similar requirements and constraints.
The system opens a new case, begins recording the design session, and prepares itself to
track/guide the designer's goals throughout the session.

The designer selects a part from the list of retrieved cases and it is presented on the CAD
screen. The designer browses the features, design decisions, and other knowledge associated with
the past case. The designer selects and browses other similar designs (if there are any) until the
closest match is found. If no relevant cases are found, the designer inputs features-based
parametric commands to generate a new seed design.

The designer takes actions (makes decisions) within the system such as changing feature
parameters, deleting features, adding features, editing relations, and so on. As this activity is
performed, the system monitors and attempts to explain the actions (rationale) based upon its
expectations. If needed, the system makes suggestions to the designer, guiding the design
process.

The system activates a special design knowledge capture facility to prompt the designer to
assist in the construction of explanations for actions which the system cannot self-explain. The
facility associates the explanation information with the current case which will eventually be stored
in memory. All aborted designs and dead ends are also captured and noted to enable the avoidance
of failures in the future (through reminding).

The design evolves by specification/modification of features and parameters, which leads to
more remindings and brings to bear pertinent lessons learned from the past. The embedded
knowledge in the remindings enforces considerations related to form, functionality, production
cost, materials, producibility, inspectability, and so on.

When the designer indicates to the system that the current preliminary design is satisfactory
the resultant case is finalized and stored into the CBR memory.

The CBR Designer's Assistant is then prepared to digitally output/convert the information for
the completed design case, at the designer's request, to downstream product definition systems. If
the designer is not finished but wants to stop work, the system closes the design session and stores
the unsatisfied goals with the case in memory. The designer can then resume the session at a later
time and/or get progress updates.
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3 Without Machine Intelligence

Figure 1 illustrates our functional model of the design process. In both Figure 1 and Figure
2 the heavy arrows represent the main input/output flow of producing a design. The light arrows
represent the input/output growth of design experience. The lines without arrows represent

mechanisms and controls that support the design process. The shaded regions represent the
background enhancements that concurrent engineering concepts provide. The rounded boxes
indicate non-computer activities, square boxes indicate computer-assisted activities.

The design process begins (cf. Figure i) with the definition of the design task. This
definition consists of requirements and constraints which are input to the designer. The designer
combines creativity and innovation with an experiential design history to generate a new
preliminary design. The design history is used to retrieve lessons learned and other relevant
knowledge to increase the quality of the preliminary design.

Two mechanisms are then applied iteratively to evolve the design into a preliminary product
definition. Problem solution tools are applied to specify and analyze solution concepts (e.g.,
geometric modeling, "what-if" parameter manipulation, rules and principles, and performance
analyses). Design process management is applied to communicate decisions and reasoning (e.g.,
design plan, goal tracking, design reviews, and recording of design decision rationale).

The resulting preliminary product definition is then used to update the experiential design
history. This ensures that future designs can benefit from the growth of design experience and
lessons learned.

The process of design must blend many considerations and expertise from multiple
disciplines (e.g., engineering, production, cost estimation, and quality). Many design groups
choose to utilize a concurrent engineering approach, bringing scrutiny from other disciplines into
the evolving preliminary design process. This concurrent approach greatly increases the efficiency
of the design process. It saves time and money which is normally spent in implementing post-
preliminary design changes (inherent in the non-concurrent approach).

Figure 1: Without Machine Intelligence
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4 With Machine Intelligence

Figure 2 shows an improved view of the Figure 1 model where some parts of the process are
computer-assisted. The position of this paper is to promote the inclusion of CBR and other
machine intelligence techniques when implementing this model.

The new model maps the design process depicted in Figure 1 onto a computer architecture as
shown in Figure 2. The hashed line surrounding the square boxes defines the boundaries of the
CBR Designer's Assistant. Creativity and innovation is still left to the designer, only now the
computer allows the designer to focus more on these and less on the other mechanisms.

Figure 2 shows that the growing experiential design history is implemented as a CBR
Module. This module also contains concurrent engineering knowledge. The problem solution
tools are implemented as an Intelligent Computer-Aided Design (IntCAD) Module, also containing
concurrent engineering knowledge. The design process management is implemented as a Design
Session Manager (DSM) Module.

Design Task Definition

- Requirements & Constraints

Product Definition

- Geometry features, Materials,

Costs, Resource planning,

other information

Case-Based Memory &
¢

Reasoner

-Experience f

- Design History
#

i - Lessons Learned

engineering i :

; _osi esiim_ti:ng ,,'

!

Intelligent CAD

Designei

- Creativity

- Innovation

Case-Based Memory &

Reasoner

- Experience +

- Design History +

- Lessons Learned +

- Geometric modeling (objects, features, parametrics) Design Session Manager ]
• I

- What if?..., design parameter relationships - Goal Manager I

- Rule-Based reasoning (expected design approach/goals) I i

- Interface to specific performance analyses - Design Knowledge Capture ]

. ............ CBR Des gner s Assistant ,

Figure 2: With Machine Intelligence
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Figure 3: Case-Based Reasoning Designer's Assistant

5 The CBR Designer's Assistant

Figure 3 shows the architecture of the CBR Designer's Assistant. This section introduces the
machine intelligence techniques which are used to provide the required functionality of each
module.

The CBR Module has a memory component containing the design history, lessons learned,

and concurrent engineering experience and knowledge. It also has a reasoning component to

analyze relevant cases from memory and make pertinent suggestions to the designer. The memory
grows and learns over time as the system is used. The machine intelligence techniques to develop
this module come from the paradigm of case-based reasoning.

The IntCAD Module has a features-based parametric CAD component to help the designer

generate preliminary designs. It also has a rule-based reasoner which enables "what-if" parametric
analyses, interfaces to performance analysis routines, and manipulates concurrent engineering
knowledge. The machine intelligence techniques to develop this module are rule-based reasoning

and object-oriented programming.

The DSM Module has a goal manager to provide the design plan enforcement mechanism. It

also has a design knowledge capture component to record decision rationale. The machine
intelligence techniques used in this module are expectation-based processing and explanation-based

processing.

6 The Modules

CBR Module

CBR is a paradigm of problem solving which uses past solutions and lessons learned to

solve new problems. Researchers agree that the quality of decision-making particular to a design
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can be vastly improved if features from similar past design cases are considered. In fact, the
training of novice designers is case-based [Sycara 89@

Our experience (including analysis of other researchers' results) indicates that CBR offers the
following general advantages:

1) CBR is an efficient "jump-start" technique: focused problem solving is achieved
faster, through remindings, than blind search (such as rule-based) techniques.

2) Reminded cases provide efficient "repair" strategies [Sycara 89b] when
debugging partial solutions: previous successes, failures, and lessons learned are

applicable piece-wise, even when the reminded pieces are from different (but
related) domains.

3) Cases enable learning: feedback with respect to the success or failure of a
proposed solution, along with justifications as to why, are recordable and become

new cases in memory to benefit future problem solving.

Simply stated, advantages 1 and 3 provide intelligent "book ends" to a problem solving
session; advantage 2 steers the process in between. The following paragraphs in this section
present how these general advantages apply in the CBR Designer's Assistant.

Advantage 1 is used to "jump-start" the design process. A features-based definition of a part
to be designed is input. The most relevant design matching those features is retrieved from
memory. Presenting the retrieved design to the user/designer provides an immediate seed
preliminary design to focus the design process.

Advantage 2 is used to optimize the preliminary design piece-wise. As the user/designer
modifies pieces of the preliminary design (assuming it did not exactly match the input features),
additional similar pieces are retrieved from memory. The reminded pieces help repair the desired
changes by reporting violated constraints (such as producibility, cost, or inspectability) from the
past and adapting their solutions to the present.

Advantage 3 enables the CBR Designer's Assistant to learn. Explanations and justifications
as to how/why design decisions are made (both good and bad) are recorded to benefit future
similar designs.

The introduction to the DARPA Machine Learning Program Plan [DARPA 89] lists five

advantages of CBR: performance enhancement, uncomplicated learning, cases serve as
generalizations, scalability of methods, and easier knowledge acquisition. We agree with these,
however space here does not pemait a detailed comparison.

IntCAD Module

Currently there exist software tools which enable features-based parametric design. Some of
the more novel tools incorporate object-oriented programming and rule-based knowledge as well
(ICAD from ICAD, Inc., and Wisdom Ware from Wisdom Systems, Inc.).

There are two basic issues with respect to the IntCAD Module. The first issue relates to the

difficulty of customizing these off-the-shelf products. Considerable effort, expense, and
commitment by engineering groups is required, however the results are well worth it.

The other issue is an integration concern. After customization, the tool must integrate with
the rest of the modules in the CBR Designer's Assistant.

310



DSM Module

The DSM Module interfaces with the designer and manages the case-based and rule-based
reasoning processes. Within the DSM Module are the Goal Manager and the Design Knowledge

Capture (DKC) Module.

A popular theory of human intelligence states that learning involves several steps:

1) Expectation First there needs to be some form of expectation.

2) Surprise When things do not happen as expected, surprise occurs.

3) Explanation A surprise spawns the desire for an explanation.

4) Learning The analysis of an explanation leads to learning.

Step 1 is known as expectation-based processing. Representations of goals enable the Goal
Manager to build expectations of what the user/designer will do.

Step 2 occurs when an expectation is not met. The ways in which the satisfied and
unsatisfied goals relate to each other are used by the Goal Manager to further identify the type of

surprise.

Step 3 is known as explanation-based processing. Representations of rationale enable the
DKC Module to prompt the user/designer for acceptable explanations.

Step 4 occurs as a result of building an acceptable explanation for a surprise. The DKC
Module records the explanation and associates it with the current design case. The case gets stored

in the memory thereby learning an explanation which can be used for future cases.

7 State-of-the-Research

There are two central issues in CBR research: retrieving relevant cases from memory, and

reasoning from the cases which are retrieved. For comparison, [DARPA 89] details three central
issues: index selection, rank-ordering remindings, and adaptation. We would include the first two
of these within our retrieval issue.

The most relevant research that we are aware of is that which is being performed by Sycara

and Navinchandra at the Robotics Institute of Carnegie Mellon University. Their research is aimed

at integrating case-based reasoning and qualitative engineering design. The domain of their
research is in the area of the automated design of mechanical assemblies.

Another related research effort is being performed by Finger et al. [Finger 88]. Their
research effort, named The Design Fusion Project, is large-scale in which they address automated

design from a product life-cycle view. The domain of their research is electro-mechanical
assemblies.

Martin Marietta Laboratories is working on the larger issues of how to manage and integrate

concurrent engineering on a broad spectrum of design types, domains, activities and users in a
project called Integrated Concurrent Engineering (ICE) [Mills 89]. The work is also addressing the
issue of how to manage and integrate the large variety of design aids emerging from research
laboratories including algorithmic, expert system-based, finite element-based, simulation-based,
and so on. The domain of their research is mechanical assemblies.
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Thereare numerousother intelligent designresearchefforts [Brown 85], [Bulkeley 89],
[Dixon 88], [Hayes-Roth83], [Ullman 88]. Onelastprojectin engineeringdesignwill becited.
The KIDS (Knowledge IntegratedDesign System)project at Wright-PattersonAeronautical
Laboratories[KIDS 89] is focusedonmanyof thesameissuesastheICE project. Thedomainof
that researchis process-oriented: rolling, forging, casting,and someadvancedcomposites
processes.

The domain of design is actually present in many human-basedactivities, not just
engineering.Our researchis relatedto manyotherresearcheffortswhich look at designfrom a
non-engineeringview: for example,two partiesdesigninga mediationto adispute[Simpson85]
or achefdesigningameal[Hinrichs 89], [Hammond86]. Thereaderisreferredto [DARPA 88]
and[DARPA 89]whichofferexcellentcompilationsof work in CBR.

Therearesomeresearchersin theCBRcommunitythathavejust recentlybegunto address
thedesigndomain.The sheergrowthin thenumberof theserelevantresearchprojects,compared
to just a yearago, indicatesthat CBR hasthepotentialto offer manybenefitsto thedomainof
design.Synopsesof arepresentativesampleof theseresearchprojectsfollows.

Birnbaum and Collins [Birnbaum 89] consider "designthemes"as part of an indexing
vocabularyto providecross-contextualremindings.

Goel and Chandrasekaran[Goel 89] work in the adaptationof previousdesigncasesby
consideringthedesigner'sfunctionalmodelof his/hercausalunderstandingof thebehavioraland
structuralaspectsof adesign(calledadevicemodel).

Alexanderet al. [Alexander89]arefomaalizingarepresentationscheme(calledadesigntree)
which allows design casesto be transformedinto new designsusing a calculus they have
developed.

Barletta and Hennessy[Barletta 89] have developeda method which adaptspiecesof
previouscasesto optimizetheplacementof compositepartsto becuredin anautoclave.

SycaraandNavinchandra[Sycara89a],[Sycara89c]areusingamulti-layeredrepresentation
scheme(structural, functional, causal,and qualitative) to effect index transformationduring
reminding.

Our own work [Pulaski88a], [Pulaski88b], [Hightower89] hasbeenfocusedon building
CBR memoriesautomaticallyfrom a casebase(a databaseplus a knowledgebase),and then
optimizingthememoryusingneuralnetworkprocessing.

Althoughoutsidethescopeof thispaper,it shouldbementionedthattheIntCAD Moduleand
DSM Moduleeachinvolve manyissuesandrelateto otherongoingresearch.Perhapsthe area
mostneedyof abreakthroughis in designknowledgecapture.We agreewithWechsler[Wechsler
86] that part of the solutionneedsto beexplanation-based.The readeris referredto Freeman
[Freeman88] for anexcellentoverviewof thedesignknowledgecaptureproblem. Also, theDSM
Modulewouldbenefitfroma moresophisticatedusermodel,beyondsimplygoaltracking.
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8 Discussion

Several observations are notable regarding current work in CBR and integrated design. The

ICE, KIDS, and Design Fusion projects are large-scale. Much of this and other work has focused
on examples involving complex electro-mechanical assemblies. Although these projects should
some day produce very significant results, the size of the efforts and the complexity of the domain
will make progress very difficult.

We believe that there is a shortage of small-scale projects focused on simple designs. The
study of CBR in design will benefit sooner by addressing the issues with simpler examples. It is
our recommendation that single-component designs be considered, such as molds, fasteners, or
composite parts. These examples will reduce the amount of complexities arising from sub-
component interactions, yet results will still be beneficial and usable.

Another observation is that much work is geared toward a high level of design automation.
Our position is that using machine intelligence to assist a designer (rather than replace him/her) will
produce real benefits faster and at less expense than attempting to automate the construction of an
original design (without including a human designer).

It is generally agreed that while spending only 5% of manufacturing costs during design,
decisions made during design commit 95% of manufacturing costs. There are many stages
throughout the design process which can benefit from machine intelligence, however we feel that
the stage of preliminary design can benefit the most. Using CBR to bring downstream
considerations into the preliminary design process will assist the designer to optimize the upstream
design for cost as well as other considerations (e.g. quality, producibility, maintainability,
repairability, and other life-cycle concerns).
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SOFTWARE ENGINEERING (AISE) MODEL
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ABSTACT

The American Institute of Aeronautics and Astronautics has initiated a Committee on standards for

Artificial Intelligence. Presented here are the initial efforts of one of the working groups of that
committee. The Purpose of this paper is to present a candidate model for the development life
cycle of Knowledge Based Systems. The intent is for the model to be used by the aerospace
Community and eventually be evolved into a standard.

The model is rooted in the evolutionary model, borrows from the spiral model, and is embedded in
the standard Waterfall model for software development. Its intent is to satisfy the development of
both stand-alone and embedded KBSs. The phases of the life cycle are shown in the figure below
and detailed in the paper, as are the review points that constitute the key milestones throughout the
development process. The applicability and strengths of the model are discussed along with areas
needing further development and refinement by the aerospace community.
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Detecting Perceptual Groupings in Textures By Continuity

Considerations

Dr. Richard J. Greene

Abstract. This paper presents a generalization of the second derivative of a Gaussian D2G operator to
apply to problems of perceptual organization involving textures. Extensions to other problems of perceptual
organization are evident and a new research direction can be established. The technique presented is theoretically
pleasing since it has the potential of unifying the entire area of image segmentation under the mathematical notion
of continuity and presents a single algorithm to form perceptual groupings where many algorithms existed
previously. The eventual impact on both the approach and technique of image processing segmentation operations
could be significant.

Introduction

The notion of "continuity" provides a unifying framework for representing and solving
the problems of perceptual organization. For example, the vertical lines in Figure 1 tend to be
organized into three distinct groups based on proximity. From this example, one can infer the
existence of a distance threshold among the lines. Lines whose spatial neighbors are within the
distance threshold maintain continuity of distance relations and are grouped together. Lines which
exceed the threshold cause a discontinuity in distance relationships and form another grouping.
Hence, a notion of continuity/discontinuity can provide a convenient concept for formalizing the
language and mathematical treatment of perceptual organization.

Ill II I

Figure 1. Continuity by proximity.

More generally, given a "space", the notion of continuity depends on a definition of a
distance metric and "smoothness" over that space related to the distance metric. Discontinuities
occur at places within the space which are not "smooth enough". Perceptual groups are
homogeneous precisely because they are "continuous" with respect to some grouping property. In
short, the elements grouped together may differ in exact detail from one another but only within
limits. Thus, the goal perceptual organization is to locate discontinuities among the perceptual

elemens and, by doing so, isolate "continuous" groups of elements.

Unfortunately, as the paragraphs above imply, an operational definition of "continuity"
can be elusive. Natural language lacks the precision to adequately define "enough" or "too much".
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Euclidean geometry, on the other hand, can be too precise in characterizing the concerns of
continuity and thus result in large descriptions consisting of a superposition of special cases.

This paper presents several problems of perceptual organization using a simple texture to
illustrate the problems of determining continuity. The Laplacian of the Gaussian convolution

operator D2G is generalized to detect discontinuities within this context and thus form perceptual

groupings.

Perceptual Organization in Textures

Textures may be defined as a regularity of the spatial distribution of texture elements (or
texels). For the sake of illustration, assume the texels are a short, equal length line segments, each
associated with an angle it makes with an imaginary horizontal line oriented from the left of the
image to the right. Consider the texture of the "wavy plane" in Figure 2. The texels are the line
segments and their spatial distribution defines a specific texture. Textures may also define
perceptual grouping: Places where the texels do not vary "smoothly" define a discontinuity and
may indicate perceptual groupings.

IIl\\"-"l l\_""l

Il\\.,.--ll\_,_.---i
ii\x_--..ii\x'_----I

Figure 2. Lined Texture.

Notice how the perceptual groups differentiated by continuity of texel angle emerge from
Figure 2. In some cases, the change among the texels is not drastic enough to cause a
"discontinuity". However, in other cases, a group of texels will vary enough from their neighbors
to form a new perceptual group. Even from this simple example, one can experience the detection
of discontinuities among texel groups.

Clearly, the notion of continuity offers a useful conceptual framework for discussing
perceptual grouping. However, to be applied, we must formalize the detection of texture
discontinuities within a mathematical framework and derive an algorithm from the mathematical

theory. This is done in the next section.

Detecting Discontinuities

The literature of edge detection has documented many techniques for discontinuity
detection with respect to intensity values[2,3]. A line is defined by its edge points which, in turn,
lie on a "steep change" in intensity among the edge point and some of its neighbors. In fact, the
line itself is often modeled as a step function and edge points detected by taking spatial derivatives
in order to locate the maxima of the step function. The maxima of the step function is located by
locating places in the image where second spatial derivative crosses zero.
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One theoretically compelling techniqueto emergefrom this approachhasbeenthe
Laplacianof the GaussianconvolutionoperatorD2G [4]. The motivation for this operatoris
twofold: convolving the imagewith a Gaussianlessensintensity "noise" and a critical point
(maximumor minimum) of theedge'sstepfunction will be found whereverthe secondspatial
derivative(Laplacian)crosseszero. Furthermore,theD2Gis the leastcomplexoperatorwhich is
rotationally symmetric. In otherwords,the Gaussianconvolution lessensthe overall effect of
relatively isolatedintensitychangeswhile thespatialLaplacianindicatesareaswheretheintensity
valueschangethe"fastest". Becausetheoperatoris rotationallysymmetric,edgesfrom anyangle
aredetectable.Theseareasof maximalchangeareprime candidatesfor "discontinuities". The
theoryof theD2Goperatoris explainedin Marr.

However,theD2G operatorhasbeenappliedonly todetectingdiscontinuitiesin intensity
values. D2G could be generalizedeasily if one can find a way to transformotherperceptual
groupingcuesinto intensity valuesandthenapply theD2G operatorto theresulting transform
image. This wastheapproachtakenfor texture.Fromtheexamplespresented,onecanreadily see
that different textureshavedifferentpropertiesandmorecomplicateddefinitions of continuity.
Nevertheless,oncethetexelsaretransformedto intensities,theD2Goperatorcanlocatewherethe
propertychangesthefastest.This thenwill locateacandidatefor adiscontinuity.

For illustration purposes,uniformly sizedsimpletexelswereselectedanddistinguished
only by theangleeachmakeswith ahorizontalreferencelineplacedat thebottomof thetexel. For
the sakeof simplicity, a simple 10digit codewasused.Figure 3 illustratesthis. For examplea
line with two vertical texelsandtwo horizontaltexelswould beencodedas5,5,0,0. Any other
codingschemewhich definesa metricspaceover the texturesis acceptable.Themetric space
restrictionisdiscussedbelow.

6 5 4

98 ' 2

0

Figure3. Texelproperties.

Therearetwo challengesin applyingtheD2G operatorto an imageconsistingof these
texels: first, how to transformtexels to intensity valuesassociatedwith their individual texel
distinctionsyet indicative of thespatialdistribution of texels,and, second,how to associatethe
transformedintensityvaluein thetransformimageto atexelin theoriginal image?Thetexelswere
transformedinto intensityvaluesby mappingthetexersangle(0 - 180degrees)to an intensityby
using its code (0..9). Thus texelswith similar angleshave similar intensities. The second
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problem,thatof associatingatexel to atransformedimageis handledby makingthetransformed
image'spixelsrepresentapolygonwhichcoversexactlyonetexel. In effect, theorignalimageis
overlaidwith agrid of polygonsor "tiled". Theoriginalimagemustbedividedinto tilessuchthat
every texel is containedin exactly one sectionandthat every pixel in the original imageis
accountedfor by exactlyonefile.

Oncethis tiling is accomplished,the texelmust be transformedto an intensity value
which satisfiesthe axiomsof a metric space[1]. The metric spacerestrictioninsuresthat the
distancemetric betweentexelsis continuousandthatthat two texelsthatarefar awayin metric
valueareindeeddifferent. Forexample,if themetricdefinedabovehadbeenextendedto includea
horizontal texel "10", a "0" and "10" would be far apart in the metric spacebut very close
(indistinguishable!) visually. In short, the metric spacerestriction allows us to ignore
"wraparound"phenomena;i.e. twoobjectsdeemed"far apart"by themetricareactuallyveryclose
togetherbecausetheobjectsareaboutto disappearfrom oneendof the spaceandappearon the
otherend.

The transformedimageis convolvedwith theD2G operatorandthezerocrossingsare
noted: thesecandidatesfor the texel anglediscontinuities. Since the mappingbetweenthe
transformedimageresolutionandoriginalimageisuniform,thecorrespondingimagepixelscanbe
identifiedascandidatepointsof discontinuity.

Results

This section presents texture images, their corresponding transform images, and the

output of the transform image convolved with a D2G operator with zero crossings marked. These

zero crossings are candidates for discontinuities and hence, perceptual groupings. Space

limitations restrict a full treatment of the experiments as well as the details of the D2G operator.
The standard deviation of the Gaussian used was three pixels; this parameter proved sufficient to
detect sharp discontinuities on the simple textures used. Given below are the results of a simple
texture. This example is intended to clearly demonstrate the technique and is not intended to limit
the range of spatial scales or texture types amenable to processing.

Figure 4 shows a simple texture image with uniform length texels and Figure 5 shows the
transformed intensity image. Finally, Figure 6 shows the results of convolving the transformed

intensity image with the D2G operator. Note the sharp lines locating where the texture became

discontinuous or changed most rapidly.
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Figure 4. Texture Image.

Figure 5. Transformed Intensity Image of Texture Image.

In Figure 6 the lines formed by the zero crossings indicate the distinct perceptual
groupings. Note how the groupings formed by the zero crossing curves closely parallel intuition.

Other, more comprehensive, experiments support these results and suggest the technique handles a
variety of textures and spatial scales.
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Figure 6. Zero Crossings of the Convolution.

Conclusions

This section suggests how the D2G operator can be extended to apply to distance or any

other criteria which exhibits a "continuity". The experiments with the simple texture images
suggest that continuity considerations can play a key role in determining perceptual groupings.
First the property in question must be represented by an intensity value. This can be done by
defining a metric space on the property and using the metric as an intensity value. There are no
restrictions on the dimension of the metric. For example, there is no reason to prohibit a two-
dimensional metric combining texel length and angle. Discontinuities could then represent breaks
in texel lengths, texel angles, or both. Perceptual groupings can be formed from either of these
and very strong groups can occur where both of these properties change the fastest. Research is
already investigating multi-dimensional properties.

The resulting image is convolved with the D2G operator and zero crossings noted. The

D2G operator is well-suited to detecting the discontinuities on various scales and is rotationally

symmetric. Finally, the zero crossings represent where the property in question may be
discontinuous. In fact, some psychophysical evidence suggests that the eye/brain may implement

some form of D2G convolution for the location of discontinuities in intensity value[3, 4]. It would
certainly be theoretically pleasing to discover that discontinuities in other properties such as texture
are located in essentially the same way.
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ABSTRACT

A telerobotic control station is described. In it, a machine vision system measures the position,

orientation, and configuration of a user's hand. A robotic manipulator mirrors the status of the
hand. This concept has two benefits: control actions are intuitive and easily learned, and the

workstation requires little volume or mass.

INTRODUCTION

Telerobotic systems have great potential for making space assets more flexible and productive. In
particular, astronauts might use telerobotic systems to reduce the need for extravehicular activity or
to handle hazardous tasks. The design of a telerobotic control station for use in manned spacecraft
must meet several constraints. The control station interface should be easy to use and to learn.

Mass and volume are strongly constrained in spacecraft, so the control station's mass and volume
must be minimized. Repair or replacement of spacecraft equipment can be costly or impractical, so

reliability must be high.

The requirement to be easy to use and learn is often unmet due to configuration differences
between the manipulator and the control interface. Many robot manipulators bear a superficial
resemblance to the human hand. They have grippers which crudely approximate the human thumb

and fingers, and wrists which pitch and roll as the human wrist does. These manipulators are
often attached to robot arms which approximate the human elbow and, to a lesser extent, the
shoulder. In contrast, human control interfaces to robot arms and manipulators have typically used

joysticks. The joystick is not a particularly natural interface, whether for robots or for other
equipment. Substantial training and practice are required to reach moderate skill levels, and
relatively few individuals have enough talent to efficiently use the device in tasks which demand

precision. (The late Dr. Judith Resnick was noted for her exceptional skill at manipulating the
Space Shuttle's robot arm via the joystick-based control station.)

Besides being a poor interface, a joystick control station takes up scarce volume and wall area.
This space is unavailable for other needs even when the control station is not in use.

Joysticks are mechanical devices which must endure friction and stress. To be reliable, they must
be robustly built. This requires substantial mass, expensive high-strength material, or both.

Two existing possible substitutes for joystick control are the DataGlove I and the Sensor Frame 2.
The DataGlove is a special glove which measures the position, orientation, and configuration of the
user's hand. The Sensor Frame is a set of infrared light sources and detectors arrayed around the
screen of a video display; the user's fingers interrupt beams of light, thus revealing the fingers'
positions. Both DataGlove and Sensor Frame are expensive and require special hardware.

This paper describes a vision-based control station which is intended to avoid the disadvantages of
joysticks, and to do so with lower cost and less dedicated hardware than the DataGlove and Sensor
Frame. It provides a natural-seeming interface, requires little mass and volume, and has no
moving mechanical parts. A simple implementation of the control station concept has been
assembled and tested. The first section below describes the physical configuration of the control

station, its computational support, and its connection to the robot. The second section describes
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thealgorithmfor imageinterpretationandrobotcontrol. Thethirddescribestwo altemativesfor
mappinghandpositionsto manipulatoractionsandexplainstherationaleusedfor selection
betweenthem. Thefourthsectionbriefly presentstheresultsof initial testswith thecontrol
station. Finally, areasfor furtherdevelopmentarediscussed.

INTERFACECONFIGURATION

Thecontrolstationconsistsof avideocamera,aknownvisualbackground,anda speciallymarked
glovewhichtheuserwears.In a fully developedcontrolstation,thegloveshouldbeunnecessary.
(Thecontrol stationalsoincludesavideodisplay,whichprovidesfeedbackabouttherobot's
actionsandenvironment.Thispaperdoesnotaddressthesubjectof feedback.)Theuserplaces
hisor herglovedhandin thevideocamera'sfield of view. An imageprocessingcomputerdetects
thehandandmeasuresits position,orientation,andconfiguration.Thesemeasurementsare
mappedinto asetof manipulatorcommandswhicharesentto therobot. Thus,theusercandirect
therobotto flex its wrist by tilting hisor herhand,or candirectthemanipulatortocloseits gripper
by bringinghis thumbandforefingertogether.

Thecurrenthardwareconfigurationof thesystemis shownin Figure1. Theuser'shandmotions,
observedbythevideocamera,determinetheactionsof arobotgripperin anotherroom. TheSun
workstationhandlesmostof thenon-imageprocessingload;theExplorerworkstationonly
transferscommandsfrom theEthernetto therobot. Not shownin thefigurearea television
cameraandamonitorwhichallow theuserto view therobot.

__1 VIDEOCAMERA USE., 
_HAND
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ROBOT
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GRIPPER

DATACUBE

IMAGE

PROCESSOR

SUN
WO RKSTATION

4
RS-232

I

._ EXPLORER
ETHERNET WORKSTATION

Figure 1. Current lab configuration of control station.

The glove is marked as shown in Figure 2. Viewed against a dark background, the light glove is
easy to detect by thresholding. The dark rings on the thumb and index finger are detected by
morphological image operations, allowing the hand's roll position and its grip width (distance
between thumb and index finger) to be measured.
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Figure 2. Marks on glove.

ALGORITHM

The robot manipulator has several parameters, e.g. pitch or grip width, each having a f'mite number
of states. Each parameter is independent, that is, the state of one parameter has no effect on the
state of another. The purpose of the program is to control the state transitions of each manipulator
parameter and thereby to control the manipulator itself.

The control station algorithm is presented below as Algorithm 1. The algorithm's outer structure is
an eternal loop. In each pass through the main loop, the first step is for the computer to examine
an image, determine whether a glove is present, and if so, measure its position and orientation
parameters. Each parameter is discretized, with each discrete value mapping to one state of the
corresponding manipulator parameter. If the indicated state does not match the current
manipulator state, then the program issues a command to change the robot's state. To avoid
spurious state changes, the algorithm only sends a command to the robot if the same change is
indicated in two consecutive images. If the glove is removed from the field of view, the robot
maintains its current state.

Initialize the current-state for each manipulator parameter.
While (True) Do:

Acquire image,
Threshold glove from background.
If glove in view:

Measure glove position/orientation parameters.
For each glove parameter:

Quantize.

Map to indicated state for manipulator parameter.
If indicated-state matches current-state for the parameter:

Do nothing.
Else:

If indicated-state matches previous-indicated-state:
Set current-state to indicated-state,

Send appropriate command to robot.
Else:

Set previous-indicated-state to indicated-state.

Algorithm 1. Hand position interpreter
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MAPPINGSTRATEGIES

Therearetwo straightforwardwaysto interpretgloveposition:eitherasadirectindicatorof
manipulatorposition,or asanindicatorof themanipulator'srateanddirectionof motion. In
position-to-positionmapping,therobothandmovesto thesameorientationastheuser'shand.
position-to-ratemapping,theusermoveshishandfrom theneutralpositionto apositionwhich
indicatesmotionin somedirectionor aboutsomeaxis,e.g.to increasethewristpitch, theuser
flexeshiswrist upward.Therobotwrist rotatesupwardcontinuouslyuntil reachingits limit or
until theuserreturnshiswrist to a neutralor downwardposition.

In

Position-to-rate mapping was selected because it allows the robot wrist to roll through its full range
of motion, i.e. infinite in either direction, as long as the user's hand is tilted to the side. An
implementation with position-to-position mapping would be unable to roll the wrist beyond the
finite limits of human wrist motion. The position-to-position mapping may be easier to learn and
use than the position-to-rate mapping, but that hypothesis has not been tested in this work.

Manipulator parameters currently supported are wrist pitch and gripper width. Wrist pitch is
controlled as described above. Gripper width is determined by distance between the tips of the
thumb and the index finger: small distance closes the gripper, large distance opens it, and neutral
distance stops the gripper at the current width.

RESULTS

The system currently lets the user control the robot manipulator in two parameters with fair
reliability (estimated at about 80% for each command motion). Response time is about 1.5
seconds, due to the rather slow image processing software, the specification that two consecutive
images must agree on a command, and a slow data link to the robot. Removing the hand from the
field of view and later returning the hand to the field of view usually does not confuse the interface
software. It is expected that the system can be speeded up and made more reliable with moderate
effort. Development of the system so far has required roughly 30 man-hours.

DISCUSSION

The equipment required for the control station is limited to a marked glove, a video camera, and
computers. A video camera and computers will probably be present on any manned spaceflight, so
the only unique equipment required is the glove. Future efforts may remove the requirement for a
glove.

Further development of the vision-based control station is warranted. Logical extensions are to
increase the number of parameters that are supported, to increase the speed, and to enable
operations with a bare hand rather than a glove. Increasing speed and number of parameters are
fairly straightforward. Operating without a glove can probably be accomplished by subtracting
each image from the known background image; this would .,'educe dependence on visual contrast
between the hand and the background.

A significant challenge for the vision system is to distinguish the positions of all five f'mgers,
should that be necessary for future dextrous manipulators. A reasonable approach may be to use a

color camera and to require the user to wear different colored rings on each f'mger. This avoids the
inconvenience of a glove, yet eases the task of the vision system.
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SUMMARY

A vision-based telerobotic control interface has been described. The interface requires little or no

special equipment, which is an advantage for space applications. It provides a natural
correspondence between user actions and robot motions.

The interface has been partially implemented with little effort. The current implementation has been
successfully tested. However, the interface requires further development to improve reliability and

speed.

1DataGlove is a product of VPL Research, Redwood City, CA.

2Sensor Frame is a product of Sensor Frame Corporation, Pittsburgh, PA.
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ABSTRACT

SRAARS is an intelligent robotic system which has autonomous learning

capability in geometric reasoning. The system is equipped with one Global

Intelligence Center (GIC) and eight Local Intelligence Centers (LICs). It

controls mainly sixteen links with fourteen active joints, which constitute

two articulated arms, an extensible lower body, a vision system with two

CCD cameras and a mobile base. The on-board knowledge-based system

supports the learning controller with model representations of both the

robot and the working environment. By consecutive verifying and planning

procedures, hypothesis-and-test routines and learning-by-analogy paradigm,

the system would autonomously build up its own understanding of the

relationship between itself (i.e. the robot) and the focused environment

for the purposes of collision avoidance, motion analysis and object

manipulation. The intelligence of SRAARS presents a valuable technical

advantage to implement robotic systems for space exploration and space

station operations.

I. INTRODUCTION

While the control engineers are concentrating on the relationship

between actions and responses, the artificial intelligence discipline is

emphasizing mainly on understanding the processes and the descriptions of

the knowledge formation. Learning is one of the major items within the

overlapped area of these two disciplines. As mentioned in Reference 2,

learning can be divided into a high-level symbolic category and a

lower-level numeric variety. However, a complete learning mechanism will

employ symbolic knowledge to instruct the numerical control system, and the

information of sensor inputs will be processed to update or upgrade the

symbolic knowledge base. The integrated structure of both quantitative

descriptions and qualitative descriptions stands for a more appropriate

interpretation of the human learning function.

In order to maintain the learning procedure as a progressively

improving process, the parallel coherency of both the short term memory

(STM) and the long term memory (LTM) is necessary. There are several

approaches in maintaining this kind of operation, e.g. using neural

networks (Ref. 5), or employing schemata (Ref. 6). Furthermore, for a

real-time expert controlled system, STM should directly interact with the

control scheme and LTM would serve as the supervisor (or teacher) (Ref. 3).

Then, the resulting learning mechanism can fulfill the six-step knowledge

acquisition procedure: perception, strategy, decision making, execution,
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result and evaluation. As shown in Figure i, this closed-loop operation

would eventually develop a certain extent of understanding which can be

expressed as the integral of perceptions and the corresponded evaluations.

That is,

UNDERSTANDING = _ PERCEPTION A EVALUATION (i)

The perceptions can be regarded as the qualitative descriptions of

the event, and the evaluations would be the quantitative interpretations of

the system's states. Therefore, a generic knowledge representation can be

expressed as a set of tuples. That is,

KNOWLEDGE = ((Qualifier[i], Quantifier[i]), i - 1,2 ..... ) (2)

For a specific section of knowledge (e.g. automobile repair), the

formation may not be unique, but the utilization of the knowledge base

would have an objective standard to qualify the specific knowledge

representation as an expert system. This concept is adopted as SRAARS'

fundamental principle of establishing the real-time learning mechanism.

Not every quantitative representation has its corresponded wualita-

tive description; also, not every qualitative description can be expressed

in quantity. However, it is perceived that those situations which can not

be depicted as a tuple of qualifier and quantifier are normally handled

without explicit knowledge. In other words, they are termed as unreason-

able or illogical such that improving the system performance with learning

is uncertain. Therefore, excluding those cases will not affect the

generality of the learning mechanism. It is then assumed that every piece

of meaningful knowledge can be expressed in a tuple of (Qualifier,

Quantifier). When the process of understanding reaches the predetermined

level, the evaluated system performance would converge to the designated

standard and the machine intelligence will be regarded as an expert. Then

the system behavior under the expert controller without closed-loop

updating will be just as good as that of the feedback closed-loop in Figure

I. For safety reasons, the feedback closed-loop may still need to be

maintained for responding to the potentially changing environment.

However, the frequency of processing the understanding procedure can be

reduced from real-time to on-line supervising.

The main objective of the real-time learning of SRAARS is geometric

reasoning. Therefore, the perception is the geometric interpretation. The

strategy is to move the robotic system in an effective way such that the

unwanted collision can be avoided and the assigned object manipulation can

be achieved. Decision making would determine the strategy selection based

upon given knowledge of the physical correlation of the environment and the

robot. The execution would then carry out the decision in a model-

referenced adaptive control. The result would decide the termination of

the action; and the evaluation will praise the system performance based

upon the chosen criteria such as the difference between the desired design

and the actual accomplishment, the execution time and the repeatability,

etc. In the next section, these functions will be explained in detail.

The third section will introduce the actual implementation plan. A

prototype of SRAA S is under development. The anticipated results are
discussed in the final conclusion section.
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II. THE FRAMEWORK OF SRAARS INTELLIGENCE

SRAARS is a general purpose mobile manipulator. Its real-time

learning mechanism can be applied to any specific target domain. The only

limitation is the memory size. Three sets of representation elements would

require user input for qualitative expression, quantitative description and

relational specification, respectively. The knowledge system has a library

of inference tools (e.g. forward chaining and backward chaining, induction

and deduction) and a set of strategies for heuristics and hypothesizing.

The knowledge base is designed with the basic format of Equation 2. The

overall learnlng/control system of SRAARS is illustrated in Figure 2.

The user input set of qualitative expressions would be the entire set

of vocabulary which the system can accept and utilize. The current level

of the system intelligence does not have the capability of generating any

new expressions by itself. The set of quantitative descriptions has two

subsets: one contains the symbolic specifications of variables, parameters

and constants, such as ranges (e.g. minimum, maximum), types (e.g. integer,

real, or boolean), and formats (e.g. scalar, vector or matrix); another is

comprised of the corresponded numerical values of each entity specified in

the previous subset. Every symbolic entity can represent only one item

throughout the entire learning/control process to eliminate unnecessary

internal conflict. The third input set of relational specification would

provide the initial system knowledge in linking and grouping all the

available qualifiers and quantifiers. Some examples of relational

specifications are formula or equations among symbolic quantities, rules of

thumb among qualitative terms or certain production rules which relate both

qualitative and quantitative items.

II.i KNOWLEDGE UTILIZATION

Most currently available expert systems require a certain extent of

human involvement (Ref. 7). Ranging from off-line query format man-machine

interface to on-line process advisory, the developed knowledge systems are

designated as an auxiliary component in the real world operations, which is

because the knowledge programming is still confined to the level of

managing the expressiveness of various knowledge representations, and

the methodology for actually utilizing the digested information is not

available. The knowledge evolution is basically a dynamic process. Since

there are quite a few methods to express the understanding of one

particular issue, and a major proportion of knowledge of understanding does
not have a direct connection to the necessary action. Therefore, knowledge

utilization itself becomes a rather ambiguous phenomenon. Fortunately, it

is less ambiguous in those occasions of skill learning (Ref. 2). The

knowledge utilization of SRAARS will serve two purposes: improving the

understanding of the working environment and employing the updated

geometric knowledge of both the robot and its surroundings to execute the

given assignment.

In the field of robotics, problems such as the reachability analysis

of articulated mechanical systems with redundancy, the collision avoidance

problem of mobile robots and the object extraction of robot vision are very

difficult to solve in a general platform. The human approach of dealing

with these problems is through a long period of learning. Therefore, the
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knowledge system of SRAARS is regarded as the core solution of mobile

manipulation of the robot in general environments.

II.2 STRATEGY GENERATION

The system is initiated with knowledge of models of both the robot

and the environment. The strategy at the beginning would be assuming these

models are correct and plan the action accordingly to perform the given

task. The decision maker then takes this strategy to execute the user

commands. Some possible commands are "find object A in location C", "find

object B in location D", "insert object A into object B, then place the

sub-assembly on the conveyer belt", etc. The user commands would be

translated into a sequence of actions for the controller to execute. The

controller would employ a model-referenced adaptive scheme to plan the

motion trajectory based upon the models and the assignment. Then, the

actuating systems will be directed to realize the planned actions.

At the same time, an initial sensing action with default frequency

is issued to monitor the robot motion and the changing environment.

Therefore, both the vision system and other sensors such as ultrasonic

sensors, proximity sensors or laser range finders, are sending data back to

the brain. The data processor then converts the data into two formats. A

direct conversion of input data to the values of system variables will be

sent to the controller to serve as the output feedback of the control law.

It will still maintain the data format. Another more complicated

conversion will examine the input data with the existing knowledge base.
The result is converted into an information format. The result will then

be processed through the inference engine to conclude as knowledge
verification and validation.

If there is a certain unacceptable inconsistency detected, then other

strategy generation will be activated. The activation and the termination

of different strategies are embedded in the kernel of the knowledge base

which the user will not be able to access. However, users can change the

level of acceptable inconsistency which triggers the activation and the

termination of certain strategies, and increase or alter the strategy

library. There are essentially two types of alternative strategies:

heuristic approaches or hypothesis-and-test. The heuristic strategies are

particularly suitable for object searching. When a segment of the

environment model is detected to be incorrect (e.g. the original model does

not have an object in that segment and current information indicates there

is something in that area, or the previous model shows that there should be

an object in that segment but the current sensor information cannot verify

the existence of the object), a heuristic search strategy can be issued to

take certain actions to modify the current model.

The hypothesis-and-test strategy can be utilized to resolve the

potential reachability problem of the robot. The relationship between the

robot model and the environment model can be very delicate when certain

compliance activity is required. The articulated robot with many redundant

degrees of freedom has a better chance to perform difficult interior

operations. However, a general solution may require substantial

computational effort (Ref. 4). Employing the knowledge engineering

technique with an adequate hypothesis-and-test strategy is a practical
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solution to resolve these types of problems. For this particular

situation, there may not be any inconsistencies in modeling; instead, the

maneuverability of the robot is the main focal point. If the robot has n

degrees of freedom, then the projection of n dimensional joint space to the

three-dlmenslonal world coordinates present a very complicated

combinatorial problem, especially when the topological structure contains

tree branches or closed-loops. This type of knowledge system application

will be the first step of utilizing artificial intelligence to solve some

problems which even human beings cannot provide a definite solution.

III. THE SYSTEM DESIGN OF SRAARS

The realization of SRAARS emphasizes more on the system feasibility

than on the utilization of the state-of-the-art microprocessor technology.

It is fully aware that an adequate integration of both CISC and RISC

architectures, such as Intel 80486 and 80860, Motorola 68040 and 88000

series, may provide a more powerful platform within a miniature form factor

for intelligent robot development. However, this technology is not yet

matured. It is therefore considered as the system design platform of the

next generation of SRAA S. Intel 80386 is selected as the main processor

for current SRAA S development. The major bus connection between GIC and

LICs is determined to be VME bus.

The Global Intelligence Center is regarded as the brain and the

central neural system of SRAARS. It has the following major features:

Multitasking with virtual 8086 mode;

Asynchronous processing of memory management, computation,

inference and I/O interface;

Hierarchical interrupt control; and

Real-time kernel with concurrent programming constructs.

The functional diagram of SRAARS's brain is shown in Figure 3. Each

individual modular functionality is listed as follows:

C3BUS:

Mother-daughter communication handshake

Command send out to designated LICs

Receive status reports from LICs

Network management and control

Record update and archive

RVR:

Image coprocessor communication

Frame buffer management

Image analysis, including edge detection, motion detection and

object extraction

SANE :

Sensor sampling and data acquisition control

- Sensor/actuator network management

- Device-lndependent database management

- Input buffer update

- Limited sensor fusion and impulsive reactions
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EAN:

- Environment model formulation and update

- Consistency analysis

- Map formulation, revision and interpretation

KBL:

- Knowledge base formulation

- Knowledge utilization including rule extraction, rule-data

association, and strategy generation

- Knowledge base/data base integration

- Knowledge input processing

MSM:

- Memory management among various devices (e.g. ROM, RAM, or disks)

- Memory initialization and reboot sequence

- Memory swap, cache and page

- Backup routine

Memory status update

SPE:

Model-based control monitoring

Self-correction and self-calibration

System power monitoring

System performance record

MMI:

Human operator input interrupt handling

Panel-driven task assignment input

Task analysis

Task recording and retrieving

Task planning

Task status update

There are eight Local Intelligence Centers. Six of them are employed

for controlling the mechanical linkage manipulation. Every one of the six

LICs would control two to three degrees of freedom of the robot. The

decentralized control systems would carry out the spatial planning commands

under AISP (Ref. I). The seventh LIC is a dedicated machine vision system

which would control two CCD cameras and two to three degrees of freedom of

motion to manipulate the orientations of cameras. Lower level image

processing will be accomplished in this LIC as well. The eighth LIC is

utilized to control the mobility of the base which includes the driving,

steering, braking and backup operations. Some major features of LICs are
listed below:

- Mother-daughter interactive communication

- Local trajectory planning and execution

- Status report back to GIC

- Impulsive response override

The connection between GIC and LICs basically follows the VME

specification. GIC and Four LICs, including vision and base control, are

located at the mobile base compartment. The rest of LICs will be located

at the central portion of the lower body. There is a dedicated cable to
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connect the "head", which contains cameras and the corresponded positioning

mechanism, to the seventh LIC situated at the base. A general mockup of

SRAARS is shown in Figure 4.

IV. THE CONCLUSION

The real-time learning mechanism of SRAARS is one of the innovative

ideas which are incorporated into the development of SRAA S. It takes a

plain and straightforward approach to integrate the knowledge system into

the real world applications. The developed learning capability will move

the knowledge engineering into the central arena of operating a complex

dynamic system and perform as a decision maker. It would be interesting to

see the comparative analysis with other conventional approaches if the

explicit general solution may one day become available.

ACKNOWLEDGEMENTS

This research and development is supported by Contract NAS7-1012 of

the NASA SBIR Program, from the NASA Resident Office at Jet Propulsion

Laboratories, Pasadena, CA.

REFERENCES:

, Alexander, Y.K. Chen, "AISP-A Robot Intelligence System in Spatial

Manipulation," at ROBEXS '89, The Annual Workshop on Robotics and

Expert Systems, Palo Alto, CA, August 2-4, 1989.

. Anderson, R.L., "A Robot Ping-Pong Player: Experiment in Real-Time

Intelligence Control," The MIT Press, Cambridge, MA, 1988.

. Fu, K.-S., "Learning Control Systems," Reprinted in IEEE Trans.

Pattern Analysis and Machine Intelligence, Vol. PAMI-8, No. 3, May

1986, pp. 327-342.

, Goldenburg, A.A., Benhahib, B. and Fenton, R.G., "A Complete

Generalized Solution to the Inverse Kinematics of Robots," IEEE J.

Robotics and Automation, VoI._RA-I, No. i, pp. 14-20, March 1985.

. Grossberg, S., "Neural Networks and Natural Intelligence," Bradford

Books, MIT Press, Cambridge, MA, 1988.

. Hanson, A.R. and Riseman, E.M., " VISIONS: A Computer Vision System

for Interpretation of Natural Scenes," in Computer Vision Systems,

(Hanson, A.R. and Riseman, E.M. eds.), Academic Press, New York, NY,

1978, pp. 303-334.

. Hayes-Roth, F., Waterman, D.A. and Lenat, D.B. eds., "Building Expert

Systems," Addison-Wesley Publishing Co., Reading, MA, 1983.

337



I NDERSTANDING I

[
I PERCEPTION

I EXECUTION Iq_

I _u'T t_

I_w,_T,O_F

Figure I. The Evolution Process of Understanding.

KNOW-INPUTI _ i_ _

LEDGE

.._1KNOWLEDGE INFERENCE

q BASE ENGINE

I STRATEGYGENERATOR

_._ DECISIONMAKER

COMMAND

DATA _ SENSORPROCESSOR INPUTS

DATA

ACTIONS /

\
PLANT I

ENVIRONMENT

Figure 2. The Functional Diagram of the Learning Control System of SRAARS.
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Abstract

Spaceborne computing systems must provide reliable, continuous operation for extended
periods. Due to weight, power, and volume constraints, these systems must manage resources
very effectively. A fault diagnosis algorithm is described which enables fast and flexible diagnoses
in the dynamic distributed computing environments planned for future space missions. The
algorithm uses a knowledge base that is easily changed and updated to reflect current system
status. Augmented fault trees represented in an object-oriented form provide deep system
knowledge that is easy to access and revise as a system changes. Given such a fault tree, a set of
failure events that have occurred, and a set of failure events that have not occurred, this diagnosis
system uses forward and backward chaining to propagate causal and temporal information about
other failure events in the system being diagnosed. Once the system has established temporal and
causal constraints, it reasons backward from heuristically selected failure events to find a set of
basic failure events which are a likely cause of the occurrence of the top failure event in the fault
tree. The diagnosis system has been implemented in Common LISP using Flavors.

Introduction

Most artificial intelligence diagnosis systems developed to date fall into one of two categories:
rule-based systems or model-based systems. Rule-based systems, such as MYCIN [1], encode
expert knowledge about the diagnosis problem as declarative rules. These systems have been quite
successful, but it is difficult to maintain consistency when updating or adding to the rulebase of
such systems. Model-based diagnosis systems usually simulate the system being diagnosed and
find faults by comparing the simulation results with actual data. The simulations are usually quite
slow and the diagnosis problem could become quite complex when multiple faults are present.

When a diagnosis system is used in a dynamic environment, such as the distributed computer
system planned for use on Space Station Freedom, it must execute quickly and its knowledge base
must be easily updated. Representing system knowledge as object-oriented fault trees provides
both features. Changing values in these fault trees is easily accomplished by changing an object's
instance variables and using well defined procedures to update related information in the fault tree.
Also, reasoning based on knowledge represented in a fault tree is faster than running a system
simulation and comparing results. The diagnosis system described here performs its task by
reasoning with knowledge contained in an object-oriented fault tree. It is well suited for use in a
changing environment since a fault tree can be updated during normal operation so that it accurately
reflects the current system status. When a fault occurs, the diagnosis system will have up-to-date

information for performing its task.
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Object-Oriented Fault Tree Representation

Fault tree analysis can be described as an analytical technique where an undesired state of a
system is specified and the system is analyzed, in the context of its environment, to find all tenable
ways this undesired state could occur. The resulting information can be represented as a tree
structure with the original undesired event (or failure) at the root, the possible causes of that event
as the root's children, the causes of those events as their children, and so on. Analysis stops at
any given branch of the tree when the event described by the leaf node is fine-grained enough to
satisfy the needs of the analyzer. These leaf nodes are called basic events and frequently
correspond to failures which are relatively easy to repair or overcome.

All non-leaf nodes of a basic fault tree can be thought of as logic gates representing a logical
AND or OR. An AND gate signifies that all the child events of that node must occur before the
event represented by the node will occur. An OR gate means if at least one of the child events
occurs, the parent event will occur. Sometimes a NOP gate is used when a node has only one
child. A NOP gate is just like an OR gate with only one child event. See Fig. 1 for illustrations of
fault tree AND and OR gates. Fig. 4 shows a complete fault tree.

All power is J
failed I

, + i

1 O n--or ! 1is failed is failed is failed

An AND gate

I Valve is Ifailed closed

, ,
Valve hard- ] [Valve closed: ] I Va,ve c,osedware failure human error for testing

An OR gate

Figure 1: Examples of Fault Tree gates
(From the Fault Tree Handbook [4])

Frequently other information will be associated with each fault tree node. For instance, a node

might also contain the probability of occurrence of its associated failure event, or how long it takes
between the occurrence of a child event and the occurrence of its parent event. In these cases, the
fault tree is called an augmented fault tree [2].

Patterson-Hine [3] has developed an efficient object-oriented fault tree representation and an
evaluation procedure which permits dynamic updating and rapid recalculation of values associated

with fault tree events. In this representation, each event node in a fault tree is described by an
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objectwith instancevariablescontaininginformationaboutthenode'sparents,children,type,ant
otherdetailsaboutthefailureeventrepresentedby thatnode.

Theinformationin thefault treesusedby thediagnosissystemincludeseventimportances,
C-factorsandtimeintervals.The importance of an event is a measure of how critical that event is
to the occurrence of the top event of the fault tree. It reflects the relative contribution of that event
and all events in the subtree below it to the occurrence of the top event in the fault tree. The C-

factor associated with a failure event in a fault tree is a heuristic measure of the likelihood that the
occurrence of the parent fault of that event was caused by that event rather than by one of its
siblings. The time interval of an event under an OR gate is an estimate of how much time will
elapse from the moment that failure event occurs until its parent failure event occurs. In the case of
a child event under an AND gate, the time interval measures the time between the moment when all
of the child events have occurred and the occurrence of the parent event. The top event (root node)
of a fault tree does not have values for importance or C-factor. See Fig. 2 for an illustration of
some of the objects in an object oriented representation of the fault tree nodes shown in Fig. 1.

Came: P1

Event: All Power is Failed

Importance: 0.42
C-factor: 100
Time Int.: 0.8

Parent: E1

Children: G1, G2, B1

k_ype: AND-Gate

C'Name: G2

Event: Gen. 2 is failed

Importance: 0.74
C-factor: 100

Time Int.: 2.1

Parent: P 1

Type: Leaf-Node

(_iame: V2

Event: Valve failed closed

Importance: 0.31
C-factor: 24
Time Int.: 1.2

Parent: V 1

Children: VHW, VHE, VCT

Type: OR-Gate ., J

fName: VHW

Event: Valve H/W failure

Importance: 0.82
C-factor: 47

Time Int.: 0.9

Parent: V2

Type: Leaf-Node

Figure 2: Fault Tree Object Representation

In a dynamic environment, such as a distributed computer system, the probability of
occurrence or the importance of a given event may change as the system is reconfigured. Object-

oriented representation of the fault tree allows these changes to be made easily and their
consequences to be calculated quickly. More traditional knowledge representations, such as if-then
rules, do not facilitate updates nearly as well.

The Diagnosis Algorithm

This diagnosis system is based on the failure cause identification phase of the diagnostic
system described by Narayanan and Viswanadham [2]. Their system has been enhanced in this
implementation by replacing the knowledge base of if-then rules with the object-oriented fault tree
representation. This allows the system to perform its task much faster and facilitates dynamic
updating of the knowledge base. Accessing the information contained in the objects is more
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efficient than performing a lookup operation on an indexed rule base. Also, Patterson-Hine's
object-oriented fault tree evaluation algorithm makes dynamic updating viable.

The diagnosis system is given information about the system being diagnosed in the form of
alarms. Alarms can be thought of as lights on a panel monitoring the system. A normal alarm is a
green light on the panel that indicates the failure event it is monitoring has not occurred. An
abnormal alarm is a red light on the panel indicating that the failure event has occurred. Each
possible alarm corresponds to a node in the fault tree. If it is known that the failure event
represented by a node has not occurred, that event is placed in the normal alarms set. If it is
known that an event has occurred, that event is placed in the abnormal alarms set. Any information
about which failure events have and have not occurred is very helpful for diagnosis and can speed
up the diagnosis process considerably.

The diagnoses produced by this system are sets of basic failure events that causally explain the
occurrence of the top failure event. The diagnosis process is initiated by specifying the failure to
be diagnosed, the estimated time of occurrence of this failure, the current set of normal alarms and
the time that each normal alarm was last confirmed, a set of abnormal alarms with estimated failure

times, and the root node of the fault tree representing the system to be diagnosed.

The diagnosis begins by inferring all failure events that must have occurred and those that
could not have occurred based on the information in the normal and abnormal alarm sets. The

alarm sets are updated accordingly. The system uses the alarm sets to guide its search of the
diagnosis space. It does not consider those portions of the diagnosis space with diagnoses
containing sets of basic failure events that would cause the occurrence of a failure in the normal
alarms set. Also, those portions of the search space with diagnoses containing abnormal alarms
are searched early in the diagnosis process.

The system also checks possible diagnoses for temporal and causal consistency. The time of
occurrence information provided for each alarm is used to propagate temporal constraints
throughout the fault tree. In order for a diagnosis to be accepted, the occurrence times of the
suspected failure events must have a logical causal ordering. In reference 2, Narayanan and
Viswanadham give a thorough explanation of the use of temporal constraints.

While it is updating the alarm sets, the system builds a set of starting points corresponding to
some of the confirmed failure events. The starling points are chosen in such a way that the
combined diagnoses of the events in the starting failures set will be sufficient to explain the
occurrence of the top level failure event.

Finally, the system performs backward chaining from the selected starting points to find a set

of basic events that were a likely cause of the top failure event. The backward reasoning process
first decomposes the starting point failures into sub-failures. Then the sub-failures are further
decomposed. At each decomposition, a set of heuristics is used to choose which branches of the
fault tree are likely to produce a good diagnosis. The heuristics make decisions based on the
contents of the alarm sets, the temporal information associated with the events, the overall

importance of each failure event, and the C-factors of the events. This decomposition process
continues until basic faults are reached. If the basic faults in the proposed diagnosis do not violate
any temporal or causal constraints, they are returned as a diagnosis for the top failure event. If any
constraints are violated, the algorithm backtracks and searches other branches of the fault tree for

possible diagnoses. The basic algorithm and heuristic descriptions can be found in Narayanan and
Viswanadham [2]. This implementation has modified those algorithms to use the object-oriented
fault tree knowledge representation instead of the rules suggested by Narayanan and
Viswanadham, but the basic diagnostic procedures are the same as those stated in that paper.
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Diagnosis Examples

The following examples show diagnoses of the simple adder circuit shown in Fig. 3. The top
level failure event for the adder fault tree (see Fig. 4) is incorrect adder output. In this tree all

4

2

Port Numbers

Figure 3: Simple Adder Circuit

basic events are seen as equally important (if any failure occurs, the system fails), and the fault
propagation time intervals are all the same except for operator input error. Also, the contribution of
a failed gate was heuristically judged to be slightly more important than the contribution of errors
propagated from other sources in the circuit (hence the higher C-factor). This loosely accounts for
facts such as if one input to an AND gate is zero, the validity of the other input is irrelevant. This
also results in diagnoses favoring gates nearer to the circuit output. Note that the diagnosis system
does not always return all possible causative faults for the top level failure, just those that seem
very likely.

Example 1:
(find-failures '(incorrect-result adder)

1

'(((incorrect-operator-input adder) 1)
((incorrec t-port-input adder port 1) 1)
((incorrect-port-input adder port2) 1)
((incorrect-port-input adder port3) 1)
)

'(((incorrect-port-output adder port4) .98)) ;Abnormal Alarm
'adder) ; Root of Fault Tree

; Top Level Event w/
; Time of Occurrence

; Normal Alarms

Diagnosis: (((FAULTY-GATE X2) 0.96))

The top event is an incorrect adder result. The normal alarms set indicates that the operator
input was correct and arrived at the input ports without any problems. The abnormal alarms set
reports that we discovered an incorrect output value on port four 0.02 seconds before diagnosis
began. The diagnosis is that Gate X2 is faulty since it connects directly to output port 4 and, due
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to theC-factors,gatefailure is morelikely tocausebadoutputthanpropagatederrors.The
numbersincludedin thediagnosesarethelatesttimesthatthesuspectfaultscouldhaveoccurredin
orderto causethetop levelfailure.

Example2:
(find-failures'(incorrect-resultadder)

1
'(((incorrect-operator-inputadder)1)
((incorrect-port-inputadderportl) 1)
((incorrect-port-inputadderport2)1)
((incorrect-port-inputadderport3)1)
((faulty-gateX2) 0.96)
)

'(((incorrect-port-output adder port4) .98) ;Abnormal Alarms
((incorrect-port-input O1 Port2) .97))
'adder) ; Root of Fault Tree

; Top Level Event w/
; Time of Occurrence

; Normal Alarms

Diagnosis: (((FAULTY-GATE A1) 0.95) ((FAULTY-GATE X1) 0.94))

This is like Example 1, but (Faulty-Gate X2) has been added to the set of normal alarms,
indicating that the X2 failure did not occur, and the failure event (incorrect-port-input O1 Port2)

was added to the abnormal alarms list. Having X2 in normal alarms sent the system a little deeper
into the fault tree to find that gate X1, which feeds through X2 out to port 4, was faulty. (Faulty-
Gate A1) was also added to the diagnosis to account for the incorrect input to gate O1.

Conclusions

This diagnosis system based on fault tree models has several advantages over other diagnosis
systems. It does not rely on a single fault assumption in its reasoning. In fact, most diagnoses
will include many basic faults. It deals with temporal parameters and uses them to effectively
reduce the diagnosis search space. Probabilistic reasoning is used to a certain extent in selecting
rules and search paths. The inclusion of event importance factors allows the system to consider the
most heavily weighted search paths first. The use of C-factors includes some expert knowledge in
the diagnosis procedure. The diagnosis technique is not domain specific. If a fault tree can be
constructed for a given system, this diagnoser can diagnose that system.

One shortcoming of this system is that the diagnosis is only as good as the fault tree model. If
an incomplete, undetailed, or inaccurate fault tree is given to this system, the resulting diagnoses
will be equivalently incomplete, undetailed, and inaccurate. This is in contrast to a diagnoser
which models the system as a simulation. The trade off here is that the simulation model will

probably be domain specific and incapable of expressing as rich a diagnosis environment as a fault

tree. Also, the simulations would have difficulty including probabilistic and heuristic knowledge
in their diagnosis, and diagnosis using simulation is usually quite slow.

Future Work

There are plans to integrate this diagnosis system into a fault tolerant distributed system. The
overall goal of this work is to reduce the amount of redundancy needed for fault tolerant

spaceborne computation. Distributed systems, such as those planned for Space Station Freedom,

will be characterized with fault trees and Markov diagrams. As the distributed system runs, the
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system knowledge base will be updated to reflect the current status of the system. When faults are
detected during execution, the diagnosis system will be used to determine the basic causes of the
faults. Then the system load will be redistributed to avoid the faulty components and the
computation will continue. This work will be done on the advanced architecture testbed and fault
tolerant computing testbed at NASA-Ames Research Center.
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ABSTRACT

The safing and failure-detection expert (SAFE) is a prototype for a malfunction detec-

tion, diagnosis, and sating system for the atmospheric revitalization subsystem (ARS) in the

Space Shuttle orbiter. SAFE, whose knowledge was extracted from expert-provided heuristics

and documented procedures, automatically manages all phases of failure handling: detection,

diagnosis, testing procedures, and recovery instructions. The SAFE architecture allows it to
handle correctly sensor failures and multiple malfunctions. Since SAFE is highly interactive,

it was used as a test bed for the evaluation of various advanced human-computer interface

(HCI) techniques. The use of such expert systems in the next generation of space vehicles

would increase their reliability and autonomy to levels not achievable before.

INTRODUCTION

The fault detection, isolation, and recovery (FDIR) process on board the orbiter is

lengthy and tedious (Figure 1). The crew is surrounded by diverse inputs: gauges, displays,

warning lights, alarms, caution and warning messages, and ground control communications.
If an anomaly occurs, the crew must follow flow chart-like malfunction procedures (essen-

tially fault trees) to isolate the problem and reconfigure the vehicle to a safe state. The crew

must locate the appropriate malfunction ,procedures in a voluminous manual, then find the
cockpit switches that must be manipulated--and do it all in a timely manner in an emergency.

Automation of this process clearly would have many benefits. It would speed up fault
isolation and make it more consistent and reliable; it would reduce the crew's work load and

alleviate the loss-of-efficiency problem on longer missions; and it could, as confidence in the

system is gained, reduce training and ground support requirements.

Beyond its immediate benefits, such a system would introduce into space vehicle man-

agement a new technology with the potential for substantially increasing vehicle autonomy--

autonomy that will be essential when space flights such as the Mars mission are undertaken.

Because of the communication time lag, complete responsibility for vehicle "health" will have

to be assumed by on-board functions, and mission length and complexity will make automa-

tion mandatory.

PRECEDING PAGE BLANK NOT FILMED
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Figure 1. Comparison of Current and Proposed Fault Diagnosis

The SAFE project's objective was twofold: to investigate the use of expert system tech-
nology for on-board malfunction diagnosis through the development and prototyping of the

software architecture; to experiment with various user interface techniques that would provide

easy and effective crew interaction.

SAFE ARCHITECTURE

The paradigm used by SAFE for diagnosis is the "shallow-reasoning" expert system,

which employs expert heuristics that map sensor signatures to component malfunctions. Its

advantages are that it is fast, conceptually easy to understand, and lends itself efficiently to a

rule-based structure. It reflects the way diagnosis is now done: a mixture of malfunction pro-

cedures and the expertise of the subsystem people on the ground who advise the crew. A dis-

advantage, which requires further research, is that such a system cannot detect an unantici-

pated failure, since it has no understanding on any level of how the modeled system works.

(An attempt to do diagnosis with a model-based paradigm was deferred because of severe per-
formance problems.)

As shown in Figure 2, components of the SAFE system are the knowledge base (rules

and facts), the user interface (UI), and the ARS simulator (SIM) and the simulator interface
(SI). The inference engine is OPS83, which is a forward chainer--i.e., data-driven. The user

interface is written in Ada and communicates with OPS83 via VAX mailboxes.
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ARS Model

The system model used by SAFE represents a simplified view of the ARS of the Shuttle

orbiter environmental control and life support system (ECLSS). ARS was chosen because of

its criticality and because it is both complex enough to provide a variety of malfunctions and

simple enough to be easily understood by knowledge engineers.

The system maintains a breathable atmosphere, with total pressure about 14.7 psi and

partial oxygen pressure between 2.9 and 3.4 psi. The main components of the model are the
oxygen and nitrogen supply, check valve, sensors and controller for the partial pressure of

oxygen (ppO2), and the control valve and its actuator. When the ppO 2 exceeds 3.4 psi, it is

detected by the ppO 2 sensors, and the ppO 2 controller causes the control valve actuator to
switch to the OPEN position. This opens the control valve, and nitrogen flows into the cabin

regulator. The nitrogen applies reverse pressure to the check valve, stopping the oxygen flow.
Crew breathing depletes the existing oxygen, and eventually the partial pressure drops below

2.9 psi. The controller valve is then closed and the nitrogen flow stops, enabling oxygen to

enter the cabin (Figure 3).

The failures that can be detected by the existing prototype are in the ppO 2 sensors and

controller, the control valve, the oxygen and cabin regulators, the oxygen pressure sensor, and
the cabin pressure sensor.

SAFE Operation

As long as no failure is detected, the user interface displays the sensor values on a user-

oriented display. For prototype verification purposes, a software simulator for the ARS was

written by using the procedural capabilities of OPS83. The simulator supplies the sensor data.

Twelve malfunctions have been incorporated into the simulator, and the demonstrator can

choose and inject one through the simulator interface (refer to the simulator section).
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Once the expert system has detected a malfunction, it notifies the user, instructing him

on how to perform a safing procedure to restore the system to an operational state. If, how-

ever, the symptoms are insufficient to uniquely identify the failure, the user can choose to run
tests to isolate the malfunction further. The appropriate steps for a test procedure are then

displayed. The expert system receives information like acknowledgments of actions taken or
requests for explanations through the user interface, which runs as a separate process from

the expert system. The expert system can continue to monitor sensor data while the user inter-

face is engaged in man-machine dialog.

SAFE Diagnosis Mechanism

A complete and well-defined architecture for a shallow-reasoning diagnosis and sating

system now exists. The entire process can be described as a cycle through the phases illus-

trated in Figure 4. The diagnosis activity is separated into sensor and nonsensor device failure

detection phases so that sensor problems can be found before the readings are relied upon to

diagnose other failures. The process involves the following steps:

• The sensor diagnosis rules are enabled. If a sensor is determined to be faulty or is suspected

of being faulty, it is so marked. This stage can generate a diagnosis for a failed sensor.
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Figure 4. Major Phases of Rule-Based Architecture

• Next, the nonsensor diagnosis rules are enabled. Any rules that base their diagnosis on read-
ings from a sensor previously marked as possibly faulty are not enabled, so no diagnosis is
made on the basis of unreliable sensor data. This stage can generate a diagnosis for a failed

component.

• A diagnosis can be "final," meaning that the system has made as detailed an isolation pro-

cess as can be expected, or it can be "intermediate," meaning that tests can narrow it fur-

ther. The diagnosis then lists all the suspected components and their potential failure mode.

• If the diagnosis is not a final one and the user signals his interest in additional tests, test

rules are enabled to create a test procedure. The test procedure is a series of operational
instructions to the crew, the purpose of which is to reconfigure the subsystem in such a

manner as to permit further isolation of the fault.

• Once the test is completed, the resultant sensor data, coupled with knowledge of the prior

diagnosis, enable the system to determine which component really failed.

• If the diagnosis is as specific as possible or if the user chooses not to run any tests, safing

rules generate the appropriate safing procedure, which is a series of instructions on how to

reconfigure the system to ensure safe vehicle operation, with emphasis given to a safe return
home.

• The expert system creates the test and safing procedures dynamically, going from the cur-

rent system state to the desired one (e.g., it will not instruct to close a closed switch). It also

takes into account the flight history (e.g., if the backup system were activated due to a pre-

vious failure, there would be no backup system left and the emergency supply system would
have to be used).
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• The user has to acknowledge the completion of every step of the testing or safing

procedure.

• When all safing actions are completed, the system suspends the diagnosis process to permit

all sensor values to converge to their nominal ranges. Otherwise, the failure that just

occurred might be reannunciated, since typically the sensor values would be out of range

for a while. This step is called "system stabilization." The approach is too simplistic; should
another failure occur, the user would not know about it until the system is stabilized. Other

solutions should be investigated.

• A mechanism for handling certain multiple malfunction situations is introduced. The mal-

functions are given two severity ratings. Throughout the diagnosis process, all diagnosis

rules for failures of similar or less criticality than that of the current diagnosis (i.e., the

diagnosis being handled) are disabled. If a more severe failure is detected, the current diag-
nosis is replaced by the new one and the user is instructed to take care of that one first. If,

after the safing, the "old" failure is still valid, it influences the sensor readings and eventu-

ally is rediagnosed by the expert system. In many cases, a switch is made to the backup sys-

tem, and failure of a component of the now-inactive system does not manifest itself. How-

ever, this approach works only for failures whose signatures are totally independent of each
other.

The knowledge base also contains a representation of the systems using OPS83 memory

elements. Employing this model, the expert system keeps track of the system's state. It is sepa-
rate from the simulator's model, and only the sensor information is copied from the simulator

to that model via the simulator interface. Thus the rule base has no access path to the failure
information in the simulator.

User Interface

The user interacts with SAFE and the simulator via a multilevel menu structure. Com-

munication is effected through the selection of menu and support icons using touch-panel

technology.

The user is able to monitor the ARS by viewing either a performance display or a sche-

matic display. The performance display provides a high-level picture of the system status by

displaying five color-coded dials that show the status of five critical parameters, by the

numerical values indicated as well as by the color of the needles as they swing into the various
safety levels on the dial faces. Also, several less critical parameters are represented in tabular
form.

The user may also view the status of the same parameters in a more hardware-oriented

manner by selecting a schematic view of the system. In this mode, the data appear alongside

the components of the relevant subsystem (in this prototype, the ARS), allowing the user to

view the physical relationships among the various components.
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Theusercanchooseanyof threesystemlogsby selectingtheappropriateicon: the Status
Log, which containsmessagesrelevant to the status of the entire system;the Event Log,
which logsanychangeof stateof theARS subsystem;andthe MessageLog, which recordsall
communicationsbetweenthesystemand the user.The logsare time-stampedand, whenrele-
vant, color-codedto indicatetheseverityof the message.Betweenthegraphicdisplaysandthe
different logs,the userhasan opportunity to choosethe levelof detail that suitshisneeds.If
heis particularly interestedin theARS performance,hecan look at theschematicview;but if
he is busy with other missiontasks,hemay wish to seeonly the information in the Status
Log.

Whena failure is detectedby theexpert system,the icons necessary to handle the situa-

tion appear on the screen, a color-coded message appears in the message window at the bot-

tom of the screen, and the DECtalk device annunciates the message. If the message is of low

severity, it is displayed in amber and annunciated once. However, if it is of high severity, it is
displayed in red and annunciated until the user acknowledges the message. At this point, the

user may do one of two things: safe the system or, if possible and time permits, test the sys-
tem to isolate the cause of the malfunction.

When the decision is made to safe the system or to perform a test before sating, the user

is guided every step of the way via the DECtalk, printed messages, and schematic displays of
the relevant cockpit panels with highlighted switches. If at any point the user wants to know

the motivation for the actions being recommended, an explanation icon is available. The

ensuing explanation is printed in the message window but is neither annunciated by the DEC-

talk nor recorded in the Message Log.

The communication scheme employed by the user interface to interact with the expert

system and SI is based on message passing. The first field of each message is a type field that

guides the message's interpretation by its receiver. This allows the message format to be flexi-
ble and extensible.

Simulator and Simulator Interface

The simulation model, though simplistic, yields results sufficient to provide a good test

bed for the prototype. It produces the values of 13 sensors, emulating the gradual changes
and fluctuations that characterize flows and pressure measurements.

When a demonstrator chooses to inject a failure into the system, the failure information
is transmitted from the user interface to the simulator interface, where it is converted into the

relevant simulator parameters. The simulator iterates constantly, creating sensor values and

logging them in the knowledge base, where the expert system can monitor them. Once the

simulator creates the right signature (which could take a number of cycles, since the simulator

gradually converges on the right sensor values), the proper rules generate the failure diagno-
sis. The expert system and the simulator interface are in constant communication with the
user interface via the VAX mailboxes.
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Sincethe simulator is not a real part of the diagnosis system (existing only for testing

purposes), it was decided to completely isolate it from the other components. On the other
hand, it was desirable to separate the simulator from the details involved in its communica-

tion with the rest of SAFE. This approach allows the communication functions to be isolated

into a single module--the simulator interface module--that must be rewritten in order to
interface with real hardware. The module is responsible for converting relevant user inputs

into data the simulator can manipulate and reporting the simulated sensor readings to the

expert system. The expert system has no direct access to the simulator, so it is easy to verify

that it gets no data it would not receive under real circumstances.

Host Hardware and Software

The knowledge base, simulator, and simulator interface are implemented in OPS83, a

language targeted for rule writing. It has good pattern-matching capabilities, allows user cus-

tomization of the inference engine, and, because it is compiled, runs at a fairly high speed.
Having the simulator also written in OPS83, with its procedural capabilities, permits fast and

easy interaction between the simulator and the knowledge base.

The user interface is written in Ada. It runs on a Tektronix 4128 high-resolution graphics
work station connected to a VAX 11/785. An Elographics touch panel allows the user to com-

municate with the expert system via an icon-driven menu. This serves as the sole input device.

A Digital Equipment Corporation DECtalk voice synthesis unit annunciates all messages that

appear on the screen.

SUMMARY AND CONCLUSIONS

The architecture described in this paper could be used to automate the diagnosis and saf-

ing process for any subsystem of the orbiter by replacing the safing and diagnosis rules. Given

a good and cooperative expert, this would be a relatively straightforward process. It has some

basic capabilities for handling complex situations. Faulty sensor detection, done before the

nonsensor devices diagnosis, precludes detection based on erroneous data. The rating and

failure-interruption scheme is a first attempt to address the issues of multiple malfunctions

detection. The creation of dynamic test and sating procedures enables the expert system to
save time and minimize errors that could occur when redundant actions are possible.

Dynamic information exchange with the user interface gives the system flexibility and room
for expansion.

Many aspects of expert system technology application to fault detection, isolation, and

recovery require more investigation. A primary area of research is that of cooperative expert

systems that monitor all vehicle subsystems and exchange information. Such an architecture

must be developed before the complexity of the whole vehicle can be mastered.
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Some diagnosis capabilities are still lacking. Among these are better handling of multiple

failures, mainly the inclusion of failures whose signatures interfere with each other; refine-

ment of the postsafing monitoring process; intermittent failure diagnosis; and recognition of

unexpected anomalous conditions that have not been encoded explicitly, at least to the extent

of notifying the user that the vehicle is not operating correctly and that the problem cannot be

diagnosed by the expert system.

The SAFE prototype has demonstrated the feasibility and viability of the technology

beyond just Space Shuttle applications. The same concepts can be applied to any on-board

automated FDIR system. This technology is destined to become a key component in the

design of next-generation space vehicles.
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A great deal of attention has recently been given to Artificial Intelligence research in the area
of computer aided diagnostics. Due to the dynamic and complex nature of space shuttle red-line
parameters, a research effort is under way at the Johnson ,,Research Center on the campus of
UAH to develop a real time diagnostic tool that will employ historical and engineering rulebases
as well as sensor validity checking. The capability of AI software development tools (KEE & G2)
will be explored by applying object oriented programming techniques in accomplishing the
diagnostic evaluation.

What is an Expert System?

In its simplest sense an "Expert System" is a system which can handle any domain limited
situation as efficiently as a human expert would handle it. The keywords here are domain limited

and human. Here is a simplified example. It might be easy to conceptually perceive a system that
handles the breaking mechanism in an automobile. Now suppose these brakes are hydraulically
activated as are some of the brakes in large trucks. If the system suddenly lost pump pressure due
to some type of power system failure, the system should be expected to determine the element in its,
system (namely the pump) was malfunctioning, but probably would not be able to totallx
diagnosis the problem as a power failure. The power system is a separate entity in the automobile
and therefore does not fall into the hydraulic systems limited domain. Theoretically the domain of
an expert system may be as large as the designer desires; however, the larger the system domain.
the larger the knowledge base requirements and the more complex the inference engine.

The second keyword, human, details the performance requirements of the system. The
system must be able to handle a situation that exists within its limited domain as efficiently as a
well trained expert in the field. Though it can not be has not yet begun to reach its size or pattern
matching potential. Also, since the system is currently operating as a stand-alone system and no
sensor input is available, simulation and data file supplied values are driving the system. Output is
restricted to operator notification and suggested corrective procedures by the system. Scan
Intervals are well within one second, yet far from the ultimate goal. These limitations are being
slowly reduced and eventually it is hoped they will be removed entirely.
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expected to determine the faulty power supply, a properly designedexpert systemshould
immediatelyidentifythepumpasthesourceof thelocalizedproblem.Of course,thesystemis not
doinganythingthatahumancannotdo. But for largeproblemsthatinvolvemanyparametersthe
system,if properlydesigned,canreachtheconclusionmuchfasterandfreethehumanexpertto be
accomplishingothertasks.

CREATING AN EXPERT SYSTEM

An expert system has three major modules. These are the systems interface with its
environment, the knowledge base of rules and information governing the system, and the user
interface.

_nvlron_n!

Figure 1

Each of these modules plays an important role in the operational efficiency of the overall
system, ff the interface between the environment and the system is inadequate the system will be
unable to properly monitor the environment's condition. If the knowledge base is not complete or
contains erroneous information the system will reach improper conclusions. And finally the system
must be designed so it is easy for the individual to use. Each of these topics will now be
presented.

Interface between the Svstfm _nd |hf EnvirQnmfn|

Depending upon the type of expert system under development the interface between the

environment and the system may take on different forms. For example, if the system is bein_
designed to maintain certain operating parameters in a particular piece of computer software, the
interface may include a communications protocal between the two machines (if they are in t:t_t
located on separate machines). Or possibly for a mechanical system, the interface between the

mechanism and the expert system monitoring it may be a connection to an analog converter that
takes in raw sensor voltages and converts it into meaningful data. Any combination of these fon_,
is possible. In different systems throughout industry a variety of interfaces have been designed t_
fit the needs of the application.

Regardless of the type of interface, the primary objective is to have as complete ,l
communication between the environment and the system as possible. Erroneous results would bc
produced by a system that has the potential of functioning properly due to simply bad input data
What- ever needs to be included in the interface to insure this communication clarity must bc
included. Obviously this is a critical necessity for the system and must be satisfied in order for it to
monitor the environment correctly.

It is the job of the knowledge engineer to acquire a complete set of facts and rules that

govern the environment. This is accomplished in a variety of ways. First, many processes follo_
a given set of engineering and natural laws. The applicable formulations of these laws can be
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incorporatedinto the system. Previousor historical datacan be interpretedand stored. And
learned and experienced individuals c _a/x.lll_interviewed to gain from their knowledge.

The interview method is the most difficult to perform, but often the most beneficial. It is

easy to see how valuable it is to have experience with a certain type of problem. Many times a
process can be completed rather routinely by an individual, but it is time consuming and takes the
individual away from other much needed tasks. This is a perfect example of where the interview
method would readily apply. However, the familiarity with the problem can become a mixed
blessing. Crucial steps in the performance of a task become routine to the expert and might be
omitted in the performance description. Therefore leaving the system designer with an inadequate
instruction set.

Knowledge Base

Perhaps the most difficult task facing the developer of an expert system is constructing the
knowledge base. The knowledge base is a collection of facts and associated rules (sometimes
called the rule base) that are connected with the environment of the expert system. These rules and
facts are based on information gathered by a process called Knowledge Engineering.

Most tasks that humans perform are complex in nature, yet they seem quite simple to the
individual. For example, consider the everyday activities that an ordinary individual might find
themself doing such as brushing their teeth, getting dressed, or preparing a meal. Certainly most
of us know how to perform each of these simple tasks quickly and easily; however, it is not quite
as simple a problem to describe or explain all of the steps that are involved. If one of the steps is
omitted the total process is likely to fail. This knowledge engineer must familiarize himself with the
envirnment that is being monitored. Only then can a successful dialog between himself and the

experts occur. It is his responsibility to question these experts in a manner such as to gain a
complete set of facts and rules governing the specific environment.

User Interface

The user interface is the individuals gateway to the expert system. One of the most often

heard complaint about any software package is the inadequacy of the user interface. A user
interface should be as simple to use: as possible, yet have the flexibility to allow the operator the
ability to handle virtually any situation.

There are many different formats for the user interface. It can be menu driven or allow for
command input lines. It might include mouse sensitive items, help documentation, and meaningful
error messages for the user. Any or all of these items can help to make a quality user interface
However, remember the most important aspect is usability.

Current Aoolication -
S.S.M.E. Redline Diagnostics

The current application involves the monitoring and diagnostic analysis of a group of flight

parameters for the Space Shuttle's main engine known as the redlines. These parameters include
the High Pressure Oxidizer Preburner discharge intermediate seal purge pressure, the High
Pressure Oxidizer Turbopump turbine discharge temperature and secondary seal cavity pressure,
the High Pressure Fuel Turbopump turbine discharge pressure, High Pressure Fuel Preburner

coolant liner pressure, and the Preburner shutdown purge pressure.

This system is divided into three subsystems: a monitoring system, a rule based diagnostic

system, and a historical data base of past performance. Each plays an important role in emulating
an expert in the identification and evaluation of possible operating problems.
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Themonitoringsystemis similarto thoseinplacein manyapplicationsaroundtheglobe. It
receivessensordatathatit comparesto agivensetof parameterlimits. If thedatafalls within the
acceptablerangefor eachof theredlineparameters,thenopeationscontinueunaffected.However,
if thedatadoesnotremainconfinedbetweentheoperationallimits, flagsaresetwhich indicatea
problemhasoccurred.At thecompletionof agivencycleof dataentry,theseflagsareexamined.
If theyindicatepossibleproblemsthediagnosisprocedureis initiated.

The diagostic systemis a rule basedsystemthat forward chainsor backgroundchains
througha set of rules andhopefully arrivesat apossibleconclusionfor the situation. For the

SSME redlines these rules consist of engineering and interparameter relationships which must be
maintained. As a conclusion the system may either initiate an attempt to correct the situation and/or
report the probable causes and siggested ways to proceed to the operator.

The diagnostic system should also have a built-in mechanism for validity checking on data.
This is accomplished in this system in two ways. The rule base has certain rules which define

physical laws. If according to these roles all but one dependant parameters abide by these laws or
if data trends for parameters like pressure and temperature exhibit sporadic almost non-continuous

behaviour then there existsd a high probability that the sensors are not functioning properly.

The third sub-system involves pattern matching current data to past experiences. This gives
the system a type of historical prospective on the current events and may indicate the cause of the
current situation based on the causes of the similar historical event. This sub-system is initiated
only if the diagnostic subsystem was unable to arrive at a plausable conclusion. If initiated,

however, the current events are compared to a data base of past events and a ranked list of possible
situations along with a weight factor that describes the degree of parameter matching is returned.

Prototype DeveloDmfnt

The original system was prototyped using a software development tool named KEE
(Knowledge Engineering Environment) which is a product by Intellicorp. It was menu driven and

used graphical displays to relate the information to the user. KEE proved to be a good starting
place for the early development. However, time is of primary importance in this system. Each
scan interval for the system is desired to be less than 60 microseconds. Therefore, an alternate

method had to be explored. G2, a real-time expert system, software development tool developed
by Gensym, was selected for the second development.

Ef_haLks._.G2

G2 is an advanced tool for developing real time expert systems. Real time expert system_
are programs that can respond intelligently to events as they occur. The need for such systems is
evident in the process and manufacturing evident in the process and manufacturing industries.
telecommunations, medical care, aerospace, robotics, and so on. At the heart of G2 is its ability to
do the following:

.G2 can scan an application (like an human operator) and can focus on key areas when it detects
potential problems or oppertunities.

.G2 can control events in a continuously changing application. This is possible because of a real
time inference engine that can maintain validity intervals and history for variables.

.G2 can respond to events when they occur (without having to continually poll sensors, for
example.)
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.G2allowstheapplicationexpertsto createprototypesrapidlyusingstructurednaturallanguagein
an intuitive,graphicallyorientedenvironment.

Idea of developing a expert system using G2

To use G2, the developer first describes each class of object in the application, what it
looks like, and what its attributes are. After describing the classes of objects that are found in the

application, the developer can create a model of the application by placing objects on a workspace
and connecting them to show their relationships. Associated with each object is a table that
describes the object. G2 automatically creates this description from the definition of the object
class. After drawing the schematic, the developer writes rules that indicate how to respond and
what to conclude from changing conditions within the application. The developer enters these rules
and all other statements within G2, in structured, natural language using a context-sensitive editor

that guides him through each part of the grammar.

When the knowledgebase is running, G2's real time inference engine uses the rules,

together with data that it receives from the data server (the sensor, G2 simulator, and other external
sources) to infer how to respond to conditions.

The data server attribute indicates where G2 should go to get values for the variables. The

inference engine scans key rules at rates associated with each rule. It focuses on key objects bx
trying rules associated with the objects. The inference engine invokes rules of a particular categor3,'
for a particular class of objects. It backward chains to other rules to find values and forward chains
to rules when values are found.

The knowledgebase uses the G2 simulator to simulate values for sensors and other
variables while the knowledge base is running. It can solve algebraic difference and first order

differential equations.

The developer also can create operator controls like check boxes, radio buttons, and action
buttons that an operator will be able to use to enter values or to give instructions to G2. The

developer can create displays like graphs, dials, meters or readout tables.

The development of a knowledge base usually proceeds incrementally. To develop a full-
sized application, he proceeds in stages, at each state refining the prototype, adding a little more to
the knowledge base and testing the result. After the knowledge base is built, the developer c,l_l
interface to an application using "Gensym Standard Interface." The expert system can then receix c
values from sensors or other sources, set the values of setpoints, write to databases, and so on.

Example of- G2 Redline Implementation

The project required implementing eight parameters: Preburners S.D., HPOP (High
pressure oxidizer pump), HPOT (High pressure oxidizer turbopump), HPFT (High pressure fuel
turbopump), HPFP (High presusre fuel pump), LPOP (low pressure oxidizer turbopump), LPFP
(Low pressure fuel turbopump) and POGO. After creating a workspace those redline parameter_
are implemented using different kinds of objects( Figure 1). A superior class object is defined s_
that rediine parameters can inherit its attributes whenever they need.
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Figure 2

G2 has the capabilities to create tables (Figure 3 ) for each object For example in Figure 3, HPOT
is the object and the table has user restrictions, where the user can describe the restrictions needed

for Ht_T;.HPOT is the class for which also the superior class is redline parameters. Attributes

specific to.the class HPOT are discharge-temp (a quantitative variable), sealactivity pressure (a
quantitative variable), OK (a logical variable), and high (a logical variable). The capabilities and
restrictions of HPOT are "none", change is "none", and menu option is "final menu choice." In

this case no attributes are inherited, so inherited attributes get the value "none." Default settings for
variables are also "none." Notice the attribute stubs in Figure-3. There is a water line output-port
located at left 20; a connection input-port located at right 20. To use the connection between the
instances of objects the user has to define an object called water-line or instrument line. So as
shown on Figure 3 the instrument signal and water-line are defined. The user can define an

instance out of the objects. The last four attributes describe the icon which is used to display the
instance of the object HI_T and can modified to the designer's specifications.
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After creating the instances of objects, the user can see the table for that instance b_
selecting it with the mouse, that is automatically created by G2 like Figure 4. For each attribute in
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the table, simulation details can be written on a specific subtable. The use can get a value for any
attribute using the G2 simulator, the inference engine, or from outside files and sensors. After
considering where to get values for all the attributes of the instances, the user can write rules on the

workspaces attached to object definitions, the instances, and G2 itself like the example given below
for HPOT. Each rule has its own table and G2 scans keyrules at rates associated with each rule.

For example in the figure 4.1, the scan interval is one second. The scan interval provides a way to
regularly invoke a rule to monitor an event. The value of the scan interval tells G2 how often to
invoke the rule. The user can follow rule f'wing path since everytime G2 fires a rule using forward
chaining or backward chaining it highlights that rule.
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Implementation of Intelligent Fault Disgnosis Using G2

As described before to create any instance, an object should be defined. So for the
S.S.M.E project in order to describe the project and to create icons which will have its own
workspaces, the utility icon, the documentatio-details and KB -details are defined (Figure 5). An
icon library is created as shown on the Figure 6, so that it will help the user to extend the system
whenever he wants. As shown on the workspace (definitions) on Figure 7, the icons are defined
from documentation-detail and KB-detail objects. On the subworkspace of "about-objects" we
have successfully implemented eight redline parameters (Figure 2). Then as described before the
instances for all these paramenters are created by defining the attributes on the subtables attached to
them (Figure 3). To give a nice idea about the instances of objects, a new workspace is created
and all the instances of redline parameters objects are defined on that workspace (Figure
4.2).Values for those instances of the objects are obtained using G2 simulator, inference engine
and data files simulating sensors..As descirbed before, each instance has its own subtable, which
has its own specific subtable where we defined our simulation formula as the abstract shown on
Figure 8 for HPOT redline parameter.

Figure 5
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After making sure that all the redline parameters are getting values, rules are implemented.
The rule groups are devided into three parts: local rules, global rules and chained rules. Local rules
are implemented on the workspace attached to object definitions. Global rules relate two or me
things at a time and can be fired (Figure 9). Chained rules fLrst try to get a conclusion from global
or local rules and then try to find another solution for that conclusion (Figure 10).

The rule base is traversed after each intermediate conclusion is reached until all possible

paths have been taken. Sometimes logical variables are used for some redline parameters like low,
OK, and high. The low, OK, and high variables have values attached with them. These are the
limitations for a particular instance. For example if the attribute dischargetemp of HPOT is greater
than high or low or OK then after G2 fLres the rule the operator can get the message. We have
implemented graphs as shown on Figure 11 to display the result of realtime systems by keeping a
history.
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Through the message board of G2 the diagnostic system communicates to the operator.
When the diagnostic system fires the rules different kinds of messages appear on the message
board as shown on the Figure below
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Figure 12

Currently the system contains approximately twenty-five rules which attempt to bind the
eight redline parameters. Historical data has been difficult to obtain and consequently that data
base has not yet begun to reach its size or pattern matching potential. Also, since the system is
currently operating as a stand-alone system and no sensor input is available, simulation and data
file supplied values are driving the system. Output is restricted to operator notification and
suggested corrective procedures by the system. Scan Intervals are well within one second, yet fttr

from the ultimate goal. These limitations are being slowly reduced and eventually it is hoped the_
will be removed entirely.

Fdmiag._.   

The S. S. M. E. real-line diagnostic system is a good start toward a viable tool. Currently.
even using G2, the system is much too slow and the rule and historical data bases are too limited
for it to ever be considered for an online control system. However, the system does show potential
as an analysis aid for engineers working with the S. S. M. E.

The next phase of the systems development will address these problems by increasing the
number of historical database entries as well as continued exploration into methods of speeding up
the programs execution. The primary objective of the project is to prove the feasibility of the
concept of an extended diagnostic system to S. S. M.E. In this respect the program i7
succeeding.
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Abstract - The need to increase engineering productivity and decrease software life cycle costs in

real-time system development establishes a motivation for a method of rapid prototyping. The

design byiterative rapid prototyping technique is described. Atoolwhich facilitates such adesign

methodology for the generation of embedded control software is described.

Introduction

The software crisis

Due to the increasing complexity and size of software projects there is currently a software crisis. Software

is on the critical path of project development time lines. It is usually late and over budget and often

doesn't perform the necessary functions. One of the primary reasons for the crisis is that software devel-

opment isa labor intensive and error prone task. Inan effort to overcome these problems many automa-

tion tools have come into being to assist the programmer. In the area of real-time control software, these

tools must assist barctware and software engineers as both are involved in the crisis.

The need for protot.vping

Designers are faced with a dilemma. On one hand they need a plan prior to beginning design work and

on the other hand they need some initial design analysis for the establishment of a reasonable and ade-

quate plan. The two design philosophies in conflict are the "plan it" approach and the "do it" approach.

Both approaches have considerable merit.

In the plan it approach the need for adequate preparation and specification is emphasizect. Great pains

are taken to ensure a fully specified and documented plan prior to the onset of preliminary design. The

plan it approach attempts to avoid inadequate planning and the resulting failure which can be very expen-

sive. The do it approach is to do a prototype design and learn from the mistakes of that initial design prior

to the actual system design. The do it approach provides insight into design feasibility. It eliminates the

costly and wasteful time spent designing systems on paper without the foggiest notion of whether or not a

design will meet requirements. It is desired to combine the strong points of both approaches while avoiding

the pitfalls of each.

On a large long term software project, changes in objectives (requirements) are inevitable, so as Brooks

states, prepare for them.[11 During preliminary design, changes in development strategy and technique

are typically frequent. According to Brooks, one should always have a prototype or pilot model from

which to learn. "The throw-one-away concept is itself just an acceptance of the fact that as one learns,

he changes the design." Plan to throw the first one away, or at least to modify it significantly.

Rapid prototyping in iterative design

On a large project it is not possible to prototype the entire project due to time and economic constraints.

However it is still desirable to be able to use the prototype approach. The prototype method best for large

projects is the iterative prototype method. Iterative prototyping implies many prototypes. This requires a

tool capable of generating rapid prototypes for evaluation of incremental changes. The prototyping tool

should be based on natural language of the intended user. In the control engineering domain this lan-

guage would be based on block diagrams. A tool which provides such capabilities is the Application

Generator (AG). The AG solution to the design dilemma fulfills the needs of adequate planning and

design prototypes in a design methodology henceforth called "design by iterative rapid prototyping,"

I Copyright © The Boeing Company, 1989, IAll Rights Reserved. PUBLISHED IITI-! PEPJMISSION
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The Application Generator

The Application Generator is an alternative to conventional application software development. It reduces

the software life cycle cost associated with application software generation activity. The principle behind

the AG is that process control engineers must perceive control concepts and strategies that require control

of several processes within a particular plant simultaneously. To achieve this (see Figure 1,) tile process
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Figure 1 - Conventional Control Algorithm Figure 2 - Control Algorithm Development

Development And Implementation And Implementation Using the AG

control engineer draws spatial and temporal diagrams representing the processes to be controlled and

derives the necessary control algorithm for each particular mode of operation. Conventionally, software

engineers take this information and convert it to sequential codes suitable fora digital computer. Process

control engineers evaluate the performance, take corrective action, and improve the control strategies.

The result is submitted to software engineers and the cycle continues until a desired system response is

obtained. The AG simplifies this procedure significantly by allowing the process control engineers to enter

their control specifications directly into a computer and obtain analysis and simulation responses that they

may use to modify their algorithms (see Figure 2). [2]

Ada Software Prototyping

Motivation

Development of prototype real-time software can be nearly as difficult and expensive as development of

production software. Costs, debug time and tedious algorithm coding of embedded control systems are

software development problems which can be addressed by an automated prototypingtool. Some of the

features which should be included in the tool to make it an effective prototyping tools are a graphical

interface, a means for providing interactive animation and automated generation of real time control

software. The graphical interface should be a block diagram editor with icons familiar to control engi-

neers. The modification, interconnection and manipulation of these blocks should be straightforward in

a user friendly environment.
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Reducing Software Life Cycle Costs

Conventional software development is modeled using the waterfall type phased development. The conven-

tional software life cycle is shown in Figure 3. With the Application Generator, the software life cycle is
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Figure 3 - Com'enllona/ Control Sy._tem S_ftware Development

modified as shown in Figure 4. The AG life cycle is modified by introduction of iterative rapid prototyping

and an integrated toolset. Figure 4 displays how requirement and design errors can be discovered earlier

in the life cycle and handled inside the AG process.

The relative cost to make a change increases throughout the lifecycle.[3] The overall life cycle is un-

changed, but now there is tighter feedback, faster iteration. The design engineering includes concept,

design, off-line simulation and prototyping. The software engineering includes prototyping, implementa-

tion and maintenance. The prototyping phase is included in both the engineering design and software

engineering activities.

How the AG is used in the proof of concept, design, off-line simulation, prototyping, implementation and

maintenance of control law development is detailed below:

a. Concept

Proof of concept can be demonstrated in the modeling phase of design using the AO. Requirements

specifications can be evaluated for feasibility as the models are simulated. The model serves as a

baseline for development of control strategies.

b. Design

Interactive graphical design using standard control engineering block diagrams facilitates an efficient

and effective means to expedite design specifications and implementations.

c. Simulation

Simulation of the modeled plant and control provides immediate feedback to the designer. It provides

an indication of whether design goals can be achieved.
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d. Prototype

Rapid generation of prototype software enables the control engineer to verify design goals. It supplie.q

the ability to test various control strategies, and it allows evaluation of alternatives and options to

determine the best design.

e. Implementation

Because the AG controller emulates the target controller, implementation is simply a matter of deter-

mining porting and final integration issues. This can be performed once and used by all subsystems

developers.

f. Maintenance

Maintenance is accomplished at the control block diagram level, which means that control diagram

documents are automatically available and that they are maintained consistent with the control soft-

ware. Also the control engineer has high visibility into the design maintenance.

..E..!.i..n.._.i..n...a...tJ...n.g....S...o.[.t...w...a..r..e......C...o..d..ing ....E.r.r...o..r..s.

The later in the life cycle that an error is detected, the more expensive it is to find and repair. It must be

determined if the bug is in the software or in the control design. "Due to the introduction of bugs,

program maintenance requires far more system test per statement written than any other programming."

[1] Some methods to mitigate bug introduction in the implementation of designs are to find ways to use

fewer people, fewer interfaces, and greater uniformity.

Automatin Ag_A_l orithm Coding

It is well understood that high level languages and self documenting techniques can be used to reduce

errors induced by changes. [ 1] The control diagram level input is a self documenting high level language.

There is a risk of error introduction in the translation of control diagrams to software code. This risk is

minimized by automating the coding of algorithms directly from the block diagrams.
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Variation among programmers in productivity [3] is a big problem in trying to estimate costs, but variation

among subcontractors in coding style and software design philosophy can be a nightmare for software

integration. On large programming projects, consistency of code from subcontractors is a major concern

for a prime contractor responsible for integration. Code generated by the same tool, an Application Gen-

erator, is uniform across all subcontractors in terms of style, format and software design methodology.

System bugs arise from mismatched assumptions made by various people. [1] The assumptions and re-

quirements are more highly visible at the block diagram level than when embedded in the syntax of a

programming language.

All too often a software engineer is frustrated in attempts to debug an apparent software error when the

actual problem is a design error. But in the numerous steps of translation from design drawings, to final

coding, the error source is obscured.

Many design tools which speed up design work already exist. New features which are needed include a

prototyping capability, a friendly user interface, high performance, deterministic behavior, and an envi-

ronment to support increased levels of fidelity between the simulation model and the target code.

Proiect Description - Space Station Freedom

Background

Boeing's Space Station Freedom role is to develop the pressurized living, working, and storage areas
under contract to NASA's Marshall Space Flight Center (MSFC). Onboard systems contained in these

elements include thermal control, environmental control and life support, internal audio and video, and

experiment facilities. The onboard Data Management System (DMS), which includes processors, net-

works, workstations, operating systems, network operating systems, data base management system, and a

user interface language will be supplied to Boeing by NASA. However, Boeing must develop and test

application software for the onboard systems before the DMS components are available. An interim

development system is required to rapidly design and control the onboard systems. The Application
Generator (AG) concept was selected for the development system because of its productivity potential and

usability by control systems engineers. [2]

Requirements For Application Generator Tools

Large systems such as Space Station Freedom have numerous processes that require a large number of

controllers to control and monitor the entire system. Such control is best achieved ifa localarea network

is utilized that is capable of having many controller nodes. It is also necessary to have programmability for
the controllers so that future needs can be accommodated with minimum cost and effort.

To further reduce systems operation costs, commonality must be maximized. One method of achieving

commonality is to establish a set of standard control system icons. A data table corresponding to the
selection and organization of these icons in a control design can be used by a common code generator.

Commonality can also be maximized by having a common run time kernel. At the workstation level the

process and the control algorithms are defined as a data structure which is used to generate high level

source code. This source code is cross-compiled, linked with the run time kernel, and down-loaded to

the controller's RAM. This provides an environment that supports all phases of development and testing
(see Figure 5).

Four categories of requirements are detailed in the following paragraphs. They are software requirements,

user interface requirements, integrated toolset requirements, and hardware requirements.

Software Requirements

The three main software requirements are design simulation, rapid prototyping capability, and generation
of reusable software modules.

a. Design Simulation

Simulation of the system with Ada executing on the AG controller provides an easy means of testing
software design.
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b. Rapid prototyping

The process o[ rapid prototyping makes requirement speci[ication, design, simulation, validation, and

hardware/software trade-off analysis an integral part of the design and development process. [4] The

standard waterfall type development alternative treats these tasks as afterthoughts, as if they were

simply by-products of the coding phase.

c. Reusable Software

AG supplied control diagram blocks are a form of reusable software. Blocks can be grouped together

into user designed super blocks. These super blocks can also be cataloged making them available for

reuse.

User Interface Requirements

A rapid prototyping environment requires a user friendly graphical interface and animation capabilities as

described below:

a. Graphical Interface

The ,'40 workstation software uses multiple windows, pull-down menus, and mouse input for operator

interaction. The major components of the workstation software are the interactive animation and

graphical programming environment utilities.

b. Graphical Programming Environment

Using standard control engineering diagram icons available in the software, control engineers are able

to input control law algorithms efficiently.

c. Interactive Animation

To test the functionality of the real-time control software in a typical set of environmental and user

inputs, it is desirable to have an interactive animation capability. (see Figure 6). Note that the

interactive animation ties in directly to the control system on the AG-100 controller. Interactive

animation is used in simulation, software prototyping and hardware prototyping. The interactive ani-

mation schematic contains icons which represent actual hardware and its associated sensors and actua-

tors.

Integrated Toolset

It is advantageous to have an integrated toolset which resides on one workstation. Some of the benefits

are that there is only one set of workstation environment software to learn, data transfers between various

tools are local to a workstation and all applicable data sets are resident on the local workstation. The

types of tools which comprise the toolset are listed below.
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a. Design and Simulation Tools

b. Software Support Tools
c. Documentation Tools

d. Project Management Tools

e. Data Dictionary
f. Interface To Other Engineering Databases

Hardware Requirements

The AG hardware components are the workstation, the controller, the optically isolated I/O modules, and
the local area networks.

a. Workstation

The AG workstation is a VAXstation 3100 graphics workstation with 19" color monitor using a DEC-
window user interface. It has 8 Mbytes of memory, 208 Mbytes of disk storage and thinwire/thickwire

Ethernet network capabilities.

b. Programmable Controller

An embedded data processor (EDP) emulation using 80386 and 80186 message processor is provided
by the AG controller. The programmable controllers operate in real-time and have multi-tasking capa-

bility, allowing them to run several different rate control algorithms simultaneously.

c. Optically Isolated I/O Module Rack

A low bandwidth noise suppression, noise tolerant I/O capability is necessary for the Space Station
Freeclom environment.

d. Local Area Networks

There are two communications networks, the Ethernet for Host/Workstation/Controller communica-

tions and the Token Bus for Controller/Supervisor communications. The Ethernet has a 10 megabit/
second data rate to facilitate a common communication medium used to connect workstations, con-

trollers, and user-provided equipment.

Usln_ The AG On Space .Station Freedom

The AG is used to aid in the integration of low level code modules into rack level hardware and system
level software. AG generated code has not yet been approved as actual flight code, so current use of AG

code is restricted to prototyping of hardware and software.
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Real Time Embedded Control Processor

The Application Generator includes hardware and software to support the embedded controller. The

tools which support the embedded controller are integrated with the tools used to develop control algo-

rithms allowing for rapid iterative prototyping.

For real time systems there is the special need for Ada tasking, and schedulers. The task of generating

real time embedded control software is complicated by the extra implementation steps of cross compila-

tion and downloading as well as the more primitive debugging tools common to embedded controllers.

Flight Hardware Transition

It is proposed that the AG controller serve as a prototype for the flight controller. As components of the

flight hardware such as flight qualified I/O modules become available they will be inserted into the AG

controller. This will help to provide a smooth transition from the AG controller to the actual flight
controller.

The most challenging tasks expected during this transition are converting from AG runtime kernel to the

EDP operating system, the I/O module fidelity, and the speed of the I/O. Errors discovered here are the

porting errors (See Figure 4). These are the only class of errors in an AG based control system software

development which do not result in changes at the control diagram level. Note that correction of the

porting errors does not require a redesign of the control system or the re-coding and unit testing of control
algorithms.

System Design

The architecture of software implementation is common across all subsystems. Control engineers use

simulation models and software engineers use configuration, implementation and customizing tools. Con-

figuration management of models is implemented in a code management system similar to the DEC code

management system, CMS.

The hierarchy of control diagram blocks into super blocks greatly facilitates the design of large systems on

the AG. S*lerging of control algorithms is more readily accomplished at the block diagram level than at
the code level.

Integration In a Large Scale Development

AG generated software must communicate with higher level software used to manage an entire Space

Station Freedom element such as the Habitation element or Laboratory element(see Figure 7). The

DMS
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(_pace Station Freedom'_
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Application

Application GeneratOr Software [

Rack Manager ] ]

A.pplication ]

/\
-- • s Rack S/W Rack S/W ] ]

]Application ] Application Application.................. .... .... ]

Figure 7 - AG Interface to Space Station Freedom Element

high level interfaces are modeled on the AG in the form of messages to and from the low level AG control

algorithms. The AG is limited to development of software in individual racks where each rack typically

has one controller. Software at a higher level to control an entire Space Station Freedom element, is not

developed on the AG.
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Training

A user friendly workstation environment helps to mitigate the complexity of a sophisticated tool such as

the AG. Formal training accelerates the learning process. A major objective of training is to encourage

the control engineer to become familiar with all phases of design and implementation using the AG. This

is consistent with a primary objective of the AG, which is to keep the control engineer in the loop through-

out all phases of development.

Summary

Interactive rapid prototyping is a key element in the software life cycle. It allows completely new control

software to be developed rapidly so that alternative control strategies can be evaluated in a cost effective

manner. It also provides the ability to address system integration and performance issues early in the

development cycle.

The Application Generator provides a flexible environment for development of robust process control

systems. It is basedon automatic code generation directly from control block diagrams. A highly intuitive

and interactive environment is used to specify mathematical models of the hardware and implement nec-

essary control strategies.
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ABSTRACT

An exploratory study of the automatic generation and optimization of symbolic

programs using DECOM - a prototypical requirement specification model implemented in
pure LISP was undertaken. It was concluded, on the basis of this study, that symbolic
processing languages such as LISP can support a style of programming based upon formal
transformation and dependent upon the expression of constraints in an object-oriented
environment. Such languages can represent all aspects of the software generation process
(including heuristic algorithms for effecting parallel search) as dynamic processes since

data and program are represented in a uniform format.
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automation, transformation

1. INTRODUCTION

Software is currently the major cost in information processing systems. It is estimated

that information processing systems will account for 13% of the U.S. GNP in 1990 [9].
Higher level languages are necessary in order to obtain significant improvements in the
software automation and support process. They also provide substantial decreases in the
time and cost of software development, as well as provide major reductions in the cost and
time for maintenance and modification of software. Moreover, higher level languages

make the management of the software development activity easier and represent a step in
the direction of automatic programming.
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Washington, DC 20036 U.S.A.

PRECEDING PAGE BLANK NOT FILMED

383



2. WHY PURE LISP?

There are three good reasons for choosing a functional language like LISP: firstly,
functional programs are invariably much shorter, more abstract, and easier to understand
than their procedural language counterparts; secondly, pure functional programs are
amenable to formal analysis and manipulation, and thirdly they are naturally amenable to
implementation on a parallel machine [4]. In addition, functional programs describe the
transformation of input values to output values - making it possible to establish properties
about them and to transform them into more efficient forms through the apparatus of
conventional mathematics.

LISP is the oldest and most widely used symbolic language [13]. In it, a list can
contain different types of objects. LISP is more flexible than statically typed languages like
PASCAL and C because it supports dynamic typing. In LISP, function calls, control
structures, and built-in operators have the same syntax - facilitating extensibility.
Moreover, LISP macro expansion is performed by user-defined functions, thus letting an
arbitrary computation compute the result of the expansion [13]. Hence, it follows that
LISP is an excellent language for implementing a transformational synthesizer.

Pure LISP is a universal orthogonal subset of LISP composed of basic functions for
constructing pairs, lists, and numbers; namely CAR, CDR, CONS, EQ, and ATOM. It
also incorporates the control structures using COND, recursion, and functional composition
(including some means for function definition). In fact, the pure dialect requires list
structures containing only atoms and sublists - without numbers or property lists.

Pure LISP is declarative in nature. Thus, it helps to avoid unnecessary sequentiality in
a specification, which in turn facilitates introduction of parallelism [2]. This is because the
order of evaluating the arguments of a multiple-variable lambda-expression is not defined.
Hence, such lambda-expressions are a source of parallelism. Moreover, the referential
transparency of the language (i.e., variables are bound to expressions) eliminates the need
to access complicated data flow analyses and the rules of Church's lambda-calculus can be
used as the basis for transformations that manipulate it [2].

Graham has implemented a database system which stores information in the form of
LISP lists and responds to queries about the information it has stored [5]. Rubin has

characterized learning as a process for the compression of information in order to yield
knowledge (i.e., theory formation and revision) [12]. Hence, the approach to higher level
languages advocated herein extends to higher level data and knowledge bases too. It
follows that expert systems (and hence their explanation facilities, the knowledge

acquisition bottleneck, and control problems) stand to be enormously and favorably
impacted by this technology, since their operation depends upon effectively interfacing with
one or more knowledge bases.

3. REUSABLE PROGRAM SPECIFICATIONS

The DOD has invested $300 million in the STARS (Software Technology for
Adaptable, Reliable Systems) project to investigate software reuse [10]. NASA recognizes
that the United States needs a flight-research facility dedicated to rapid avionics
prototyping. The Agency is now developing the Ames-Dryden facility to meet that need
through reusable software [3].

A higher form of software reuse is needed to overcome the limitations of code reuse.

Software reuse becomes more feasible if program specifications are reused instead of

384



programcode. Hence,programspecificationsshouldbeformally definedin orderthatthey
may undergoautomaticand formal correctness-preservingtransformations. Note that
programspecificationsconvenientlyservethepurposeof verificationandtesting.Finally,
Sellis et. al. note that the scale of a transformationalsystemis an important design
considerationsince future expert databasesystemswill contain knowledgebasesof
significantsizewhichmakesmainmemoryinsufficientandtheuseof adatabasesystema
necessity[12].

4. AN ALGEBRAIC APPROACH TO FUNCTIONAL SYNTHESIS

The algebraic transformation method is based upon a collection of theorems which state
generic equivalences, i.e., semantic equalities, between classes of functions. Then in a
functional program, expressions may be rewritten by more efficient, equivalent expressions
which are given by one of these theorems. In this way, the process of transformation
becomes that of the identification and application of instances of theorems, and the
algebraic approach is therefore particularly conducive to mechanization [4]. Optimization is
thus a consequence of some underlying analysis which establishes theorems equating an
'original', user-defined function with a more efficient version. As a general definition of

an algebraic approach to specification transformation, suppose that the user has defined a
pair of abstract data types _t, 13,and the corresponding concrete pair _t', B" which provide
realizations of _t, B respectively. Then, given any function f: _t-->13, it is desired to

synthesize a corresponding function, say f':/t'-->B', which performs operations on objects
of type _t" which are isomorphic to the operations performed by f on corresponding objects
of type/t. The function f" is then the concrete, implementation version of f that was
sought.

Many functions f':/1"-->13" corresponding to f:/t-->B supplied by the programmer may
be synthesized by process of algebraic transformation [4]. Each abstract or complex
transformation within a system results in a new lower level subsystem.

Functional synthesis may be applied not only to generating programs but also to
constructing other complex objects such as relational database implementations of first-
order logic queries, VLSI circuit designs, and detailed plans for robotic vehicles to achieve
a set of military reconnaissance goals [8]. Hence, it follows that the pursuit of
transformative synthesizers has the potential for very broad impact.

5. RESULTS WITH THE DECOM SYSTEM

The DECOM or program decomposition system is intended to minimize the occurrence
of software bugs through the use of a top-down structured approach to software reuse.
The current version uses a subset of Common LISP as its implementation language. Note

that DECOM, version 1, while only a prototype, serves to illustrate the potential of the
concept of software reuse through knowledge-based design in an object-oriented
environment. It also serves as a model for human learning through the use of function(al)

composition.

To begin with, consider the programmer working in an object-oriented environment
(i.e., without loss of generality). Let

((FUNC) (((IN1) (OUT1)) ((IN2) (OUT2))... ((INn) (OUTn)))) (1)
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definean arbitrary LISP function which satisfies all of the specified distinct I/O constraints
(i.e., at least one pair required). DECOM will take such a specification and through the use
of knowledge-based heuristic search and user assistance define a function(al), FUNC, such
that it satisfies all specifications.

FUNC may be viewed as a procedural knowledge source representing the compressed
declarative information contained in all of its constraining I/O pairs. Moreover, the I/O

pairs may be viewed as production rules. It then follows that DECOM functions as a fully
general rule-inducing system having demonstrable/provable convergence properties. It is
worth noting that if FUNC is defined to be a functional, then a knowledge base segment of
optimizing transforms may be inductively generated (and tested). Naturally, these
functionals will be maintained as fixed points with respect to the contents of the appropriate
optimizing knowledge base segment. Different knowledge base segments are represented
by different sublists - that's part of the overall beauty of the scheme.

First, DECOM searches the existing knowledge base segment, shown by (2) below,

for an exact match of the I/O specification pairs (where m < the number of concurrent
processors). If the knowledge base segment is empty, then proceed to the next step.

[((FUNCI) (((INI,1)

((FUNC2) (((IN2,1)

((FUNC3) (((IN3,1)

(OUTI,I)) ((INI,2)

(OUT2, I)) ((IN2,2)

(OUT3,1)) ((IN3,2)

(OUTI,2)) ...((INl,nl)(OUTI,nl)))) (2)

(OUT2,2)) ...((IN2,n2) (OUT2,n2))))

(OUT3,2)) ... ((IN3,n 3) (OUT3,n3))))

((FUNCm) (((INm,l) (OUTm,I)) ((INm,2) (OUTm,2)) ...((INm,nm) (OUTm,nm))))]

If an exact match of the I/O specifications is found, then FUNCi is returned as the desired

LISP function. If however the knowledge base segment is empty, then the user is asked to
specify a reduction(s) (if necessary) and proceed with the component derivation as
described above - storing their interrelations in the knowledge base in the form of a
"macro"-function(al).

If an exact match cannot be found, then a heuristic means-ends analysis attempts to
locate the closest match. The heuristic (a dynamic objec0 is a search function(s) saved in a
knowledge base segment. Note that more than one 'closest' match may be explored in
parallel. Alternatively, if no I/O specification pairs in the knowledge base satisfy the
defined matching metric, then the case is handled as though the knowledge base were

empty.

Now, for each closest match found above, a function FUNCi is searched for such that
it distinctly maps each of the given inputs to a corresponding input, INk,n, where the single
function FUNCk is known by the knowledge base. That is, the knowledge base attempts
to map the specification by process of forward composition (i.e., state-space heuristic
search).

Much like a genetic approach [6,7], the current approach entails the use of combinatoric
search. However, it surpasses the capabilities of a genetic approach in that the powerful
technique of means-ends-analysis is fully utilized. Besides, it should be noted, lest the
reader struggle with the question as to which approach to take, that genetic algorithms can
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beembeddedwithin DECOM. Again, eachgiven specificationpair must bedistinctly
mapped onto the same FUNCk if the composition is to be successful(extraneous
specificationpairsareignoredasin theproofof theprogramform of theparametization or
s-m-n theorem which underpins most of computability theory [1]). Furthermore, this
mapping must be effected by the same FUNCi (which itself may be a specified
composition). Then, the desired function (3) is given by the forward composition fk'fi

(FUNCk (FUNCi (IN))) (3)

The use of composition may be extended to an arbitrary level, fm'frn-:'"'f2"fl' subject to

the number of available concurrent processors. The application of optimization rules can
prune the search tree and/or compress the result.

The mapping of outputs is analogous to the case for inputs - except that here, the

desired function (4) is given by the backward or inverse composition fkOfi "-1 (i.e., goal-

driven heuristic search)

(FUNC k (FUNCi -'1 (OUT))) (4)

where FUNCi --1 maps the outputs as described above for the case of the inputs. Note that

(FUNCi ''I(OUT)) = (FUNCk (FUNCi (IN))) (5)

Moreover, there is no reason that an inverse composition, fm'-l*fm_l'-lo°..*f2"-l°fl "-1,

cannot be combined with a forward composition for greater efficiency (i.e., bidirectional
heuristic search).

New functions (i.e., functions defined by composition as per above) are saved in the
knowledge base if and only if they have accepted optimization or have been manually
specified due to failure, for whatever reason, to be the result of composition. (Frequently
referenced functions should be copied, in expanded form, into a cache.) This is not unlike
case-based reasoning, since the larger the knowledge base, the more likely the matching
metric is to succeed. Also, it is clear that the matching metric should be a dynamic

object(s), saved in the knowledge base, although this aspect has not yet been explored.

Note that erroneous functions may be pulled from the knowledge base at any time -
independent of any other functions. They can subsequently be re-synthesized from the
(updated) specifications. Hence, the DECOM system, like a neural net or even a DNA
program, exhibits a capability for self-repair.

IN and OUT can specify LISP functions since again LISP makes no syntactic
distinction between program and data. It follows that FUNC can serve as a functional -
mapping LISP functions, meta-functions, or even entire knowledge base segments, and so
on. This is vitally important to the efficient working of the described transformational

synthesizer (even on a connection machine) because functions carded as specifications
define optimizing rewrite rules. Hence, it is generally more efficient to maintain them in a
separate knowledge base segment consisting of fixed-point functionals. Note that
function(al)s can be recursively defined using a push-down stack of pending tasks.
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6. AN INTRODUCTION TO OPTIMIZING TRANSFORMS

One of the key results pertaining to optimizing transforms is that their effects often
enable subsequent optimizations. To see this, fh-st consider the following abstract function
sequence (6) and the three associated Type 0 rewrite rules:

FUNC: UVWXYZUVW

RI: VW --> X
R2: XX --> Z
R3: Z?Z --> Z

(6)

A derivation sequence (7) is given by:

UVWXYZUVW .RI.> UXXYZUX .R2.> UZYZUX .R3.> UZUX (7)

Note that optimizing rewrite rules are saved as fixed points with respect to the segment in

which they reside. That is, the ith segment is such that for all contained rules, there does
not exist a contracting rule, Rj, whose antecedent matches any of the patterns found in the

ith segment - itself excluded. Note that the use of the term "fixed point" here applies only

so far as a one-step derivation is concerned. It does not contradict the undecidability of the
minimalization problem [ 1].

The question arises as to how many different ways the optimizing rules can be applied
and with what result. The above example provided no branching in the derivation tree.

However, this is obviously a special case. In general, given Type 0 (i.e., universal
program or context sensitive contracting) rewrite rules, a derivation can be arbitrarily long
and include multiple applications of the same rewrite rules. What this means in a practical
context is that abstract program specifications can, in general, derive an arbitrary number of
concrete programs. Providing additional specifications may limit this number if the
functions defining sequence is altered with respect to the applicable rewrite rules as a result.

Hence, it becomes necessary, in general, to provide an agenda mechanism to order the
potential application of the rewrite rules. This agenda is represented in the form of a meta-
rulebase segment. An initial sample meta-rulebase segment (8) for the given rulebase
follows:

MRI: U --> R1 (8)
MR2: UX --> R2
MR3: UZ --> R3

Meta-rules are treated the same as ordinary rules and thus are saved as fixed points.
Hence, (8) is saved as follows:

MRI: U --> R1

MR2: APPLY (R1) II x .-> R2

MR3: APPLY (R1) II Z --> R3

(9)

The principal advantage of the fixed point format is that it is more readily amenable to
parametization (such as substituting Rk for R1 above), or in the general case,

transformation. This advantage applies to rule, meta-rule ..... meta n -rulebase segments
alike. Note that the Type 0 characterization of the rewrite rules implies the absence of

hierarchy in the meta n -rulebase, n = 0,1 .... Hence, the distinction between rules and
meta-rules is merely an illusion which is well-adapted to the purpose of illustration.
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Finally, theconcernrelatesto theacquisitionof all mannerof rules. A recursivemodel
of EBL [11], althoughnotyet implemented,is proposedwhich induces(meta)rulesfrom
their specifications.This ideais consistentwith themethodologypresentedin thispaper
and will be formally analyzedin forthcoming works. Specificationsareoptimization
constraintswhich arediscoveredin retrospect(suchasthroughtheuseof backtracking).
Good(meta)rulestendto reinforcethediscoverymechanism;bad(recta)rulesachievethe
oppositeeffect. Again,backtrackingis butonediscoverymechanism- anotherisheuristic
search.The key point, at leastat this level of discussion,is that all effectiveprocessare
givenauniformrepresentationwithin thesystemandhenceareequallysubjectto inductive
extension.

7. A SIMPLE EXAMPLE

The above exposition will be concretized here by way of a relatively tivial example
serving to illustrate the main points made above. To begin with, assume the existence of

the following knowledge base segment:

[((CAR (LAMBDA (X))) (NIL NIL) ('(A) A) ('(A B) A))

((CDR (LAMBDA (X))) (NIL NIL) ('(A) NIL) ('(A B) (B)))]

(10)

Notice that the constraints are ordered - in this case in order of nondecreasing sublist length

- in order to facilitate the search and match process. Also, while the number of constraint

pairs has been set at three for each function, it is recalled that the only requirement is that at
least one constraint pair be defined for each function - with each function allowed arbitrarily
more.

Next, a pair of constraints are specified and the sought after function is initialized to the
NIL value:

(NIL (NIL NIL) ('(A B) B)) (11)

Now, the knowledge base segment is heuristically searched in a forward direction (the
heuristics may reside in a distinct segment) for a function which distinctly maps each input
list in the I/O pairs of the unspecified function to the corresponding input lists of a single
function residing in the appropriate knowledge base segment. That is, the image under the
operation of the applied function will constitute a suitable preimage under the operation of
some known function(al) in the relevant knowledge base segment In the current instance,

the images under the operation of the CDR function are NIL and (B), and the preimages
under the operation of composition with the CAR function are NIL and (A) respectively.

Hence, the following subgoal is attained:

((CDR (LAMBDA (X))) (NIL NIL) ('(A B) (B))) (12)

Next, the above process is iterated where the images under the operation of the CAR
function are found to be NIL and B - satisfying all constraints. Hence, the following is the

attained goal as desired:

((DEFUN HEADTAIL (X) (CAR (CDR X))) (NIL NIL) ('(A B) B)) (13)

Note that all LISP errors are interpreted by convention to be the special atom - NIL, or

equivalently, the empty list - 0.

389



8. CONCLUSIONS

It follows from experience with the DECOM system that function(al)s can be
automatically induced in an extensible coherent environment through the use of a technique
for programming by example. The DECOM system also advances the suggestion that AI
and distributed computation are interdependent. These fields are unified through the use of
the LISP symbolic language - a representational vehicle where the data and the program
have the same list structure. Other languages may be employed if translated into a suitable
symbolic representation. That is, all programming constructs may be placed in bijective
correspondence with pure LISP constructs.

The use of constraint-based transformation in an object-oriented programming
environment promises to allow for the inductive extension of data and knowledge. It is
claimed that only then can a system for automatic programming - that is, one capable of
learning - be engineered. This claim follows from the evolutionary approach being equally
applicable to all effective processes within the system.
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ABSTRACT

The concept of accessing CAD design databases and extracting

a process model automatically is investigated as a possible

source for the generation of knowledge bases for model-based

reasoning systems. The resulting system, referred to as

Automated Knowledge Generation (AKG), uses an object-oriented

programming structure and constraint techniques as well as

internal database of component descriptions to generate a frame-

based structure that describes the model. The procedure has been

designed to be general enough to be easily coupled to CAD

systems that feature a database capable of providing label and

connectivity data from the drawn system. The AKG system is

capable of defining knowledge bases in formats required by

various model-based reasoning tools.

1.0 INTRODUCTION

The process of knowledge acquisition has been an impeding

factor in the growth of knowledge-based systems. For this

reason, research in automating the process has attracted the

interest of a number of investigators around the world. Although

significant progress has taken place (Marcus 89), a significant

difficulty has been that the knowledge required for more

traditional rule-based systems is of extensive and complex

domains and generally found only in the minds of human experts.

The emergence of model-based reasoning techniques in control

and diagnosis of electrical, mechanical, and/or process systems

has opened an avenue of opportunity in the area of automated

knowledge acquisition. The knowledge required in such systems is

actually a model representation of the system to be analyzed.

This knowledge is not in the form of explicit rules and is

extractable from schematic drawings of the target system. When

such drawings exist in electronic media such as a Computer-Aided

Design (CAD) system, the automation of the knowledge acquisition

process simplifies.

In general, CAD databases do not provide all the information

necessary to generate a complete knowledge base. Additionally,

the lack of constraints placed upon the draftsperson doing the

drawing requires that acquisition system be able to understand

the intent of the process system model and thus make estimates of

what the draftsperson intends to represent. This process is no
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different than that followed by a human process engineer trying

to carry out the same task.

This topic is under investigation at the University of

Central Florida Department of Computer Engineering. In a three

year project funded by NASA-Kennedy Space Center, an objective

was set to develop a system capable of generating knowledge bases

from CAD databases with minimal human interaction. The prototype

system is called the Automated Knowledge Generator (AKG) and is

the topic of this paper.

2.0 THE AKG SYSTEM

An Object-Oriented Programming (OOP) approach using the

Symbolics Genera 7 LISP machine environment has been taken in the

development of AKG. Each component of the target system

described in the CAD database is represented as an object within

AKG. This approach is intended to model the physical system as

closely as possible by representing components as an organized

set of discrete objects capable of communication with external

processes. In addition, OOP encourages modularity of design,

thus making development, modification and enhancement of the

system much simpler. The AKG system is divided into eight

modules as shown in Figure i.

The AKG process can be divided to two major tasks, i) the

capture of information which resides in the CAD database, and the

creation of an internal model 2) the resolution process, which

include the verification of captured knowledge and the generation

of missing information.

2.1 Knowledge Acquisition from CAD

At start up, a CAD-generated description of the target

system is obtained through the ACCESS module. This module

communicates with the computer hosting the CAD system and

downloads two files, COMPOC.DAT and TOFROMC.DAT, that must be

formatted by the CAD database system. ACCESS uses a command

file that contains the unique communication configurations

required by the host as well as appropriate database query
instructions needed to format the data files. The COMPOC.DAT

file contains component details made up of a unique identifier,

nomenclature, and possibly other descriptive information such as

operating range and units. The TOFROMC.DAT file contains

structure data which describes the process component

interconnectivity in the system being modelled. The SPAWN
module then uses information from the COMPOC.DAT file to create

unique component objects within the AKG environment. The

CONSTRAINT GENERATOR module sends connectivity information to

each of these component objects. The connectivity structure

imposed represents an initial constraint set on the system.

Once the CONSTRAINT GENERATOR completes its process, all the
available information has been collected from CAD and an internal

model is established. This internal model lacks information
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regarding the functionality of the source system it represents.

In order to accomplish a complete knowledge acquisition,

additional modules are called upon to generate the function data.

Generation of the function data is termed resolution and is the

primary knowledge generation process.
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Figure i. A graphical representation of the AKG process

2.2 The Resolution Process

In order to accomplish the resolution process, AKG uses the

PARSER, COMPONENT KNOWLEDGE BASE, and RESOLVER modules.

2.2.1 PARSER

The PARSER provides the first level of identification of the

components in the source system. PARSER uses several string

matching heuristics (Kladke 89) to search through the COMPONENT
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KNOWLEDGE BASE (CKB) in order to find one or more possible

matches for each component and the label supplied from the CAD

system. PARSER utilizes an internal confidence factor to rank

the possible matches. A match confidence of one hundred

identifies a perfect match between the source system component

label and one found in the CKB. This process is a form of

concept learning (Rendell 1987) because a search is made for a

measure of graded class inclusion that is consistent with

experience, the known CKB objects.

2.2.2 COMPONENT KNOWLEDGE BASE

The descriptive representations of components in the CAD

system are not as complete as would be required for the proper

operation of a diagnostic and control system. A major deficit to

the completeness of some component descriptions, for example, is

the lack of output functions. To complete component frames and
to further resolution of the flow inconsistencies that exist in

the connectivity of the CAD representation, more information is

needed. An easily accessible database of generic-type components

with a description of their functions and other significant data

is the link to complete resolution of the source system.

The role of the COMPONENT KNOWLEDGE BASE is to provide the

information necessary to complete the functional description of a

component. This information includes the output function,

parameters that affect the output function, and parameters that

affect the performance of a component such as tolerance and

delay. Descriptions of generic components that resemble a

particular component in name and nature are stored in a

hierarchical internal database. By determining the generic

component which best fits the name and nature (analog-component,

digital-component, etc.) of the specific component, the vital

information known to the generic component such as output

function can then be inherited by the specific or instance level

component of the internal model to further enrich its own

description. It is at this point that the component frame may be

complete enough for use with a reasoning tool. More complete

component frames also lead to better opportunities to resolve

flow inconsistencies. The quantity and quality of information

inherited depends on the degree of accuracy of the match. Generic

components in the CKB are stored as frames and, when accessed,

are spawned into internal objects. As an object, each component

possesses its own identity and function.

The conceptual structure of the CKB is a list of top level

generic components in the knowledge base that access more

successively descriptive components. Upper level components

constitute types of devices and have information that govern the

accepted behavior of these device types. This information is

carried through to the children of these upper level devices as a

result of inheritance during the spawning process.
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The process of CKB access can be broken into the following

stages:

i . The path of a component (i.e., the generic component to

be accessed along with its ancestors to the top level)

is given as an argument to the access function.

2 . The access function retrieves the generic component from

storage and allows inheritance from its parents.

, Once retrieved, the generic component is spawned into

the AKG world the AKG world as a generic comp

4. A list of the children of this component is returned.

, These children are used by the PARSER to further add to

the depth of the path to be accessed.

, Each accessed component is then noted within a global

list that serves as a temporary component knowledge base

for later use by RESOLVER.

An editor is provided that allows direct user modification

of the CKB. This utility has many features including editing of

both actual storage frames of generic components and spawned

generic components.

An extension to the CKB is the implementation of a

constraint representation scheme which will encompass process

knowledge for generic components. AKG uses the criterion that

process and control system components must have similar, and

sometimes identical, properties. The idea is to interrelate

components that belong to certain process system classes (such as

electrical, pneumatic, flow, etc.). For example, one never

connects a logic gate to a pressure valve. The CKB provides

these properties as constraints of the components. This knowledge

base contains general domain knowledge concerning component

details and system aspects of process control. Such information

will not only include standard values for tolerance, delay and

transfer function for each generic component represented, but

also will include constraints indicating which components may be

validly connected. The availability of process knowledge allows

the primary constraint propagation mechanism (Resolver) to

further identify and select the best generic component and

transfer function for a specific CAD component.

2.2.3 RESOLVER

The Resolver examines components in the system to establish
an initial confidence factor for each. Each slot in the internal

object cluster is assigned a weight (e.g., the OUTPUT-FUNCTION

and NOMENCLATURE slots have the weight of 20, and the RANGE and

TOLERANCE slots have the weight of 5). These weights are based

on the amount of importance a particular slot has in determining
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the final identification/operation of the system. The initial CF

for each component is computed by summing the weights of those

slots that are filled directly from the CAD database. This value

represents the level of information that a component has about

itself with respect to all other objects in the system. A global

threshold for the confidence factor is established by the user

which, when exceeded, flags a component as ready for conversion

into a knowledge-base frame. If a component's confidence factor

does not reach the minimum threshold due to lack of information,

the RESOLVER module is called to deduce the correct

identification from the CKB. The confidence factors at each

object are not independent. This is a significant difference from

the way CF's are used in rule-based systems. No single CF, CF

cluster or CF sequence can dominate the final outcome of the

resolution process.

The RESOLVER calls PARSER with the list of inadequately

identified components. Upon completion, PARSER adds a list to

the POSSIBLE-MATCH slot of each component flavor for which a

match was found. This list includes the component matched within

the CKB and a parse confidence factor that reflects the certainty

of the match. The RESOLVER searches the temporary CKB which is

produced during the parsing process as a result of accessing the

components in the CKB (see section 2.2.2), for the match with

the highest parse confidence.

Once this component is found in the temporary CKB, the

RESOLVER attempts to verify the match between the component in

the system and the generic component from the CKB. This is

accomplished by comparing the slot values (i.e., values for

UNITS, RANGE, allowed/possible upstream (INPUTS) and downstream

(OUTPUTS) components, etc.) for the component and the generic

component. If a match is confirmed, the RESOLVER supplies the

information missing from the system component with the

information contained in the generic component from the CKB. The

act of adding information to a component flavor causes an

immediate increase in the confidence factor of that component.

If a match between the component and its best possible match

can not be supported, the RESOLVER will attempt to match against

the remaining components in the list of POSSIBLE-MATCHES. If

still unsuccessful in finding a match, the RESOLVER attempts to

match the component with the parents of the possible matches,

starting again at the best match. As it was discussed in section

2.2.2. the parent of a generic component in CKB is a more general
form of its children. In this case the RESOLVER relaxes the

constraints on the possible match. If a match is found between

the component and the parent of a possible match, it would be

advisable to try to find a match between the component and the

parent's alternative children (i.e., siblings to the possible

match). Therefore, in this situation the RESOLVER again would

tighten the constraints on the possible match.
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AKG compares, using the relaxation algorithm and the CKB,

the validity of the system component connections. When a

component is flagged as valid, AKG is then able to assign a
function to it that is consistent with the target reasoning

system. This approach to conflict resolution using the reasoning

mechanism of constraint propagation raises the AKG system well

above the capability level of a simple translator.

In summary, once the RESOLVER is called, all the components

in the system are examined and the components with the highest
confidence factors are marked. Based on the information (i.e.,

constraints) in these marked components, the propagation of

confidence proceeds beginning with neighboring components. The

propagation of confidence factors is global in the system and

continues until all the components' confidence factors change

less than some preassigned rate of convergence. At that time,

the system's confidence factor is considered settled. The

RESOLVER then scans all the components in the system and flags

the components with confidence factors below the user-defined

threshold. As a last resort, the RESOLVER asks the user to

supply new information and confidence factors for these flagged

components. This resolution process repeats until all the

components' confidence factors exceed the threshold value.

3.0 TRANSLATION VERSUS INTELLIGENT INTERPRETATION

The following example identifies the difference between

translation and interpretation using the conversion of a sentence

from one language to another.

The original sentence (in Persian):

The literal (English) translation:

My head is heavy.

However, the correct interpretation of the sentence is:

I have a hangover.

The AKG system provides many advantages over a direct

translation approach. A knowledge base translator is capable

only of uncritically reformatting information explicit within its

input data. An intelligent interpreter, however, is able to

extend and correct input by inferring missing values and

resolving conflicts. This ability is necessary for automated

knowledge generation in the presence of sparse data such as that

available from a CAD system.

The AKG prototype took as its testbed a demonstration

circuit for purging pneumatic systems called the "Purge Demo."

The knowledge base for this system had been manually constructed
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by NASA for verification using the Knowledge-Based Autonomous

Test Engineer (KATE). Early work using a translator (Thomas 87)
had indicated that translation is not sufficient for the

resolution of CAD data into a knowledge base. A test of the AKG

system was thus to autonomously produce a knowledge base which

would closely approximate its human-generated counterpart.

The results of both studies are listed in Table i. A

description of the KATE slots depicted in the table may be found

elsewhere [Cornell 87, Gonzalez et al. 88]. Note that the

translation approach was found to be unable to provide any values

for some KATE slots and it predicted a relatively low potential

capability to fill others. In each of these cases the AKG

intelligent interpretation approach is found to be superior. The

component information of the CKB coupled with heuristic driven

parsing will enable slots AN-ELEMENT-OF (AEO), TOLERANCE, DELAY,

and STATUS (transfer function) to be filled at least 75% of time.

It is estimated that the process information coupled with the TO-

FROM list will allow identification of 90% to 100% of the SOURCE-

PATH, IN-PATH-OF, SOURCE, and SINK slots.

Slots

aio

aeo

nomencl.

source-path

in-path

source

tolerance

delay

status

units

range

sinks

Translation Results

Filled
Percent

Auto.

52/52 100%

NA NA

0/52 0%

8/52 15%

52/52 100%

2 / 2 100%

NA NA

0/3 0%

0/52 0%

23/23 100%

1 6/1 6 100%

2/2 100%

AKG Results

Est ol Fitted

Pot. Cap, Auto.

100% 26/26

NA 14f14

100% 13/13'

50% 25/25d

> 90% 35/35

> 80% NA

NA 2/2 °

0% 3/3"

50% 6 / 6 "

100% 23/23

100% 15/15

80% NA

Est. ot

Percent Pot. Cap

100% 100%

100% > 75%

100% 100%

100% > 90%

100% • 90%

NA 100%

100% 75%

100% 75%

100% 75%

100% 100%

100% 100%

NA 100%

Notes: (*) Filled with the help of the component database

(#) Need special operators to get this result.

4OO

Table i. Comparison of Results.



4.0 CONCLUSIONS

This paper has discussed the structure and the operation of

the Automated Knowledge Generator (AKG) system. It has been

shown that a simple translator would not be sufficient to

generate a viable knowledge base for a diagnostic system. An

intelligent interpreter such as AKG is needed in order to

accomplish the task of automatic knowledge acquisition from CAD

databases. Work on the AKG system is continuing with work

focussing on using CAD descriptions from a number of varied

sources. These include Shuttle Ground Support subsystems, power

generation systems, and Advanced Launch System processes.
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Abstract

Program synthesis for critical applications has become a viable alternative to program
verification. We use nested resolution and its extension to synthesize a set of sorting pro-
grams from their first order logic specifications. We have successfully synthesized a set of
sorting programs, such as, naive sort, merge sort, and insertion sort, starting from the same
set of specifications.

1 Introduction

The important phases of a software life cycle include requirement acquisition, development of
algorithms, implementation, verification and maintenance. Usually, the execution performance

is an expected requirement in a software development process. Unfortunately, the verification

and the maintenance of programs are the time consuming and the frustrating aspects of software

engineering. The verification can not be wavered for the programs used for critical applications

such as, military, space, and nuclear plants. As a consequence, synthesis of programs from

specifications, an alternative way of developing correct programs, is becoming popular.

There are three basic approaches for program synthesis: theorem proving [5, 6, 8], program

transformation [1, 2] and problem solving [3]. In the theorem proving approach, a target

program is constructed incrementally at each step of the proof whereas in the transformational

approach, inference rules and transformation rules are applied to the specifications and to the

derived sentences until the target program is realized. Synthesis systems based on problem

solving methods are inflexible as compared to the other two methods. However, they tend to

be very effective in the domain in which they operate

In this paper, we do not concern ourselves with the problem acquisition phase of automatic

programming. Specification acquisition and subsequent refinement is a research problem in its

own right. Assuming that the program is specified in first-order predicate logic, we describe

the derivation of logic programs for sorting. In section 2, we provide a brief review of nested
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resolutionandits applicationto programsynthesis.In Section3, wedescribethe specification
andthe derivationof sortingprograms,andit is followedby a summaryand discussion.

2 A review of nested resolution and its application to program

synthesis

We start with some notations. Let F[P] denote a well-formed formula (wff) containing one or

more occurrences of a sub-wff P. Then, a new wff obtained by replacing all occurrences of P by

Q is denoted by F[P/Q].

We give an informal definition of polarity. For a rigorous definition the reader may refer to

[7, 51. A sub-wff P has a positive (negative) polarity in F[P] if and only if (iff) P occurs within

an even (odd) number of explicit or implicit negations. The positive polarity and the negative

polarity are written as F[P +] and F[P-], respectively. If P occurs within an equivalence

connective or within the if clause of an if-then-else connective, then P has a positive-negative

polarity and is written as F[P+].

2.1 Inference Rules

We [4] have proposed nested resolution [9] and its extension for logic program synthesis from

first-order specifications. The nested resolution is a variation of nonclausal resolutions. The

reader may refer to [9] for more details. Inference rules are applied to a pair of statements: a

statement to be transformed which we call a transformee, and a statement used for transforma-

tion which we call a transformer. The transformer may be an axiom, a transformation rule or

a lemma. The transformee is initially an axiom from the specification set, and subsequently, it

may be the result of an earlier transformation or a lemma. In every transformation, a sub-wff

of the transformee is replaced by another sub-wff that is determined by the transformer.

F[P+] F[P-]
ale'] a[P']

F[ P+ O/ GO[ P' O/ true]] F[P- O/--,GO[P'O/ f alse]]

Where 0 is the most general unifier (m.g.u.) of P and P'. That is PO = P'O. Here the wffs

F and G are the transformee and the transformer, respectively.

Let us consider an example to explain the inference rule.

P(X, Y) A Q(Y, Z) -. R(X, Z)
S(X', Y') -_ P(X', Y')

-,(S(X, Y) ---, false) ^ Q(Y, Z) -.-, R(X, Z)

Where 0 is {X'/X,Y'/Y}. The expression can be simplified to S(X,Y) h Q(Y, Z) ---*R(X, Z)
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2.1.1 Some special cases

Herewedescribesomespecialcasesof nestedresolution.Theserulesarehandywhenderiving
programsby hand.To usetheserules,polaritiesof thetransformerandthe transformeeshould
be followedstrictly.

r[P +] F[P-] F[P]
pI- p'+ pt _ QI

F[P + O/false] F[P- O/true] F[PO/Q'O]

where 0 is the m.g.u, of P and P'.

2.2 Inference rules in the presence of explicit quantifications

In refutation proof procedures, an existential quantifier is replaced by either a Skolem constant

or a Skolem function. Replacing an existentially quantified variable by a Skolem constant or a

Skolem function is not acceptable in transformational program synthesis methods [4] because

we will lose some valuable information in the course of that replacement. To overcome the

problem, we extend the nested resolution to handle quantified wffs. To avoid inadvertent

problems during unification, all variables in both the transformer and the transformee are

renamed at each step. The following condition that checks for possible scoping violations must

be satisfied when existentially quantified variables are unified.

Condition QS: (Quantified variable Substitution)

• An existentially quantified variable, say X, within the scope of a universally quantified

variable, say Y, cannot be unified to the same universally quantified variable. (That is, X

cannot be unified with Y. This is usually detected by occur check in Skolemized version

of the quantified wffs)

• Two existentially quantified variables cannot be unified.

Example

VX 3Y P(X,Y)
P(X', X') Q(X')

X I is unified to X but we cannot unify X with Y since it violates the QS-condition.

The extension to the nested resolution for quantified wffs are given as following:

1. If the transformer is quantifier free and the transformee has an existentially quantified

variable then the nested resolution is applied in the same way as it is applied to the

quantifier free case, provided that the condition QS is not violated during unification.

Consider an example
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_y vx p(x, y) v R(X,Y)
P(X',Y') _ Q(x',Y')

_v vx (_ru_-_ q(x,Y))v R(x,v)

which simplifies to 3Y VX Q(X,Y) v R(X,Y)

2. If the transformee is quantifier free and the transformer has an existentiMly quantified

variable then the nested resolution is applied in the same way as it is applied to the

quantifier free case, provided that the condition QS is not violated. Consider an example.

P(X, r, r) _ O(X, Y, r)
vx' ?Y' vz' P(X,, Y', z') v R(x', Y', z')

VX 3Y (-.(false V R(X',Y',Y'))
-_ Q(X', Y', Y'))

which simplifies to VX 3Y R(X, ]I, Y) V Q(X, Y, Y)

3. When the transformer and the transformee have existential quantified variables, the ex-

tension to the nested resolution becomes complicated. Since, such case is not common in

program synthesis, it is not considered here.

Transformation Rules

Transformation rules are usually second-order wffs which have variable predicates. These

rules are used to simplify derived sentences or specifications. We provide some of the transfor-

mation rules used in this paper.

p,--_p

PI V P2 V P3 _- P3

2.3 Organization of Derivations

As indicated earlier, the specification consists of a set of statements in first-order logic. The

synthesis system transforms these statements into a set of Horn clauses that constitute an

executable program. At each step of the derivation, the transformee and the transformer state-

ments interact to produce a result. Initially, the transformee is one of the statements from

the specification set; later the transformee is one of the intermediate results of the derivation.

The transformer can be a statement from the specification set, an intermediate result, a trans-

formation rule or a simplification rule. Simplification rules may have predicate variables, in

which case higher-order unification is assumed. In our derivations all the transformees and

the transformers are shown at the left and the right hand sides respectively. The sub-wff of
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the transformeeto be transformedis underlinedwhile the sub-wffof the transformerthat is
usedfor transformationisoverlined.After the nestedresolutionis appliedto eachtransformee
and transformerpair, the resultingwff is simplifiedandonly the simplifiedwff is shownin the
derivation.

2.4 Controlling the Inference

Logicprogramsynthesismaybe viewedasa processthat createsexecutableHorn clausesfor
eachpredicateappearingin the specification.This view forms the basisof our strategyand
providesameanfor detectingmissingknowledgein the specification.Wearrangethepredicates
appearingin thespecificationin theorderin whichthe executableIIorn proceduresarederived.
Thederivationstartswith thefirst predicateandcontinuestill theendof the list. Oncewehave
derivedall the executableHorn clausesfor all the predicatesin the list, the synthesiscompletes
successfully.

It is wellknownthat all the first order sentencescannotbe transformedinto Horn Logic.
However,a procedurewhich is not in Horn Logiccanbe transformedinto anexecutableHorn
clauseform eitherby introducingrecursionor by interpretingnegationasfailure. This is why
wewereableto transformthe first orderspecificationsinto anexecutableHornclauses.

Weusethe followingprocedureto controlthe derivation.

1. ForeachPredicateP appearingin thespecificationdo the following.

(a) For
i.

ii.

each,if half of the definitionof P,do the following:

If the body hasa universalquantifier,selecta literal within the scopeof the
quantifiersuchthat thereexistsa transformationthat will enableus to apply
inductionandhenceintroducethe recursion.Introductionof recursionwill usu-
ally transforma non-Hornclauseinto a Horn clause.Thenestablishthe base
casefor the induction usinggroundtermsof the body.
Checkwhetherthe Horn clauseis executable.If not, transformthe literals of
thebody until an executableHorn clauseform is obtained.

From the if and only i/definition of a predicate P, we can easily obtain the if half of the

definition. That is, from P _ body we can get P _ body. If we have disjunctive literals as the

head of the if half, then interpreting negation as failure, we can obtain the if half of P. That is,

from P V Q _ body we obtain P _ notQ, body.

3 Specification and Derivation of Sorting Programs

In this section we provide specifications for sorting program and derive different sorting pro-

grams starting from the same specifications. Let us define a relation sort(x,y) which holds when

y is a sorted permutation of x. The corresponding specifications are

sort(x, y) _ perm(x, y ), ordered(y)
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perm(_, y) _ W_z(occur_(_, z, _) _ occurs(u, z, y))

ordered(y) _ VuVv(precedes(u,v,y)_ u < v)

The second statement is interpreted as stating that y is a permutation of x, if for every element

u, x and y contain exactly the same number of occurrences of u. The third statement specifies

the ordered relation, y is ordered if and only if, for every two elements u and v in y, if u

precedes v in the list, then u is less than or equal to v in magnitude.

The following statements specify the occurs relation.

occurs(u, z, nil) _ z = 0

(occurs(u, z, x) _ occurs(u, zl, xl), occurs(u, z_,x_),zl + z_ = z)

u_io_( x_, z2,x)

According to the first statement, the empty list contains no occurrences of u and according the

second statement, if x can be split up into two subsets xl and x2, then the total number of

occurrences of u will remain the same. An element u precedes an element v in the list x if it

occurs before v in x. The precedes relation is specified as

-,precedes(u, v, nil)

-,precedes(u, v, x.nil)

(precedes(u, v, x) _ precedes(u, v, Xl) V precedes(u, v, x2) V (ue Xl, vE x2) )

_-- append(xl, x2, x)

The first two statements indicate when the precedes relation cannot hold. In the third state-

ment, the list is broken down into two sublists and the relation recursively applied to these

sublists. If u precedes v in x, then it must precede it in either of the sublists if both u and v

are in that sublist. Otherwise, u is in the first sublist and v is in the second sublist.

We have used the relations union and append and have not indicated how these are defined

and how they differ. The relation union is not the same as the union operation on sets. The

result z of a union operation on lists x and y may contain duplicate elements. Thus the relation

union(a.nil, a.nil, a.nil) does not hold whereas union(a.nil, a.nil, a.a.nil) does. The relation

append is the familiar list append relation. The difference between union and append is that

append respects the order of the elements of the appended lists, whereas union(x, y, z) just says

that z is a permutation of the result of appending x and y. We do not explicitly specify these

familiar relations, but instead use their properties which are listed below.

append(nil, y, y)

append( u.x, y, u.z ) _ append( x, y,z)

union( x, y, z) _ append( x, y, z)

u_ion( x, y,z) _- _nion( _,x, z)

_nio_(u.x,y, u z)_- union(_,y,z)

From these properties, we can easily derive the following statements as lemmas.

append( u.nil, y, u.y)
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union( u.nil, y, u.y)

union(nil, y, y)

union(x, v. y , v.z ) *--- union(x, y, z)

We are now ready to tackle program derivations. We begin with programs and lemmas for

perm and ordered.

1. perm(x, y) _. Yu3z(occurs(u, z, x)(q+) _ occurs(u, z, y))

2 perm(nit,y)_ Vu_z(z= 0 _ occurs(u,z,y!(q_))

occurs(u, z, nil) _ z = 0

occurs(u, z, nil) _ z = 0

3. perm(nit, nil)_ Vu3z(z= 0 _ z = O)
4. perm(nil, nil)

This forms a Horn clause for the trivial case when the input list is empty. The following useful

lemma on perm(x, y) is assumed. For the derivation of this lemma see [10].

1. perm(x, y) _ union(xl, x2, x),perm(xl, yl),perm(x2, Y2), union(y1, Y2, Y)

With appropriate procedures for union, this can be used as a Horn clause procedure for perm.

We now derive a few lemmas.

1. perm(x, y) _ Vu3z(occurs(u, z, x) _ occurs(u, z, y)fq_))

P_P

2. perm(x,x)

This lemma comes in handy when we want to eliminate extra terms by unifying them. The

following lemma is used when attempting to unify elements within lists.

1. perm(z, y) ,-- union(x1, x2, x)(_),

perrn(xl, Yl ), perm(x2, Y2), union(y1, Y2, Y)(_)

2. perm(u.x, v.y) _-- perrn(u.nil, v.nil)(_),perm(x, y)

union(u.nil, y, u.y)

perm( x, x)

3. perm(u.x, u.y) _ perm(x,y)

Other results that we use are

(ue x ._ ue y) .-- perm(x, y)

perm( x, y) *- perm( x, l), perm( l, y)

These statements cannot be derived from our specifications for perm. They can be derived if

we use different specifications, but then the other derivations become more difficult. We prefer
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to pay the priceand assumethesestatementsasaxiomsrather than derivethemaslemmas.
The resultsof the derivationsand theaxiomsfor perm used in the sequel are listed below.

perm(nil, nil)

perm(x,x)

perm( u.x, u.y) _- perm( x, y)

perm(x, U)_- u_ion(zl, _:, x),perm(_l, yl), perm(x:, y:), u_io.(Ul, Y2,Y)
(_C • _ _ y) _ per,,_(z, y)

perm( x, y) (-- perm( x, l), perm( l, y)

We now proceed to the derivation of programs and lemmas for ordered.

1. ordered(y) _-- VuVv(precedes(u, v, y)(q+) _ u _< v)

2. ordered(nil)

1. ordered(y) _-- VuVv(precedes(u, v, y)(q+) _ u _ v)

-,precedes(u, v, nil)

-_precedes( u, v, x.nil )

2. ordered(x.nil)

These two Horn clauses can be regarded as procedures for the trivial cases.

1. ordered(y) _ VuVv(precedes(u, v, y)(q+) --_ u < v)

(precedes(u, v, x) _ precedes(u, v, Xl) V precedes(u, v, x2)

V (U_ ZI,V_ X2) )

*-- append(x1, x2, x)

2. o_dered(y) _ WVv((p_eeedes(u,v, yl) Vprecedes(u, v, y:) V(_C y_,v_ y:))
u <_ v),append(yl, y2, y)

3. ordered(y)_

VuVv(preeedes(_,v,yl)-_ u < v)(_),

WW(precedes(_, _,Y2)- _ _<v)(_),

VuVv((uC Yl, vC Y2) --+ u _< v), append(y1, Y2, Y)

ordered(y) _ VuVv(precedes(u,v,y)-_ _ <_v)

4. ordered(y) _ ordered(yl),ordered(y2),

VuVv((uE Yl, vE Y2) --* u <_ v), append(yl, y2, y)

This statement is used later on, in derivations for sort and also as the starting point in the

following derivation.

1. ordered(y) _-- ordered(yi),ordered(y2),

VuVv((uE Yl, vE Y2) --* u <_ v),(_)append(yl, Y2, Y)

formation of procedure lessall
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2. ordered(y) _ ordered(y1), ordered(y2) , le88all(y1, y2), append(yl, y2, y)

3. le_aH(x, y) _ WVv((u_ x, vC y) -_ u < v)

The relation lessall(x, y) holds if all the elements in list x are less than or equal to all elements

in list y. We will derive programs and lemmas for lessall shortly.

1. ordered(y) _ ordered(yl),ordered(y2),

VuVv(uC Yl, uG Y2 _ u <_ v), append(yl, Y2, Y)(_)

2. ordered(x.y2)

VuVv(uE

3. ordered(x.y2)

Vv(vE Y2

ordered( x.nil), ordered(y2),

x.nil, vC Y2 _ u <_ v)

ordered( x.nil), ordered(y2),

,-.-.+X <__V)

append( u.nil, v, u.v )

formation of procedure lessall t

4. ordered(x.y2) _ ordered(x.nil)(_), ordered(y2), lessall'(x, Y2)

5. ordered(x.y2) _-- ordered(y2),lessall'(x, y2)

ordered(x.nil)

We will use lessall _ in the derivations for lessall. It is defined as

le_all'(x, y) _ Vv(vEy _ x _<v)

The useful statements that we have derived about the ordered relation are

ordered(nil)

ordered(x.nil)

ordered(x) *- ordered(x1), ordered(x2),

VuVv(uE xl, vE x2 _ u < v), append(xa, x2, x)

ordered(z) *- ordered( Xl ), ordered(x2), lessall( xl, x2), append(x1, x2, x)

ordered( x.y) *---ordered(y), lessall'( x, y)

We still have to derive a few procedures and lemmas for lessall _ and lessall. We begin with
le,s.sall.

1. tessall(x, y) _ VuVv((u!_q+), ve y) _ u < v)
_uE nil

2. lessall(nil, y)

3. le_att(z, y) _ YuYv((uE x, vE y(q+)) _ u _< v)

4. lessall(x, nil)

These are the base case procedures for lessall.

1. lessall(x, y) _ VuVv((u_u__(Ly_(q+),vE y) ---*u < v)

-,uE nil
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2. lessall(z.x', y) *---VuVv(((u = z V uE x'), vE y) ---+u <_ v)

3. lessall(z.x', y)

VuVv(u = z, vE y _ u <_ v),

VuVv(uE x', vE y ---, u <_ v)

4. lessall(z.x', y) _--

Vv(ve y _ z <_ v),(_)

VuVv(ue x', ve y _ u < v)

, lessall( z.x', y) *-- lessall ' ( z, y),

VuVv(uE z', vE y _ u <_ v)(_)

6. lessall(z.x', y) _ lessall'(z, y), lessall(x', y)

uE v.y_ u= vV uE y

' Vv(ve x _ u _< v)lessall (u, x)

lessalI(x, y) _ VuVv(uE x,vE y _ u <_ v)

This statement can be used as a procedure for lessall. We now proceed with the derivation of

lemmas.

1. lessatt(x, y) _ VuVv((uex, vc_y(q+))_ u _ v)
(UC 2' _ ?/(_ Z 1 V uE z2) +--- union(z1, z2, z)

2. lessaU(x, y) *---VuVv(uE z, (rE Yl V vE Y2) ---+u <_ v), uniort(yl, Yu, Y)

3. lessall(x,y) _--

VuVv(uE x, vE Yl _ u <_ v),(_)

VuVv( uE x, vE Y2 -+ u <_ v)(_), union(y1, Y2, Y)

te_aU(x, y) _ vuvv((_e x, vc y) - _ < _)

4. lessall(x, y) *-- lessall(x, Yl), lessall(x, Y2), union(y1, Y2, Y)(_)

union( v.nil, u, v.u)

5. lessall(x, u.y2) _ lessall(x, u.nil), lessall(x, y2)

Next, we derive a lemma that states that the lessall relation is not changed by permuting x or

y.

1. t_ll(_, y).--WVv((_e _, ve_q+))_ _ < v)
(_ x _-_uE y) _-- perm(y,x)

2. l_aH(x, y) +--WVv((_E %+), _ _) _ _ < v),p_m(_, y)
(uE x _-_uE y) _- perm(y,x)

3. lessall(x, y) _-- VuVv((uE w, vE z) ---+u < v)(_), perm(z, y), perm(w, x)

lessall(x,y) _ VuVv((uE x, vE y) _ u <_ v)

4. lessall(x, y) _ lessall(w, z), perm(z, y),perm(w, x)
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Another lemma that can be derived for lessall lets us exploit the transitivity property of lessall.

lessall(x, y) _ lessall(x, z), lessall(z, y)

We now begin on the derivations of programs and lemmas for lessall'

1. lessall'(x, y) _-- Vv(vE y(q+) --_ x < v)

2. lessall'(x, nil)

This forms tile base case procedure for lessall'.

1. lessall'(x, y) _- Vv(ve__yy(q+) --* x _ v)

2. tessall'(_, _-U')_ Vv(v= _ v ve y'_ x < v)

3. lessall'(x, u.y') *-- Vv(v = u -_ x <_ v), Vv(ve y' _ x <_ v)

4. lessallt(x,u.y') _ x <_ u,Vv(ve y'_ x <_ v)(_)

-_uE nil

uE v.y_ u=vVuE y

lessall '(x, y) _- Vv(vC y _ x <_ v)

5. lessall'(x, u.y') _ x <_u, lessall'(x, y')

This clause along with the base case derived earlier can be used as procedures for lessall _. We

proceed with the derivation of lemmas for lessall'

i. lessall'(x,y)_ Vv(vE y_ x <_ v(q_))

u < v *--u < w,u, < v

lessall '(x, y) _ Vv(vE y _ x < v)

2. lessall'(x,y) _ Vv(vC y-* w < v)(_),x _< w

3. t_s_att'(_, y) _ le_s,_u'(w, v), x <_w

We now derive a lemma that links lessall _ with ordered.

4. ordered(y) _ VuVv(precedes(u, v, y)(q+) -_ u < v)

(precedes(u, v, z) _-* precedes(u, v, xl) V precedes(u, v, x2)

v (u_ xl, v_ x_))

,-- append(x1, x2, x)

5. (ordered(y) _-* VuVv((precedes(u, v, y,) V precedes(u, v, Y2) V (ue Yl, we Y2))

---* u _ v)) _-- append(y1, Y2, Y)

6. (ordered(y) ---*

--* u <_ v)) *-- append(y1, Y2, Y)

( PI V P2 V P3),- P3
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7. (ordered(y)-_ VuVv((uC yx,vC y2)-_ u __ v)) ,-- append(yl,y2,y)(_)

append( u.nil, v, u.v )

9. ordered(x.y') -_ Vv((vE y') _ x _< v)(+)

10. ordered(x.y') _ lessall'(x, y')

lessall'(x,y) _ Vv(v6 y _ x < v)

which can be rewritten as

lessall ' ( x, y') _ ordered( x.y')

We use the previous two lemmas in the proof of the next lemma.

1. le.ssall'(x, y) .- lessall'(w, y)(_), x < w

lessall '(x, y') _-- ordered(x.y')

2. lessall'(x,y) _-- ordered(w.y),x < w

We have only a couple more lemmas to go before starting with actual sorting programs.

1. lessall'(x, y) _-- Vv(vE._____y(q+)_ x < v)

lessall '(x, y) _-- Vv(v6 z --_ x < v)(_),perm(z, y)
.

(u6 x _ u6 y) '-- perm(y,x)

lessall'(x,y) _ Vv(v6 y _ x <_ v)

3. te_tt'(z, y) _- 1_,_tt'(z, z), pe,m(,, y)

And the last lemma is just as simple.

1. lessall'(x,y) _ Vv(vE y(q+) --_ x __ v)

(v--_ _ (rE Yl V Y_ Y2)) _ union(yl,Y2, y)

2. lessall'(x, y) _ Vv(v6 Yl _ x <_ v)(_),

Vv(v6 y_ --* x <_ v)(_), union(ya, Y2, Y)

le_a_t'(x, y) _ Vv(ve _ -_ x < v)

3 tessaU'(x,y)_-tessat_'(x,y,),_e_saZZ'(_,y:),_io_(y_,y_,y)

The complete set of programs and lemmas for lessall and lessall' are

lessall(nil, x)

lessall( x, nil)

lessall( u.x, y) _ lessall ' (u, y), lessall(x, y)

lessall( x, u.y) _- le_sall( x, u.nil), lessall( x, y)
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tessall(x,y) _- les_all(w,z),per-_(w,x),per._(z, y)
le_salt(x, y) _- le_all( x, z), le_sall(z, y)

lessall'(x, nil)

l_all'(x,_.y)_ x < _,le_aU'(x,y)

le**all'(x,y) _- le_.aU'(_,y),x <
lessall'(x, y) _ ordered(x.y)

lessall'(x,y) _ ordered(w.y),x <_ w

l_all'(x, y)_-t_l'(x, z),p_rm(z,y)
lessall ' ( x, y) _ lessall ' ( x, yl), lessall( x, Y2), union(y1, y2, y)

3.1 Naive Sort

We now have enough material to start the derivation of sorting programs. In fact, we have

enough to actually build a naive sort program which is given by

sort(x, y) _ perm( x, y), ordered(y)

perm(nil, nil)

perm(x, y) _- union(x1,x_,x), perm(xi,Yi),perm(x_,y_),union(y1,y_,y)

ordered(nil)

ordered(u.nil)

ordered(z) _-- append(xl, x2, x), lessall(xl, x2),

ordered(x1), ordered(x2)

together with the procedures already derived for lessall and procedures for union and append.

In the following section, we will derive a program for merge sort, which can be further

transformed into a program for insertion sort. Following that we derive a program for quicksort

which is further transformed into a program for selection sort. A lemma which can be quite

easily proved from the specifications for the sort relation is

(sort(x, y) _-_ perm( x, y) ) 4-- ordered(y)

We can also easily derive the following base cases for sort from its specifications and from the

lemmas already derived.

sort(nil, nil)

sort( u.nil , u.n il )
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3.2 Merge Sort

Themergesort derivationstartsoffwith the usualdefinitionof sort.

1. sort(x, y) _ perm(x, y)(_), ordered(y)

perm(x, y) perm(x, z), perm(z, y)

2. sort(x, y) _ perm(x, z).(_), perrn(z, y), ordered(y)

perm(x, y) _ union(xl, x2, x),perm(xl, Yl),

perm( x 2, Y2), union(y1, Y2, Y)

3. sort(x, y) *- union(x1, x2, x),perm(xl, zl)(_),

perm(x2, z2)(_), union(z1, z2, z), perm( z, y), ordered(y)

perm(x, y) *--- sort(x, y)

4. 8oft(x, y) _-- union(xl, x2, x), sort(x1, Zl) , sort(x2, z2) ,

union(z1, z2, z ), perm( z, y), ordered(y)

formation of procedure merge

5. sort(x, y) _ union(x1, x2, x), sort(x1, Zl), sort(x2, z2), merge(z1, z2, y)

6. merge(zl, z2, y) _ 3z(union(zl, z2, z), perm(z, y), ordered(y))

The derivation of the merge procedure is a little harder since we have to consider more cases.

1. merge(z1, z2, y) *-- 3z(union(zl, z2, z), perm(z, y),ordered(y))

deletion of existential quantifier

2. merge(zl,z2,y)_- union(zl,z2,z).(_),perm(z,y),ordered(y)

.

merge(nil,y,y)_perm(y,y)(_),ordered(y)

4. merge(nil, y,y)_ ordered(y)

union(nil, y, y)

;erm(x,x)

Similarly, we can derive the Horn clause

merge(x, nil, x) _ ordered(x)

We now proceed with the derivation of a procedure for merge, assuming that the first pair of

terms of merge are already sorted, and taking into account the fact that the lists to be merged

are not empty

1. merge(u.zl, v.z2, y) _- 3z(union(u.zl, v.z2, z), perm(z, y), ordered(y))

deletion of existential quantifier

2. merge(u.zl, v.z2, y) +-- union(u.zl, v.z2, z)(_),perm(z, y), ordered(y)

union( u.x, y, u.z ) _-- union(x, y, z)
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3. merge( u.z,, v.z2, y) _ union( Zl , Y.Z2, Z'), perm( u.z', y )(_), ordered(y)

perm(u.x, u.y) _ perm(x, y)

4. merge(u.zl, v.z2, u.y') _ union(zl, v.z2, z'),perm(z', y'), ordered(u.y')(_)

ordered( u.x ) _ ordered(x), lessall' ( u, y)

5. merge(u.zl, v.z2, u.y') _ union(z1, v.z2, z'),perm(z', y'),ordered(y'),lessall'(u, y')(_)

lessall '(u, x) _ lessall '(u, z), perm(z, x)

6. merge(u.zl, v.z2, u.y') _ union(z1, v.z2, z'),perm(z', y'), ordered(y'),

lessall '(u, z ), perm( z, y')

perm( x, y) _ perm( x, y), perm( x', y)

7. merge(u.zl, v.z2, u.y') *--- union(zl, v.z2, z'), perm(z', y'), ordered(y'), lessall '(u, z')(_)

lessau '(x, y) lessall ' (x, yl), less lt ' ( y2), union(y,, y2,y)

8. merge( u.zl , v.z2, u.y') _ union( zl, v.z2, z'), perm( z', y'), ordered( y '),

lessall ' ( u, yl ), lessall ' ( u, Y2 ), union( yl, Y2, z')

union(x1, z 2, y) _-- union( x l , x 2, y ), union(y1, Y2, Y)

9. merge( u.zl, v.z2, u.y') _ union(z1, v.z2, z'), perm( z', y'), ordered( y'),

lessall ' ( u, zl ), lessall ' ( u, v.z2)(_)

lessall '(x, u.y) _-- x <_ u

10. merge(lt.Zl, v.z2, u.y') _ union(z1, v.z2, z'),

perm( z', y'), ordered( y'), lessall'( u, zl ), u <_ v

Introduction of existential quantifier

11. rnerge(u.zl, v.z2, u.y I) _--

3z' ( union( zl , v.z2, z'),

perm(z', y'), ordered(y'))(_), lessall'(u, Zl), u < v

merge( zl , z2, y) _ 3z( union( zl , z2, z ) ),

perm(z, y), ordered(y))

12. merge(u.zl, v.z2, u.y') *--- merge(z1, v.z2, y'), lessall'(u, zl), u <_ v

lessall '(u, Zl )

13. merge(u.zl,v.z2, u.y I) _ merge(zl,v.z2, yl),u <_ v

The other Horn clause for merge can be similarly derived and has the same form.

merge(u.zl, v.z2, v.y') ,--- merge(u.zl, z2, y'), lessall '(v, z2), v _< u

The complete sort program for merge sort is

sort(nil, nil)

sort(u.nil, u.nil)

sort(x,y) _ union(xl,x2,x),sort(xl,Zl),sort(x2, z2),merge(zl,z2, Y)
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merge(nil, y, y)

merge(x, nil, x)

merge(u.za, v.z2, u.y) (----u < v, lessall'(u, zl), merge(z1, v.z2, y)

merge( u.zl, v.z2, v.y) _ v <_ u, lessall ' ( v, z2), merge( u.zl , z2, y)

3.3 Insertion Sort

The above program for merge sort can be modified a little in order to make it an insertion sort

program. In an insertion sort, the first element of the list is removed, the rest of the list is

sorted and then the first element is reinserted into the list in the right place without upsetting

the ordering.

l. sort(x,y)(---- union(xl,x2, x)(_),sort(xl,zl),sort(x2, z2),merge(zl,z2, y)

union( v.nil, y, v.y )

2. sort(v.x,y) - sort(v.nil, zl)l_l,sort(x,z ),merge(zi, z2,y)

. sort( y) sort(x, z:), metge(v.nil,z:, y)(_)

4. sort(v.x,y)_ sort(x,z2),insert(v, z2, y)

5. insert(v, z, y) _ merge(v.nil, z, y)

We now derive procedures for insert.

1. insert(v, z, y) _ merge(v.nil, z, y)(+)

2. insert(v, nil, v.nil)

This forms the base case procedure for insert.

sort(u.nil, u.nil)

Formation of new procedure insert

merge(x, nil, x)

1. insert(v, z, y) *-- merge(v.nil, z, y)(_)

merge(u.zl, v.z2, u.y) _- u _ v, merge(zi, v.z2, y)

2. insert(v, x.z _, v.y _) _-- v __ x, merge(nil, x.z _, y')(_)

merge(nil, y, y)

3. insert(v, x.z', v.x.z') .-- v <_ x

Similarly, we can derive the other Horn clause for insert.

insert(v, x.z, x.z') .--- x < v, insert(v, z, z')

The complete insertion sort program is

sort(nil, nil)
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sort( u.nil, u.nil)

sort(v.x, y) sort(x, z), insert(v, z, y)

insert(v, nil, v.nil)

insert(v, x.z, v.x.z) _- v < x

insert(v, x.z, x.z') +-- x <_ v, insert(v, z, z')

Other sorting programs such as, quicksort and selection sort had been synthesized by Vargh-

ese. Interested readers may refer to [10].

4 Summary and Discussion

Even after a decade of research on software engineering the productivity still remains a bot-

tleneck. Formal method is one of many approaches proposed to solve the problem. _rhen a
program is synthesized with a formal method, the tedious tasks of verification and maintenance

become some what trivial. This makes the formal synthesis very attractive.

We have provided a formal framework for deriving logic programs from its specification.
The derivationM method takes the best aspects of both the transformational and the deductive

approaches. The derivation uses the nested resolution which is shown to be sound for the first

order logic. Therefore, the derived program is sound, that is, the program is implied by the

specifications. On the other hand, since the derived program not always imply the specification,

the derivation system is some what weak. Our framework, however, has the advantage that

a partial program can always be derived even from a partial specification. Note here that

a complete specification is required to derive programs constructively using theorem proving

approaches.

In this paper we have derived several sorting programs from the same specification set.

Different sorting programs were derived by carefully selecting transformers and transformation

rules. As it has been described, automating the derivation is not very practical because of

possible combinatorial explosion. This is also true with many automating programming using

theorem proving approaches. In our recent ivork, we have proposed a semi automated approach

for deriving logic programs [11].
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ABSTRACT

In this paper, a special structure is examined for evolving a "Detached"

model of the user of an intelligent tutoring system. Tutoring is used here in

the context of education and training devices. A "Detached" approach to popu-

lating the student model data structure is examined in the context of the need

for time dependent reasoning about what the student knows about a particular

concept in the domain of interest. This approach, to generating a data struc-

ture for the student model, allows an inference engine separate from the

tutoring strategy determination to be used. This methodology has advantages

in environments requiring real-time operation.

INTRODUCTION

During the past decade, a considerable increase in research on

Intelligent Tutoring Systems (ITS) has resulted in an expanded body of

knowledge about computer based tutoring systems. ITS are sharply contrasted

with what is traditionally identified as Computer Aided Instructions (CAI).

Early research on the distinguishing characteristics of ITS and differences

compared with CAI are reported in a reference text "Intelligent Tutoring

Systems" edited by Sleeman and Brown (1982)[7]. Wolf and McDonald (1984)[9]

emphasizes the importance of student modeling in developing an effective

tutoring system. A general state of technology development in the emerging

technology of ITS is reported on by Clancy (1987)[1], Wenger (1987)[8],

Kearsley (1987)[5], Poison and Richardson (1988)[6].

In addition to the man-machine interface, the classic model of an ITS

includes a teaching module, an expert problem solving module, and a student

model. A student model is an essential component of ITS. However, a student

model in general cannot be developed entirely independent of the domain in

which the model will be used. The vast majority of student model development

efforts focus on the "Classic" tutoring problem, i.e., duplicating the

tutoring function that takes place in a classroom. Another area of interest

in the use of tutoring and student models is related to training and job aids.

A mental model for identifying some differences between "Classic" instruc-

tional strategies, training, and job aids are reported on by Harman and King

(1985)[2].

The use of a student model in context of a specific application domain is

described by Holmes (1988)[3] and Holmes and Chamberlain (1988)[4]. For pur-

poses here, the student model is defined as that component of an ITS that

collects student model performance information to be used to make inferences
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about what the student knows and does not know about a particular concept or

required training task. Before the student model can be used to draw conclu-

sions about the state of knowledge possessed by the student, the model must

first be initialized or have results available from previous tutoring opera-

tions. More precisely, the student model must have a specified structure and

a defined process for populating the structure. With the populated structure,

inferences can be made about the knowledge state of the student.

By using an ITS in the context of a Training System (TS), it can be iden-

tified as an Intelligent Tutoring-Training System (ITTS). The task to be pre-

sented to the student in an ITTS application is similar in nature to the basic

principles that would be used for an ITS for the "Classic" knowledge tutoring

problem associated with classroom settings. In the ITTS operation, simulation

systems are frequently included to support the exercise of both knowledge and

skills in the tutoring operation.

HIERARCHICAL DECOMPOSITION OF TUTORING TASK

Given that a main level concept wit}, specific performance objectives has

been identified as an element to be used in a tutoring operation. A series of

steps must be completed before the tutoring function can be implemented. An

initial step is to perform hierarchical decomposition of the main concept into

subconcepts. The decomposition continues until desired fidelity level is

acquired. The fidelity of the decomposed task is related to the number of

levels in the hierarchy. The lowest level subtask in the hierarchy is

defined here as the component subtask. Skills and knowledge associated with

the component subtask is identified as the primitives of the task. This

decomposition process is typically an element that is part of a total task

analysis effort. In conjunction with the task analysis is the skill analysis

to identify requisite skill associated with the task elements. A conceptual

model for identifying the task analysis components is shown in Figure I.

SPECIFIC

TASK WITH _'_ ..... '_

KNOWLEDGE,_I(;G_I__'V_.I (JE_IfJ-_[ ('JC_

Figure I. Conceptual model for identifying task analysis components.
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The hierarchy of skill components indicated in Figure I is a simplifica-

tion of the many subtask levels that can be associated with a task. A major

point here is to _ocus on the desirability of having associated with each

subtask a concept that is an element in the major task. The knowledge and

skill components associated with the subtask is the knowledge necessary to

master the concept and the skill to demonstrate the operation associated with

the subtask. Knowledge is defined here to include what the student or opera-

tor needs to know (principles, concepts, facts, etc.) about the subtask to be

accomplished. A skill is defined as having the requisite knowledge and the

ability to apply that knowledge effectively.

SKILL BASED TASK ANALYSIS

An example emphasizing the use of information at the component subtask

level with associated knowledge component and skill component is instructive.

Consider this over simplified example of teaching a student how to fly a small

airplane as indicated in the following table.

The observed performance with resulting conclusion and recommendation is

typical of that made by a human tutor. The knowledge component is information

the student can obtain in classroom sessions, books, and discussion with an

experienced pilot. The measure of the student's knowledge can be a series oE

questions. The skill component is developed and tested either with a training

device or the actual airplane. The performance measure can be an observatioa

and measurement of action taken in response to a given stimuli. As can be

observed, the same knowledge and skill component can appear in more than one

subtask, i.e., adjust controls in ST.-I and ST.-2. This is the same skill

but the student must have the knowledge of the context of using that skill,

i.e., in landing or stall situation. Hence, the ability to use the knowledge

correctly.

The expert, in expressing his rule-of-thumb, may use terms and expressions

not used at the knowledge component or the skill component level. However,

the student's action can be compared with the expert's at the subtask level.

Tutoring operation to improve deficiencies can use student performance at the

subtask level and the related information at the knowledge compoaent and

skill component level.

STRUCTURE FOR STUDENT MODEL DATA GENERATION

For purposes of prototype model development_ the structure shown in

Figure 2 will be used to identify a procedure for developing student model

data. As indicated, the basic structure includes a main concept, one or more

sun-concepts, and primitive element. The primitive elements have context sen-

sitive Primary (P) and Alternate (A) question associated with each primitive.
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TABLE. Learn to fly a small airplane.

COMPONMENT SUBTASKS:

SUBTASK.I

ST.I

Learn how

to land

SUBTASK.2

ST.2

Learn how

to take off

SUBTASK.3

ST.3

Learn how to

handle stalls

KNOWLEDGE COMPONENTS

Head winds

Cross winds

Flight path angle

Landing speed

Plane load

Air temperature

Take off speed

Aerodynamic lift

Get nose down

Increase speed

Sufficient speed

Control settings

SKILL COMPONENTS

Adjust controls

Observe airport

wind indicator

Compare approach

Angle with horizon

Adjust air speed

Set throttle

Observe cross

wind indicator

Changes controls

with correct

air speed

Adjust controls

Observe air speec

Level off

OBSERVED MEASURE OF PERFORMANCE FOR SUBTASK.I

Approach angle too high, hard landing

Landing speed too high, ran off runway

CONCLUSION

Student and plane survived, but the student need more practice.

RECOMMENDATIONS

The student engage in extended practice session of touch-and-go landings

with emphasis on control surface adjustment and speed adjustments.
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LEARNING
LO (OBJECTIVE)

"tUTORING
TO (OBJEC1]VE)

S
MAIN SCENARIO

"ONCEPT NO. K --

U

TItRESHOLD (11t)
SCORE. M

LO (LEARNING| PRIMITIVE PRUMARY ALTERNATE

XJOBJECTIVE ELEMENTS QUESTIONS QUESTIONS

TO (OBJECITVE

$

__..UL..IONCEPT 9ET-I --

K, U

SCOR E. H

_____@ o-,,_QUESllI_I_

AND
_EXPL_IA_

MAIN

CONCEPT
I 1 PRIMITIVE j PRIMARY AND

SUB-CONCEPTS/SUB-ELEMENT ELEMENTS ALTERNATE QUESTIONS

Figure 2. Basic structure for developing student model information.

The main concept is considered to be a particular scenario operation. A

Learning Objective (LO) is identified for the main concept. The LO will be

dependent on concepts included in the scenario. The Tutoring Objective (TO)

will be dependent on the particular student being tutored, i.e., student model

information and capabilities required to solve the scenario. As used here, a

TO is related to the process of establishing the number of chunks of knowledge

to be presented to the student. In turn, a LO is related to the process of

tesing to determine if sufficient knowledge has been mastered. Obtaining stu-

dent model information at the main concept level may include presenting the

student with a set of Dynamic Questions (DQ) involving both knowledge and

skill or presenting static Question with Explanation (QE) as required.

The student may not be required to master I00 percent of the knowledge

and concepts contained in this main event (scenario) Rule Set (RS) before

advancing to the next main concept (scenario). A Threshold (TH) of perfor-

mance is established for the main concept. An indication that the LO has been

Satisfied (S) or Unsatisfied (U) is indicated by setting the appropriate per-

formance indicator. The TO can be satlsified even if the LO was not sati-

sified. Results of the student's performance at the main concept level is

added to the student model knowledge base.

Entering into a particular subconcept operation can be accomplished by

one of three approaches. The learning objectives associated with the main

concept was not satisifed and the tutoring strategy directed that a subconcept

of the main concept be explored, (top down approach). Second, the tutoring

strategy and student model contents indicate that the bottom line component

subconcept be explored before advancing to a higher level concept (bottoms up

approach). The bottom line subconcept level is defined as the level directly

connected to the primitive elements.
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The third approach to subconcept operation is associated with paths that

includes several subconcept levels between the main concept and the primitive

level. Under these cc)nd[tions, the tutoring strategy can require that opera-

tions proceed to a particular subconcept to satisfy certain TO (arbitrary

approach). This approach would be applicable to an expansion of the basic

structure as shown in Figure 2. The subconcept levels directly associated

with the primitive elements are identified as the subelemeflt level.

The student model contains results of the student performance at all

subtask levels, including the component subtask level. Any interaction with

the primitive elements during a TO is not recorded in the student model. This

requirement is tied to the fact that knowledge about the student's performance

consist of two parts: the student's performance during Past Tutoring Efforts

(PTE); and the students performance in the Present Tutoring Operation (PTO).

The student's performance is not considered to be a past performance until the

PTO for a subtask is satisi[ed.

Consider the option that while achieving a TO it is necessary to _flter

the subelement level of operation. Also, consider _lile satisfying the LO of

a particular subelement it is necessary to interact with the asso_[ated pri-

mitive elements. The P question and A questions are used to infor,0 tile

student about the characteristics of the primitive elements. Primitive ele-

ment level interaction with the student continues until the threshold level of

that particular subelement is achieved. When the performance threshold level

of the subelement is achieved, the results at the subelement level is recorded

in the student model. This gives information on the student's performance in

relation to particular LO associated with the subelement and not in relation

to the primitive ele_eats. At this point, the results are based on past per-

formance since the LO has been achieved. The interaction with the primitive

elements occurred before the TO was achieved, i.e., in a present scenario

operation mode.

This requirement, that the threshold level of the subelement be

satisfied before continuing the TO with higher level concepts, can be used to

establish lower bounds on the tutoring and training operation. An ideal

structure would have a small number of primitive elements associated with each

subelement, i.e., three. If the threshold performance level is set at I00

percent and the student cannot achieve the LO of the component subelement,

then the student should receive training of a more fundamental nature than the

particular ITTS can provide.

However, other optio,ls exist if the performance threshold level of the

subelements are set at some _alue other than I00 percent. No record is kept

of the order the PEs are presented to the student during the first tutoring

session using the particular subelement. Since a flag was set indicating

results of the last LO, at least one pass has been made using the subelement.

In the event a second pass is req;itced to meet a TO, the order of presenting

the PEs on a second pass through can he reversed to make it interesting for

the student. Shown in Figure 3 is a conceptual model of an expanded structure

for student model data development.
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o£

OE

LO, TO LO, TO

Figure 3. Expanded structure for student model development.

CONCLUSION

An initial implementation on the prototype structure, as described here,

is effective in providing required information to a student model for a

special application of tutoring systems. The implementation of the structure,

described here, involved an initial prototype. The next step is to investi-

gate the effectiveness of applying the process to larger tasks with an

increased number of subtasks.

ORIGINAL PA'_-°.,.:,E!_

OF POOR QUALITY
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ABSTRACT

Real-time computation is a significant area of research in general,
and in AI in particular. The complexity of practical real-time problems
demands use of knowledge-based problem solving techniques while
satisfying real-time performance constraints. Since the demands of a
complex real-time problem cannot be predicted (owing to the dynamic
nature of the environment) we need powerful dynamic resource control
techniques to monitor and control the performance. In this paper we
briefly describe a real-time computation model for a real-time tool, an
implementation of the QP-Net simulator on a Symbolics machine, and
an implementation on a Butterfly multiprocessor machine.

1. Introduction

Real-time computations is a significant area of research in general, and in At in
particular [1]. The tradition work on real-time has focused on the execution perfor-
mance of programs and has lead to development of real-time operating systems where
the emphasis is on optimizing execution speed of various parts of the operating system
kernel. The complexity of practical real-time problems demand use of knowledge-
based problem solving techniques while satisfying real-time performance constraints.
The complexity of the problem requires that apart from the program execution speed
we should also address other performance metrics such as responsiveness, timeliness,
and graceful degradation [2]. Thus in addition to the current tools of real-time
operating systems we need support for knowledge-based problem solving and user-
controllable dynamic resource control. In this paper we describe the architecture and
design of such a real-time tool.

Our real-time tool is based on a computation model (called QP-Net) to help the
application developer in modeling the real-time problem solution [2]. The computa-
tional model supports both the parallel and sequential execution of tasks. The parallel
computation model supports both the static and dynamic scheduling of processors to
tasks. We have further refined the QP-Net model to provide features important to
real-time problems such as asynchronous task execution, performance monitoring, and
dynamic resource computation, and dynamic resource scheduling. In this paper we
briefly describe QP-Net, the multilayered architecture for the real-time tool, a simple
example, an implementation of the QP-Net simulator on a Symbolics machine, and an
implementation on a Butterfly multiprocessor machine.
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2. QP.Net

QP-Net is a computational model for exploiting concurrency inherent in an appli-
cation. By exploiting concurrency we mean making concurrent aspects of application
solution explicit and providing mechanisms to realize concurrent behavior. The objec-
tive of QP-Net model is provide a user with conceptual tools to express concurrent
solutions in the ways that matches best with his/her understanding of the problem
solution. The motivation being that such an approach will lead to "distributed AI solu-
tion architectures" and facilitate both systematic development of concurrent solutions
and also help understand "distributed intelligent" architectures in an empirical manner.

Given an application problem the QP-Net based solution consists of three parts:

1. The Solution Model which defines asynchronous application tasks and their
interrelationships in terms of a directed communication network.

2. The Execution Model which specifies the temporal order in which tasks are to
be executed.

3. The Resource Model which specifies scheduling of finite resources statically or
dynamically among the application tasks.

The solution model defines the logical execution ordering of the tasks. The
interaction/communication between the tasks is explicitly defined by directed network
links. The network allows the user in developing conceptual solution models by using
network links to indicate "enables" and "restrictions" of interactions between the tasks.

The execution model consists of two parts. First, the execution of a task is trig-
gered as a result of execution of a predecessor task defined by the network. A task
upon execution passes an "execution token" to the tasks at the other end of the link.
The execution of tasks is basically asynchronous which is achieved by associating an
"input-buffer" with each task containing arriving execution tokens. The second part of
the execution model consists of scheduling task instances. Various prioritization poli-
cies can be used to select a task token from the "input-buffer" for execution.

The resource model consists of two parts. First, resources can be assigned to tasks
in some predefined manner. For example, a part of resources may be dedicated to a set
of critical tasks and rest of the resources can be shared dynamically by the remaining
tasks. The second part of resource allocation model consists of dynamically reatlocat-
ing the resources.

The QP-Net based application solution model is "richer" than traditional con-
current models. Unlike CSP and Petri-Nets, QP-Net allows asynchronous execution of
tasks while allowing synchronous execution as a special behavior. Unlike concurrent
object-oriented models such as Actors [3], and Mace [4], QP-Net makes communica-
tion explicit and allows dynamic computation of priorities. Unlike any of the existing
models, QP-Net allows dynamic realiocation of resources.

3. QP.Net and Real-Time Applications

The QP-Net approach specially addresses the needs of real-time problems by
supporting the following:

• A task queue based solution model which supports asynchronous execution of
logically parallel tasks.

• User controllable execution control defined based on application specific
knowledge and heuristics in designing the network and task priority and schedul-
_ng policies.

• User tune-able performance driven resource re.allocation scheme.

• Development of knowledge-based procedures realized by building RT-Tool on
an object-oriented platform.

3.1. Task.Queue Based Solution Model

First, a QP-Net solution model essentially consists of a network of logically paral-
lel tasks. One can view the network connecting an arbitrary number of producer and
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consumer tasks. Norma/ly these tasks can be executed asynchronously. A producer or
a consumer task can in principle be any arbitrary process as long as it can interact with
other processes in two respects: It can receive a job to be done from the predecessor
processes in the network and it can send a jog to the successor processes in the net-
work. The feature of asynchronous execution makes it possible to model real-time
problems because it enables different processes to execute at different speeds which is
necessary to satisfy certain real-time requirements.

The QP-Net approach also defines a specific type of model for each of the
producer/consumer node in the network. Each node consists of task queue which con-
tains "prioritized tasks" and a server to execute these tasks. The task queues receive
tasks from predecessor nodes and enqueue them using certain enqueing discipline.
Thus task queues serve both as buffers (thus enabling asynchronous execution) and
also as agendas for scheduled tasks. In QP-Net the task queue and server operations
are also considered asynchronous. Thus more than processes of task-queue and server
can be active simultaneously. The asynchronous operation enables performing task-
queue operations to be responsive to environment demands and server operations to
be responsive to task-queue demands.

3.2. Execution Control

In real-time applications a solution is required to be responsive to the data or jobs
imposed by the environment. The demands of an environment cannot be directly con-
trolled and in some situations it cannot be anticipated. Given a stream of data or jobs
it is necessary to determine the priority in which these tasks should be done. QP-Net
model explicitly supports used defined priority mechanisms and thus enables incor-
porating scheduling algorithms to select real-time tasks for execution.

3.3. Resource Allocation

Real systems have finite resources. Given the criticality of certain tasks it is
necessary to allocate certain resources as dedicated and others as shared. As discussed
in previous section QP-Net model supports both static and dynamic resource allocation
and does specifically to control real-time performance.

3.4. Knowledge.based Procedures

Problem solving in real-time application is knowledge-based. Not only are the
domain tasks knowledge-based but the control tasks required for execution control
and resource allocation can also be knowledge-based. Nothing in QP-Net model pre-
cludes knowledge-based approach. The tool described in the next section facilitates
building knowledge-based procedures by providing object-oriented support.

4. Prototyping QP-Net Model

4.1. QP-Net Model Primitives

The QP-Net model for a problem is defined as a network of the following primi-
tive elements:

1. Tasks: A Task is a description of an user-defined activity to be performed and
may involve local data or other behavior. It involves finite and bounded computa-
tion. Tasks are independent, can be executed asynchronously, and any depen-
dence is modeled in terms of network. Execution of a task can have one of the

following two effects.: changes to the local state of the task or changes posted to
out-going network links.

2. Task Queues: It is a queue of tasks and serves two purposes: as a buffer to
enable asynchronous execution of tasks, and to enable scheduling of tasks for
execution. Four types of primitive task queues are recognized: fifo, priority,
time-constrained, and synchronized.

3. Q-Managers: A Q-Manager manages task inflow and outflow for a set of priority
task queues. Normally, task queues will be elements of a q-manager.
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4. Servers: A Server attends to a specified q-manager. When free, it requests and
receives a task from a q-manager, executes it, and goes back to the q-manager
for another task. A server is not a physical processor but a process. Thus the
behavior of a server can be defined by the user. Also the design of an application
solution in terms of q-managers and servers can be independent of the number
of processors.

5. Task Flow Links: Task flow links connect a q-manager to a server. The links are
directed. The links can be best thought of as a pipe . Normally a server can have
only one input link but several output links. In some designs (specially designs
for synchronized behavior) more than one input links are possible.

4.2. High.Level Components in QP-Net Model

In this section we describe the operations permissible on a QP-Net element and
operations to be performed by a QP-Net model. This will specify the semantics of the
model elements.

4.2.1. Tasks

Tasks specify the activity to be performed. There are system tasks and application
tasks. Here we will focus on application tasks.

Application tasks are typically generated by a server. Upon generation the execu-
tion of tasks is controlled by various factors such as its priority. The activity to be per-
formed is expressed as the body of the task. A task has the following attributes:

1. Trigger-Condition: These are the conditions which should be true for the task to
be generated.

2. Precondition: A task may not be ready for execution soon after its generation.
Prior to its execution various resources should be available, conditions should

exist that do not hinder the execution of task, and conditions for initiating the
task execution should be true. The collection of all these conditions are defined
as Precondition.

3. Body: The body of the task defines the activity to be performed.

4. Priority: The priority of the task is determined in relation to its need to have
resources made available to it. It is a dynamically computable quantity.

Real-Time Task: Tasks to which the execution time is of critical importance are
called real-time tasks. A real-time task has a timer associated with it. The timer is

created at the time of task creation. At any time after that the timer can be queried to
find the age of the task.

4.2.2. Task Queues

A task queue is a queue of application tasks. The following operations can be
performed on a task queue:

1. Create/Delete a task queue

2. Lock/Unlock a task queue

3. Enqueue/Dequeue a task on a task queue

The following four types of primitive task queues are currently supported:

1. FIFO Task Queue

2. Priority Task Queue: A task is enqueued/inserted on the task queue at a location
consistent with its priority. Dequeue of the task queue removes the highest prior-
ity task.

3. Time-Constrained Task Queue: A task is enqueued/inserted on the task queue
based on its deadline. The task with the tightest deadline is at the head of the
task queue.

4. Synchronized task queue: Synchronized task queue dequeues the task only when
specified synchronization conditions are met.
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4.2.3. Q.Managers

A Q-Manager controls the task inflow and outflow of its tasks queues. It may
consist of a number of task queues. A Q-Manager has a unique name. Normally. a Q-
Manager will be associated with specific types of tasks such as: update sensor data;
execute plans for the operation of system, etc. A Q-Man:_ger has procedures to per-
form the following:

1. Assign priority to a new task

2. Enqueue the task to appropriate task queue

3. Schedule a task for execution

4. Measure specific performance parameters such as the task queue length, time to
deadline, the rate at which tasks have been arriving, and the rate at which tasks
have been depleting.

5. Estimate the service needed.

6. Update the priorities of the tasks.

7. Change the queue size (i.e., in essense memory) dynamically to either free-up
resources or produce more dynamically stable behavior.

An external object can interface with a Q-Manager in the following ways:

1. Send a new task

2. Request a new task

Priority: One of the features of Q-Manager is to estimate the priority of a task. The
priority of a task is intended to be a dynamic quantity rather than being a static quan-
tit.y assigned at the time of the creation of the task. Various factors influencing the
priority are:

Time-Stress or the time between now and the deadline to begin or finish the task.

FIFO: A simple default prioritization

Relative Priority: Since priority drives resource reallocation it is estimated relative
to the priorities of existing tasks.

4.2.4. Servers

Servers are the logical processors in QP-Net. Servers are logical processes to keep
the program independent of assumptions about any particular processor allocation stra-
tegy. This is done to:

1. keep the logical structure of the users program simple;

2. provide maximum flexibility for choosing and experimenting with various proces-
sor allocation strategy.

A server requests Q-Manager for a task and then execute the task. A server has the
following attributes:

1. A unique name

2. Name of the Q-Manager served.

3. A specification of what the server is supposed to do, i.e., a procedure.

4. Name of Q-Managers or output pipes and rules for determining where the results
of executing of a task be enqueued.

4.3. Performance Metering

Performance metering can provide insights into the behavior of a program and
help identify program features which can be further optimized. Performance
measurement/analysis has been an important area in the design and analysis of operat-
ing systems. The analysis usually yields results such as the utilization of processors,
the computer system throughput, task queue lengths, and response times. These
results can then be usecl to evaluate or modify computer system designs. In QP-Net
we are interested in me,_suring similar characteristics but our objective is to not simply
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to collect benchmarking data but to control the performance characteristics of its appli-
cation. This leads to both a problem and an opportunity. The problem is that much of

the computer systems benchmarking techniques are not applicable. The opportunity
exists because our measurements can be heuristic and less precise, the lack of preci-
sion is overcome by using a feedback control mechanism. We thus choose the heuris-
tic approaches over formal performance modeling approaches.

In QP-Net the primary objective of performance measurement is to collect data
about the programs execution which can be used for on-line control the performance
of the program with respect to some predefined standards. Thus the performance
metering is used both: (1) To provide comparative data to analyze the performance of
various programs with respect to stated specifications, and more importantly (2) to
provide data to be used in adjusting the resources to achieve the specifications. The
following parameters are currently measured:

1. Latency: Average time lapsed between the the generation of a task and the begin-
ning of its execution. If the current average latency is L, the latency of a new
task is 1, then new average latency,L,,_ can be given by:

L,,ew = f x 1 + (1- f) × L,

where f is a weighting factor with value between 0 and 1. Similar formula is
used in the following to compute the average.

2. Task Queue Size: The number of tasks waiting in the task queue for execution.

3. Granularity: The average size of the task, which is measured by elapsed execution
time.

4. Inter-service Interval: Average time between two services at a queue.

The problem of how we take these parameter values and assess the performance status
of the system is discussed in the section of Performance Control Strategy.

4.4. Resource Allocation

In QP-Net resource allocation essentially refers to assigning processors to the
QP-Net based solution. Let us recall that a QP-Net model consists of network of task

queues and servers. A pair of task queue (or q-manager) and server is called a QP-
Site. Collection of QP-Sites are called Clusters. Processors can be allocated in the fol-
lowing manner:

1. Allocate processors to q-managers and servers.

2. Allocate processors to each site which in turn reallocates them to q-managers and
servers.

3. Allocated processors to clusters which in turn can reallocate them to qp-sites and
qp-sites can reallocate them to q-managers and servers.

4. Allocate processors to groups of logically parallel activities, called a module. A
module can typically contain several q-managers and servers.

For generality, we will say that processors are allocated to modules where a module
can be a cluster, a qp-site, q-manager, server, or an arbitrary composition of activities.

4.4.1. Specifying a Module

Given an application solution as a QP-Net work the user can define execution
modules. Processors are allocated to modules. A module can be defined in the follow-
ing manner:

(define-module Mi (Q1 S1 Q2))

where Q1, Q2 are q-managers and S1 is a server.

4.4.2. Schemes for Assigning Processor to Modules

The processor assignment can be either dedicated in which case a fixed number
of processor is allocated to a module, or flexible where the processor can serve one of

many groups. Given a set of modules, (M1, M2, M3, M4), how do we assign
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processors to the modules? The processor allocation is specified by (Module-ID,
Processor-ID). If all processors are identical and any module can be executed on any
processor then the allocation can be specified as: (Module-lD, Processor Set) where
any processor in the processor set can be used.

(define-assignment assign-I (modules '(M1 M2 M3)
number-of-processors 4

allocation-strategy uniform -random ) )

(define-assignment assign-2 (modules '(M4)
number-of-processors 2

allocation-strategy dedicated))

4.4.3. Random Allocation Strategy

The dedicated allocation strategy is simple. Here we describe a random shared
allocation strategy.

1. With each module Mi, associate a parameter di (called demand parameter).
Parameters di can change values dynamically.

2. Let D = dl+ d 2+ • • + d,. Out of a total of D executions allocate di to Mi.

One _ ,scheme to alloeatej=_,is to generate a random number, r, in range (0, D - 1).

If _ d/ < r < '_.d/, then assign the processor to M,..
i=I j=l

4,5. Performance Control Strategy

The objective of performance control strategy is to compute demand factors di
for each module to which processors are to be allocated. The need to dynamically
compute d i arises because we want to maintain certain level of real-time performance.
For example, suppose we want to keep the latency of tasks in a specific task queue to
be less then some specified value l,tf. Any given allocation of processors to this task
queue will be adequate to assure the desired latency as long as the the task arrival
rates do not increase or the service rates do not decrease. In real-time situations both

of these things can happen. The task arrival rate depends upon the external environ-
ment and can change dynamically. The service rate in a finite resource system depends
can change if some other module requires more than its allocated service. We need
two types of control:

I. the capability to increase processor allocation to task queue if the demand exceed
the current capabilities, and

2. the capability to decrease processor allocation ff the demand decreases.

The current approach is to associate'a demand factor d with each module. If more
resources are needed then d is increased. If less resources are needed then d is

decreased. The specCic problem thus is to determine when should we change d and how?

Our approach to determining d is to formulate the problem as a feedback control
problem.

Simple Heuristic Control Schemes

First we discuss simple control schemes based on intuitions of how feedback con-
trol systems behave and their adaptation to the problem of performance control. In
defining these schemes we are assuming a central scheduler ,as discussed in the previ-
ous section.

1. Latency Control

Let i,_/ be the desired value of latency, 1 be the predicted value of latency, d be
the current demand factor, int be the current inter-service time, q be the number
of task in the queue waiting for execution, and Ad be the desired change in d. 1
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can be estimated as:

l = q x int.

Assuming a linear relationship between d and 1, we have the following rule:

(I - Ire[) x dAd =
lref

It can be shown that the above heuristic corresponds to controlling a constant
task-queue size and the service rate is proportional to demand factor.

The aboce scheme gives a continuous control of latency, i.e., every time a task is
added or removed the demand factor d is computed. In order to limit the overhead of
computing d and rescheduling resources we can use a "threshold monitoring scheme"
described below•

Let I I be the upper limit on latency and 12 be the lower limit on latency. If 1 is in
range (I I, /2), then do nothing; else recompute d. This is a simple form of non-linear
control.

2. Controlling Queue Size

Let qref.be the desired queue size, d be the current demand factor, and q the current
queue size; then,

if08q, e < q < 1• f .2q_,f
do nothing;

else

q - q,_fAd-
q_ef

. Deadline Control

Let us consider a time-constrained task queue. The head of the queue is a real-time
task which has the tightest deadline. Let rd be the deadline for the task to be com-

pleted, t be the current time, g be the average granularity of the tasks in this queue,
and ta is a pre-determined constant denoting the allowance time for scheduling task
execution.

If rd > t + int+ g + ra, do not schedule the task; else remove the task and execute

it. After the execution, if there is a new task in the head of the queue, new demand
ta- r- g- to

factor, d,,,._ is computer below. Let k = If k < O, the new task
int

should be executed immediately by the same processor; otherwise set d,,,,,,, = d
k

5. Implementations

A simulator has been implemented on Symbolics under Genera 7.2 and a proto-
type is running on a BBN Butterfly Multiprocessor.

5.1. QP-Net Simulator

The advantage of simulation is to be able to:

1. Simulate different architectures.

2. Provide debugging environment.

3. Observe the execution cycle of different processors.

4. Independent Metering of parameters.

5. Observe operation at different rate of execution.

The simulator was designed with the idea that this would enable the user to quickly
evaluate different models. This evaluation requires that the system be easily modifiable
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and observable. Together with this, the system should have a reasonable speed of
operation. Accuracy of the results could be traded for speed. Hence the simulator does
not simulate all the detailed communication and resource parameters. Instead, what
was provided is a means to give the average values for each of these parameters.
Hence the net effect of these parameters is taken into account. Also the simulation
provides an environment to easily debug the application under consideration. Most of
the multiprocessor environments lack this capability. Using a simulator makes the
task of metering independent of the real time clock. Also monitoring of the different
metering parameters ts made easy because of having the control of the simulation
dedicated to a single processor.

5.2. Butterfly Based Implementation

A prototype of QP-Net has been designed and implemented on the BBN Butterfly
Multiprocessor using Butterfly Scheme. The prototype contains four main tool com-
ponents: queue constructs, performance monitor, resource controller, and dynamic
resource allocator. An simple object-oriented programming shell is first implemented
on the top of the Butterfly Scheme to facilitate the object-oriented design of the QP-
Net.

Basic queue constructs are implemented as object classes so that programmers
can inherit them to develop application programs. Four kinds of basic queue con-
structs have been identified and implemented: they are: the FIFO queue, the priority
queue, the time-constrained-queue, and the synchronized queue. Queues are sup-
posed to be filled with "real-time tasks". By real-time task we mean a task that has a
private timer associated with it. The timer is an object instance which can be read,
reset, stopped and set to run. When a real-time task is created, the timer associated
with it is reset and run. A task can be very light-weighted. It may contain only
minimal information that the server needs to carry out certain actions.

Real-time tasks cannot be all independent. Especially when tasks are generated
by breaking up big tasks, certain order of execution must be followed by the small
tasks for correct operations. The synchronized queue construct can be used to syn-
chronize tasks in QP-Net. Tasks are synchronized by producing a tagged data each to
a synchronized queue. A synchronized queue accepts two or more tagged data each
from a different server. The synchronized queue then only send a complete group of
data with the same tag to the server. The synchronization mechanism in a synchron-
ized queue is similar to but more powerful than the data-driven synchronization in
Petri Net because data available must have the same tag in order to fire a task in a
synchronized queue.

The algorithms used for the implementation of resource controller and the
dynamic resource allocator were discussed in Section 7.3 and Section 7.4. The proto-
type has demonstrated some desired features of a real-time system. More experimen-
tal results will be documented in the near future.

6. Conclusion

In this paper we have described the design of a real-time tool based on a new
computation model (QP-Net). The computation model's features have been
specifically customized to address issues relevant to real-time problems. The real-time
tool is currently implemented on a Symbolics Lisp machine and a 16-node Butterfly
Mu ltiprocessor.

Based on our work so far we have identified several interesting research issues.
We find that real-time applications are highly knowledge rich and complex issues of
deadline scheduling and resource allocation can be simplified by appropriate task
modeling. For example, we have defined a real-time task whose priority is dynamically
computed. Our approach also enables treating time both as a resource and a con-
straint. We find that modeling a problem solution in terms of logically parallel tasks
enables maximum advantage of application inherent concurrency. However, tasks need
to be coalesced to control the overhead of resource reallocation. In real-time problems
it is also required that task merging should be done based on cost effectiveness of
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reduced overhead of resource reallocation (by increasing task size) and the loss of
responsiveness (because processors will be busy for longer per task).

We have identified a few issues at the level of operating systems where further
work can be beneficial. If the system architecture is distributed then a major problem
is to improve processor utilization. This calls for monitoring processor state and then
migrating objects accordingly. Another possible approach is to distribute an object over
the processors and provide schemes for redirecting messages to the appropriate proces-
sor. Apart from the issue of processor utilization we also need to worry about the
communication overhead. Again the ongoing research in this area needs to take into
account the constraint of responsiveness.

If the system architecture is based on distributed memory then processor utiliza-
tion issue is solved by using dynamic scheduling of processors. An interesting problem
arises because of the overhead of task allocation from a single task queue to multiple
processors. The speed-up of task dequeing is limited by the saturation behavior. Thus
if we are operating near the saturation point then allocation of additional processors
will not lead to desired performance characteristics. The allocation scheme will have to
be sensitive to this phenomenon. Or even, better the task queue data structure may be
split into two and at the OS level the processor scheduling issue be handled.
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ABSTRACT

Over the past three decades, computer-based simulation models have
proven themselves to be cost-effective alternatives to the more structured

deterministic methods of systems analysis. During this time, many

techniques, tools and languages for constructing computer-based
simulation models have been developed. More recently, advanced in

knowledge-based system technology have led many researchers to note the

similarities between knowledge-based programming and simulation

technologies and to investigate the potential application of knowledge-based

programming techniques to simulation modeling.

This paper discusses the integration of conventional simulation

techniques with knowledge-based programming techniques to provide a

development environment for constructing knowledge-based simulation

models. A comparison of the techniques used in the construction of
dynamic stochastic simulation models and those used in the construction of

knowledge-based systems provides the requirements for the environment.

This leads to the design and implementation of a knowledge-based

simulation development development environment.

These techniques have been used in the construction of several

knowledge-based simulation models including the Advanced Launch
System Model (ALSYM).

1.0 INTRODUCTION

Knowledge-based simulation extends the set of tools available to the

simulation modeler by incorporating techniques from the field of artificial

intelligence. [Smith et al 1988] In the context of this research, simulation

techniques are limited to discrete-event simulation methods for

constructing dynamic stochastic simulation models. The techniques from
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artificial intelligence that have proved most useful are broadly classified as
knowledge-based programming techniques, hence the name knowledge-
based simulation. There are many similarities between knowledge-based
programming techniques and conventional discrete-event simulation
techniques, as well as some important differences.

The most important similarity is the separation of the domain problem-
solving knowledge from the control strategy applying this knowledge to
solve some problem instance in the domain. In knowledge-based
programming, this knowledge is represented in the form of rules or logical
statements. The control strategy is implemented by an inference engine
which repeatedly chooses the most appropriate of these rules or logical
statements based on the current state of the system. The control strategy
then performs the actions specified by that rule or logical statement to effect
a change in the state of the system. In discrete-event simulation models,
the knowledge is represented in the form of events and the control strategy
repeatedly chooses the next imminent event, i.e. the one which is to occur
next in simulated time, advances the simulation clock to the time the
imminent event is scheduled to occur, and executes the code associated
with the event to effect a change in the state of the system. In both cases,
this allows the programmer (i.e. knowledge engineer or simulation
modeler) to concentrate on developing the domain knowledge without
having to worry about the exact order in which the individual chunks of
knowledge are applied in solving a particular problem instance.

Another important similarity is that both fields use similar
methodologies for representing the current state of the system. This is
most often some variation of the entity-attribute approach. The entity-
attribute approach was developed as a modeling technique in which the
system is decomposed into its constituent components which are called
entities. Each entity is then modeled in terms of its attributes where each
attribute represents some aspect of the entity. In knowledge-based systems,
the entity-attribute approach serves as the basis for the frames knowledge
representation technique which extends the entity-attribute approach by
modeling attributes in terms of their facets. Each facet of an attribute
represents a different aspect of the attribute, and may include precedural
attachments called daemons which are activated in response to references
to the attribute. In addition, operations on an entity are specified as
procedural attachments on the entity itself and are activated in response to
messages directed at the entity. A programming system based on frames is
called an object-oriented programming system.

Finally, an iterative development methodology is regarded by both fields
as the appropriate approach to system development. In discussing his
methodology of simulation model development, Shannon stated that "the
evolutionary nature of model building is inevitable and desirable"
[Shannon 1975]. This is comparable to the accepted knowledge engineering

methodology where the "system evolves by proceeding from simple to

increasingly hard tasks, improving incrementally the organization and

representation of knowledge" [Hayes-Roth 1983]. The iterative development
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methodology has been extended by knowledge-based development
environments to provide rapid prototyping of knowledge-based systems.

Figure 1 summarizes the similarities between conventional discrete-
event simulation techniques and knowledge-based programming
techniques.

One important difference between knowledge-based programming
techniques and conventional discrete-event simulation techniques is the
development environments within which each is typically implemented.
Knowledge-based programming tools and languages are typically
implemented using, or as extensions to, symbolic programming languages
with interactive development environments on personal workstations,
whereas conventional discrete-event simulation tools and languages are
typically implemented using, or as extensions to, conventional
programming languages using modest development environments
15rovidedby traditional mini-computer/main-frame operating systems. The
fact that these conventional programming languages can be efficiently
translated into executable machine code while the symbolic programming
languages rely on either an interpretive execution environment or a non-
conventional hardware architechure has hindered the integration of
knowledge-based techniques into conventional programming
environments, and vice versa.

The interactive development environments within which knowledge-
based languages and tools exist rely on the interpretive nature of symbolic
programming languages to allow changes in the program to be
immediately reflected in the system being developed. This allows
knowledge-based systems to support the iterative development method, not
only at a macro level, but at all levels of development. This is the basis of
the popularity of the use of rapid prototyping techniques in the development
of knowledge-based systems.

Conventional Discrete-Event
Simulation Techniques

Knowledge-Based
Programming Techniques

• Domain knowledge separate
from control strategy

• Domain knowledge separate
from control strategy

• Entity-attribute data •
•organization

Object-oriented data
organization with active
objects

• Iterative development • Iterative development with
rapid prototyping

Figure 1. Similarities Between Conventional Discrete-Event
Simulation and Knowledge-Based Programming Techniques
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Another important difference between knowledge-based programming
techniques and conventional discrete-event simulation techniques is their
ability to deal with the concept of time within their respective domains. The
concept of time is an inherent part of dynamic simulation models. The
discrete-event simulation techniques that have been developed to construct
such models are centered around providing an appropriate abstraction of
time. On the other hand, the inferencing mechanisms used within
knowledge-based systems, e.g. rule-based or logic-based approaches, are
typically confounded by time-varying data. Dealing with these problems
requires the specification of additional meta-knowledge which defines the
dynamic effects of changes to time-varying data used in deducing other
data.

Figure 2 summarizes the differences between conventional discrete-
event simulation techniques and knowledge-based programming
techniques.

Conventional discrete-event simulation techniques and knowledge-based
programming techniques complement each other when integrated into a
unified knowledge-based simulation development environment. The
knowledge-based programming techniques provide the enhanced data
abstraction capabilities associated with object-oriented programming
techniques, rule-based or logic-based inferencing capabilities for dealing
with complex decision processes, and a superior development environment
for supporting incremental development. The conventional discrete-event
simulation techniques provide the basic entity-attribute approach for data
abstraction and the capabilities to deal with time-varying data within the
domain.

2.0 Design of a Knowledge-Based Simulation Environment

There are many techniques from conventional simulation modeling and

knowledge-based programming which are applicable to knowledge-based

simulation modeling. Applicable conventional simulation modeling

techniques include:

• the entity-attribute approach,

* the event-scheduling control strategy, and

° the process-interaction control strategy.
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Conventional Discrete-Event
Simulation Techniques

Knowledge-Based

Simulation Techniques

• Event scheduling approach
to control

• Rule-based or logic-based

inferencing

• Time central concept in
control strategy

• Time normally not used in

inferencing

• Quantitative models (i.e.,

primarily numeric data)

• Qualitative models (i.e.,

primarily symbolic data)

• Model data probabilistic • Model data have associated

certainty factors

Model results probabilistic, •

model is run many time and results

distributions computed

Model results deterministic,

may have associated

certainty factors

Figure 2. Differences Between Conventional Discrete-Event

Simulation and Knowledge-Based Programming Techniques

Applicable knowledge-based program-ming techniques include:

• object-oriented programming,

• rule-based programming,

• forward-chaining inferencing, and

• backward-chaining inferencing.

These techniques must be analyzed to eliminate redundancy and to insure
compatability when integrated into a knowledge-based simulation

development environment.

The entity-attribute approach and object-oriented programming both

provide for the representation of data in their respective domains. Object-

oriented programming provides all of the techniques needed to represent

model entities, their attributes, and operations on them in a unified

manner. Object-oriented programming therefore provides all of the

capabilities of the entity-attribute approach and extends it to include

procedural operations on entities.

Knowledge-based simulation models must be able to deal adequately

with the concept of time. This requires the inclusion of a simulation clock

and a mechanism for maintaining its value. The event-scheduling control
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strategy is the obvious choice for providing these timing functions. An
alternative approach would be to put the simulation clock on the blackboard
and allow rules to access and/or update its value. This would allow rule-
based programming to be used for maintaining the value of the simulation
clock. This approach, however, lacks the clarity and efficiency of the event-
scheduling approach.

The process-interaction approach unifies the event-scheduling control
strategy and object-oriented programming. A process represents an active
entity in the model and is represented in the same manner as any other
entity using object-oriented programming. In addition to having attributes
and operations specified, a process has associated events which define its
dynamic behavior. Individual events within a process may communicate
via the attributes of its associated process instance.

Rule-based programming is used to model complex decision-making
processes within a knowledge-based simulation model. All decisions are
assumed to be instantaneous in simulated time, therefore rules must not
use the simulation clock in any of their preconditions and must not alter
the value of the simulation clock in any of their actions. This precludes the
possibility of any conflicts between the event-scheduling control strategy
and the inferencing control strategy. Any event may initiate an inferencing
procedure to model a decision-making process, and any rule action may
schedule events to be executed or modify the future event list to effect
changes in future event execution.

Either forward-chaining or backward-chaining, or both, may be used in
implementing an inferencing control strategy. It is possible to structure
rules such that the same rule may be used in both forward-chaining and
backward-chaining inferencing. However, because backward-chaining
requires the ability to identify the facts that a rule's actions may place on
the blackboard, this can only be done by restricting the actions that a rule is
allowed to perform. The prototype development environment is therefore
restricted to using a forward-chaining inferencing mechanism in its
inference engine.

The language for the knowledge-based simulation model development
environment is based on the Common Lisp programming language. There
are several reasons for this choice:

. Common Lisp provides features to support the embedding of new

language features within the language, most notably, the macro

facility which allows new special forms to be added to the language.

. There are object-oriented programming systems available within
Common Lisp implementations. One of these can serve as the basis

for the object-oriented programming system.

3. There are sophisticated development environments available which

support incremental development and rapid prototyping.
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The Common Lisp implementation used is Symbolics Common Lisp which
runs on the Symbolics Lisp Machine.

The language elements that comprise the knowledge-based simulation
development environment are divided into five protocols:

. The modeling protocol provides the language elements for the object-

oriented programming system for the representation of model
elements.

. The simulation protocol provides the language elements to extend the

modeling protocol for the definition of the dynamic simulation
elements.

3. The simulation control protocol provides the language elements for

the control of the dynamic simulation elements.

. The inferencing protocol provides the language elements for the rule-

based programming techniques for the modeling of complex decision

processes.

5. The inferencing control protocol provides the language elements for

the control of the forward-chaining inferencing mechanism.

Each of these protocols will be discussed in the following sections.

2.1 Modeling Protocol

The modeling protocol provides the static modeling language elements.

The modeling protocol is provided by the Flavors package which is an

object-oriented programming package implemented on top of Common

Lisp. A complete description can be found in the Symbolics Common Lisp

Language Concepts Vol. 2A. [Bromley et al 1987; Symbolics 1988a;

Symbolics 1988b]

The object-oriented programming package provided by the Flavors

package uses terminology that differs from similar packages. Entities

classes are represented by flavors. A flavor serves as a template for all

objects in the corresponding entity class. Each object is an instance of a

flavor. The entity attributes for a flavor are represented by instance
variables. Each instance of a flavor has its own values for its instance

variables, and the values of these instance variables define the state of the

instance. Each instance variable may have a default initial value and may

be defined to be inittable, i.e., its value may be specified when an instance is

created; readable, i.e., its value may be read via a function call; and/or

writable, i.e., its value may be updated via a call to the setf macro. There

are no class variables for a flavor, though the same concept may be easily
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emulated using the property list of the symbol naming the flavor. [Bromley

et al 1987; Symbolics 1988a; Symbolics 1988b]

The operations for the entity class represented by a flavor are defined as
methods on the flavor. A method is a function associated with a flavor.

When the method is activated for a specific flavor instance, the variable
s e i f is bound to the instance and all of the instance variables for the

instance are available to the method as local variables. [Bromley et al 1987;

Symbolics 1988a; Symbolics 1988b]

One of the main strengths of the Flavors package is the ability to

combine existing flavors with newly defined flavors. When defining a

flavor, a list of component flavors whose characteristics are to be included

in the new flavor is specified. The instance variables and methods of the
component flavors are inherited by the new flavor. [Bromley et al 1987;

Symbolics 1988a; Symbolics 1988b]

2.2 Simulation Protocol

The simulation protocol provides the dynamic modeling language

elements. These language elements provide for the definition of processes

and the events which implement their actions. The protocol also provides

language elements for process creation, interprocess communication, and
other operations on processes and events. The simulation protocol

implements a process interaction approach to discrete event simulation.

A process represents an active entity in the reference system. Processes

may have instance variables to represent attributes unique to each process

instance like other entities. A process is defined using the defprocess

macro. A call to this macro has the following form:

defprocess name

&rest instance-variables

where name is a symbol that is the name of the process being defined, and

each i n s t a nce- va ri ab 1 e is the name of an attribute of the process and has

the same format as an instance variable specification in a flavor definition.

The primary action of the macro is to define a flavor whose name is name

based on the abstract flavor process. The macro also defines a predicate to
recognize instances of the process. The name of this predicate function is

the print name of name with "-P" appended.

The simulation protocol has two mechanisms for creating process

instances. The more primitive mechanism for creating a process instance

is the create-process function. This function creates a new process

instance and optionally initializes some instance variables in the newly

created process instance. A call to this function has the following form:

create-process name
&rest initializations
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where name is the name of the process of which to create an instance, and

the i n i t i a i i za t i on s are optional keyword/value pairs specifying initial

values for process instance variables. The newly created process instance
is returned as the value of the function call.

Most processes have an initial event which is scheduled to execute as the

first event after the process is created. The simulation protocol provides an
initiate macro which simplifies the normal process of process creation

and initial event scheduling. The initiate macro creates a new process

instance, optionally initializes some instance variables in the newly created
process instance, and schedules its initial event for execution at some

specified simulated time. A call to this macro has the following form:

initiate time name

&rest initializations

where time is the simulated time at which the initial event of the process is
to be executed or :now if the initial event is to be scheduled to execute

immediately, name is the name of the process to be initiated, and the

initializations are optional keyword/value pairs specifying initial

values for process instance variables. Note that the name argument is not
evaluated. The newly created process instance is returned as the value of
the macro call.

The actions of an active entity are specified as events within the process

representing the active entity. Each event has a parameter list and accepts

argument like a normal Common Lisp function, but rather than being

executed immediately in response to a function call their executions are

scheduled and performed in their proper sequence by the event-scheduling

control strategy. Note that a process may also have normal methods

defined on them using the defmethod macro. An event is defined using

the defevent macro. There are two types of events: process events and

non-process events. As the names suggest, a process event is an event

which is associated with some process, whereas a non-process event is not.

A call to this macro has the following form:

defevent

(name

&optional process

&key :initial-event)
lambda-list

&body body

where name is a symbol that is the name of the event being defined,

process is the name of the process with which this event is associated or

nil (the default) for a non-process event, the key : initial-event is true if

this event is the event to be scheduled when the associated process is

initiated and nil (the default) otherwise. The lambda-iist specifies the

arguments to this event and may contain any structure valid in a function
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lambda list. The body specifies the forms that are to be executed as the body
of this event.

There are often cases where an event executing within a process

instance is required to communicate with another process instance. This

may be to read or update an instance variable within the referenced process

instance or to schedule an event within the referenced process instance. A

common example of this occurs when there is some initial handshaking

operations that must be performed between a process instance and its
initiator. The with-process macro provides a convenient mechanism for

performing these actions. A call to this macro has the following form:

with-process

(process

&optional

&body body

instance-form)

where process is the symbol naming the process whose instance is

required, and instance-form is an optional form which, when evaluated,

returns the desired process instance. The body specifies the forms that are
to be evaluated with process bound to the referenced process instance. If an

instance-form is not given, or is nil, then process is bound to the

ancestor process of the indicated type.

The final language element provided by the simulation protocol is a

macro to iterate over the events defined within a process. The do-process-

events macro provides this iteration capability. A call to this macro has the

following form:

do-process-events

(var process

&optional

&body body

res ul t-form)

The effect of a call to the do-process-events macro is to evaluate the

forms in body with the symbol yar bound to successive events in process.
After all of the events have been exhausted, resul t-form, which defaults to

nil, is evaluated and the result returned as the value of the call.

2.3 Simulation Control Protocol

The simulation control protocol provides the language elements for the
creation and manipulation of simulation environments. The most

important elements of the simulation environment are the future event list

and the simulation clock. A simulation environment provides the data

structures for the process interaction control strategy of a simulation

model. Multiple simulation environments may exist simultaneously either

in a hierarchical (i.e., nested) manner or as independent environments

within separate Common Lisp dynamic referencing environments.
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A simulation environment automatically exists within each

independent Common Lisp dynamic referencing environment. To create a

new simulation environment within an existing simulation environment,
the with-new-simulation-environment macro is used. A call to this

macro has the following form:

with-new-simulation-environment

&body body

where body contains the forms needed to implement the encapsulated

simulation model. These forms would normally include one or more

process initiations followed by a start-simulation function call (see
below).

A simulation environment can be reset to its initial state using the
reset-simulation-environment function. A call to this function has the

following form:

reset-simulation-environment

The effectof a reset-s imulation-environment function callis to clear the

future event listby releasing all of the previously scheduled events and to
reset the simulation clock to zero. The effect of the call is limited to the

innermost simulation environment in the current Common Lisp dynamic

referencing environment.

The process interaction control strategy is initiated within a simulation
environment using the start-simulation function. A call to this function

has the following form:

start-simulation

The effect of a start-simulation function call is to begin the event

scheduling control strategy of removing event notices from the future event

list,advancing the simulation clock, and executing the corresponding event

code. This process continues until either the future event listis empty or a

dynamic throw is executed whose catch is not within the dynamic

environment of the control strategy. The effect of the call is limited to the

innermost simulation environment in the current Common Lisp dynamic

referencing environment.

The schedule function calls the scheduler to add a new event notice to

the future event list representing the future execution of an event. A call to

this function has the following form:

schedule

time event process-instance

&rest arguments
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where time is a number representing the time the event is to be scheduled

or :now if the event is to placed at the head of the future event list to be

executed at the current simulation time as the next event, event is the

name of the event to be scheduled, process-instance is the process

instance which the scheduled event is to be associated, and arguments are

the actual arguments to the scheduled event. The effect of the call is that an

event notice is created representing the future event, and this event notice is
placed at the correct position on the future event list.

It is sometimes necessary within a simulation model to make decisions

based on already scheduled events, or to remove or reschedule such events.

The do-scheduled-events macro provides a mechanism for doing this. A

call to this macro has the following form:

do-scheduled-events

(var &optional
event-list

&body body

resul t-form)

The effect of a call to the do-scheduled-events macro is to evaluate the

forms in body with the symbol var bound to successive event notices on
event-list, which defaults to the future event list in the current
simulation environment. After all of the event notices have been

exhausted, resul t-form, which defaults to nil, is evaluated and the result
returned as the value of the call.

2.4 Inferencing Protocol

The inferencing protocol provides the language elements for the rule-based

modeling of complex decision-making processes. These language elements

provide for the definition of rulesets and the rules specifying their problem-

solving knowledge. The protocol also provides language elements for
ruleset creation and other operations on rulesets ans rules. The

inferencing protocol implements a rule-based programming system.

The basic elements of the inferencing protocol are rules and rulesets. A

rule is a single piece of problem-solving knowledge expressed as a set of

preconditions for the application of the rule and a set of actions that are to

be performed when the rule is executed. Related rules are grouped together

to form rulesets which may be activated as needed in response to problem-

solving demands.

A ruleset represents a body of problem-solving knowledge. A ruleset

may also have instance variables to represent attributes unique to each

ruleset instance. A ruleset is defined using the defruleset macro. A call

to this macro has the following form:

450



defruleset name

&rest instance-variables

where name is a symbol that is the name of the ruleset being defined, and
each instance-variable is the name of an attribute of the ruleset and has

the same format as an instance variable specification in a flavor definition.

The primary action of a call to the macro is to define a flavor whose name is
name, based on the abstract flavor ruleset. The macro also defines a

predicate to recognize instances of the ruleset. The name of this predicate

function is the print name of the name with "-P" appended.

A ruleset instance must be created to perform inferencing using the
rules in the ruleset. The activate macro creates a new ruleset instance

optionally initializes some instance variables in the newly created ruleset

instance, and makes the rules in the ruleset eligible for firing by adding the

newly created ruleset instance to the list of active rulesets. A call to this

macro has the following form:

activate name

&rest initializations

where name is the name of the ruleset to be activated, and the

i n i t i a i i za t i on s are optional keyword/value pairs specifying initial
values for ruleset instance variables. Note that the name argument in an

act irate macro call is not evaluated. The newly created ruleset instance
is returned as the value of the macro call.

A rule represents a single piece of problem-solving knowledge and is

associated with a particular ruleset. The specification of a rule includes a

set of precondition patterns that are to be matched against facts on the
blackboard and a set of actions which are forms to be evaluated in an

environment binding the variables in the precondition patterns to their
matching elements in the matched facts. A rule is defined using the

defrule macro. A call to this macro has the following form:

defrule (name ruleset)

& re s t pre con di tions -and-a c t ion s

where name is the name of the rule being defined, ruleset is the name of

the ruleset with which this rule is associated, and the preconditions-

a n d-a c t i on s have the following form:

{preconditions}*

::>

{actions} *

where each precondi t ion is a pattern to be matched against facts on the

blackboard, and the actions are the forms to be evaluated in an

environment binding the variables in the precondition patterns to their

matching elements in the match facts when the rule is executed.
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The final language element provided by the inferencing protocol is a
macro to iterate over the rules defined within a ruleset. The do-ruleset-

rules macro provides this iteration capability. A call to this macro has the
following form:

do-ruleset-rules

(var ruleset

&optional

&body body

result-form)

The effect of a call to the do-ruleset-rules macro is to evaluate the forms

in body with the symbol var bound to successive rules in ruleset. Note

that the ruleset argument is evaluated. This is to allow dynamic

specification of the ruleset name. After all of the rules have been
exhausted, re s u 1 t- form which defaults to n i i is evaluated and the result
returned as the value of the call.

2.5 Infer_n¢ing Control Protocol

The inferencing control protocol provides the language elements for the

creation and manipulation of inferencing environments. The most

important elements of the inferencing environment are the blackboard and

the agenda. An inferencing environment provides the data structures for

the forward-chaining inferencing control strategy for the rule-based

components of a knowledge-based simulation model. Multiple inferencing
environments may exist simultaneously either in a hierarchical (i.e.,

nested) manner or as independent environments within separate Common

Lisp dynamic referencing environments.

An inferencing environment automatically exists within each

independent Common Lisp dynamic referencing environment. To create a

new inferencing environment within an existing inferencing environment,

the with-new-inferencing-environment macro is used. A call to this

macro has the following form:

with-new-inferencing-environment

&body body

where body contains the forms needed to implement the encapsulated rule-

based inference system. These forms would normally include one or more

ruleset activations and one or more assertions followed by a s tart-

inferencing function call (see below).

An inferencing environment can be reset to its initial state using the

reset-inferencing-environment function. A call to this function has the

following form:

reset-inferencing-environment
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The effectof a reset-inferencing-environment function call is to clear

the blackboard by removing all of the previously asserted facts and to clear

the agenda by removing all of the previously triggered rule instances. The

effect of the call is limited to the innermost inferencing environment in the

current Common Lisp dynamic referencing environment.

The forward-chaining inferencing control strategy is initiated within an

inferencing environment using the start-inferencing function. A call to

this function has the following form:

start-inferencing

The effect of a start-inferencing function call is to begin the forward-

chaining control strategy of matching asserted facts against preconditions
of the rules in the active rulesets to form the conflict set, choosing the most

appropriate of these rule instances for application, and applying the rule in

the appropriate ruleset instance. This process continues until either there
are no rule instances in the conflict set after the matching phase of the

forward-chaining inferencing algorithm has been executed or a dynamic

throw is executed whose catch is not within the dynamic environment of

the control strategy. The effect of the call is limited to the innermost

inferencing environment in the current Common Lisp dynamic

referencing environment.

A fact is a statement about the domain that has either been explicitly

given by the knowledge-engineer in the code of the program or by the user

in response to some action by the program or has been deduced from these

basic facts using the rules in the knowledge base. A fact is represented by a

list structure whose structure is determined by the knowledge engineer.
The blackboard is a data structure which contains the facts that have been

asserted in the current inferencing environment. The add-fact function
adds a new fact to the blackboard. A call to this function has the following
form:

add-fact fact

where fact is the list structure represention of the fact to be added to the

blackboard.

Within the actions of a rule, it is often necessary to remove the fact

which matched a particular precondition pattern. The remove-matching-

fact function removes from the blackboard the assertion representing the

fact that matched a given precondition pattern. A call to this function has

the following form:

remove-matching-fact n

where n is the number of the precondition pattern whose matching fact is to
be removed from the blackboard.
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It is sometimes necessary to remove a number of related facts from the
blackboard. The remove-a s sert ion s function removes existing facts from

the blackboard that match a given pattern. A call to the remove-
assertions function removes some facts from the blackboard. A call to

this function has the following form:

remove-assertions pattern

where pattern is a list structure representation of a pattern to match

against facts on the blackboard. All facts on the blackboard matching

pat tern are removed.

3.0 CONCLUSION

The knowledge-based simulation development language presented has been

used in the construction of several knowledge-based simulation models.
These include:

The Advanced Launch System Model (ALSYM) which includes an
end-to-end model of the entire Advanced Launch System (ALS)

industrial infrastructure.

The Space Station Freedom Model which provides system available

measures for the operational phase of the space station and its

support infrastructure.

• The Software Development Process Model which models the

performance of a software development organization.

These techniques have provided a capability to develop early prototype

models in support of trade studies during the concept development phase of

projects as well as detailed models to provide decision support for managers

of operational systems.
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Abstract

The objective of the composite load spectra project is to develop probabilistic methods

and _generic load models capable of simulating the load spectra that are induced in space pro-
pulslon system components. Four engine component types (the transfer ducts, the turoine
blades, the liquid oxygen posts and the turbopu .mp oxidizer discharge duct) were selected as
representative hardware examples. The composite load spectra that simulate the probabilis-
tic loads for these components are typically used as the input loads for a probabilistic structur-

al analysis.

The knowledge-based system approach used for the composite load spectra project pro-
vides an ideal enwronment for incremental development. The intelligent database paradigm

employed in developing the expert system provides a smooth coupling between the numerical
processing and the symbolic (reformation)processing. Large volumes of engine load infor-
mation and engineering data are stored in database format and managed by a database man-
agement system. Numerical procedures for probabilistic load simulation and database man-

agement functions are controlled by rule modules. Rules were hard-wired as decision trees
into rule modules to perform process control tasks. There are modules to retrieve load infor-
mation and models. There are modules to select loads and models to carry out quick load

calculations or make an input file for full duty-cycle time dependent load simulation. The

composite load spectra load expert system implemented today is capable of performing intel-
ligent rocket engme load spectra simulation. Further development of the expert system will

provide tutorial capability for users to learn from it.

I. Objective and Approach

The objective of the composite load spectra (CLS) program under the sponsorship of
NASA Lewis Research Center (LeRC) (Ref. 4) is to develop generic load models to simulate
loads that are induced in space propulsion system components. Representative engine com-
ponents that are considered in'the study are transfer ducts, turbine blades, liquid oxygen
(LOX) posts and engine system ducts. The simulated loads from the CLS load models are
being compared to available test results and other analysis results. These probabilistic loads
are needed in the probabilistic structural analyses for load effect and perturbation study. They
are used primarily as input loading for the probabilistic structural analysis methodology

(PSAM).

Current load analysis methodologies use deterministic models. Conservative bounding

techniques are appliedin load analyses and design. The design can be very conservative as a
result ofsuperposltion of several individual bounding loads. In other cases there is insufficient
information available to define realistic bounding loads and their variations. Measurement of
loads and responses internal to hardware are very difficult due to a combination of high pres-

sures, tempe,:atures, flowrates and pump speeds. The probabilistic method allows a rational

approach for .quantifying these uncertain loads. They can then be utilized for structural re-
sponse and rehability evaluations during the design phase. Probabilistic design analysis can
help to locate the problem areas and allow cost-effective trade-offs to reach design goals.

PRECEDING PAGE BLANK NOT FILMED
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Probabilistic load synthesis demands sophisticated methodology and modeling. It re-
quires knowledge of state-of-the-art space propulsion system load analysis and calculation

tools. These analyses and calculations involve intensive numerical processing. The load syn-
thesis also demands knowledge on the engine model that determines pressures, tempera-
tures, and flows and the load information. Management of the load information becomes an
important issue.

The end product of the CLS.pro_ram is a system that can help engineers generate loads
on components from a set of prlmmve variables and their uncertainties based on previous
historical information or expert opinion on expected variations. The system provides load in-
formation and data conveniently to the users and provides expertise in load evaluation.

These objectives point to a knowledge-based system (Ref. 3 and 9) approach that can
provide knowledge of the space propulsion system and component loads and provide exper-
tise in probabilistic methodology and load simulation. The knowledge-based system should
be a coupled system for symbolic and numeric processing, should be able to manage a large
volume of load information and data, should provide easily accessible information to users,
and needs to be user friendly so that nonexpert users can use and learn from it.

The knowledge-based system approach has the facilities to encompass the knowledge of

the space propulsion system and its loads, the numerical databases for load parameters, and
!oad evaluation procedures. In addition, the knowledge-based system environment allows

mcremental development and modularization of the knowledge. Modules of knowledge (e.g..,
the load model, load data, or load calculation procedures) can be implemented and readdy
available to other modules.

The knowledge-based system built for the CLS program is an intelligent database sys-
tem. The engine load models and load information such as the load distribution parameters
(mean and coefficient of variation, and distribution type) are stored in database format. Rule
modules in decision tree format are implemented to provide intelligence to the system to per-
form consultation, data retrieval and preparation of data for load simulation evaluation.
Successful implementation of the basic system and experimentation with it has been accom-
plished in the last fewyears. It has demonstrated that an intelligent database system is one of
the most appropriate approaches for an engineering knowledge-based apph'cation such as
the CLS program.

Application of the CLS technology to synthesize component loads for the four sample
components has been completed. The component loads were generated in the form of corre-
lation fields accounting for the component load variations caused by the uncertainties of vari-

ous engine parameters and engine inlet operation conditions. The component loads thus gen-
erated were utilized in the probabilistic structural analyses of the turbine blade (Ref. 6), the
LOX post (Ref. 7), and high-pressure ducts (Ref. 1). Figures 1 and 2 depict the processes and
analyses that are involved m the probabilistic structural analysis of the turbine blade. Figure 1
shows the process of applying the CLS technology to synthesize the turbine blade loads. Fig-
ure 2 shows how these loads are used in the probabilistic structural analysis process using the
NESSUS (Nonlinear Evaluation of Stochastic Structures Under Stress) code (Ref. 8).

II. Engine Load Model and Load Databases

A space propulsion system is sophisticated and complex. Major subsystems typically in-

clude the mare injector and combustion chamber, the nozzle, the high-pressure turbopumps,
the low-pressure turbopumps, the ducts and pipings, and the control systems and valves. F_g-
ure 3 is a typical schematic showing these components. In the center are the main injectors,
the combustion chamber and the nozzle. On the left are the low-pressure fuel turbopump
(LPFTP) and the high-pressure fuel turbopump (HPFTP) that are interconnected to the rest
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of the engine by a series of ducting. On the right are the low-pressure oxidizer turbopump
(LPOTP), the high-pressure oxidizer turbopump (HPOTP) and similar ducting.

The engine model implemented for the CLS is a numerical abstraction of the engine ac-
counting for load variations as caused by various engine parameters and inlet conditions. It is
a multilevel engine model as shown in Figure 4, which has been developed using a baseline
engine model. The multilevel engine model is composed of the engine system influence mod-
el and various component load models. The engine system influence model is the foundation
of the multilevel engine model, which allows various component load models to be built on it.

The engine system model evaluates system performance variables and engine subsystem
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operation loads (both types classified as system dependent loads) based on the engine operat-
ing power level, engine hardware and operating parameters (the engine hardware and operat-
ing parameters are classified as system independent loads). The component load models eval-
uate loads local to a component (classified as component loads) using the system loads as the
component boundary loads (subsystem interface operating loads). Details of this model are
reported in Reference 4.

The component load models are at the higher level of the multilevel engine model. The
engine influence model calculates system interface variables based on engine performance.
These system interface variables (e.g., turbine inlet pressure and temperature, and the turbine
speed) provide the operating condition loads for the component load models to evaluate the

component loads (e.g., the turbine blade nodal pressures and temperature, and the turbine
blade centrifugal force).

The component load models are developed using several techniques and algorithms de-
pending on the load type and the component. The general techniques include scaling and the
probabilistic influence method. Scaling models include direct scaling with the system-variable
(e.g., the simple case of the turbine centrifugal force which is directly proportional to the

square of the turbine speed) and the indirect scaling with a reference nodal load profile (e.g.,
those utilized in the turbine blade component pressure and temperature load models). The

scaling technique is also used in normalized power density spectra for the fluctuation pressure
loads and vibration loads. The probabilistic influence method is utilized in the component
thermal load models. The probabilistic component load models retain the detailed determin-

istic analytical information inherent in the reference case analyses and yet provide a powerful
algorithm to analyze the variations on different engine performance and operating condi-
tions.

III. Probabilistic Methodology and Probabilistic Models

Probabilistic tools are required to generate the probabilistic engine loads (Ref. 5). The
probabilistic methods available in the CLS expert system are (1) the Gaussian moment meth-

od, (2) RASCAL (Ref. 3), and (3) Monte Carlo. The Gaussian moment method is a moment
propagation method which assumes that all of the load variables and engine parameters are
normally distributed. The method referred to as the Quick Look Model (QLM) provides a
fast, efficient method for determining the composite load distribution, if the basic variables'
distributions are not severely skewed. The RASCAL method is a variance of the Discrete
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Probability Distribution (DPD) method. Insteadof combining all possiblevalues,a Random
SamplingCondensationAlgorithm (RASCAL) wasdevelopedto handle the combination of
randomvariables.The advantageof this method is that it iscapableof handling standarddis-
tributional forms (e.g.,normal, lognormal, Weibull, etc.) and nonstandardforms suchasbi-
modal, and providesa rangeof levelsfor accuracy.This method canalso beusedto perform
importance sampling,which can be used to examine regions of concern for the composite
loads.Finally/,theMonte Carlo methodisalsoavailable.TheMonte Carlo method cangener-
atedistributions with high accuracyand cancalculateconfident limits to accessthe accuracy
of the predicted loads.

The engineloadsexperiencethreephasesof operation during a mission:the engine start
transient,the steady-stateoperation andthe cutott transient.Theprobabilistic tools required
for load simulation must include.probabilistic models that canhandle transient states.For
slowlyvarying loads,a quasi-steady-stateapproximation isprovided.For transientloadswith
large fluctuation, the transient spike modeland spike arrival model areavailable. A rare
eventmodel is also available to simulate a low probabilit_ event suchas pop, an internal
detonation causedby unevenburning. Theseprobabilistlc tools are available to be called
upon by the load calculation module or other rule modules for transient load synthesis.

IV. The Load Expert System: LDEXPT Version 3.0

The load expert system, LDEXPT version 3.0, was implemented on NASA LeRC's main-

frame computer. The structure of the system is shown in Figure 5. The load expert system has
a rule-based module (RBMS) and a knowledge-based module (KBMS). The rule-based

module has the user interface system SESUIM, which takes care of the user query and answer
functions. The rule-based driver controls the overall processing of running a user selected

rule module, performing a load calculation with the ANLOAD module, etc. The knowledge-
based module has a database system, a duty cycle data processing module and a file I/O mod-
ule. The database system manages the knowledge base and takes care of database functions
such as database retrieval and update. The file I/O module performs file input and output to

the operating system.

The Knowledge Base

The domain knowledge for the probabilistic engine load synthesis of a space propulsion

system consists of two main areas: the probabilistic methodology and modeling, and the rock-
et engine structural load information and evaluation. The probabilistic methods and calcula-
tion are implemented on the load expert system with the traditional algorithmic and proce-
dural codes. These coding routines are included in the load calculation module ANLOAD.
The load information and the load model information are implemented in the knowledge
base. The information of the knowledge base is utilized and processed by the rule modules.

Figure 5.

LOAD DATABASE

CLS Load Expert System

I
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The synergism of the two knowledge domains and the coupling of the symbolic and numeric
processing are brought about to shape a successful knowledge-based system for the CLS
project.

The knowledge base of the load expert system is managed by the database system. The
knowledge base has engine parameter information represented by their distribution parame-
ters and distribution types (Figure 6). Data on the 64 system independent parameters, 99 sys-
tem dependent parameters and numerous component loads are included. Their mean values,

coefficients of variation and distribution type are stored in the knowledge base in database
format. The influence coefficient set for the engine influence model also resides on the
knowledge base.

The knowledge base also includes the information on the component load models avail-
able for each space propulsion component implemented on the system. Figure 7 lists some of

the component load models implemented into the CLS knowledge base. The load dependen-
cy and scaling information of tlae component load models, the duty _cle data information,
and component geometry information, etc., are required and included m the knowledge base.
Much of the information is numerical. A rule-based system without a link to a database would
have a difficult time managing the knowledge base. A dump database system would also have
difficulty in handling the knowledge.

In addition to this, some of the knowledge includes the variations of the engine loads

categorized as engine-to-engine variation, test-to-test variation and time slice-to-time slice
(within a test) variation. The start transient event time line for a typical engine is delineated in
Figure 8 for the first 4 seconds of a mission. The timing and operation of these events are
critical in order to meet the stringent engine start transient thrust requirements. The best re-
presentation of the knowledge and how _t would fit into the existing knowledge base is a task
we are addressing at this time.
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System Level

Dependent Loads
Component Level

Composite Loads

• Commanded power level

• Engine operating parameters

Mixture ratio

Fuel Inlet pressure &

temperature

Oxidizer Inlet pressure

& temperature

• Engine hardware parameters

Pt,mp efficiency

Turbine efficiency
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• Total of 64 Independent loads

• Engine performance
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Engine fuel flowrate

Engine oxidizer flowrate

Engine thrust

• Engine operating parameters

Pump speed
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Figure 6.

• Component loads

HPFTP turbine blade

pressure & temperature

Transfer duct static

pressure

Transfer duct dynamic

pressure

LOX post temperature

• Local Independent loads

Coolant seal leakage

Hot gas seal leakage

• Total of 99 dependent loads • Composite loads for

Turbine blades

Transfer ducts

LOX posts

HPOTP discharge duct

CLS Loads Knowledge Base
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Validation and Verification

Validation and verification of the CLS expert system are essential to the success of the

project. Validation of the correctness of the three implemented probabilistic methods and
various models was carried out with makeup sample cases. The results of the case studies
show that the three probabilistic methods (the Gaussian moment method, the RASCAL and
the Monte Carlo method) and the various models perform as expected.

Verification of the CLS engine influence model and uncertain independent variables was
performed by comparing the CLS results with those of the deterministic limit study of inde-

pendent variables using measured data. Table 1 lists the results of the limit study. The results
calculated by CLS agree with these results except those for the pump cavitation. Further in-
vestigation is in progress to imorove our model. Verification of the load calculation was also
performed by comparing the CLS calculations with the 10 second averaged database from the
flight data and test data. In this study, only the effects of the following five independent vari-
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ables were considered: the commanded mixture ratio, the fuel inlet pressure, the oxidizer in-

let pressure, the fuel inlet temperature and the oxidizer inlet temperature. A few of the results
are presented here. Figure 9 shows the calculated cumulative dl_ tribution functions (CDFs)
for the LOX mass flowrate by the RASCAL method and the Monte Carlo method together
with the engine flight and test data. Figure 10 presents the result for the high-pressure oxidiz-
er turbine (HPOT) discharge temperature. In all cases, the calculated CDFs fit well or close to
the engine flight data and not very well with the test data. This is to be expected because the
five independent variables have significant effects on engine 9erformance, whereas the en-
gine hardware parameters are dominant during tests whose el_e_ ts were not included in the
calculation. These engine-to-engine variation effects are apparent from the step shift in the
CDFs of the test data.

V. Summary

The development of the CLS technology is evolving. The composite loads synthesized by
CLS have been successfull)allplied to the probabilistic structural analyses of the SSME tur-
bine blade, the HPOTP d_scliarge duct and the LOX post. The knowledge-based system
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approach has provided an ideal environment for incremental development and modulariza-
tion of the CLS system.

The intelligent database format has provided the crucial link between the engineering

data and information and the decision tree inferencing. Most importantly, the knowledge and
expertise of the Rocketdyne engineers on space propulsion system design, operation and
analysis have made this a feasible research project.

The CLS expert system requires further development in areas such as making the CLS
expert system more user friendly and making it a tutorial system that provides guidance to
engineers in load synthesis.

The CLS has advanced the technology of the space propulsion system probabilistic load
simulation. Correlation field approach is developed and being tested. Deeper understanding

of engine flight and test data is evolving from the project. We are looking forward to more
applications of the CLS technology to the probabihstic structural analysis, the structural reli-
ability evaluation and life prediction of the space propulsion system components.
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ABSTRACT

Artificial Intelligence has been used in many space applications. Intelligent tutoring systems

(ITS s) have only recently been developed for assisting training of space operations and skills. In this

paper, an ITS at Southwest Research Institute is described as an example of an ITS application for

space operations, specifically, training console operations at mission control. A distinction is made

between critical skills and knowledge versus routine skills. Other ITSs for space are also discussed

and future training requirements and potential ITS solutions are described.

INTRODUCTION

There are many applications of expert systems technology to the space shuttle (27, 32) and

Space Station Freedom (7, 8) and of artificial intelligence in general to space systems (10, 11, 12, 16,

21, 25, 26). The following is a representative list of potential and existing space application systems

from various publications. Notice that there are three intelligent trainers or tutoring systems in this

list.

Attitude control for spacecraft

Autonomous flight control for a Mars Balloon

Autonomous maintenance of platforms

Autonomous navigation and guidance for rovers

Autonomous rendezvous and docking for a space vehicle

Computer vision for automated rovers

Diagnosing spacecraft problems

EVA Retriever

Fault diagnosis of electrical power systems for Space Station

Flight Telerobotic Servicer

Hubble Space Telescope planning and scheduling

Intelligent interface for satellite operations

Intelligent trainer for shuttle flight controllers
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Intelligent tutoring systemfor shuttlediagnosis
Liquid OxygenExpertSystem
MarsRoverSampleReturn
Missionplanning
MissionTelemetrySystemMonitor
Radartrackerschedulingfor shuttleandsatellites
Satelliteschedulingandcontrol
Schedulingandplanningfor groundcontrolsystems
ShuttleMain EngineTestEvaluator
Spacecraftcommunicationsconfigurationoptimization
Spacecraftoperationsscheduling
SpaceShuttlePayloadIntegration
SpecialPurposeDexterousManipulator(Canada-- for Station)
VenusOrbit Planner

Anintelligenttutoringsystem(ITS)isatrainingsystemimplementedonacomputer,asincom-
puter-basedtraining.However,suchsystemsalsoincludesomeAI-basedtechniquesthatallowthem
to bemoreadaptiveandresponsiveto a student'sneeds,makingthemappearsmart. ITSscanbe
dividedinto fourmainmodules:anintelligentinterface,aninstructionalexpert,adomainexpert,and
astudentmodel(2, 19).Theinstructionmodulecanbethoughtof asthecenterpoint whichreceives
information from the other modulesas in Figure 1. The domainexpert modulecontainsa
representationof theknowledgeor skill tobetrained.It mayalsobeassociatedwith asimulatorthat
allowsastudentto explorethedomain.Thestudentmoduleissimilar to theexpertmoduleexcept
it usuallyis anemptyshellor structureof theknowledgeor skill to betrained.It is thenfilled with
what thestudentlearnsandknowswith respectto thedomainbasedon theinteractionsthatstudent
haswith theITS. Theinstructionalmoduleisarepresentationof theknowledgeandskill of teaching
thesubjectmatterof theexpertmodule. Theintelligentinterfaceis themethodof communication
betweenthestudentandtheITS. An interfaceis intelligentinwhatiscommunicatedto thestudent
basedon thestudent'sresponseandhistorywith thesystem.Knowledge-basedsystemtechniques
canbeusedin anyof thesefour modulesin orderto implementthe"intelligence."

C ExPERTIsE D_

(_TUDENT MODEL_ _

INSTRUCTION)< _( INTERFACE )

Figure 1. ITS Structure

As life becomes more complex and faster paced, there will be an increased demand for readily

available, individualized, effective teaching and training sources. For example, on the average, the

next generation of workers will change jobs more than five times and 95% of all jobs will involve

information handling that will be highly computerized (3). At Johnson Space Center, the training
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for Space Shuttle missions was beginning to fall behind schedule before the Challenger accident in

1986. As NASA gears up to full capability of Shuttle flights, the demand on training will be resumed.

Much of the training at NASA is one-on-one, human-to-human instruction with full-scale simula-

tions. The training time that requires human instructors needs to be reduced. ITSs can fulfill some

of the new training requirements, inside and outside of NASA, so that human teachers can spend more

time on personalizing instruction for the more exceptional cases.

THE PRESENT

There are ITSs for a multitude of applications (13, 20, 31) including aircraft (1, 18, 23, 24) and

space systems (4, 5, 14, 22, 30). However, ITSs are still very much in the research stage and used

on a small scale. They are only beginning to be available to large groups of students (29).

Most of the areas of application for ITS s that already exist or that are being researched for space

systems are in the environment of spacecraft command and control. For example, at Southwest

Research Institute an ITS for training how to operate a console in the Mission Control Center at

NASA's Johnson Space Center is under development (6). Currently, the ITS trains the operations

for the Manual Select Keyboard (MSK). The MSK is used for initializing the console for the different

phases of any mission such as ascent, orbit, and descent of the space shuttle. The initialization

includes skills of formatting light panels and selecting video displays. Although the tutor would be

useful in training new flight controllers in the use of the console, its main use is for research into the

effectiveness of ITSs in the training of high performance skills. The training of high performance

skills is a major issue with which NASA must constantly contend.

The console tutor runs on an Apollo Domain 4000 with a color monitor and is written in C,

CLIPS, and GPR. The tutor provides a low-physical-fidelity, high-cognitive-fidelity training envi-

ronment. Figure 2 shows what the student sees when interfacing with the tutor. The top half of the

screen is a depiction of a control center console. Each of the sections or components on the console

can be selected in the figure by clicking the mouse when the pointer is on the desired component. The

component then appears on a larger scale in the bottom left-hand portion of the screen. In the figure,

the MSK has been selected. The bottom right-hand side of the screen contains the text for infor-

mation, instructions and feedback. The text that appears in the figure is information for training an

overview of the system. The console tutor trains five levels of familiarity with the MSK: an overview

of the MSK components, an overview of the procedure, example exercises for demonstration and

accuracy training, example exercises for speed training, and exercises for automatizing the process.

The tutor has been built with the purpose of training the MSK operation to the point where the

operator can do the procedure automatically. This means that the console operator will be able to

perform MSK manipulation while processing something else such as holding a conversation or

responding to other auditory inputs. For training such automaticity in a skill, the tutor must provide

a secondary task for the student to perform while he or she is performing the primary task of MSK

manipulation. In this case, the secondary task is the recognition of a pattern of beeps and the response

of hitting the corresponding function key. Advancement through the tutoring system and "gradu-

ation" depend upon performance accuracy and speed in some cases. The tutor will remediate and

even return to the beginning of the training if required, based on the student's performance.
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Figure 2. Grahical Interface of the console Tutor

The console tutor can be expanded to include all the operations of a console in mission con-

trol. Figure 3 shows a structure that the tutor can use in order to train all of the components and
procedures required for console operations (5). This tutor would be a useful tool for the current

console operators and training to become an operator. Those who have already become proficient

on the console could use the system to refresh their skills or improve their speed. Currently, training

new operators consists of many hours of one-on-one, on-the-job type instruction. Trainers of the

console operators are in high demand. Some of the expensive one-on-one and full simulation time

could be saved with a tutoring system such as the console operations tutor.

There are other ITSs for space application domains, such as the OM (orbital mechanics) tutor,

and MITT for maintaining the space shuttle fuel cells (22). ITSSO (intelligent tutoring system for

satellite operations) is an embedded training system for operators of ground control systems for near-

earth unmanned scientific satellites (30). A prototype ITS is under development to assist in teaching

the command and control language STOL (systems test and operations language) at NASA (4). The

Payload-Assist Module Deploys/Intelligent Computer-Aiding Training system trains mission con-

trol center flight dynamics officers to deploy a satellite from the shuttle (14).
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THE FUTURE

We expect to have a space station before the turn of the century, a lunar base shortly thereafter,

and a manned mission to Mars after that. The President of the United States confirmed this in his

speech of July 20, 1989, the 20th Anniversary of humanity first stepping onto the moon. The shuttle

is the key to the station and the rest of our accomplishments in space right now. With th_ agressive

shuttle flight schedule, training for missions will become overloaded using the current training

methodologies that require extensive time, one-on-one training, and large, three-dimensional, full-

fidelity simulators. Future training will need to be consolidated and made more effective while using

less human and full-fidelity simulation intensive techniques. ITSs could be used to assist in training

for many aspects of space related endeavors by lowering requirements for so much human

intervention.

For example, the instructors to the astronauts work very closely with the astronauts many
months before a mission. The astronauts train in the shuttle mission simulator in order to have

experience with many different shuttle flight scenarios. The instructors using this system are

inundated with data and information during a simulation. An ITS could be utilized to process the data

and decide what is important and pertinent for the instructors' use in their decisions of what

malfunctions to introduce into the simulation for the most effective training of the astronauts

undergoing the training. The ITS could serve to train the instructors as well. The ITS could be written

to be an intelligent interface for the instructors in viewing the current status of the simulation and to

input malfunctions. It could be an advisor of malfunctions to help achieve a session's objectives, and

it could be a record keeper for reporting the results of a session and tracking training objectives.

A payload specialist aboard the shuttle will use equipment and run experiments, all in an

unfamiliar, weightless environment. ITSs can be coupled with simulations to assist in determining

curricula, tracking and analyzing student performance, running individualized instruction and
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scenarios,andmakingrecommendationsto students.Finally, ITSswouldbeusefulfor embedded
trainingin additionto trainingandretrainingspecializedequipmentusageandrepair.

Oneof therecommendedapplicationsof knowledge-basedsystemsfor the spacestationis
onboardpersonneltraining (9). In theLunarEvolutionCaseStudyof theOffice of Exploration's
StudyRequirementsDocument,thereis arequirementthatautonomous,on-sitecrew trainingbe
availablefor all crewoperated,safetycritical systems(17). ITSscanfulfill theseneeds.Thepeople
who live andworkon thestationwill havemanyskillsandmuchknowledge.Whentheskills and
knowledgeare not utilized, they degradeover time. ITSs can be usedfor keepingskills and
knowledgeintactandfully accessibleto thepeoplestayingon thestation. A lunarcity, longterm
voyagein space,andaMarsbasehavesimilarproblemswith respecttoknowledgedegredationfrom
lackof useandwouldalsobenefitfrom ITSsin thisway.

Skills andknowledgeareasfor living inandrunningspacesystemscouldbesplit intodifferent
categoriesof trainingsuchasthosethatareroutineandthosethatareusedin emergencysituations.
Routinetaskssuchasequipmentmaintenanceandrepair,facility cleaning,andfoodmanagement
may needto be handledin a different mannerthan tasksthat areneededfor life threatening
circumstancessuchasstructuralorpropulsionbreakdowns.Paper,on-linemanuals,or conventional
computer-basedtrainingmaybebestfortheroutinetaskswheretimecanbetakenbythelearner.On
theotherhand,anITSwithaninteractivevideodiscinterfacecouldbebestsuitedforemergency-type
tasksthatneedtobelearnedandusedimmediately.TheITScouldbegearedto theparticularlearner
and the specific,requiredtaskandrepair, sothat the trainingcanoccurquickly. Having ITSs
accessiblecouldmakeanimportantdifferencein criticial situations.

Oneplaceto look for ITS applicationsis whereexpertsystemshavebeenbuilt, suchasthe
systemfor failurediagnosisonthespacestation(15). It ispossibletobuildanITSaroundanexpert
system(28). Smith,Fink, andLusthpresentanapproachto takinga specificexpertsystemdesign
anddevelopinga tutoring systemaroundit. The expert systemdesignis called the Integrated
DiagnosticModelwhereinformationaboutthedomainisrepresentedin twolevels,theexperiential
and the functional. The experientiallevel containsinformationgainedfrom the experienceof
workingin thedomain.Thefunctionallevelcontainsinformationabouttheoperationof thedomain
andhow thephysicaldeviceswork. Theexperientialpartcanbeusedasatutor thatcanimpartthe
overallbehaviorof asystemtothestudent.Thefunctionalmodelcanbeusedtoteachadeeper,more
detailedknowledgeof asystem.An instructionaldesignercanchoosebetweenthetwo representa-
tionsasis appropriateandmosteffectivefor eachskill to betaught.

CONCLUSION

Intelligenttutoringsystemsneedto continueto bedevelopedandimprovedin orderto come
up to speedfor futurerequirements,especiallyfor spacesystems.NASA andotherfuture-looking
organizationsshouldbeveryinterestedin ITSdevelopmentfor spaceapplicationsandothertraining
needsfrom manipulatinganddiagnosingcomplexsystemsto teachinglanguageandcomputer
literacy.
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ABSTRACT

Traditional approaches to knowledge acquisition have focused on interviews. An alternative
focuses on the documentation associated with a domain. Adopting a documentation approach

provides some advantages during familiarization. A Knowledge Management Tool has been
constructed to gain these advantages.

INTRODUCTION

The familiarization aspect of knowledge acquisition (KA) continues from the beginning of a
knowledge based programming project until the final content for the project is determined.
Familiarization, in this sense, is not a distinct episode of knowledge engineering, but consists in all
those activities which the knowledge engineer (KE) engages to prepare for the project and to
prepare for particular knowledge acquisition sessions. It is important to note that these preparatory
activities are both important and time consuming. They are important since they lay the ground for
shared common content about the domain, and are time consuming since the knowledge engineer is

required to become acquainted with terms, concepts, methods, and theories that may be far
different from those with which he or she has already become familiar. In the familiarization

process at the beginning of the project the knowledge engineer attempts to find the sources of
important information, organize that information, read the documents, charts and other materials
that have been assembled, and gain an elementary mastery of the vocabulary of the domain. As the
project progresses the KE will continually need to become familiar with new material. However,
the familiarization process for knowledge acquisition sessions based on this new material ideally
should be less time consuming since a base has been established by previous efforts.

Familiarization is document-driven. Documents play a primary role even when there is a

mentor to guide the KE through the material. The documents become a base on which KA can
proceed. There are two reasons for this. (9) The first is practical. In order to interact effectively
with an expert, the KE and the expert must have some shared conception of the domain. The
shared conception is not to be understood as a detailed, precise, accurate or comprehensive account
of the domain. Rather the shared account is the base that will continue to develop in the KA

process. If the interaction with the expert requires that there be some common understanding, then
it should be clear that in the beginning this must be provided in a way other than the interview
process. In general, the information needed to establish this shared level of understanding is
contained in documents associated with the expert's domain. The second reason is structural.

Organizations collect knowledge in documents. These documents represent the stored knowledge
of the organization. As such, the knowledge in these documents is social and intersubjective, and
constitutes the background against which both individual knowledge and expertise are defined.
Thus, for practical and organizational reasons the familiarization aspect of KA is document-driven.

The focus on documentation generates advantages.

• Documents are often "approved" knowledge sources.
• The writers of the documents have "decompiled" to some degree the domain knowledge.
• Documents tie down references in the knowledge dictionary.
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• Documents make multiple lines of reasoning available.
• The documents provide a context needed to gain access to specific expertise.
• The documents provide a source of material for both explanation and help facilities.
• Attention to the documentation leads to the identification of weaknesses in the documents.

• Attention to the documents provides a point of reference for the expert and the user.
• Attention to documents leads to tighter coupling and resource-sharing between KE and

technical writer.

Methods and aids must be devised to gain these advantages, however.(4) There are at least two
ways in which such methods and aids might be built. The first focuses on the direct analysis of
existing documents. The objective of this way is to create tools that would directly analyze
documents and abstract knowledge. The second way focuses on the management of the

familiarization process associated with the documents. We have adopted the latter way. The
methods and aids that we are developing focus on the idea of a knowledge dictionary that is similar
to the idea of a data dictionary in traditional database operations, and the expanded model of
reasoning articulated by Toulmin, Rieke, and Janik (10).

A DOCUMENTATION APPROACH TO KNOWLEDGE ACQUISITION

Traditional approaches to knowledge engineering emphasize the interview process. Interview
driven methods assume that interviewing an expert is the best way to acquire knowledge that is
"chunked" and "compiled". Knowledge is "chunked" when items of knowledge are organized into
meaningful units. Such chunking is believed to increase the performance of human experts.
Unfortunately, such chunking makes knowledge acquisition more difficult especially when such
chunks are "compiled"."Compiled" knowledge is knowledge that has been distilled and abstracted
of all unnecessary elements; elements which may have originally been needed to gain the
knowledge are removed. Further, the organizational schemas may be altered to increase the
efficiency of recalling the items in the chunks. Compiled chunks may account for the fact that
experts recall all of the content of one chunk before processing a subsequent chunk.

Knowledge engineers are familiar with the problems of chunked and compiled knowledge, and
have developed various techniques for acquiring various kinds of knowledge. The documentation
approach is consistent with the assumption that knowledge is chunked and compiled, and adds to
the available techniques, especially those available during the familiarization activities of
knowledge acquisition. Such familiarization activities are part of the episodic units in knowledge
acquisition. The episodic units of knowledge acquisition include preparing, conducting, and
reviewing interviews. The preparation activities which include familiarization are most intensive

during the initial phase of a project. Although it is difficult to obtain data on this topic, informed,

but informal, estimates suggest that during the initial phase of a project the ratio of preparation time
to session is as high as 8 to 1, while over the life of the project the ratio might be closer to 3.5 to 1.

(3) In either case it is clear that a significant portion of a knowledge engineer's time is spent in
preparation activities and that such activities are more time consuming during the beginning of the
project.

Preparation during the initial phase of a project is a complex undertaking. The knowledge
engineer's activities are geared to becoming familiar with the domain. But how does one become

familiar with a domain and in what does that familiarity consist? Our suggestion is that the KE
becomes familiar with the domain through documents and that this familiarity leads to the
production of a knowledge dictionary.

During preparation, the KE attempts to amass documents about the domain. Such documents

include text books, reports, instructional materials, design plans, and, in general, any written (hard
copy or electronic) materials about the domain. In using the documentation approach, it is assumed
that documents have a degree of authority for the experts in the domain, that the experts in the
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domain would recognize the authority of the documents, and that documents are written and
revised in order to establish common understandings and frameworks. We do not assume that
there is any direct correspondence between the chunks and terms identified in the documents and
those used by domain experts. We do assume, however, that the documents act as constraints on
the domain expert. In this sense, the documents constitute an official and authoritative framework
within which the expert brings his or her skill to bear. These documents act as a backdrop for two
important KEing tasks: building a knowledge dictionary and analyzing it.

Knowledge Dictionary

!

-_t Document Base

! !

! !

! !

! !

I i

-'t Term Base

Bibliographic Information
Status
Reviewers

Brief Description

Description of Meaning
Link to DB
Tests
Contraindications
Preconstraints
Postconstraints

Chunk Base Grounds
Claim
Modalities
Warrants

Backings and Links to DB
Rebuttals

Figure )

A knowledge dictionary, in its initial
formulation, consists of a document base, a

term base, and a chunk base. (See Figure
1) These three bases provide a map of the
domain and a "first pass" collection of
materials for automation.

The document base consists of

bibliographic material, the status of the
document, indications of whether and by
whom a document has been reviewed, and

a brief general description of the content
and utility of the document. The materials
in the term and chunk bases are keyed to
these document base. Since in many cases
the documents undergo revision as the
project evolves, keying the terms and
chunks to the document base provides a
way of systematically reviewing the
materials in the knowledge dictionary in
light of revised documentation.

The term base provides information
about the meaning and application of the
term. An entry for a term provides a brief

ordinary language description of the term and any appropriate abbreviation or symbol for it.
Additionally, an entry contains typical information about the values the term may take, tests
associate with the term, contraindications for the application of the term, and pre and post
constraints on the application of the term. The specification of the source for the information
provides a link to the documents base.

Knowledge in the chunk
base is represented using the
Toulmin, Rieke, and Janik
(TRJ) model of reasoning.

(See Figure 2). Using this
model a knowledge chunk is
treated as an argumentive or
inferential structure, However

the model allows for greater
depth and flexibility than more
strictly logical models. When
working with documents, one

notices the flexibility of

[WARRAml

U
1BAC GI

GROUNDS ]

Given the grounds, warrants supported
by backings modally support the claim
in the absence of specific rebuttals.

I

arguments. Even in highly Figure2

technical areas, assumptions and premises are often not made explicit. (6) Further, the use of
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language makes it possible to link various knowledge elements in subtle, but important ways. The
TRJ model more closely represents this sort reasoning.

In the TRJ model a claim is analogous to a conclusion in a deductive model or the the facts that

are added to the knowledge base after a rule is fired in a rule based system. The grounds are
analogous to premises or the facts in the knowledge base before a rule is fired. The modality can be
thought of as a confidence value or some other measure of the strength of the claim based on the
grounds. The warrant is most often the conditional statement that allows the grounds to lead to the
claim. The warrants may be expressed as a rule, but other representations are possible. The
backing indicates the support or basis for the warrant. The rebuttal indicates the considerations that
would inhibit or prevent the assertion of the claim.

The TRJ model of reasoning is much more flexible than traditional models that emphasize the
logical (propositional and predicate) style of representation. First, it should be noted that a warrant

might have multiple backings. If this is so, then the removal of any one of the backings is not
sufficient for retracting a warrant. This suggests that a modal logic might be applied to reasonings
about warrants. This has been explored in Rochowiak (5). There a very minimal modal system, T,
showed promise. Second, the use of the rebuttal notion may prove valuable in nonmonotonic
reasonings. For example, if the reasoning unit were implemented in a frame like structure, then the
rebuttal slot could be used as a trigger for retracting the rule's application and the retraction of the
facts asserted in the claim. Or, it could be used to prohibit the application of a rule that would

otherwise match a pattern in the facts. Third, it should be noticed that the notion of a backing
provides a very natural way to include references to documents and can be easily extended to
include the statements of experts in interview situations. Finally, the availability of backings for
warrants (rules) allows for a clearer separation of the system and domain oriented notions of
explanation. (7,8).

Given a knowledge dictionary composed of the bases specified above how is it to be analyzed?
This question can begin to be given an answer by specifying the sorts of operations that a KE
would want to have performed on the bases.

Beginning with the simplest case the KE should be advised of possible alteration sites when a
document is updated, revised, deleted, or in some way altered. In an effort to build an essentially
bureaucratic system this would be of great importance. A bureaucratic system is one that attempts
to automate some process in a bureaucracy. The administration of loans and the purchasing of parts
are typical examples. In these cases new rules or forms may require an alteration in either the term

or the chunk bases. Another important arena is that in which the KE activity is occurring while the
domain is being constructed. In this arena changes to the domain in terms of designs or
specifications may force changes in the dictionary. An operation for alerting the KE to potential
changes is needed for the analysis of the dictionary. A more complex case involves the grouping
and reporting of the materials in the dictionary. Operations that would provide reports of how
terms, chunks, and documents are linked, as well as the frequency of such linking, would help the
KE to better understand how the knowledge is clustered. At another level operations that would
identify some gaps or sites for decomposition are desirable. Such operations might begin with the

identification of terms used in the chunks that are not defined or the identification of missing
elements in the definition of the term. The identification of empty elements in the chunks would be
equally important. Additional operations would be desirable for allowing multiple views of the
knowledge dictionary, tracing of particular elements (say particular backings or typical tests)
through the knowledge dictionary, and identifying links between chunks (grounds to claims,
claims to grounds). Finally in keeping with the spirit of the documentation approach, there should
be operations that would generate relevant sections of the knowledge dictionary as a document.
Such documents would be useful in creating reports, setting agendas for interviews, and
constructing materials for interviews. This is not, of course, an exhaustive account of the sorts of

operations that a KE might need in analyzing the knowledge dictionary, but it is indicative of the
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kinds of concernsthat are relevantin the constructionof a tool for generatingandanalyzinga
knowledgedictionary.

Theprocessof analyzingandupdatingtheknowledgedictionaryisonethatwill continueover
the life of theproject.Ideally, thefinal dictionarywouldcontainall of theinformationrequiredto
documenttheknowledgeaspectof thefinishedsystem.Forexample,thecodingthatimplementsa
chunk shouldbe tied to thedictionary.This sortof tie would facilitate the identification of the
locationsin thecodethatneedto beupdateasaresultof somechangein thedomainknowledge.

A TOOL FOR THE DOCUMENTATION APPROACH

A tool that implements the documentation approach to knowledge acquisition is being
developed. "Knowledge Management Tools" (KMT) is constructed primarily in HyperTalk rM and
CLIPS for the Macintosh TM family of computers. The use of a hypertext system is desirable since
the hypertext facilities are of themselves useful in KA activities. (1,11 ). CLIPS is being used since
it provides a readily available inference system.

The associational character of the construction and analysis of the knowledge dictionary
strongly suggests that a hypertext system is appropriate. During familiarization the entry of data is
not strongly structured. The KE may obtain information on one topic and then another without
there being a clear connection between the units of information. However, as more information is
entered into the dictionary it is reasonable to think that patterns will emerge. These patterns can be
quickly and easily captured in associational links. Such links can provide a map of the material in
the dictionary and represents the KE's view of the structure of the domain. Further, in
familiarization the KE may become aware of new elements that should be added to the dictionary
only in the process of reviewing information already entered. This again suggests that an
associational link should be created that will allow the KE to easily add the needed information.
Finally when there is more than one KE it will often be necessary to review what another KE has
done. This review is again an associational link. Each of these reasons suggests the desirability of
using a hypertext approach to the management of the familiarization process.

From a management point of view the knowledge dictionary can be treated as a (nonlinear)
text. The production of the text should be such that a KE or a member of a KE team can add
additional text to an entry during review. This factor means that the text in the knowledge
dictionary not only can serve as the background against which a KE formulates interview sessions,
but also is a means of communication for members of a KA team. The knowledge dictionary, in
this sense, serves as a shared, common background for further knowledge acquisition. These
management features again suggest that a hypertext approach is appropriate.

The inclusion of CLIPS in KMT is both an illustrative and cautionary tale. The inclusion of
CLIPS was motivated by practical considerations. CLIPS is readily available, and some projects
needed to use CLIPS. Further, since reading CLIPS code can be difficult, the direct association of
the CLIPS code and the text in the knowledge dictionary would seem desirable. That is, the
material in the knowledge dictionary would indicate what a segment of CLIPS code was intended
to represent. On the other hand, this approach leads to an effort to coerce the information and
knowledge into CLIPS form. This coercion while having some practical advantages leads to
difficulties. Most importantly, rather that trying to capture knowledge and information as would

seem to be natural, an effort is made to capture knowledge and information in a way that is
amenable to CLIPS. It is almost as if an assumption is made that CLIPS is the appropriate tool for
the domain. This difficulty is a general one. The problem can be put clearly in the following way:
Should the selection of the tool be a determinate of the KA process, or should the KA process be a
determinate of the tool? This essay will not attempt to resolve this difficulty, but it should be noted
as a serious one.
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KMT-CLIPS includes a K-edit stack, a K-dictionary stack, and a K-document stack.
Separationof thesethreestacksaddsto theefficiencyof thesystem.Thelinks betweenthestacks
arein thebeginningdirectedtowardtheK-document.Thesystemasa wholeattemptstokeepalist
of the associations.As the dictionary developsother links are established.Lists of these
associationsarealso kept by the system.Internally, KMT is a collection of associatedlists of
associationlinks.Accessto thetext informationstoredin thesystemis providedin variousways
beaccessingtheselists.

Thekey stackis theK-edit stack.Currentlythis stackcontainsfour screens.Futurescreensfor
analysisareplanned.Theideaof theK-edit stack is to allow the user to enter knowledge based
elements and later provide the CLIPS code. However, this is not required and all materials can be
entered at one time. Additionally, CLIPS is interactively available. The K-edit stack implements the
idea of a chunk base only in a partial way in its rule card. Backings for the warrants are limited to

References. Further since CLIPS is a rule based inference system the grounds and claims
components of the TRJ model are identified as Conditions and Actions. The idea of a term base is

also only partially implemented in the parameter card. The parameter card does not contain fields
for all of the features identified above.

Figure 3

The first card of K-edit is a rule card

that contains a chunk template. (See
Figure 3) The user provides the name of
the rule, its conditions, and actions as

ordinary text. Rebuttals are specific
circumstances that would prevent the
application of the rule. Warrants are the

reasons why the rule is being asserted.
Both of these are ordinary text, as is the
field for references. The diagram in the
lower left illustrates the structure. At the

top of this card and every card is a list of
the currently known parameters, rules,
and templates. This provides an

interactive access to other parts of the
knowledge dictionary. The entries for the

term base are found in the Current Parameter and Current Template list. These identifications were
selected to provide a more CLIPS-like interface.

The field at the lower right is used for CLIPS code. This may be added or not at the time the
chunk is entered. Additionally, it can be tested by clicking the CLIPS button. This button will add

the CLIPS code to a user specified text file, and additionally, if desired, load CLIPS and place that
file in a buffer. The buffer can then be compiled and run. On exiting CLIPS, the user will be
returned to the stack with the clipboard in tact. Thus, if modifications are made to the CLIPS code

in the CLIPS environment, those changes can be copied and pasted into the card. It might be handy
to have the new rule load into a buffer and then load the previous rules or templates into another
buffer. The KE can then paste the new rule into the old CLIPS code and test it. When it is the way
the KE wants it, it can be saved as a CLIPS code file. If this approach is taken the KE will need to
clean up the dictionary at a latter date. By treating the CLIPS code as a document and building tools
that understand CLIPS code, cleaning up the dictionary will be much easier. We are currently
developing such tools.

The AddRule button adds the rule elements to a database indexed by the name. The Find button
allows the user to find previous elements in the different bases. By selecting an element from those
currently known and clicking Find, the user is taken to the database element in K-dictionary.
Clicking the Return button in K-dictionary will return to the current card.
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The parameter card partially
implements the idea of a term base and
functions in a way similar to the rule card.
(See Figure 4) The parameters are used to
identify the terms in the dictionary.
Currently, only the description of the
meaning of the term, the range of values,
and the reference for the term are
included. Fields for additional elements
can be added. The AddParameter button
adds the data in the fields to the database

indexed by name in K-dictionary. Find
will find the selected item as in the case of

the chunk cards.

Figure 4

The template card is again similar to
the rule card. (See Figure 5) The idea of a
template is needed in order to make the
general ideas of the documentation
approach amenable to the latest version of
CLIPS (4.3). A template is a structure that
is somewhat similar to a frame and allows
for more flexible access to and

modification of facts. The template card
also provides access to CLIPS since
CLIPS code is used to define templates. It
should be noted that the file to which the

template is saved will load into the CLIPS
buffer. If there is any additional editing to
be done, it can be done there. The

AddTemplate button adds the field to the
database in K-dictionary indexed by name.

TpIOtI/USOr

Curront Poremltlrl CurTent Rules Curront Tomplatoi

Figure 5

Find will find the selected dictionary item

Currently work is under way to provide more of the features of the documentation approach
and to generalize KMT. While there are practical reasons for orienting the system toward a specific
inferencing mechanism, that selection also brings problems. The focus on rules and the need for a
specific template card are examples. From the beginning, the KE is thinking in terms of the
concepts and structures that will ultimately be used in the encoding of the knowledge rather than
the knowledge itself. In an ideal case, the software should conform to the knowledge, rather than
the knowledge conforming to the software. In improving KMT a more general approach will be
taken.

The generalization of KMT will allow for alternative ways of entering information and provide
a greater integration with tools that can be used in the interview process. Treating KMT as a "poor
man's" knowledge acquisition tool, provides a way of adding different strategies. (4) Of particular
interest are the additional representational strategies found in BDM-Kat and MacKat. (2)
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Figure6

proceduresallow theKE to updatetheCLIPScode.

Thecomparecard is usedto generate
comparisonsbetweenthedatabaseandthe
current CLIPS file. The CLIPS File
button allows theKE to selecta CLIPS
knowledgebase.The knowledgebaseis
loaded into the field on theright of the
card.Selectinga currentparameter,rule,
or templateand clicking the Get button
will load the databaseitem from K-
dictionaryinto thefield attheleft, placeits
nameintothecurrentitemfield, andmove
theCLIPScodeto thefirst occurrenceof
the item. The items text can then be
edited.Copyandpastecanbeusedon the
two fields. The Update button updates
the databasein K-dictionary. Similar

While thecomparecardperformsseveralusefulfunctions,thereismuchmorethatit shouldbe
ableto do.Currentlyseveralfeaturesarebeingaddedthatimproveon theanalysiscapabilitiesof
KMT andmakegreateruseof inferencingaboutthematerialin thecards.For example,scanning
thematerialsin eitherof thetwo fieldsshouldbeableto producealist of commonitems,andalist
of itemscontainedin theCLIPScodebutnotin thedatabase.Thiswouldalerttheuserto checkthe
commonelementsandto determineif newentriesareneededfor theelementsin theCLIPScode
thatdonotmatchtermsin thedictionary.

K-dictionaryandK-documentcurrentlysharethesamestructure.Thefields on thecardsand
theoperationsavailableare,however,easilytailoredto specificneeds.

The main card for the two stacks
controls theoperationsof the stack.(See
Figure7) Thebuttonsalongthebottomof
thecardallow theKE to enteror alterthe
material in the stack rather freely. The
NewTermButtonallowstheuserto enter
a new term or document into the
appropriatestackand indexesthe entry.
The RemoveTerm button removesthe
term andupdatesthe index. In eachcase
thescrollinglist in theDictionaryEntries
field is updated and alphabetized.The
Write Dict. buttonallows theKE to build
a text file of the materials in the stack.
This file can be imported into a word
processor,or savedasa separatefile that

Dictionary
Entries

Referenced

Topics

(_°n..I.ct°oo)

BrowsebyLaltor

BCOEFGHI

IKLMNOPQR

IrUVWXVZ

New Term ) _Eemove Term) (Remove RefToplcs)

( Write Dict. ) { CleIr IIIct, )

Figure 7

can be loaded by Build Dict. This allows the user to operate with multiple files. The Clear Dict.

button is used in conjunction with the two previous buttons to initialize the stack and prepare for a
new file. The Browse by Letter area allows the user to select a letter and browse the entries for that

letter. The scrolling list in the Referenced Topics field operates in two ways. In the first way the

KE simply create a list of terms that he or she needs to add to the stack. Selecting one of these
terms and clicking the Find Selection button will notify the user if the term already exists. If it does
not the KE can then enter the information. The Find Selection button also works in connection with

the items in the Dictionary Entries field. The Remove Ref Topics button clears the Referenced

Topics field. Items in this field can also be cleared manually.
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Figure 8

The cards that store the information

currently have minimal structure. (See
Figure 8) The information can, however,
be structured in multiple fields, and
resources in the stack allow the

information to be gathered in multiple
ways. The buttons on the bottom of the
card provide a number of functions. The
To Word button links to the KE's word

processor. The word processor is loaded
with the clipboard in tact so that the KE
can paste the information into the
document. The Main Card button takes

the user to the main card of the stack. By
highlighting material in the cards entry
field and clicking the For Reference

button, the Referenced Topic field of the main card is updated. This allows the KE to scan through
a stack and quickly note terms that need definitions. The Return button takes the KE back to the K-
edit stack, if this stack was entered through it.

The K-dictionary and K-document stacks currently share the same structure and are only
distinguished by their content. Links can be established between the two stacks in several ways.
We are currently working on ways to make the linking of the information in the three stacks easier.
It should also be noted that the K-dictionary and K-document stack contain resources for
formulating a frequency-recency model of the user interaction. This may prove to be helpful when
an expert is allowed to view the stack or when tracing the flow of knowledge through a stack.

CONCLUSION

The documentation approach to the management of knowledge acquisition provides a way in

which the familiarization aspect of knowledge acquisition can be made more productive. The
emphasis on existing documentation, especially in bureaucratic systems or systems in the design
phase, can be significant. The KMT tools partially implement the documentation approach. The
KMT tools have been used on several projects and have been very useful. It should be remembered
that the documents in a bureaucracy have been the traditional repository for its knowledge. The
documentation approach is directed toward making use of this repository and augments the
classical interview approach to knowledge acquisition.
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Abstract: Since 1984, an effort has been underway at Rocketdyne,

manufacturer of the Space Shuttle Main Engine (SSME), to

automate much of the analysis procedure conducted after engine
test firings. Previously published articles at national and

international conferences have contained the context of and

justification for this effort (Refs. 3, 7, i0, ii, 15, 16).

Here, progress is reported in building the full system,

including the extensions of integrating large databases with the

system, known as "Scotty." Inductive knowledge acquisition has

proven itself to be a key factor in the success of Scotty. The

combination of a powerful inductive expert system building tool

(ExTran), a relational data base management system (Reliance),

and software engineering principles and Computer-Assisted

software Engineering (CASE) tools makes for a practical, useful

and state-of-the-art application of an expert system.

INTRODUCTION

Every time a Space Shuttle Main Engine (SSME) is test fired,

hundreds of measurements are taken directly from a wide variety
of sensors. Many more values are also calculated from these.

All of these data values, when combined with previous engine and

component performance, are used by the engineering staff at

Rocketdyne, the propulsion division of Rockwell International,

to determine the future tests. These outcomes can vary from all

requirements being met, to a few minor events, to a rare

significant event. As the SSME is the world's most complex

reusable liquid-fuel (oxygen and hydrogen) rocket engine,

Rocketdyne and NASA, the customer, conduct thorough

investigations of each test firing by their most highly-trained

engineering staff. The author is a former employee of the

Rocketdyne division.

To continue its virtually perfect record of supporting

shuttle flights, Rocketdyne is always looking for ways, both

technical and organizational, to improve the quality of the

product while working within customer guidelines. One of the

major methods involves making the most accurate diagnosis,

analysis, and recommendation possible for the the next engine

test or shuttle flight. To perform this task, reliance has been

on maximal use of sophisticated tools and the expertise of an

engineering staff. This staff has accumulated experience dating

back to 1975 and covering 1400+ SSME firings, plus numerous

other ones: Apollo F-l, J-2, and Atlas engines.

Rocketdyne was confronted with a significant dilemma: how to

improve the quality of the SSME test analysis in the face of

487



diminishing senior staff. Several options to solve this dilemma
were discussed in Ref. 7. It was decided to use a combination
of staff, results from previous SSMEtests, and automated
software tools to build a prototype for automated corporate
expertise related to reusable propulsion components.

Rocketdyne was far from alone in being confronted with the
above problems. Indeed, the corporation had ample "company" in
deciding to use a type of automated tool known as expert
systems, part of the artificial intelligence technology. The
company is certainly not the first to decide to concentrate
initially on a diagnosis type of application, a type currently
of considerable importance to industry despite being "old-hat"
to the AI research community. So what is unique about Scotty,
the name given to the automated system?--There are two unusual
aspects.

One such aspect is the incorporation of Scotty as "another",
albeit advanced, software tool which must:

i. Meet corporate-wide software engineering development and
quality guidelines.

2. Live in a distributed corporate environment,
3. Talk to large data bases,
4. Be maintained by existing engineering staff,
5. Execute on standard computers,
6. Be amenable to parallel processing hardware, and
7. Run with color graphics terminals,

The other unusual aspect is a technical one which increases
the ease with which Scotty can be constructed. By use of a type
of Expert System Building Tool (ESBT) known as inductive or
example-based, the historical expertise now reposing in data
bases, both in human and machine form, from the hundreds of SSME
tests can be transformed into examples, and thence automatically
into rules. These rules will, in turn, drive Scotty during
normal day-to-day operation in future years.

Scotty: HISTORY
In 1984, the author was hired by Rocketdyne to assist in the

construction of an automated tool for SSME test analysis. The
employment was on a half-time basis, and was in addition to his
position as Professor of Computer Science at California State
University, Northridge. Within two months, a proof-of-concept
model for a High Pressure Oxidizer Turbo Pump (HPOTP) had been
built. This involved recommendation of an inductive ESBT,
Expert Ease by Intelligent Terminals, Ltd (ITL), now known as
Knowledgelink, in Glasgow, Scotland, and the first such PC-based
ESBT commercially available. The tool was purchased and used,
after minimal training time, by a mechanical engineer, to
diagnose HPOTPanomalies, by specifying 42 examples and nine
attributes. A 48 rule subsystem was automatically generated by
Expert Ease. No rules were required of the engineer. This
prototype and the problem context, rationale, and solution were
described in an early paper (Ref. 7). A desirable tentative
system configuration is shown in Figure I.
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Figure i. Scotty - Final System Configuration

During 1985 and 1986, the system (now named Scotty)

underwent several extensions. From a tool viewpoint, a more

powerful ESBT became available. ExTran 7, an industrial

strength Fortran-based inductive ESBT from ITL which runs on a

wide variety of machines from PCs to workstations to super-minis

to mainframes, was recommended (Ref. i). A process for using

ExTran is given in Figure 2. ITL ported the product to the

available Concurrent Computer Corporation 3260 super-mini at

minimal cost. The HPOTP examples were immediately transported

to ExTran and the resulting module was now a true, albeit

simple, knowledge base system (KBS) utilizing "Why", "How", and

"What if" type questions, history files, external interfaces,

and all the other features usually associated with a KBS.

I g_Pm_&mMO_R_OOl_ J

Figure 2. Inductive Expert System
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Conceptually, Scotty was extended in several directions

during this same time period. It was demonstrated that multiple

problems could be run concurrently on the multiple processor

Concurrent 3260. Graphics routines (PLOT-10 and GKS libraries)

were tied to ExTran with a minimum interface. In-house

statistical routines were easily linked to Scotty. Small
Fortran routines were written to access SSME test files and

output attribute values for input to Scotty sub-problems.

Additional SSME component modules were specified. A major

extension was the run-time interface between ExTran and the

large data base managment system DMS/32 supplied by Concurrent,

then known as Perkin-Elmer (Ref. 6). These are all described

extensively in a paper presented in 1986 (Ref. 3).

Scotty: CURRENT STATUS

As of mid-1988, Scotty underwent field-testing on a

sub-system basis, using the taxonomy of Waterman (Ref. 19).

Parts of Scotty were run in parallel with previous modes of

operation to help determine the validity of the system, and to

update its knowledge base. Scotty consists of far more than

"just" an expert system, as is clearly shown in figure 3, but

rather is one component in a fairly extensive software system.

This reflects the strong belief that viable expert systems are

most likely to succeed in a hybrid and integrated environment,

where they must communicate easily with other standard existing

and future sub-systems. This had been stressed by the author

since the initial conception, contrary to the host of stand-

alone KBSs being proposed in the early mid-80's, thanks to his

25 years of software engineering experience.

AUTOt_lID
TI[ST DATA
m[VlE_nm

Figure 3. Context of Scotty - Automated Test Data Expert

Scotty, as of early 1988, consisted of 48 ExTran modules

comprising 5400 lines of code (LOC) in Fortran. Supporting code

required 7100 LOC. The ExTran generated code was derived

automatically from approximately 1100 examples. Only 125 rules

have involved any manual intervention to date. The other 1400

rules have been induced automatically.
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KNOWLEDGE ACQUISITION ISSUES

The above numbers should be considered extremely carefully.

Note that the knowledge acquisition task involves far more than

simply eliciting examples from an expert or a data base. In

fact, this component is relatively easy. The much more critical

and difficult task revolves around the structuring of Scotty!

Many in the AI field have become so enamored with the power of

induction that they have forgotten some very basic software

engineering principles. The top-down (divide-and-conquer)

strategy has shown itself to be an extremely powerful one for

thousands of years in the engineering field. Do not give it up

just because a new powerful bottom-up technique is now possible!

The process of induction which turns an unordered set of

examples (an operational specification of a task) into an

ordered set of rules or code is avery powerful tool. This

addition to existing computer-aided system engineering (CASE)

tools would be welcome, and is probably on the horizon, based on

recent press releases. However, the process is really only

concerned with the generation of a software module. Most

current research (Ref. 14) and the Scotty experience indicates

that the majority of the expe---_tise of an expert lies in her/his

ability to structure the overall complex solution. Considerable

work in the area of civil engineering at Wayne State University

(Ref. 2) also substantiates this belief.

What good does it do (and what havoc can be wrought) to have

one enormous module, derived from hundreds of examples with

dozens of attributes? To be sure, the resulting rules probably

execute with blazing speed and derive the "correct" answer.

However, and this is a big caveat, wh____owill be able to

understand the resulting rule? Who would be willing to verify

that the resulting rule set is accurate? When such a huge

module is generated, experience to date shows that the expert

finds the rules to be simply incomprehensible. What must the

poor end user think? What has happened to the "transparency" of

the underlying system, one of the most valuable additions of

expert systems to the software field? Of what use is the

much-touted explanation capability now? Why do some vendors

promote that their tools can operate with thousands of examples

and hundreds of attributes? ExTran, on the contrary, encourages

the expert to break down her problem into sub-problems by

issuing a warning whenever the length of a rule exceeds certain
bounds. There are also various versions which differ in the

maximum number of attributes per problem.

Is it too much to ask that practicing software engineers and

expert system developers actually work together? It just "may"

be that each has something to offer the other. It is so

frustrating to this author, after being in both fields?-and in

both industry and academia since 1961, to see such miniscule

amounts of two-way communication between these two groups of

professionals. Only recently have there been any hopeful signs,

in terms of joint conferences.
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Scotty: EXTENSIONS IN PROGRESS

Development is continuing on a number of fronts for Scotty.

Included are: beta-testing of a new product jointly developed by

Knowledgelink and Concurrent, augmenting the potential sources

of existing data which can provide hidden or latent knowledge,

and effectively utilizing graphics.

The major extension underway is the intention to use

Reliance Expert (Ref. 5), which is the result of a joint project

between Knowledgelink and Concurrent with roots in the earlier

work at Rocketdyne (Ref. 3). This product extends the interface

between ExTran and a powerful data base system to include the

knowledge acquisition component of the former, as well as the

run-time interface discussed in Ref. 3 (Figures 4, 5, and 6).

This product is currently undergoing beta testing at Rocketdyne.

Basically, Reliance Expert permits any data, when

represented as records in a relational DBMS to serve as a source

of knowledge (usually hidden or latent) for the knowledge

acquisition phase (induction) of ExTran. One of the uses for

this portion of Reliance Expert would be to serve as an "expert"

for historical knowledge of Scotty, as it can now be transformed

automatically into examples and then to rules. So, once again,

the knowledge acquisition bottleneck becomes less and less of an

issue, as it will be possible to go directly from records in a

DBMS to production rules in an expert system. Moreover, it is

even possible for the expert system component to modify the

DBMS, should that be desirable.

Figure 4. Reliance

Expert Structure

Figure 5. Reliance Expert

Development Phase
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Figure 6. Reliance Expert Run-time Phase

There is a wide selection of existing data bases which could

lend themselves to exercising the Reliance Expert product.

Anomaly data from SSME testing is one source among several that

also include Failure Modes and Effects Analysis (FMEA),

turbopump build and history, and hazard tree data. Anomaly

data, although primarily hardware-oriented, is a useful source

of information. It provides a startinq point for converting

much of the SSME testing expertise repository into machine

readable form. Some efforts are underway to use this source to

augment the experience now encapsulated in the heads of senior

engineering staff. Each anomaly data sheet consists of three

major fields: problem (symptoms), analysis (causes), action for
next test and other recommendations. Zero or more anomalies are

recorded for each test, usually very minor ones. By carefully

reviewing each anomaly and any back-up plots/tables, it is

possible to convert each one into an example format consisting
of a set of attribute-values and decisions.

Graphics is also being included in future versions of

Scotty. A SSME instrumentation chart, now taped to the walls of

hundreds of Rocketdyne engineering offices, has been converted

to a dynamic color computer graphics form. The graphics

subsystem has capabilities to zoom, highlight problem areas

(according to actual test data measurements), and depict flow.

This is not CAD�CAM, although there are a few common themes, nor

is it extensive CFD modeling of the National Aerospace Plane

(NASP) using multi-million dollar CRAY 2s. It __is a practical

and feasible use of moderate color resolution on the readily

available super-mini and terminals. Engineers on the floor, as

would be expected, are very pleased to see in graphical form

what they have hitherto had to dig out of static tables and

plots.
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FUTURE DEVELOPMENT ISSUES

Further in the future are several concerns. There is an

interest in each as a potential contributor to improving the

quality of SSME test analysis. Obviously, Rocketdyne is keenly

concerned also about technology transfer to other types of

engines, in addition to the SSME. The company is deeply

committed to supply the power system for Space Station Freedom,

as a result of being named the prime contractor. The National

Aerospace Plane (NASP) engines are also likely candidates for

Rocketdyne. Expendable Launch Vehicles (ELV), the Advanced

Launch System (ALS), Orbital Transfer Vehicles (OTV), and other

propulsion and energy systems are also promising areas.

These further-reaching concerns are concentrated both in

application and technical areas. On the application side,

Rocketdyne would like to investigate the potential of extending
Scotty to handle a limited subset of the measurement data for

flight engines. The incorporation of health and test monitoring

is also of high interest. Design of modified and new engines is

a challenging option. This could perhaps involve using the

current computer model for SSME test analysis to help generate

examples for potential design consideration. A recent paper

gives some insights on such proposals (Ref. 4). An obvious

application is to enlarge the context of Scotty to include new

hire training on SSME test analysis.

On the tool side, the issue of dealing with uncertain and/or

noisy example data is significant. Real engineering problems

involve uncertain and incomplete information. A noted nuclear

engineer, Dr. Billy Koen at the University of Texas in Austin,

has gone so far as to define the engineering method as "the use

of heuristics to cause the best change in a poorly understood or

uncertain situation within the available resources" (Ref. 9).

It is apparent, based on recent IJCAI, AAAI and IEEE

conferences that induction is receiving considerable attention,

so fuzzy induction is probably just around the corner. A recent

U.S. based inductive workshop (Ref. 2), just on the heels of an

international conference on induction and the founding of an

International Special Interest Group on Inductive Programming in

1987, all bodes well for this extremely active area of

research. We will see additional and powerful tools on the

market which offer such practical features. Recent work at the

University of Tennessee Space Institute holds considerable

promise for dealing with both qualitative and temporal issues

relevant to rocket engine testing (Ref. 8). Abductive reasoning

for diagnosis also appears to hold some promise (Ref. 13).

CONCLUSIONS

Since 1984, effort has been underway at Rocketdyne,

manufacturer of the Space Shuttle Main Engine (SSME), to

automate much of the analysis procedure conducted after test

firings. We thus report on progress in building the full Scotty

system, after a noted 23rd century rocket propulsion expert.
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Major progress has occured on a technical front. Since the

very inception of the program, it has been strongly believed

that the intrinsic nature of SSME test analysis and character of

inductive-based ESBTs represents an excellent match of problem

and tool. The intuition has been confirmed by the relative ease

with which expertise has been transformed to a structured system

of modules composed of examples and thence to effective

production rules. The structuring relies upon well-known

software engineering techniques, and is aided by commercial CASE

tools. The transformation from records in a data base to

examples to production rules is accomplished automatically with

Reliance Expert, a product combining a RDBMS and an inductive

tool. The engineering staff responsible for building (and

eventually maintaining) Scotty has consistently used examples as

input. The knowledge-acquisition "bottleneck" is thus much

wider than for most previously-reported expert systems. The end

result is a software system which meets the real needs of

Rocketdyne, and is deliverable in a cost-effective manner with

less than usual maintenance requirements.
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Abstract

This paper describes the Vehicles Implementation Project (VIP), a knowledge-
based design aid for the engineering of space systems. VIP combines qualitative knowledge
in the form of rules, quantitative knowledge in the form of equations, and other
mathematical modeling tools. The system allows users rapidly to develop and experiment
with models of spacecraft system designs. As information becomes available to the
system, appropriate equations are solved symbolically and the results are displayed.
Users may browse through the system, observing dependencies and the effects of altering
specific parameters. The system can also suggest approaches to the derivation of specific
parameter values.

In addition to providing a tool for the development of specific designs, VIP aims at
increasing the user's understanding of the design process. Users may rapidly examine the
sensitivity of a given parameter to others in the system and perform tradeoffs or
optimizations of specific parameters. A second major goal of VIP is to integrate the
existing corporate knowledge base of models and rules into a central, symbolic form.

Introduction

VIP is a portion of Vehicles, a long-term research effort on the part of The
Aerospace Corporation to develop artificial-intelligence tools for the conceptual design of
spacecraft and other systems. Currently, much of the knowledge and tools used for such
design are scattered throughout the corporation. The tools, while sophisticated, are often
poorly documented and require a detailed knowledge of the tool itself, as well as of the
system under consideration; in order to use the current tools effectively, the user of a
model of spacecraft batteries needs a detailed knowledge of both the model as well as
batteries. Complex and detailed setup procedures and relatively rigid structures often
discourage engineers from examining alternative choices. This complexity precludes
planners from using many of the existing models in the early stages of a system's design.

As older engineers retire and younger people enter the organization, a major
problem has arisen regarding the maintainability of existing tools. Too often,
organizations find themselves dependent on sophisticated tools that were developed by
personnel no longer with the organization. These tools become difficult to maintain and,
without the experts who developed the package, equally difficult to rewrite. A long-term
goal is to reorganize the corporate knowledge base to make it more accessible and
maintainable. Vehicles is an attempt to develop tools that allow engineers to concentrate
on the rules and equations of a model, while leaving to a central system the details of
implementation, solution, and interface. The hope is that models will be translated into a
central, easily represented and documented form that can be useful to both experienced
and casual users.
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An object within the system, e.g. a frame or a slot, consists essentially of two
parts, a class and a specific instance. The class holds information that is common to all
instances. For example, a spacecraft may have multiple antennas. Each instance points to
a common frame, of the class antenna. Within this class there is a slot that holds the
antenna's diameter. The slot points to a template that holds common information: name,
default values, limits, definitions, and default print units. The instance holds information
specific to one frame: the value, the default print units, information about how the value
was derived, and any user-supplied annotation. Similarly, relationships such as
equations also exist in two forms: a template attached to the frame template, and a
specific instance in which variable names are replaced by pointers to the variable
instances.

Actions

All actions in the system are initiated by the user. Three basic user actions are
possible: (1) The user may enter a value for an attribute, (2) the user may add a new
subsystem to the design, or (3) the user may request a view of the current state of the
design. When the user enters a new value, the effects of that change throughout the
system are handled by the propagator.

The Propagator

When a new value is entered by the user, that value is tested against the limits
imposed by the attribute template. If acceptable, the new value is passed to the
relationships that are attached to that slot. Equations may be solved for any unknown;
however, equations are reorganized and solved for a particular unknown only when all
other unknowns have acquired values. Once an equation is solved for a given variable,
subsequent changes in the independent parameters are automatically propagated through
the equation to change the derived value. The derived value may be altered bythe user in
two ways. First, one of the independent values may be set to UNKNOWN; this causes the
solution of the equation to be retracted and the equation to revert to a state of having two
unknown values. In that state, the assertion of a value for the previously derived
parameter causes the equation to be solved for the retracted value.

A second means of setting the value of a derived parameter is available under the
tradeoff view. The system of equations in the model is repeatedly solved for differing
values of an independent parameter. The resultant values of the dependent parameter are
collected and displayed as an x,y graph showing how the independent parameter varies
with the dependent parameter. The user may then use the mouse to select a value of the
independent parameter that results in the desired value of the derived parameter. We
prefer this latter approach because it preserves the causal ordering of derivation. That
is, we do not say that the cost of a spacecraft was determined by the cost of a subsystem,
but rather that the spacecraft's cost was determined by the weight of that subsystem,
whose weight was in turn selected to give a specific cost [Simon 84].

Views

VIP contains a set of tools that allow users to visualize data. These tools provide
the user with multiple views of a complex design. Different tools are available at the
design, subsystem, and attribute levels of the hierarchy. Tools at the design level allow
the user to visualize an overview of the components tree (Figure 3). Clicking on any
subsystem displays that subsystem.
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Attribute-level tools allow users to view the properties of individual attributes.
These tools are accessed by clicking on the name of the attribute in the subsystem window
(Figure 4). Where the views are appropriate to the current value of the slot, a menu of
possible views is then displayed.

Choices Available for All Slots

• Information: This choice gives the definition of the item, tells how it was derived (if
a value is known), and displays all the slots that depend on that value as well as all slots
used to compute the value. In addition, any annotations are displayed. Information is
displayed in a locked, scrollable text window.

• Annotate: This choice allows the user to view and edit annotation related to a given

value. This is usually used to allow the user to add notes justifying his decision.

• How: If the item is set, this feature causes the system to tell how it is set, or, if unset,
how it might be set; if unset, this choice lists all rules and equations that could be used to
derive the item; if none exist, this choice tells the user that he must input a value for the
item, as there is no other way to derive one. Note that many of the equations in the
system normally use some items as inputs only, and thus may be inappropriate for
deriving these items. For example, the cost of a satellite is normally proportional to its
weight. It is rarely useful to suggest to the user that the satellite's weight could be
estimated if the cost were known.

Choices Available Only When Appropriate

• Sensitivity: This choice displays the sensitivity of a derived value to all parameters
used in its derivation. Each of the deriving parameters is varied by 5% of its current
value and the resultant effects on the dependent parameter are computed as numerical
derivatives. The derivatives are normalized as _log(y)/SIog(x) [Landauer].

•Tradeoff: This choice allows users to visualize the effects on a derived value of altering

one parameter. Users select a parameter from a list of parameters used to derive the
current value. The system automatically varies the selected parameter over a selected
range and generates a graph showing the effects on the dependent parameter. Users may
select on the dependency graph a point that causes that combination to become the new
current values.

• Recommend: If a value is unknown but VIP can find a collection of equations based on
known parameters designated "usually user entered" or on values derived from the
above, this choice displays the potential dependency tree, highlighting the unknown
values and allowing the user to enter the remaining unknowns.

• Apportion: If the value is the sum of N terms, this choice displays the relative
importance of the additive terms as a pie chart.

Interface

A major feature of the philosophy underlying VlP is to enable users to interact
with the system in a simple and intuitive fashion. The interface consists of a collection
of windows; in the current implementation, only one window is displayed at a time. Some
of these windows are described below. The two basic windows are the subsystem
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The Vehicles project has the long-range goal of developing new capabilities and
knowledge representations for supporting the conceptual design of spacecraft. VIP has the
more immediate goal of utilizing methods developed in this project to provide an
intelligent system that allows users to develop and manipulate space-system designs. To
make VIP widely available, we developed it for use on a personal workstation (the Apple
Macintosh II). This project has been concerned with developing a system that is simple
and user-friendly enough to shift much of the use and extension of the knowledge base
from the computer science lab to the working engineer.

VIP Architecture

The architecture of VIP follows a common practice in expert-system design, by
making a clear separation between the knowledge in the system and the procedures used to
manipulate that knowledge. VIP is divided into two basic parts -- an engine for
manipulating knowledge and user selections, and a collection of relevant knowledge
sources.

Figure 1 displays the architecture of VIP. The seven major components of the
engine are as follows:

• Knowledge Base: This stores general knowledge about the systems the user is
developing. Data from the knowledge base (currently stored as a series of textual files)
are parsed by the system into working code. Storing knowledge as text allows the user to
interact with easily understandable forms of the knowledge base, facilitating the reading,
editing, and correction of the data. The generated code is used by the system but is not
normally accessed by either users or developers. The knowledge base is described in
detail below.

• Knowledge Editor: This tool allows the knowledge base to be updated. Users
may add new subsystems, rules, or equations to the database. Knowledge that is added is
tested for syntax and consistency with the current contents of the database. The editor tags
each piece of information with the name of the person entering the knowledge, and
encourages users to attach annotation detailing the technical underpinnings of each item.

• Working Database: This stores current designs. Designs are represented as
frames that have slots containing information about parameter values, information about
component hierarchies, information about how parameter values were derived, and
user-supplied comments Designs in the working database may be created and
manipulated by the user. A design (for example, of a proposed spacecraft) may be stored
in the knowledge base, permitting future manipulation.

• Propagator: This tool accepts changes in parameter values. Any change in a
parameter's value is propagated through all constraints, rules, and equations in the
system.

• Report Generator: The tool generates a report on the current design. The
report is user-readable text formatted to allow VIP to read in the report, regenerating
the working design.
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• Interface: VIP has a built-in user interface that allows users to browse and
alter information rapidly. The interface is described in detail below.

• Toolbox: A major component of the interface is the toolbox, which gives the
user a number of views into the data. The toolbox also allows users to read, add, alter, or

annotate any portion of the design.

Knowledge Base

The knowledge base stores four classes of information: templates, fixed systems,
historical designs, and working designs. These are described below.

Templates hold knowledge about how to generate specific elements of an object,
storing what is possible to know about a specific subsystem. Such information includes
possible parent systems, possible component systems, attribute names, equations, rules,
and constraints. Attribute templates store the type of attribute (if numeric), the type of
measurement (e.g. distance), and default units (e.g. km). The attribute template may also
store default values and upper and lower bounds. If an attribute involves a choice (e.g. a
choice of material), then the template holds all possible choices.

Fixed systems are instances of subsystems. As such the attributes are assigned
specific values. Fixed systems represent knowledge that may not be altered in the current
design. A communications band such as X-band would be considered as a fixed system that
holds the assignments for uplink and downlink frequencies, bandwidths, and the effects of
adverse weather on the signal. The choice of launch vehicle is another class of fixed
system that contains cost, availability, possible orbits, and throw weight.

Historical systems comprise data from complete systems that have already
been developed. Like fixed systems, they comprise read-only data. Historical systems
may be accessed to give the user perspective about what is possible. The system can
access the historical system most similar to the current design and, in the absence of
other information, can use parameter values from this system as defaults in the current
design.

Working designs are also complete systems. Unlike historical systems,
working designs may be modified.

The knowledge base is stored as a collection of textual files that hold information
as keyword, value pairs. Figure 2 shows a portion of the current knowledge base
describing a power subsystem. The current system parses these text files into Prolog
code; the files are then added to the working database as required.

Working Database

A design such as a spacecraft or space system may be considered as a hierarchical
frame system. The design is a root frame whose slots contain specific values called
attributes and frames called components. The component hierarchy may be visualized
as a tree (Figure 2). The design and all its components are a class of frame called a
subsystem. In addition to components and attributes, a subsystem has slots for
relationships: equations, rules, and constraints. All attributes and relationships are
attached to a specific subsystem frame. Relationships can link to attributes in other
frames; these links allow information to propagate through the design.
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window, which gives a detailed view of a specific subsystem, and the navigation
window, which shows all subsystems as parts of a tree.

° Subsystem Window: The subsystem window (Figure 4) displays all the slot values
in a scrolling field. Each slot has four components: Name, Value, Units (if
applicable), and Source. The name is simply the name of the slot. Values may be strings,
numbers, or tuples. Every slot type points to code that generates an appropriate display
of the slot's contents. If these contents are undefined, a blank rectangle is displayed.
Numeric slots may have units associated with the slot's value. If these units are defined,
they are displayed next to the data. The source type is displayed as an icon at the right of
the slot. Currently, we support icons for user, default, equation, rule, and system
(copied from a predefined system, such as the throw weight of the shuttle).

Navigation Window

The navigation window (Figure 3) displays the components as a tree, with the
design at the root, various subsystems as the branches, and the components as the leaves.
The user may open a selected subsystem by clicking on the appropriate box. The tree
gives the user a sense of where the current system lies relative to the entire design. This
window enables the user to develop insight into the architecture of the design under
consideration. The navigation window also enables the user to move throughout the
design.

Dependency Window

The dependency window displays trees that are generated for an individual
parameter. Two possible trees can be derived. When the value of a parameter is derived,
the dependency tree shows the current dependencies; for example, cost was derived from
weight and availability, weight was derived from power and coverage, and coverage was
entered by the user. The leaves in the dependency tree represent default values as well as
values entered by the user. Dependency trees may be constructed for any derived
parameter. When a parameter has no value, a potential dependency tree can be generated
by seeking parameters that are noted as "usually user entered."

Other Windows

Other windows are generated to display graphical information, presented as an x,y
graph. The relative contribution of terms to a sum is presented as a pie graph, and the
sensitivity of a dependent parameter is presented along with its dependencies. Here the
derivatives are normalized as described above and are presented as a bar graph.

Hardware

The system is implemented on an Apple Macintosh II with 5 MB of memory and
using AAIS Prolog. A version runs on the Sun/3 under Quintus Prolog, but this version
does not have the full user interface that is available on the Mac. The system requires
approximately 2.5 MB of working memory.

Problems Studied

We have applied the system to a number of conceptual studies within the
corporation. For example, we have developed models for electrical power systems,
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constellations of communications, and configurations for SDI-related designs. The most
complex models were able to handle 20 subsystems and approximately 100 equations.

In several cases the models were generated by engineers working directly with the
system, rather than by personnel within the Computer Science Laboratory. The success
of the system with relatively naive users was encouraging. The problems these people
commonly encountered (misspelling the names of system parameters or referring to
parameters not explicitly imported from the owning subsystem) have highlighted the
need to provide more tools to verify the input data, both syntactically and in terms on the
internal consistency of the generated model.
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Figure Captions

Figure 1. VIP Architecture

Figure 2. Navigation Window. The components of a design may be viewed as a tree. The
system highlights the currently active system. When this window is displayed,
clicking on any box causes that system to become active and displays a
subsystem window for that subsystem. This enable the user to change the active
subsystem.

Figure 3. Subsystem Window. The basic view of a subsystem, this window allows a user
to view and modify specific attributes. The Traverse button brings up the
navigation window. Clicking on the name of any attribute (e.g. Time_Delay)
pops up a menu of applicable tools for that attribute. Clicking on the value box
allows the user to type in a new value. If the attribute has only a fixed set of
alphanumeric values, clicking on the box pops up a menu of choices. The icon
indicates the source, and clicking on the icon displays information about how the
parameter was derived.

Figure 4. Knowledge Base. This section of the knowledge base illustrates how knowledge
is entered as keyword text. A major goal of VlP was to keep the working
knowledge base in a form that can be accessed and edited by the user.
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Figure 1

VIP Architecture
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Sample System Specification File

Note sections in bold italics are the designator. Remaining text is merely commcna_.'.

% power
%

% Begin Subsystem Specification
%
subsystem power

possible parents buss % must be z subsystem of the buss
% designate possible components

possible components regulator solar_panel power_buss

%
% Begin Designating Attributes
%

attribute type choice solar vanel solar body nuclear solar concentrator
default solar_panel

%

% Specify a numeric am'ibute
%

% name type units metric english

attribute col_power numeric power watts watts
lower limit 100 watts
upper limit 5000 watts
what " eol_.power is the end of life power. That is the power the power
system can deliver at the end of the design life of the spacecraft. Because
components in the system, specifically solar ceils degrade over the
spacecraft lifetime, this will be significantly lower then the bol power or
beginning of life power. Power systems are usually designed to deliver a
specific end of life power. "

attribute battery choice nicad nih lithium lead_acid
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Figure 3 Navigation Window
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Figure 4 Subsystem Window
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ABSTRACT

One difficulty in applying artificial intelligence techniques to the solution of "real world"
problems is that the development and maintenance of many AI systems, such as those used in
diagnostics, require large amounts of human resources. At the same time, databases frequently
exist which contain information about the process(es) of interest. Recently, efforts to reduce

development and maintenance costs of AI systems have focused on using machine learning
techniques to extract knowledge from existing databases. This paper describes research conducted
at McDonnell Douglas Research Laboratories in the area of knowledge extraction using a class of
machine learning techniques called decision-tree classifier systems. Results of this research suggest
ways of performing knowledge extraction which may be applied in numerous situations. In
addition, a measurement called the Concept Strength Metric (CSM) is described which can be used
to determine how well the resulting decision tree can differentiate between the concepts it has
learned. The CSM can be used to determine whether or not additional knowledge needs to be

extracted from the database. An experiment involving "real world" data is presented to illustrate the

concepts described.

INTRODUCTION

Applying AI techniques to solve diagnostic problems often requires that information contained
in one or more databases be converted to knowledge. One common way of performing this

conversion is to use domain experts. For example, when experts are asked to assemble a set of
rules for diagnosing a particular system, they review information from sources such as schematics
and existing maintenance databases. Then they develop a set of diagnostic concepts, generally
stated as a set of rules, which correlate diagnostic inputs with the desired diagnosis(es). Since large
amounts of human resources are required to perform this knowledge extraction, it is desirable to

automate as much of this process as possible.

Databases use attributes, A i, and their associated values, aij, to represent information about

quantities of interest. These attributes may represent both numeric (discrete and continuous) and
nonnumeric quantities. A database is an organized set of these attributes and their values, a set of
relations among these attributes, and a language for manipulating attributes and the relationships
among them. This structure transforms raw data into information (18).

While information contained in a database may be accurate and complete, it is not knowledge.

Using information as knowledge requires identification of the pertinent logical entailments hidden
in that information. It is these logical entailments that allow inferences to be made from information
contained in the database. Identification of logical entailments is complex and is usually done by

This work was supported by the McDonnell Douglas Independent Research and

Development program.
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special algorithms (2). This paper is concerned with the automated extraction of knowledge from
databases and the representation of this knowledge in a structure that can be processed by logical
entailment algorithms (18).

The first step in performing knowledge extraction is to determine how knowledge will be
represented. While various knowledge representation schemes have been developed for expressing

concepts and their relationships to other knowledge, the relationships modeled by all these schemes
can generally be expressed in terms of first-order logic expressions (2). One well-known

knowledge-representation scheme is the rule-based system characterized by its knowledge base of
facts and rules. In this paper, all references to rules apply to any knowledge representation which is
used to model first-order logic expressions. The actual physical knowledge representation is
secondary in importance.

The second step in performing knowledge extraction is to determine which algorithm should be
used in the extraction process. One of the more popular and successful classes of algorithms which
are used for this process are called decision-tree classifier systems. These systems take training
instances as input and produce a set of rules as output. The rules output by the system are
represented in the form of one or more decision trees (3,10,11,).

Recent research has focused on the automated extraction of knowledge from existing databases
in an effort to reduce the development and maintenance costs of AI systems. This is a complex
problem since concepts may take many forms, the identification of appropriate attributes is difficult,
and sufficient information may not be available to support the formation of clear and accurate

concepts. Other factors which contribute to the complexity of this problem are the difficulty in
determining when extraction is complete and the difficulty of evaluating the knowledge produced.

The following sections describe an approach for extracting knowledge from databases which
addresses many of these difficulties. The approach described is applicable in cases where the
extracted knowledge can be represented as a set of rules. The extraction techniques use a class of
inductive machine-learning techniques called decision-tree classifier systems. The section entitled
Evaluation of Knowledge Extracted describes a metric which is useful for measuring the results of
the extraction effort. The last section shows the results obtained by extracting knowledge from a
"real" database (6).

EXTRACTION OF KNOWLEDGE FROM DATABASES

Type of Concepts to be Learned: One of the first steps in knowledge extraction is to
determine the type of concepts to be learned. For instance, if one is trying to extract diagnostic
information from a database, it is usually desirable to express the concepts being learned as rules.
Machine learning techniques, such as decision-tree classifier systems, are proficient at this form of
extraction. This approach is applicable to both numeric and nonnumeric data. However,
continuous numeric-valued attributes present special problems (13).

Uncertainty plays a major role in knowledge extraction. Uncertainty involves both the

uncertainty of facts and of rules. Fact uncertainty may be the result of noisy training examples.
Noise is hard to identify since it is difficult to differentiate noise from "exceptions to a rule."
Although several different approaches have been tried for handling noisy data (3,11), noise still
presents a difficult problem for knowledge-extraction techniques. Rule uncertainty not only
concerns the certainty with which conclusions can be asserted within a rule, but also the way in
which uncertainties are propagated along rule chains. Both types of uncertainty introduce serious
problems in knowledge extraction and continue to be active areas of research.

If the concepts to be learned are in the form of mathematical equations, standard operations
research and statistical techniques such as regression (linear and nonlinear), correlation, and
hypothesis testing may produce more satisfactory results (7). Although operations research and
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statisticalapproachesareusedprimarilywith numericdata,nonnumericattributescanbeassigned
numericvalues.Oncetheappropriateoperationsresearchtechniqueshavebeenapplied,the
resultingequation(s)mustthenbeinterpretedin light of their nonnumericcounterparts (5).

The extraction techniques described below assume that the database on which extraction is to be
performed consists of a set of records. For the purpose of knowledge extraction, each record is
viewed as a set of attribute-value pairs along with one or more associated conclusions. Whether or
not the database is a single entity or a distributed database is not important. Richardson (12) has
developed an algorithm for combining information from numerous relations into single records.
Each of these records becomes a training instance to the machine learning technique.

Representation of Concepts: Learned concepts will be represented in the form of rules. For
example, the rule:

Al(all) ^ A4(a43) A A2(a22) => C6

(1)

denotes the concept: if the value of attribute A 1 is a 11, the value of attribute A 4 is a43, and the

value of attribute A 2 is a22, then e6 may be concluded. (Boolean-valued expression Ai(aij) is true

when aij is the value of Ai.) Fig. 1 shows how rule (1) would be represented by a decision tree.

A1

A, _ Az

3 8J1_2

1122

Fig. 1 Decision Tree Showing Al(all) A A4(a43) ^ A2(a22) => C6

Individual concepts are represented as paths in the decision tree. Each internal node represents

an attribute A i while each branch descending from A i corresponds to a specific attribute value, aij.

Each leaf node, cj, represents a conclusion out of the set C of all possible conclusions.

Since more than one conclusion may exist at a leaf node, the concept shown in Fig. 1 will be
represented by the tree shown in Fig. 2. The trees are identical with the exception of the label at the
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A 1

A2

2

N4

Fig. 2 Decision Tree Showing Al(all) ^ A4(a43) A A2(a22) => C(N4)

leaf node. The label, N 4, represents the set of one or more conclusions, cj e C occurring at this

node. The expression:

Al(all) ^ A4(a43 ) A A2(a22 ) => C(N4)

denotes the rule where C(N4) is the conjunction of all cj _ N 4. Note that: (1) multiple conclusions

may be present at any leaf node, i.e., INkl > 1, and (2) any conclusion, cj, may be present at more

than one leaf node, i.e., cj _ N k for more than one value of k. Similar concepts are concepts
which have the same conclusion.

The problem of extracting knowledge in the form of decision trees reduces to the problem of
constructing "correct" trees. Decision-tree classifier systems are a class of machine learning
techniques which can be used to construct such trees.

DECISION-TREE CLASSIFIER SYSTEMS

Decision-tree classifier systems take training instances as input and output decision trees like
that shown in Fig. 2 (3,10,11). These systems are called classifier systems because they separate
input training instances into different classes. They are also referred to as induction systems since
they induce knowledge from examples. Decision trees are frequently used to represent the results
of this classification, hence the name decision-tree classifier systems.

During construction of the h'ee, the decision-tree classifier must determine the best attribute to be
used to expand the tree at each node. It must also determine when no further attributes should be

added to a path of the tree. Induction of decision trees may be incremental or nonincremental. In
nonincremental induction, all training instances are processed at one time and the decision tree
created. At this point, the learning process is considered completed. In incremental induction,
learning is performed each time the decision tree is used to classify an instance. A well-known
nonincremental induction technique called ID3 was developed by Quinlan (11) and is based on
earlier work in induction by Hunt et al. (9). Two incremental versions of II)3 have been developed;
ID4 by Schlimmer and Fisher (14) and ID5 by Utgoff (19).
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Othertypesof machinelearningapproachesareapplicableto knowledgeextraction.These
includecase-basedreasoning(15),explanation-basedlearning(4),andgeneticalgorithms(8).They
will not bediscussedin thispaper.

DECIDING WHAT TO EXTRACT

The selection of the appropriate database attributes to participate in the extraction process is
critical both to the quality of the knowledge extracted and to the efficiency of the extraction process.
The choice of attributes depends on the type of concepts being learned. In many cases, the domain
expert may be able to provide advice on which attributes are likely to be important. The attributes

chosen to participate in the extraction process make up what is called the description space, viz;

D = {A 1, A2,..., An}.

In an effort to keep the description space as small as possible, statistical and mathematical
programming techniques such as regression analysis and correlation can be used to help identify
database attributes which are dependent on each other. When selecting database attributes to be
included in the description space, it is seldom necessary to include attributes which are dependent
on others already in the set. Mathematical programming techniques can be used to help identify
linear and some types of nonlinear dependence among attributes. In some cases, simple plots of
database values may help identify appropriate attributes.

Once a candidate description space is identified, the next step is to perform knowledge
extraction using only a subset of the training instances available. This is desirable since the machine
learning mechanism being used may also help identify relationships among attributes which have
not been detected by earlier efforts. After evaluating these initial results, it may be possible to
further revise/refine the description space.

All of these efforts are designed to keep the complexity of the extraction process to a minimum.
Minimization of complexity is desirable because a database may contain a large number of
attributes. Simply using all database attributes in the knowledge extraction process would only
increase the complexity of the extraction process without adding additional knowledge.

EVALUATION OF KNOWLEDGE EXTRACTED

Since the accuracy of the concepts learned as well as the complexity of the tree constructed is
determined by both the quality and quantity of training instances and by the way the classifier
system chooses attributes for the tree, it is desirable to evaluate the "quality" of the knowledge
extracted. Knowledge quality can be measured in different ways, including the correctness and

thoroughness of the knowledge extracted and the certainty with which the knowledge structure can
differentiate between the concepts learned.

Evaluating knowledge correctness is necessary to determine how well the concepts learned
compare with what is known about the "real" world. Correctness evaluations are done in a manner
similar to verification and validation of expert systems (17). A common set of test suites is
evaluated first by using the extracted rules and then by domain experts. Next, these test results are
compared. This approach helps verify that the set of concepts learned is consistent with domain
experts' knowledge. Failure to adequately satisfy correctness tests may be the result of poor

attribute selection, poor extraction techniques, or an inadequate number of training instances.

In many cases, domain experts discover that the knowledge extracted is correct but not
thorough. This is evidenced by the fact that "pieces" of knowledge are found missing during the
tests for correctness. This may indicate an inadequate number of training instances in the database.
In these cases, additional knowledge may have to be added by domain experts.
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To measurehow well adecisiontreedifferentiatesbetweenconcepts,theauthorsdevelopedan
approachfor evaluatingthequalityof a learneddecisiontreebymeasuringcertaincharacteristicsof
thetree. Thisapproachcomplementstheworkof domainexpertsandisespeciallyusefulin cases
wheremultipleconclusionsexistat a leafnode,i.e.IN kI> 1,for somevalue(s)of k. The
approachusestheConceptStrengthMetric (CSM)describedbelow.

Thedevelopmentof theConceptStrengthMetricwasmotivatedbytheneedto construct
diagnosticadvisorsfor usein aircraftmaintenance(1,16). By utilizing inductivelearningsystems,
it is possibleto constructdiagnosticadvisorswhichcanassistin maintainingtheir ownknowledge
bases.However,oneof theproblemsarisingfrom suchlearningsystemsconcernsthequalityof
conceptdifferentiationsinceit is rarelythecasethatall conceptswill belearnedperfectly.

TheConcept Strength Metric value, E(cj), for each conclusion cj, is the weighted measurement

indicating that, given the decision-tree's current level of experience, it can uniquely differentiate

conclusion cj. The value E(cj) is the sum of individual weighted strengths, Ek(cj), for cj at each
leaf node, viz:

k

E(cj) = E Ek(cj),
k=l

where _. is the number of leaf nodes in the tree.

The weighted strength, Ek(cj) , for conclusion cj at node N k, is the weighted probability that

conclusion cj can be clearly differentiated by the path leading to node N k. It is calculated by

computing:

E k (cj) -
5jk , 5jk

ICl k

X 5ik y_ 5jh
i=l h=l

- ajk _jk

where _jk denotes the number of times conclusion cj has appeared at node N k and ICI denotes the

number of possible conclusions in the tree. The frequency of cj occurrences in the tree is given by

qj. The frequency of all conclusions occurring at node N k is _k" Note that:

_k= 1_-15ik and l]j = E 5jk"
i= 1 k= 1

The factors

aj k _ 5jk _ _jk and _jk- 5jk - 5jk

X _k k lqj
X fiik )". 5jh

i=l h=l

are of interest. The first, ajk, denotes the fraction of all conclusions at node N k which are cj. The
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largerthevalueof _Sjk,thehigherthelikelihoodof uniquely identifying conclusion cj at this node.
Since

ICl

O_jk= l
j=]

the larger the number of conclusions at node N k, the smaller the likelihood that all conclusions will

be uniquely differentiated at this node. If only one conclusion, say c 1, is present at node N k, then

Otlk = 1. Ifcj _ N k, then O_jk = 0.

The factor 13jk scales O_jk by the fraction of cj occurrences at all leaf nodes. This factor scales

the current knowledge about conclusion cj at node N k with respect to all the information about

conclusion cj. Hence, the product, Ek(c j) = Otjk 13jk, is the weighted measure that conclusion cj can

be clearly differentiated by the path leading to node N k, given the current level of knowledge.

To illustrate the Concept Strength Metric, consider the tree shown in Fig. 3. The values at each

leaf node N k indicate the nonzero number of times each conclusion cj e C has occurred at that

node. For example, at node N 1, conclusion c 3 occurred twelve times. No other conclusions

occurred at this node. This experiment contained 168 training instances with ICI = 5, rl 1 = 65, r12 =

50, r13 = 20, r14 = 23, 1"15= 10, 41 = 12, _2 = 75, 43 = 60, _4 = 13, and 45 = 8. Table I shows

the values of Ek(cj) and E(cj) for each conclusion.

Several interesting results are observable from the table. Each Ek(cj) in the table has a value

between zero and one. Each Ek(cj) value represents the weighted probability that conclusion cj can

be uniquely identified when tree traversal leads to N k. Conclusion c 3 is of particular interest since

it appears at two nodes and it does not appear with any other conclusions. Hence, based on the
present knowledge level of the tree, it is possible to positively identify all similar concepts whose

A! i

4

Fig. 3 Sample Tree Showing Conclusions at Each Node
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k Ek(c1) Ek(c2) Ek(c3) Ek(c4) Ek(c5)

1 0 0 0.60 0 0

2 0.18 0.54 0 0 0

3 0.31 0.0083 0 0.29 0

4 0 0 0 0.03 0.77

5 0 0 0.40 0 0

E(cj) 0.49 0.548 1 0.32 0.77

Table I. CSM Valuesfor Fig. 3

conclusionisc3. This is reflectedbythefact thatE(c3)= 1. It canbeshownmathematicallythat

E(cj) = 1wheneverfor eachnodeN k such that cj _ N k, then cj is the only conclusion at N k. Such
conclusions are said to be completely differentiated by the learned decision tree.

The next most completely differentiated set of similar concepts are those whose conclusion is c5

since E(c5) = 0.77. Conclusions c 1, c2, and c4 are not as completely differentiated as c 3 and c 5.

These lower CSM values may imply that multiple concepts are present at several leaf nodes.

Individual values of Ek(c j) provide additional information about each conclusion. For example, the

fact that E3(c2) = 0.0083. indicates that this decision tree is a poor differentiator of c2 at

node three. The cause of this poor differentiation may be the result of noise or it may be due to a
lack of training examples which contain this concept.

The E(cj) and Ek(c j) values can be used to determine when the decision tree has reached the

desired level of concept differentiation. They can also be used to guide the learning process by
indicating what types of additional knowledge are needed to improve the tree.

KNOWLEDGE EXTRACTION EXPERIMENT

The objective of this experiment was to extract rules from a database of iris flowers compiled by
Fisher (6). The database contained four flower-description attributes with an associated flower
type: virginica, versicolor, or setosa. Initial plots of attribute vs iris type suggested that neither
sepal length nor sepal width alone were sufficient to predict iris type since several values for each of
these attributes were associated with multiple iris types. Hence, these two attributes were chosen
for the description space.

Utgoff's ID5 (19) was chosen as the extraction mechanism. ID5 was extended to calculate
values of the CSM. Results from these experiments are shown in Table II. Given there were two
attributes; sepal width with 26 values and sepal length with 41 values; and there were 94 leaf
nodes, it can be seen that the resulting decision tree was wide and shallow. There were ten leaf

nodes which contained multiple conclusions. At the conclusion of the learning process, the training
set was used to test how accurately iris variety could be predicted. The tree produced was able to
distinctly classify only 84% of the training instances. This means that 16% of the training instances
fell into one of the ten leaf nodes containing multiple conclusions.
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Evaluationof the knowledge extracted was based primarily on how well the decision tree
differentiated between concepts. The CSM values shown in Table II indicate that the CSM value of
clearly differentiating virginica is the same as the CSM value for versicolor. The fact that

E(setosa) = 1.0 implies that the tree clearly distinguishes the setosa species, since all leaf nodes
containing setosa as a conclusion do not contain any other conclusions.

# Training Instances 150
# Training Attributes 2
# Internal Nodes 20
# Leaf Nodes 94

# Leaf Nodes containing
multiple conclusions 10

E(virginica) = 0.88
E(versicolor) = 0.88
E(setosa) = 1.00

Table II. Results of Iris Tests

CONCLUSIONS

This paper has described the general process of extracting knowledge from databases using
decision-tree classifier systems. These learning mechanisms, based on induction, extract
knowledge from input training instances and represent it in the form of decision trees. The Concept
Strength Metric (CSM) was described for measuring the amount of concept differentiation in these
decision trees. This result is important in helping to determine when sufficient knowledge

extraction has been performed. By examining values of Ek(c j) and E(cj), it can be decided which
conclusions require additional training instances to improve concept differentiation. The CSM may

be effectively used to evaluate concept differentiation in any decision tree. Experimental results
using the Concept Strength Metric are generating interest among practitioners in the diagnostic
community.
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Abstract

This paper describes DEB: a fusion of knowledge base and data base that allows
users to examine only the data which is most useful to them. The system combines a data
base of historical cases of diagnostic trouble-shooting experience with similarity networks.
A menu-driven natural language interface receives input about the user's current problem.

Similarity networks provide the user with references to past cases that are most similar or
most related to those they now face. The user can then choose the case that is most
pertinent and browse its full textual description which, in turn, may include references to
other related cases.

Introduction

The following describes some preliminary results of a NASA Mission Task being
performed by the Machine Intelligence Group at Martin Marietta Manned Space Systems in
New Orleans, where the External Tank for the Space Shuttle is assembled. The goal of the

project is to increase productivity at weld stations by decreasing downtime (Pulaski/
Casadaban 88).

When a downtime is reported a team of weld experts responds to the call. They
work together to determine the cause of the problem. Their goal is to find out how to get
the weld station operational as soon as possible and what to do to keep the problem from
recurring. The result of a weld team call is a completed form that explains the path problem

solving took from initial diagnosis through solution.

DEB grew out of a need to use this weld downtime trouble-shooting information
that is gathered for each occurrence but not referenced afterward. Consequently, when a

problem arises that is very similar to a previous problem, the diagnosis process must start
from scratch. Instead, knowledge stored about similar downtime episodes could be
consulted to lend advice about what to investigate first.

Once it was decided that the domain of aerospace hardware welding was too broad
for a conventional expert system, an effort was started to create a history-based trouble-

shooting assistant.
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Data and Categorical Knowledge

The weld trouble-shooting team originally kept the historical data base in a limited
form. A page or two of trouble-shooting information was recorded on paper but only the
bare minimum of whom, what, and when was stored in the data base.

Our first task was to see that all data recorded at a weld downtime occurrence not

only be written down, but typed into a dBase III plus data base as well (Figure 1). In this
way all knowledge of an event was now retrievable. Data capture began in January of
1988.

Case_Number
Tool_Number
Date of Occurrence
Hours_Down
Vehicle_Effectivity
Problem_Component
Problem_Subcomponent
Problem_Action
Cause_Component
Cause_Subcomponent
CauseAction
Problem_Text
Cause_Text
Action_Text
Follow_Up_Text

Figure 1.

code distinguishing each case. EX: 88/100 is the 100th case in 1988.
tool on which the downtime occurred.
date on which the downtime occurred.
# of hours the tool was inoperable before the problem was fixed.
number of the assembly in the weld fixture EX: LW-51
main component cited in the problem. EX: ROUTER
subpart of the component cited in the problem. EX: MOTOR
action cited in the problem. EX: NOT-OPERATING
main component cited in the cause. EX: LIMIT-SWITCH
subpart of the component cited in the cause EX: ARM
action cited in the cause. EX: NOT-CONTACTING
textual description of the problem.
textual description of what the cause of the problem was.
textual description of what actions were taken for the fix.
any action items that will keep the problem from recurring.

The Weld Downtime Data Base Structure.

Once all the information about a downtime episode is collected, the case is

categorized. This categorical knowledge lies at the heart of DEB and consists of a problem
and a cause generalization.

Each generalization breaks down further using a BNF grammar to yield a
systematic breakdown of allowable feature values for a given field. The problem and cause
are described according to the following feature triplet:

COMPONENT / SUBCOMPONENT / ACTION

Our local expert assigns a category for the problem and cause of each case. For
example, suppose the problem at a certain downtime incident is:

"Router motor is down at tool TO 1A5103"

The expert might categorize this problem as follows:

ROUTER / MOTOR / NOT-OPERATING

The cause of the downtime incident is categorized similarly.

Once the data is captured, it allows for the creation of informative data base sorts.

Reports can then be generated showing which problems are occurring at particular tools,
when, and what is causing them.
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System Description

DEB, in essence, receives user input about a case and finds the top ten most similar

cases. This happens in several steps. First, a C program pre-processes dBase III plus data
records into the format of KnowledgePro topics. Topics are the data structure for

representing similarity network knowledge. Next, these topics are read and used as frames
depicting each weld downtime case, component, subcomponent, and action category used,
as well as each weld tool. The user is prompted to describe their case by selecting the date
of occurrence, the tool, and the component, subcomponent, action triplet which

corresponds to the symptoms of their problem.

DEB then uses these parameters to find the ten most similar cases to the current

problem. This is accomplished using similarity networks (Bailey 88) wherein a similarity
value is retrieved for each aspect of a case as compared to the corresponding aspect of

another case. These aspects are component, subcomponent, action, weld-gantry-type,
weld-tool-type, weld-type, and recency of occurrence. This knowledge resides in the C-
program-generated topic frames. The top ten most similar problems are derived and
presented in a menu where the user can select a particular case and browse it. When a case
is selected, another C program takes over and locates the case in a dBase III plus file,
formats the contents of the case and sends it back to KnowledgePro in a text file which is

then displayed for the user.

The system is written in KnowledgePro from Knowledge Garden Inc., and Turbo
C from Borland International. Data and categorical knowledge are stored in a dBase III

plus data base and similarity network knowledge is stored as KnowledgePro topics used as
frames. A similarity network is a simple knowledge representation scheme which can be
thought of as a set of objects bound by weighted links.The DEB system configuration is
shown in Figure 2.

Problem_Component

Problem Subcomponenl

Problem_Action

Tool_Being_Used

Date of Occurrence

Natural Similarity Top Ten
Menu

Language Network Most
Interface Cases

Turbo C

Pre-

processor

Turbo C

Case

Case Text

Query

Data

Base
Retriever

Turbo C

Figure 2. DEB System Configuration.

KnowledgePro was chosen for its ability to control hypertext with an underlying
language, a rich data structure (topics), and a backward chaining inference engine which
will be used for a future extension. KnowledgePro proved to be extremely slow

communicating with the data base, so a faster data base retrieval system was written in
Turbo C.
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How It Works

First, the pre-processor systematically rummages through the data base and creates
a summary frame for each case description (Figure 3). A frame is also created for each
unique category. This feature frame contains information about the cases this particular
feature has occurred in, which features it is similar to, and which other features it has been

associated with in past case symptom triplets. In this way the pre-processor creates a
similarity network for each problem feature.

Case 88/197
case_number
tool_number
record_number
date of occurrence
problem_triplet
cause_triplet

end

88/197
T01A5002
59
06/21/88
(ROUTER MOTOR NOT-OPERATING)
(ROUTER MOTOR DEFECTIVE)

component ROUTER
is_similar_to
cases_where_seen
subcomponent_list

end

((SAW 0.8))
(88/197 88/209 88/263)
(MOTOR HANDLE MUFFLER INCORRECT-INSTALLATION)

Figure 3. Case Summary and Component Feature Frame Examples.

Next, processing the degree of similarity of one feature to another is handled by C
functions and is procedural (speed constraints on the delivery product required that this part
be rewritten in C and integrated with KnowledgePro, after the intial KnowledgePro
prototype). These similarity values reflect how similar in function or how related two
problem features are.

At the start of the project our expert was consulted and supplied us with similarity
measures in the form of fuzzy linguistic comparisons for all problem features (Schmucker
84). These measures of similarity or relatedness can be visualized as a network. The

nodes are features being compared and the arcs are the results of the comparison (Figure
4). Arcs representing totally-different are not shown.

[s] _ same

[v-s] very-similar
[r-s] rather-similar
[s-s] slightly-similar
[t-d] totally-different

I router-booml-....._[s-s]

I [r-s]"_

[v-sll I router-skatel _1_1r %
It°rch'b°°mL_ \

[sL l_t_orch-skatel

Is-s]

Figure 4. Component-feature Similarity Network Fragment.

520



Each problem feature type has a static weight associated with it based on its

importance in the comparison of two cases (Figure 5). These weights were derived from

interviews with our expert.

Once the similarities for each feature are found they are converted into numbers

(same: 1.0, very-similar: 0.8, rather-similar: 0.6, somewhat-similar: 0.4, slightly-similar:

0.2, totally-different: 0.0). These numbers are then multiplied by the appropriate feature

weight. In this way the total similarity of a similar case versus the base-case will fall in the

range of 0.0 to 1.0, where the greater value reflects a greater similarity.

(0.6) Symptom-triplet Feature
(0.6) Component
(0.2) Subcomponent
(0.2) Action

(0.3) Tool Feature
(0.7) Weld-gantry-type
(0.2) Weld-tool-type
(0.1) Weld-type

(0.1) Date Feature or Recency

= 1.0

Figure 5. Feature Weights.

The weighted similarity value is the measure of how similar a feature is to the base

feature, multiplied by the appropriate feature weight.

The way the networks are processed is as follows:

1. The user provides the system with a description of the problem (i.e., date, tool, component,
subcomponent, action). This is called the base-case.

2. The frame corresponding to the base-component is accessed. The cases in which this component has
been used are stored in the similar-case-list with a weighted similarity-value of "same" (since these

cases have this component in common).
3. Any entries from the is similar to frame slot are stored as similar-feature-entries along with their

weighted similarity-values.
4. For each similar-feature-entry (if any), access its frame and perform step 2 only, appending its case list

to the similar-case-list along with the weighted base-component-to-similar-feature-entry-similarity-
value found.

5. Repeat steps 2, 3, and 4 for the base-subcomponent and base-action just as for the base-component all
the while appending to the similar-case-list or accumulating the weighted similarity of a similar-case to
the base-case if that similar-case is already on the similar-case-list.

6. For the base-case, access the frame corresponding to its tool and find the tool's weld-gantry-type, weld-

tool-type, and weld-type features (Figure 6).
7. For each case on the similar-case-list perform steps 8, 9, 10 & 11.
8. Access the frame corresponding to the case's tool and obtain the tool's weld-gantry-type, weld-tool-type,

and weld-type features.
9. Access the frames for each tool-feature and store its weighted similarity measure against the appropriate

base-case-tool-feature.
10. Compare the similar-case-date to the base-case-date and calculate recency(weighted) according to a

formula in which a case is rated higher when it is more recent.

11. Calculate overall similarity versus the base-case.
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12. Sort the similar-case-list by overall similarity and show the user a menu of the top ten most similar
cases (Figure 7).

13. The user can now choose a case to browse. Once their selection is made, the full case description is
displayed and related cases can be browsed.

gant
I

3" type tool type

vertical _-- barrel

_--torch stationary --p dome

L--torch moving I-- ogive

--vertical & curve [--tank

I'-g°re L roll ring
L--ring to gore cross bar

-- flat

straight
circumferential

I
weld type

VPPA

TIG

Figure 6. Weld Tool Fearures Hierarchy.

Interface Description

The DEB interface uses both menu-driven natural language and hypertext, which
insures that every selection the user can make is valid. Both the initial user interface and

the top ten browser were written in KnowledgePro. At the start of a DEB session, the user
is presented with a sentence fragment in a natural language window and a menu of possible
components to choose from (much like Texas Instrument's Natural Access). Once a
component is chosen, the natural language window is updated to reflect their selection.
Then they are shown a subcomponent menu which is made up of only the subcomponents
related to the selected component. When this choice is made, similar things happen and a
menu of related actions is shown. In this way the interface guides the user's selection and
echoes their menu picks by way of an english sentence. Finally the user is asked to choose
a tool and to enter the date of the downtime problem occurrence.

The problem is that a router motor is not operating on tool TO1A5103. I|
'Top Ten Browsing' _ _ l!

I Would like to browse case ... _
im

Similarity Problem Im

Value Case Date Tool Component / Subcornponent / Actior I[

0.86 88/197 06/21/88 T01A5002 ROUTER/MOTOR/NOT-OPERATING Im

0.81 88/226 07119/88 T03A5012 ROUTER/NOT-OPERATING I!!
0.80 88/196 06120188 T01A5002 ROUTER/NOT-OPERATING ]iS

0.79 88/288 09102188 T01AS002 ROU'[ER/NOT-OP ERATING 1_

0.79 88/319 09130/88 T01A5002 ROUTER/NOT-OPERATING I_

0.74 88/091 03/17/88 T01A5103 ROUTEFI/NOT-MOVING ]B

0.74 88/076 03/03/88 T01A5103 ROUTE FI/NOT-MOVING [_l

0.62 88/031 02/01/88 T02AS006 ROUTER/NOT-OPERATING [_

0.69 88/062 02/24/88 T03A5014 SAW/NOT-ENGAGE I_
0.62 88/066 02126/88 T03A5014 SAW/NOT-ENGAGE [l_

0.56 88/040 02108188 T01A5103 ROUTER/NOT-BACK-GROOVE ]R

0.50 88/095 03/21/88 T01A5103 ROUTER/NOT-CUT-PER-ENG-SPECS 1_
0.42 88/284 08/29/88 T04A5016 ROUTER/MOTOR/SPARKING Im

II!

Figure 7. Top Ten Most Similar Cases Menu.
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When DEB has processed the user's request, a menu appears showing the top ten
most similar past cases (Figure 7). When the selection of a case to browse is made, the full
textual episode description is retrieved from the data base and shown in a window. Using
hypertext, the user can choose to generate another top ten menu based on this trouble-
shooting account's problem feature-triplet or cause feature-triplet. If this case references
another case (by mentioning its case number), the user can highlight this hypertext thread
and DEB will show the corresponding case in the same manner as the case from which it
was spawned. This browsing can continue until the user is done.

Issues and Lessons Learned

During the evolution of this task many issues were discussed, tested and evaluated.
One of the more prevalent was the blurry line that separated problems and causes. At first
thought this does not seem to be an issue, however, it was soon discovered that through
the investigation and categorization of problems and causes there was a relationship much
like a chain. A chain in that, depending on where a problem was discovered, different but

related problem-cause pairs would be named. For example, there is a sensor that detects
how far the weld torch is from the metal part. Suppose this sensor fails causing the torch
to dive into the part. If the sensor was controlled by a computer and the controlling
parameters were input by an engineer, there are more than one problem-cause combination
for this anomaly. The choice depends on where in the chain of events the problem is
discovered. Often a cause is found that followed from another factor that was at first

hidden (perhaps a power surge, in this example).

For these reasons the problem and cause category features were not stored in
separate similarity networks, but grouped together in one. This allows the user to follow
the chain of events possible for a class of downtime occurrences by allowing the user to
browse similar cases which may have been described or categorized differently. The
similarity networks perform well in this task.

It was also discovered that a better batch of cases to browse could be attained by

using the similarity networks on a large base of cases and assigning thresholds to improve
performance. These thresholds may mean limiting the number of similar features each
individual problem feature can have to only the most similar. Another way of instituting
thresholds is to limit the number of cases that are fully processed and sorted for the top ten.

In this way, only those above a certain similarity value after only the symptom-triplets are
compared. These types of enhancements yield the best results for a large historical base of
evcnts.

Future Enhancements

Several enhancements have been decided upon to make DEB a more intelligent

assistant. First, a report module to give statistical analysis of problem/cause trends and a
natural language explanation system will be written. Also to be added is a weld team
formation module that would be an expert system to decide which members of the weld

team are needed to diagnose a problem. This task is currently performed by the weld team
coordinator who calls members of the team based on the problem description called in. A

weld team formation expert system would alleviate the problem of wasting an expert's time

going to a tool site when they are not needed.

523



It would be useful for the system to perform the case problem and cause
categorizationautomatically.A greatamountof expert-derivedrule-basedknowledgeabout
the domainwould beneededalongwith is-ahierarchiesandnatural languagekeyword
extractionroutines.

Yet anotherenhancementourgroupis consideringis to combineDEB with another
AI systemdevelopedherecalledELMO. ELMO is acase-basedmemorybuildingtooland
standsfor EpisodicLong-termMemory Organizer(Pulaski88). Insteadof a similarity
network,ELMO useshierarchiesof knowledgeto makegeneralizationsaboutcases.The
cooperation of the two knowledge representationswould provide added reasoning
capabilityfor futureapplications.

Conclusion

This type of historical browsing capability lends itself to many memory intensive
tasks whether they are reasoned off-line or in real-time. For an intelligent assistant, the
easy and timely access of experience is essential for tasks in the domain of aerospace
manufacturing, as well as other domains. Moreover, this ability is useful for domains in
which events are not assembly-line proven but are similar enough that past experience can
be used to produce a quality product.
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Abstract

This paper describes the design and development of the Adaptive Modeling
System. This system models how a user accesses a relational database management
system in order to improve its performance by discovering use access patterns. In the
current system, these patterns are used to improve the user interface and may be used

to speed data retrieval, support query optimization and support a more flexible data
representation. The system models both syntactic and semantic information about the
user's access and employs both procedural and rule-based logic to manipulate the
model.

Introduction

The users of a database management system (DBMS) often repeat particular

patterns of usage. If these patterns are known during the design phase of the
database, they can be used to structure the data in an efficient manner. Some DBMSs
allow users to manually incorporate information about these patterns into the database
(e.g. create new views, indexes, etc.). However, very few systems are able to
recognize and maintain a model of these patterns for the individual user's benefit.

The Adaptive Modeling System (AMS) is a tool that creates and maintains a model
of a user's queries to a DBMS and the relationships between and within those queries.
The AMS changes the model to constantly adapt to the way in which the DBMS is

currently being accessed by a particular user. As the use of the database changes
over time, the AMS is able to monitor and model these changes automatically.

Furthermore, intelligent use of the knowledge stored in the model enables the system
to recognize patterns and trends. This information can be used by both the users and
the administrator of the DBMS.

This paper describes a system that models a user's accesses to a database. This
knowledge of the user is maintained in the model's knowledge base (KB) to enhance
the user's access to the DBMS. As a user's access to the data changes over time, the

system adapts its knowledge base to reflect those changes. The system learns the
types of actions that a user is performing and the relationships between the data in the
database that those actions imply. The knowledge base models both semantic and

syntactic information in a flexible manner. It is manipulated by both procedural and
rule-based logic. This use of conventional methods and AI techniques (DBMS and
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Knowledge-Based Information and procedural and rule-based logic) creates a
powerful combination for extending a database. The system is designed to enhance
the use of a SQL-based query language to access a relational database system.

Related Research

The system described in this paper integrates research from several areas

including machine learning, object-oriented database design, and entity relationship
design.

Much of the research in machine learning has centered around the idea that a

system can deduce rules from examples [Michalski 1983] [Michalski 1986] [Winston
1984]. Since the AMS operates while users query a database, it has a ready source
of example queries. However, one of the problems with many current learning
systems is that the examples must be correct and static (i.e. if it's correct now, it will

always be correct). The AMS acquires information that is dynamic and at times
incorrect with regard to future information.

Intelligent tutoring systems is an area of adaptive learning that has been explored
by the authors. In many of these tutoring systems a changing model of user behavior
is established such that as incorrect information is given to them, they must respond
accordingly [Visetti 1987] [Woolf 1987]. The tutoring systems also expect the model of
the user to change, as the user becomes more skilled at the task being tutored.

The integration of object-oriented techniques and relational systems [Blaha 1988],
and using modified types of object-oriented structures in the building of database
systems [Chen 1976] are under consideration for the AMS.

Attempts to improve the speed of retrieval of information from databases through
the use of knowledge base and semantic query optimization are also of interest to the

designers of the AMS. Some current efforts in these areas are being undertaken by
[Brunner 1988], [Chakravarthy 1987] and [Malley 1987].

The Basis for the AMS

The AMS is based on the following assumptions:

• When a user accesses data in a database, he does so in a manner that olten leaves specific
traceable patterns. These patterns represent relationships in the data lhat are important to
the user.

• These patterns can be identified and retained by an intelligent modeling system.

• The AMS can use these patterns to enhance the performance o! database systems in a
number of ways.

The AMS is aimed specifically at improving the user interface by making query
predictions of which the user can take advantage when accessing the database. This
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and some of the other improvements that can be realized by using recognized patterns
are listed below:

• Improve The User Interface: Knowledge as to what the user is probably about to do can be
used to give the user meaningful prompts. This will eliminate keystrokes as well as help the
user organize his thoughts.

• Speed Data Retrieval: If the system can accurately predict what data the user is likely to
access next, the data can be retrieved before the user needs it.

• Support Query Optimization: Over time, the system can recognize ways in which users
access the same information in multiple ways. This information could be used by a query
optimization mechanism.

• Allow Flexible Data Representation: The system may be able to reorganize the structure of
the data based upon relationships discovered between data. This would allow the system to
adapt to new unforeseen uses without explicit user or administrator intervention.

• Support Trend Analysis: Trend analysis is based to a large extent upon recognizing
patterns of behavior in a system. Any recognition of these patterns would be of great interest
for trend analysis.

When a given user is accessing data in a database, there are often links between
the individual data items that form patterns. These data patterns are used extensively
when the initial database is being designed (e.g. associated items are often grouped
into one table). In order for these patterns to be used however, they must be known
when the database is designed. Also, some patterns may come into conflict with one
another, and therefore all cannot be incorporated in the initial design.

When users access a particular piece of data, or a particular type of data, they will
often take certain actions either prior to or just after the access of that data. If these

actions occur often, they will mark a pattern in the use of that data, even when these

patterns were not known during the initial database design. In addition, these patterns
are likely to shift with time. The way in which a user accesses data may change as the
needs of that user change.

The system can identify patterns by looking for repeated behavior that occurs with
relation to particular types of data. Since the patterns are likely to change over time,

the system can continue to identify new patterns, and discard old patterns that are no

longer useful.

Basic Components of the AMS

The AMS is a system that may be used in several different ways and, therefore, it is
flexible in its layout and structure. To allow experimentation with different techniques
during development, the system is modular in nature. The AMS itself consists of four

primary internal components (Figure 1): the AMS Interface, the AMS Control Center
(ACC), the Abstract Relation Rule Base (ARRB) and the User Model Knowledge Base
(UMKB). Brief descriptions of these components are given below.
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The AMS Interface is the primary link between the AMS and the User/DBMS.
This window-based interface accepts queries from the user and passes them on to the
DBMS as well as on to the ACC. The interface can display information to the user from
both the DBMS and from the AMS.

The AMS Control Center controls the actions of the AMS. It is where decisions

are made about what information to display to the user, when to invoke the rule base
and how to use the information generated by the AMS components. Since the ACC is
the main control center of the system, its operations must be efficient and its
interactions with the UMKB strictly procedural in nature. The slower rule-based
operations are invoked only on an as-needed basis.

The User Model Knowledge Base is used to store knowledge about the users
of the database. A model of each individual user is stored in the UMKB and is used to

represent how that user accesses the database. The model is represented as tables
in a relational DBMS, and consists of four primary levels: The Syntactic level, the
Semantic level, the Inter-Query level and the Data level. The first two levels are used
to represent syntactic and semantic information about queries of a given user. The last
two levels are used to represent more abstract relationships between queries and
between data items stored in the user's database.

The Abstract Relation Rule Base is used to store rule-based information about

the system's model of the user's behavior. It consists of tables that represent the
premises and conclusions of the rules and how they should work together. The rule
base is generally reserved for the control of more abstract types of modeling and is the
primary mechanism for the modification of the Inter-Query and Data levels of the
knowledge base.

USER

Figure 1: Layout of the AMS
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The User Model Knowledge Base

The UMKB is structured as a set of relational tables with three levels of knowledge
representation. The Semantic level represents knowledge about interactions within
past queries. The Inter-Query level represents knowledge about relationships
between separate queries. The Data level represents knowledge about relationships
between database items.

In all of the levels, the system uses a unique identification (ID) number associated
with each of the user's queries. By tagging information about each item in a query with
the query's unique ID before storage, the entire query can potentially be recreated
later. The IDs are also used in the precedence of relationships between queries since
the IDs are assigned in sequential order. This ordering is exploited when looking for
relationships between queries. For example, with the unique IDs, the knowledge base
can be searched for such things as "What are the attributes of any relation that was
created within the last five queries?" or "Has relation A been modified within the last
several queries?" Also the tuples of some tables have weights associated with them.
These weights represent how frequently and how recently the particular tuple was
used. This information is accessed and updated during the traversal of the tables by
the ACC and the ARRB. It is also used to flush old information from the system.

Tuples in the UMKB are subject to being flushed after a period of dormancy. If a
tuple is not accessed by the system after an appropriate period of time, it is removed

from the system in order to keep the size of the tables manageable. If a tuple is used
frequently (i.e. the user takes the same path frequently) the query ID associated with
that tuple remains current, and where appropriate, the weights remain high. This
information is updated each time the tuple is accessed. If a tuple is not used
frequently, the ID becomes old and any weights are decreased. A bookkeeping
mechanism of the ACC will periodically eliminate tuples with lower weights.

The Semantic level is a representation of past queries made by the user. It
consists of a set of tables that represent the possible SQL queries (CREATE TABLE,
CREATE VIEW, CREATE INDEX, SELECT, etc.). Each command is structured as a set

of tables that represent the important components of that command. For example, the
SELECT command is represented by a set of tables that contain the table names that
the SELECT command is operating on, the attributes selected, the ORDER BY clause
information and others. Each tuple of a table contains information about one particular
query and is tagged with that query's unique ID. By using the ID of a query to select
information from the appropriate tables, the query can be recreated in its entirety. This
level is used by both the ACC for straightforward traversal as well as by the ARRB for
more complex analysis. Since represented queries are broken out into their
component parts, the AMS is able to look for patterns that are close but do not
necessarily match.

The Inter-Query level is used primarily by the ARRB for making abstract
connections between queries. The structure is fairly simple and consists of only one
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table. Each tuple of the table represents one relation between queries. Each tuple

consists of a pair of query IDs, each with a code that marks the type of query (e.g.
SELECT, NESTED SELECT, UPDATE, etc.) and a textual string that designates the
relation between the ID pair. The rule system is able to use this table to store and
retrieve information about relations between query pairs by either looking for the type
of relationship necessary, or by looking for queries related to some specific query (via
the query's ID). The primary key of the table includes both of the query IDs as well as
the relation type. This allows the AMS to keep track of more than one relation between
the same two queries.

The Data Level is also used primarily by the rule base and works in a similar way to
the Inter-Query Level. It too consists of only one table. Each tuple consists of a pair of
textual attributes that represent some type of data in the relational system (e.g. a table
name, column name, etc.), a code that marks the data type of data and another textual
string that designates the relation between the pair of data items. The rule system is
able to use this table to store and retrieve information about relations between any pair
of database entities by either looking for the type of entity or by looking for specific
entities (e.g. all entries for TABLE-A).

The ACC and AMS Interface

The ACC is responsible for the control of the other three components of the AMS.
Whenever the user performs any sort of action such as entering a word or pressing a
function key, the AMS Interface passes this information on to the ACC which performs
two primary actions: 1) It invokes the ARRB and gathers the results and 2) It makes any
necessary changes to the Semantic level of the UMKB. Once these actions have been
taken, the results are examined by the ACC to determine what set of information

should be displayed to the user via the AMS Interface.

This information is presented to the user via a series of windows and menus. The
user is first presented with a menu containing a list of the potential SQL commands he
may choose (SELECT, INSERT, etc). After choosing one of these commands the
Interface brings up a set of windows that represent that command. Each SQL
command has three types of windows: the Initial window, the Current Choice window,
and the Potential Choice window. Figure 2 shows the initial window for the SELECT
command. The boxes represent fields that the user is allowed to move the cursor into.
Each box represents one component of the command and map directly into the tables
that represent the Semantic level of the UMKB. In other words, these boxes represent
the major components of a complete SQL command.

When the user moves the cursor into one of these boxes, the system shows the
user two additional windows (Figure 3). This first window (the Current Choices
window) shows the user the choices he has already made for this component. The
second window (the Potential Choices window) show the user the predicted choices
that the AMS has chosen. The user may then pick choices from this window, or may

type in a component on his own. In either case, the new component is added to the
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current choices list and the user's choice is logged into the various locations of the
UMKB for future reference. The user is allowed to move to and from any box in the
Initial window. This means that the user is allowed to build the SQL command
components in any order he wishes. For example he may choose Table names before
he chooses Attributes, which is of course not valid in standard SQL.

When the user has built a SQL command, he can then send the command on to the
database management system for execution. Since the AMS still retains the

information about the last command, the user can then go back and make any
changes to this command without having to reenter the entire query. Since the user
can enter the components of a SQL command in any order, the AMS can use the
ordering to its advantage. For example, if the user enters the Table names before he
enters the Attribute names, the system will have more knowledge about what Attributes
to predict. Once the user has filled in any appropriate components (enough for a
compete SQL command) he may then have the command sent on to the RDBMS for
execution.
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The Abstract Relation Rule Base

The ARRB is the rule base that does most of the abstract reasoning with the user

model stored in the knowledge base. It is based on a set of tables that represent
information about the rules and some routines in the ACC that represent when and
how the rules are invoked. The ARRB tables contain information about the rules, their
premises and their resultant actions. Each rule is represented in three tables: the
PREMISE Table, the ACTION Table and the RULE_SET table. In addition, each
premise and action of every rule may have a resultant table associated with it.

Since every rule is made up of a set of premises and actions, these groupings are
represented in the RULE SET table. It contains four fields: RULE_NUMBER,
PREMISE_ACTION_NUI_BER, PREMISE_ACTION_FLAG and

LOGICAL_CONNECTION. The primary key is the RULE_NUMBER,
PREMISE_ACTION_NUMBER and the PREMISE_ACTION_FLAG. Each rule has a

unique rule number and is made up of a set of premises and actions, represented by
the PREMISE_ACTION_NUMBER. Premises are distinguished from ACTIONS by the
PREMISE_FLAG. In addition, each premise has a logical connection between it and
the other premises represented by the LOGICAL_CONNECTION attribute.

In the case of premises, the PREMISE_ACTION_NUMBER is used to reference the

PREMISE table. This table is made up of several attributes which represent how the
premise should be tested and where the results of that test will be located. The table
has the following fields: PREMISE_NUMBER, PREMISE_TRIGGER,
PREMISE RESULT LOCATION and PREMISE_RESULT_FLAG. The
PREMISE-NUMBER-is the primary key in the PREMISE table and (if it were

supported) is a foreign key on the PREMISE_ACTION_NUMBER in the RULE_SET
table. The PREMISE TRIGGER contains the name of a user routine that should be

invoked to do the processing that is required to see if the premise is valid. This routine
will be invoked whenever the premise needs to be tested. In other words, whenever
the rule system needs to test a given rule, the PREMISE_TRIGGER for each premise
contained in that rule will be invoked. Also, the routine will be responsible for flagging
either a success or failure in the PREMISE RESULT FLAG. If there is an associated

table containing further results of the premise test, the routine is also responsible for
placing any results in the table. The PREMISE_RESULT_LOCATION attribute
contains the name of this table so that other functions may reference the results.

When an event causes the rule set to be invoked, the ACC clears the

PREMISE_RESULT_LOCATION and begins firing the premises associated with the
rules. It combines the results of the premises in the logical manner defined for each
rule. If one of the sets of premises results in a true result, then the actions for that rule
are invoked. These actions are executed in the same manner as the premise. The
ACTION table contains the following fields: ACTION_NUMBER, ACTION_TRIGGER,
ACTION_RESULT_LOCATION and ACTION_RESULT_FLAG. The

ACTION_NUMBER is the primary key. Each action associated with a firing rule (the

association is defined in the RULE_SET table) is invoked by having the routine name
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stored in the ACTION_TRIGGER attribute executed. The routine is responsible for
taking any action necessary, and returning a result into the ACTION_RESULT_FLAG
and, if appropriate, results into the table defined in the ACTION_RESULT_LOCATION
attribute.

The rule structure of the rule base system allows the AMS a great deal of flexibility,
although this comes at the expense of speed. The premises and actions of rules are
not limited by some specific rule syntax or even a specific language or set of possible
events. In addition, if a defined action is used as a premise in more than one rule, it
will only be invoked once per rule firing. Furthermore, defined actions can be used as
both premises or actions. In the future, this could be the basis for a truly forward or
backward chaining system.

The rule base makes extensive use of the UMKB and is allowed to modify both the
Inter-Query and the Data levels of the KB structure, but it is only invoked if the ACC
determines that it is necessary. In this way, the ACC can retain some level of control
over the knowledge base. The rule base is expected to generate any appropriate
query component predictions based on heuristic assumptions that are contained in the
rules. These predictions are passed to the ACC along with weights that represent the
likelihood of the correctness of each prediction. The ACC will compare these
predictions with those of its own and choose the most likely candidates to display to
the user.

The Use of the AMS Interface and Semantic Level

Before there are any queries made by the user to the database, the AMS Interface
is able to represent the "bare bones" information necessary to support the query
language syntax, but no semantic information. The three levels of the knowledge base
are empty at this point. The tabular structure is there, but the tables contain no tuples.

As a user makes queries to the system, new tuples are added to the tables of the
Semantic level, and the weights of the currently existing tuples are modified. As the
information in the Semantic level accumulates, the ACC is able to make more accurate

predictions. When the user begins a query, the ACC examines the information in the
Semantic structure to help fill in the specific information necessary. The information is

filled by taking the set of tables that represent the given command (e.g. SELECT,
DROP, etc) and looking for patterns that match the current command's structure on a
superficial level. For example, it can find what WHERE clauses were used in the past
whenever the user selected information from a given column in a given table.

The system first determines what the syntactic layout of the command is likely to be
and uses that layout to extract patterns from the Semantic level. Since all tuples have
an associated weight, the system can assign a level of confidence in the patterns

generated. As mentioned before, these ACC generated components predictions are
compared with those generated by the ARRB. The predictions that have the highest

weights are then shown to the user.
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Conclusions

A prototype AMS system is currently being developed and evaluated. It is being
implemented on an IBM compatible PC using the C language and a commercially
available relational DBMS [Tanner 1989]. Early results of the user modeling look
promising, although speed can be enhanced. The rule set stored in the ARRB is being
examined and modified to find the best set for consistent prediction success. In the
current system, both the AMS and the DBMS use the same processor. A migration of
the system to a dual processor environment in which the AMS has a dedicated
processor is planned for the future.
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ABSTRACT

This paper presents an approach for the resolution of the

redundancy of a seven-axis manipulator arm from the AI and expert

systems point of view. This approach is heuristic, analytical, and

globally resolves the redundancy at the position level. When

compared with other approaches, this approach has several improved

performance capabilities, including singularity avoidance,

repeatability, stability, and simplicity.

1 . INTRODUCTION

With an addition of one more degree of freedom (d.o.f.), a yaw

motion of the forearm, to the typical six d.o.f, articulated arms,

the shoulder of the three-link manipulator will have pitch, yaw,

and roll motions (Figure I) . These seven-axis articulated

manipulator arms when compared with the typical six d.o.f, robot

arms may have many advantages, including flexibility,

manipulability, obstacle avoidance, singularity avoidance,

stability, and optimal control. In addition, because of the

similarity to human arm configuration, the seven-axis, three-link

manipulator arm is the best candidate for the master-slave

teleoperated robot useful in hazardous environments. However, the

resolution of the kinematics, control, and dynamics with

redundancy is not an easy task. With the redundant d.o.f., there

will be an infinite number of arm configurations kinematically for

each desired hand position. The motion that maximizes a specific

performance index is the optimal motion for that special

condition. However, the optimal solutions are not easily

accessible due to a highly nonlinear relationship between the

joint angle space and the hand position. Because of the complex

nature of this problem, each approach seems to have its own
drawbacks and limitations. In order to resolve this redundancy

with the already complicated problem, the author employed ([5],

[6] ) human arm motion heuristics to analytically derive the

Support for this research is provided by a grant NAG 023 from NASA

Marshall Space Flight Center.
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inverse kinematics (see the Appendix).The purpose of this paper is

to present this heuristic concept and to compare the approach

with other existing methods.

2. STATEMENT OF THE APPROACH

By observing the human arm motions, two heuristic rules are
concluded:

I) The travel distance of the wrist joint from a hand

position to a new hand position should be a minimum for
each arm motion.

2) The travel distance of the elbow joint from an arm position

to a new arm position should be a minimum for each arm
motion.

In addition, there are two meta-level rules:

i) The first rule can be applied only when the second rule is
satisfied.

2) If the movement of the robot arm violates the joint limit

constraints or obstacle constraints, then a configuration

which satisfies the above two domain specific rules and the
constraints is the solution.

The first two rules state the fact that both the joint travel
distances have to be minimized in order to obtain the kinematic

solution. The first meta rule defines the relationship between

these two domain-specific rules. The first rule is subject to the

constraint of the second rule, and the first rule will be applied

only when the second rule is satisfied. The purpose is to minimize

the use of the lower arm as much as possible since each movement

of the lower arm causes the movement of the forearm and hand

together. This consumes more energy because a bigger moment of

inertia is involved in the movement. The same principle is also

applied to the movement of forearm and hand. In other words, the

travel distance of the wrist joint should also be maintained to a

minimum to ensure the minimization of the energy consumption. The

main idea is to minimize the lower link of the manipulator since

the motion of the lower link causes movement of all the upper

links together. A bigger movement of the lower link will in turn

consume more energy because of the bigger moment of inertia

involved in the motion. The motion with the least amount of energy

consumption is the most comfortable to the body. Besides, for a

given kinetic energy, the optimal arm motion which obeys these

rules is the minimum-time motion and is the fastest way to reach

the new hand position. The second meta rule governs the condition

whenever the arm motions are prohibited because of the violation

of the joint limit constraints or obstacle constraints. Although

this strategy has not yet been developed, a suboptimal
configuration, which relaxes the constraint free minimum-distance

solution according to the imposed constraints, is accessible. Note

that from the point of view of AI and expert systems the second

meta rule is of second-order since it governs all the rest of the
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rules, including the first meta rule. This relaxation strategy may

be an iterative process by relaxing the related joint angles to

the subsequent neighbors according to a prescribed small joint
interval.

The motion control of this seven-axis manipulator arm may be

restated as follows:

Minimize the following performance index,

j = KI* DI2 + k 2 * D22 (I)

subject to the kinematic equations of the manipulator arm and

the joint limit and obstacle avoidance constraints.

Here, D 1 is the elbow joint travel distance and D 2 is the wrist

joint travel distance. K 1 and K 2 are the corresponding weighting

factors with K 1 >> k 2 to make sure that the minimization of the

travel distance of the elbow joint D 1 before minimizing the travel

joint distance of the wrist, D 2. The squares of D 1 and D 2 assure

that D 1 and D 2 will be positive throughout the converging process.

3 • COMPARI SONS

This approach is compared to other approaches in the following

manner:

3.1 INVERSE KINEMATIC METHOD VS. RESOLVED MOTION METHOD

Research has been carried out on the control of redundant arms

mostly through a pseudoinverse matrix, also known as the Moore -

Penrose generalized inverse. The instantaneous joint displacements

are computed from the joint velocities by using the pseudoinverse

J+ of the Jacobian matrix J. For a given hand position, the

resolved motion methods cannot provide the corresponding joint

angles. This implies that the resolved motion technique cannot

directly map the workspace to the joint angle space of the arms.

In other words, the approach is numerical and not analytical.

Because of the instantaneous resolution of the redundancy, this

type of technique also inherits other drawbacks (to be discussed

later). The proposed approach has advantage over the resolved

motion methods by resolving the redundancy analytically and

globally ( not incrementally ) . Benati's approach [2] is

recursive, partly analytical, and partly numerical. The

application of the heuristics rules to the derivation of the

inverse kinematics of a seven-axis manipulator arm is shown in the

Appendix.

3.2 RESOLUTION LEVEL

This approach resolves the redundancy at the position level

rather than resolving the redundancy at the velocity level or at
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the acceleration level.

The resolved motion method has many interesting
characteristics [4]. A desired performance criterion function can

be incorporated in the general solution for the avoidance of joint

limits ([13], [17]), the improvement of the repeatability for

repeated end effector motions ( [i], [ii]) , and the obstacle

avoidance in work space (e.g. [7], [12], [14], [17]) . Another

advantage is the least square property [3] of the pseudoinverse

method which minimizes the sum of squares of joint velocities

which in turn approximately minimizes kinetic energy. However,

this approach has an intrinsic inaccuracy because of the error

accumulation of the linear approximation of the Jacobian matrix.

Therefore, lack of repeatability is the major drawback of this

method (e.g. [4], [8]) . The approach involves the instantaneous

resolution of the redundancy at the velocity level where the sum

of the squares of the joint velocities is minimized. This means

that the kinetic energy is approximately minimized. This method

kinematically resolves the redundancy at the velocity level. Chang

[4] proposed a method called the criterion function method which

has resulted in improved repeatability for end effector motions.

Many researchers (e.g. [8], [i0], [16]) extended the kinematic

resolution method from the velocity level to the acceleration

level by incorporating the generalized inverse into dynamics.

While this method resolves the redundancy at the kinetic level, it

may lead to stability problems. Local tampering with the

energetics of movement has led to global disaster [8].

3.3 SINGULARITIES AND AVOIDANCE

Some arm configurations are singular where the joint angles or

instantaneous joint velocities are impossible to realize. For the

resolved motion approach or other approaches, the joint velocities

for some manipulator configurations sometimes approach

mathematical infinity in the derivation. The joint velocities

that close to the singular points are also too large and are very

difficult to realize. This establishes forbidden regions around

the singular points. A substantial fraction of the workspace is

lost and the degree of freedom of the manipulator is functionally
reduced ([9], [15]).

Unlike other approaches, no singularity and singularity

avoidance consideration are necessary for this approach since the

resolution of redundancy is at the position level, and joint

angles are determined globally not incrementally (Refer to the

Appendix.) This approach is a geometrical approach where only

three inverse matrices appear in the derivation, two rotational

inverse matrices, Rz-I and Rx-i , and one translation inverse

T -I These three are nonsingular matrices since theirmatrix,

determinants are non-zero.

That no singularity exists in this approach implies

improvement of the performance capabilities of the manipulator arm

because singular points functionally reduce manipulator degree of
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freedom. Besides, there is no need to consider the singularity

avoidance in the control or arm movement planning.

3.4 COMPLICATION OF APPROACH

Another major attraction of this approach is the simplicity of

the derivation (Refer to the Appendix.) The resolution of the

redundancy at the position level does not require incorporation of

the dynamics, pseudoinverse, etc. in the derivation. Compared to

other approaches, the derivation is drastically reduced. In

addition, this approach is analytical and geometrical. This means

that the resolution of the redundancy is not incremental or local,

but global. Thus, control and trajectory planning of the

manipulator are much more simplified than those of the other

approaches.

3.5 OPTIMALITY

This approach geometrically applies the heuristic rules for

the resolution of the redundancy. For the resolved motion method,

the kinetic energy is approximately minimized; however, it has the

drawback of poor repeatability. Other extended methods of this

type which attempt to realize the energy minimization have other

problems also, such as stability. It would be a significant

research task to verify the assertion that heuristic application

of these rules does result in minimization of the energy

consumption for manipulator arm movements.

4. SUMMARY AND CONCLUSION

Resolution of seven-axis manipulator redundancy is a very

interesting and important research topic. Unlike most of the

approaches, the redundancy is resolved through the implementation

of heuristic rules in the derivation. It seems to the author that

this approach resolves the very complicated seven-axis redundancy

very easily and has no known drawbacks. In addition to this,

although yet to be verified theoretically, this approach may have
the most desirable feature of true minimization of the kinetic

energy. Since the resolution of the redundancy is at the position

level, the corresponding joint angles are derived analytically and

geometrically. Thus, the resulting joint angles are determined

globally not incrementally. This implies that, unlike other

approaches, the joint angles for a given hand position are given

directly or the joint angle space is a direct mapping from the

workspace. Another very significant advantage of the approach is

that there is no singular point in the derivation. Therefore,

compared with other approaches, this approach has a greater degree

of freedom functionally and has no singularity avoidance problem

in the workspace.

5. APPENDIX

Since the forward kinematics for redundant arms is always

feasible, these heuristics are applied only to the derivation of

inverse kinematics for the seven-axis anthropomorphic arms.
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According to the arm motion characteristics as described above,

the inverse kinematics of a two-link manipulator will be derived.

The two-link strategy for lower arm and forearm is then extended

to a three-link strategy with hand included ([5], [6]).

5.1 THE TWO-LINK STRATEGY

According to Figure 2,the arm positions are represented by the

following three points : the origin of the coordinates

Po(O,O,O), Pl(Xl,Yl, Zl) and P2(x2,Y2,Z2).The point P2,(x2,,Y2,,z2,)

represents the desired position. When P2 reaches P2', the

collection of all possible locations of Pl forms a circle ( denoted

by C ) with center at Pc(Xc,Yc, Zc) and radius r. The objective is

to find the point Pl*(Xl*,Yl*,Zl*) in C such that the distance

between P1 and PI* is minimized. Homogeneous coordinates should be

employed to simplify the required calculation. First of all, PcP2 ,

coordinates of PI* with respect to the original coordinates.

[ Xl,,Yl,,Zl,,l ]t = T-IRz-IRx-I [ Xl,^,yl,^,Zl,^,l ]t

5 .2 THE THREE-LINK EXTENSION

By referring to Figure 3, let Lp = distance (P0, P3 *) • If Lp >

11 + 12 + 13 or, Lp < 11 - ( 12 + 13 ) and 11 > 12 + 13 , then

there is no solution. Evaluate dl= ABS ( 12 - 13 ) , d 2 = 12 + 13 ,

and, D = distance (PI, P3*), If d I <= D <= d2, then do not move

PI, i.e., P1 = PI* Apply the "two-link" method (Section 5.1) to

find P2*. If D < dl, then apply the "two-link" method with length

of link I = 11 and length of link2= ABS( 12 - 13 ) or d I to find the

new location PI* If D > d2, then apply the "two-link" method with

length of link I = 11 and length of link2: 12 + 13, or d 2 to find

new PI*.

Because the joint limits are not imposed, PI*P2*P3* is always

in a straight line for the last two cases..
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Abstract

The knowledge based simulator developed in the artificial intelligence laboratory at the
West Virginia University has become a working test bed for experimenting with intelligent
reasoning architectures.With this simulator, recently, small experiments have been done by
the authors' group with an aim to simulate robot behavior to avoid colliding paths. An
automatic extension of such e_periments to intelligently planning robots in space demands
advanced reasoning architectares. This paper explores one such architecture for general
purpose problem solving. The robot, seen as a knowledge base machine, goes via
predesigned abstraction mechanism for problem understanding and response generation.The
three phases in one such abstraction scheme are : (i) abstraction for representation, (ii)
abstraction for evaluation, and (iii) abstraction for resolution. Such abstractions require
multimodality. This multimodality requires the use of intensional variables to deal with
beliefs in the system. Abstraction mechanisms help in synthesizing possible propagating
lattices for such beliefs. The machine controller enters into a sixth generation paradigm.

1.INTRODUCTION

" All new technologies develop within the background of a tacit
understanding of human nature of human work. The use of technology in
turn leads to fundamental changes in what we do, and ultimately to what is to
be human. We encounter the deep questions of design when we recognize
that in designing tools we are designing ways of being. By confronting these
questions directly, we ¢.an develop a new background for understanding
computer technology --- one that can lead to important advances in the
design and use of computer systems." This is a quotation from Winograd and
Flores (6).

The already announced program for the sixth generation world of computation (4)
actually touches the basic content of the above equation. In one form of expression (3), the
sixth generation computational activities of the next few years explores learning and emotion,
parallel knowledge systems, audio and visual sensors with multimodal modeling. In this
game, part of the supporting hardware is optical storage and logic, organic processor
elements and routine engineering and maintenance of full-sized knowledge based systems.

This paper attempts to project views on a sixth generation robot. The robot is intelligent to
generate plans and take actions independently. The original idea comes from some
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computationalattemptmadein thisschool'sartificial intelligencelaboratoryto simulaterobot
behavior while avoiding colliding paths.The programmingenvironmentis a knowledge
based simulation system developedearlier (1). In this system of knowledge based
simulationframeshavebeenusedto representobjectsandtheir relationships,andrulesto
representproceduralbehavior;_of objects.Model makingin this systembecomesexplicit,
understandable,modifiable and self-explanatory.By usinga frame languageto represent
domainconceptssuchasobject structureand goals,thereis a one-to-onecorrespondance
betweenthedomainandthesimulationmodelAlso, by usingrulestorepresentbehavior,the
specification and modification of the behavior becomeeasier.Explanation generation
techniquesdevelopedaround the rule basedsystemprovide basis for explaining event
behaviors.Recently,in the artificial intelligencelaboratoryof in this schoolattemptsare
beingmadeto understandtheprocessof encodingobjectsin framessideby sidein termsof
intensionalandextensionalvariables.Theextensionalapproachis not new.It is alsoknown
asrule based,procedurebasedor productionsystems.Thewell-known predicatecalculus
logic works herestrongly.The other system,the intensionalsystemis just theopposite.
Here,non-predicatecalculus logic entersautomatically.We dealwith possible worlds.
Objects in frame carry beliefs as has been suggested for the sixth generation computations.
They arise because of uncertainties present in the computation. It is well-known that
intensional systems are semantically clear but computationaUy clumsy. It is proposed that for
a smart robot capable of intelligent decision making and plan generation, intensional approach
is worth attempting. In the following sections very briefly is described how the world
appears in the eye of one such sixth generation robot. Also, this robot's smooth living with
intelligent decision making and plan generation is aided by a three-phase abstraction hierarchy
process. And, explanations have been provided on how such abstractions help the robot in
simulating its actions in an uncertain world full of plausibility.

2.THE WORLD IN THE EYE OF THE ROBOT

To the robot, the world is always in a particular state at a particular time. A series of such
states will appear as history. The robot is capable of witnessing and recording such world
states. The robot's knowledge base classifies history in the following form:

world state

• •

T •

history

r

m

objects

t

relation

functions

Fig.1

The world identifies a particular world state (s) by an event (e). This identification is

characterized by a belief function which has a well-maintained architecture of propagation.
For example, let there be two belief functions Z1 and Z2 characterizing two world states W
and s. If Z1 is true when event occurs, then Z2 will be true in the resulting states. That is,
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VW, S.Z1 (s) A OCCURS (e)(s) Z2 (SUCC(s))

In the present case, belief functions Z1 and Z2 are actually characteristics of predefined
metalevel analysis before indexing a world state by a belief function. The overall
architecture is as follows:

belief function

attachable to world

states

I
metalevel analysis

via simulation of

the world behavior

1
knowledge base for
the world behavior

action plan of

the robot

1
problem &

solution space

Fig. 2

The present author's group has implemented a substantial amount of work on the
metalevel analysis via simulation of the world behavior. The work is being implemented in
an object oriented knowledge based system high-lighting encapsulation and inheritance
(5). Problem formulation, model building, data acquisition, model translation,
verification, experiment planning, analysis of result .... all have been treated in the program
with an aim to bring a closed world subject to the domain of an open world reasoning
process. Figure 3 describes the implemented knowledge based simulation environment (1).

In the simulation environment described in figure 3, the user will describe the system he
or she wishes to model as well as the results he expects from the simulation interface (SI).
The interface will translate this decsription into a representation used internally. The
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representationwill alsoindicatewhatresultstomeasurewhile themodelisexecutedaswell
aswhichof theseresultsto displaygraphically.Themodelsynthesizer(MS)will interpret

Requestfor I
Clarification 1

Problem I
Description ,..A

Goal I
Description

Solution [

KB

KB : Knowledge Base
MS : Model Synthesizer
SA : Simulation Analyzer
SE : Simulation Engine
SI : Simulation

Fig.3

the scenario representation into the simulation target language and build a simulation
model. Once the simulation engine (SE) has executed the model, the model analyzer will
translate the results of the simulation back into the representation of the results to determine

if the goals have been satisfied. If they have, then the simulation analyzer reports back to
the simulation interface, which in turn, translates the results to the user. If the goal has not
been satisfied, then the simulation analyzer will make modifications to the model by
creating one or more scenarios. This process continues until the desired goals are met or
some time limit has reached.

3. THREE PHASES IN ABSTRACTION HIERARCHY

To survive in one such aforementioned world of events and states, the robot needs a

good planning mechanism. S ach mechanisms are supported by a strong program in the
science and craft of knowledgd base development. It has been sketched below.

To create a knowledge ba _e appropriate discipline needs to be followed that preserves
consistency. Obviously, knowledge will come from distributed sources. Retrieval and

modification thus become complex. Encoding facts, beliefs and relationships with
structured learning should be generated too. Any action, taken by the robot, then is done
from a flexible and accessible repository of the shared knowledge of various participants.
In order to achieve this, an architecture of the three-phase abstraction process hierarchy will
be narrated now. Theses three hierarchies are : representation, evaluation and resolution.
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Phase- 1:Representation

The robot is essentially a knowledge base machine. Knowledge acquisition for such a
machine is very difficult. A very stringently tested policy must, therefore, be guaranteed
for this. In this phase-1 level, the robot is able to generate a series of reasoning process.
This is based upon an automatic problem recognition and model based approach to the
solution of the problem. In the current system, for knowledge representation, a network of
schema representation language is used. This represents the physical/abstract entities of the
system to be modeled. Past research in this laboaratory showed that, this representation
scheme provides a good simulation environment in addition to simulation. The robot is
waived of maintaining multiple models which eliminates extra cost.

Phase-2:Evaluation

Before adventing any action, the robot needs an assessment of possible alternative
items of their relative applicability. This has been facilitated mostly because of the use of
object oriented approach to model representation. Here, objects have one-to-one
correspondance with domain entities and they have methods explaining their behavior. This
has provided flexibility in creating and altering entities and their behavior without altering
the simulation model interpretor.

Phase-3:Resolution

In this abstraction, the robot is trying to design the most appropriate action under
certain specified goals and constraints. The specification on constraints is achieved by
simulation. One possible architecture is shown in figure 4.

problem & solution space

1constraints

retrieval
l _,t_trumentation

Iac"°°°enera''ooIver, --ic°ns'ra'n'sI

instrumentation

Fig.4

The above phase-3 architecture simulates a strong knowledge system support for intelligent

plan generation by robots.
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Thethreestepsin abstractionhelpsin updatingandrevisionof beliefwhich is necessary
to strengthen evidential support. This estblishesa strong goal directed reasoning
mechanismfor theknowledgebasedsystem.
4.CONCLUSION

The whole environmentof knowledgebasedsimulationcomprisesof a sequenceof
experiments,where,eachexperimentmeasureshowwell ascenario(i.e.,alteredversionof
anoriginal model)optimizesoneor moregoals.Thepurposeof introducingathreephase
abstractionschemeis to let tile robot justify, rectify, analyze,assembleits own beliefs
beforeplanninganactionleadingto agoal.Thisattitudeisexpectedfroma sixthgeneration
robot. It, while taking actions,beginssimulationsfirst with the specificationof a setof
goalswhichresultin the instrumentationof ascenarioin orderto gatherdata.Uncertainties
in dataaredealtwith intensionalmechanism,with beliefsasconstraintson thesimulation
trajectory. Currently, we are in searchof effective instrumentationsto managethese
constraintsappropriately.
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ABSTRACT

Robot dynamics and control will become an important issue for productive platforms in

space. Robotic operations will be necessary for both man tended stations and for the efficient

performance of routine operations in a manned platform. The current constraints on the use of

robotic devices in a microgravity environment appears to be due to safety concerns and an

anticipated increase in acceleration levels due to manipulator motion.

The robot used for the initial studies was a UMI RTX robot, which was adapted to

operate in a materials processing workcell to simulate sample changing in a microgravity
environment. The robotic cell was flown several times on the KC-135 aircraft at Ellington Field.

The primary objective of the initial flights was to determine operating characteristics of both the

robot and the operator in the variable gravity of the KC-135 during parabolic manuevers.

This study demonstrated that the KC-135 aircraft can be used for observing dynamics of

robotic manipulators. We also observed the difficulties associated with humans performing

teleoperation tasks during varying G levels and can provide insight into some areas in which the

use of artificial techniques would provide improved system performance.

Additionally a graphic simulation of the workcell was developed on a Silicon Graphics

Workstation using the IGRIP simulation language from Deneb Robotics. The simulation is

intended to be used for predictive displays of the robot operating on the aircraft. It is also

anticipated that this simulation can be useful for off-line programming of tasks in the future.

INTRODUCTION

Most texts and papers dealing with kinematics and dynamics of robots assume that the

manipulator is composed of joints separated by rigid links. However; in recent years several

authors have published papers dealing with the dynamics of flexible manipulators, particularly

for the application of robots in space, la Additional concepts which have to be worked out in

any robotic implementation for a space platform include teleoperation and degree of autonomous
control. 3.s
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Lightweight armsarenecessaryfor space,primarily for thecostsbenefitsderivedfrom
their reducedweight.6 However, lighter weight arms have to necessarily flex during movement.

Flexure of the arms performing a task requiring precision requires some control mechanism to

insure that the end-effector is at the proper place and orientation with respect to the

workpiece. Flexing motions of the arm will cause (1) accelerations to feed back into the base

support of the robot, (2) transmit accelerations into the sample being transported, or

(3)take forever to perform a task. The first effect will obviously destroy the microgravity
environment of the Space Station, while the second will impact experiments such as the

delicate protein crystals which are to be grown in space. In some cases slow movements may be

acceptable for (3); however it certainly will not be suitable for all tasks aboard the Space
Station.

One must also include the reasoning that for man and robots to co-exist in the space

environment, the robot must be non-threatening to man. Lightweight arms are the only ones

which satisfy that criteria. For space applications, a Cincinnati-Milacron T3 is not only over-

weight, but also may be threatening to humans trespassing in its working volume. Artificial

Intelligence will also have to provide a major role for robots to enter into the space activities.

Current systems such as the Flight Teleoperator System (FTS) and the Orbital Manuevering

Vehicle (OMV) will certainly develop some intelligence with time. 7 Allowing some degree of

autonomy due to time delay communications for teleoperation over large distances is necessary.
The robot controls then will have certain motions embedded in the control software that do not

need explicit operator communication, except for emergency control, such as ABORT. AI will

have to be part of the embedded software control. Time delays make for precarious situations in

performing teleoperation from large distances. Tasks may be accomplished in a more reasonable

manner and more success using some AI techniques.

This study was initiated in response to the need to determine the adverse parameters which

might exist for robotic/telerobotic operation in a microgravity environment. The first part of this

study has been to build up hardware to perform reduced gravity observations on a small robotic

arm and to develop a graphical simulation of the robotic workcell. We anticipate combining these

two efforts at a later time for predictive display capability in a remote control environment. Also

at that time we will begin to develop control strategies using AI for remote teleoperation. The

initial experiments will be performed on the KC-135 aircraft since TDRSS satellite telemetry will
soon be available to onboard experiments.

REDUCED GRAVITY EXPERIMENTS

A major goal was to evaluate a small robot system, such as the UMI RTX, for materials

processing applications in low gravity and determine the characteristics of a robot arm in a space

environment, particularly with respect to accelerations which might impact materials grown on
a space platform.

A materials transfer workcell was assembled to simulate the changing of sample ampoules

as might occur aboard a space laboratory. Accelerometer packages were included for determining
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the G levels of the workcell and the at the end-effector.Severalflights were takenwith the
workcell, improving somedata taking capabilitieseach time. One experimentalconcernwas
whethera short enough,but meaningfultask could be developed.The task neededto take no
longerthanaround22 secondsto fit within themicrogravityportion of theparabolas.However,
on eachflight somewherebetween25 and40 parabolasare flown allowing a short task to be
repeatedlyrun and measured,or a long taskpossibily to be brokeninto consecutivesteps.

The task for the first flights wasa simple ampouleexchangefrom onerack to another.
During thehighergravity portionof the parabolatherobot could be reset,and anothertaskrun
readied.Thehumanoperatorwasableto train therobot to performa materialstransferfunction
within the20secondsdesired.Thefirst computerusedwith theexperimentdid not allow for both
control of therobotandreadingof theaccelerometerpackageatthesametime. Thenextupgrade
wasto a 386basedcomputer,which enabledsomeimprovementsin thedataacquisitionprocess;
but the multi-tasking softwareusedat that time still did not permit the I/O commandsto the
robot to operate properly. Consequentlywe never did get to control the robot and take
accelerationdatasimultaneouslyin theseflights. Future task upgradesshouldallow this to be
done.

A numberof lessonswere learnedwith this seriesof experiments.The RTX robot uses
plasticbelts for actuationof the links andopticalencodersfor positionand velocity control.
The slippageandflexing of thebeltscausedexcessivejitter andaccelerationsat theend-effector.
We believethat the belt-drivenactuationwould not be acceptablefor experimentssuchasthe
protein crystalgrowthstudiesdueto thelackof controlof accelerationsat theend-effector.The
control system;however,is PID and appearedto work well whetherthe task was learnedin 1
G and performedin low G or vice-versa.However, it was tediousto teachthe robot during
parabolas,mainly becausewe hadfew visual aidsto assistin thecorrectorientationof the end
effector; particularly for inserting the sampleampouleinto its holder.A borrowedfiber-optic
borescopeprovidedlittle depthperceptionandwasnotusefulfor this study. In additionteaching
a robotic devicefor precisionmovementscancertainly be improved throughmore innovative
approachesusingembeddedsensorsor vision systemswith someautonomouslocal control.

A major conceptwhich might be importantin termsof promoting telescienceexperiments
to usetheKC-135wouldbeto implementtheaboveexperimentsusingremotemanipulationfrom
the ground.TheKC-135 aircraft facility at Johnson Space Center has indicated interest in these

types of experiments using the TDDRS satellite for transmission purposes. Teaching the robot

remotely and then performing the task from the ground would be an ideal simulation for space

teleoperation.

IGRIP SIMULATION RESULTS

The RTX robot workcell was modelled on a Silicon Graphics IRIS work station using the

IGRIP off-line programming language and simulation tools developed by Deneb Robotics. The

simulation was generated with version 1.0. Later versions offer some enhancements which were

not available in our simulation. In fact no off-line programming is actually available at the
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moment;however,it canbeperformedwith later versionsandwould certainly be a necessary
tool for the space-basedactivities.

In IGRIP,ageometricmodelis designedusingthroughthecreationof individualpans.These
partsareattachedin relation to eachotherandsavedasa device.As a device,
severalnon=geometricpropertiesareentered,suchaskinematics,velocities,andacceleration.The
final workcell consistsof the robotmodelandthe workcellmodel.

A PART is madeup of oneor moreOBJECTS.SimpleOBJECTSarecreatedthroughthe
useof cadprimitives.Examplesof Cadprimitivesusedon theRTX andworkstationmodelare
theBLOCK, WEDGE, andCYLINDER. Additional OBJECTSaremadethroughtheuseof the
MIRROR andCLONE commands.OBJECTSwhichareconnectedandmovetogetheraresaved
asa PART.

ThePARTSareassembledin theCREATEDEVICE moduleby invoking theNEW DEVICE
commandandspecifyingthenumberof degreesof freedom.Beginningwith thebase,eachPART
is attachedto thepreviousPART and translated(x,y,z) or rotated(roll, pitch, yaw) to its new
position.Onceall PARTSare in place,it is savedasa DEVICE.

The ATrRIBUTES of theDEVICE aredefinednext. LINK TYPES,LINK LIMITS, Max
Velocity, and Max accelerationare then entered.The Degreesof Freedomare specifiedby
choosingthe axis for rotation or translationcorresondingto teachlink. Selectingthe
KINEMATICS commandgives theoptionof jogging by links or througha kinematicsroutine.
The RTX model hasa user-kinematicsroutinedefined.

In the CREATE WORKCELL module,themodelsof the robot andworkstaionareplaced
together in relation to one another and saved. It is here in the workcell that a device is
programmed.With the user-definedkinematics specification, a sequenceof enteredlink
movementsare savedin a program.The MOVE commandenablesthe selectionof a link and
input asto the translationalor rotationaldistance.An option is availableasto whetheror
not the link movementwill be simultaneouswith other link movements.The programis then
savedfor later recall.

To view theprogram,oneusestheLOAD command.TheDEVICE mustbeactivatedbefore
simulationcanoccur.Simulationtimestepsize(SIM STEPSIZE) is anoptionadjustingthetime
icrementbetweensimulationupdates.This altersthe speedof the simulation.

Duringasimulation,it is usefulto checkfor collisions.A primaryDEVICE is selected.ADD
TO QUEUEputsthedevicesselectedinto theCollision Queueof theprimary DEVICE. Checks
for CollisionsandNearMissesareavailable.TheprimaryDEVICE hastheoptionto stopor not
upondetectionof a Collision, Near Miss,or both.

As these studies continue, we hope to be able to upgrade to a newer version of IGRIP and

continue with the development of the predictive display capability for the teleoperation

experiments on the KC-135.
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Futureplanscall for the incorporationof a lightweight video cameraplacedon or near
the arm to provide viewing of the workspace. Graphic overlays, giving supporting information,

or command cues may be added. An on-board operator could try using primarily the video view

to attempt to alter the robot's task. Simple task altering commands such as "go to rackspace x"

would be pre-programmed to allow easy, and fast, task modification. This would also be

necessary for remote telescience experiments in general, as there may be no on-site person to

implement or program complex command sequences.

CONCLUSIONS

It has been demonstrated that the KC-135 aircraft can function appropriately as a testbed for

robotic tasks in reduced gravity environment, provided that simple and short duration tasks are

used. In many cases, larger tasks can be broken into several short tasks, allowing relevant test
measurements to be made over a short period of time. For space tasks, the advantage is the

ability tp view and study manipulator actions in a low gravity environment before going into

space. Simple PID controllers designed for ground-based operation do work in reduced gravity,

although low cost robots, such as the UMI RTX exhibit excessive jitter and accelerations due to
the actuators used in their construction. However, the possibility of using off-the-shelf, or slightly

modified labortory manipulators in the pressurized modules may still provide access to affordable

remote experimentation opportunities.

Much can be learned by performing teleoperation demonstrations on the KC-135 aircraft.

However, improved sensing is needed for precision training of tasks performed in the

reduced gravity of the aircraft. With time, a testbed for remote microgravity simulation could be

developed, which combines both the graphic simulation and on-board manipulation. While the

UMI RTX is not suitable for precise work, other laboratory robots, which have have been

designed for precision motion, can be tested.
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Abstract

The dominant technology for developing AI applications is to work in a multi-mechanism,

integrated, knowledge-based system (KBS) development environment (e.g., KEETM).

Unfortunately, systems developed in such environments are inappropriate for deliver-

ing many applications- most importantly, they carry the baggage of the entire Lisp

environment and are not written in "conventional" languages. One resolution of this

problem would be to "compile" applications from complex environments to conventional

languages. Here we report on our first efforts to develop a system for compiling KBS de-

veloped in KEE to ADA TM. We call this system KATYDID, for KEE/Ada Translation

Yields Development Into Delivery. KATYDID includes early prototypes of a run-time

KEE core (object-structure) library module for ADA, and translation mechanisms for

knowledge structures, rules, and Lisp code to ADA. Using these tools, we have (not

quite automatically) compiled part of a simple expert system to run in a purely ADA

environment. This experience has given us various insights on ADA as an artificial intel-

ligence programming language, potential solutions of some of the engineering difficulties

encountered in early work, and inspiration on future system development.

1 Overview

Our long-term goal is that after a KEE prototype has "settled down," one pushes a

few buttons and the system produces several files of ADA subprograms (and data files

for these programs) that encode the application. After transferring this code to the

target machine, it is compiled and linked with a library of KEE support subprograms

557



and with the application or interface in which it is to be embedded. (Thus, in ADA
terms, the product of the translation processis an ADA library subprogram that uses

an ADA-language, KEE-core library subprogram.) This optimum environment would

include facilities for examining and modifying the code produced by the translation, for

further development of the application in ADA, and for incorporating these changes in

the KEE environment for repeated translation.

Here we report on our first efforts to develop a system for compiling KBS developed

in KEE to ADA. We call this system KATYDID, for Kee/Ada Translation Yields Devel-

opment Into Delivery. KATYDID has components that run in the KEE and REFINE TM

Lisp-based environments and in arbitrary ADA environments. The components of the

KATYDID system are:

• The KATYDID core. The core is an ADA-language library which supports the

underlying KEE-like object-system base functionality.

The knowledge-base dumper. This system, written in KEE and REFINE,

generates structures that can be used by the KATYDID core to recreate a version

of an application knowledge base.

The rule compiler KRICKIT (Kee/ada Rule Invocation Compiler KIT).

KRICKIT is a REFINE program that takes a set of backward chaining KEE rules

and a set of pattern-directed queries on those rules. It compiles them into ADA

functions that, when used in conjunction with the KATYDID core, have the same

effect as running those queries in KEE.

The Lisp-To-ADA translator CIKADA (Commonlisp In Kee to ADA).

CIKADA is a REFINE program that translates the Lisp code of a KEE application

to ADA.

As part of our early efforts, we have succeeded in compiling part of a NASA prototype

system called CS-1/FIXER [8]. CS-1/FIXER, by reasoning from a structural model, di-

agnoses and suggests repair actions for a space-based air purification system. Our demon-

stration system lacks the graphics and display panel mechanisms of the original; we have

also hit some severe size limitations of our ADA compiler. However, using our typescript,

menu-based interface, we can break the system components and obtain diagnoses of these

breakages from their symptoms using the CS-1/FIXER rules. Additionally, we are able

to dynamically construct object systems from the keyboard or through ADA programs.

Article overview. This article contains four more sections. In Section 2, we discuss

the run-time KATYDID core. In Section 3, we turn to mechanisms for translation from

Lisp-based to ADA-based programs, discussing the compilation process itself, compiling

Lisp code to ADA, and compiling rules. In Section 4 we discuss our observations on the

KBS compilation process and in Section 5, present our plans for extending this work.
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2 The KATYDID core

The KEE system is an environment for building knowledge-based systems. KEE is object-

centered and integrates several AI problem-solving paradigms, including (1) frames,

(2) inheritance, (3) access-oriented programming (demons), (4) ob ject-oriented program-

ming, (5) multiple-worlds, (6) truth maintenance, and (7) production rules, with (8) fa-

cilities for querying, altering, and displaying the resulting structures. The first six of

these form the KEE core. Unfortunately, space limitations preclude our giving a detailed

description of KEE. Additional detail can be found in several of the references [2,5,6].

The KATYDID core is an approximately 10,000 line ADA program that implements

the functionality of much of the KEE core. (In certain interesting respects, its func-

tionality exceeds that of KEE.) The gross structure of the KATYDID core is perhaps

best illustrated as having three layers: (1) Structural operations: The basic types of the

KATYDID core and the primitive operations on these types; (2) Core functionality: The

code that implements the "KEE-like" behavior of the KATYDID core. This includes the

functions that store and retrieve slot values, create units and slots, invoke active values,

index slots for the rule system, and perform inheritance; and (3) Core interface: The pre-

sentation of the functionality of the core in the conventional KEE form to applications.

That is, the functions of the user's manual are at this level.

Most of the application code rests on the user level. However, ADA's lack of dy-

namic method binding requires that application methods and demons be inserted (by

the compiler) under the "core functionality" layer.

Primitive types and data structures. In a strongly-typed language such as ADA,

there is benefit to not multiplying types. Towards this end, in KATYDID we implemented

a uniform treatment of knowledge bases, units, slots, facets and so forth. Thus, as in

Opus [3,4], KATYDID implements a fully recursive unit structure. The data type layer

supports primitives for accessing and modifying the fields of an object.

As an (effectively) embedded system, the KATYDID core needs a language for com-

municating with its callers. It is not enough just to provide objects, since much of the

access to KEE objects is symbolic. This leads us to our second datatype, the symbol.

Like Lisp, KATYDID has the equivalent of oblists and symbol properties.

ADA is strongly typed. If objects are to have values, ADA must know their type.

We selected six types as appropriate for slot values: integers, floats, booleans, objects,

symbols, and lists. We defined a box as a variant record of two fields, one of which

indicates the type of the content of the box and the second, the actual data. Lists are

box_lists; the car of such a list is itself a box, the cdr, a box_.list. In essence, this duplicates

the "tagged values" that are invisibly supported by Lisp systems. In KATYDID we have

to carry the tagging along with each box and explicitly unwrap the box to get to its data.

The datatype layer supports a moderate range of functions for manipulating box_lists

--functions for placing a value into a box, taking it out, comparing boxes and values

for equality, consing values onto box_lists, car, cdr, rplaca, and rplacd, and a small

complement of list manipulation primitives such as membership and set union.

Core functionality. The KATYDID core implements the following important classes of
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KEE functionality: object creation; retrieval from symbolic name to data structure; the
specification of inheritance links, including the retrieval of the closureof the inheritance
link relationships; inheritance, including several predefined inheritance roles; indexing
slots of a specified names for the rule system; object properties; and the storing and
retrieving of valuesof slots, completewith coercionbetweendata types and active values.
We comment on someof the more interesting aspectsof thesemechanismsbelow.

Inheritance links and shared structures. Like KEE, KATYDID supports two

varieties of links, superclass/subclass and class/instance. One can make any object

be of subclass (subset) or instance (set element) of any other. Such a declaration

establishes a base link between the two. A link between two objects, parent and

child, causes every member sub-object (e.g., member slot) of the parent to exist

in the child. If the link is a subclass link, the child has a member sub-object; if

the link is an instance link, the child has an own sub-object. If the child already

has a sub-object of that name, the two sub-objects are merged. If not, the child

shares the sub-object with its parent. We implement this by creating a derived link

between a non-shared sub-object and its parent sub-object. This allows the normal

inheritance process to work between them. The process is repeated recursively

down the sub-object hierarchy.

The greatest complexity of the object manipulation comes through the manipu-

lation of objects that share substructures. More precisely, if a parent, G, has a

member slot, S, and G's descendant C does not have any local information about

that slot, C shares most of the data structure of S. This saves considerable stor-

age at the expense of dramatically increasing program complexity. When a shared

object acquires some local information (such as a value on one of its slots or facets

or multiple parents that do not share the same structure) it becomes necessary to

"make that object local" to its superior. This may involve search, as the process

needs to split the children formerly noted on the parent between the parent and

the newly-local child.

Inheritance of values. Slots acquire values both from the explicit, local place-

ment of that value on the slot (local values) and because the slot is a descendant

of other (member) slots which have values. The slot's visible values are based on

combining these through an inheritance role. In KATYDID we implemented several

of KEE's inheritance roles: union, which does a set union of all parent values with

the child's local values; unique (or variable values), which ignores all parent values;

and override values, which uses local values, if any, otherwise the values of some

parent. We extended these roles with a prototype role which acquires its parent's

values at object creation or linkage but then acts like the role unique.

Slot values. KATYDID includes the full range of functions of storing into and

retrieving from the values of slots. The core supports two kinds of active values,

AVGETs and AVPUTs, but not the active values associated with attaching and

detaching from a slot.
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User layer. KATYDID presentsin the user layer most of the significant functionality
of the KEE core described above. The semantics of KEE often specify that a particular

argument can be either a symbol or an object. When such a function has a single such

parameter, this leads to the user layer providing overloaded versions of such functions,

for symbol, object, and boxed values.

Knowledge-base construction. Rather than develop a symbolic representation of a

knowledge base, we chose to have the knowledge-base dumper create ADA procedures

that, by calling functions such as create_unit and put_values, realize the appropriate

structures. This is accomplished by constructing Lisp functions to re-create the knowl-

edge base and then running those functions through the Lisp to ADA translator discussed

below. This "compiled KB" mechanism has the advantages that (1) knowledge base load-

ing is extremely quick, (2) the code itself can be modified, and (3) it was straightforward

to implement. This approach has the disadvantages that (1) the code for creating the

KB remains part of the running core image (2) there is no natural mechanism for saving

changed knowledge bases, and (3) the size of the files produced can cause problems for

some compilers.

Omissions. The KATYDID core, as currently implemented, lacks some of the KEE core

functionalities. Most critical of these are (1) the lack of functions for eliminating struc-

ture, i.e., deleting objects or removing inheritance links, (2) mechanisms for symbolically

loading and saving knowledge bases, (3) valueclass and cardinality checks, (4) obscure

inheritance roles, and (5) the ATMS and KEEworlds.

3 System translation

In this section, we (1) overview the nature of the translation process and then discuss how

we apply translation to problems of (2) compiling Lisp code and (3) compiling KEE rules.

KATYDID Translation. The purpose of the KATYDID system is to take a KEE ap-

plication and deliver it in ADA. Almost all KEE applications include some Lisp programs;

many of them include KEE rules. The KATYDID approach to rules and programs is to

compile them into ADA. 1 We call the KATYDID rule compiler KRICKIT (KEEADA

Rule Invocation Compiler KIT) and the Lisp-To-ADA translator CIKADA (Commonlisp

In KEE to ADA).

Instead of writing our compiler in a procedural language like C or Pascal, we have

chosen to use a transformational implementation [1]. A program transformation system

takes other programs as input and manipulates them by iteratively applying rules. Typ-

ically, a rule replaces a program structure in the source language with one in the target

language. It is also common that individual rules are correctness-preserving: the new

program structure computes the same results as the one it replaced.

1A contrasting approach would be to build, in ADA, both Lisp and rule interpreters. However, since

the delivery of KEE applications in ADA is the primary goal of this project, we chose to translate rules
and Lisp code directly into ADA. This approach enables us to produce significantly more efficient systems.
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Becausewriting a compiler is a relatively complex task, a number of tools have been
built to support compiler development. These tools areoften called compiler-compiler_,

even though they usually deal only with part of the problem of compiler construction.

In this work, we have used the Refine system [7,9] as our compiler-compiler. Refine is

characterized by a grammar facility for expressing language syntax and a tree structure

of knowledge objects to represent a program's evolving semantics. In KATYDID we use

four different Refine grammars, one for each of ADA, Lisp, the KEE rulesystem, and

an intermediate language in KRICKIT. Given a grammar, REFINE performs as both a

scanner and a parser generator. Whenever an expression is parsed, it is done with respect

to a specific grammar.

Translating Lisp into Ada. The most critical problem in translating Lisp into Ada

is that of typing. Lisp is weakly typed--any variable can be dynamically bound to any

object. The system tags or remembers the type of all data. Ada is strongly typed and

requires types to be specified at compilation. We identified three approaches to the type

problem: type inference, overloading, and explicit declaration.

Type inference. Type inference is the inference of the type of Lisp variables from infor-

mation implicit in the program. In the example below, a variable is set to the result of

a function. The return type of the function can be deduced and used as the type of the
variable ch.

(defun testl (j)

(let (ch)

))

(setq ch (integer-to-character j))

• • •

(defun integer-to-character (i)

(cond

((= i 1) 'a')
((= i 2) 'b')

((= i 3) 'c,)
(t 'd')))

The complete transformation cannot be made until the type of j is determined and we

know whether testl is a function or a procedure.

The above example show_ two characteristics of type inference. The first is that some

inferences are not formally correct. In the example, we are deducing the type of ch from

the type of the value to which it is set. This could be incorrect, as another assignment

statement to the same variable may use a different type. It is often the case that we need

to make such he_zri_ic decisions about type inference. We can make our inference formal

by proving that the variable is not set to another type, or by restricting our use of this

deduction to the code that occurs between one setting of the variable and another.
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Similarly, we might use heuristic inference to deduce the type of i in the function
integer-to-character. In that case,all comparisonsof i are to integers, sowe cancon-
cludethat in normal programming practice i will be an integer. However,in Lisp =may be
redefined by the user, so this deduction cannot be madeformal without further analysis.

A second characteristic of type inference is that it can make use of the flow
of data through a program. This is shown in the deduction of the return type
integer-to-character. We can deduce that the result will be in the set {'a', 'b' ,

'c', 'd' }. All these are of type character, so we know the result type is character.

We call this data flow type inference. A critical component of data flow inference is

identifying the return points of a subprogram and the values returned at those points.

Data flow type inference can be heuristic. For example, if integer-to-character

lacked its "otherwise" clause ('d'), we might still infer that the result type is character,

even though formally it could include return the list or symbol nil.

Overloading. The second approach to handling the difference in type strength between

Lisp and Ada is to use Ada's overloading--having multiple definitions of a single sub-

program, discriminated on the basis of their argument and result types. This pushes the

type discrimination problem off onto the ADA compiler.

There are three main difficulties involved with relying on overloading

1. Many versions of the same function are needed to cover all the possible cases of ar-

gument types. With ten arguments of seven types we must write (on the ADA side)

71° (_ 2.8 × l0 s) versions of the same function. (Such a function was contemplated

for the KATYDID core.) Few ADA compilers can handle this.

2. It is possible, with overloading, to create ambiguous programs that fail to compile.

3. Overloading cannot completely replace type inference in Lisp. It cannot, for exam-

ple, determine the return type of function testl.

Thus overloading can only be an element, combined with dataflow analysis, in the reso-

lution of the type inference problem.

Explicit declarations. The third approach to type differences is simply to rely on the user

to make Lisp type declarations. Many CommonLisp type declarations can be translated

directly into Ada declarations with only a minimal amount of type inference. While

formally reliable, this approach is both tedious and prone to human error.

Rule Compilation. The KATYDID system supports KEE rules with KRICKIT, the

backward chaining rule compiler. KRICKIT takes KEE rules and a set of pattern-directed

queries as inputs. Its output is a set of semantically equivalent Ada functions. KRICKIT

has four components:

• Rule parameterization. Rule parameterization is the process of determining the

"directionality" or "flow" of the variables in a rule. A given rule can be parameter-

ized in different ways, based on its use in different contexts. Each parameterization

results in a separate function.
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Intermediate language. The syntax of rules is significantly different than that

of a procedural language. KRICKIT translates the rules into an intermediate lan-

guage, so as to replace the implicit enumeration of rule languages with iterative

and enumerative constructs of conventional languages.

Ada code generation. From the intermediate rule language, KRICKET trans-

lates to ADA code, using processes similar to the translation mechanisms described

in the last section. A relatively small number of ADA constructs are used in the

resulting code.

Rule Compiler Runtime. The only additional facility required in the KATYDID

core to support the rule system is an index of those units with slots of interest.

The functionality of the KATYDID rule compiler parallels that of the KEE backward

chaining rule compiler--it can compile any predefined query, but is unable to handle

dynamically created query forms nor deal with some of the more obscure features of

KEE's rule system (e.g., alternative agenda mechanisms.) In the future we plan to

extend KRICKIT to forward and mixed chaining compilers. Such compilers are no more

difficult to program than the backward chainer.

4 Observations

In the development of the KATYDID system, we needed to handle several issues in the

general transition from a Lisp to an ADA environment. Of primary interest among them

are the topics of translating from weak to strong typing, automatic storage management,

and indirectly invoked subprograms.

Issues in typing. ADA is a strongly-typed language--the data type of every object must

be unambiguous at compile-time. As the experience with Pascal demonstrated, a lan-

guage that is too rigid about its typing discipline is unworkable. ADA therefore includes

three mechanisms for type escape: variant records, overloading, and generics. These

features make the language more amenable to symbolic computing, but are inadequate

for representing the complexity required by KBS. The problem with the ADA's notion

of type is that it identifies type with implementation. In the real world (which is, after

all, what we're trying to model) the set of "interesting" things for operations is indepen-

dent their implementation. What programmers need is a facility for grouping things into

classes and then checking or restricting operations on those classes, not one that starts

with an overly concrete notion of class and makes it pervasive throughout the program.

Automatic storage management. Lisp programs are developed with the luxury of

garbage collection. ADA places the responsibility for storage management in the hands

of the programmer, who is almost certain to louse it up. We, who are trying to present a

library of dynamically accessed objects to a program written with no thought of storage

management have an especially hard time. We did nothing particularly clever in the
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KATYDID system for storage management. However, we believe that while most appli-

cations develop considerable circular object structures, few use circular list structures.

This suggest that future versions of KATYDID may be able to manage storage through
reference counts.

Indirect program invocation. ADA eschews late binding of program bodies--the

compiler always knows what function is called under what conditions. KEE programs,

on the other hand, specifically enjoy the ability to change the active value associated

with a slot, change the method in a slot, and even more grandiosely, to dynamically

redefine new code through method inheritance. While the last is clearly inappropriate in

the ADA environment, we have inelegantly simulated the former two by demanding the

application (i.e., the application compiler) provide specific functions that map between

KATYDID symbols and user code.

5 Future directions

We have developed an initial prototype of a system for translating KEE structures, rules,

and programs to ADA and a prototype ADA run-time library for the use of this trans-

lated code. Our experience leads us to believe that this translation process should be

possible for many applications. While the individual elements of this system have their

strengths and weaknesses, considerable effort in translation, library development and the

integration of the two is still needed. In Phase II of this effort, we plan to include work

on the following topics.

The KATYDID core. The core is incomplete. It lacks not merely the frills like truth

maintenance and graphics but important computational components like storage manage-

ment and the ability to delete structures. Working with the translation mechanism, we

need to resolve the appropriate data types and the occasions for their boxing and unbox-

ing. We plan to develop a more hierarchical type structure for KATYDID components.

And, of course, this critical code has not been optimized or bulletproofed.

In the long term, the ADA environment offers various opportunities for a more inter-

esting KEE core. For example, ADA includes a multitasking mechanism, suggesting that

the next version of the KATYDID core should include locking and transaction mecha-

nisms. It may also be possible for the compiler to optimize accessing functions and data

structures when it can prove suitable restrictions on the application program behavior.

The compilation systems. The compilation system can be improved in several di-

mensions. Within the paradigm of pure translation, we could do a much better job of

type inference and type checking and employ a less ad hoc representation of ADA-

discovering and representing, for example, the language's semantic constraints. As a

compilation system, we also have the opportunity for optimizing the resulting system--

performing functions such as data structure optimization, synthesizing variants of core

library modules for particular varieties of applications and dead code elimination.

Viewed from a larger perspective, there is considerable opportunity in this work for

improving the overall quality of knowledge-based applications. We expect the ultimate

565



KATYDID system to include utilities for interactive dialog with the developer about
the hidden assumptionsand behavior of the application, mechanismsto ensurethat an
application stays within the subsetof KEE the coresupports, verification and validation
mechanismsto critique the structures and programsof the application, and an integrated
solution of the problem of system maintenancein a translation environment.
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ABSTRACT

Software testing plays a significant role in the development of complex software systems.

Current testing methods generally require significant effort to generate meaningful test cases. The

QUEST/Ada* system is a prototype system designed using CLIPS (7) to experiment with expert

system based test case generation. The prototype is designed to test for condition coverage, and

attempts to generate test cases to cover all feasible branches contained in an Ada program. This

paper reports on heuristics used by the system. These heuristics vary according to the amount of

knowledge obtained by preprocessing and execution of the boolean conditions in the program.

INTRODUCTION

There are many approaches to software testing, and most require considerable human

interaction at a great cost in man hours. The goal of automating this activity is to provide for more

cost effective software testing and to avoid human bias or oversight. One class of automated testing

tools, the dynamic analysis tools, is characterized by direct execution of the program under test (3).

A test data generator is a dynamic analysis tool designed to assist the user in achieving goals such as

statement coverage, condition coverage, or path testing. The difficulties of test data generation are

due to the computation efforts, sometimes wasted, in computing infeasible paths or solving arbitrary

path predicates, especially if a predicate contains non-linear terms or function calls. Consequently

AI approaches must be utilized to avoid these problems.

QUEST/Ada* is a prototype system that is designed to experiment with expert system based

test case generation. This system seeks to achieve its goals using heuristic rules to choose and

generate new test cases. This paper reports on various rule sets designed to achieve condition

coverage of Ada programs with increasing amounts of knowledge about the conditions in the Ada

program. Knowledge can vary from little information about the input data (requiring random case

generation of the appropriate type of input data), to complete symbolic solutions for variables in the
conditions under test.

*Research and development of the QUEST/Ada system has been supported by the National Aero-

nautics and Space Administration (NASA). Ada is a trademark of the United States Government, Ada

Joint Program Office.
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BACKGROUND

Testing

The reliability of software is critical to space applications. One of the most common ways of

ensuring software reliability is through program testing. There are three major categories of software

testing: domain testing, functional testing and structural testing.

Domain testing

Programs run on finite state machines over finite input sets. Consequently it is theoretically

possible to prove a program correct by testing it over its input domain. However in general these

domains are too large for this type of testing to be feasible. It is therefore assumed that programs of

arbitrary large storage requirements run on machines of arbitrary large size and precision. Unfortu-

nately this assumption leads to results that demonstrate the impossibility of an algorithm to determine

correctness of a program (4).

Functional testing

Functional testing is the process of attempting to find discrepancies between the program's

output and its requirements specification (6). In functional testing (1) (4) a program is executed over

selected input and the results are compared with expected output. Normally nothing is assumed about
the internal structure of the program. Rather, test cases are constructed from knowledge of "what the

program is supposed to do", i.e. its "function". This is known as the "black box" approach to testing

Structural testing

Structural or "white box" testing uses the source code control structure of a program to guide

the selection of test data (1). One metric for the selection process is coverage, which is concerned

with the number of structural units exercised by a test case. Examples of this metric are

Statement Coverage -

Branch Coverage -

Path Coverage -

execute all statements in the program graph;

encounter all exit branches for each

decision node in the program graph;

traverse all paths of the graph.

Attempts to develop a practical test generation methodology for branch coverage have sug-

gested approaches ranging from random test generation to full program path predicate solutions.

Howden (4) has formalized test generation rules to help programmers test their code. Consequently

such rules can be considered "expert knowledge" required for effective and automatic test case gen-

eration in an expert system test case generator.

Test case generation

The success of test data generation depends on knowledge of the internal structure of the

program. Indeed, in the absence of any such knowledge, the only known testing method is random

generation of test data and probabilistic determination of the equivalence of the function under test

with desired behavior. On the other hand, if the structure of the program is well understood then by

testing, complete validation over a limited domain may be possible. Consider for example a program

consisting of a single input variable containing only assignment and increment operations. Such a

restriction of a progrmn determines that it can only compute a constant function f(x) = c or a linear

function fix) = x + c for some constant value c. With this knowledge two test cases are consequently
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sufficient to identify and validate the program.

Branch coverage is currently regarded as a minimal standard of achievement in structural test-

ing (5). Thus, the goal of an expert system test case generator is to achieve branch coverage by using
heuristic rules with execution feedback to generate test cases sufficient to insure that each branch in a

program is invoked at least once. Figure 1 gives a system overview of such a test case generation

methodology.

/ ,°,,,.,o°°o,.,o°J
q

.. Coverage_n_nalysis '

Goodness Ewaluation l

New Case Generation J

I

Figure 1

To avoid exponential searches, the analysis may be supported by a search strategy such as that

proposed by Prather and Myers (5). This strategy views a software package as a flowgraph with each

condition containing a true and false branch. The goal for test cases is to maximize the number of
covered branches as recorded in a branch coverage table. The strategy is to select the first condition

in a path from the start for which the condition has not yet been tested in both directions, and to

generate (if possible) a test case that will drive this condition in the other direction. The idea behind
this strategy is that, since some previous test case has reached the condition, it is already "close" to a

test value required to drive an alternate branch of the condition.

AN INTELLIGENT TEST DATA GENERATION SYSTEM

QUEST/Ada is a prototype automated software testing tool presently implemented to support

expert system based coverage analysis. The framework of QUEST/Ada will however support other

rule based testing methods. Figure 2 gives an overview of the relationships among the major compo-

nents of the system. An instrumented Ada module is supplied as input to a parser scanner that gathers

information about the conditions being tested. Using compiled output of the parser/scanner, the test

coverage analyzer executes the program for a test case and analyses the result. Based on this analysis,

the test data generator uses rules to create new values for variables that are global to or are parameters
to the unit under test. These variables are called "input variables".
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Initial test cases are needed to start the process. These may be provided by the user or gener-

ated by the system using an initial test case generation rule. Upon execution of the program on test
cases, coverage analysis determines what branches have been covered and which branches need fur-

ther testing. Coverage analysis is basically a table filling process recording the execution of each

condition of the program. The expert system generates new test cases by applying rules based on
knowledge about both the conditions not yet fully covered, and previous conditions in the execution

path that lead to the condition not fully covered. New test cases are generated, and the testing
continues. Execution stops when full coverage is indicated, or when a test case limit is reached, hn-

plementation details of the QUEST/Ada system are described in (2).

Rule Based Test Case.Generation

As designed, the QUEST/Ada system's performance is determined by the initial test case, rules
chosen to generate new test cases, and the method used to select a best test case when there are several

test cases that are known to drive a path to a specific condition.

Initial cases

If the user does not supply an initial test case, then initial test cases are generated by rules that
require knowledge of the type and range of the input variables. For these variables test cases are

generated to represent their mid-range, i.e. (upper-limit - lower-limit)/2, lower and upper values.

Best test case selection

When there are several test cases that drive a condition in a particular way, a rule is used to
select from among these test cases a best test case. Experiments are being conducted with two "best

test case" selection rules, with the second rule intended to be more knowledgeable than the first. In the
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first rule, the best test case represents a measure of the closeness of the left hand side (LHS) and the

right hand side (RHS) of the condition as determined by the formula

ILHS - RHSI/(2*MAX(ILHSI,IRHSI).

The idea is that test values closer to the boundary of the condition are better. Problems arise in the

search algorithm's attempt to cover all branches when a change in values of input variables change

an execution path, and execution no longer reaches the condition. In order to decrease the likelihood

of such unanticipated branching, a second approach to best test case selection has been designed.

This approach utilizes information about the conditions in the execution path leading to the condition
under consideration. In this situation, the formula for best test case selection takes into account the

closeness of previous conditions. The heuristic idea is that for previous conditions in the execution

path, the left hand side and right hand side of these conditions should be further apart. This heuristic

assumption is based on the idea that small changes in the values affecting the condition under
consideration will have a smaller impact on previous conditions when the left hand side and right

hand side are far apart.

As an example, if two conditions c.,c z precede condition c in the execution path, and t t ,t
.... " t t then :_or weights w ,w ,w a valuE" 2 3represent the closeness values assocmted w_th a es case t, i 2 3

determined by

*t + + wl*(1/t I)W3 3 W2*(1/t2)

represents a better measure of the test case than does the value t3. Note that the values of tl,t2,t3 are

in [0,1].

represent a path of conditions leading to a condition c, and forIn general, if c I, c2, ... c_ t
each i = 1..n

t =ILHS of c - RHS of c.I/2*max(ILHS of c.I,IRHS of c.I)
i i t t t

then for some weights w t, ... w, the best test case for condition n is chosen by a minimum value of

v = wn*t n + Wn.I/tn. l + ... + Wl/t I-

For testing in QUEST, weights of 1 for w and 1/(n-l) for wt...w, t were chosen.

Test case generation

In order to experiment with the effects of altering the knowledge about the conditions of a

program under test, three categories of rules have been selected. The rules are in the syntax of
"CLIPS" (7), a forward chaining expert system tool used by the QUEST/Ada prototype. Comments

(lines beghming with ;) are intended to explain the action of the rule. The first category of rule
reflects only "type" (integer, float, etc.) knowledge about the variables contained in the conditions.

These rules generate new test cases by randomly generating values. The following listing provides

an example of this type of rule.

Listing 1.

(defrule generate_random_test_cases ....

(types $?type_list)
571



;useonly typeand
(low_bounds$?low_bounds_list)

;boundaryinfo
(high_bounds$?high_bounds_list)

;toavoidrunerror
=>
;setup a loop to generate n test cases for the

;n input variables

(bind ?outer_pointer 1)

(while (<= ?outer__pointer (length $?type_list))

;get test case number

(bind ?test_number (test_number))

(format test-case-fde " %d" ?test_number)

;step thru each variable

(bind ?inner_pointer I)

(while (<= ?inner__pointer (length $?type_list))

;get the type of the variable

(bind ?type (nth ?inner_pointer $?type_list))

;assign it a random value

(bind ?random__value (rand()))

;get range information

(bind ?low_bound

(nth ?inner_pointer $?low_bounds_list))

(bind ?high_bound

(nth ?inner__pointer $?high__bounds_list))

;be sure random value is within bounds

(if (> ?random_value ?high_bound) then

(bind ?test_value

(* (/?high_bound ?random_value) ?high_bound))

else

(bind ?test_value ?random_value))

(if (< ?random_value ?low_bound) then

(bind ?test._value

(* (/?low_bound ?random_value) ?low_bound))

else

(bind ?test_value ?random_value))

;write value for the variable to the test case file

;in appropriate format

(if (eq ?type int) then

(format test-case-fide" %d" ?test_value))

(if (eq ?type fixed) then

(format test-case-fide " %f' ?test_value))

(if (eq ?type float) then

(format test-case-file " %e" ?test_value))

;next variable in test case
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(bind ?inner_pointer(+ ?inner_pointer1)))

(fprintout test-case-file crlf)

;next test case

(bind ?outer_.pointer (+ ?outer_pointer 1)))

)

The second category of rule attempts to incorporate information that is routinely obtained by

a parse of the expression that makes up a condition (such as "type" and "range"), information about

coverage so far obtained, and best test cases for previous tests. This particular example uses the best

test case associated with a condition, and for n input variables, generates n test cases by altering each

variable one percent of its range. Listing #2 gives and example of this category of rule.

Listing 2.

(defrule generate_increment_by_one_.percent__test_cases ....

(types $?type_list)

(lowbounds $?low_bounds_list)

(high_bounds $?high_bounds list)

;match any condition that is only half covered

(coverage_table ?decision ?condition truelfalse)

;get the best test case for each condition

(besttestcase ?decision ?condition $?values)

=>

(bind ?outer_pointer I)

(while (<= ?outer__pointer (length $?values))

(bind ?test_number (test_number))

(format test-case-f "de" %d" ?tesLnumber)

(bind ?inner_pointer 1)

(while (<= ?inner pointer (length $?values))

(bind ?type (nth ?inner_pointer $?type_list))

(bind ?highbound

(nth ?inner__pointer $?high_bounds_list))

(bind ?Iowbound

(nth ?inner._pointer $?low_bounds._list))

;increment the current variable by one percent of

;its range

(bind ?one_percent (/(- ?high_bound ?low_bound) 100))

(bind ?increment

(+ (nth ?inner__pointer $?values) ?onepercent))

;if this is the variable we want to alter

(if (= ?outer._pointer ?inner_pointer) then

(if (<= ?increment ?high_bound) then

(bind ?test_value ?increment)

else

(bind ?test_value ?low_bound))

else
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;andtheothervariablesarewrittenasis
(bind?test_value(nth ?inner_pointer$?values)))

(if (eq?typeint) then
(formattest-case-file" %d" ?tesLvalue))

(ff (eq?typef'Lxed)then
(formattest-case-fde" %f" ?test_value))

(if (eq?typefloat) then
(formattest-case-Vale"%e"?test_value))

(bind ?inner_pointer(+ ?inner_pointer1)))
(fprintout test-case-filecalf)
(bind?outer_pointer(+ ?outer_pointer1)))

Thefinal typeof ruleutilizes informationabout the condition that can be obtained by

symbolic manipulation of the expression. The given rule uses a boundary point for input variables

associated with the true and false value of a condition. This value is determined by using symbolic

manipulation of the condition under test. Many values can be chosen that cross the boundary of the
condition and, as with best test case selection, we seek to choose a value that will not alter the

execution path to the condition. In addition to best test case selection we now have additional

knowledge to generate new test cases. We use the values of variables at a condition and compare

them with values of the variables that reach the condition. This added information is incorporated in

the generation of new test cases. To achieve this, the following approach has been taken by the
above rule.

Suppose that for an input variable x appearing in a condition under test, the value of x at the
condition boundary has been determined to be x and the input value that has driven one direction of

the condition has been x.. Although we do not l_ow how x is modified along the path leading to the
condition (the value of x' on input may be expected to differ from the value of x at the condition) we
are able to establish that the value of x at the condition is x. In this situation we choose as new test

cases (provided the values lie in the limits allowed for valuCes of x)

xb*(xi/xo) + e

where e is 0 or takes on a small positive or negative value. Listing 3 is an example of this heuristic.

Listing 3.

(defrule generate_symbolic_approximation_plus_increment_test_cases ....

;type information here

(types $?type_list)

(low_bounds $?low_bounds_list)

(high_bounds $?high_bounds_list)

;knowledge about the condition here

(coverage_table ?decision ?condition truelfalse)

(best_test_case ?decision ?condition $?values)

(value at cond ?decision ?condition $?vacs)

(symbolic_boundary ?decision ?condition $?boundaries)
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(bind ?outer_pointer 1)

(while (<= ?outer_pointer (length $?values))

(bind ?test_number (test_number))

(format test-case-file " %d" ?test_number)

(bind ?inner_pointer 1)

(while (<= ?inner__pointer (length $?values))

(bind ?type (nth ?inner_pointer $?type_list))

;for the variable under consideration

(if (= ?outer_pointer ?inner_pointer) then

;for its range

(bind ?high_bound

(nth ?inner_pointer $?high_bounds_list))

(bind ?low_bound

(nth ?inner_pointer $?low_bounds_list))

;get its input value

(bind ? (nth ?inner_pointer $?values))

;and its value at condition

(bind ?Xc (nth ?inner_pointer $?vacs))

;and the boundary of the condition

(bind ?Xb (nth ?inner_pointer $?boundaries))

;generate a guess as to an input value leading to boundary

(bind ?approximation (* (] ?Xi ?Xc) Xb))

;generate a small amount to move around boundary

(if (< (abs ?high_bound) (abs ?lowbound)) then

(bind ?small_bound ?high_bound)

else

(bind ?small_bound ?low_bound))

(bind ?digit O)

(while (!= (trunc ?low_bound) ?low_bound)

(bind ?digit (+ ?digit 1))

(bind ?low_bound (* ?low_bound (** 10 ?digit))))

;call it e

(bind ?e (** 10 (* -1 ?digit)))

(bind ?incremented_approximation

;increment the approximation by e

(+ ?approximation ?e))

(if (<= ?incremented_approximation ?highbound) then

(bind ?test_value ?incremented_approximation)

else

(bind ?test_value ?high_bound))

else

(bind ?test_value (nth ?inner_pointer $?values)))

;write to test case f'de in appropriate format

(if (eq ?type int) then

575



(formattest-case-file " %d" ?test_value))

(if (eq ?type fixed) then

(format test-case-file " %f" ?test value))

(ff (eq ?type float) then

(format test-case-file " %e" ?testvalue))

(bind ?inner_pointer (+ ?inner_pointer 1)))

(fprintout test-case-file crlf)

;next test case

(bind ?outer_pointer (+ ?outer_pointer 1)))

)

CONC_LUSION

The objective of the research has been to achieve more effective test data generation by

combining software coverage analysis techniques and artificial intelligence knowledge based

approaches. The research has concentrated on condition coverage and uses a prototype system built
for expert system based coverage analysis. The success of this approach depends on the search

algoritlun used to achieve coverage and the heuristic rules employed by the search. The
effectiveness of roles vary according to the knowledge about the source and the knowledge obtained

by previous test cases. The QUEST/Ada prototype provides an extendible framework which

supports experimentation with role based approaches to test data generation. In particular it

facilitates the comparison of these rule based approaches to more traditional techniques for ensuring

software test adequacy criteria such as branch coverage, and allows for modification and
experiments with heuristics to achieve this goal.
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ABSTRACT

This paper describes the use of artificial intelligence (AI) and the programming

language Ada to help a satellite recover from selected failures that could lead to mission

failure. An unmanned satellite will have a separate AI subsystem running in parallel with

the normal satellite subsystems. A satellite monitoring subsystem (SMS), under the

control of a blackboard system, will continuously monitor selected satellite subsystems

to become alert to any actual or potential problems. In the case of loss of com-

munications with the earth or the home base, the satellite will go into a SURVIVAL mode

to reestablish communications with the earth. The use of an AI subsystem in this manner

would have avoided the tragic loss of the two recent Soviet probes that were sent to

investigate the planet Mars and its moons.

The blackboard system works in conjunction with an SMS and a reconfiguration

control subsystem (RCS). It can be shown to be an effective way for one central control

subsystem to monitor and coordinate the activities and loads of many interacting subsys-

tems that may or may not contain redundant and/or fault-tolerant elements. The

blackboard system will be coded in Ada using tools such as the ABLE development system

and the Ada Production system.

INDEX TERMS----Ada, autonomy, blackboard, expert system, frame, global data base,

inference engine, knowledge base, and rule base.

INTRODUCTION

Two Soviet probes, Phobos 1 and Phobos 2, were recently sent to investigate the

planet Mars and its moons, but were both lost. A ground controller had sent an unverified

command that caused loss of communication to the earth. Command verification was not

possible because the Soviet's ground control computer, responsible for validating uplink

command sequences was down. As a result, no further uplinked ground commands could

be received, and the batteries went dead after the spacecraft lost solar panel

orientation. This was truly a profound loss to space science. The Spacecraft Autonomy

Group criticized the Soviets for allowing unverified uplinks, and for having an on-board

computer that so easily accepted such single-transmission command sequences. The

United States' Voyager spacecraft will only accept a command sequence that has been
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repeated three times. An autonomous system design that included an AI subsystem, as
described in this paper, would have enabled the Soviet probes to recover from their
tragic circumstances.

Examples of expert systems that provide some degree of autonomy for satellites
include (1) the Expert System for Satellite Orbit Control (ESSOC) [Reference 2], which
provides autonomous processing for satellite maneuvering operations, (2) the Autonomous
Satellite Control [Reference 3], which allows a satellite to operate on its own for up to
30 days; and (3) Spacecraft Control Resolution Expert System (SCARES) [Reference 4],

which handles anomalies in a satellite'sattitude control system. Other spacecraft with

varying degrees of autonomy are reported in [Reference Ii].

The GIOTTO spacecraft, which successfully encountered Halley's comet in March

1986, had a number of autonomous facilitieson board. These ranged from the simple

switching of heaters, to the autonomous reconfiguration of on-board subsystems, extend-

ing to the fullautonomous recovery of contact with earth [Reference 9].

The Indian Remote Sensing Satellite(IRS),launched in March 1988 into a polar sun-

synchronous orbit,achieves a high degree of autonomy by possessing many fault-tolerant
features, including automatic reconfiguration logic for the attitude control system
[Reference 5].

The Infrared Space Observatory (ISO), planned for launch into a 24-hour orbit in
1993, will require considerable autonomous operation and reconfiguration capability
[Reference 12]. Autonomy features will permit recovery of the satellite in good health
and enable a quick restart of scientific operations after a period of up to 3 days without
earth contact.

Rockwell International has prepared a final report to NASA titled,"Research On

Advanced Engineering Software for In-Space Assembly and the Manned Mars Spacecraft"

[Reference I].This report identifiesa strong need for advanced engineering software to

support spacecraft autonomy and subsystem health maintenance. ItidentifiesIntelligent

Communicating Agents (ICA), which is a form of intelligent distributed software

processing, as one example of Advanced Engineering Software directly applicable to

future NASA space missions and objectives.

Graceful degradation of overall spacecraft performance takes place as various

subsystems fail by using prioritizedloading charts contained in the blackboard systems

knowledge base. For example, if a failureof a power supply takes place and no spare

power supply existsto replace it,then the various loads on any remaining power supplies

are either turned off, reduced, or switched to a duty cycle tolerable to the remaining

power supply. According to a prioritized table, the least criticalfunctions are either

removed or placed on a low duty cycle consistent with minimum mission objectives.

Power supply degradation can occur due to component failures,aging, distance of

the solar panels from the sun, half-lifeof radioisotopepower sources, and other potential

reasons. Designing independently redundant subsystems could resultin an overload of the

power system during degraded power system performance. However, if all subsystem

reconfiguration iscoordinated through a central subsystem, then various subsystem loads

can be reconfigured to accommodate a reduced available power, while stillmeeting
overall mission objectives.Under conditions of reduced power, data collection isreduced

resulting in less required transmitter power. The result is a graceful degradation of

system operation. It isshown here that a blackboard system is a good way to accomplish
thisreconfiguration management.
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AI BLACKBOARD SUBSYSTEM

Figure I in the Appendix gives a high-level block diagram for a blackboard system

for an autonomous satellite. Blackboard systems provide a mechanism to implement

cooperation between a collection of expert systems or knowledge sources. Blackboard

systems consist of an explicit global data base (called the blackboard) and knowledge

sources that effect and react to changes on the blackboard. Differences among

blackboard systems involve mainly control algorithms and mechanisms for determining

when knowledge sources should be executed.

The blackboard system works in conjunction with an SMS and an RCS. In the event

that a mission-threatening condition is taking place or has occurred, then a corrective

action is taken by the RCS. The corrective action is based on various redundant and

fault-tolerant features that are integrated into the satellite as part of the overall

autonomous design.

The blackboard system is a logical way for one central control subsystem to

monitor and coordinate the activities and loads of many interacting subsystems that may

or may not contain redundant and/or fault-tolerant elements.

A system or satellite reconfiguration might go as follows: Suddenly the satellite

power drops to the 90-percent level. The SMS detects this power drop and sets the

relevant flag on the blackboard. The inference engine (scheduler), which monitors the

blackboard, is alerted and examines the knowledge sources in the knowledge base and

finds a rule that reconfigures the satellite according to priority loading Table I in the

Appendix. The RCS, alerted from the blackboard, then studies priority Table 1 from the

knowledge base and the current system configuration from the blackboard and identifies

any required changes. It studies the frame data for the affected subsystems from the

blackboard to determine any constraints. In case of a conflict between two units that

should not be on together, or between two units that must be on together, an overall

priority table in the knowledge base is consulted. The RCS then schedules or reconfigures

the affected subsystems according to the new priority table. It then updates the system

configuration data on the blackboard.

KNOWLEDGE BASE (LONG-TERM MEMORY)

The knowledge base contains the rule base and the various priority tables.

Examples of two rule templates of the type used in the knowledge base are:

RULE SPARE UNIT: If one UNIT fails, and at least one spare UNIT does exist;

then switch out the failed UNIT, and switch in the spare UNIT.

RULE NO SPARE UNIT: If one UNIT fails,and a spare UNIT does not exist, and at

least one UNIT is stilloperating, and a prioritized loading table does exist;

then reduce the load on the operating UNIT(s) according to the prioritized loading
table for the UNIT.

A partial rule base for autonomous SDI satellite subsystem reconfiguration is given

in Table 1 in the Appendix.

Load types are classified into types A through D as follows:
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Type A: Loads that must be run at 100-percent power and 100-percent duty cycle (for

example, the executive or an IMU). An estimated i0 percent of the loads fails

into this category.

Type B: Loads that must be run at 100-percent power when they are on, but can be run

at a duty cycle of less than I00 percent (for example, if an output is not needed

all the time, as in a radio receiver that needs to be powered on only during

reception, a transmitter that needs to be powered on only during transmission,

an attitude control system that needs to be powered on only during attitude

control, and an on-board signal processor that periodically processes data prior

to transmission to the earth). An estimated 75 percent of the loads falls into

this category.

Type C" Loads that can run at less than full power, but must run continuously (for

example, volatile memory, timing sources). An estimated 5 percent of the loads

falls into this category.

Type D: Loads that can run at less than full power and at less than 100-percent duty

cycle (certain heaters, coolers, etc). An estimated I0 percent of the loads falls

into this category.

An example of a simplified prioritized loading table is given in Table 2 in the

Appendix.

GLOBAL DATA BASE (THE BLACKBOARD)

The global data base, which is the blackboard, contains the status of all subsystems,

frame data on all the subsystems, and the flags for the various subsystems to

communicate with each other. Frames are used to collect all required data on each sub-

system. In this application, executable procedures are not attached to each slot in the

frame, as is the case in the typical blackboard system.

An example of a frame for one of the subsystems is given in Table 3 in the

Appendix.

SATELLITE MONITORING SUBSYSTEM (SMS)

The SMS monitors excursions beyond temperature and voltage limits, attitude

deadbands, and spin rate limits; monitors selected status flags, time since contact with

the satellite's home base, duration of thrust pulses, verification of command sequences;

and other mission-critical functions. In the event that a mission-threatening condition is

taking place or has occurred, then the SMS sets the appropriate flag on the system

blackboard to alert the Inference Engine and the RCS.

RECONFIGURATION CONTROL SUBSYSTEM (RCS)

The RCS monitors the blackboard for changes in the system status. It checks the

priority tables in the knowledge base, and it has the ability to reconfigure each of the

reconfigurable subsystems.

Reconfiguration of a subsystem can be achieved by turning it off, by turning it off

and bypassing it, by changing the duty cycle of the power supplied to it, or by lowering

the power supplied to it. After the RCS reconfigures a subsystem, it updates the

subsystem's status on the system blackboard.
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Table 4 in the Appendix contains a listing of generic satellite sussystems with what

isprobably their most likely load type.

SURVIVAL MODE

If communication is not reestablished after a certain time, or if the battery charge

falls below a prespecified limit, then the SURVIVAL mode is engaged. Power is removed

from all possible subsystems and, at a predetermined time, the home base, on or near the

earth, will start to transmit a very strong signal, according to a prearranged plan. Or as

an alternative, the satellite will go into a star- and sun-tracking mode. At the

predetermined time, the satellite will then do an attitude scan with its receiver to lock

onto the strong signal from the home base.

The home base will alternate transmission of the strong signal with listening with

its receiver until communication with the home base has been reestablished.

IMPLEMENTATION IN ADA

The Ada language has been mandated as the official software language by the DOD,

and NASA is now rapidly moving in that same direction for new software programs.

There is an advantage to implementing AI programs in Ada from the standpoint of

standardization, life cycle maintenance, and customer acceptance.

The blackboard system would be developed first on the Generic Blackboard System

(GBB) and then recoded in Ada. The rule base portion of the system would be converted

into Ada code using the Ada Production System (APS) [Reference 7]. The APS is a

development tool that was developed at Rockwell International and used to develop

knowledge-based applications written in Ada. To the author's knowledge, there currently

are no commercially available expert system shells that produce executable Ada code.

Benchmark testing of Ada code produced by the APS shows that the code executes at

approximately 75 percent of the speed of OPS83 code. OPS83 code is based on the C

language and isconsidered to be the fastest production system in use.

Examples of AI systems that have been coded in Ada include the LATEST expert

system, the ABLE blackboard system, and the Embedded Rule-Based System (ERS).

LATEST is a very successful rule-based expert system coded in Ada. It gives the

reason for a hold or an abort of a Shuttle launch within 3 seconds, where this process

normally takes experts several hours of analysis. Knowledge base rules were generated

from example sets by a process called rule-induction using the RuleMaster Expert System

development tool. It kept the software conventional by avoiding an inference engine.

Quoting from Reference 14, "GHC had already made compiling rules for real-time

execution possible by developing RadAda to translate RuleMaster interpretive code into

Ada source code."

The ABLE system consists of a development system (compiler or constructor) and a

library. To create the blackboard system using ABLE, either Erasmus and the ABLE

compiler, or the ABLE Constructor would be used. Paraphrasing from Reference 13, "The

object of the ABLE compiler is to accept Erasmus source code and produce an equivalent

Ada program. The object of the ABLE constructor is to provide the application developer

with a graphic interface for defining the structure of a blackboard application. The

constructor then performs most of the code generation automatically, producing Ada

source code that the developer may fine tune at will."
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Quoting from Reference 13, "The ABLE development system may not have been

able to fully resolve certain data typing questions, nor may it know details of

communicating with other software or devices, so the user may manually extend and/or

optimize the code at this point. Code produced will already contain references to all

necessary ABLE library units, as well as pertinent sublibrary units, but the user may of

course add references when extending the code."

The ERS was successfully recoded in Ada. Quoting from Reference 6, "The project

evolved into a major redesign of ERS that exploits Ada's facilities for data abstraction

and object-oriented development. The resulting Ada implementation has all of the

functionality of earlier versions of ERS (with hooks for many additional features),

maintains upward compatibility with existing rule bases, is significantly more efficient

than previous versions, and is of higher overall quality by any software engineering

standards. Most important, the project demonstrates, convincingly, Ada's suitability and

utility for developing knowledge-based systems and embedded At applications in general."

Ford Lisp-Ada Connection (FLAC) [Reference 8] is a tool designed to support direct

entry of knowledge by experts into a Lisp machine environment to help develop expert

systems. Paraphrasing from Reference 8, "The knowledge is then downloaded to an

inference engine that has been implemented in the Ada programming language. FLAC

consists of two subsystems, the Knowledge Editor Graphics System (KEGS) and the Ford

Ada Inference Engine (FAIE). The inference engine is written in Ada. It supports both

forward and backward chaining modes of inference. FLAC is an application independent

system that is generic in the sense that any knowledge that can be represented in rule

format can be entered using KEGS, and any Ada program can embed FAIE for expert

system capabilities."

That expert system shells, blackboard systems, and other rule-based systems can be

successfully coded in Ada can be seen from References 6, 7, 8, 13, and 14, as described

above. Rockwell has a very broad set of Ada capabilities [Reference i0], has produced

numerous avionics systems coded in Ada, and a blackboard system for an unmanned

autonomous satellite is well within its present capabilities.

CONCLUSIONS

This paper has described the architecture for a blackboard system that will

coordinate between various satellite subsystems and expert systems to result in the high

degree of autonomy required for important defense systems. Sufficient evidence cur-

rently exists to demonstrate that At subsystems can be coded in Ada and embedded in

conventional Ada code. In the interests of justifying expenditure of natural resources on

important space missions, it should be considered a requirement that each satellite

contain an autonomous system that is able to reestablish both vehicle attitude and

communications in the event that one or both were lost. Agreeing on certain minimum,

internationally developed software standards for satellites and spacecraft can help lead

to international cooperation on large-scale missions, such as the Manned Mars Mission.
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Figure 1. Blackboard System for Autonomous SDI Satellite
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Table 1. Partial Rule Base for Autonomous SDI Satellite Subsystem Reconfiguration

RULE_SPARE HEATER: If one HEATER fails,
and at least one spare HEATER does exist;

then switch out the failed HEATER,
and switch in the spare HEATER.

RULE NO_SPARE HEATER: If one HEATER fails,
and a spare HEA-TER does not exist,

and at least one HEATER is still operating,
and a prioritized loading table does exist;

then reduce the load on the operating HEATER(s)
according to the prioritizedloading
table for the HEATER.

RULE_SOLARPANEL: If one SOLAR PANEL fails,
and at least one spare SOLAR PANEL does exist;

then switch out the failed SOLP, R_PANEL,
and switch in the spare SOLAR PANEL.

RULE_NO_SPARE SOLAR PANEL: If one SOLAR PANEL fails,
and a spare SOL)4R PAN-EL does not exist,

and at least one SO-LAR PANEL isstilloperating,
and a prioritizedloading table does exist;

then reduce the load on the operating SOLARPANEL(s)

according to the prioritizedloading table for
the SOLAR PANEL.

RULE_SPARE BATTERY: Ifone BATTERY fails,
and at least one spare BATTERY does exist;

then switch out the failedBATTERY,

and switch in the spare BATTERY.

RULENO SPARE BATTERY: Ifone BATTERY fails,
and a spare BATTER Y does not exist,

and at leastone BATTERY isstilloperating,

and a prioritizedloading table does exist:

then reduce the load on the operating BATTERY(s)
according to the prioritizedloading
table for the BATTERY.

RULE LOST CONTACT: If LOST CONTACT FLAG isset
then if_itiatetheSURVIVAL mode.

RULE CONTACT REESTABLISHED: If
CON-TACT REESTABLISHED FLAG is set

then resume the NORMAL mode.
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Table 2. Electrical Power Loading Reconfiguration Priority Table. When the Available Power Drops by
10 Percent, the Loads A re Reconfigured According to the Table

Power Supply OutputLevel(%)
LoadType

andNo. 100 90 80 70 60 50 40 30 20 10

A1

81

B2

B3

B4

B1

10 10 10 10 10 10 10 10 10 10

20 15a* 10a 10a 10a 10a 5a 5a 5a 0

20 15a 10a 10a 10a 10a 5a 5a 5a 0

10 10 10 5a 5a 5a 0 0 0 0

10 10 10 5a 5a 5a 0 0 0 0

30 30 30 30 20 10 10 0 0 0

Total 100 90a 80a 70a 60a 50a 40a 30a 20a 10

Note*:a = averagepowerachievedbyloweringthedutycycle. Forexample,15a means15 W average.Thedutycycleislowered.

T_dffe 3. ,.[ it l-.\umplc q/ J .gulJs v.stem t )'ame

Subsystemname:

Constraints:

Powerrequired:

Loadtype:

Numberof spares:

Status:

Previouslybypassed:

Lasercommunicationreceiver

Mustnot beon simultaneouslywith lasertransmitter

5W

B

One

Operational

No
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T_thl_* 4. Gc'H('ric ,S'_ltellite .S't/h.s_rslems _md l/_ud T t?_:,.s

Typical
Load

Satellite Subsystem Type

Autonomy subsystem

Electrical power system

Executive

IMIJ

ACS

Axial thrusters

Data processor

Divert thrusters

GN&C

High-powerexperiments

Low-powerexperiments

Receiver

Self-test

Solar collector

Star tracker

Tape recorder

Clock (timingreference)

Volatile memory

Heater

Transmitter
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ABSTRACT

Debates about the selection of programming languages often produce cultural
collisions that are not easily resolved. This is especially true in the case of Ada and
knowledge based programming. The construction of programming tools provides a
desirable alternative for resolving the conflict.

INTRODUCTION

If one wants to generate a debate at a party for persons connected with computer
programming, just ask "What is the best programming language?" The result is often an
outpouring of praise, curses, hyperbole, and technical detail that will either quicken the pulse or
induce tranquil repose. Programming languages are at times treated as matters of religious fervor,
and at other times treated as mere notational convention. All of this would be fine were it not for

the demands for "good" software and the increasing size, complexity and seriousness of software
programming projects. To be sure software is more than the code for a program. Software, in the
sense includes all of the information that is: (1) structured with logical and functional properties,
(2) created and maintained in various representations during its life-cycle, and (3) tailored for
machine processing. This information in large projects is often used, developed, and maintained
by many different persons who may not overlap in their roles as users, developers, and
maintainers. In order to develop good software, one must explicitly determine user needs and
constraints, design the software in light of these and in light of the needs and constraints of the
implementers and maintainers, implement and test the source code, and provide supporting
documentation. These dimensions and constraints on producing software can be looked at as

aspects of different moments in the software production process.

The programming languages LISP and Ada can each legitimately claim a special
competence. In the case of LISP, it is symbolic processing, and in Ada, uniformity and
maintainability. In making a decision about a programming language, the programming language
and its environment cannot be meaningfully separated. Whether one examines LISP or Ada, it is
clear that the advocates of these languages are not considering the languages in isolation. The
combination of programming environment and programming language is intimately connected
with the programming paradigm that can be used in the construction of the program. A
programming paradigm may be thought of as the style or manner in which a program is created.
Within one paradigm there may be many particular templates, but there is a sense in which each
of these reduces back to some primitive template. Alternatively, one may view the paradigm as a
primitive object from which the specific template inherits structures and properties. Under either
sort of interpretation, it should be clear that a programming paradigm acts as a vehicle through
which a programmer designs and builds specific programs.
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Certainly anotherway to generatedebateis to ask,"What is the best representationof
knowledge?"or "What is thebestway to manipulateknowledge?"Thelist of answerswill grow
rapidly: logic, rules, frames, scripts, objects, trees,nets, inferences,associations,statistical
inferencing,casebasedreasoning,analogy,andso on.All of thesestylesandtechniqueshave
valued uses.All have their strengthsand weaknesses.Unlessa person wasvery lucky, no
consensuswould beachievedattheparty.

Behindboththequestionsaboutprogramminglanguagesandthequestionsaboutknowledgeis a
commonsocialstructure.Programmingandtheconstructionof knowledgebasedsystemsoccur
in cultures.Theseculturesaretherepositoryfor tradition,tacitrulesof procedure,andtacitrules
of appraisal.A person'straining is the way in which they areenculturated.Someonewho is
trainedon acertainhardware,in acertainlanguage,andin acertainstylewill carry theculture
generatedthroughthattrainingontohisor hernew works.As personswith their culturescollide
differencesof opinion, and difficulties in adjustingto the demandsof anotheraresure to be
produced.This collision of culturesis a centralelementof the issuessurroundingthe debates
aboutknowledgebasedprogrammingandAda.

PARADIGMSANDCULTURES

Typically a culture hasa coreparadigmor setof paradigmsthat capturethe coreof the
culture.Theparadigmsact ascognitivetemplatesthatarefilled in wheneither trying to solvea
problemor developanobject.

In programmingthereis an interactionbetweenwhatmay beconsidereda programming
paradigm and a programming language. Stroustrup (8) sets out the relation between a
programmingparadigmandaprogramminglanguageratherneatly.

A languageis saidto supporta styleof programmingif it providesfacilities that
make it convenient (reasonablyeasy,safe, and efficient) to use that style....
Supportfor a paradigmcomesnotonly in theobviousform of languagefacilities
that allow direct useof the paradigm,but also in subtleforms of compile-time
and/orrun-timechecksagainstunintendeddeviationsfrom theparadigm...Extra-
linguistic facilities suchasstandardlibrariesandprogrammingenvironmentscan
alsoprovidesignificantsupportfor aparadigm.

The problemof selectinga paradigmis bothart and science.It is art insofaras it requiresa
subtleunderstandingof theprogrammingcraft, andis scienceinsofarasa setof decisionrules
canbeestablishedfor the paradigm.The four typical paradigmsare:procedural,datahiding,
abstractdatatype,andtheobject-orientedParadigm.

In examining Ada and LISP the idea of the programming paradigm can be usefully
extendedto theparadigmaticway in whichprogramminglanguagesandtheir environmentsare
used.The questionis whetheronelanguageoffers tools that makeit bestsuitedto a particular
task.Although thereis a formal sensein whichall sufficientlyrich languagesareequivalent,this
equivalenceis only logical or formal. Although any of the paradigmscanbe accomplishedin
either LISP or Ada, this doesnot meanthat it is eithereasyor reasonableto useanyof the
mixturesof paradigmandlanguagethatarepossible.SinceLISP hasbeenthechief languageof
artificial intelligence research,it is reasonableto investigatewhetherAda can support the
constructsof LISP. In this way the issue concernswhether Ada can implement the LISP
paradigm.

Schwartz and Melliar-Smith (7) analyzed the Ada specification to determine its potential as
an AI research language. Their conclusion is that Ada, as defined in the Preliminary Standard,
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wouldnot besuitableasa"mainstreamresearchlanguage."They proposed,however,that with
someextensions it is plausiblethata substantialportionof AI "algorithms" could betranslated
into Ada.This translationwouldnot beeasy,sinceit wouldbemoreof a"reimplementation"of
theprogram,but the"complexheuristicalgorithmsthatprovide theartificial intelligence" could
beretained.

Schwartzand Melliar-Smith's claim of Ada's unsuitability is fundamentallybasedon the
determinationto enforcea particularprogrammingparadigm.Onegoal thatwassetforth in both
the Ironman and SteelmanRequirements,is to create "an environment encouraginggood
programmingpractices."Ada imposesa styleof programmingthatis theresultof manyyearsof
researchon programmingmethodology.Ada is intendedto imposea very disciplined style of
programmingthat assiststhosewho aredevelopinglarge,complexprojectsthat requireteamsof
programmers.Furthermore,Ada is saidto be 'readableandunderstandableratherthanwriteable'
soasto minimize thecostof programmaintenance.Thus,Ada's mandatedprogrammingstyle is
beneficial for the targetedAda community- a productioncommunity,especiallya community
that producesreal-timeembeddedsystems.In general,AI work doesnot occur in a production
community,butaresearchanddevelopmentcommunity.Thisdifferencein orientationis afactor
in making Ada unsuitableas a generalAI researchlanguage.The constraintsof production
prevent the AI programmerfrom using the most natural methodof expressionfor whatever
systemis being developed.The LISP programmerplacesgreatervalue on code that is more
easilywriteablethanreadable.However,two thingsshouldbe remembered.First, thereadability
of anycodeis afunction of theenculturationof thereader.Second,thereadabilityof thecodeis
a function of the tools availablewith which to readit. This latter point is important whenone
considersLISP onaLISP machine.Within thatenvironmentthecodemaybecomevery readable
throughthetoolsthat areavailablefor readingit.

SchwartzandMelliar-Smith contendthatthe utility of Ada for AI programsisconfinedto
thereimplementation.This operationwould becarriedout by softwareteamsby following the
algorithmsof anoriginal program,but not necessarilyits detailedcode.Extensionsto Ada are
needed,however,if suchreimplementationis to becarriedout while preservingAda's structure
andmodularity.

A typical AI task for a knowledgebasedsystem in LISP is to generatesolutions to
problemsthat havea very largenumberof alternatives.To attemptto solve suchaproblemby
exhaustivesearchor "bestfit" isnot feasibleevenwith a supercomputer.A heuristic based guess

is used to prune branches from the decision tree so that the problem becomes tractable. In some
"classic" systems, a breadth-first or depth-first search is used to consider candidate solutions.
When it becomes apparent that an incorrect decision has been made, then the search resumes at
the junction where that decision was made. Use of heuristics allows for systems to "learn" from
their mistakes and refine their search techniques as more is "learned" about the problem domain.
Several features of AI programs stand out. First, extensive use is made of the list structure and

the processing of lists. Second, procedures are often used as values that can be stored in a data
structure. This allows for the construction of a generic framework for the parameterized
transformation of a given type of structure. An example of this would be the construction of a

system to perform an arbitrary function on a tree or graph structure. If the procedures are values
of a procedural data type, then the procedures could be passed as parameters to perform the
desired manipulation of data. Third, LISP provides for a similar representation of both data and
programs that allows for the creation of functional abstractions "on the fly." These abstractions,
expressed by Lambda calculus list expressions, can be passed as parameters to other abstractions.
Fourth, as each function or expression is defined, it becomes part of the system. Thus, the

application program can examine its run-time environment, a fact which makes the program
inseparable from its environment. Finally, the ability to use procedures as storable objects is
essential to many AI programs. One use for this ability is as a method to express knowledge
about a particular domain. Frequently, several different knowledge representations will be used
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in one system. The particular representation used would depend on the availability of
information.

PACKAGES FOR ADA

Much of the success of LISP as an AI language can be attributed to fact that it is extensible.

It is possible, for instance, to construct rather easily interpreters for other high-level languages
using LISP. This ability is facilitated by the manner in which LISP programs are represented: as
lists. Ada, too is extensible. (2) However, Ada is more limited in its extension capabilities, with
packages, generic procedures and tasks being all of the extension methods. Whether or not this
extensibility is to limited for the needs of reimplementing AI programs remains to be seen. Ada
provides data abstraction facilities that allow one to create extensions to the language by the
defining of new data types and the operators that can be used to manipulate them. Through the
use of a package containing a data abstraction, a programmer can write code as if the facilities

provided by the package were provided by Ada. Thus the addition of packages may provide a
way in which the typical features of an AI program written in LISP can be reimplemented in
Ada. Such a package may, for example, supply the tools needed to handle lists, procedures, and
garbage collection.

List processing is an important feature of AI research languages. Whereas Ada does
provide the features needed to implement list processing, its garbage collection facilities leave
much to be desired. No special considerations have been made for list processing, and
consequently, the efficiency of such will likely be minimal. To implement lists in Ada, one could

create a data structure as follows. Each list cell would be a record that has two list pointers: CAR
and CDR. A list pointer would then be a record that has only a variant part. The discriminant of
this variant part would have two possible values: ATOM and LIST. This would indicate whether
the list pointer component is a list reference or an atom reference. There would need to be a

LIST_REFERENCE and ATOM_REFERENCE access types for the dynamically allocated list
cells and atom cells.

Although procedural variables cannot be readily added to Ada, it is conceivable that the

ability to pass procedures as parameters could be added. The effect of the instruction part of a
procedural value can be simulated through the use of a generic procedure. This method would
avoid using a CASE statement as would be necessary if the indexing scheme were used. Generic

procedures used in this fashion would carry the name of the "passed" procedure but would not
have the closure or environment.

As most AI programs "run," they pursue a number of possible alternative paths of action.
This attempt to find the best possible path usually succeeds in allocating a great deal of memory.
Since the memory objects have a lifetime that is dependent on the duration of the utility of the

data, and not the flow of control of the program, these objects must be allocated in a global heap.
By using a heap, storage can remain at least as long as it is referenced anywhere else in the

system. Consider a typical embedded system application. Here, the data that must have space in
the heap is minimal. Thus, reclamation of heap space is not important, and in some cases, heap
space is not reclaimed at all. This is yet another design philosophy contradiction, between Ada

and AI languages. AI languages are designed with the philosophy that "no amount of initial heap
allocation will be sufficient for the continued operation of many AI programs." It is not a
question of if all of the heap space will become allocated, rather is is a question of when it will

happen. Obviously, some strategy must be used to reclaim this storage space. The language
specification for Ada does not preclude garbage collection capabilities, nor does it indicate these
will be included. There is a mechanism, FOR-USE, which indicates the maximum number of
objects of an access type that may be generated. Since the compiler knows the maximum size in

advance, the necessary space can be allocated. This provides a sort of heap-type allocation with
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automatic reclamation for objects that have a limited scope of use. Unfortunately, this method
causes allocation/deallocation to be dependent on control flow or block entry and exit.

PATTERNS

Obviously, not everyone agrees with Schwartz and Melliar-Smith on Ada's place in AI.
Larry Reeker, John Kreuter, and Kenneth Wauchope of Tulane University have done much work
on pattern matching in Ada. In answer to the question of "will Artificial Intelligence be done in
Ada?" they answer that "anything can be done in Ada," and attempt to show how Ada, when
appropriately used, can facilitate the programming of Artificial Intelligence applications. (6)

Reeker has chosen to focus on a pattern-directed because "pattern-directed facilities
provide the most effective means for creating complex programs for non-numerical
applications." Further support for pattern matching can be found in the work of Warren, Pereira
and Pereira. (9) They contend that pattern matching "is the preferable method for specifying
operations on structured data, both from the user's and the implementer's point of view."

Reeker envisions the addition of AI oriented features to Ada through the use of packages.

The list of features that are candidates for incorporation into Ada include:

• String definition and manipulation facilities more flexible than those built into Ada.

• List processing functions
• Pattern definition and matching functions for strings and lists
• A means of manipulating lists returned by the pattern matching functions

Ada's concurrency paradigms lead to a number of possible methods for pattern matching.
One such method would be to use tasks as "coroutines" to match patterns. There are areas in AI
which have made use of"quasi-parallel" processes previously. True parallel tasks executing on a

true multiprocessor system would surely improve on those systems.

In his section of their paper, Kenneth Wauchope presents an Ada language implementation
of a pattern-directed list processing facility. A set of SNOBOL-4 like primitives are used to
construct lists that are equivalent to arbitrarily complex LISP-like data structures. Wauchope
advocates the addition of packages to make AI feasible in Ada. In this paper he describes the
operation of a package which provides basic list creation and manipulation functions similar to
those in LISP. Wauchope then presents several applications of these new features, including:

parsing a context free grammar and symbolic differentiation.

Krueter presents several algorithms for pattern matching in Ada The first of these is the
recursive descent parsing method which is a common way to implement the backtracking
strategy. Backtracking is based on the intuitive approach of trying every possibility for each

pattern element. This generates every possible parse of the string but is rather costly in terms of
time.

One particularly interesting possibility arises with the use of Ada for coding such
algorithms. Since Ada allows concurrent tasks, the backtracking aspects of the algorithm could
be achieved through the use of tasks that behave as coroutines. A task would start by examining
each bead in the first set of alternatives. A new task is forked for each successful match. This

new tasks will then examine the remainder of the string and the remaining sets of alternatives.
After all alternatives have been examined, the task will pass back the matching substrings, or null
in the case of no match, and terminate. Each successive parent tasks will then add its substring to

the beginning of each tree on the list which has been passed to it. Then, this list is passed back,
and so forth, until the master task is reached.
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Combinatorially implosive algorithms (CIA's) are a class of parallel algorithms that
employ two or more algorithms running concurrently such that they will solve a problem more
quickly than one would by itself. Brintsenhoff, Christensen, Mangan, and Greco demonstrate a
CIA coded in Ada in their paper, "The Use of Ada Concurrent Processing Features in an
Implementation of Parallel Tree Searching Algorithms." (3) This study is interesting because the
authors had access to a multiprocessor with run-time support for concurrent tasking. Their
findings show the speed advantages of parallel algorithms written in Ada. Although the results
were highly data dependent, the running of two algorithms concurrently proved to be more
efficient than just one and thus proved the utility of CIA's in Ada. If such CIA's could be

developed for pattern matching, it is reasonable to expect that pattern driven AI applications
would prove to be very efficient in Ada.

OPTIONS

The two previous sections have indicated two ways in which the confrontation of Ada and

AI might proceed. In the first way the differences of the two cultures are acknowledged and an
effort is made through the addition of appropriate packages to provide the tools for a
reimplementation of an AI program. The second option acknowledges the fact that in a
sufficiently complete language it is possible to implement the idea of a program directly. Each
approach has certain advantages and disadvantages. In the first approach the program does not
have to be completely rethought and redesigned. This is a disadvantage of the second option
since the ideas for the program have to implemented from scratch. In the second approach there

are potential advantages to be gained by using the strengths of Ada. This is the disadvantage of
the first option. The addition of the packages may in effect provide for a LISP interpreter that
circumvents the natural strengths of Ada.

One way in which a decision between these options might be facilitated is by using the
resources of software engineering. Fairley (4), for example, defines software engineering as the
"technological discipline concerned with the systematic production and maintenance of software
products that are developed and modified on time and within cost estimates," and claims that
software engineering is a "new technological discipline distinct from, but based on the
foundations of, computer science, management science, economics, communication skills, and
the engineering approach to problem solving." Boehm (1) identifies seven basic principles in
software engineering. These are:

1. Manage using a phased life-cycle plan,
2. Perform continuous validation,

3. Maintain disciplined product control,
4. Use modern programming practices,
5. Maintain clear accountability for results,
6. Use better and fewer people,

7. Maintain a commitment to improve the process.

Of these p.rinciples one requires special attention in this context, injunction to use modern
programmmg practices.

Programming paradigms are at the root of modern programming practices. As Boehm (1)
notes, "The use of modem programming practices (MPP), including top-down structured
programming (TDSP) and other practices such as information hiding, helps to get a good deal
more visibility into the software development process, contributes greatly to getting errors out
early, produces understandable and maintainable code, and makes many other software jobs
easier, like integration and testing." At issue, of course, is what counts as a modem programming

practice. Interpreting this principle is complicated by the facts that modern programming
practices are not fixed, that such practices are the outgrowths of programming paradigms, and
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that the paradigms are responses to the practical needs of computer software developers and the
intellectual demands of computer scientists.

Thus, Boehm's principle that modem programming practices ought to be used is a bit odd.
What it might really mean, however, is not that any modem programming practices should be
used, but that the modern programming practices for imperative, conventional languages that are
used for large software projects and can be handled within the current discipline of software

engineering should be used. In this sense the modem programming practices are those geared to
the community and culture of production. Neither LISP nor object-oriented programming can
satisfy those demands. However, Ada comes near to being the ideal language from the point of
view of software engineering with conventional languages. This points out the difficulty in
generating a set of principles to guide software engineering. The analogy of software engineering
to the rest of the engineering field (10) begins to break as one attends to the nonphysical
character of software. For example, when building a bridge or a pipeline, the standard elements
of the construction remain static. Bridges will have beams and pipelines will have pipes. The
materials and techniques may change, but the basic elements remain. Unconfined by such

physical characteristics, the elements of software construction can change, subroutines,
subprograms, libraries, modules, package, units, function, objects and many other elements are
available to the software programmer, and new as yet unthought of constructs might be added.
All of this adds to the complexity of choosing and using modern programming practices, and

points to the important role of the software manager even within the software engineering
discipline.

The decision as two which of the two options should be pursued any not therefore be

decidable on the grounds of software engineering alone. If the other principles that Boehm
isolates are essentially management principles then it is fair to assume that they can be satisfied

with any language and any programming paradigm. In this sense they are transcultural. However,
the injunction to use modern programming practices is what the collision of cultures is about.
What is a modem programming practice? Each culture will defend itself as being the exemplar of
modern programming practice. Given the existence of the colliding cultures, it does not appear
that the principles of software engineering will be able to generate a clear choice.

Another way in which the choice might be made is to focus on a technological solution. In

particular the development of software tools that allow for program development in a neutral
environment, but can generate code in a target language. The use of automated tools to manage
the software coding process, including the generation of source code in a target language, raises
another interesting issue, however. If the tools are good tools and if the code they generate is
good code, then what is the programmer doing? In a primary sense he or she is running the tool;
in a secondary sense he or she is programming in some language. There is a sense in which if the
tools are very well done, the "programmer" need not even know the language in which he or she
is programming, and, indeed, need not even know in what language the code is being generated.
As Howden (5) has noted:

The manufacture of software is perhaps one of the most logically complicated

tasks. The intellectual depth of software systems development coupled with the
lack of physical restrictions imposed by properties of the product make software
manufacturing intriguing in its possibilities for highly automated, sophisticated
manufacturing environments. Research has begun, on environments containing
their own concept models of general programming knowledge... It has been
speculated that in the future software engineers will be able to describe
application programs to a system capable of automatically generating

specifications and code.
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An intriguing possibility! The programmer is no longer a crafter of code, but an expert user
of a tool. The connection between the programming language and the programmer is, in a sense,
severed. The programmer with such tools may, therefore, function at a higher, more natural level
of abstraction without needing to attend to the syntactic complexities of the language in which
the application is finally coded. This is not, however, surprising. It represents simply another
moment in the evolution toward higher level languages. Rather than a traditional higher level
language being used with a compiler to generate the low level instructions to the processor, a
new generation of tools may operate at an even higher level and a translator may then convert the
tool's specifications into a higher level language which in turn may be compiled.

If this technological path is found desirable, then it suggests that the first option, the
addition of packages and reimplementation of code, is on the right track. Further it suggests that
the second options benefits might be incorporated into the tool. If for example the target
hardware is a multiprocessor system, then a tool should be able to guide the tool user in creating
code appropriate to the hardware. The creation of such tools is not, however, to thought of as
revolutionary. Rather the emergence of such is another evolutionary step in generating higher
level software facilities for programming more complicated hardware.

SPECULATION

It is clear, for example, that processors have improved greatly over the past two decades.
Increased speed, increased word size, augmented capabilities, decreased power consumption, and
decreased cost are readily apparent. All of these factors combine to allow those who design and
build languages and environments to implement more easily and effectively ideas and constructs
which with less capable processors would remain dream and desire. One need only to recall what
it was like to run LISP on a PDP-11 under RSTS and look at a Symbolics or Texas Instruments
LISP machine to recognize the difference. Similarly, C in its own UNIX environment has come
to be recognized as a powerful system, and has led to the evolution and development of the
computer workstation. The future holds even more promise. Even as physical limitations begin to
affect the development of better processors, new architectures begin to evolve. Multiprocessor
machines, parallel processor machines, and other objects of wonder and splendor open new
vistas to the language crafter. Although languages like LISP and C will probably move into these
new environments, their form and function will probably be much different. Equally probable is
that new languages will emerge. In any case, one point is clear. Languages are not static.
Language development responds to the state of the processor art. As long as processor
development continues, it is reasonable to expect programming languages to develop.

It should also be clear that programming paradigms change over time. The changes of
paradigm reflect both the intellectual development of computer programming and the ability of
the language crafters to build support for a paradigm into a language. BASIC was a wonderful

language. It was criticized for not supporting a structured programming paradigm. New BASIC
arose in response to that criticism. Classic LISP did not support object-oriented programming.
LISP with FLAVORS is a virtually seamless environment in which such programming is
supported and encouraged. C did not support the object-oriented paradigm; C++ is a response as
is Objective C. If it were not for the government's involvement with Ada, one might well think
that OO-Ada (Object-Oriented' Ada) might soon appear. There is, of course, no reason to think

that the story ends with the object-oriented paradigm. New paradigms, perhaps tailored to
particular classes of problems, may well arise. As they do, old languages may evolve to support
them, and new languages may arise to enforce them in much the way that PASCAL and
MODULA-2 enforce structured programming, SMALLTALK enforces object-oriented
programming, and Ada enforces some software engineering practices.

Perhaps the most dramatic changes of language will occur with the improvement and
development of programming environments and tools. It is often the environment that captures
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the programmer. The facilities of the LISP and C environmentsallow the programmer to
concentrateon the task at hand,andquickly andefficiently producethe neededcode.This is
especiallytrueof aLISP environmenton a LISP machine.Theprogrammercanbuild his own
tools and tailor the environmentto his or her needsand preferences.More importantly, the
environmentandmachinefunctionin harmonyto allow theprogrammerto build newlanguages
in which problemscanbesolved.By allowingameasureof abstraction,generalityandefficiency
canbegained.All of thesethingstakentogetherpointout that thedevelopmentalenvironmentis
animportantfactorin selectingalanguages.

As programmingtoolsandaidsevolve,thedirect contactwith theprogramminglanguage
maybeginto disappear.Suchtoolsmayallow theprogrammerto eitherbreaktheprogramming
taskdowninto partsthataresufficiently smallandstandardthatexisting librariesof routinescan
beemployed,or may allow the programmerto build theprogramspecificationsin sucha way
that a translator will be able to translate the specification into the target language.Both
approachescurrentlyhavetheir problems.In theformer theprogrammeris left at somepoint to
grapplewith the languageitself, andin the latter theprogrammermight find thetranslatedcode
for the target languageindecipherable.Although theseare seriousproblems,they may not be
insurmountable.If they canbeovercome,thecontactof theprogrammerwith theprogramming
languagewill bestretchedthinnerandthinner.

The continued improvement of programming tools and environments, may lead the
managerto basehisor herdecisionon which programminglanguageto useon thepresenceor
absenceof certainfeaturesin thetoolsandenvironmentsmore thanon thecharacteristicsof the
languages.The decision,of course,is still affectedby externalfactors.Ada will beusedon the
SpaceStation.However,muchmight be learnedby examiningthe environmentsandtools for
other languagessuchasLISP andC in aneffort to build bettertoolsfor Ada.After all, giventhat
Ada is asufficiently universallanguage,it canbemadeto look like otherlanguages.

CONCLUSION

It is difficult if not impossible to directly solvethe cultural collisions that arebound to
occurin the interactionof programminglanguages,andparadigms.Thoseculturalcollisionswill
not be resolvedby attemptingto enforce a uniform programminglanguageand culture. An
alternative, however,is to build tools that removetheprogrammerfrom direct contactwith the
programminglanguage.This removalcanallow thetool userto overcometheculturalproblems,
while still allowing theproductionof codein adesiredlanguage.If andwhensuchtoolsbecome
available,thequestionswith whichthis essaystartedwill bedisplacedwith thequestion,"What
canyour tool do?"
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