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ABSTRACT

The U.S. Bureau of Mines is currently investigating ways to combine the control capabilities of
fuzzy logic with the learning capabilities of genetic algorithms. Fuzzy logic allows for the
uncertainty inherent in most control problems to be incorporated into conventional expert systems.
Although fuzzy logic based expert systems have been used successfully for controlling a number of
physical systems, the selection of acceptable fuzzy membership functions has generally been a
subjective decision. In this paper, high-performance fuzzy membership functions for a fuzzy logic
controller that manipulates a mathematical model simulating the autonomous rendezvous of spacecraft
are learned using a genetic algorithm, a search technique based on the mechanics of natural genetics.
The membership functions learned by the genetic algorithm provide for a more efficient fuzzy logic
controller than membership functions selected by the authors for the rendezvous problem. Thus,
genetic algorithms are potentially an effective and structured approach for learning fuzzy
membership functions.

INTRODUCTION

In recent years, rule-based systems have become increasingly popular as practical applications
of artificial intelligence. These expert systems have performed as well as humans in several problem
domains lr, however their lack of flexibility in representing the subjective nature of human

decision-making hm_ts"" their" performance in control problemS.v The uncertainty18 inherent in humandecision-making can be incorporated into expert systems ia fuzzy set theory . In fuzzy set theory,
abstract or subjective concepts can be represented with linguistic variables. Lineuistic variables have

I, 12,'_13been used in expert systems in the form of fuzzy logic controllers (FLCs)

FLCs are rule-based systems that use fuzzy linguistic variables to model a human's
"rule-of-thumb" approach to problem solving. FLCs have been used in a number of control
problems 16. These "fuzzy expert systems" include rules to direct the decision process, and
membership functions for categorizing the precise numeric variable values as linguistic variables and.
vice versa. The rule set is gleaned from a human expert's experience and the membership functions
are chosen by the FLC developer to represent the human expert's interpretation of the linguistic
variables. A change in the membership functions alters the performance of the controller because
it is the membership functions that determine when a given rule is eligible to be put into effect.
Thus, the performance of the FLC is restricted by the choice of membership functions (given a set
of rules).

Procyk and Mamdani ls introduced an iterative procedure for altering membership functions to
improve the performance of an FLC, but in general, little has been done to develop a method for
choosing membership functions that optimize the performance of an FLC. A standard method for
determining the membership functions that produce maximum FLC performance is needed, yet
selecting such a method poses a substantial problem due to the nonlinearity present in the search.
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A searchtechniquethatis finding increasingpopularityin thefield of optimizationis thegenetic
algorithm(GA)6. GAs are search algorithms based on the mechanics of natural genetics; they use
operations found in natural genetics to guide their trek through the search space. GAs search
through large spaces quickly, requiring only objective function value information to guide their
search, an inviting characteristic since the majority of commonly used search techniques require
derivative information, continuity of the search space, or complete knowledge of the objective
function to guide their search. Occasionally these restrictions prove to be inconvenient if not
insurmountable. Furthermore, because of the processing leverage associated with GAs, they take a
more global view of the search space than many methods encountered in engineering optimization_
practice 5. These favorable characteristics of GAs have been theoretically investigated by Holland's r
monograph. Empirical investigations by Hollstien 8 and De Jong 4 have demonstrated the technique's
efficiency in function optimization. De Jong, in particular, establishes the GA as a robust search
technique--one that is efficient across a broad spectrum of problems--as compared to several
traditional schemes. Subsequent application of GAs to the search problems of pipeline engineering,

very large scale integration (VLSI) microchip layout, structural optimization, job shop scheduling,
medical image processing, and machine learning adds considerable evidence to the claim that GAs
are broadly based.

The robust nature of GAs make them inviting tools for learning fuzzy membership functions.

A GA has in fact been successfull_ used to learn high-performance fuzzy membership functions
employed by a liquid level FLC . In this application, an FLC was developed to control a
mathematical model of a vessel containing liquid. The simple system is governed by a first order
ordinary differential equation. All control decisions performed on the system involved altering one
control variable based on the state or condition of two decision variables.

In this paper, an FLC is developed to control a mathematical that simulates the autonomous
rendezvous of two spacecraft, one actively performing the rendezvous (the chaser), the other
passively orbiting (the target). The rendezvous problem has received attention in the literature TMand
is a challenging control problem. The FLC is capable of performing the rendezvous of the vehicles
as predicted by a mathematical model of the rendezvous system. Next, a GA learns more efficient
fuzzy membership functions to be used with the FLC rules. Based on the results presented, GAs
appear to be effective, versatile, and straightforward enough to learn high-performance membership
functions in complex control problems.

THE PHYSICAL SYSTEM

Spacecraft rendezvous operations are of importance to many forthcoming space activities. Of
increasing interest are those operations which are conducted autonomously, i.e., without a human
pilot operating the control systems of the chaser spacecraft. This paper is concerned with the
"terminal" phase of the rendezvous maneuver prior to docking.

Since terminal navigation is accomplished using sensors onboard the chase vehicle to measure
relative range and closure rates, a relative coordinate system is a logical choice. When the equations
of motion are expressed in a relative coordinate frame, the coordinates are given explicitly as
functions of time. In this study, the relative coordinate system (Figure 1) is fixed to the target
vehicle with the y-axis directed radially from the earth, the x-axis tangent to the orbit in the
direction opposite the target's motion, and the z-axis normal to the plane of the orbit and forming
the customary right hand system.

The complete differential equations of relative motion are easily derived 9. When the distance
between the spacecraft is small compared to the distance from the target to the center of the earth,
the three_equations of relative motion reduce to the Clohessy and Wiltshire (sometimes called Hill)
equations_:

- 2007 = Fx/m,

+ 2w:_ - 3Jy = Fy/m,

_"+ _oZz= Fz/m,
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where_ois theangularvelocityof therelativecoordinatesystemorigin rotatingabouttheearth;Fx,
Fy,and Fz are thrust forces;andm is themassof the chaservehicle.

In the present study the equations of motion are numerically integrated using a
predictor-corrector linear multistep method, specifically the explicit Adams-Bashforth 3-step method
for the predictor and implicit Adams-Moulton 3-step method for the corrector 2.

Y

RelativeMotionCoordinateSystem

Figure l.--The coordinate system is fixed to the target spacecraft.

A FUZZY PROCESS CONTROLLER

There are numerous approaches to developing FLCs. Generally, a comoositi9nal rule of
inference12--a mathematical statement describing how the linguistic variables are to be manipu-
lated--is employed to control the problem environment. In this paper, a hands-on, rational approach
to the development of FLCs is taken. A step-by-step fuzzy procedure for controlling the rendezvous
system is provided. This procedure is written in a generic form so that it may be easily adapted for
the development of other FLCs.

The first step in developing the rendezvous FLC is to determine which variables will be
important in choosing an effective control action. Six decision variables are readily identified as
being important in the rendezvous control system. First, the current position of the chaser spacecraft
relative to the target vehicle (identified with three variables x, y, and z) is important because it is
this position that the FLC must drive to a setpoint (a close rendezvous with the satellite). Second,
the time rate of change of the position (identified with three variables x, y, and z) is important
because it describes the relative velocity of the chaser spacecraft and becomes pertinent to the
decision as the setpoint is approached.

Once the decision variables have been chosen, the control variables must be identified. In the
rendezvous problem there are only three parameters that can be adjusted to alter the position and

velocity of the spacecraft: the specific thrust in the three respective directions, T x = Fx/m, Ty =
Fy/m, and T z = Fz/m.

Once the important decision and control variables have been identified, the linguistic variables
that will be used to describe these variables must be defined (fuzzy classes). For the terminal
rendezvous system, six fuzzy classes are used to characterize each of the six decision variables:

45



NEGATIVE-BIG (NB), NEGATIVE-SMALL (NS),NEGATIVE-CLOSE(NC),POSITIVE-CLOSE
(PC),POSITIVE-SMALL(PS),andPOSITIVE-BIG(PB). Fivefuzzyclassesareusedto characterize
the specific thrusts,Tx, Tv, and Tz: NEGATIVE-BIG (NB), NEGATIVE-SMALL (NS), NO
CHANGE (N_C), POSITIVE-SMALL(PS),and POSITIVE-BIG(PB). Thesefuzzy classeswere
chosenbecausetheyaresimilar tothedescriptivetermsahumanoperatormightusewhenattempting
to rendezvousthespacecraft.

Thechoiceof fuzzyclassesdescribedaboveallowsfor thepossibilityof 36different conditions
that couldexist in eachof the x, y, and z coordinatedirection when the rules are of the form
(examplefor x direction):

IF[xis A ANDxist3 ]=>THEN[T xisC ]

where A , /3 , and C are fuzzy classes characterizing the respective variables. The individual
coordinate directions are considered separately in this rule which would apply when x, y, or z were
large since a human operator would likely consider only the two decision variables in a single
coordinate direction at a time. Additionally, rules are added to take into account the coupling of
x and y, but only when the chaser is near the target. The 108 rules of the above form (36 rules for
each of the 3 coordinate directions) are certainly not adequate to control the spacecraft since the
equations of motion are coupled (the x and y equations), requiring the FLC to consider the x and y
coordinate directions collectively. This coupling effect becomes particularly important when the
chaser spacecraft is near the target. Therefore, a set of "coupled rules" is needed. These rules are
of the form:

IF[xisA ANDyis /3 ANDxis CANDyis D ] _-> THEN [T xis E ANDTyis F ]

where A, /3, C, V, E, and F are fuzzy classes characterizing the respective variables. These rules
are written for all of the possible combinations of the terms when the four relevant decision variables
are in the NEGATIVE-CLOSE or POSITIVE-CLOSE classes. Thus, there are 16 coupled rules which
when combined with the 108 original rules provide 124 total rules.

The driving force behind an FLC is the idea that some uncertainty exists in categorizing the
values of the control variables; the linguistic variables mean different things to different people.
As a result, there must exist some mechanism for interpreting the fuzzy classes. This mechanism is
the fuzzy membership function. The fuzzy membership functions used in the rendezvous FLC to
characterize relative positions are shown in Figure 2. Similar membership functions were used to
characterize relative velocities and thrusts. Fuzzy membership functions allow the precise numeric
values of the decision variables to be transformed into a fuzzy class and the fuzzy control actions of
the production rules to be transformed into precise, discrete control actions. Actually, fuzzy
membership functions are approximations to the confidence with which a precise numeric value is
described by a fuzzy class, and fuzzy membership function values (t0 are numeric representations
of these confidences. For example, an x of 1300 ft might be viewed as POSITIVE-BIG (/JPB (1300)
= 0.18), POSITIVE-SMALL (#ps(1300) = 0.43), POSITIVE-CLOSE (/_pc(1300) = 0.0),
NEGATIVE-CLOSE (#Nc(1300) = 0.0), NEGATIVE-SMALL (#NS(1300) = 0.0) or NEGATIVE-BIG
(#Na(1300) = 0.0). When a fuzzy membership function has a value of # = 1, the confidence level of
the precise numeric value being accurately described by the fuzzy class is high. On the other
extreme, when/_ = 0, the confidence level of the precise numeric value being accurately described
by the fuzzy class is low. It is important to realize that for each precise decision value, each fuzzy
class has a membership function value, i.e., x = 1300 ft is POSITIVE-SMALL with a certainty of
0.43, POSITIVE-BIG with a certainty of 0.18, and described by each of the other classes with a
certainty of 0.0.

Now that the precise numeric conditions existing in the rendezvous system at any given time can
be categorized in a fuzzy class with some certainty, a process for determining a precise action to take
on the rendezvous system must be developed. This process involves rules which must provide a fuzzy
action for any condition that could possibly exist in the problem environment. Therefore, a human
expert provides a fuzzy action for each condition possible in the environment (there are 124 rules
in the rendezvous FLC). The formation of the rule set is comparable to the process that must exist
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in thedevelopmentof anyexpertsystem,excepttherulesincorporatelinguisticvariablesthathuman
operatorsaregenerallycomfortableusing.An exampleof afuzzyrule usedin therendezvoussystem
follows:

IF [y is NEGATIVE-BIG AND y is NEGATIVE-BIG] =>'THEN [Ty is POSITIVE-BIG].

This sample rule simply says that if the chaser spacecraft is well below the target vehicle and moving
rapidly toward the earth, the thrust in the y direction should be increased as much as possible.
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Figure 2.--The fuzzy membership functions shown provide a mechanism for converting a numeric
value of position (xi = x, y, z) into a fuzzy class.

At this point a means for converting a precise set of conditions existing in the rendezvous system
to a set of fuzzy conditions, and a set of fuzzy rules prescribing a fuzzy action associated with a
particular set of fuzzy conditions have been developed. There still remains the task of converting
the 124 fuzzy actions provided by the fuzzy rules into a single, precise action to be taken on the
chaser spacecraft system. Larkin 11 found that a procedure known as the center of area (COA)
scheme is an efficient method for determining this precise action. In the COA method, a single
action is defined by weighting the 124 individual actions described by the rules in proportion to the
confidence that exists in each rule. The rules with high degrees of membership play proportionately
higher roles in determining the action to be taken on the system.
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Figure 3.--The author-developed (AD) FLC is able to successfully rendezvous the spacecraft in
approximately 300 seconds.
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As ademonstrationof the effectivenessof this fuzzy approachto control, considera computer
programthat implementsanFLC for manipulatingamathematicalmodelof therendezvoussystem.
Figure 3 showsthe positionof the chaserrelative to the targetas a function of time for one
particularinitial conditionfor the problemenvironment.The FLC usesonly the setof 124fuzzy
rules to govern its selectionof actions. The FLC is able to rendezvousthe spacecraftin
approximately600seconds.In theremainderof this paper,a techniquefor improvingtheselection
of membershipfunctions(aGA) is introducedandappliedto therendezvousFLC.

THE MECHANICS OF A SIMPLE GENETIC ALGORITHM

GAs are powerful search algorithms based on the mechanics of natural genetics. They ensure
the proliferation of quality solutions while investigating new solutions via a systematic information
exchange that utilizes probabilistic decisions. It is this combination which allows GAs to exploit
historical information to locate new points in the search space with expected improved performance.

GAs are unlike many conventional search algorithms in the following ways:

1) GAs consider many points in the search space simultaneously,
not just a single point;

2) GAs work directly with strings of characters representing the
parameter set, not the parameters themselves;

3) GAs use probabilistic rules to guide their search, not
deterministic rules.

These differences establish inviting characteristics for a search technique. Namely, these differences
preclude the requirement of derivative information and continuity of the search space. For this
reason, GAs avoid convergence to local optima.

A simple GA that has given good results in a variety of engineering problems is composed of
three operators: (1) reproduction, (2) crossover: and (3) mutation. These operators are implemented
by performing the basic tasks of copying strings, exchanging portions of strings, and generating
random numbers; tasks that are easily performed on a computer. Before looking at the operators,
consider the overall processing of a GA during a single generation. The GA begins by randomly
generating a population of N bit strings each of length I. Each string represents one possible
combination of the parameter set; one possible solution to the problem (in this case, one particular
set of fuzzy membership functions). Although the coding of parameter sets to bit strings may at first
seem to be a problem, many imaginative codings exist for representing large parameter sets. Each
of the N strings is decoded so that the character strings yield the actual parameters. The parameters
are sent to a mathematical model of the rendezvous process, evaluated with some objective function

(i.e., told how good an FLC the parameters produce), and assigned a fitness value which is simply
a measure of relative worth (a reward based on the quality of the solution). This fitness is then used
when employing the three operators that produce a new population of strings (a new generation).
Hopefully, this new generation will contain more efficient membership functions. The new strings
are again decoded, evaluated, and transformed using the basic operators. The process continues until
convergence is achieved or a suitable solution is found.

Reproduction is simply a process by which strings with large fitness values, good solutions to the
problem at hand, receive correspondingly large numbers of copies in the new population. In this
study use is made of tournament selection. In tournament selection, pairs of strings compete with
each other on a head-to-head basis for the right to be reproduced in the next generation. The
participants in these competitions are selected in a probabilistic fashion based on the relative fitnesses
of the strings. Once the strings are reproduced, or copied for possible use in the next generation,
they are placed in a mating pool where they await the action of the other two operators.

The systematic information exchange utilizing probabilistic decisions is implemented by the
second operator, crossover. Crossover provides a mechanism for strings to mix and match their
desirable qualities through a random process. After reproduction, simple crossover proceeds in three
steps. First, two newly reproduced strings are selected from the mating pool produced by
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reproduction. Second,a positionalong the two stringsis selecteduniformly at random. This is
illustratedbelow wheretwo binary codedstringsA and B of length six are shownalignedfor
crossover:

A= 11---_ 1 0 1
B=00 1[0 1 1.

Notice how crossing site 3 has been selected in this particular example through random choice,
although any of the other four positions were just as likely to have been selected. The third step is
to exchange all characters following the crossing site. The two new strings following this crossing
are shown below as A' and B':

A'=II0011
B'=00 1 1 0 1.

String A' is made up of the first part of string A and the tail of string B. Likewise, string B' is made
up of the first part of string B and the tail of string A. Although crossover has a random element,
it should not be thought of as a random walk through the search space. When combined with
reproduction, it is an effective means of exchanging information and combining portions of high
quality solutions.

Reproduction and crossover give GAs the majority of their search power. The third operator,
mutation, enhances the ability of the GA to find near optimal solutions. Mutation is the occasional
alteration of a value at a particular string position. It is an insurance policy against the permanent
loss of any simple bit. A generation may be created that is void of a particular character at a given
string position. For example, a 'generation may exist that does not have a one in the third string
position when, due to the chosen coding, a on_ at the third position may be critical to obtaining a
quality solution. Under these conditions, neither reproduction nor crossover will ever produce a one
in this third position in subsequent generations. Mutation, however, causes a zero in the third
position to be changed to a one occasionally. Thus, the critical piece of information can be reinstated
into the population. Although mutation can serve a vital role in a GA, it should be noted that it
occurs with a small probability (on the order of one mutation per thousand string positions), and is
secondary to reproduction and crossover.

This has been a brief overview of a simple three-operator GA. For a more complete description
of GAs including discussions of coding schemes, high-order operators, and fitness assignment,
reference should be made to Goldberg 6.

GENETIC ALGORITHM LEARNS FUZZY MEMBERSHIP FUNCTIONS

In this section, a three-operator GA learns membership functions that produce a rendezvous FLC
that is more efficient than the author-developed FLC. The GA is essentially assigned the task of
learning the proper definition of the linguistic variables as required for optimal performance when
used with the given rule set.

An objective function was developed that tended to force the GA to locate membership functions
that drove the relative position of the spacecraft to zero and held it there. The objective function
tracked the vehicles for 8000 seconds. For a given set of membership functions, an error (where
error is the sum of the absolute values of the relative distances between the chaser and the target
taken over time) was calculated for a particular initial condition with the intent of using a GA to
minimize this error term. So that a general purpose set of membership functions would be
developed, four different initial conditions were considered in the evaluation of each bit string. The
four initial conditions were chosen to ensure that the FLC could rendezvous the spacecraft as
effectively when the chaser was approaching the target from a higher orbit as it could when it was
approaching from a lower orbit.
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TheGA learnedmembershipfunctionsthat providedfor better control than those defined by the
authors in the previous section. Figure 4 compares the GA=FLC to the author-developed FLC for
one of the four initial conditions considered. In each initial condition case, the GA-FLC completed
the spacecraft rendezvous more favorably than the author=developed FLC.

The desirable characteristics of the rendezvous must be conveyed to the GA through the objective
functions. In this study, the objective of the GA was simply to reduce the total distance between
the two vehicles summed over a period of time. The GA accomplished this goal. The FLC can be
forced to exhibit other properties by altering the objective function. For example, if it is important
to prevent the spacecraft from overshooting the target in the x-coordinate, the GA can be dissuaded
from locating such solutions by incorporating a penalty into the objective function (see Goldberg 6
for information on penalty methods in objective function formulation).
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SUMMARY

In this paper, a GA was used to improve the performance of an FLC. Initially, an approach to
FLC development was outlined. The approach was developed to be straightforward and intentionally
avoided an abundance of fuzzy mathematics. Next, this approach was used to develop a fuzzy system
for controlling the rendezvous of a spacecraft. The FLC was able to maintain control over the
spacecraft (as simulated by a computer) by relying exclusively on fuzzy rules to determine its next
action.

Altering the membership functions used in an FLC affects the performance of the controller, and
the selection of appropriate membership functions can be cast in the light of a search problem. A
simple three-operator GA was used to learn high-performance membership functions for the
rendezvous FLC. The GA-FLC outperformed the author-developed FLC on four specific initial
conditions chosen to represent a cross=section of potential initial conditions.
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