
N90-27303

CREATURE CO-OP : Achieving Robust Remote Operations With A

Community of Low-Cost Robots

R. Peter Bonasso (bonasso@ai.mitre.org)

Washington Artificial Intelligence Technical Center

The MITRE Corporation

7525 Colshire Drive, McLean, VA 22102

Abstract

This paper puts forth the concept of carrying out space-based

remote missions using a cooperative of low-cost robot specialists

rather than monolithic, multi-purpose systems. A simulation is

described wherein a control architecture for such a system of

specialists is being investigated. Early results show such co-ops

to be robust in the face of unforeseen circumstances. Descriptions

of the platforms and sensors modeled and the beacon and retriever

creatures that make up the co-op are included.

INTRODUCTION

An alternative to building one robot for remote planetary

operations, like the Mars Rover, is to build several robots whose

combined capabilities can do the same task. A single Mars Rover

will have extensive perception capabilities, robust navigation

capabilities, intricate sample detection and acquisition

capabilities, long-range fuel capability, and, in some designs, an

orbit-achieving propulsion system. But damage to any major

subsystem will halt the reconnaissance mission for months until
another Rover can be launched and landed on Mars.

An alternative approach is to use a cooperative of robots of

several sorts. One sort can carry fuel cells (fuel-bots), another

sort has strong farsighted visual perception (beacon-bots),

another sort has good mobility and dexterity and short-sighted

vision (rover-bot), another sort can attach itself to objects and

push and pull them (retriever-bot), and so forth. Each robot would

have the basic capability to stay out of harm's way (e.g.,

avoiding sand pits, dodging meteors), and could communicate with

the others via RF or some other wireless link.

Then, in the Mars Rover effort for example, the beacon-bots

and fuel-bots could be placed in strategic positions throughout

the reconnaissance area, serving as far-sighted eyes and gas-

stations for the rovers which, near-sighted, negotiate rough

terrain and acquire soil samples. The earth-bound human controller

will always be in the loop, evaluating the evolving situation and

sending high-level commands (but only every 40 minutes or so).

Losing one of the beacon-bots or fuel-bots will only limit the

overall system capability in a certain geographic area. Losing a

rover-bot or retriever-bot will only burden another rover or

retriever with more tasks to do of the same type. So this

257

community of robots could be ultimately more cost-effective than

one large all-purpose, well-equipped robot.

This paper describes an ongoing investigation into robot

cooperatives for accomplishing remote operations. It builds on

research being carried out in situated reasoning, perception, and

planning for autonomous agents. Specifically, this work relies on

the ideas of reasoning via subsumption software architectures (3,

6) and reaction plans inspired by (13), and on the growing number

of low-cost integrated robot platforms that are becoming available

(e.g., (4), (5)). The idea of distributed robots is not new,

dating at least to early-eighties work by Sacerdoti who coined the

term disbots (12). But only in recent years has realizing such

systems on low-cost integrated platforms been possible.

This paper does not address many difficult issues associated

with distributed control. The assumption here is that a low-level

of cooperation can be achieved much like a hive gestalt, and

anything beyond that is handled by human intervention.

The next section details an object-oriented software

environment on a micro-Explorer for conducting experiments in

robot cooperation. These experiments are beginning to demonstrate

that such cooperatives will be robust and relatively inexpensive.

Through an example, the cooperating capabilities of the

"creatures" (see (3)) are characterized and the implications for
cost discussed. The last section describes follow-on work with

actual robots in MITRE's Autonomous Systems Laboratory.

THE CREATURE CO-OP EXPERIMENTAL ENVIRONMENT

Figure 1 shows a top or plan view of the layout of the

environment on a micro-Explorer computer screen to simulate the

action of a cooperative of robots with varying levels of

competence. The large circle is the work area within which all

robot action takes place. The open geometric figures are candidate

objects for retrieval. The filled-in circles are the creatures for

the described experiments: the smallest ones are beacons with

farsighted vision; the others are retrievers with circumferential

sonars, and arms (initially retracted) that extend from the body

to grasp or latch on to the object to be retrieved. The thin lines

extending from each creature show their current orientation (they

are all at 0 degrees; angles are measured counter-clockwise).

The right-hand pane shows a number of menu options available

to the experimenter and the bottom pane is used for text output

and user typein. The user can direct the creatures to retrieve

objects, move to new locations, go to sleep and wake up.

258

©

Figure 1

Rekokene

Figure 2

R,.obeSce_e
_e_os86_oYtQ2_ tl-aTQ2_t_t_IMJe_l ttO zorll

_) &T IJLP|t2 imm& IILW

Figure 4

Figure 3

Figure 5

.... ,_.I_, _ -

259

An Example Of Creature Cooperation

The following example demonstrates the utility that can be

obtained with minimal competency "specialist" robots in a

cooperative effort. In this example, the large retriever (#3) has

the task to retrieve Cylinderl, and the small retriever at the top

of the screen (#i) is to navigate to coordinates in the bottom

part of the work area and return.

Selecting Start/Continue Creature generates a process for

each creature that for each simulation clock tick causes the

creature to continue to carry out a retrieval or a directed move

and to avoid any obstacles Without any retrieval or directed

moves pending, no action would be detected. But if the user puts

an object next to any creature, that creature would immediately

move a safe distance away.

After being given a target-object, retriever #3, blind but

for its short-range sonars, first sends a request via RF link for

the location of Cylinderl. Only beacons have the requisite ranging

and recognition capabilities. The beacon in the upper right of the

picture locates Cylinderl and transmits the coordinates to

retriever #3, which begins to dead reckon to the object. Retriever

#I simply heads for the desired location at the bottom of the
screen.

In Figure 2 both retrievers have encountered Triangle4. Both

creatures have a low-level survival routine that usurps control

from any higher level routine when an obstacle is sensed. The

"angle of escape" and "speed of escape" computed by this routine

are averaged with the "angle of purpose" and "speed of purpose" of

any higher level routines to allow the retriever to angle back on

track once the obstacle has been avoided. In Figure 3, retriever

#i is past the obstacles and is heading unobstructed for its

destination.

Retriever #3, however, is blocked since in attempting to

reach Cylinderl it is ping-ponging between the Triangle4 and

Block2. At this point, noticing that it is not making progress

(see Getting Stuck below), retriever #3 broadcasts a help request

indicating an obstacle near the coordinates of Triangle4. Any

retriever that is not busy with another task can process the help

request, and retriever #2 (to the right of Cylinderl) takes up the

task, broadcasting a request for a beacon to identify the object

near the coordinates of interest. Again, the beacon in the upper

right locates and identifies Triangle4 for retriever #2.

When retriever #2 is close enough to the triangle, it extends

its arm, latches onto the object, and begins the return trip to

the location from which it received the help request, thus pulling

the obstacle out of the way of retriever #3. Figure 4 shows

retriever #2 returning and retriever #3 continuing toward

Cylinderl. Retriever #i has arrived at the required destination.

260

:lobeS4:eno

P_er_

Reko_eFle

Figure 6

JP.i_w 8"A,

Reke,_efle

Figure 7

M 4 I_]LI_ Ob_J_s: f|(lflrl_Uwl; 4 je_0ooler_olP'_14o Is jllp4:r_ol_4t,l14644440| J'd_ _4_|

Figure 8

261

Figure 5 shows retriever #3, which is returning to its point

of origin with Cylinderl, encountering retriever #i, which is

returning to its point of origin. Both are blind but can avoid

obstacles with their sonars, so they jostle each other as they

move toward their destinations (see Figure 6). In Figure 7, both

creatures are again on their way to fulfilling their tasks which

are completed in Figure 8. The human user has simply specified two

high-level tasks, and the retrievers were able to achieve them

despite obstacles and the crossing of paths during the task

execution.

CO-OP Objects and Operations

Table 1 shows the objects and operations used to achieve the

capabilities discussed in the text of this report. There are six

objects: three sensors, the generic one and the proximity and

vision types; and three creatures, the generic one and one with

and one without an arm. The types inherit data and operations from

the generic objects. Operations are prefixed by colons; operations

that are invoked after another operation are written with the word

:after and the precedent operation name.

Each creature is instantiated via its position and orientation

variables and the type and number of sensors it is given.

262

_ Variables ODeratlons

sensor associated-creature, type

proximity-sensor range-factor :sense-from coords

vision-sensor range :locate sought-object,
:identify-object-at

creature shape, number, cc-radius, :sleep,:wakeup

coords, sensor-list, name,

sleep

round-creature speed, direction, :feel-force,:sense,

target-direction, old-coords,:runaway,:move,
caution-speed, :turn new-direction,

obstacle-memory :locate object,

:locate-object-at coords,
:wander

round-creature-with-arm target-object, :see-if-stalled, :move-to,

target-location, arm-length, :sense, :retrieve,
arm-direction,

target-obj ect-grasped,
arm -extended?,

bl ocki ng-obst acl es,

help-is-on-the-way,

creature-being-helped,
distance-and-time

:grasp object, :move,
:help-with obstacle

:after :set-blocking-obstacles

Table 1: Creature Objects and Operations

SENSORS

Sensors include a proximity sensor, analogous to a ringed set

of ultra-sonic sensors; and an imaging sensor.Circumferential

sound sensors are available with at least two low-cost commercial

platforms (see (4), (5)). The vision system is a line-of-sight

stereo system which yields range over a 2D matrix. In the

experiments, only beacon creatures have vision sensors and cannot

use them when the platforms are in motion.

Proximity Sensor--The proximity sensor has a range-factor

which is a multiplier used with a creature's platform radius to

get the range capability of the sensor ring. That a larger

creature would have a greater proximity range seems intuitively

correct (a more massive object needs more of a safety margin,

speeds being equal).

The :sense-from operation simulates the action of the ring by

extending a ray from the current platform coordinates out to the

range limit, around the associated-creature's perimeter at 1

degree increments, and recording the angle to the nearest

263

obstruction. This simple algorithm was adequate for this study

and has been since successfully implemented on a Hero 2000.

Vision SensQr--The vision sensor object has a limiting range.

The :locate operation simulates a clockwise scan of the work area

from the platform to locate and recognize an object. For each

object within range, a LOS determination is made, and if positive,

a "recognition" is made. Recognition is assumed to be a simple

discrimination among classes of objects known to be in the

environment. If the view is obstructed, the obstructing object is

recognized, and its name is returned. If the object is recognized

and it is the sought-object, then a ranging is made and the object

name and its coordinates are returned. Otherwise the process

continues until the whole work-area has been scanned, returning
nil if unsuccessful.

The vision sensor can be asked to identify an object at or

near a certain location. The :identify-object-at operation then

simply trains the sensor on the given coordinates and, if

unobstructed, returns the identity of the object nearest that
location.

CREATURES

The generic creature has a shape, an identification number, a

location, a list of on-board sensors, a name, and a sleep toggle
for ignoring certain commands. The cc-radius is the radius of the

equivalent circumscribing circle. For round creatures this is just

the radius; for other objects, an equivalent radius is computed at

instantiation. The :sleep and :wakeup operations set and reset the

sleep variable.

Round-creature--We begin with creatures whose notions of

motion are direction and speed. We believe many of the key ideas

embodied in this report extend in a straight-forward manner to a

space-based environment. The round-creature is a circular

platform capable of omni-directional traverse. The creature has

an organic 16-bit processor and 512k bytes of memory, which should

be enough computing capability and memory to carry out the
operations described below, and an RF broadcast transceiver

capable of data communication.

The round-creature has speed (distance units per clock tick)

and direction and can be given a target-direction in which to

:wander. Caution-speed is the speed used when an obstacle is

encountered, and obstacles are noted and placed into obstacle-

memory. The obstacle memory is cleared after every 12 obstacle

sensings (a kind of forgetting).

Sensing and Avoiding Obstacles--When the :feel-force

operation is invoked in the creature's continuous control loop,

the :sense operation is invoked, and if there is a positive

sensing, the :runaway operation is invoked. Runaway sets the

264

direction to 180 degrees opposite the obstacle direction (by

invoking a :turn in the new-direction), sets the speed to caution-

speed, and executes the :move operation. Move advances the

creature caution-speed units along its direction. Thus, if an

obstacle or other creature approaches close enough, the creature

will move away until :feel-force returns nil.

The :sense operation invokes the :sense-from operation of the

creature's proximity sensors if any. When an obstacle is sensed,

the token UNKNOWN and the location of the creature at the time are

stored in obstacle-memory Obstacle-memory is used to see if the

creature is not making progress (see Getting Stuck below).

Locating and Identifying Objects--To locate an object, a

round-creature asks its sensors each in turn to :locate the

object. Only the vision sensors are capable of this operation. If

the creature doesn't have such a sensor, it asks another creature

to locate the object, which in turn recursively ask other

creatures if necessary. This single request thread prevents

simultaneous creature responses as in a broadcast method. Most

often working creatures (e.g., retrievers) with only proximity

sensors can't identify the object to be located. More typically,

the request is to :locate-object-at the location which in turn
converts to a call to the creature's vision sensor to :identify-

object-at that location. In our typical setup, only beacons have

vision sensors, and one of them ends up identifying and locating

the object.

Round-creature-with-arm--This creature is typically endowed

with a swivel retrieval mechanism: an arm that swivels either

freely or under control about the platform axis, can be retracted

and extended, and needs only to make contact with the objects to

be retrieved (one can imagine simple or complex contact mechanisms

from velcro pads to magnetized grippers). The :sense command is as

described above but augmented to account for the objects in tow.

This creature is used primarily for retrieving a target-

object at a target-location. It keeps track of whether its arm is

extended or not, whether it has grasped the target-object and its

rate of progress through the distance-and-time recordings. If

impeded, the creature remembers the blocking-obstacles and whether

help-is-on-the-way (stored as a list of the helper and its target-

object). If it is helping another creature, it remembers the

creature-being-helped.

Retrieving Objects--Retrieving objects is effected as a

reaction plan, which is akin to the concept of a Universal Plan

(13), once a target-object has been established by the user or

another creature. Table 2 shows a retrieval plan. The

preconditions of the plan are checked and the appropriate action

is taken on each pass of the control loop.

265

Precondltlon Action Comments

(and target-object-grasped
old-coords
(< (distance coords old-coords)

retrieve-speed))

Clear all memory
of retrieval data, detach and
close arm If helping
someone, clear helping data Done

(and target-obj ec t-grasped
(equal old-coords target-location)) move-to target-location Heading home

target-object-grasped set target-location to
old-coords; if helping
A, tell A to
:set-blocking-obstacles to nil
and to set help-is-on-the-way
tonil

(and target-location
(<=(distancecoordstarget-location) extend arm and :grasp

arm-length) object, setting
(not (object-usurped target-object)) target-object-grasped

) to true

Turning for
home

Grab object

Target-object has a value :locate target-object,
and:move-to target-location Still trying

No target-object Stay out of trouble Creature idle

Table 2: A Reaction Plan For Retrieval

To understand the plan, read up from the "Target-object has a

value" precondition. When the creature is commanded to retrieve an

object (target-object is set to the object name), it first

:locates the target and then executes a :move-to the target-
location from its old-coords (the position at which it received

the :retrieve command). As soon as it is within an "arm's reach"

of the object and the object is not being grasped by another

creature, it grasps the object. Then it turns and heads for home,

making the target-location the old-coords (move-to looks for a

target-location). If the creature is helping another creature, it

tells the other creature at this point that it has removed the

blocking-obstacle and help is no longer on the way. When the

creature is within retrieve-speed of the old-coords, the arm
detaches from the object, is retracted and the retrieval is

complete.

Since the preconditions are checked during each cycle of the

control loop, the reaction plan provides robust operations,

allowing for a successful retrieval in the wake of many unforeseen

actions, e.g., the object moves, or another creature grabs the

object first.

266

Getting Stuck--While retrieving, if the creature is blocked

and help is being provided by another creature, the creature just

sits and waits for the help. The obstacles are detected as part of

the :move-to operation where the first action taken is a local

sensing for obstacles. If any exist, a check is made to see if the

creature is being stalled (:see-if-stalled) and then a :runaway is

executed. Otherwise, a :move is executed at the resulting

direction and speed(:move is the same as described above but

taking any towed object into account).

To simply determine whether progress is being made, two cases

are modeled: one, where, in a certain time period, the distance to

the target-object has not changed appreciably; and two, where

there has been a large time lapse since we last invoked the :move-

to operation. The first case involves the instances where the

creature is executing :move-tos and :runaways, but is not really

getting any closer to the object. The second case involves

executing continuous :runaways because of many obstacles as in the

example above.

Each time a :move-to is invoked, the distance from the object
and the time are recorded as lists in distance-and-time. For the

first case, the difference between the current distance and the

distance achieved the last time a :move-to was invoked is compared

to a preset value. For the second case, if the elapsed time since

the last invocation of :move-to is greater than a preset value,

the creature is considered stuck. The values for this simulation

(normal speed = 5 and caution speed =I) were 3 distance units and

ten clock ticks respectively.

When :see-if-stalled determines the creature is stuck, the

last obstacle recorded in obstacle-memory is considered the

blocking-obstacle, and the :after operation for setting the

blocking-obstacles sends a ":help-with obstacle" call out to other

creatures. In the example, retriever #2 answered the :help-with

obstacle call from retriever #3.

CONCLUSIONS AND FUTURE WORK

The robustness of the cooperative becomes more evident the

more the simulation is run. Objects to be retrieved can be

mischievously moved by the user, obstacles can be put in

retrievers' paths, and in all but the most pathological of cases

(two retrievers latch onto the same object and have a tug-of-war

until the user intervenes), the creatures succeed. The current

placement of the beacons is such that with only two beacons set at

a diagonal across the work area, over half of the retrievals will

be successful.

Two creatures can be sent after the same object with the

result that the second creature chases and tracks the object until

the the other creature releases it. This behavior is interesting

to watch in the simulation but underscores the need for human

267

guidance. Autonomous control of multiple agents is a current

research endeavor. The described simulation experiments indicate

that robot cooperatives will succeed well against unforeseen

events but only for a time by themselves.

An enormous amount of work in algorithms for robot navigation

has been done. Some of which are relatively simple to implement

(e.g., (10), (8), and (I)), and we will be investigating them for

our systems. In this vein, we plan to give each creature a simple

map of the objects and the free space. We will then have the

creatures broadcast the results of the retrievals so that all

creatures can update their space maps, and thus better use

navigation algorithms.

We are now moving the experiments onto actual robot

platforms. Several low-cost commercial platforms are available

(see for example (7) and (4)). In MITRE's Autonomous Systems

Laboratory, we have two Hero 2000 robots for which many of the

round-creature-with-arm competences have been implemented, but we

are acquiring a more capable platform such as the Denning MRV-3.

The robots are being programmed using the REX/GAPPS system (ii)

from Teleos Research. We plan to mount a stereopsis system which

produces ranging information at video frame rates (9) on one of

the Heroes (as a beacon); the Denning and the other Hero will be

retrievers. Experiments with these systems will help us understand

how well the co-op ideas stand the test of real systems in real

environments.

268

REFERENCES

(1) Arkin, Ronald C. Motor Schema-Based Mobile Robot

Navigation, in International Journal of Robotics Research,

Vol 8, No. 4 August 1989. pp 92-112

(2) Bloom, Ben; McGrath, Debra; Sanborn, Jim, A Situated

Reasoning Architecture for Space-Based Repair and Replace

Tasks, Proceedings of the Goddard Conference On Space

Applications of AI, NASA Conf Pub #3033, 1989

(3) Brooks, Rodney A, A Robust Layered Control System for a

Mobile Robot, IEEE Journal of Robotics and Automation, 2(1),

March 1986

(4) Brooks, Rodney A Autonomous Mobile Robots, in AI In the

1980s and Beyond, Grimson and Patil eds, MIT Press, 1987

(5) The Hero 2000 Technical Manual, Heath/Zenith Systems, Benton

Harbor, MI 1989

(6) Kaelbling, L. P., An Architecture For Intelligent Reactive

Systems, in The 1986 Workshop on Reasoning About Actions and

Plans, M. Georgeff and A. Lansky eds, Morgan Kaufman, 1986

(7) Long-ji Lin; Mitchell, Tom M.; Philips, Andrew; Simmons,

Reid, A Case Study In Robot Exploration, CMU-RI-TR-89-1, CMU

Robotics Institute, Jan 1989

(8) Meng, Alex C.-C.; Wand, Marty; Hwang, Vincent S., A

Methodology of Map-Guided Autonomous Navigation with Range

Sensors in Dynamic Environments, SPIE 3rd Conf on AI

Applications, 1988

(9) Nishihara, H. K. Practical Real-time Imaging Stereo Matcher,

in Optical Engineering, 23 (5), 536-545 (Sep/Oct) 1984

(i0) Rao, Nagewara S. V., Algorithmic Framework For Learned Robot

Navigation in Unknown Terrains, Computer, June 1989

(ii) Rosenschein, Stanley J. and Kaelbling, Leslie P., The

Synthesis of Digital Machines With Provable Epistemic

Properties, SRI Technical Note #412, SRI International, Menlo

Park, CA 1987

(12) Sacerdoti, Earl D., Plan Generation and Execution For

Robotics, SRI TR, 1983

(13) Schoppers, Marcel, Universal Plans For Reactive Robots In

Unpredictable Domains, in Proceedings of IJCAI I0, 1987

269

