Advanced Recovery Systems Wind Tunnel Test Report

R. H. Geiger and W. K. Wailes
Pioneer Aerospace Corporation
Melbourne, Florida

Prepared for
Ames Research Center
CONTRACT NAS8-36631
August 1990

National Aeronautics and
Space Administration
Ames Research Center
Moffett Field, California 94035-1000

TABLE OF CONTENTS

TITLE

PAGE
1.0 Summary 1
2.0 Introduction 2
2.1 Background 2
2.2 Test Sites and Dates 3
3.0 Objectives 4
3.1 Basic In-Plane Longitudinal Aerodynamics 4
3.2 Flare Data for Trailing Edge Deflections 4
3.3 Control Data (Control Line and Side Forces) 4
3.4 Load Distribution 6
3.5 Scale Effects 6
4.0 Test Facilities \& Techniques 7
4.1 Tunnel Description 7
4.2 Test Stand - Parafoil Attitude Control System 8
4.3 Test Models 9
4.4 Test Techniques 11
4.5 Data Acquisition 13
4.6 Problems and Corrective Action 14
5.0 Analysis of Results 17
5.1 Angle of Attack Summary 17
5.2 PACS Weight Tare 28
5.3 Suspension Line Lift and Drag Study 34
5.4 Lateral Stability Results 57
5.5 Parafoil Scaling Effects 65
5.6 Sample Results 76
6.0 Conclusions and Recommendations 91
7.0 References 92
Appendices (Volume II and Volume III)
\qquad INTENEONATS

LIST OF TABLES AND FIGURES

TITLE PAGE
FIGURE 1.0-1, NATIONAL FULL-SCALE AERODYNAMIC COMPLEX 1
FIGURE 3.3-1, TRAILING EDGE STEERING, LD MODULATION LINE ARRANGEMENT 5
TABLE 3.5-1, WIND TUNNEL TEST OVERVIEW 6
FIGURE 4.1-1, NATIONAL FULL-SCALE AERODYNAMIC COMPLEX 7
FIGURE 4.2-1, PARAFOIL ATTITUDE CONTROL SYSTEM (PACS) 9
FIGURE 4.3-1, WIND TUNNEL TEST MODEL CONFIGURATION 10
FIGURE 4.4-1, $20^{\prime} \times 60^{\prime}$ PARAFOIL 11
FIGURE 4.4-2, LATERAL TETHER LOCATIONS 12
FIGURE 4.6-1, RETENTION PIN MODIFICATION 14
FIGURE 4.6-2, PARAFOIL TETHER DAMAGE AND CORRECTION 15
FIGURE 5.1-1, ANGLE OF ATTACK AS FUNCTION OF dP AND DYNAMIC PRESSURE 18
FIGURE 5.1-2, DIRECT MEASUREMENT OF ANGLE OF ATTACK 19
FIGURE 5.1-3, ANGLE OF ATTACK MEASURING TECHNIQUES PLANNED VS. ACTUAL 20
FIGURE 5.1-4, ANGLE OF ATTACK GEOMETRY 23
TABLE 5.1-5, LINE LENGTH FUNCTIONS 24
TABLE 5.1-6, ANGLE OF ATTACK RESULTS 25
FIGURE 5.2-1, WEIGHT TARE NOMENCLATURE 29
FIGURE 5.2-2, INCLINOMETER CALIBRATION 31
TABLE 5.2-3, PACS CENTER OF GRAVITY CALCULATIONS 32
FIGURE 5.2-4, PACS CENTER OF GRAVITY LOCATION 32
FIGURE 5.2-5, INDUCED MOMENT NOMENCLATURE 33
FIGURE 5.3-1, 20 FT X 60 FT PARAFOIL $1 / 3$ SCALE MODEL 35
FIGURE 5.3-2, LONGITUDINAL LINE GEOMETRY 36
FIGURE 5.3-3, CROSS FLOW PRINCIPLE 38
FIGURE 5.3-4, LINE LENGTH NOMENCLATURE 39
TABLE 5.3-5, LIFT COEFFICIENT GEOMETRY 41
TABLE 5.3-6, WIND TUNNEL TEST CASE 44
TABLE 5.3-7, PHI (LONGITUDINAL LINE ANGLE), deg 45
TABLE 5.3-8, AREF1 (LINE REFERENCE AREA), t^{2} 46
TABLE 5.3-9, LR (LENGTH TO CONFLUENCE POINT), ft 47
TABLE 5.3-10, LP (LENGTH OF CONFLUENCE POINT TO TOP PLATE), ft 48

LIST OF TABLES AND FIGURES (continued)

TITLE PAGE
TABLE 5.3-11, LA (EXPOSED LENGTH), ft 49
TABLE 5.3-12, CDI (DRAG COEFFICIENT BASED ON INDIVIDUAL REF AREA) 50
TABLE 5.3-13, CD2 (DRAG COEFFICIENT BASED ON TOTAL LINE REF AREA) 51
TABLE 5.3-14, CD3 (DRAG COEFFICIENT BASED ON PARAFOIL REF AREA) 52
TABLE 5.3-15, THETA (FRONTAL ANGLE YZ PLANE), deg 53
TABLE 5.3-16, CLI (BASED ON INDIVIDUAL REF AREA) 54
TABLE 5.3-17, CL2 (BASED ON LINE REF AREA) 55
TABLE 5.3-18, CL3 (BASED ON PARAFOIL REF AREA) 56
FIGURE 5.4-1, TETHER NOMENCLATURE 58
FIGURE 5.4-2, TETHER FORCE AND MOMENT COMPONENTS 59
FIGURE 5.4-3, MOMENT ARM GEOMETRY 62
FIGURE 5.4-4, MOMENT ARM GEOMETRY 63
FIGURE 5.5-1, LEADING EDGE DISTORTION 67
FIGURE 5.5-2, CHORDWISE FORESHORTENING 68
FIGURE 5.5-3, TRAILING EDGE CONFIGURATION 70
FIGURE 5.5-4, TRAILING EDGE DEFLECTION 71
FIGURE 5.5-5, HARDWARE TEST ARRANGEMENT 72
FIGURE 5.5-6, PARAFOIL CELL SHAPE 73
FIGURE 5.5-7, PARAFOIL SPANWISE SHAPE 74
TABLE 5.5-8, SUMMARY OF PARAFOIL SCALING EFFECTS 76
FIGURE 5.6-1, Cl, Cd, AND Cm AS FUNCT. OF ALPHA (α) FOR VAR. WING LOADINGS 80
FIGURE 5.6-2, LIFT-DRAG RATIO (LID) DEC. WITH INC. DYNAMIC PRESSURE 81
FIGURE 5.6-3, LIFT-DRAG RATIO (LD) MAXIMUM FROM PLOTS OF CLVS. CD 82
FIGURE 5.6-4, CDVS CL ${ }^{2}$ 83
FIGURE 5.6-5, CONTROL FORCE VS DEFLECTION FOR FLARE MANEUVER 84
FIGURE 5.6-6, VARS. IN CL CD AND LID WITH DIFF. DEF. AND DYNAMIC PRESSURE 85
FIGURE 5.6-7, SPANWISE LOAD DISTRIBUTION AT VARIOUS WING LOADINGS 86
FIGURE 5.6-8, CHORDWISE LOAD DISTRIBUTION AT VARIOUS WING LOADINGS 87
FIGURE 5.6-9, XCP AND CM VS ANGLE OF ATTACK (α) 88
FIGURE 5.6-10, CONTROL VS DEFLECTIONS FOR TWO CONTROL METHODS 89
FIGURE 5.6-11, YAWING AND ROLLING MOMENT DATA VS. CONTROL LINE DEF. 90

LIST OF TERMS AND SYMBOLS

a	Distance between the point at which Fu attaches to the parafoil and the point at which Ru passes through the PACS top plate, ft
Aref	Reference Area(s), sq-ft
b	Span of parafoil, ft
c	Chord of parafoil, tt
Co. CD	Drag coefficient
CL, CL	Lift coefficient
C., CMX	Rolling moment coefficient
CLDi	Control line load coefficient ($=1$ to 2)
См. CMY	Pitching moment coefficient
$\mathrm{C}_{\mathrm{n}}, \mathrm{CMZ}$	Yawing moment coefficient
Cr, CY	Side force coefficient
CTLi	Control line deflection ($i=1$ to 2), in.
C.P.	Confluence point
C/4, Q.C.	Quarter chord of parafoil
C.G.	Center of gravity
CX	Distance between Fu and Ru on the parafoil keel, it
D	Drag, lbf
Fu	Leading edge exposed riser length, ft
FCLDi	Force in control line ($i=1$ to 2), lbf
FRISEi	Force in riser ($i=1$ to 20), lbf
FTETHi, Ti	Force in lateral tethers ($i=1$ to 4), lbf
i, ia	Parafoil rigging angle (angle between line perpendicular to the parafoil keel and a line from the quarter chord to the confluence point), deg
k	Keel length, ft
L	Riser line distance from bottom of parafoil to bottom of PACS bottom plate, ft
Lof(i), F, R	Riser line distance from top of PACS top plate to bottom of bottom plate, ft
LD	Lift to drag ratio
L	Lift, lbf
Lref	Reference Length (c for longitudinal, b for lateral), ft
L.E.	Leading edge riser line
L. LBAR	Distance from PACS pivot point to weight centroid, in.
LR	Length of riser from parafoil to confluence point, it
LA	Total exposed riser line length, t
LP	Distance from top of PACS to plate to confluence point, ft
MRP	Moment reference point
PACS	Parafoil attitude control system
q	Dynamic pressure, psf
RISEi	Riser load coeffocient ($\mathrm{l}=1$ io 20)
Ru	Aft exposed riser length, ft

LIST OF TERMS AND SYMBOLS (CONTINUED)

s	Planform area of parafoil, sq-ft
TETHi	Lateral tether load coefficient ($i=1$ to 4)
UVi	Unit vector for each tether ($\mathrm{i}=1$ to 4)
$W_{\text {pacs }}$	Weight of PACS without struts, lbs.
XCP, XCP	Center of pressure location, in.
x / c	Location of airfoil as a portion of chord, x direction
X, XBAR	X -axis weight centroid of PACS, in.
XX	Distance between Fu and Ru on the PACS top plate, it
Xf	Distance from PACS hinge to leading edge riser hole, ft
y/c	Location on airfoil as a portion of chord, y direction
Z, ZBAR	Z -axis weight centroid of PACS, in.

GREEK TERMS AND SYMBOLS

α, ALPHA Angle of attack of the parafoil (measured from keel of parafoil to freestream velocity vector), deg.
α_{p}, ALPHAP Angle between the top plate of the PACS and the tunnel floor, deg.
γ
δ_{p}, DELP Angle between the top and bottom plate of the PACS, deg.
θ. THETA Angle between the leading edge/centerline riser and the top plate of the PACS in the spanwise direction, deg.
$\phi, \mathrm{PHI} \quad$ Angle between the leading edge/centerline riser and the top plate of the PACS in the chordwise direction, deg.

FOREWORD

This document presents the results of wind tunnel testing performed under the Phase 2 option of contract NAS8-36631, Advanced Recovery Systems for Advanced Launch Vehicles. It satisfies the requirements for reporting wind tunnel data under the ARS contract.

1.0 SUMMARY

Pioneer Aerospace Corporation (PAC) conducted parafoil wind tunnel testing in the NASA-AMES 80×120 test section of the National Full-scale Aerodynamic Complex, Moffett Field, California (Fig. 1.0-1). The investigation was conducted to determine the aerodynamic characteristics of two (2) scale ram air wings in support of air drop testing and full scale development of Advanced Recovery Systems For The Next Generation Space Transportation System.

Two models were tested during this investigation - The primary test article, a $1 / 9$ Geometric scale model with wing area of 1200 square feet and secondary test article, a $1 / 36$ geometric scale model with wing area of 300 square feet, both of which had an aspect ratio of 3 .

The test results show that both models were statically stable about a model reference point at angles of attack from 2 to 10 degrees. The maximum lift-drag ratio varied between 2.9 and 2.4 for increasing wing loading.

80-by 120 -Foot Wind Tunnel Operation

FIGURE 1.0-1, NATIONAL FULL-SCALE AERODYNAMIC COMPLEX

2.0 INTRODUCTION

Pioneer Aerospace Corporation (PAC) was selected by NASA's MSFC to investigate promising concepts for recovering valued assets from the Next Generation Space Transportation System. Reuse of selected STS elements (such as core stages, upper stage propulsion/avionics modules, booster stages, booster P/A modules, and fuel-oxidizer tanks) is critical to a low cost space transportation system. Reuse inherently requires recovery, retrieval and refurbishment. Therefore, development of advanced recovery systems for high cost launch vehicle components, along with the ability to recover at selected sites, to refurbish rapidly, and reuse certain vehicle components is needed to provide an efficient operating system with minimal overall program cost. Through Phase 1 concept identification and preliminary trades analysis tasks, Pioneer identified "best candidate" recovery system concept for a list of prospective recoverable STS elements. ARS Phase 2 will demonstrate the Advanced Recovery Systems ability to precisely and controllably soft land an emulated P/AM which in full scale, would weigh approximately 60,000 pounds. This requires employment of a controllably maneuverable Ram Air Inflated Wing whose size and weight characteristics are well beyond today's state-of-the-art. An orderly program has been planned which includes analytical modeling, scale model tow testing, wind tunnel testing and air drop flight testing. The demonstration culminates in a flight test of a full-scale Ram Air Inflated (Parafoil) prototype system.

2.1 BACKGROUND

Prior to the selection of a Ram Air Inflated Wing for this program, various recovery methods were considered. Among those considered were a Ballistic ($L / D=0$) Parachute System and a Low Glide ($L / D=1$) Parachute System. For both the Ballistic and the Low Glide systems, a huge data base exists upon which to build, making either of these systems relatively low risk. Along with the low risk factors which these two systems share, the data also show that each system carries a large weight penalty and has very little or no capability to maneuver. Both systems are good, reliable decelerators but have almost no target acquisition capability.

The Ram Air Inflated Wing has many advantages over the more conventional Parachute system such as low weight, high maneuverability and the capability to flare for a soft, stable landing. However the vast majority of the data base for Ram Air Inflated Wings is for small (personnel size) systems. Going beyond the personnel sized canopies (175 to 340 ft^{2}), some very limited research has been done on Ram Air Inflation Systems up to $3200 \mathrm{ft}^{2}$. The canopy size required for this test program must go far beyond any that have been previously studied. The full scale prototype ($10,800 \mathrm{tt}^{2}$) exceeds the size of $3,200 \mathrm{ft}^{2}$ by 338%.

Several wind tunnel investigations were conducted in the 1960's in the University of Notre Dame 2' $\times 2^{\prime}$ test section by John D. Nicolaides ${ }^{4}$ and in the NASA Langley $30^{\prime} \times 60^{\prime}$ (elliptic) test section by George M. Ware and James L. Hassell, J. ${ }^{5}$. These wind tunnel tests were conducted on models at relatively low wing loadings (1-2 PSF) and small size models up to $300 \mathrm{ft}^{2}$. Due to the lack of data for ARS size Parafoils a large scale wind tunnel test was conducted to establish a data base of large (1,200 ft^{2}) Ram Air inflated wings.

2.2 TEST SITES AND DATES

This wind tunnel test program is sponsored by NASA-MSFC with Pioneer Aerospace Corporation being the prime contractor. Lockheed Missiles and Space Company is a sub-contractor whose primary wind tunnel related task is development of the wind tunnel interface, Parafoil Attitude Control System (PACS). The wind tunnel testing was conducted during the month of September 1988 in the $80^{\prime} \times 120^{\prime}$ test section of the National Full-Scale Aerodynamics Complex (NFAC) at the National Aeronautics and Space Administration's (NASA) Ames Research Center (ARC), Moffett Field, California.

3.0 OBJECTIVES

The objective of the wind tunnel test was to obtain data in support of air drop flight testing and development of a full-scale Ram Air Inflated prototype Advanced Recovery System.

3.1 BASIC IN-PLANE LONGITUDINAL AERODYNAMICS

The first primary objective was to obtain basic in-plane longitudinal aerodynamics, ie., lift, drag and pitching moment data. These data were obtained over a range of angles of attack from approximately zero to stall (0 to 10 degrees). This range was selected to support the basic gliding flight and rigging requirements of the air drop test program.

3.2 FLARE DATA FOR TRAILING EDGE DEFLECTIONS

The second primary objective was to obtain data to support the flare maneuver. Lift, drag and pitching moment data was collected for various trailing edge deflections and angles of attack. Associated control line loads were also measured for all deflections.

3.3 CONTROL DATA

The last primary objective was to obtain data to support the sizing of the control mechanisms for the drop test. Control line loads as a function of displacement and incremental changes in longitudinal aerodynamics was acquired for various control methods. As a secondary objective associated lateral aerodynamic forces and moment were obtained for different control methods. Figure 3.3-1 shows the different control methods.

FIGURE 3.3-1, TRAILING EDGE STEERING, L/D MODULATION LINE ARRANGEMENT

3.4 LOAD DISTRIBUTION

The load distribution across the wing is needed for canopy and suspension line design of drop test and eventual full-scale models. The distribution of the load on the parafoil was measured by placing load cells in chordwise and spanwise locations in the suspension lines and data obtained for all configurations.

3.5 SCALE EFFECTS

A review of past programs indicates that there is often a scaling problem associated with flexible wings. Therefore the next objective of the test was to obtain data on scale effects to aid in scaling the data up to full scale. This was accomplished by testing a second model one half the linear scale of the primary model. Testing of the smaller model was limited to selected test conditions. Table 3.5-1 shows an overview of how and when each objective was met.

DATE	RUN \#	Q	OBJECTIVE	COMMENTS
8 SEPT.	1	3	TRIM PARAFOIL	FIRST RUN
9 SEPT.	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 0 \\ & 6 \end{aligned}$	CALIBRATION LONGITUDINAL AERO	PACSIINSTRUMENTATION CALIBRATION
12 SEPT.	4	6	LONGITUDINAL AERO	
13 SEPT.	5	6/9	LONGITUDINAL AERO	FINAL TRIMMING OF PARAFOIL
14 SEPT.	6	6	FLARE DATA	
15 SEPT.	7	0	CALIBRATION	
19 SEPT.	8	3	PHOTOGRAPHS	
20 SEPT.	$\begin{aligned} & 9 \\ & 10 \end{aligned}$	$\begin{aligned} & 9 \\ & 9 \end{aligned}$	LONGITUDINAL \& FLARE AERO FLARE DATA	
21 SEPT.	$\begin{aligned} & 11 \\ & 12 \end{aligned}$	$\begin{gathered} 6 \\ 6 / 9 \end{gathered}$	CONTROL INPUTS CONTROLFLARE	TRAILING EDGE DEFLECTORS
22 SEPT.	$\begin{aligned} & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & 6 \\ & 9 / 12 \end{aligned}$	CONTROL INPUTS CONTROL/LONGITUDINAL DATA	AIRFOIL LOCAL DISTQRTION
23 SEPT.	15	6/9/12	PACS AERODYNAMICS	PARAFOIL REMOVED
27 SEPT.	16	3/6	TRIM PARAFOIL	SMALL PARAFOIL
28 SEPT.	17	6	LONGITUDINAL AERO SCALE DATA	

TABLE 3.5-1, WIND TUNNEL TEST OVERVIEW

4.0 TEST FACILITIES AND TECHNIQUES

4.1 TUNNEL DESCRIPTION

A review of past programs indicates that there is often a scaling problem associated with flexible (Parachute/Parafoil) configurations. Therefore, conducting a wind tunnel test with the largest possible scale model was the main goal. This goal was achieved by selecting the largest available wind tunnel for testing. The newly commissioned $80^{\prime} \times 120^{\prime}$ test section of the National Full-Scale Aerodynamics Complex at NASA's Ames Research Center was chosen because it is the largest wind tunnel available. The new $80^{\prime} \times 120^{\prime}$ leg is basically an open circuit tunnel with a closed throat test section (Figure 4.1-1). The 135,000 horse power fan drive system is enough to attain speeds at more then 115 MPH , more than enough to achieve the relatively high wing loadings required for this test program.

FIGURE 4.1-1, NATIONAL FULL-SCALE AERODYNAMIC COMPLEX

4.2 TEST STAND - PARAFOIL ATTITUDE CONTROL SYSTEM

The Parafoil Attitude Control System (PACS)(Figure 4.2-1) was developed to enable the parafoil to reach its natural trim point and still be able to change the parafoil angle of attack. The PACS includes two carriage struts which attach to the tunnel support/balance system. Each of these struts incorporates a free-floating pivot point which attaches to the top plate of the hinged plate substructure. This point is translated along the top plate by the Xcp actuator mechanism. The hinged plates are driven apart by the L/D actuator. The combination of the Xcp and L/D actuators results in setting the parafoil to the desired attitude. Each plate is divided into removable sections which contain the riser pattern for the parafoil being tested. The suspension lines pass through the top plate and continue through the bottom plate then are attached to the underside of the bottom plate. Two control winches are mounted on the underside of the bottom plate and are used for the various control deflections. Two linear potentiometers monitor the Xcp and L/D actuators. The control winches are monitored by rotary potentiometers while the angle between the leading edge/center suspension line and the top plate (ϕ and θ) is measured by a single joystick potentiometer. An inclinometer was used to measure the top plate angle ($\alpha \mathrm{p}$) with respect to the tunnel floor. A flow deflector was mounted on the tunnel floor just upstream of the PACS to minimize data uncertainty resulting from flow interaction with the PACS. A more detailed description of the PACS is contained in the "Preliminary Analysis of Parafoil Attitude Control (PAC) Model", ARS-WP-09. ${ }^{6}$

FIGURE 4.2-1, PARAFOIL ATTITUDE CONTROL SYSTEM (PACS)

4.3 TEST MODELS

In keeping with the main objective of this test program, testing the largest possible model, Pioneer designed the largest wing that could effectively be flown in the wind tunnel. The parafoil size was chosen to be as big as possible without interfering with the air flow near the tunnel walls.

The primary test article (Part \#7901) was a $1 / 9$ area scale model of the ARS prototype parafoil. The model had a chord of 20 ft and a span of 60 ft , thus having $1,200 \mathrm{ft}^{2}$ area. The parafoil consisted of 47 spanwise cells and was constructed with 1.1 oz/yd nylon. This wing had 960 suspension lines attached in 48 spanwise rows and 20 chordwise columns. Each suspension line was 300 lb Kevlar and each three spanwise groups were cascaded down to one attachment point on the PACS making a total of 320 PACS connecting locations. One of the objectives for this model was to collect data for various symmetrical and asymmetrical trailing edge/control deflections to support the flare and control maneuvers. The wing was equipped with 30 movable/removable control lines that were adjusted using the two winches located on the PACS.

Another of the objectives for this test program was to determine what the effects of size (scaling) are. A $1 / 36$ area scale model ($1 / 4$ scale of the primary test article) (Part \# 7900) was constructed and tested for this propose. The small model had a chord of 10 ft , a span of 30 ft and an area of $300 \mathrm{ft}^{2}$. This second parafoil was identical to the first parafoil in geometry, material and construction (48 cells, $1.1 \mathrm{oz} / \mathrm{yd}$ nylon/ 300 lb Kevlar and same airfoil section). This parafoil was not equipped with the various control methods. This model was exclusively used to evaluate the scaling effects on wings of this type.

Both models are shown in Figure 4.3-1. A stress and design analysis is contained in "Advanced Recovery System Parachute/Parafoil Stress and Design Loads Analysis", ARS-WP-10 Rev. A. ${ }^{7}$

FIGURE 4.3-1, WIND TUNNEL TEST MODEL CONFIGURATION

4.4 TEST TECHNIQUES

Figure 4.4-1 shows the $20^{\prime} \times 60^{\prime}$ parafoil during testing. While testing both models were allowed to fly in the wind tunnel by use of a active tether system (Figure 4.4-2). Five ceiling and four side tethers were used to raise the parafoil for initial inflation and to hold the wing to measure lateral loads during asymmetrical control deflections. During most of the testing, once the parafoil reached a stable trim point, all tethered were released to allow the wing to fly unrestrained. A test procedure was adopted during testing that when the parafoil reached stall or any unstable condition the wind tunnel was shut down, the parafoil angle of attack decreased and ceiling tethers tightened. By using this procedure the wing would stabilize quickly and reduce the chance of any damage occurring to the wing.

MODELS A AND B

- GEOMETRIC SCALE MODELS - 47 CELLS - 960 LINES (300 LEF KEVLAR)
1.1 OZYD ${ }^{2}$ NYLON FABRIC THROUGHOUT -RED/WHITE/SILVER SURFACES -GOLD RIBS
- PROVISIONS FOR [MODEL A ONLY]
- LO MODULATION (FLARE) -trailing edge steefing -AIRFOIL LOCAL DISTORTION - WEIGHT
-MODEL A: 88 LB
-MODEL 日: 37 LB

TEST MODEL B

FIGURE 4.4-1, $20^{\prime} \times 60^{\prime}$ PARAFOIL

FIGURE 4.4-2, LATERAL TETHER LOCATIONS

4.5 DATA ACQUISITION

The PACS served as the interface between the parafoil and the tunnel's balance/data acquisition system. Lift, drag and side forces were transmitted directly through the PACS to the balance and recorded on the systems computer. Rolling and yawing moments were also measured using the tunnel balance system. The PACS was designed to find the center of pressure of the parafoil by finding the point on the plate where the pitching moment was zero. Then using simple force transformations the pitching moment could be calculated.

Twenty load cells were placed in the suspension lines to give spanwise and chordwise load distribution across the wing. The load cells were connected directly to the tunnels data acquisition system. Four additional load cells were placed in the side tethers to measure side forces during the control deflections. Two load cells were also placed in the two (one each side) control lines to measure the force required for control line deflections.

All data was recorded for each data point on the tunnel's computer. The data was then corrected using the tunnels standard corrections and output on hard copies for further use.

Five video cameras were placed at various locations around the wind tunnel to observe and record the testing. One of the five cameras was located on the west wall, adjacent to the parafoil wing tip. This camera was used as an alternate method of measuring the angle of attack of the wing. The other four cameras were used for documentation purposes only.

4.6 PROBLEMS AND CORRECTIVE ACTION

Several problems occurred during testing. This section describes the problems and the corrective action utilized.

PROBLEM: PACS Xcp Retention Pin Failure - The pin used to hold the X_{cp} thrust bearing in place sheared during testing. The retention pin design was faulty in that it could not withstand the high shear loads during testing.
CORRECTIVE ACTION: The bearing journal was modified to accept a collar that would fit on both sides of the thrust bearing thus retaining the bearing under high loading conditions. Figure $4.6-1$ shows the Xcp retention pin failure and modification used to correct the problem.

FIGURE 4.6-1, RETENTION PIN MODIFICATION

PROBLEM: Parafoil/Tether Failure - The Parafoil was designed with nine tether attachment locations. The tethers were used to keep the wing from diverging too far once the wing reached an unstable trim point. During testing the tethers encountered loads that were higher than expected. The results were that the parafoil was damaged in the locations where the tethers were located.
CORRECTIVE ACTION: The parafoil was fixed and strengthened at the tether locations using Rip-Stop and Kevlar reinforcing materials. The materials were sewn in place using a sewing machine. All tether locations were reinforced and no more damage occurred during testing. Figure 4.6-2 shows the parafoil/tether damage and correction.

PROBLEM:

PARAFOILTETHER DAMAGE

CORRECTIVE ACTION:
PARAFOIL STRENGTHENED AT TETHER LOCATIONS

FIGURE 4.6-2, PARAFOIL/ TETHER DAMAGE AND CORRECTION

PROBLEM: Small Parafoil PACS Problem - The $10^{\prime} \times 30^{\prime}$ parafoil could not generate enough lift to balance the PACS due to the short range of the PACS Xcp drive system.
CORRECTIVE ACTION: The front of the PACS was secured to the tunnel balance system to level the PACS. This allowed the small wing to be tested but the data could only be taken over a very small range due to the PACS not being able to move.

PROBLEM: Q Effects on Parafoil Angle of Attack - It was observed during testing that the angle of attack not only is a function of the rigging geometry but also is a function of the dynamic pressure (Q). Therefore, there was not an easy way to measure the angle of attack during testing. CORRECTIVE ACTION: The angle of attack was derived as a function of rigging geometry and dynamic pressure for data reduction and analysis purposes. The angle of attack was also measured and compared using video and still photographic techniques.

5.0 ANALYSIS OF RESULTS

The information in this section describes how the data was reduced after testing was completed.

5.1 ANGLE OF ATTACK SUMMARY

One of the basic differences between testing fabric wings and rigid structures is finding the wings angle of attack. With a rigid wing the angles can be measured directly by mounting sensors directly on the wing. Previous to this test it was thought that any instrumentation mounted in the wing would significantly change the shape of the wing, thus invalidating the test results. For this reason a inclinometer was not incorporated in the wing.

The angle of attack was derived as a function of the physical constants of the PACS and parafoil and of the variables measured during testing. The physical constants were the PACS plate hole geometry, parafoil suspension line geometry and parafoil chord length. The measured variables included; dynamic pressure (Q), angle between PACS top and bottom plates ($\delta \mathrm{p}$), angle measured between front center suspension line and top plate ($\phi \mathrm{j}$) and angle of the top plate relative to horizontal ($\alpha \mathrm{p}$).

A data base was compiled that consisted of geometric variables and aerodynamic coefficients measured during testing and was used in conjunction with a computer program to calculate the angle of attack for each data point. Figure 5.1-1 shows the angle of attack as a function of $\delta \mathrm{p}$ and dynamic pressure.

FIGURE 5.1-1, ANGLE OF ATTACK AS FUNCTION OF $\delta \mathrm{P}$ AND DYNAMIC PRESSURE

The angle of attack was also measured using 70 mm black and white and video photography. The method used was to place the cameras in the tunnel wall adjacent to where the wing would be flying. The wing tip was then photographed when each data point was taken. After testing was completed a grid was placed in the tunnel, in the same plane as the parafoil wing tip was flying, and photographed using the same two camera locations. The two films were superimposed and the angle of attack then directly measured (Figure 5.1-2).

FIGURE 5.1-2, DIRECT MEASUREMENT OF ANGLE OF ATTACK

There were two problems with this method. The first problem was that the cameras had to be located in existing view ports that were located slightly aft and above the wing. The second problem encountered was that the wing distorted at high dynamic pressures. The distorted wing profile made it difficult to find the actual chord line of the parafoil therefore a average chordline was assumed.

Figure 5.1-3 shows planned versus actual angle measuring techniques. All of the measured values agree with calculated values to within 10%.

FIGURE 5.1-3, ANGLE OF ATTACK MEASURING TECHNIQUES
PLANNED VS. ACTUAL

5.1.1 Angle of Attack Calculation

Figure 5.1-4 depicts the geometry used in determining parafoil angle of attack. Values for L_{1}, length of forward suspension line, and L, length of fourth suspension line, are constants to this configuration. The values for CX, XX and Xf are also constant and are shown in the figure. The values of $\phi, \delta p$, and $\alpha \mathrm{p}, \mathrm{R}, \mathrm{Ru}, \mathrm{F}, \mathrm{Fu}$, $\mathrm{a}, \mathrm{q}_{1}$ and q_{2} vary for each set of test conditions.

To determine parafoil angle of attack the following set of equations are used:

$$
\alpha=\alpha p \cdot \phi+(180-\theta 1-\theta 2)
$$

where:

$$
\begin{aligned}
& \theta 1=\cos ^{-1}\left(\left(F u^{2}+a^{2} \cdot X X^{2}\right) /(2 F u a)\right) \\
& \theta 2=\cos ^{-1}\left(\left(C X^{2}+a^{2}-R u^{2}\right) /(2 C x a)\right. \\
& a=\left(F u^{2}+X X^{2}-2 F u X X \cos \phi\right)^{1 / 2}
\end{aligned}
$$

To determine Fu and Ru the following is used:

$$
\begin{aligned}
& F u=L_{1} \cdot F \\
& R u=L_{4} \cdot R
\end{aligned}
$$

Where:

$$
\begin{aligned}
& L_{1}=\operatorname{LR}^{2}(1)-\operatorname{LP}_{P}(1)+\operatorname{LDP}(1) \\
& L_{4}=\operatorname{LR}(4)-\operatorname{Lp}_{p}(4)+\operatorname{LDP}(4)
\end{aligned}
$$

Where LR is the line length from the parafoil to the confluence point, LP the length from the confluence point to the top plate and LDP the length from the bottom plate to the top plate. From analysis conducted in Section 5.3:

$$
\begin{array}{ll}
L_{R}(1)=59.405 \mathrm{ft} & L_{R}(4)=60.268 \mathrm{ft} \\
\operatorname{Lp}_{p}(1)=11.880 \mathrm{ft} & L_{p}(4)=12.020 \mathrm{ft}
\end{array}
$$

To determine LDP:

$$
\begin{aligned}
& \text { LDP }=\left(.3403+2(.3942+x)^{2}-2(.3942+x)(.3403+\right. \\
& \left.\left.\quad(.3942+x)^{2}\right)^{1 / 2} \cos \left(5+\tan ^{-1}(.5833 /(.3942+x))\right)\right)^{1 / 2}+.0833
\end{aligned}
$$

Where X is the longitudinal distance of the PACS hole location for the specific line. For line $1, \mathrm{X}=0.0 \mathrm{ft}$; for line $4, \mathrm{X}=0.5869 \mathrm{ft}$. Therefore,

$$
\operatorname{LDP}(1)=0.701 \mathrm{ft} \quad \operatorname{LDP}(4)=0.752 \mathrm{ft}
$$

and the following are the resulting line lengths:

$$
L_{1}=48.2 \mathrm{ft} \quad \mathrm{~L}_{4}=49.0 \mathrm{ft}
$$

The quantities L and R are functions of δp, the plate separation angle:

$$
\begin{aligned}
& \mathrm{F}(\mathrm{~g} \mathrm{p})=\left(.3403+2(.3942)^{2}-\right. \\
& \quad 2(.3942)\left(.3403+(.3942)^{2}\right)^{1 / 2} \\
& \left.\quad \cos \left((\delta \mathrm{p}+5)+\tan ^{-1}(.5833 / .3942)\right)\right)^{1 / 2}+.0833 \\
& \mathrm{R}(\mathrm{\delta p})=\left(.3403+2(0.9838)^{2}-2(0.9838)(.3403+\right. \\
& \left.\left.\quad(0.9838)^{2}\right)^{1 / 2} \cos \left((\delta p+5)+\tan ^{-1}(.5838 / 0.938)\right)\right)^{1 / 2}+.0833
\end{aligned}
$$

Table $5.1-5$ shows the quantities $R, R u, F, F u$ as a function of δ p.

$$
\begin{aligned}
& \mathrm{Cx}=2.948 \mathrm{ft} . \\
& \mathrm{xx}=0.590 \mathrm{ft} . \\
& \mathrm{xf}=0.3942 \mathrm{ft} \\
& \mathrm{~L}_{1}=F+\mathrm{Fu} \\
& L_{4}=\mathrm{R}_{4}+\mathrm{Ru}_{4}
\end{aligned}
$$

FIGURE 5.1-4, ANGLE OF ATTACK GEOMETRY

$\delta \rho$	R	R	F	F
0.0000	0.7524	48.4476	0.7010	47.9990
5.0000	0.8376	48.3624	0.7351	47.9649
10.0000	0.9219	48.2781	0.7688	47.9312
15.0000	1.0050	48.1950	0.8019	47.8981
20.0000	1.0866	48.1134	0.8341	47.8659
25.0000	1.1666	48.0334	0.8655	47.8345
30.0000	1.2446	47.9554	0.8959	47.8041
35.0000	1.3206	47.8794	0.9251	47.7749
40.0000	1.3944	47.8056	0.9531	47.7469
45.0000	1.4657	47.7343	0.9797	47.7203
50.0000	1.5345	47.6655	1.0050	47.6950
55.0000	1.6006	47.5994	1.0288	47.6712
60.0000	1.6639	47.5361	1.0511	47.6489
65.0000	1.7242	47.4758	1.0717	47.6283
70.0000	1.7815	47.4185	1.0907	47.6093
75.0000	1.8355	47.3645	1.1080	47.5920
80.0000	1.8863	47.3137	1.1236	47.5764
85.0000	1.9337	47.2663	1.1373	47.5627

TABLE 5.1-5, LINE LENGTH FUNCTIONS

5.1.3 Angle of Attack Results

Table 5.1-6 shows the resulting parafoil angles of attack for wind tunnel runs 1-17, along with values discussed in Section 5.1.2.

R	P	ALPHAP	P OELTAP	P FU	RU	$x \times$	A	$C \times$	THETAI	1 TH		
12	14	0.87	19.93	47.87	48.11	6. 59						PHI
12	15	1.81	19.95	47.87	48.11	6.59	47.78 47.79	2.95	6.78	94.78	1.27	81.12
12	16	-2.57	19.53	47.87	48.12	6.59 0.59	47.79 47.74	2.95	0.76	94.62	4.38	81.91
12	17	1.44	19.59	47.87	48.12	0.59	47.79	2.95	6.89	95.59	3.78	77.45
12	18	-3.49	20.63	47.87	48.11	0.59	47.73	2.95	6.76 0.89	94.75	4.39	81.68
12	19	1.73	20.88	47.87	48.11	0. 59	47.73	2.95	0.89	95.88	3.58	78.68
12	20	-4.87	19.37	47.87	48.12	0.59	47.79	2.95	0.76	94.81	4.58	81.84
12	21	1.55	19.38	47.87	48.12	0.59	47.72	2.95	0.88	98.69	3.29	75.88
12	22	5.29	28.29	47.86	48.11	8.59	47.79	2.95	6.70	94.82	4.47	81.57
12	23	1.87	20.32	47.88	48.11	0.59	47.78	2.95	6.88	95.97	13.88	74.78
12	24	-5.58	19.21	47.87	48.13	8.59	47.78	2.95	0.76	94.82	4.79	81.58
12	25	1.44	19.35	47.87	48.12	0.59		2.95	0.88	98.31	3.41	74.18
12	28	-5.44	26.41	47.86	48.11	-. 59	47.79	2.95	0.78	94.84	4.51	81.39
12	27	-2.88	1.87	47.99	48.43	0.59		2.95	6.68	96.63	3.48	74.37
12	28	-4.18	1.87	47.99	48.43	0.59	47.83	2.95	0.88	99.84	2.62	74.88
12	29	-5.44	1.80	47.99	48.43	6.59	47.82	2.95	0.88	100.10	1.77	73.28
12	38	-5.50	0.89	47.99	48.43	0.59	47.82	2.95	6.87	100.30	1.28	72.38
12	31	-5.82	6.84	47.99	48.43	0.59	47.82 47.82	2.95	8.87	108.27	0.96	72.88
12	32	-3. 32	0.95	47.99	48.43	0.59	47.84	2.95	0.87	100.25	0.78	72.78
12	33	-3.32	0.98	47.99	48.43	0. 59	47.84	95	0.88	99.88	1.80	74.52
12	34	-3.89	0.98	47.99	48.43	0.59	47.84	. 95	0.88	99.91	1.78	74.33
12	35	-3. 32	0. 95	47.99	48.43	0.59	47.84	2.96	0.88	186.07	1.83	73.53
12	36	-3.89	0.95	47.99	48.43	0.59		2.	88	99.93	1.81	74.28
12	37	-3. 32	0.95	47.99	48.43	0.59	47.84	2.95	6.88	109.88	1.86	73.49
12	38	-5.44	0.93	47.99	48.43	0.59	47.82	2.95 2.95	0.88	99.92	1.78	74.30
12	39	-3.55	0. 93	47.99	48.43	0.59	47.84	2.95	0.87	100.32	1.28	72.28
12	40	-5.33	0.94	47.99	48.43	0.59	47.81	2.95	0.88	99.95	1.63	74.19
12	41	-3.15	0.95	47.99	48.43	0.59	47.8			108.38	1.55	72.89
12	42	-5.44	0.77	47.99	48.43		47.84		0.88	99.92	1.98	74.29
12	43	-3.72	0.79	47.99	48.43	0.59		2,	6.67	186.33	1.13	72.43
12	44	-5.44	1.80	47.99	48.43	0.59	47.84	2.95 2.95	6.88	99.98	1.39	74.25
12	45	-3.43	1.84	47.99	48.43	0. 59	47.8	2.95	6.87	100.37	1.53	71.99
12	46	-5.44	0.48	48.80	48.44	0.59	47.82	2.95 2.95	8.88	99.95	1.96	74.84
12	47	-3.37	0.53	48.88	48.44	0.59	47.82	2.95	0.87	108.42	1.17	72.36
12	48	-5.44	1.18	47.99	48.43	8.59	47.81	2.95	0.88	186.03	1.75	74.17
12	49	-4. 87	1.88	47.99	48.43	0.59	47.82	2.9	0.87	186.31	1.48	72.18
2	50	-3.55	1.67	47.99	48.43	0.59	47.8	2.96	0.87	108.25	1.89	72.51
13	3	1.61	29.99	47.80	47.98	6.5	47.7		6.88	99.98	1.91	73.88
3	4	1.61	29.99	47.80	47.98	8.59	47.7	2.9	6.78	92.89	8.14	B2.89
3	5	1.61	30.80	47.80	47.98	0.59			8.70	92.89	6.11	82.11
13	6	1.61	29.39	47.80	47.98	8. 59	7.7			92.88	8.88	82.15
3	7	1.50	29.99	47.86	47.96	0.59	47.72	2.95	0.70	92.71	6.22	81.97
3	8	1.44	29.99	47.88	47.98	0.59	47.72	2.95	0	92.75	8.28	81.79
3	9	1.44	29.99	47.80	47.98	0. 59	47.72	2.95	©. 78	92.81	6.43	81.50
3	10	1.04	30.80	47.88	47.98	d. 59	47.71	2.95	0.	92.89	6.748	81.11
3	11	8.28	29.98	47.86	47.98	0.59	47.89	2.9	0.76	93.83	6.928	86.39
3	12	2.19	29.99	47.80	47.98	0.59	47.89	2.9	0.	93.38	7.597	78.81
3	13	2.30	36.00	47.80	47.98	0.59	47.73	2.9	0.89	93.95	11.837	75.73
31	14	2.59	30.80	47.80	47.98	0.59	47.73	2.	0.76	92.55	8.278	82.78
3	15	2.59	29.98	47.80	47.96	8.59	47.73	2.95	0.76	92.51	8.468	82.98
3	18	2.59	29.98	47.80	47.98	8.59	47.7		0.70	92.55	8.528	82.82
31	17	2.24	38.80	47.86	47.98	0.59	47.73	95	9.70	92.57	6.838	82.69
31	18	2.81	38.88	47.80	47.98	0.59	47.7		0.78	92.58	6.318	82.85
31	19	1.61	38.80	47.88	47.98	0.59	47.73	2	6.76	92.89	8.548	82.68
32	28	1.81	29.98	47.80	47.98	0.59	47.72	2.95	6. 76	92.77	6.458	81.89
2	21	6. 52	29.98	47.88	47.96	0.59	47.71	2.96	d	92.87	6.82 8	81.22
32	22	-8.28	29.99	47.80	47.98	8. 59	47.71	2.95	6.70	93.08	0.628	88.12
2	23	-7.58 3	36.80	47.86	47.98	0.59	47.88	2.95	8.78	93.25	0.5079	79.28
32	24	2.82	29.99	47.80	47.98	8.59		2.96	9.69	93.83	7.777	77.35
4	3	0.18	1.114	47.99	48.43	0. 59	47.87	2.95	0.709	92.48	6.478	83.17
4	4	0.18	1.114	47.99	48.43	0.59		2	8.699	99.16	2.4677	77.93
								2.95	6.899	99.19	2.4877	77.82

TABLE 5.1-6, ANGLE OF ATTACK RESULTS (CONTINUED)

TABLE 5.1-6, ANGLE OF ATTACK RESULTS (CONTINUED)

5.2 PACS WEIGHT TARE

The Parafoil Attitude Control System (PACS) was originally conceived to enable a parafoil to be tested through a range of rigging angles and to allow the parafoil to find its natural trim point. This concept consisted of a set of hinged plates to effect the change in rigging angle and a moveable pivot point (Xcp drive system) to allow the parafoil to fly at its natural trim angle without distorting the suspension system. The original design concept included an active counterweight system which would balance the PACS in both the X- and Z-axes thus keeping the center of gravity of the PACS at the pivot point no matter what the angle between the plates of the Xcp setting. This balanced system would reduce the effect of the PACS on the test article to only the dynamic moment of inertia of the system.

Due to time and budget constraints, the active counterweight system was replaced by a static counterweight. This static counterweight essentially only balanced the PACS in the X-axis at one angle between the plates and one Xcp setting. Because of this imbalance in the PACS, the test article was required to overcome the moment imposed about the pivot point by the weight of the PACS. This meant that the Xcp setting had to be increased to allow the parafoil normal force to overcome the increase in moment. During testing it was found that the travel of the X_{cp} drive system was insufficient to overcome this moment; thus the Xcp of the PACS could not be matched to the natural trim condition of the test article.

As a result of the imbalance of the PACS and the limited $X_{c p}$ travel the data were compromised in two ways: (1) since the PACS could not match the natural trim condition of the test article, the parafoil suspension lines were slightly distorting the parafoil; and (2) the data included the moment created by the shift in the center of gravity (c.g.) of the PACS. The distortion of the parafoil was found to be minimal and could be considered within the accuracy of the rigging of the parafoil; however, the moment created by the PACS c.g. was found to be significant and required development of a methodology to modify the data to eliminate
the effect of the PACS c.g. shift. This section documents the methodology which was developed to calculate the weight tare of the PACS.

5.2.1 Weight Tare Methodology

Since the weight of the PACS with no tunnel flow always acts in the vertical plane in line with the pivot point, it is possible to determine the weight centroid of the PACS at a given angle between the plates. This is done by setting the PACS at the positive and negative $X_{c p}$ limits and measuring the angle of the top plate with respect to horizontal at each of the Xcp settings. Given this information for a range of angles between the plates ($\delta \mathrm{p}$) a set of calibration curves for the weight centroid can be developed as a function of δ p. Figure 5.2-1 below defines the nomenclature necessary to develop the equations to calculate the weight centroid.

FIGURE 5.2-1, WEIGHT TARE NOMENCLATURE

The angle of the top plate (αp) is defined by the following equation.

$$
\alpha p=\tan ^{-1}((x-\Delta X c p) / z)
$$

For two $\Delta X c p$ locations the equation above can be transformed to the two equations below.

$$
\begin{aligned}
& z \tan \alpha p_{1}=x-\Delta X c p_{1} \\
& z \tan \alpha p_{2}=x-\Delta X c p_{2}
\end{aligned}
$$

Subtracting these equations and solving for the Z-axis centroid location yields the following equation.

$$
z=\left(\Delta X c p_{2}-\Delta X \subset p_{1}\right) /\left(\tan \alpha p 1-\tan \alpha p_{2}\right)
$$

Substituting the above equation into the original equation yields the following equation for the X -axis centroid location.

$$
x=\left(\left(\Delta X c p_{2}-\Delta X c p_{1}\right) /(\tan \alpha p 1-\tan \alpha p 2)\right) \tan \alpha p 1+\Delta X_{c p_{1}}
$$

This weight tare calibration was performed post-test at discrete values for the angle between the PACS plate ($\delta p=1^{\circ}, 5^{\circ}$, $10^{\circ}, \ldots, 50^{\circ}, 55^{\circ}, 59^{\circ}$. These data were used to develop the weight tare calibration.

5.2.2 Inclinometer Calibration

When the weight tare calibration was performed it was discovered that the angle of the top plate exceeded the calibration range of the inclinometer used to measure the angle. A calibration of the inclinometer was performed to extend the calibrated range of the inclinometer. It was originally felt that this calibration might be questionable and outside the linear range of the inclinometer; however when the measured data were compared to the original calibration as shown below, the data showed a very good correlation.

FIGURE 5.2-2, INCLINOMETER CALIBRATION

5.2.3 Weight Tare Calibration

Table 5.2-3 and Figure 5.2-4 were developed using the equations developed in the weight tare methodology section, the data obtained in the weight tare calibration, and the original inclinometer calibration. Due to the small plate angle changes with changes in Xcp at $\delta p=1^{\circ}$ and 5°, the trigonometric tangent function accuracy cause these data to be questionable, therefore they were removed from the data base.

Point	$\begin{aligned} & \text { Lpol } \\ & (1 n) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Dolp } \\ & (d o g) \end{aligned}$	$\begin{gathered} x c p \\ (1 n) \end{gathered}$	Oulpui (yolts)	Calc Sine	Catc Alphap	Zbsr	Xbar
1			-2.500	2.118	0.2118	12.2259		
2	0.027	1	-2.505	7.373	0.7375	47.5194	. 19.8377	-24.1688
3	0.027	1	3.932	8.167	0.8169	54.7799		
5	0.211	5	-2.501	9.142	0.9145	66.1330	5.4176	9.7435
4	0.211	5	3.933	7.312	0.7314	47.0042	4.6507	8.0103
28	0.211	5	3.938	6.586	0.6588	41.2061		
6	0.507	10	-2.501	9.025	0.9028	64.5261	4.5154	6.9768
27	0.507	10	3.938	5.582	0.5583	33.9400		
7	0.871	15	-2.501	8.655	0.8658	59.9701	5.3189	6.7004
26	0.871	15	3.939	4.607	0.4608	27.4374		
8	1.296	20	-2.501	8.200	0.8202	55.1092	6.1812	6.3626
25	1.296	20	3.939	3. 650	0.3650	21.4098		
9	1.775	25	-2.501	7.683	0.7685	50.2212	6.9533	5.8509
24	1.775	25	3.940	2.650	0.2650	15.3664		
10	2.301	30	-2.501	7.100	0.7102	45.2507	7.7676	5.3349
23	2.301	30	3.940	1.768	0.1767	10.1805		
11	2.866	35	-2.501	6.486	0.6488	40.4486	8.3721	4.6365
22	2.866	35	3.940	0.830	0.0829	4.7557		
12	3.463	40	-2.501	5.845	0.5846	35.7773	8.9790	3.9695
21	3.463	40	3.941	0.033	0.0032	0.1817		
13	4.085	45	-2.501	5.151	0.5152	31.0111	9.6171	3.2801
20	4.085	45	3.941	-0.684	-0.0686	-3.9314		
14	4.727	50	-2.501	4397	0.4398	26.0892	10.0489	2.4195
19	4.727	50	3.941	-1.495	-0.1497	-8.6095		
15	5.378	55	-2.501	3.659	0.3659	21.4652	10.9141	1.7905
18	5.378	55	3.941	-1.831	-0.1933	-11.1465		
16	5.905	59	-2.501	3.030	0.3030	17.6383	12.2237	1.3856
17	5.905	59	3.937	-2.041	. 0.2043	. 11.7899		

TABLE 5.2-3, PACS CENTER OF GRAVITY CALCULATIONS

FIGURE 5.2-4, PACS CENTER OF GRAVITY LOCATION

5.2.4 Induced Moment

As mentioned earlier when the test article is "flying" it must overcome the moment induced by the offset in the PACS center of gravity. Figure $5.2-5$ below depicts the nomenclature which defines this phenomenon.

FIGURE 5.2-5, INDUCED MOMENT NOMENCLATURE

The distance from the pivot point to the PACS c.g. is given by the following equation.

$$
L=\left((X-\Delta X c p)^{2}+(z)^{2}\right)^{1 / 2}
$$

The angle between the top plate of the PACS, the pivot point, and the PACS c.g. is determined by the following equation.

$$
y=\tan ^{-1}(z /(x-\Delta X c p))
$$

The induced moment is therefore determined by the following equation.

$$
\Delta M_{P A C S}(\text { c.g. })=W_{P A C S L} \sin \left(\alpha_{p}+\gamma\right)
$$

This methodology was applied to all the data and the induced moment, due to the offset in the PACS c.g., was removed from the data.

5.3 SUSPENSION LINE LIFT AND DRAG STUDY

A study was conducted to determine the percentage of vehicle lift and drag due to the suspension lines. Originally a value of 15% was quoted for the line drag value, which is normal for an average parafoil setup. However, due to the number of lines found in the ARS Parafoil (960) a new study was conducted. To conduct this study the configuration and data were taken from the $20 \times 60 \mathrm{ft}$ parafoil tested at NASA Ames Research Center in August 1988.

5.3.1 Parafoil Configuration

The parafoil configuration, shown in Figure 5.3-1, is the $20 \times 60 \mathrm{ft}$, $1 / 3$ scale model. In estimating the line lift and drag, since the parafoil is laterally symmetrical, half the model was analyzed. (The final values were then doubled.) The test case chosen was at $\alpha=0.0, L D=2.90$. Figure $5.3-2$ shows the longitudinal line geometry at the test case.

ORICINAL FAGE IS
OF POOR QUALITY

FIGURE 5.3-1, 20 FT X 60 FT PARAFOIL $1 / 3$ SCALE MODEL

FIGURE 5.3-2, LONGITUDINAL LINE GEOMETRY

5.3.2 Drag Coefficient Estimate

As a means of comparison to the wind tunnel test case, which lists aero coefficients, a C_{D} for the suspension lines had to be determined. In Fluid Dynamic Drag (Hoerner, 1965) the Cross Flow Principle is used, which determines coefficients for flow around wires and cables. Figure 5.3-3 depicts the nomenclature for the Cross Flow Principle. To determine C_{D} the following equations are used:

$$
\begin{array}{ll}
C_{D 1}=1.10 \sin ^{3}(\alpha) & A_{\text {ref }}=L X D \text { of line }\left(A_{\text {ref }} 1\right) \\
C D 2=C_{D 1} * A_{\text {ref } 1 / A \text { Aref }} & A_{\text {ref }}=\Sigma L X D \text { for lines }\left(A_{\text {ref }} 2\right) \\
C_{D 3}=C_{D 2} * A_{\text {ref } 2 / A_{\text {ref }} 3} & A_{\text {ref }}=A_{\text {ref }} \text { Parafoil }\left(A_{\text {reff }}\right)
\end{array}
$$

where $C_{D 1}$ is the Drag Coefficient based on each line's reference area, CD_{2} the Drag Coefficient based on the total line reference area ($105.87 \mathrm{ft}^{2}$), CD3 the Drag Coefficient based on the parafoil reference area $\left(1200 \mathrm{ft}^{2}\right)$ and ϕ is the angle of attack. Table 5.3-7 lists the values calculated for the angle ϕ, and Table 5.3-8 the values for $A_{\text {ref }} 1$.

In the equations above the line diameter, D , was assumed to be $4.458 \times 10^{-3} \mathrm{ft}$, or the average diameter of the lines under load. In determining the length, L, only the line length exposed to the flow was used. The following equation was used to obtain this length.

$$
L A=L R-L P
$$

where $L R$ is the length from the parafoil to the confluence point, LP the length from confluence point to the top plate, and LA the exposed length (see Figure 5.3-4). Tables 5.3-9 to 5.3-11 give values calculated for the line lengths, LA.

FIGURE 5.3-3, CROSS FLOW PRINCIPLE

FIGURE 5.3-4, LINE LENGTH NOMENCLATURE

5.3.3 Drag Coefficient Results

Drag coefficients were calculated using equations derived in Section 5.3.2. The results for $C_{D 1}, C_{D 2}$ and $C_{D 3}$ can be found in Tables 5.3-6, 5.3-7 and 5.3-8 respectively. The total C_{D} 's for the lines were found to be the following:

$$
\begin{array}{ll}
C_{D 2 T}=1.73709 & \text { (based on Aref } 2) \\
C_{D 3 T}=0.15326 & \text { (based on Aref } 3 \text {) }
\end{array}
$$

5.3.4 Lift Coefficient Estimate

$A C_{L}$ for the suspension lines also had to be determined for comparison purposes. The same Cross Flow principle found in Fluid Dynamic Drag (Hoerner 1965) ${ }^{2}$ is used. Figure 5.3-3 depicts the nomenclature for the Cross Flow Principle, and Figure 5.3-5 depicts the geometry for determining CL. The following set of equations are used in calculating CL_{L} :

$$
\begin{array}{ll}
C_{L 1}=1.10 \sin ^{2}(\phi) * \cos (\phi)^{*} \cos (\theta) & \text { Aref }=\text { Aref1 } \\
C_{L 2}=C_{L 1} * A_{r e f} 1 / A_{r e f} 2 & \text { Aref }=\text { Aref2 } \\
C_{L 3}=C_{L 2} * A_{r e f} 2 / A_{r e f} 3 & \text { Aref }=\text { Aref3 }
\end{array}
$$

where C_{1} is the Lift Coefficient based on each line's reference area, $C_{L_{2}}$ with Lift Coefficient based on the total line reference area $\left(105.87 \mathrm{ft}^{2}\right), \mathrm{C}_{\mathrm{L} 3}$ the Lift Coefficient based on the parafoil reference area ($1200 \mathrm{ft}^{2}$), ϕ is the angle of attack, and θ is the rotation angle in the $Y Z$ plane. Table 5.3-1 lists the values calculated for the angle ϕ, Table 5.3-9 the values for angle θ, and Table 5.3-3 the values for Aref1.

In the equations above the line diameter, D , was assumed to be $4.458 \times 10^{-3} \mathrm{ft}$, or the average diameter of the lines under load. In determining the length, L, only exposed the line length discussed in Section 5.3.2 was used.

FIGURE 5.3-5, LIFT COEFFICIENT GEOMETRY

5.3.5 Lift Coefficient Results

Lift coefficients were calculated using equations developed in section 5.3.4. The results for $\mathrm{C}_{\mathrm{L} 1}, \mathrm{C}_{\mathrm{L} 2}$ and $\mathrm{C}_{\mathrm{L} 3}$ can be found in Tables 5.3-10, 5.3-11 and 5.3-12 respectively.

The total C_{L} 's for the lines were found to be the following:

$$
\begin{aligned}
& \mathrm{CL}_{2 \mathrm{~T}}=-0.66988 \text { (based on Aref2) } \\
& \mathrm{CL}_{\mathrm{L}} \mathrm{~T}=-0.05910 \text { (based on Aref3) }
\end{aligned}
$$

NOTE: The negative sign reflects that the line lift acts in the opposite direction of parafoil lift.

5.3.6 Comparison to Test Data

To determine the percentage of drag due to the lines a test point from the wind tunnel was selected having a similar set of parafoil attitude conditions. Shown in Figure $5.3-6$ is the selected point with an $\alpha \mathrm{p}=0.2$ and an L/D of 2.93. As the figure shows:

$$
C_{D}=0.315895
$$

and for the lines:

$$
\mathrm{C}_{\text {DЗT }}=0.15236
$$

Therefore:

Co Lines $=48.5 \%$ of total drag

In determining the percentage of lift due to the lines, the same test condition shown in Figure 5.3-6 was used. As the figure shows:

$$
\mathrm{CL}_{\mathrm{L}}=0.927782
$$

and for the lines:

$$
C_{L 3} T=-0.05910
$$

Therefore:
$C L$ Lines $=6.4 \%$ of total Lift (negative sense)

FIGURE 5.3-6, WIND TUNNEL TEST CASE

Chordwise Riser Line No.

		1	2	3	4	5	6	7	8	9	10
	1	76.28561	75.34832	74.43886	73.53695	72.64358	71.75879	74.88293	76.61628	89.15902	68.31144
	2	76.26581	75.34832	74.43885	73.53685	72.64358	71.75879	76.88293	78.61828	89.15902	68.31144
	3	78.28561	76.34832	74.43885	73.53895	72.84358	71.75879	76.88293	78.01628	69.15962	68.31144
	4	78.26562	75.34832	74.43866	73.53695	72.84356	71.75879	76.88293	78.61828	09.15902	68.31744
	5	78.28562	75.34832	74.43865	73.53895	72.84356	71.75879	76.88293			
${ }^{\circ}$	6	78.28561	75.34832	74.43885	73.53895	72.84356	71.75879	78.88293	76.01026	89.16982	88.31144
	7	76.26561	75.34832	74.43866	73.53895	72.84358	71.76879	76.88293	76.61026		88.31144
0	t	78.28501	75.34832	74.43865	73.53095	72.64366	71.75879	76.88293	78.61826	89.15902	08.31144
.	9	78.28561	75.34832	74.43866	73.53695	72.64358	71.75878	78.88293	70.61826	89.16902	88.31144
-	11	76.28681	75.34832	74.43866	73.53895	72.64358	71.75879	78.88293	70.01828	89.15982	88.31144
4	11	76.28561	75.34832	74.43885	73.53696	72.84358 72.84356	71.75879 71.75879	78.88293 78.88293	70.01028 70.81828	89.16802 89.15982	88.31144
4	12	78.28581	75.34832	74.43865 74.43885	73.53896 73.63896	72.84368 72.64356	71.75879	70.88293	76.01828	69.15982	88.31144
\cdots	13	76.28581	75.34832	74.43885 74.43865	73.63896 73.53695	72.64388 72.84356	71.75879	76.88293	78.01828	69.15982	88.31144
\sim	14	76.28581	75.34832 75.34832	74.43865	73.53895	72.84358	71.75879	78.88293	76.61626	69.15982	88.31144
d	15	78.28561	75.34832	74.43865	73.53896	72.84358	71.75879	76.88293	76.61828	89.15982	68.31144
0	17	78.28561	75.34832	74.43886	73.53896	72.84356	71.75879	76.88293	78.61828	89.15982	68.31144
\cdots	18	78.28581	75.34832	74.43865	73.53095	72.84356	71.75879	76.88293	76.01628	89.15982	68.31144
E	19	78.26581	75.34832	74.43886	73.63896	72.64366	71.75879	70.88293	78.81826	69.15982	08.31144
$\stackrel{\square}{0}$	20	78.28581	75.34832	74.43806	73.53695	72.84358	71.76879	78.88293	76.81020	69.15982	68.31144
\cdots	21	78.28581	76.34832	74.43865	73.53895	72.84368	71.75879	78.88293	78.01028	89.15982	68.31144
	22	78.28561	75.34832	74.43865	73.63895	72.8436	71.75878	76.88293	70.01828	69.15962	68
	21	76.26581	75.34832	74.43885	73.53895	72.64368	71.75878	76.88293	76.01826		88.31144
	24	76.26581	75.34832	74.43865	73.53896	72	. 75879	70.88293	76.61828	09.159	88.31144
		11	12	13	24	15	10	17	18	19	26
	1	87.47371	86.84882	66.82852	66.62137	64.22487	63.43852	62.88302	01.89822	61.14418	80.48689
	2	67.47371	66.64682	65.82852	65.62137	04. 22487	63.43852	82.86302	61.89822	61.14418	60.4E889
	3	67.47371	80.64602	65.82852	65.02137	84.22467	63.43852	62.68302	61.89822		80.40989
	4	67.47371	68.64682	65.82852	65.82137	84.22467	63.43862 83.43852	62.66362 82.08362	61.89822 61.89822	81.14418	80. 46089
	5	67.47371	68.84682	65.82852	66.82137	84.22487	83.43852 83.43852	62.88362 62.86362	61.89822 61.89822	81.14418	68.40189
	6	67.47372	68.84682	65.82862	85.82137	84.22467	63.43862 63.43852	62.86362	81.89822	61.14416	68. 4 E089
z	7	07.47371	86.64882	85.82862	65.62137 85.02137	64.22467	83.43862	62.86362	61.89822	01.14416	88.40889
	t	67.47371	66.84862 86.84802	65.82862 85.82852	65.02137 85.02137	64.22467	63.43852	82.86362	81.89822	81.14418	68.40589
Σ	${ }_{1}{ }^{8}$	87.47371 87.47371	66.84 .84802	85.82852	66.02137	64.22487	83.43852	82.86382	61.89822	81.14416	60.40889
\cdots	11	87.47371	88.848 .82	65.82852	65.02137	64.22487	63.43862	82.68382	61.89822	81.14416	68.46089
	12	67.47371	66.84862	65.82852	65.02137	64.22487	63.43852	62.86302	61.89822	81.14416	68.40189
4	18	87.47371	68.64682	65.82852	65.02137	64.22487	63.43852	62.66302	61.89822	81.14410	68. 40 e89
∞	14	67.47371	88.64802	65.82852	85.02137	64.22487	63.43852	82.86362	61.89822	61.14418	60. 40.80
\sim	15	67.47371	88.84682	65.82852	65.02137	64.22487	83.43852	82.86302	61.89822	61.14418	
\pm	18	67.47371	86.84862	85.82852	65.82137	84.22467	83.43852	82.86302	61.89822	61.14418	
0	17	67.47371	88.84682	66.82852	85.82137	84.22467	83.43852	62.883 .2	61.89822	61.14418	80. 46089
. ${ }^{-2}$	18	87.47371	86.84682	65.82852	85.62137	64.22487	83.43862	62.08362	61.89822		68.4809
3	19	87.47371	86.84862	85.82862	85.02137	84.22467	63.43852	62.68302 02.88362	61.89822 81.89822	81.14416	68.40889
E	21	67.47371	68.84862	85.82862	65.02137	64.22467 64.22487	83.43852 83.43852	02.88362 82.86362	81.89822	61.14416	66.48089
D	21	67.47371	86.84842	65.82852	85.82137	64.22467	83.43862 83.43852	82.86362 82.88382	81.89822	61. 14416	60.48489
c	22	67.47371	68.84862	85.82852 85.82852	68.62137 65.62137	84.22467	63.43852	82.88302	81.89822	61.14416	60. 40489
	23	87.47371	88.64862 88.64802	66.82852	86.82137	84.22467	83.43852	62.86302	81.89822	61.14416	00. 408891

TABLE 5.3-7, PHI (LONGITUDINAL LINE ANGLE), deg
ORGMAR FAGE 15
bir puOR cuallty

Chordwise Riser Line No.

TABLE 5.3-8, AREF1 (LINE REFERENCE AREA), ft^{2}
Gambat page is
OF POOR QUALITY

Chordwise Riser Line No.

		1	2	3	4	5	6	7	8	9	16
	1	59.38813	69.62909	69.88526	66.15828	80.44212	66.74252	61.05725	61.38611	81.72888	62.88527
	2	69.38813	69.82908	59.88628	60.15828	86.44212	80.74252	61.06725	61.38811	61.72888	62.08527
	3	59.38813	59.62969	59.88620	66.15828	60.44212	68.74252	61.85725	61.38611	61.72886	62.88527
	4	59.38813	59.62969	59.88528	86.15828	80.44212	88.74252	61.86725	01.38611	81.72886	62.68527
	5	59.38813	59.82969	59.88526	86.15828	60.44212	86.74252	01.85725	61.38811	61.72888	82.086
z	8	59.38813	59.62949	59.88520	68. 15828	60.44212	80.74252	81.86725	61.38811	61.72888	
	7	59.38813	59.02909	59.8852%	88. 16828	80.44212	66.74252	61.86725	81.38611	61.72888	62.08527
$\stackrel{\text { ® }}{\text { ¢ }}$	8	59.38813	59.62949	59.88526	60.18828	60.44212	80.74252	81.65725	81.3861	61.72888	7
$\cdot-1$	9	59.38813	59.62989	59.88620	80.15828	66.44212	66.74252	81.65725	61.38611	61.72888	
\cdots	20	59.38813	59.82989	50.88528	60.15628	86.44212	88.74252	81.05725	61.38611 61.38611	1.72880	82.08527 82.88527
4	11	69.38813	59.82989	59.88526	66.15628	60.44212	88.74252	61.65725	61.38		82.08527
d	12	59.38813	59.62969	59.88520	60.15828	60.44212	60.74252	01.06725	61.38611	61.72886	82.88527 82.68527
-	13	59.38813	59.82909	59.88628	66.15828	80.44212	8	61.05725	61		82.08527
0	14	59.38813	59.82969	69.88520	68. 15828	08.44212	68.74252	82.06726	61.38811	61.72886 81.72886	02.88527 02.08527
	15	69.38813	50.82969	59.88628	65.15828	00.44212	88	62.06725			62.08827
0	18	59.38813	59.62989	59.88625	60.15028	86.44212	86.74252	61.86725	61.386	61.72886 61.72886	62.88527
-1	17	69.38813	59.62969	59.88520	08.15028	86.44212	80	01.06725			82.68627
3	18	69.38813	59.82909	59.88526	08. 15828	60.44212	86.74252	61.05725	61.38611	61.72880 61.72880	$\begin{aligned} & 8.08527 \\ & 82.08527 \end{aligned}$
a	19	59.38813	59.82969	50.88520	08.15828	60.44212	68.7	61.85725	01	01.72880	
0	28	69.38813	59.82969	59.88626	88.15828	60.44212	60. 74252	81.86725	61.38611	61.72886	
u	21	59.38813	59.62969	59.88526	60.15828	60.44212	80.74252	61.65726	61	01.72888	
	22	59.38813	59.62969	59.88528	06.15828	60.44212	68.7	S	61		
	23	69.38813	59.62969	59.88528	60.15628	60.44212	60.74252	01.06726			
	24	50.38813	59.82909	69.88528	60.15628	10.44212	60.74252	5		61.72886	62.08827
		11	12	13	14	15	18	17	18	19	20
	1	82.46511	62.83816	03.23414	63.84284	64.00461	84.49740	64.94277	65.39987	85.86847	68.34831
	2	62.45512	02.83815	83.23414	63.64284	64.88401	64.49746	64.94277	65.39987	65.86847	86.34831
	3	62.48511	82.83815	63.23414	83.84284	04.66481	64.49746	64.94277	66.39987	65.86847	06.34831
	4	62.45611	62.83815	83.23414	83.84284	84.66461	64.49746	64.94277	65.39987	65.86847	08.34831
0	5	62.45611	82.83815	83.23414	83.84284	64.08481	64.49746	84.94277	66.39987	65.868	0.34831
z	6	62.45611	62.83815	83.23414	63.84284	84.00481	64.49746	84.94277	06.39987	85.88847	80.34831
	7	62.45611	62.83815	63.23414	83.64284	64.68461	64.49740	84.94277	65.39987	65.88847 85.88847	86.34831
E	8	02.46511	62.83815	83.23414	83.64284	64.68481	84.	84	85.39987		
\cdots	9	82.45611	82.83815	83.23414	63.64284	64.68401	64.49748	84.94277	65.39987	65.88847	68.34831
\cdots	18	82.45511	62.83815	63.23414	63.64284	84.88481	84.49	84.94277		85.88847	68.34831
4	11	62.46511	82.83815	63.23414	63.84284	84.86481	64.49746	64.94277	65.39987	-6.86847	
\pm	12	62.46512	82.83815	63.23414	63.84284	84.68461	64.497	84	65		86.34831
. 0	13	62.46511	82.83815	83.23414	83.84284	64.06461	84.49746	64.94277	66.39987	08.88847	
\simeq	14	82.46511	82.83815	63.23414	83.84284	64.66461	64.49740	64.94277	65.39987	65.88847	68.34831
	15	82.45611	62.83815	63.23414	63.64284	64.66401	64.49746	64.94277	65.39987 65.39987	86.86847	66.34831
\pm	18	62.45511	62.83815	03.23414	03.64284	64.66461	84.49740	64.94277			
-	17	82.45611	62.83815	83.23414	63.84284	84.68461	64.49746	04.94277	66.39987	66.86847	
3	18	02.45511	62.83815	83.23414	63.84284	84.06401	84.49740	04.84277	86.39987	0. .8684	
$\stackrel{\square}{0}$	19	82.46521	62.83815	63.23414	63.84284	64.68461	84.49748	84.94277	65. 39987	65.86847	66.34832
0	20	82.46511	62.83815	63.23414	63.84284	64.26481	84.49746	84.94277	65.39987	85.88847	
$山$	21	02.45611	62.83815	63.23414	83.84284	64.08481	64.49746	84.94277	65.39987	66.80847	
	22	82.46511	62.83816	63.23414	63.64284	64.08461	64.49748	64.84277	66.39087	68.86847	06.34831
	28	82.48511	82.83815	63.23414	63.64284	64.68461	64.49744	64.94277	65.39987	66.88847	68.34831
	24	62.45512	82.83815	63.23414	63.64284	64.68461	84.49746	04.94277	6.3.398. 7	05.0684	60.34831

TABLE 5.3-9, LR (LENGTH TO CONFLUENCE POINT), ft

Chordwise Riser Line Mo.

		1	2	3	4	6	8	7	8	0	10
	1	11.88899	11.93558	11.99317	12.85368	12.11767	12.18329	12.25233	12.32489		
	2	11.88699	11.93568	11.99317	12.85368	12.11747	12.18329	12.25233	12.32469	12.39855	12.47570
	3	11.88699	11.93558	11.99317	12.05388	12.11787	12.18329	12.26233	12.32469 12.32469	12.39855 12.39855	12.47578
	4	11.98715	11.98182	12.01945	12.08884	12.14352	12.26982	12.27898	12.36985	12.42541	12.47576 12.58286
0	5	11.90715	11.96182	12.01946	12.88684	12.14352	12.29982	12.27898	12.35085	12.42541	12.58286 12.58288
z	6	11.96715	11.98182	12.81946	12.88684	12.14352	12.28982	12.27898	12.35885	12.42541	12.58288 12.58288
$\stackrel{1}{\square}$	8	11.98618 11.98018	12.03583 12.83593	12.69285	12.15365	12.21734	12.28392	12.36338	12.42547	12.56838	12.57792
. \cdot	8 9	11.98618 11.98018	12.83643 12.83683	12.89285 12.89285	12.15385 12.15365	12.21734 12.21734	12.28392	12.36338	12.42547	12.58038	12.57792
\cdots	16	12.16148	12.15868	12.21478	12.27591	12.33999	12.28392 12.44786	12.36330 12.47683	12.42547	12.58838	12.57792
\pm	11	12.16148	12.15866	12.21478	12.27591	12.33989	12.46708	12.47883	12.64945	12.82487	12.70298
0	12	12.16148	12.15868	12.21478	12.27591	12.33989	12.46766	12.47883	12.64946	12.82487	12.70298
\cdots	13	12.27346	12.32898	12.38701	12.44825	12.51387	12.58147	12.85192	12.64946 12.72522	12.62487	12.78296
\propto	14	12.27346	12.32898	12.38761	12.44825	12.51387	12.58147	12.86192	12.72522	12.80136	12.88021 12.88021
\pm	16	12.27346	12.32898	12.38781	12.44925	12.51387	12.58147	12.06192	12.72522	12.80138	12.88021 12.88821
\pm	18	12.49949	12.55657	12.81478	12.67787	12.74242	12.81880	12.88289	12.96829	13.03334	12.88821 13.11320
\cdots	17	12.49949	12.55557	12.61478	12.87707	12.74242	12.81888	12.88289	12.95829	13.63334	13.11320
E	10 10	12.49949 12.78432	12.55557 12.84189	12.61478 12.98184	12.67787 12.98418	12.74242	12.81886	12.88289	12.96829	13.03334	13.11328
0.	26	12.78432	12.84109	12.98184	12.98418	13.83042 13.63842	13.89978 13.89978	13.17289	13.24742	13.32569	13.48678
0	21	12.78432	12.84109	12.88184	12.98418	13.63842	13.09976	13.17269	13.24742 13.24742	13.32568	13.46878 13.40678
	22	13.13417	13.19178	13.25260	13.31883	13.38421	13.45472	13.52837	13.68505	13.88477	13.46678 13.78740
	23	13.13417	13.19178	13.25266	13.31883	13.38421	13.45472	13.52837	13.60506	13.88477	13.78740 13.78746
	24	13.13417	13.19178	13.25286	13.31883	13.38421	13.45472	13.52837	13.80585	13.88477	13.78746
		11	12	13	14	15	16	17	18	19	28
	1	12.55642	12.63773	12.72258	12.86972	12.89846	12.89138	13.88572	13.18228	13.28188	
	2	12.55542	12.63773	12.72250	12.86972	12.89946	12.99138	13.88672	13.18226	13.28180	13.38197
	3	12.65642	12.63773	12.72258	12.89872	12.89948	12.99138	13.08572	13.18226	13.28188	13.38197 13.38197
\bigcirc	4	12.58253	12.86495	12.74985	12.83725	12.92786	13.61918	13.11380	13.21841	13.38931	13.41843
Σ	5	12.58253	12.68495	12.74985	12.83725	12.92788	13.61918	13.11386	13.21041	13.36931	13.41043
	6	12.58253	12.68495	12.74985	12.83725	12.92768	13.61918	13.11366	13.21841	13.36931	13.41043
$\underset{\underset{J}{ \pm}}{ }$	7 8	12.86813 12.86813	12.74888 12.74888	12.82819 12.82819	12.91399	13.60416	13.69876	13.19164	13.28886	13.38823	13.48984
\cdots	9	12.85813	12.74688	12.82819 12.82619	12.91399 12.91398	13.80416 13.80418	13.69876	13.19164	13.28885	13.38823	13.48984
$\stackrel{1}{4}$	18	12.78371	12.88768	12.95368	13.64141	13.13228	13.29876 13.22559	13.19164 13.32121	13.28885 13.41814	13.38823 13.51937	13.48984
4	11	12.78371	12.88788	12.95388	13.64141	13.13228	13.22859	13.32121	13.41814	13.51837 13.51937	13.82175 13.82175
$\xrightarrow{4}$	12	12.78371	12.88766	12:96306	13.84141	13.13228	13.22569	13.32121	13.41914	13.51937	13.82175 13.62175
-	13	12.96175	13.64594	13.13277	13.22216	13.31393	13.48824	13.56490	13.80304	13.78523	13.62178 13.88870
	14	12.96175	13.64594	13.13277	13.22218	13.31393	13.48824	13.58498	13.68398	13.76523	13.88876
(1)	16	12.96175 13.19588	13.84694	13.13277	13.22210	13.31393	13.46824	13.60490	13.68398	13.70523	13.88876
\cdots	18	13.19588 13.19586	13.28111 13.28111	13.36968	13.45961	13.55271	13.84834	13.74637	13.84679	13.94966	14.85459
$\stackrel{3}{\square}$	18	13.19686	13.28111 13.28111	13.36986	13.46961	13.65271	13.84834	13.74837	13.84879	13.94955	14.85459
$\stackrel{\square}{0}$	19	13.49874	13.57742	13.86687	13.46881 13.75897	13.55271	13.84834	13.74637	13.84679	13.84955	14.85459
\therefore	26	13.40974	13.57742	13.88887	13.75897	13.85384	13.95091	14.55864	13.98801	14.25745	14.36442
	21	13.49874	13.67742	13.08887	13.75897	13.85364	13.95691	14.86864	13.98661	14.25745	14.36442
	22	13.86361	13.94148	14.63269	14.12883	14.22336	14.32258		13.98661	14.25746	14.36442
	23	13.85361	13.94146	14.63269	14.12883	14.22338	14.32258	14.42446	14.52887	14.63678	14.74561
	24	13.86361	13.94146	14.63269	14.12863	14.22336	14.32258	14.42445	14.52887	14.83576	14.74501

TABLE 5.3-10, LP (LENGTH OF CONFLUENCE POINT TO TOP PLATE), ft

Chordwise Riser Line Mo.

		1	2	3	4	E	6	7	8	9	10
						48.32505	48.65923	48.88492	49.66281	49.33638	49.80967
	1	47.50714	47.69361	47.89283	48.18282	48.32565	48.55923	48.89492	49.66281	49.33838	49.08957
	2	47.50714	47.89351	47.89263	48.16262	48.32566 48.32565	48.56923 48.55923	48.88492	49.66281	49.33838	49.80957
	3	47.50714	47.89381	47.89283	48.18262	48.32565 48.29859	48.53289	48.77829	49.83528	49.36346	49.58281
	4	47.48698	47.86726	47.88575	48.67824	48.29869 48.29858	48.63289	48.77829	49.83528	49.36345	48.58281
	5	47.48898	47.86728	47.88575	48.67624 48.67824	48.29868	48.53289	48.77829	49.03528	49.36345	49.58281
Z	6	47.48898	47.68728	47.86675	48.67824	48.22478	48.45858	48.78398	48.98663	49.22848	49.56736
z	7	47.46795	47.59466	47.79235	48.60262 48.80262	48.22478	48.45858	48.76398	48.98683	49.22848	49.68736
τ	8	47.40785	47.59466	47.79235	48.60282 48.66282	48.22478	48.45850	48.76398	48.98683	49.22848	49.58736
.	9	47.46795	47.59466	47.79236	48.66262 47.88638	48.18213	48.33651	48.58843	48.83685	49.18388	49.38231
\cdots	16	47.28685	47.47248	47.87842	47.88638 47.88838	48.18213	48.33651	48.58043	48.83886	49.18398	49.38231
	11	47.28686	47.47248	47.87842 47.67042	47.886086 47.88038	48.10213	48.33551	48.58043	48.83885	49.18398	49.38231
10	12	47.28685	47.47248	47.67042 47.49759	47.70703	47.92825	48.18186	48.48533	48.88888	48.92750	49.26566
\pm	13	47.11468	47.30010	47.49759	47.78783	47.92825	48.18185	48.48533	48.88088	48.92756	49.20566
\propto	14	47.11468	47.38010	47.49789	47.70783	47.92826	48.18165	48.48533	48.66888	48.92750	49.28506
$\underline{\square}$	15	47.11488	47.38616	47.49759	47.47926	47.69970	47.93172	48.17510	48.42982	48.89552	48.97288
ω	16	48.88864	47.87352	47.27.27642	47.47920	47.69970	47.93272	48.17518	48.42982	48.89552	48.97288
\pm	17	48.88884	47.07362	47.27442	47.47928	47.80976	47.93172	48.17518	48.42982	48.88562	48.97288
$\stackrel{5}{5}$	19	46.86381	46.78800	46.98416	47.19209	47.41176	47.64278	47.88517	48.13889	48.40317	48.87849
T	28	46.60381	48.78860	46.98416	47.19269	47.41178	47.84278	47.88517	48.13869	48.48317	48.67849
\cdots	21	46.68381	48.78860	46.98418	47.19209	47.85791	47.28780	47.52888	47.78160	48.64408	48.31781
	22	46.25390	46.43738	48.63254	46.83945	47.85791	47.28780	47.52888	47.78106	48.64468	48.31781
	23	48.25398	46.43736	46.63254	48	47.05791			47.78180	48.84488	48.3
	24	46.25398	46.43738	48.63254	48.83946	47.65781					
		11	12	13	14	16	18	17	18	19	28
				51164	50.83312	81.18461	51.58862	61.85705	52.21781	82.58741	52.98634
	1	49.89976		50.51164	58.83312	51.16461	51.50802	51.85795	52.21761	62.58741	52.98834
	2	49.89976	50.28842	60.61164 50.51164	58.83312	51.16481	51.56882	51.85785	52.21781	52.58741	52.96634
	3	49.89976	56.28642 58.17320	50.51164 50.48429	56.83312	51.13895	51.47822	51.82911	52.18847	52.55918	62.93788
0	4	49.87259	68.17320	50.48429	50.80659	61.13895	51.47822	51.82911	52.18947	52.55916	62.93788
z	5	49.87259	66.17320	56.48429	86.8086	51.13896	E1.47822		52.18947	52.55918	52.93788
	8	49.87259	60.17328	50.48429		51.85984	51. 46083	51.75113	52.11183	52.48624	52.85847
$\underset{G}{\mathrm{E}}$	7	49.79698	58.69727	56.46795	50.72885	51.66984	61.40063	62.75113	52.11183	52.48824	52.85847
,	8	49.79898	56.69727	66. 46796	60.72886	51.06984	51.48663	61.75113	52.11103	52.48824	52.85847
\cdots	9	49.78898	58.88727	68.40798	68.72886 56.86143	58.93273	51.27181	51.82158	51.98674	52.34916	52.72858
上	18	49.87141	49.87169	50.28114 50.28114	50.80143 56.80143	58.83173	51.27181	51.62158	51.98874	52.34916	52.72858
0	11	49.67141	49.97169	50.28114	58.80 .8143	56.93173	51.27181	51.82158	51.98074	52.34916	52.72856
∞	12	49.87141	49.97169	50.28114	50.86143	66.93173 56.75008	51.271818	51.43787	51.79698	52.18324	52.53956
-	13	49.49338	49.79221	58.18137	58.42974 56.42674	56.75688	51.88916 51.88918	51.43787	51.79698	52.16324	52.53955
	14	49.49336	49.79221	58.18137	56.42874	50.75608 56.75608	51.68918	51.43787	51.79598	52.18324	52.53965
0	15	49.49338	49.79221	58.18137	58.42674	50.75608 50.51130	58.84960	51.19840	51.56388	51.91892	52.29372
	18	49.25931	49.55704	49.886	50.18323	58.51130	60.84906	51.19646	61.55388	61.91892	52.29372
3	17	49.25931	49.55784	49.86508	60.18323 50.18323	50.51130	59.84968	51.19846	61.56308	51.91892	52.29372
E	18	49.25931	49.55784	49.86508	50.18323	60.61130 50.21037	50.54648	80.89213	51.41328	51.61182	61.98389
0	19	48.98438	49.28673	49.58727	49.88387	56.21037 50.21037	50.54848	50.89213	51.41328	51.61102	61.98389
c	20	48.96438	49.28673	49.56727	49.88387	68.21837	58.54848	54.89213	61.47328	51.61162	51.98389
	21	48.98438	49.28673	49.56727	49.88387	68.21637	56.17484	50.51832	68.87181	51.23276	51.68338
	22	48.80211	48.89670	49.28145	49.51621	49.84671	88.17484	88.51832	50.87101	51.23278	51.60330
	23	48.68211	48.89876	49.26145	49.51821	49.84671	56.17484	58.51832	64.871	E1.23276	51.88330
	24	48.88212	48.89876	49.26146	49.51821	49.84671	6..17484	50.51032			

TABLE 5.3-11, LA (EXPOSED LENGTH), ft

Chordwise Riser Line No.

		1	2	3	4	5	6	7	8	9	10
	1	1.08831	0. 99814	0. 98341	0.97018	0.95848	0.94238	0.92780	0.91363	0.89798	0.88253
	2	1.80831	0.99814	0. 08341	0.97818	0.95848	0.94238	0.92786	0.91303	0.89790	©. 88253
	3	1.80831	0.99814	0.98341	6. 97618	0.95848	0.94238	6.92786	0.91383	0.89790	0.88253
	4	1.86831	0.99814	6. 98341	0.97018	0.95848	0.94238	0. 92788	0.91383	0.89796	0.88253
\bigcirc	6	1.68831	0.99614	6. 98341	©.97618	6. 95648	0.94238	6. 92788	0.91303	0.89798	0.88253
	6	1.08831	0.99614	0. 98341	0.97818	0. 95648	0. 94238	6. 22788	0.91303	0.89790	0.88253
\pm	7	1.68831	0.99814	6. 98341	0.97618	6.95848	0.94238	©. 92786	0.91303	0.89790	0.88253
$\underline{\square}$	8	1.88831	0.99614	-. 98341	0.97018	8.95648	0.94236	6. 92786	0.91363	0.89790	e.88253
$\stackrel{\square}{\square}$	9	1.88831	0.99814	-. 98141	0.87018	0.95848	6.94236	6. 92786	6. 91363	0.89790	0.88253
	18	1.60831	0.99614	0.98341	0.97018	0.95648	0. 94238	6. 92788	6. 91383	0.89790	0. 88253
m	11	1.80831	0.89614	0.98341	0.97818	0. 95648	0.94238	6.92786	0.91363	0.89796	0.88253
\pm	12	1.60831	0.99614	c. 98341	0.87618	0. 95648	0.94236	0. 92788	6. 91363	0.89796	d. 88253
-	13	1.00831	0.99814	0. 08341	0.97618	8. 95648	0. 94238	0. 92786	0.91383	0.89790	0.88253
\propto	14	1.88831	0. 09814	6. 98341	6.97618	0. 95848	6.94238	6.92786	0.91383	0.89790	6.88253
(1)	15	1.06831	0.99814	c. 98341	6.97618	0.95648	6. 94238	0.92786	0. 91363	0.89796	0.88253
0	18	1.08831	0. 99814	0. 98341	0.97018	0.95648	0.94238	0.92786	0.91363	0.89798	0.88253
3	17	1.06831	0.99614	E. 98341	0.97618	6. 95848	0.94238	0.92780	6.91383	0.89798	0.88253
$\stackrel{\square}{c}$	18	1.80831	0. 99014	6.98341	0.97618	0.95848	0.94238	0.92786	0.91383	0.89798	0.88253
0	19	1.06831	0.99014	6.98341	0.97618	0.95648	0.94238	0.92780	0. 91383	0.89798	0. 88253
$\stackrel{O}{\Omega}$	20	1.06831	6. 99814	0.98341	0.97618	0. 95648	0.94238	0.92786	0.91383	0.89796	0.88253
	21	1.86831	0. 99814	6. 88341	0.97618	5. 95648	0.94238	6. 92786	0.91303	0.89790	6. 88253
	22	1.66831	0. 99814	0.98341	0.97618	0. 95848	0.94238	6. 92786	0.91303	0.89798	6. 88253
	23	1.06831	0.99814	6. 98341	0.97618	0.95848	0.94238	6. 92786	0. 91363	0.89798	0.88253
	24	1.66831	0.99614	0. 98341	0.97818	8. 95848	0. 94238	0.92786	0.91383	0.89794	0.88253
		11	12	13	14	16	18	17	18	19	28
	1	0. 86894	0.85119	6.83630	0.81931	6. 86325	6. 78717	0. 77189	6. 76583	6. 73083	0.72311
	2	- . 86894	0.85119	0.83530	6.81931	0.88325	0.78717	0.77189	6. 76583	6. 73983	0.72311
-	3	0.86894	0.85119	0.83536	0.81931	0.86325	0.78717	0.77189	-. 75683	0.73983	0.72311
2	4	0.88694	0.85119	0.83536	0.81931	0.86325	0.78717	0.77189	0. 75583	0.73983	0.72311
	5	6. 86694	0.85119	0.83536	-. 81931	0.86325	0.78717	0.77180	9.75503	0.73983	0.72311
\pm	6	0. 88694	0.85119	0.83536	0.81931	0.86325	0.78717	0.77169	©. 76563	0.73903	0.72311
. $=$	7	0. 88894	0.85119	0.83536	0. 81931	0.88325	0.78717	0.77189	0.75683	0.73903	0.72311
\cdots	8	-. 86894	0.86119	©. 日3536	-. 81931	0.88325	0.78717	0.77189	5.75563	0.73983	0.72311
	9	0. 86894	0.85119	0.83636	-. 81931	0.86325	0.78717	0.77109	6. 75583	0.73963	0.72311
\pm	18	0. 86694	0.85119	0.83630	6.81931	6.86325	0.78717	0.77189	0.75583	0.73983	0.72311
8	11	0.86694	0.85119	0.83536	0.81931	0.86325	0.78717	0.77189	0.75683	0.73983	0.72311
\cdots	12	0.86894	0.85119	- . 83536	0.81931	6.86325	6. 78717	0.77169	0.75563	0.73903	0.72311
\simeq	13	0.86894	0.85119	0.83536	0.81931	6. 86325	6.78717	0.77169	0.75563	0.73983	0.72311
0	14	0.88894	0.85119	0.83536	0.81931	0. 86325	0.78717	6.77169	0.75563	0. 73983	0.72311
4	16	0.88894	0.85119	©. 83536	6.81931	0.80325	0.78717	0.77169	0.75563	0.73983	0.72311
2	18	0.88894	0.85119	0.83630	0.81931	6. 86325	0.78717	6.77169	0. 75663	0.73983	0.72311
E	17	0.86694	0.85119	c. 83636	6. 81931	8.86325	0.78717	6.77169	©. 75563	0.73963	0.72311
0	18	0.86894	0.85119	0.83636	0.81931	6.86325	0.78717	6.77169	6. 75583	0.73983	0.72311
$\stackrel{\sim}{3}$	19	0.86894	0.85119	©. 83630	0. 81931	6.86325	6.78717	0.77109	0. 75683	0.73963	0.72311
	20	0.86894	0.85119	©.83536	6. 81931	\%.86325	-.78717	0.77189	0.75683	0.73903	0.72311
	21	0.88894	0.85119	©. 83636	0.81931	0.86325	0.78717	0.77169	0.75583	0.73983	0.72311
	22	0. 26894	6.85119	- . 83536	6.81931	0.88325	0.78717	6.77189	0.75683	0.73983	6. 72311
	23	-. 86894	0.85119	- . 83636	0.81931	6. 8.8525	0.78717	0.77180	0.756\%3	0.73983	0.72311
	24	- . 86694	0.85119	- . 03530	0.81931	6. 86325	6.76717	0.77180	-.75688	0.73983	0.72311

TABLE 5.3-12, CDI (DRAG COEFFICIENT BASED ON
INDIVIDUAL REF AREA)

Chordwise Riser Line No.

		1	2	3	4	6	8	7	8	9	16
	1	6.06202	0.68280	0.00198	6. 86197	0.60195	0.88183	0.80191	8. 80189	0.80187	0.06184
	2	0.64202	0.60203	6.66198	0.06197	0.60195	0.80183	0.80191	0.80189	6.60187	0.06184
	3	0.66202	-. 00206	0. 8.8198	0.60197	0.64196	6. 60193	0.80191	6. 60189	0. 06187	0.86184
	4	©. 06282	- 60206	6.06198	0.86196	0.60195	6.00193	0.80191	6.66189	0.60188	0. 06184
0	5	0.60262	B. 60280	6.06198	6.60196	0. 80195	0.80193	6. 66191	6.60189	0. 86186	0.06184
z	8	0.86282	0.00280	0.00198	- . 6019	6. 80195	0.00193	0.86191	0.60189	0.36186	0.80184
(1)	7	0.86201	0.80260	0.00198	0.60190	0.00194	0. 66192	0. 60198	0.02188	©. 80186	0.66184
E	8	0.60281	0. 86296	c.01198	0.00196	0.00194	0.00192	0.60198	0.06188	0.60186	0.66184
\cdots	9	-. 86281	0.80200	4.00198	0.06198	0.68194	0. 80192	0.86196	0.66188	6. 66186	6.60184
	10	6. 80281	0.68199	0.80197	6.66198	0.60194	6. 06192	0.80198	0. 60188	0.80186	0.08184
W	11	0. 66281	0.68199	-. 0197	0. 0.1198	0.06194	0.60192	0.80198	0.06188	0.86186	0.00184
0	12	6. 60201	0.88199	-. 60197	0.60196	0.60194	0. 00192	0.66198	0.06188	d. 06186	0.66184
\cdots	13	0.60206	0. 86198	-. 01197	0.00195	0.06193	0.00191	6.80189	0.00187	0.88185	0.06183
区	14	0.00280	6. 60198	0.06197	6. 86195	0.86193	0.00191	6. 60189	0.66187	0.60185	0.00183
	15	0. 06280	0. 66198	©. 0.197	0.60195	0. 80193	0.60191	0.86189	0.80187	0.00185	6.68183
0	16	0.00199	-. 80197	0.40108	6. 60194	0.60192	6.66198	0.06188	0.60186	6.00184	0.60182
\cdot	17	0.6e189	0.00197	0.86198	0.00194	0.60192	0.06196	6.00188	6. 66186	0.60184	0.60182
3	18	0. 06189	0.80197	0. 06196	0. 00194	0.66192	0.66186	0. 60188	- . 60186	0.00184	6.84182
\%	19	0.00198	0.00198	0.00195	0.00193	6. 66191	0. 00189	0.60187	0.60185	0.80183	6.60181
C.	20	0.80198	6. 6198	0.00196	6. 60193	0.60191	0.96189	0.00187	6.66185	0.86183	0.00181
c	21	0.00198	0.00196	0.80198	0.06193	0.00191	0.60189	6.86187	0.60186	0.86183	0.60181
	22	0.00196	0.06196	6.00193	0.60191	0. 60190	0.60188	0.80186	0.60184	0.68182	0.00180
	23	0.00196	0.66196	0.00193	0.06191	6. 80196	0.60188	0. 86186	6. 66184	d. 80182	6.60188
	24	c. 618196	0.68195	6.80193	0.00191	0. 60198	0.00188	6. 80186	0.00184	6. 66182	0.00188
		11	12	13	14	15	16	17	18	19	20
	1	6.60182	6. 80186	0.66178	0.60175	0.06173	0.00171	0.80168	0.60168	0.06184	0.06161
	2	0.60182	0. 60188	-.0e178	6.60175	0.00173	0.80171	0. 60168	0.86188	0.60184	0.00161
0	3	6.60182	6. 80186	0.68178	6.00175	0.80173	0.60171	0.66168	0. 06188	0.80184	0.06181
z	4	0.00182	0.80186	0.06178	6.60175	0.60173	6.68171	0.66168	-. 68168	-.00184	8.60181
	5	0.00182	0.00186	0.00178	0.86175	0.00173	0.60171	6. 06168	6. 06168	0.80164	0.00182
\pm	6	b. 80182	0.06186	0.80178	0.86175	0.60173	0.66171	0. 60168	0. 60108	0.00184	0.00161
\pm	7	0.80182	0.0180	0.86177	0.80175	0.60173	0.86176	0.80168	6.86186	0.06183	0.08181
\cdots	8	0.80182	0.60188	0.80177	0.00175	0.86173	0.00178	0.80188	0.80186	0.00183	0.86181
\cdots	9	0.60182	0.6e180	6.80177	6.00175	0.80173	0.00178	0.80168	6. 86168	0.86183	6.80181
0	10	0.80181	0.60179	6.00177	6. 60175	0.00172	0.80178	6.66188	0.80185	0.69183	0.00161
$\stackrel{\square}{-1}$	11	0.60181	0.66179	6.00177	6.61175	0.00172	0.00170	6.60188	0.08185	0.88183	0.60161
-	12	0.00181	0.80179	0.60177	0.00175	0.00172	0.86170	0.08188	0.08185	0.06183	0.60161
	13	0.80181	0.00178	0.00178	0.00174	0.00172	0.86169	0.68187	0.48165	0.00182	0.60160
$\stackrel{0}{0}$	14	0.80181	0.00178	6. 80178	0.00174	6.00172	0.80169	6. 86187	0.00186	0.68182	6.06180
.	15	0.60181	0. $0 \cdot 178$	0.80176	0.06174	0.60172	6.80189	0.68187	0.80185	0.60182	-. 80180
3	18	0.00186	0.00178	0.00175	0.06173	0.00171	0.80189	0.60168	0.80164	0.60182	0. 04159
$\underset{y}{C}$	27	0.6186	0.00178	0.86175	0.60173	0.80171	0. 86169	0. 80166	0.00164	0.08182	0.08159
0	18	0.80180	0.86178	0.66175	6.60173	0.00171	0.00169	0.80186	0. 06184	0.80182	0.80159
∞	19	0.00179	0.80177	0.60174	0.80172	0.06178	6. 80188	0.80185	6. 69183	0.86181	0.60158
	20	0.80179	0.80177	0.00174	0.80172	0.86178	0.80168	6. 60165	6.80183	0.50181	6.EE158
	21	0.60179	0.80177	0.80174	0.00172	0.60178	6.06188	0.00165	0.86183	0.60162	-. 0158
	22	0.00177	6.86175	0.80173	0.00171	6. 80189	6.06186	0.80164	0.04162	0.00169	0.80157
	23	0.00177	8. 01175	6.00173	©. 0171	6.00189	0.06168	. 0.0164	- . 6162	-.80159	0.66157
	24	0.88177	6.0es 175	0.01173	0.00171	c.ee189	6.6B166	- 6184	0.6182	-. Ee159	-. $0 \cdot 157$

TABLE 5.3-13, CD2 (DRAG COEFFICIENT BASED ON TOTAL LINE REF AREA)

Chordwise Riser Line No.

		1	2	3	4	5	6	7	8	9	10
	1	c. 80018	c. 0 es 18	0.00617	0.00817	0.00617	0. 20017	6. 60017	0.00917	0. 60616	6. 80018
	2	0.80818	0.00018	0.80017	0.00017	0.60017	0.80017	-. 60017	6.00017	0.60610	6. 83036
	3	-. 60618	0.00618	0.06017	0.66017	8.66017	6. 06617	0.80617	- .80017	©. 68616	- . 80018
	4	6. 60818	0.06618	0.86017	0.80017	6.06017	0.00017	0. 80817	0.80817	0. 06016	0. 80818
	5	0.60818	6. 66618	0. 80617	0.00017	0.80017	6.86817	0. 80817	0.00617	6. 86018	0.00018
2	6	0.60018	6. 06018	6. 83617	0.00617	0.08017	0.09817	6. 86617	0.80017	0.06018	0.06816
	7	9.6e618	0. 0.018	-.80017	8.88017	0.08617	0.80017	0.66017	0.04017	6. 06018	0.00416
\pm	8	c. 60618	- . 86018	- .80017	0.80017	0.00617	0.60617	0.66017	0.00017	0.00016	- 0.601^{6}
.	9	0.09618	0. 66018	-.cel17	0.80617	6.86617	6.80617	0.86017	0.66017	5.00018	c. 88818
$\xrightarrow{\square}$	10	0.06018	0.00018	0.0417	0.60617	6.80817	0.e6617	-. 00617	6. 26817	- 0.80018	- . 86818
4	11	0.08018	0.66018	0.00617	-. 60017	0.60817	6.66617	6. 0.617	0.86817	6.86016	0.80016
4	12	0.00618	0. 60618	0.06017	6. Beal 7	0.00017	0.66017	0.86017	0.66017	0.80418	0.86016
0	13	0.84018	0.00018	6. $0 \cdot 617$	0. 06017	6.00817	¢. 60017	0.60017	0.86017	0.80016	©. 00016
-	14	\%. 06018	0.60018	0.86017	6. 66617	0.80817	8.80017	0.66017	0.89017	8.09016	0.00018
	15	0.60618	0.00618	-.00017	6.86817	0.86817	0.00617	0. 06017	6. 64617	0.80018	0.00016
\pm	16	0.60618	0.00017	0.00017	0.00017	0.80017	0.06017	0.06017	0.06016	0.80010	0.00016
. 0	17	0.08018	0.80017	6.00617	0.00017	0.86017	0.66017	0. 6.617	c. 0.8016	0.66016	0.80016
3	18	-. 08018	6. 60017	0.60017	0.60617	6.80617	0.66817	6.66617	6.86916	0.60016	- .88el 16
Σ	19	0.00017	0.60017	6.60017	0.06817	6. 66817	0.06017	0.00017	0.68916	6. 060118	0.60816
$\stackrel{\square}{0}$	28	0. 60017	0.60017	6.60017	6.89017	0. 60617	8.00017	0.00617	0.880118	0.88616	-. Dee 16
-	21	0.60017	0.00617	6. 60817	0. 68617	6. 86017	0.60017	0.86817	6. 680118	0.96810	0.00016
	22	0.60617	0. $60{ }^{17}$	0.86617	0.60617	0.80817	0.06617	0.00016	0.09018	0.60016	0.80016
	23	0.60017	- . beel 17	0.80617	0.60817	0.60017	0.00617	0.00616	0.66016	0.80016	- . 83016
	24	0.00017	6. 06017	0.80017	0.60017	0.00617	0. 60617	4.86016	0.86818	0.80016	- $0.80{ }^{10}$
		11	12	13	14	15	10	17	10	19	28
	1	6. 50618	0. 80016	6. 60018	0.60015	0.00015	6.66015	0.60015	0.60615	6.80014	- 0.8014
	2	0.60018	0. 08016	- . 00016	0.80015	0.00015	0.00615	0.60016	0.80015	0. 60014	0.80014
	3	6. 80018	0.0ed 10	0.00016	0.60615	0. 06015	0.80015	\%. Bed 15	0. 0.0615	6. 80014	c.eebl 4
	4	0.80818	0.06010	- .00016	0.60615	6.08015	9. 68315	6.8es 15	- 0.80615	6.80014	6. E0el4
0	5	0. 00018	0.80018	- .80016	6.60815	6. 60.15	0. 0 cel 15	- . 6 er 15	0.80615	0.0ec14	6.80014
z	6	0.80018	0.00018	0.60016	6. 60615	6. 8.815	6. 0 del 15	6. 6.015	6.80el 5	0.80014	0.80014
	7	-. 80616	0.80618	- . -ed 16	8.80616	0.80015	6.00015	e. 0 er 15	- . Deel5	0.06014	0.06814
${ }^{\text {c }}$	8	e. 06016	6.00018	- . beal ${ }^{0}$	0.80815	0. .8015	0.6en 15	- . 60015	6.berl 5	0.86014	0.60014
\cdots	\bigcirc	6.80616	6.80416	\%. $0 \cdot 016$	0.80015	0.80015	0.60015	6.80615	6. 6015	- . 68014	c.esel 14
\cdots	18	- . 80416	0.20018	0.00616	6.60015	0.60615	0.00815	- . 6 er 15	- .00.15	-. 80814	\%.8er 14
\pm	11	-. 60416	0.80016	0. 60016	6.00015	0.06016	0.68115	- . 0 er 15	6. 60115	-. 86814	6. 20014
\pm	12	- . 00016	0.60016	0.00916	-. 00015	\%.8eals	0.0ec15	c.enel 5	©. ${ }^{\text {ceal }} 5$	0.80814	0.00014
. 4	13	0.6ed 16	0.80018	. .80616	6. 0.015	0.60015	0.00815	0. 8eel 15	0.80015	0.80614	0.80014
\sim	14	d. 60016	0. 00016	6. 80010	0.86015	6.86015	0.80015	0.00615	0.68815	0.60614	0.80614
	15	d. 00016	-. 80616	6.80010	©. 46el 15	0.80615	6.80015	0.80815	0.66015	0.60814	- . 5ecel 14
-	16	6. 20018	0. 80616	0.80015	6.00015	0.80015	0.enel 5	©. 80015	0. 6 erl4	6.66014	- beel 14
\cdots	17	6.80e18	0.00616	6.80015	0.86015	6.80015	0.80815	6. 8e815	0.68014	6.08614	-. Des 14
$\stackrel{3}{3}$	18	6. $0 \cdot 0 \cdot 10$	0.00216	6.80615	0.80015	0.80615	0.80015	6. 0.0015	0.8e014	0.08014	0.60014
-	19	6. 20618	0. 0.016	6. E0615	- 8.8015	6.00015	0.80015	6.8eel 15	c. 6 ces 14	0.00814	0.00014
\sim	26	$6.80{ }^{6} 16$	0. 6 -016	0. 20615	0.80815	0.86015	0.80015	0. Eet 15	0.80014	0.00614	0.80614
∞	21	- . 80018	6.80616	0.geel 15	6.00615	0.60615	8.8en15	$0.80{ }^{0} 5$	6. 6 .eal4	6.60614	6. 0 - 14
	22	-. Eeel 16	0. Beel 5	0.8015	- .8015	- Buels	0.80015	-. Be314	O. meel4	\%.00014	0.00814
	23	6. 0.018	0.80015	6.0e615	- . E6S 15	- .8015	0.80els	- . Atel 14	e.ten14	6.06014	0. 60.14
	24	1.8416	- .ectl5	0.09315	6.00015	1. bell 16	e.86015	0.80014	- . ACP14	6.6ed 14	0. 80, 14

TABLE 5.3-14, CD3 (DRAG COEFFICIENT BASED ON PARAFOIL REF AREA)

Chordwise Riser Line No.

TABLE 5.3-15, THETA (FRONTAL ANGLE YZ PLANE), deg
OHEmb PRE IS
OF POOR QUALITY

Chordwise Riser Line No.

		1	2	3	4	5	6	7	0	9	10
	1	-0.24041	-0.28846	-0.27382	-0.28686	-6. 29896	-6.31054	-0.32158	-6.33197	-6.34177	6.35696
	2	-6.24644	-6. 28643	-6.27386	-6. 28676	-6.29894	-0.31058	-0.32181	-6.33202	-6.34181	-8.35699
	3	-6.24637	-6. 20835	-6.27377	-t.28861	-8.29886	- 0.31649	-0.32151	-8.33192	-6.34171	-8.35689
\bigcirc	4	-6.24618	-6.28016	-6.27367	-6.28640	-4.29883	-6.31628	-6.32127	-0.33187	-6. 34148	-8. 35663
z	5	-6.24689	-6.26985	-0.27325	-0.28668	-6.29828	-0.30989	-6.32989	-6.33128	-8.34186	-0.36822
\otimes	0	-6.24649	-6. 25943	-0.27281	-6.28686	-6.29786	-0.30939	-8.32637	-8.33875	-6.34858	-0.34986
E	7	-0.24499	-0.25896	-0.27224	-6. 28861	-0.29718	-0.38875	-6.31971	-6.33868	-6. 33988	-6.34893
\cdots	8	-6.24438	-0.25825	-0.27188	-6. 28436	-6.29644	-0.36798	-6.31891	-8.32924	-8.33895	-0.34806
	9	-6. 24386	-0.25749	-6.27678	-6. 28346	-6.29658	-6.36767	-3.31797	-0.32827	-0.33795	-8.34703
4	15	-6.24283	-6.25862	-0.26984	-6. 28258	-6. 29456	-6.36883	-0.31689	-4.32715	-0.33680	-6.34686
0	11	-6.24189	-6.25683	-0.26880	-0.28141	-6.29343	-0.36485	-0.31587	-0.32589	-6.33551	-0.34452
-	12	-6.24086	-0.25463	-6.28786	-6.28020	-8.29217	-6.30354	-6.31432	-6.32449	-0.33467	-8.34384
\square	13	-6.23971	-0. 25332	-6. 26638	-0.27887	-6.29078	-6.30210	-8.31282	-6.32295	-6.33248	-6.34141
	14	-6. 23846	-0.25280	-6.28499	-0.27741	-8.28928	-8.30052	-6.31119	-6.32126	-0.33074	-8.33982
∞	15	-0.23718	-6.25868	-0.26348	-6.27583	-6.28781	-0.29881	-6.38942	-6.31944	-0.32886	-6.33789
-	16	-6.23684	-0.24982	-0.28180	-0.27414	-6.28684	-0.29697	-0.38752	-6.31747	-6.32884	-0.33582
3	17	-6. 23468	-0.24737	-6. 28812	-6. 27232	-6.28395	-0.29560	-0.36548	-6.31537	-6.32467	-0.33339
0	18	-6. 23241	-0.24681	-6.25827	-0.27638	-6.28193	-0.29290	-0.38338	-6.31312	-6. 32238	-0.33182
0	10	-0.23806	-6.24374	-6.25831	-0.20832	-6.2797B	-6. 29888	-6.36160	-0.31874	-0.31991	-9.32856
0	28	-6. 22878	-0.24177	-0.25423	-6. 20815	-0.27752	-0.28832	-6.29866	-6.36822	-8.31732	-6.32584
	21	-6. 22681	-0.23969	-6.25204	-6. 26386	-0.27613	-6.28584	-4.29699	-0.30657	-6.31459	- 0.32383
	22	-6. 22474	-6.23750	-6.24974	-6. 20145	-6.27282	-8.28323	-6. 29329	-6. 36278	-6.31172	-6. 32009
	23	-6. 22257	-6. 23521	-0.24734	-0.25893	-0.28999	-6.28056	-6. 29048	-6. 29987	-6. 38871	-0.31760
	24	-6. 22831	-6. 23282	-6. 24482	-6.25036	-0.26724	-0.27785	-6.28751	-8.29081	-6.36557	-6.31378
		11	12	13	14	15	16	17	18	19	28
		-6.35961	- 0.36748	-0.37484	-6.38182	-6. 38783	-8.39347	-6. 39856	-6.48312	-6.48718	-6.41871
	2	-6.35956	-6.36753	-0.37489	-6.38167	-0.38788	-6.39352	-0.39861	-0.48318	-0.46722	-8.41077
	3	-t.35946	-0.36742	-6.37478	-8.38158	-0.38778	-6.39346	-6. 39849	-0.40386	-0.46710	-0.41684
	4	-6.35919	-8.36714	-6.37468	-0.38128	-0.38747	-0.39311	-0.39828	-6.40278	-6.46888	-8.41834
2	5	-6.36877	-6.38871	-6.37466	-6.38683	-0.38762	-0.39205	-0.39773	-6.46228	-6.46832	-6.40985
	6	-6.35818	-6.30612	-6.37346	-6.38821	-0.38839	-6.39201	-0.39789	-0.48163	-6.40586	-6.48919
	7	-0.36745	-0.38536	-6.37269	-6.37943	-0.38559	-6.39128	-6.39827	-6.40888	-0.46482	-0.48835
\pm	8	-6.35855	-6.36445	-0.37175	-6.37848	-0.38483	-6.39622	-6.39627	-0.39986	-6.46381	-0.48733
\cdots	9	-6.35558	-6.36337	-6.37886	-6.37736	-6.38349	-0.38987	-0.39411	-6.39882	-0.46282	-0.48812
	18	-6.35429	-6.38214	-0.38948	-0.37868	-6. 38219	-6.38775	-0.39277	-6.39727	-6.46125	-0.48475
4	11	-0.35293	-6.36E75	-6.36798	-6.37463	-6. 38872	-0.38828	-6.39128	-0.39674	-6.39971	-0.46319
0	12	- 3.35141	-0.35928	-0.36846	-6.37382	-6. 37989	-0.38468	-6.38968	-6.39464	-4.39799	-8.46145
-	13	-0.34974	-6.35749	-0.38485	-6.37125	-8.37728	-6.38277	-6.38772	-6.39216	-8.39818	-0.39965
\square	14	-6.34792	-8.35582	-6.38275	-6.38931	-0.37531	-8.38677	-6.38576	-0.39812	-0.39403	-0.39748
	15	-6.34594	-0.35366	-0.36860	-6.36721	-6.37318	-6.37861	-6.38351	-6.38790	-6.39179	-6.39620
.	18	-6.34381	-6.35142	-6.35847	-6.36495	-6.37888	-6.37828	-6.38115	-0.38651	-6.38938	-0.39277
\cdots	17	-6.34153	-0.34009	-6.36889	-0.36253	-0.38842	-6.37378	-6.37862	-6.38285	-6.38688	-0.39818
	18	-8.33918	-0.34881	-0.36358	-6.35995	-6.38588	-8.37112	-6.37693	-0.38623	-8.38484	-0.38739
亿̃0	19	- 0.33862	-0.34397	-6.35987	-6.36721	-0.36362	-6.38838	-6. 37367	-6.37734	-6.38112	-0.38444
$\underset{\sim}{0}$	28	-0.33379	-6.34119	-8.34883	-6.36432	-0.36808	-6.38532	-8.37005	-6.37428	-6.37864	-0.38133
	21	-0.33692	-0.33825	-6.34683	-6.35127	-6.35898	-6.38217	-6.38886	-6.37186	-0.37478	-0.37866
	22	-0.32780	-0.33617	-6.34188	-6.34807	-6.36372	-0.35887	-6.38362	-0.36788	-0.37136	-0.37466
	23	- 0.32474	-6.33193	-6.33869	-6.34471	-0.35031	-0.36541	-6.380e1	-6.36413	-0.36778	-6.37899
	24	- 0.32144	- -32856	-0.33514	-6.34126	-6.34675	-6.35179	-6.38636	$-.36843$	-0.38484	-0.36721

TABLE 5.3-16, CL1 (BASED ON INDIVIDUAL REF AREA)

Chordwise Riser Line No.

TABLE 5.3-17, CL2 (BASED ON LINE REF AREA)

Chordwise Riser Line No．

		1	2	3	4	5	6	7	8	9	10
	1	－8． 0 cert	－6．00065	－0．Bats6	－6． 80065						
	2	－6．00004	－6． 60045	－6． 60905	－6．60065	－0．80066	－6．60608	－6．-6.688	－6．860er	－6． 80086	－0． 80066
	3	－6．80064	－8．6eers	－0．80005	－8．86805	－6． 06668	－6．60068	－8． 06848	－6．00096	－6． 68838	－6． 8.086
	4	－6． 86064	－6．80065	－0．80005	－0．09605	－6． 0.006085	－8．8664	－8．8．80886	－0．86868	－6．86e88	$-0 . \text { beces }$
	5	－6．86064	－0．89046	－6． 66065	－6．88005	－6．86095	－8． 8.8686	－6．60468	－6．89666	－0．80068	－ 0.80068
z	7	－6．66064	－6． 80866	－6． 86005	－6．89885	－6．66065	－8．86968	－6．86060	－0． 0 cest	－8．06068	$\begin{aligned} & -8.86006 \\ & -8.86046 \end{aligned}$
U	8	－8． 08064	－6． 60006	－6．80065	－6．60005	－6． 69665	－6． 08048	－0．86366	－8．80eve	－6．60680	－8．beber
E	9	－0．06er4	－6． 66006	－8．E0045	－6．06006	－8．60665	－6．88686	－6．86366	－0．80666	－6．60060	－0．8eser
－	10	－6． 06004	－8．B6eb5	－6．8ees 5	－0．06605	－6． 0.06065	－6．86686	－6． 68068	－6．66968	－0．89066	－8．80ers
4	11	－6． 66064	－0． 68065	－0．0ees5	－0．00605	－6． 60065	－6． 0.600065	－6．66068	－6．60668	－6． 66068	－0．beera
（1）	12	－6． 86604	－6．86804	－6．60065	－8．80065	－6．86065	－6．60685	－6．-0.6066	－6．69608	－6． 86066	－0．00066
∞	13	－6．68604	－6．80604	－6． 0.0055	－0．80665	－6．06005	－8．89065	－6．-6.60646	－6．60668	－6． 86868	－8．006e6
\square	14	－6． 86864	－6．80064	－6．Been 6	－8．860065	－6．60605	－0．69e95	－6． 6.0068	－6．06068	－6．86868	－ 0 ．日uece －6． 80.46
ω	18	－6．06064	－8．80064	－6． 06005	－6． 09605	－8．6e066	－6．06e65	－0．83066	－0． 0.6866	－0．060e6	$\begin{aligned} & \text {-6 . } \operatorname{coces} \\ & \text {-6 . ceres } \end{aligned}$
∞	17	－0．80604	－4． 60684		－6．60065	－0．80065	－d． 06005	－6． 68068	－0．00668	－0．60608	－6．ereer
3	18	－0．80064	－6．	－6．89605	－6．80605	－6．606e5	－®．-8.695	－6． 60885	－6． 60666	－8．09606	－6．6eses
E	19	－6．60604	－6． 00064	－0．60604	－6． 6.065	－0．00605	－0．-8.8065	－6．-6095	－0．60686	－4． 6686	－6．8eect
0	24	－6． 6.604	－c． 60084	－6．60604	－0．00605	－6．60986	－0．0．ers	－6．00865	8	－6．beece	－0．6eser
¢	21	－6． 66604	－6． 60004	－6．83064	－6． 60605	－6． 66095	－0． 0.8085	－6．0rees	－． 8.8005	－6．00060	－6． 0 －60er
	22	－6．60644	－6． 60004	－6．36064	－6． 60005	－0． 60665	－8．80065	－0． 0 ece 5	－8．060e5	－6．06068	－6．60046
	24	－6． 66064	－6． 60644	－6． 60064	－6． 60065	－6．880e5	－6．80005	－0．6eces	－0．00605	－6． 08088	－6．60e66
	24	．－6．est	－6．80684	－0．060n4	－6． 60004	－6．Eeters	－6．80005	－0．6erer	－6．06005	－6．860e5	
		11	12	13	14	16	10	17	18	19	20
	1	－0．806e7	－8．66067	－6． 00967	－6．60067						
－	2	－0．00607	－6．66007	－6． 6 －0ear 7	－6．60067	－8．8．80007	－6．86068	－6． 26008	－6．64688	－6． 86698	－6．80e08
\bigcirc	3	－0．00067	－6． 80687	－6．80007	－0．gere 7	－0．80007	－6．86068	－6．-6.6068	－6．660e8	－6．80068	－6． 6 ceer
z	4	－6．80007	－6．Bees 7	－0．00007	－0． 60607	－0．8．0007	－8． 60008	－6．6．60688		－8．88088	－6．buers
d	8	－6． 06067	－6．Bear 7	－6． 60067	－0．Becal	－6．80467	－8．beser	－6．6．6er8	－6． 60688	－6．88608	－6． 6 － 608
\pm	8	－0．86007	－6．Becer	－6． 60007	－0．Beren 7	－6．80607	－6．8eeal 7	－0． 6.608	－6．8uebs		
\cdots	7	－6．80607	－0．80067	－6．00ar 7	－6．beeol	－8．89067	－6．06ev7	－8．80008	－6．8．8088	－6．88008	
－	8	－6．6e967	－0．60637	－8．．6esel 7	－6．800e7	－6． 60047	－0．860e7	－8．8uers	－6．Burus	－8．8eger	
\pm	16	－ 0.60007	－6．00067	－8．-6.067	－6．${ }^{\text {couer }} 7$	－6．bever	－6． 6 cent	－6． .8088	－6．00608	－8．8eres	
－	11	－6． $60 \cdot 7$	－0．80647	－6．-60067		－6．Breot 7	－6． 60007	－6．Bener	－6． 6048	－6．00088	－ 0.8008
－	12	－6．006e6	－8．seer 7	－6． 0.0067		－8．80ces 7	－6．Bersi	－0．86	－6．66038	－4．Bects	－6
	13	－6．8006s	－0．6ecer 7	－0．Eeed 7	－6． 6.8007	－6． 6.8607	－6．8．80007	－6．	－6．aber8	－6．bever	－6．ceear
∞	14	－0．866e8	－6． 6 ect 7	－0．ceser 7	－6．80607	－8．日ege7	－0．69067		－	－6．nocer	6
－	18	－6．Beers	－0．00067	－0．6eren 7	－6． $0 \cdot 0 \cdot 67$	－0．${ }^{\text {dece7 }}$	－0．0006		－6．－bear	－6． 60068	－6．
3	16	－6．84366	－6．06ers	－6．8ece 7	－6．Bexal	－6． $8.0 \cdot 07$	－ 9			．8ueer	8
1	17	－6． 60066	－4． 60.68	－6．80007	－6．Brear 7	－6．green 7	－8．8ceat	－6． 0.0007	－8． 60097	－t．00068	－4
0	10	－6． 66668	－8． Beece $^{\text {d }}$	－6．80007	－6．${ }^{\text {ceer } 7}$	－6．cesol	－6．日eve		－0．07	－6．6cee	0
0	19	－6． 6668	－0． $0^{\text {ceeer }}$	－6．80066	－6．80607	－8．mast			－6． 0 －007	－8．09en 7	－6． 0 cees
	28	－0．80668	－0．E0e3	－6． 6.866	－6． 60007	－0．6eer 7	－8．${ }^{-6}$		dev7	－6． 60007	－ 0
	21	－0． 6 e6er	－0． .8666	－8． 0 cerer	－6．80667	－8．gesel	－6．-6.067	，	－8．008e7 7	－6．00087	－6．emea 7
	22	－8．86048		－6．Brear	－6．erers	－6．8．epa 7	－6．-6.80077	．	－6． 8 Hent	－6． .80007	
	23	－	－6．Eener	－6．Erer	－t．acers	－6． $\mathrm{-c}$－	－0．00007	－6．cene 7	－6．meat	－6． 60677	－0． 0 － 0 d
	24	－6．Exers	cane	－6．arer	－0．ceuas	－t．Eeas	－0．sene 7	．	－6．seen 7	－6．Erere7	－6． 0 eed 7

TABLE 5．3－18，CL3（BASED ON PARAFOIL REF AREA）

5.4 LATERAL STABILITY STUDY

When the $20 \times 60 \mathrm{ft}$ parafoil was tested in the NASA-Ames wind tunnel, four tether lines were attached to constrain the model in roll and yaw, as shown in Figure 5.4-1. Aerodynamic forces and moments were measured through the balance located in the tunnel floor. Missing from these balance measurements were the forces transmitted via the tether lines. The purpose of this study is to include these forces and their contributions to aerodynamic force and moment coefficients.

5.4.1 Resolving Tether Forces

During the wind tunnel test, a load cell was placed on each of the tether lines to measure line tension. To simplify the process of solving for these forces, the first step is to resolve the direction of the lines into unit vectors $\left(U V_{1}, U V_{2}, U V_{3}, U V_{4}\right)$ as shown in Figure $5.4-1$. As previously mentioned, the model was constrained in roll and yaw; however, it was allowed to move in pitch with this assumption; the unit vectors are functions of α and the forces are resolved as follows:

$$
\begin{aligned}
& T_{1} \cdot U V_{1}(\alpha)=T_{1 x}+T_{1} y+T_{1} z \\
& T_{2} \cdot U V_{2}(\alpha)=T_{2} x+T_{2 y}+T_{2} z \\
& T_{3} \cdot U V_{3}(\alpha)=T_{3 x}+T_{3 y}+T_{3} z \\
& T_{4} \cdot U V_{4}(\alpha)=T_{4 x}+T_{4} y+T_{4} z
\end{aligned}
$$

where T_{1} to T_{4} are the line tensions, $U V_{1}$ to $U V_{4}$ the unit vectors, and $T x, T y$ and $T z$ the component forces. (See Figure 5.4-2 for a depiction of these forces.)

FIGURE 5.4-1, TETHER NOMENCLATURE

FIGURE 5.4-2, TETHER FORCE AND MOMENT COMPONENTS

5.4.2 Tether Aerodynamic Force Contributions

To add the tether force increments to the measured aerodynamic force obtained from the wind tunnel test the following is used:

$$
\begin{aligned}
& \Delta D T=T_{1} x+T_{2} x+T_{3} x+T_{4 x}(\Delta \text { Drag }) \\
& \Delta L_{T}=T_{1} z+T_{2} z+T_{3} z+T_{4} z(\Delta \text { Lift) } \\
& \Delta S_{T}=T_{1 y} y+T_{2 y}+T_{3 y} y+T_{4 y}(\Delta \text { Side Force })
\end{aligned}
$$

To translate into coefficient form:

$$
\begin{aligned}
& C D T=\Delta D_{T} / q A_{R E F} \\
& C L T=\Delta L T / q A_{R E F} \\
& C S T=\Delta S T / q A_{R E F}
\end{aligned}
$$

where q is the dynamic pressure and AREF the reference area of the parafoil ($1200 \mathrm{ft}^{2}$).

5.4.3 Tether Aerodynamic Moment Contributions

To add the tether moment increments to the measured values obtained from the test the following is used:

$$
\begin{aligned}
& \Delta M x T=-\left(T_{1 y}+T_{2 y}\right) L z_{1}(\alpha)-\left(T_{3 y}+T_{4 y}\right) L L_{2}(\alpha)+ \\
&\left(T_{2 z}+T_{4 z}\right) L L_{1}-\left(T_{1 z}+T_{3 z}\right) L y 2 \\
& \Delta M y T=\left(T_{1 x}+T_{2 x}\right) L L_{1}(\alpha)+\left(T_{3 x}+T_{4 x}\right) L L_{2}(\alpha)+ \\
&\left(T_{1 z}+T_{2 z}\right) L x_{1}(\alpha)-\left(T_{3} z+T_{4 z)} L x_{2}(\alpha)\right. \\
& \\
& \Delta M z T=\left(T_{3 x}+T_{1 x}\right) L L_{2}-\left(T_{2 x}+T_{4 x}\right) L L_{1}+ \\
&\left(T_{3 y}+T_{4 y}\right) L x_{2}(\alpha)-\left(T_{2 y}+T_{1 y} y\right) L_{1}(\alpha)
\end{aligned}
$$

To translate into coefficient form:
$C_{M \times T}=\Delta M \times T /(q$ AreF LREF)
$\mathrm{C}_{\text {Myt }}=\Delta \mathrm{Myt}^{\prime} /\left(\mathrm{q}\right.$ Aref $^{\text {LREF }}$)
$C_{\text {mzt }}=\Delta \mathrm{Mzt} /(\mathrm{q}$ Aref Lref)
where q is the dynamic pressure, AREF the parafoil reference area ($1200 \mathrm{ft}^{2}$) and LREF the reference length of 20 ft for lateral and 60 ft for longitudinal.

5.4.4 Moment Arm Determination

This section follows the development of equations used in determining the moment arms, as seen in Figure 5.4-2. As stated previously, the model is assumed to be constrained in roll and yaw, but is free to pitch. The moment arms $L z_{1}, L z_{2}, L x_{1}$ and $L X_{2}$ are therefore all functions of $\theta_{1}, \theta_{2}, \alpha$ and $\alpha \mathrm{p}$. The moment arms Ly 1 and Ly2 are assumed constant. For the remainder of this section follow Figures 5.4-3 and 5.4-4.
Given:

$$
\begin{array}{ll}
c x, x x, L L, b, R, L L & \text { (Constant) } \\
\alpha p, \phi, \delta p, X C G 1, X C G 2 & \text { (Per Test Basis) }
\end{array}
$$

Calculated:

$$
\begin{aligned}
& a=\left(F u^{2}+x x^{2}-2 F u x x \operatorname{Cos} \theta\right)^{1 / 2} \\
& \theta 1=\operatorname{Cos}^{-1}\left(\left(F u^{2}+a^{2}-x x^{2}\right) /(2 F u a)\right) \\
& \theta 2=\operatorname{Cos}^{-1}\left(\left(C x^{2}+a^{2}-R u^{2}\right) /(2 C x a)\right) \\
& \alpha=\alpha p-\phi+(180-\theta 1-\theta 2)
\end{aligned}
$$

FIGURE 5.4-3, MOMENT ARM GEOMETRY

FIGURE 5.4-4, MOMENT ARM GEOMETRY
where the values of Fu , length of forward most suspension line and Ru, length of the rearmost suspension line were defined in a previous study as:

$$
\begin{aligned}
\mathrm{Ru}= & 53.995-\left(.3403+2(4.1285)^{2}-2(4.1285)(.3403+\right. \\
& \left.(4.1285)^{2}\right)^{1 / 2} \cos \left((8 \mathrm{cos}+5)+\tan ^{-1}\right. \\
& (.5833 / 4.1285)))^{1 / 2}+.0833 \\
\mathrm{Fu}= & 48.209-\left(.3403+2(.3942)^{2}-2(.3942)(.3403+\right. \\
& \left.\left.(.3942)^{2}\right)^{1 / 2} \cos \left((8 \mathrm{p}+5)+\tan ^{-1}(.5833 / .3942)\right)\right)^{1 / 2}+.0833
\end{aligned}
$$

Continuing for the b angles and using the law of sines:

$$
\begin{aligned}
& \alpha / \sin \beta 1=C x / \sin \beta 2=\mathrm{Ru} / \sin \theta 2 \\
& \alpha / \sin \theta=x / \sin \theta 1=\mathrm{Fu} / \sin \beta 3 \\
& \beta_{1}=\sin ^{-1}((\sin \theta 2) / \mathrm{Ru}) \\
& \beta_{2}=\sin ^{-1}((\mathrm{Cx} \sin \theta 2) / \mathrm{Ru}) \\
& \beta_{3}=\sin ^{-1}((\mathrm{Fu} \sin \theta 1) / X X) \\
& \beta_{4}=90-\alpha \rho \\
& \beta_{5}=\beta_{1-\alpha} \\
& \beta_{6}=90-\beta_{5} \\
& \beta_{7}=90-\alpha \\
& \beta_{8}=\beta_{7}-\theta_{2} \\
& \beta_{9}=90-\beta_{8} \\
& \beta_{10}=180-\beta_{3}-\beta_{8}
\end{aligned}
$$

For the length calculations and using the law of sines:

$$
\begin{aligned}
& \alpha / \sin \beta_{10}=L_{1 /} / \sin \beta_{8} \\
& L_{1}=(a \sin \beta 8) / \sin \beta 10 \\
& L_{2}=L_{1}-X C G 2 \\
& L_{3}=L_{C} C \cos \alpha p \\
& L_{4}=R \operatorname{Ras}_{\beta 5} \\
& L_{5}=a \sin \beta 8 \\
& L_{6}=L_{5}-L_{2} \cos \alpha p \\
& \Lambda 7=R u \sin \beta 5 \\
& L_{8}=X C G_{2} \sin \alpha p \\
& \theta C=b / R \\
& C=2 R \sin (\theta C / 2)
\end{aligned}
$$

Solving for the moment arms:

$$
\begin{aligned}
& L x_{1}=L_{2} \cos \alpha p \\
& L x_{2}=L_{3}+L_{4} \\
& L z_{1}=\left(L_{5}^{2}+a^{2}\right)^{1 / 2} \\
& L z_{2}=L_{7}-L_{8} \\
& L y_{1}=c / 2 \\
& L y_{2}=c / 2
\end{aligned}
$$

Solving and substituting in terms of the "given" values:
$L_{x_{1}}=\left((a \sin (90-\alpha-\theta 2)) /\left(\sin \left(90-\sin ^{-1}(F u \sin \theta 1 / x x)\right)+\alpha+\theta 2\right)\right.$

- XCG2) $\cos (\alpha p)$
$L \times 2=X C G 2 \cos \alpha p+R u \cos \left(\sin ^{-1}(a \sin \theta 2 / R u)-\alpha\right)$
$L_{z_{1}}=\left((a \sin (90-\alpha-\theta 2))^{2}+a^{2}\right)^{1 / 2}$
$L_{z 2}=R u \sin \left(\sin ^{-1}(F u \sin \theta 2 / x x)-\alpha\right)-X C G 2 \sin \alpha p$
$L y_{1}=R \sin (\theta c / 2)$
$\mathrm{Ly} 2=R \sin (\theta c / 2)$

5.5 PARAFOIL SCALING EFFECTS

During the Advanced Recovery System (ARS) wind tunnel test at the National Full-scale Aerodynamic Complex, two different parafoils were tested. The largest of the two ($20^{\prime} \times 60^{\prime}$) was the primary model and was so chosen in order to have the majority of the measured data as close to the full scale drop test size as is possible in the confines of the $80^{\prime} \times 120^{\prime}$ test section. The smaller parafoil model was sized in order to be able to evaluate the effects of different size. This would allow corrections to be calculated to properly estimate full scale flight values using the data from the larger parafoil mode.

During the test it was observed that the parafoil assumed a shape that was different from the original design contours. Although not entirely unexpected, it was concluded the magnitude of these distortions precluded the test article from properly modeling the intended design. This in itself is not detrimental because it can be assumed that the full scale parafoil will also distort under load. The problem is that the models and the full scale parafoils may not distort in the same way or in the same
relative amount. Comparison between the two different size models can give insight to this.

It can be concluded that if the two models did not distort in the same way, a proper analysis of the scaling effects cannot be done without determining the effects (parametrically in the wind tunnel) of each of the different distortions. Since it is impractical to measure actual distortions and impossible, from the data obtained, to derive individual contributions, an analytical approach was taken to evaluating the effect of the parafoil model distortions.

5.5.1 Configuration Changes

During the test of the parafoil models, there were seven different distortions identified. The cause of each distortion was determined as was the effect of each distortion.

5.5.1.1 Leading Edge Distortion

During the test the leading edge of the parafoil was observed to be deflected up (Figure 5.5-1). The condition seemed to be worse at higher dynamic pressures. Because of the parafoil configuration and suspension line attachment location the front suspension line of each chordwise row had approximately twice the load as the next several lines behind it. This is verified by the load cell data. The front suspension line has approximately two times the surface area acting upon it as do any of the other lines.

Although the Kevlar lines that were used have a very low modulus of elasticity, they did stretch and the difference in stretch between the front lines and the ones behind them, allowed the leading edge to deflect up.

Line stretch is dependent on the load being applied and the elasticity of the line.

Aerodynamic load is the function of dynamic pressure (q) and characteristic area (S).

The intent during the test was for q to be the same for both parafoil models (sizes) and data are available for comparisons at equal q.

S is four times as large for the larger parafoil as it is for the smaller parafoil.

Line elasticity is dependent on the material, the line diameter and the style or weave. All three of these were identical for the two parafoil models.

Therefore, the leading edge deflection is four times as much for the larger parafoil as it is for the smaller parafoil though the linear dimension is only twice as large. The relative distortion is therefore twice as much in the larger parafoil as it is in the smaller one.

FIGURE 5.5-1, LEADING EDGE DISTORTION

5.5.1.2 Chordwise Foreshortening

Parafoils are rigged such that the payload is positioned forward and the front suspension lines are much closer to being perpendicular to the bottom surface which causes the parafoil to foreshorten (Figure 5.5-2). The foreshortening in turn allows the lines to reach above the nominal attach point producing a convex curve to the bottom surface of the parafoil.

FIGURE 5.5-2, CHORDWISE FORESHORTENING

Prior to Run 5 , the suspension lines were rerigged to try and compensate for this. To make the small parafoil similar to the large one, an equivalent/proportional change in rigging was used throughout the time the small parafoil was being tested.

Chordwise foreshortening is a function of suspension line load, line attach angle, rigging and rigidity of the parafoil.

Line Load is dependent on q and S .
q can be selected the same for comparing data and can therefore be considered equal.

S is four times as large for the larger parafoil. Therefore line load would be four times as great.

Rigging was as near identical as could be achieved.
Rigidity of the parafoil is a function of the stiffness of the fabric and the difference in pressure DEL P across the boundaries of the cells.

Assuming no or identical flow separation (which is hard to determine in this situation) the DEL P would be the same.

The parafoil fabric was the same density for both parafoils. Therefore the smaller one was proportionally more stiff. This would lead us to believe that the smaller parafoil should be relatively more rigid. But this was hard to verify by observation of cell shape as will be discussed later.

Therefore, with four times the line load and a linear scale of two, it can be assumed that the relative chordwise foreshortening would be twice as great in the larger parafoil as in the smaller one.

5.5.1.3 Trailing Edge Configuration

In order to ease fabrication of the parafoils, the gore between the parafoil cells was terminated forward of the trailing edge.
Therefore there was no attachment between the upper and lower surfaces of the parafoil near the trailing edge. The result was a parafoil which looked like it had a tube running along the trailing edge in the spanwise direction (Figure 5.5-3). In effect, it did.

FIGURE 5.5-3, TRAILING EDGE CONFIGURATION

Ignoring the problem of configurational integrity, the concern settles on whether the two different size parafoils had equivalent configurations.

This trailing edge configuration anomaly is dependent on the gore length/attachment and the differential pressure across the fabric.

The gore length/attachment was modeled identically.

Assuming all other factors are the same (which seems to be a poor assumption, but one without an alternative since we do not have pressure data), the pressure differential will be the same, therefore the trailing edge configurations can be considered to be correctly scaled from one model to the other.

5.5.1.4 Trailing Edge Deflection

Parafoils are designed such that local loads are opposed by tension on the individual suspension lines. Under great load the lines are pulled taut. Under light loads, other factors such as line drag can become significant. Near the trailing edge the load distribution goes to near zero. This provides little tension on the trailing edge suspension lines. As could be observed during the test, there was considerably more drag produced bow in the trailing edge lines than in those lines closer to the leading edge. The result of this was that the trailing edge of the parafoil was deflected downward, enough to be noticeable even with the curve up caused by the chordwise foreshortening (Figure 5.5-4). The trailing edge deflection is a function of local parafoil load on the line and of aerodynamic drag acting on the line.

FIGURE 5.5-4, TRAILING EDGE DEFLECTION

As discussed previously, the distributed load is four times as great for the larger parafoil as it is for the smaller one.

The line drag is a function of line diameter, line length and q.

Choosing data for comparison at equal q eliminates q as a consideration.

The line lengths are linearly scaled between the two parafoils although a larger percentage of the length may be exposed to the flow in the test set up of the larger parafoil.

Line diameter is identical for the two sizes of parafoil, which means the line drag would be relatively twice as large for the half linear scale smaller parafoil as it would be for the larger parafoil.

5.5.1.5 Flow Angle

In order to keep flow from impinging on the Parafoil Attitude Control System (PACS) and other attachment hardware, and therefore causing erroneous measurements by the primary balance, a six foot high flow deflector was positioned upstream of the PACS (Figure 5.5-5). This was of little concern with the large parafoil which when being tested was positioned somewhat above the center line of the 80 foot tall test section. With the small parafoil however, there was some concern that the flow deflector could be causing a change in local flow angle and therefore a different and erroneous angle of attack. The test data seem to support this theory. The suspension lines of the smaller (half linear scale) parafoil were half the length of those of the larger parafoil. The effect of this is hard to determine.

FIGURE 5.5-5, HARDWARE TEST ARRANGEMENT

5.5.1.6 Cell Shape

When a parafoil is in flight the pressure at the open leading edge is at or near the total pressure of the system. Since there are no other air passages, total pressure acts over the entire interior of the parafoil. Since virtually none of the external surfaces are at that high of a pressure, the pressure differential from the outside to the inside is always positive and this causes the parafoil to take its' intended shape. The greater the differential the more "round" the surface of either the top or the bottom of each cell (Figure 5.5-6). Different cell shapes might cause different flow over the parafoil and therefore create different loads. Cell shape is a function of fabric stiffness, and the relationship between pressure differential and spanwise tension.

FIGURE 5.5-6, PARAFOIL CELL SHAPE

The fabric weights (stiffness) are the same for both size parafoils, therefore the smaller parafoil is relatively twice as thick and stiff as is the larger one.

At identical q's, the interior pressures will be the same. Assuming the configuration is the same (which again may be a poor assumption), the external pressures will also be the same.
Therefore the pressure differentials across the parafoil fabric will be relatively the same.

The spanwise tension is dependent on q , the wing area (S), wing span (b), and distributed pressures.
q can be chosen to be identical.
S and b are linearly scaled between the two different size parafoils.

Again assuming similar configurations, the pressure distribution should be similar.

The spanwise tension should therefore be properly scaled.

Therefore the only difference in cell shape would be caused by the fabric which should have little or no affect.

5.5.1.7 Spanwise Shape/Length

The spanwise shape of the parafoil is defined by the suspension line length and attach location (Figure 5.5-7). This was properly scaled. Shape can also be affected by any spanwise foreshortening. Spanwise foreshortening would be a direct result of changes of shape in all the individual cells. As was discussed above, it is not believed that cell shape was different between the two sizes of parafoil.

FIGURE 5.5-7, PARAFOIL SPANWISE SHAPE

5.5.2 Summary

The nose shape distortion was relatively twice as great for the large parafoil as it was for the small one. The chordwise foreshortening was also relatively twice as great for the large parafoil. The trailing edge deflection was relatively only half as great for the large parafoil as it was for the small parafoil. Recorded attitudes give cause to believe that the small parafoil was in local flow which was not parallel to the test section floor due to the effects of the flow deflector. Table 5.5-8 gives a summary of parafoil scaling effects.

5.5.3 Conclusion

The trailing edge deflection problem has the least effect due to the small loads in that area. The leading edge shape and chordwise foreshortening, however, are in critical areas and as can be seen in photographs and videos of the test, had significant distortions. Even ignoring potential problems resulting from flow angularity when testing the small parafoil, there were enough differences in configuration between the large ($20^{\prime} \times 60^{\prime}$) and the small ($10^{\prime} \times 30^{\prime}$) parafoils to preclude a proper evaluation of the effects of scaling.

5.5.4 Recommendations

Data from tests of the larger parafoil should be used in simulations of the full scale ARS parafoils. This is because they are closer to the correct size and also they are not affected by any potential flow angularity problems.

Future models of full scale flight articles should be designed so that distortions will be representative of distortions of the fullscale configuration, taking into account differences in load, fabric stiffness, line stretch, etc.

Parametric tests should be conducted and should use models in some kind of boilerplate configuration.

TABLE 5.5-8, SUMMARY OF PARAFOIL SCALING EFFECTS

EFFECT	SCALING FACTOR	
	$\begin{gathered} \text { Large } \\ \left(20^{\prime} \times 60^{\prime}\right. \text { Model) } \end{gathered}$	Small ($10^{\prime} \times 30^{\prime}$ Model)
Leading Edge Distribution	4 times small	1
Chordwise Foreshortening	2 times small	1
Trailing Edge Configuration	No effect	No effect
Trailing Edge Deflection	1	2 times large
Flow Angle	Indeterminant	Indeterminant
Cell Shape	Little effect	Little effect
Spanwise Shape	No effect	No effect

5.6 Sample Results

The information contained in this section is selected examples of the wind tunnel test reduced data. Due to the large quantity of data taken explanations can not be provided for every run, therefore selected examples have been provided to give a overview of the complete results.

The Appendices contain the complete set of results.

5.6.1 Longitudinal Aerodynamics

The aerodynamic data taken during this test was obtained by tether testing techniques to simulate a free flight environment. The data in this report is presented with no correction factors applied to C_{L} or C_{D} due to wall interference. Computations were done using a 3-D panel code which is a potential flow simulation of the
aerodynamics. The lift correction for the $20^{\prime} \times 60^{\prime}$ wing is approximately 7% for CLmax in flare.

The 20' $\times 60^{\prime}$ ' parafoil was tested using tether testing techniques where the parafoil was allowed to fly in the wind tunnel. The angle of attack was adjusted by changing the parafoils rigging angle and establishing a new stable trim point. The longitudinal aerodynamic coefficients are an average value taken over a finite period of time. Figure 6.5-1 shows the longitudinal aerodynamic coefficients CL, C_{D} and C_{M} as a function of angle of attack (α) for various dynamic pressures.

The airfoil distortion associated with increasing dynamic pressure caused a decreased lift coefficient and increased drag coefficient.

The angle of attack at which the parafoil stalled was directly related to the dyamic pressure. The parafoil would stall at lower angles of attack with increasing dynamic pressure. This effect can be related with airfoil distortion associated with increasing dynamic pressure. The effects of the parafoil distortion can be seen graphically from the L / D versus angle of attack plots (Figure 6.5-2). The LID decreases with increasing dynamic pressure and the curves tend to shift to the left with the increasing dynamic pressure. The L/D $\mathrm{max}_{\mathrm{m}}$ can be calculated from the drag polar (Figure 5.6-3). The $L D_{\max }$ of 2.7 is less than the $L D_{\text {max }}$ of 3 that was predicted. An equation for the drag can be obtained from the plot of $C D$ versus CL^{2} as in Figure 5.6-4. The parasite drag increases for increasing dynamic pressure while the induced drag remains almost constant.

5.6.2 Flare Aerodynamics

The flare maneuver was accomplished by symmetrically deflecting the trailing edge of the parafoil at a constant angle of attack. Figure 5.6-5 shows how the control force varies with deflection, dynamic pressure and angle of attack. From Figure $5.6-6$, it can be seen that both $C L$ and $C D$ increase with deflection. The L/D decreased when the wing is flying at high angles of attack; and

L/D increased with deflection at low angles of attack, showing that the flare can be optimized when initiated at low angles of attack.

5.6.3 Load Cell Data

The distributed load across the span of the parafoil was measured by five load cells located along the quarter chord and half the span of the wing. The data points were mirror imaged and a third order curve fit used to determine the spanwise load distribution (Figure 5.6-7). The spanwise load distribution shows how the load increases with increasing dynamic pressure.

The chordwise load distribution was measured by placing twelve load cells along a center span keel. A third order curve fit was used to plot the chordwise load distribution (Figure 5.6-8). The chordwise load distribution can be used to calculate the localized center of pressure location by integrating the load distribution curve and iterating until Xcp is found as in the following equations:

$$
\begin{array}{ll}
\text { Load }= & \int_{0}^{c} f(x) d x \\
\text { Load } / 2= & \int_{0}^{X c p} f(x) d x
\end{array}
$$

Once the center of pressure is found, the lift and drag can be transferred to the quarter chord location and the moment about the quarter chord calculated. Figure $5.6-9$ shows plots of $\mathrm{Xcp}_{\mathrm{cp}}$ and C_{M} quarter chord versus angle of attack.

5.6.4 Lateral Aerodynamics

Lateral aerodynamic data was acquired for two different assymetrical control deflections. Figure $5.6-10$ shows how the control force is a function of deflection for airfoil local distortion and trailing edge deflection. It can be seen from this graph that the
control force required is approximately equal for both methods. Figure 5.6-11 shows the yawing moment and rolling moment for right side control line deflections. The airfoil local distortion has very little yawing moment and a large rolling moment in the positive right direction. The trailing edge deflection causes the parafoil to yaw in the positive direction and roll in a negative or left direction. This is known as the adverse rolling tendency and is usually associated with large parafoils.

Figure 5.6-1, C_{L}, C_{D}, AND C_{M} AS FUNCTIONS OF ALPHA (α) FOR VARIOUS WING LOADINGS

FIGURE 5.6-2, LIFT-DRAG RATIO (L/D) DECREASE WITH INCREASING DYNAMIC PRESSURE

FIGURE 5.6-3, LIFT-DRAG RATIO (L/D) MAXIMUM FROM PLOTS OF CL VS. CD

CD Vs CL^2

FIGURE 5.6-4, CD_{D} VS CL^{2}

FIGURE 5.6-5, CONTROL FORCE VS. DEFLECTION FOR FLARE MANEUVER

FIGURE 5.6-6, VARIATIONS IN CL, CD, AND L/D WITH DIFFERENT DEFLECTIONS AND DYNAMIC PRESSURES

FIGURE 5.6-7, SPANWISE LOAD DISTRIBUTION AT VARIOUS WING LOADINGS

FIGURE 5.6-8, CHORDWISE LOAD DISTRIBUTION AT VARIOUS WING LOADINGS

FIGURE 5.6-9, XCP AND Cm VS. ANGLE OF ATTACK (α)

FIGURE 5.6-10, CONTROL VS. DEFLECTIONS FOR TWO CONTROL METHODS

FIGURE 5.6-11, YAWING AND ROLLING MOMENT DATA vS. CONTROL LINE DEFLECTION

6.0 Conclusions and Recommendations

The success of the ARS Phase 2 wind tunnel test exceeded previous expectations. Although scaling effects could not be evaluated aerodynamic data was obtained to support airdrop testing and full-scale development of the advanced recovery system.

Interface hardware, instrumentation and testing procedures have been validated. Structural, operational and safety issues have been addressed.

The major conclusion of phase two testing was that wind tunnel testing of large scale parafoils is practical and useful. Additional testing should be implemented to expand a high glide parafoil data base.

7.0 References

1. Anderson, John D., Jr.: "Fundamentals of Aerodynamics," McGraw-Hill Book Company, New York, 1984.
2. Hoerner, Sighard F.: "Fluid-Dynamic Drag," Publ. by the author (P.O. Box 342, Brick Town, New Jersey 08723), 1965.
3. Rae, William H., Jr.; Pope, Alan: "Low-Speed Wind Tunnel Testing," John Wiley \& Son, New York, 1984.
4. Nicolaides, John D.: Parafoil Wind Tunnel Test, AFFDL TR-70-146, 1971.
5. Ware, George M.; Hassel, James L., Fr.: Wind-Tunnel Investigation of Ram-Air-Inflated All-Flexible Wings of Aspect Ratios 1.0 to 3.0, NASA TM SX-1923, 1969.
6. Pioneer Aerospace Corporation: "Preliminary Analysis of Parafoil Attitude Control (PAC) Model", ARS-WP-09, 1989.
7. Pioneer Aerospace Corporation: "Advanced Recovery System Parachute/ Parafoil Stress and Design Loads Analysis", ARS-WP-10, Rev. A, 1989.

16. Abstract

Pioneer Aerospace Corporation (PAC) conducted parafoil wind tunnel testing in the NASA-Ames 80 by 120 test section of the National Full-Scale Aerodynamic Complex, Moffett Field, CA. The investigation was conducted to determine the aerodynamic characteristics of two (2) scale ram air wings in support of air drop testing and full scale development of Advanced Recovery Systems for the Next Generation Space Transportation System.

Two models were tested during this investigation. The primary test article, a $1 / 9$ geometric scale model with wing area of 1200 square feet and secondary test article, a $1 / 36$ geometric scale model with wing area of 300 square feet, both which had an aspect ratio of 3 . The test results show that both models were statically stable about a model reference point at angles of attack from 2 to 10 degrees. The maximum lift-drag ratio varied between 2.9 and 2.4 for increasing wing loading.
\(\left.$$
\begin{array}{|l|l|l|l|}\hline \text { 17. Key Words (Suggested by Author(s)) } \\
\text { Parafoil } \\
\text { Ram-air-inflated wing } \\
\text { Parachute }\end{array}
$$ \quad \begin{array}{l}18. Distribution Statement

Unclassified-Unlimited\end{array}\right]\)| Subject Category-02 |
| :--- |

