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Development of a Linearized U nsteady Aerodynamic 
Analysis for Cascade Gust Response Predictions 

Su mmar y 

A method for predicting the unsteady aerodynamic response of a cascade of airfoils to 
entropic, vortical, and acoustic gust excitations is being developed. Here, the unsteady 
flow is regarded as a small perturbation of a nonuniform isentropic and irrotational steady 
background flow. A splitting technique is used to decompose the linearized unsteady velocity 
into rotational and irrotational parts leading to equations for the complex amplitudes of the 
linearized unsteady entropy, rotational velocity, and velocity potential that are coupled only 
sequentially. The entropic and rotational velocity fluctuations are described by transport 
equations for which closed-form solutions in terms of the mean-flow drift and stream functions 
can be determined. The potential fluctuation is described by an inhomogeneous convected 
wave equation in which the source term depends on the rotational velocity field, and is 
determined using finite-difference procedures. In this report the analytical and numerical 
techniques used to determine the linearized unsteady flow are outlined. Results are presented 
to indicate the status of the solution procedure and to demonstrate the impact of blade 
geometry and mean blade loading on the aerodynamic response of cascades to vortical gust 
excitations. The analysis described herein leads to very efficient predictions of cascade 
unsteady aerodynamic response phenomena making it useful for turbomachinery aeroelastic 
and aeroacoustic design applications. 
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1. Introduction 

Destructive forced vibrations can occur in turbomachinery blading when a periodic aero
dynamic force, with frequency close to a system natural frequency, acts on the blades. A 
primary source of such vibrations is the aerodynamic interactions between adjacent blade 
rows, of which the two principal types are traditionally referred to as potential-flow interac
tion and wake interaction. The former results from the variations in the velocity potential 
or pressure field associated with the blades of a given row and their effect on the blades 
of a neighboring row moving at a different rotational speed. This type of interaction is of 
serious concern when the axial spacings between neighboring blade rows are small or flow 
Mach numbers are high. Wake interaction is the effect upon the flow through a blade row 
of the wakes shed by one or more upstream rows. This type of interaction can persist over 
considerable axial distances . 

The theoretical unsteady aerodynamic analyses that have been developed to predict the 
aeroelastic behavior of turbomachinery blading, i.e., the onset of blade flutter and the am
plitudes of forced blade vibration, have, for the most part, been based on the following 
simplifying assumptions: the blades of an isolated two-dimensional cascade are considered 
and the effects of neighboring structures are represented via nonuniform inlet and exi t con
ditions, viscous effects are usually neglected, and the unsteady fluctuations are assumed to 
be sufficiently small so that a linearized treatment of the unsteady flow is justified. Then, to 
determine the aeroelastic characteristics of the blading, the resulting analyses must be capa
ble of predicting the unsteady loads that act on the blades and arise from various sources of 
excitation, i.e ., prescribed structural (blade) motions and external aerodynamic excitations. 
The latter include variations in total temperature and total pressure (entropy and vortic
ity waves) at inlet and variations in static pressure (acoustic waves) at inlet and exit . In 
particular, for blade flutter applications it is only necessary to predict the unsteady loads 
resulting from prescribed blade motions, while for forced response applications the unsteady 
loads due to incident entropic, vortical and acoustic disturbances are also required. 

Until recently, the unsteady aerodynamic analyses that have been available for turboma
chinery aeroelastic applications were based on classical linearized theory (for an informative 
review see Whitehead Ref. [1]) . Here, the steady and first-harmonic unsteady departures 
of the flow variables from their uniform free-stream values are regarded as small and of the 
same order of magnitude leading to uncoupled, linear, constant-coefficient boundary-value 
problems for the steady and unsteady disturbances . Thus, unsteady solutions based on 
the classical linearization are essentially restricted to cascades of unloaded flat-plate blades 
which operate in an entirely subsonic or an entirely supersonic environment. Very efficient 
semi-analytic solution procedures have been developed for two-dimensional attached subsonic 
[2-4J and supersonic [5- 8J flows and applied with some success in turbomachinery aeroelastic 
(and aeroacoustic) design calculations. It should also be mentioned that extensive efforts, 
as reviewed in Ref. [9J, have been made to develop three-dimensional unsteady aerodynamic 
analyses based on the classical linearization for turbomachinery aeroelastic and aeroacoustic 
design applications. 

Because of the limitations in physical modeling associated with the classical linearization, 
more general two-dimensional inviscid linearizations are being developed [10-12J. These 
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account for the effects of important design features such as real blade geometry, mean blade 
loading and operation at transonic Mach numbers on the unsteady aerodynamic response of a 
cascade. Here, unsteady disturbances are regarded as small-amplitude harmonic fluctuations 
relative to a nonuniform steady (in a coordinate frame attached to the blade row) background 
flow. The steady flow is determined as a solution of a nonlinear inviscid equation set, and the 
unsteady flow is governed by a set of linear equations wi th variable coefficients that depend on 
the underlying steady flow. This type of analytical model has received considerable attention 
in recent years, and we refer the reader to the recent review articles by Verdon [13,14] for 
a detailed description of the theoretical formulation . Useful solution algorithms for the 
nonlinear steady problem are currently available, and solution methods [15] for linearized 
unsteady perturbations of isentropic and irrotational background flows have reached the 
stage where it is appropriate to consider them for design applications. Unfortunately, such 
methods have, for the most part, only been developed for the prediction of unsteady flows 
driven by prescribed blade vibrations and/or incident acoustic disturbances. Recently, Hall 
and Crawley [12] used the linearized Euler equations to describe unsteady cascade flows 
caused by wake (entropic and vortical) excitations. A linearized Euler technique, while 
needed to account for strong shock and rotational mean flow phenomena, is not as efficient 
as a linearization based on the isentropic and irrotational mean flow assumptions. 

Thus, under the present effort, an analysis and computer code (LI FLO) has been devel
oped to predict linearized unsteady cascade flows containing entropic and vortical, as well as 
acoustic, perturbations of isentropic and irrotational mean or steady flows. In this analysis 
the Goldstein velocity decomposition [16,17] is employed to split the linearized unsteady 
velocity into rotational and irrotational components. This decomposition leads to a very 
convenient description of the linearized unsteady perturbation - one in which the equations 
that govern the entropy, rotational velocity and velocity potential fluctuations are coupled 
only sequentially. In addition, closed form solutions can be determined for the entropy and 
rotational velocity fluctuations in terms of the drift and stream functions of the underlying 
steady flow. Finally, the unsteady potential is governed by an inhomogeneous wave equation 
in which the source term depends only upon the rotational velocity field. 'Finite-difference 
solution procedures for this equation are already available [18,19]. The Goldstein splitting 
introduces singularities in the rotational and irrotational unsteady velocities along the sur
faces of blades and their wakes. Thus, a modification introduced by Atassi and Grzedzinski 
[20] has been employed in the present analysis to remove the singular behavior, thereby per
mitting an accurate numerical evaluation of the entropy and rotational velocity fluctuations 
and an accurate numerical resolution of the wave equation that governs the unsteady velocity 
potential. 

The linearized unsteady aerodynamic analysis is described in this report and demon
strated via application to a number of representative cascade configurations . It has been 
implemented into an existing computer code LINFLO, which can be used to predict the 
pressure response of realistic cascade configurations to prescribed external aerodynamic (i.e., 
incident entropic, vortical and acoustic disturbances) and structural (blade motions) exci
tations. Because it permits a very efficient and economical prediction of cascade response 
to aerodynamic and structural excitations, the LI FLO code is suitable for implementation 
into turbomachinery aeroelastic and aeroacoustic design prediction systems. 
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2. Physical Problem 

We consider the time-dependent adiabatic flow, with negligible body forces, of an inviscid 
non-heat-conducting perfect gas through a two-dimensional cascade such as the one shown 
in Figure 1. The mean or steady-state positions of the blade chord lines coincide with the 
line segments rJ = ~ tan 0 + mG, 0 ~ ~ ~ cos 0, m = 0, ±1, ± 2, .. , , where ~ and 
rJ are coordinates in the cascade axial and circumferential directions, respectively, m is a 
blade number index, 0 is the cascade stagger angle, and G is the cascade gap vector which 
is directed along the rJ-axis with magnitude equal to the blade spacing. In the present 
discussion all physical quantities are dimensionless. Lengths are scaled with respect to 
blade chord, time with respect to the ratio of blade chord to upstream free-stream ft.ow 
speed, density and velocity with respect to upstream free-stream density and ft.ow speed, 
respectively, pressure with respect to the product of the upstream free-stream density and 
the square of the upstream free-stream speed, and entropy with respect to the specific heat 
of the ft.uid at constant pressure. 

The time-dependent or unsteady ft.uctuations in the ft.ow can arise from one or more 
of the following sources (Figure 2): blade motions, upstream and/or downstream acoustic 
disturbances which carry energy toward the blade row, and upstream entropic and vortical 
disturbances which are convected through the blade row . These excitations are each assumed 
to be of small amplitude, periodic in time and to occur at temporal frequency w. The external 
aerodynamic excitations are also spatially periodic, while the structural excitation is periodic 
in the cascade circumferential or rJ -direction. For example, we consider blade motions of the 
form 

R (x + m G , t) = Re{r(x ) exp[i(wt + m(T)]} , x E B , (2.1 ) 

where R measures the displacement of a point on a moving blade surface relative to its 
mean or steady-state position, x is a position vector, t is time, r is a complex displacement
amplitude vector, (T is the phase angle between the motions of adjacent blades, Re{ } denotes 
the real part of { } and B denotes the reference (m = 0) blade surface. Incident disturbances 
are of the form 

s(x , t) = Re{Loo exp[i( K_oo . x + wt)]}, e < e- , (2.2) 
((x , t) = Re{ , _oo exp[i(K_oo . x + wt)]}, e < ~- , (2.3) 

and 
PI(X, t) = Re{PI.-Cfoo exp[i( K'foo . x + wt)]} , ~ ~ ~'f . (2.4) 

Here S-oo , ' - 00 and PI,'f oo are the complex amplitudes of the incident entropic, vortical and 
pressure ft.uctuations, s(x, t), ( (x, t) and PI(X, t), respectively, far upstream (-00) and far 
downstream (+00) from the blade row. The entropic and vortical excitations originate far 
upstream of the blade row (e < e- )j the incident pressure disturbances, PI(X, t), originate far 
upstream and/or far downstream (e > e+) and carry energy towards the blade row. We use 
t he symbol K to denote the wave number of an incident disturbance. The interblade phase 
angle, (T, of an incident disturbance is given by K'foo . G. Also, the temporal frequency and 
wave number of an incident entropic or vortical disturbance are related by w = -K- oo ' V - 00 , 
where V - 00 is the uniform relative inlet velocity, but a more complicated relationship exists 
between wand K_oo for an incident pressure disturbance (e.g., see [21]). In the present 

4 

2. Physical Problem 

We consider the time-dependent adiabatic flow, with negligible body forces, of an inviscid 
non-heat-conducting perfect gas through a two-dimensional cascade such as the one shown 
in Figure 1. The mean or steady-state positions of the blade chord lines coincide with the 
line segments rJ = ~ tan 0 + mG, 0 ~ ~ ~ cos 0, m = 0, ±1, ± 2, .. , , where ~ and 
rJ are coordinates in the cascade axial and circumferential directions, respectively, m is a 
blade number index, 0 is the cascade stagger angle, and G is the cascade gap vector which 
is directed along the rJ-axis with magnitude equal to the blade spacing. In the present 
discussion all physical quantities are dimensionless. Lengths are scaled with respect to 
blade chord, time with respect to the ratio of blade chord to upstream free-stream ft.ow 
speed, density and velocity with respect to upstream free-stream density and ft.ow speed, 
respectively, pressure with respect to the product of the upstream free-stream density and 
the square of the upstream free-stream speed, and entropy with respect to the specific heat 
of the ft.uid at constant pressure. 

The time-dependent or unsteady ft.uctuations in the ft.ow can arise from one or more 
of the following sources (Figure 2): blade motions, upstream and/or downstream acoustic 
disturbances which carry energy toward the blade row, and upstream entropic and vortical 
disturbances which are convected through the blade row . These excitations are each assumed 
to be of small amplitude, periodic in time and to occur at temporal frequency w. The external 
aerodynamic excitations are also spatially periodic, while the structural excitation is periodic 
in the cascade circumferential or rJ -direction. For example, we consider blade motions of the 
form 

R (x + m G , t) = Re{r(x ) exp[i(wt + m(T)]} , x E B , (2.1 ) 

where R measures the displacement of a point on a moving blade surface relative to its 
mean or steady-state position, x is a position vector, t is time, r is a complex displacement
amplitude vector, (T is the phase angle between the motions of adjacent blades, Re{ } denotes 
the real part of { } and B denotes the reference (m = 0) blade surface. Incident disturbances 
are of the form 

s(x , t) = Re{Loo exp[i( K_oo . x + wt)]}, e < e- , (2.2) 
((x , t) = Re{ , _oo exp[i(K_oo . x + wt)]}, e < ~- , (2.3) 

and 
PI(X, t) = Re{PI.-Cfoo exp[i( K'foo . x + wt)]} , ~ ~ ~'f . (2.4) 

Here S-oo , ' - 00 and PI,'f oo are the complex amplitudes of the incident entropic, vortical and 
pressure ft.uctuations, s(x, t), ( (x, t) and PI(X, t), respectively, far upstream (-00) and far 
downstream (+00) from the blade row. The entropic and vortical excitations originate far 
upstream of the blade row (e < e- )j the incident pressure disturbances, PI(X, t), originate far 
upstream and/or far downstream (e > e+) and carry energy towards the blade row. We use 
t he symbol K to denote the wave number of an incident disturbance. The interblade phase 
angle, (T, of an incident disturbance is given by K'foo . G. Also, the temporal frequency and 
wave number of an incident entropic or vortical disturbance are related by w = -K- oo ' V - 00 , 
where V - 00 is the uniform relative inlet velocity, but a more complicated relationship exists 
between wand K_oo for an incident pressure disturbance (e.g., see [21]). In the present 

4 



investigation we are concerned primarily with determining the unsteady pressure response 
of cascades subjected to incident entropic and vortical excitations. 

In the absence of unsteady excitation the flow beyond some finite distance upstream (say 
e < e -) from the blade row is assumed to be at most a small irrotational steady perturbation 
of a uniform free stream. In addition, we assume that the unsteady flow remains attached to 
the blade surfaces; therefore, thin vortex sheets or unsteady wakes emanate from the trailing 
edges and extend downstream. Finally, any shocks that might occur are assumed to be of 
weak to moderate strength and have small curvature. Thus, changes in the entropy and 
vorticity of a fluid particle as it passes through shocks are regarded as negligible. 

The fluid motion is governed by differential forms of the mass, momentum and energy 
conservation laws for an inviscid perfect gas (i.e., the Euler equations) in regions where the 
flow variables are continuous and corresponding jump conditions at surfaces across which 
the flow variables are discontinuous, i.e., at vortex-sheet wakes and at shocks. In continuous 
regions the energy equation can be replaced by the requirement that the entropy following 
a fluid particle must remain constant. In addition to the foregoing field equations and 
jump conditions, the attached flow assumption requires that the unsteady flow must be 
tangential to the moving blade surfaces . Finally, information on the uniform inlet and 
exit flow conditions, the entropic and vortical fluctuations at inlet and the static pressure 
disturbances at inlet and exit that carry energy toward the blade row must be specified. 
The remaining steady and unsteady departures from the uniform inlet and exit conditions 
(i.e., steady pressure variations, entropic and vortical fluctuations at exit and unsteady 
pressure fluctuations due to outgoing acoustic waves) must be determined as part of the 
time-dependent solution. 

The foregoing unsteady aerodynamic problem is a formidable one. It involves a system 
of nonlinear time-dependent partial differential equations along with conditions imposed on 
moving blade, wake and shock surfaces in which the instantaneous positions of the wakes and 
shocks must, in principle, be determined as part of the solution. Because of these features 
and the prohibitive computational expense that would be involved in obtaining the unsteady 
aerodynamic response information needed for turbomachinery aero elastic response predic
tions, the usual approach is to examine limiting forms of the full governing equations with the 
intention of providing efficient theoretical analyses for predicting the onset of blade flutter 
and the amplitudes of the vibratory blade motions caused by external aerodynamic excita
tions. One such approach, in which the unsteady flow is regarded as a small perturbation of 
a nonuniform isentropic and irrotational mean flow, is described below. 
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tions, the usual approach is to examine limiting forms of the full governing equations with the 
intention of providing efficient theoretical analyses for predicting the onset of blade flutter 
and the amplitudes of the vibratory blade motions caused by external aerodynamic excita
tions. One such approach, in which the unsteady flow is regarded as a small perturbation of 
a nonuniform isentropic and irrotational mean flow, is described below. 
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3 . Unsteady Perturbations of a Potential Mean Flow 

For small amplitude unsteady excitations , i.e ., \Loo \, \C-oo \, etc., '" O(€:) « 1, the time
dependent flow can be regarded as being a small perturbation of an underlying nonlinear 
mean or steady background flow . Thus , for example, we can set 

V(x, t) = V (x) + v(x, t) + ... , (3 .1 ) 

where V(x) is the local mean velocity and v(x, t) is the first-order (in t) unsteady velocity. 
Then, as a consequence of our assumptions regarding shocks and the flow far upstream of 
t he blade row, the background flow will be isentropic and irrotational; i.e. , V = V <P , where 
<P is the steady velocity potential. The field equations that govern the underlying steady 
potential flow follow from the mass and momentum conservation laws and the isentropic 
relations for a perfect gas and are given by 

V · (pV <p) = 0 (3.2) 

and 
(M_ooA)2 = P ,), - 1 = (!M~ooP)h-l)h = 1 - I ~ 1 M~oo [(V <p)2 - 1] , (3.3) 

where M, A, P and P are the local Mach number, speed of sound propagation, density and 
pressure, respectively, in the mean or steady background flow and I is the specific heat ratio 
of the fluid . 

Surface conditions for this zeroth-order or steady flow apply at the mean positions, Em , 
Wm and Shm,n, of the blade, wake and shock surfaces, where the subscript n refers to the nth 
shock associated with the mth blade. Blade mean positions are prescribed, but the mean 
wake, i.e., the stagnation streamlines downstream of the blade row, and shock positions must 
be determined as part of the steady solution . Since, by assumption, the flow remains attached 
to the blade surfaces, a flow tangency condit ion applies at such surfaces . In addition, mass 
and tangential momentum must be conserved across shocks, and the steady pressure and 
normal velocity component must be continuous across blade wakes . 

Numerical procedures for determining two-dimensional steady potential flows through 
cascades have been developed extensively, e.g., see [22,23], particularly for flows with subsonic 
relative inlet and exit Mach numbers (i.e., M~oo < 1) . In such calculations far-field boundary 
conditions are imposed at axial stations placed at finite distances upstream and downstream 
(i.e ., at ~ = ~~) from the blade row, where linearized solutions describing the behavior of the 
steady potential can be matched to a nonlinear near-field solution. In addition, conditions 
are often imposed at blade edges (e.g., a Kutta condition at sharp trailing edges) in lieu 
of prescribing an inlet and/or an exit free-stream property. Finally the usual practice is to 
solve the conservative form of the mass-balance equation (3.2) throughout the entire fluid 
domain while allowing for a discontinuity in the velocity potential across arbitrary periodic 
lines which emanate from the blade trailing-edge points and extend downstream. Thus , 
the shock- and wake-jump conditions, mentioned above, are usually not imposed explicitly 
in such steady-flow calculations. Instead, shock phenomena are captured through the use 
of special differencing techniques; the wake conditions are satisfied implicitly because, in a 
two-dimensional steady potential flow, the flu id properties are continuous and differentiable 
across wakes . The mean wake and shock locations are determined a posteriori from the 
resulting steady solution. 
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3.1 Linearized Unsteady Equations 

The field equations that govern the first-order unsteady perturbation of a nonlinear isen
tropic and irrotational steady flow are determined from the full nonlinear time-dependent 
mass , momentum and entropy-transport equations and the thermodynamic equation relating 
the entropy, pressure and density of a perfect gas . After performing some straightforward 
algebra (see [13 ,14]), we obtain a system of differential equations for the first-order entropy 
(.5'), velocity (v) and pressure (p), respectively. These equations can be cast in a very conve
nient form by introducing the Goldstein velocity decomposition [16,17J. Thus, after setting 
v = V ~ + VR, where the unsteady potential ~ governs the unsteady pressure fluctuation 
through the relation p = -pJ)~/ Dt and the rotational velocity, VR, is divergence free far 
upstream of the blade row, i.e., V . VR = 0 for e < e-, we find that the field equations that 
govern the unsteady flow variables can be written in the form 

and 

J).5' = 0 
Dt 

J) J)1 -
(A -2 'f') - - 1T"'T (- T"'T ).. ) - -1 T"'T (-- ) - - - p v· p v 'f' = p v · pVR . 

Dt Dt 

(3.4) 

(3.5) 

(3 .6) 

Here J)/ Dt = a/at + ViP . V is a mean flow convective derivative operator. In general, we 
require a solution to the foregoing system of field equations subject to the condition of flow 
tangency at blade surfaces, jump conditions across shocks and blade wakes that are based 
on the fluid-dynamic conservation laws, and appropriate conditions far upstream and far 
downstream from the blade row. 

Surface Conditions 

As a consequence of the small unsteady-disturbance approximation, conditions on the 
linearized unsteady perturbation at moving blade, shock and wake surfaces can be imposed 
at the mean posibons of these surfaces, with the mean wake (Wm ), i.e., the downstream 
stagnation streamlines, and shock (Shm,n) locations being determined from the nonlinear 
steady solution. In particular, the following conditions (see [13J and [14]) apply. The first
order flow tangency condition has the form 

(V ~ + VR) . n = [aR /at + (ViP· -r )(-r . V )R - (R. V )ViPJ . n , x E Em. (3.7) 

The wake-jump conditions require that the fluid pressure and the normal component of the 
fluid velocity be continuous across blade wakes, i.e. , 

[J)~/Dt] = 0, x E Wm , (3.8) 

and 
(3.9) 
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respectively. Finally, if we neglect changes in entropy and rotational velocity across shocks, 
the conservation laws for mass and tangential momentum yield the following linearized shock
jump conditions: 

[p(V~ - A-2D~V~)] . n + [p]VR · n = [p][B/Bt + (V~ . 'T) 'T. V ](R · n) 
Dt 

+ (R . n )'T . V([p]V~ . 'T ) ,x E Shm,n 

and, for a shock that terminates in the fluid, 

[~]=-'R . n[V~]. n ,x E Shm,n. 

(3.10) 

(3.11) 

Equations (3.1 0) and (3.11) provide two relations for determining the jump in the unsteady 
potential, [~], at the mean position of a shock and the shock displacement normal to the 
mean shock locus, 'R . n. In the foregoing equations n and 'T are unit vectors normal and 
tangential, respectively, to a surface and directed such that n x 'T points out from the page; 
the symbol [ ] indicates the jump or change in a quantity at a surface at which the flow 
variables are discontinuous. 

Far-Field Conditions 

We have assumed that the potential mean or steady flow is at most a small (l.e., of 
O(E)) perturbation from a uniform stream both far upstream (e < e-) and far downstream 
(e > e+) from the blade row. Therefore, in these regions, the first-order (in E) unsteady field 
equations can be reduced to constant coefficient equations for which general solutions can be 
determined analytically (see [21]). Corresponding particular solutions are then determined 
from prescribed inlet and exit information and by matching the far field analytical solutions 
to a near-field numerical solution. For example, it follows from (3.4) and (3.5) that the 
entropy and rotational velocity fluctuations far upstream (e < e- ) and far downstream 
(e > e+) of the blade row must be of the general form 

(3.12) 

and 
(3.13) 

The far upstream entropy and rotational velocity fluctuations are prescribed, c.f. (2.2) and 
(2.3), and therefore 

(3.14) 

and 

VR(X, t) = VR, - oo(X - V - oot) = Re{ VR,-oo exp[iK_oo . (x - V -oot)]} fo r e < e- . (3. 15) 

The velocity potential fluctuation in the far upstream and far downstream regions de
pends upon the acoustic excitation, the acoustic response of the cascade and, in the far 

8 

_J 

respectively. Finally, if we neglect changes in entropy and rotational velocity across shocks, 
the conservation laws for mass and tangential momentum yield the following linearized shock
jump conditions: 

[p(V~ - A-2D~V~)] . n + [p]VR · n = [p][B/Bt + (V~ . 'T) 'T. V ](R · n) 
Dt 

+ (R . n )'T . V([p]V~ . 'T ) ,x E Shm,n 

and, for a shock that terminates in the fluid, 

[~]=-'R . n[V~]. n ,x E Shm,n. 

(3.10) 

(3.11) 

Equations (3.1 0) and (3.11) provide two relations for determining the jump in the unsteady 
potential, [~], at the mean position of a shock and the shock displacement normal to the 
mean shock locus, 'R . n. In the foregoing equations n and 'T are unit vectors normal and 
tangential, respectively, to a surface and directed such that n x 'T points out from the page; 
the symbol [ ] indicates the jump or change in a quantity at a surface at which the flow 
variables are discontinuous. 

Far-Field Conditions 

We have assumed that the potential mean or steady flow is at most a small (l.e., of 
O(E)) perturbation from a uniform stream both far upstream (e < e-) and far downstream 
(e > e+) from the blade row. Therefore, in these regions, the first-order (in E) unsteady field 
equations can be reduced to constant coefficient equations for which general solutions can be 
determined analytically (see [21]). Corresponding particular solutions are then determined 
from prescribed inlet and exit information and by matching the far field analytical solutions 
to a near-field numerical solution. For example, it follows from (3.4) and (3.5) that the 
entropy and rotational velocity fluctuations far upstream (e < e- ) and far downstream 
(e > e+) of the blade row must be of the general form 

(3.12) 

and 
(3.13) 

The far upstream entropy and rotational velocity fluctuations are prescribed, c.f. (2.2) and 
(2.3), and therefore 

(3.14) 

and 

VR(X, t) = VR, - oo(X - V - oot) = Re{ VR,-oo exp[iK_oo . (x - V -oot)]} fo r e < e- . (3. 15) 

The velocity potential fluctuation in the far upstream and far downstream regions de
pends upon the acoustic excitation, the acoustic response of the cascade and, in the far 

8 

_J 



downstream region, the vortical fluctuation associated with the rotational velocity and the 
vorticity shed at the blade trailing edges and convected along the blade wakes. We set 

(3.16) 

where <PE is the potential due to the acoustic or irrotational excitation at inlet and exit, and 
<PR is the potential associated with the acoustic response of the blade row to the imposed 
unsteady excitation and the far downstream vortical fluctuation . The potential component 
<PE is a solution of (3.6), with steady flow properties set at their free-stream values, which is 
subject to the requirement that acoustic excitations must either attenuate as they approach 
the blade row or propagate and carry energy towards or along the blade row. We find that 

(3.17) 

where the <PI,Too are the complex amplitudes of the potential associated with incident pressure 
waves, l.e. , 

(3.18) 

"""',1'-00 = G-1o- and the X." ,1'-OO depend upon the inlet/exit free-stream conditions, the cas
cade blade spacing and the temporal frequency and inter blade phase angle of the unsteady 
excitation. Analytic solutions to (3.6) for the potential component ¢R which satisfy the re
quirements that acoustic response disturbances must either attenuate with increasing axial 
distance from the blade row or propagate carrying energy away from or parallel to the blade 
row and vorticity must be convected downstream are given in Ref. [21]. These solutions con
tain constants, i.e., the Fourier amplitudes of the continuous acoustic and rotational velocity 
responses and the complex amplitudes of the discontinuities in the potential, [<P]Ref, and 
rotational velocity, [VR] Ref , at a reference wake location, that are determined by matching 
the far field analytic solutions to near field numerical solutions. 

3.2 Discussion 

The foregoing linearized equations account for the effects of blade geometry, mean blade 
loading and transonic, including moving shock phenomena, on the unsteady fluctuations 
arising from small-amplitude time-dependent excitations of nonuniform isentropic and irro
tational steady background flows. The unsteady equations are linear and contain variable 
coefficients that depend upon the underlying steady flow. 

As a consequence of the Goldstein velocity splitting, the linearized unsteady equations 
are coupled only sequentially. Thus, the entropy fluctuation is independent of the unsteady 
velocity and depends, therefore, only upon the the prescribed upstream entropic disturbance. 
The rotational velocity fluctuation is independent of the unsteady potential and depends only 
upon the entropy fluctuation and the prescribed upstream rotational velocity disturbance. 
The unsteady potential fluctuation depends upon the entropy and rotational velocity fluctu
ations, the prescribed blade motion, and the prescribed upstream and downstream pressure 
excitations. Note that, if either a prescribed blade motion (the flutter problem) or an inci
dent acoustic disturbance is the only source of unsteady excitation, then s = VR - 0 and 
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only a single field equation, i.e., (3.6) with right-hand-side set equal to zero, must be solved 
to determine the first -order unsteady flow field. 

Numerical resolutions of the linearized unsteady problem are required to determine the 
aerodynamic response information needed for aeroelastic and aeroacoustic predictions, i.e., 
t he unsteady pressures and global unsteady airloads acting at the blade surfaces and the 
unsteady pressure field. Because of the cascade geometry and the assumed form of the 
unsteady excitations (i .e., harmonic in t and rJ), the first-order or linearized unsteady flow 
properties must be harmonic in time, e.g., 

v(x, t) = Re{v(x)eiwt
} (3.19) 

In addition, they must satisfy a circumferential periodicity condition, e.g., 

v(x + mG) = v(x)eima 
. (3.20) 

Thus, a numerical resolution of the time-independent linearized unsteady flow problem is 
required only over a single extended blade-passage region of the cascade. Since analytic 
far-field solutions have been determined, the numerical solution domain can be restricted 
further to a single extended blade-passage region of finite extent in the axial direction , as 
shown in Figure 3. 

Numerical solutions for the complex amplitudes (8, vR and ¢) of the unsteady entropy, 
rotational velocity and velocity potential can be determined in order. Since the entropy 
and rotational velocity fluctuations are governed by convection equations, solutions for these 
quantities can be determined in terms of the prescribed upstream entropy and rotational 
velocity distributions. The potential is governed by an elliptic equation, and therefore, 
boundary condition information must be supplied on the entire boundary of the extended 
blade-passage solution domain, i.e ., on the surfaces of the blades, the stagnation streamlines 
upstream and downstream (wakes) of the blade row and the far-field boundaries ~ = e=F' 
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4. Entropy and Rotat ional Velo city Fluctuations 

As demonstrated by Goldstein [16], closed form solutions for the entropy and rotational 
velocity fluctuations throughout an extended blade passage region can be determined in 
terms of the drift (~) and stream (W) functions of the steady background flow . The former 
measures the time required for a fluid particle to traverse the distance between points on a 
streamline. For the present application we define the drift and stream functions as follows 

(4.1 ) 

and 
(4.2) 

In equations (4.1) and (4.2), x_ is the position vector to the point of intersection (~-,1]-) 
of the reference blade stagnation streamline and the axial line ~ = ~_ , ez is a unit vector 
that points out from the page, eN = e z x V - oo /V-oo is a unit vector normal to the upstream 
free-stream velocity, dTIJ! is a differential element of arc length along a streamline, and dr is 
a differential vector tangent to the path of integration in (4.2). The value of ~ at a given 
point x is determined by performing the integration in (4 .1) along the streamline that passes 
through x , whereas w(x) is independent of the path used to evaluate the line integral in 
( 4.2). 

We introduce the vector 

( 4.3) 

where the functions ~ - t and Ware independent material properties (or Lagrangian coor
dinates) of the steady background flow , and eT = V - oo / V- oo is a unit vector pointing in 
the direction of the upstream free-stream velocity. Furthermore, we choose the constants 
~(x_) and W(x_) so that X ---+ x, as e ---+ - 00. It follows that any arbitrary scalar or vector 
function, say :F, of (X - V - oot) is convected without change by the steady background flow 
and that :F is a function of x - V - oot far upstream of the blade row, i.e., 

jj 
Dt :F(X - V - oot) = 0 and ( 4.4) lim :F[(X - V - oo t)] = :F(x - V - oo t) . 

€-+- oo 

The foregoing considerations permit us to write immediately the solution to the entropy 
transport equation (3.4) which satisfies the upstream condition (3.14) as 

s(x , t) = s_oo[(X- V - oo t)] = Re{ S-oo exp[i lc oo · (X- V - oot)]} = Re{ s(x) exp(iwt)} , (4.5) 

where s(x) = L oo exp(i K._ oo . X) is the complex amplitude of the first-order entropy fluctu
ation, and w = -K.-oo . V - 00 is the temporal frequency of the unsteady motion . 
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the direction of the upstream free-stream velocity. Furthermore, we choose the constants 
~(x_) and W(x_) so that X ---+ x, as e ---+ - 00. It follows that any arbitrary scalar or vector 
function, say :F, of (X - V - oot) is convected without change by the steady background flow 
and that :F is a function of x - V - oot far upstream of the blade row, i.e., 

jj 
Dt :F(X - V - oot) = 0 and ( 4.4) lim :F[(X - V - oo t)] = :F(x - V - oo t) . 

€-+- oo 

The foregoing considerations permit us to write immediately the solution to the entropy 
transport equation (3.4) which satisfies the upstream condition (3.14) as 

s(x , t) = s_oo[(X- V - oo t)] = Re{ S-oo exp[i lc oo · (X- V - oot)]} = Re{ s(x) exp(iwt)} , (4.5) 

where s(x) = L oo exp(i K._ oo . X) is the complex amplitude of the first-order entropy fluctu
ation, and w = -K.-oo . V - 00 is the temporal frequency of the unsteady motion . 
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4.1 Rotational Velocity 

The rotational velocity fluctuation can also be expressed in terms of the drift and stream 
functions of the steady background flow and, in this case, the prescribed upstream entropy 
and rotational velocity disturbances . For a two-dimensional, irrotational, steady background 
flow, the general solution for the rotational velocity is 

_ - S 
VR = (V ® X)· A(X - V - oot) + 2V<P , ( 4.6) 

where ® denotes the tensor or dyadic product and A is an arbitrary vector function of 
X - V - oot. This can be verified by substituting (4.6) into the transport equation (3.5) and 
performing the required algebra. 

The particular solution for VR that satisfies the far upstream condition (3.15) can then 
be obtained by setting 

A(X - V -oot) = VR,-oo(X - V - oot) - s_oo(X - V _oot)V -00/2 , (4.7) 

where s_oo(X - V - oot) is defined in (4.5) and 

VR,-oo(X - V -oot) = Re{ VR,-oo exp[iK._oo . (X - V -oot)]} . ( 4.8) 

After combining equations (4.5) through (4.8), we find that the rotational velocity fluctuation 
is given by 

VR(X, t) = Re{[V ® X· A-oo + 8_00 V<P /2J exp[i,,,-oo · (X - V -oot)]} = Re{ VR(X) exp(iwt)} , 
( 4.9) 

where A-co = VR,-oo - 8_00 V -00/2 and VR(X) is the complex amplitude of the unsteady 
rotational velocity. 

4.2 Modification to the Goldstein Velocity Splitting 

At this point we have expressed the entropy and rotational velocity fluctuations in terms 
of the mean flow drift and stream functions. Therefore, these fluctuations and the source 
term, p-1V. (pVR), that appears in the field equation for the unsteady potential (3.6) can be 
evaluated once the drift and stream functions, and their derivatives, are determined from the 
solution for the underlying steady flow. However, as pointed out by Goldstein and later by 
Atassi and Grzedzinski[20J, if the steady background flow has leading-edge stagnation points, 
the rotational velocity, and hence, the irrotational velocity, V ¢ [c.f. (3.7) and (3.8)J, will 
be singular along blade and wake surfaces. Such behavior is a consequence of the singular 
behavior of the drift function , i.e., ~ ---t ao In n as n ---t 0, where n is the normal distance 
from a blade or wake surface and ao is a constant which describes the behavior of the flow 
in the vicinity of a stagnation point. 

Although the physical velocity v = VR + V ¢ must be regular, singularities in the compo
nent velocities VR and V ¢ impose serious difficulties on the numerical field methods needed 
to predict the unsteady potential. Therefore, Atassi and Grzedzinski proposed the following 
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velocity decomposition to eliminate the singular behavior from the rotational and irrotational 
component velocities: 

( 4.10) 

where ¢* is a pressure-less or convected potential, i.e., D¢* / Dt = O. The rotational velocity 
vR satisfies the same transport equation, i.e., (3.5), as VR, and the velocity potential ¢' 
satisfies the same field equation , (3.6), as ¢. Furthermore, if one chooses ¢* carefully, vR 
will be regular on blade and wake surfaces. In particular, if we set 

¢* = Re {[-iw-1 A - oo . V - 00 + F('IT)] exp[iK._ oo . (X - V - oo t)]} , (4.11) 

the rotational velocity, vR, is given by 

VR = Re { [V @ X· iK._ooF + (C2 + ~~) Vw + Loo V<P/2] exp[i",_oo . (X - V - ooi)] } 

Re{ vk(x) exp( iwt)} , 
( 4.12) 

where C2 = - (p_ooW )-1(K._00 X A - oo ) . ez. F('IT) is a complex function that depends upon, 
among other t hings, the behavior of the mean flow in the vicinity of a stagnation point . It 
can be chosen in such a way that the rotational velocity vanishes on blade and wake surfaces. 
In particular, for two-dimensional cascade flows Atassi and Grzedzinski set 

( 4.13) 

This choice of F eliminates the singular behavior of the rot ational velocity. Indeed, vR = 0 
on blade and wake surfaces. However, the potential equation source term, p-1 V . (pvR) , is 
still singular at these surfaces. 

Equations (4.5) and (4.12) relate the complex amplitudes of the first-order unsteady 
entropy (8) and rotational velocity (VR) fluctuations to the prescribed amplitudes , 8_00 and 
VR,-oo, and wave number, K.-oo , at inlet, and to the velocity, drift function and stream 
function of the steady background flow . Note that vk depends upon !:l and 'IT and the 
first partial derivative of these functions. Therefore, the unsteady vorticity, <: = V x vR' 
and the source term that appears in the potential equation for ¢/, i.e., .0 -l (V . (pvk)), 
depend also upon the second partial derivatives of the mean flow drift and stream functions. 
Thus, an accurate solution for the nonlinear steady background flow is a critical prerequisite 
to properly determining the unsteady effects associated with inlet entropic and vortical 
exci tations. 

4.3 Boundary-Value P r oblem for t he M odified Pot ential 

The complex amplitude of the unsteady potential (<P') is determined as a solution of the 
field equation 

Dw (A-2Dw¢/) - - 1 'rT (-'rT A,I) _ - -1'rT (- ' ) - --- - p v ' p v 'f/ - p V ' pv R . 
Dt Dt 

(4 .14 ) 
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This solution is subject to the following surface conditions: 

and 

V <P' . n = [Dwrj Dt - (r · V)V~l' n , x E Em; 

[D~:/] = 0 and [V ¢/] . n = 0 , x E W m ; 

[p(V ¢' - A-2Dw¢ V q»] . n + [p]v k ' n = [p][iwt + (V q>· r )r· V ](r . n) 
Dt 

+ (r · n )r . V ([p] V <I> . r ) and [¢/] = -r· n [V q>] . n , x E Shm,n' 

( 4.15) 

( 4.16) 

( 4.17) 

Equations (4 .14)- (4.17) are obtained after substituting (4.10) into (3.6)- (3.11), and replacing 
~' by ¢' exp(iwt), n by r exp(iwt) and D / Dt by Dw/ Dt = iw + V q> . V . Finally, analytical 
solutions are available [21] to describe the behavior of ¢' far from the blade row. These can be 
matched to near-field numerical solutions and, therefore, serve to complete the specification 
of the time-independent boundary-value problem for ¢/ . 

At this point, we have presented a relatively complete linearized unsteady aerodynamic 
formulation to describe general (i.e., entropic, vortical and acoustic) perturbations of sub
sonic and discontinuous transonic mean flows. Numerical methods for predicting the un
steady aerodynamic response of subsonic and transonic cascades to structural and acoustic 
excitations have been reported in Refs . [18, 19 and 21]. Methods for predicting cascade 
response to entropic and vortical excitations are described in the following section of this 
report. At present, the numerical solution procedures for the entropic and vortical gust 
problems have only been developed and implemented for subsonic flows . The development 
of such procedures for the transonic gust response problem remains, therefore, as a subject 
for future work. 
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5. Nume rical So lut ion P rocedures 

The theoretical foundation for the linearized unsteady aerodynamic analysis has been es
tablished. We will proceed to discuss the procedures used to evaluate the complex amplitudes 
of the unsteady entropy (s), rotational velocity (v~), and source term [.0- 1 V· (pv~)] through
out an extended blade-passage solution domain. The finite-difference numerical model used 
to solve the boundary-value problem for the complex amplitude (¢') of the unsteady poten
t ial has been described in previous work. Since the only changes to this model required for 
the entropic and vortical gust problems are those needed to accomodate the source term in 
the field equation (4.14) and rotational velocity effects in the analytical far-field solutions 
for the unsteady potential [21], we will not repeat the description here, but simply refer the 
reader to Refs. [11 , 18 and 19] for the details. 

5.1 Generation of the Streamline Grid 

In section 4 , it was shown that the unsteady entropy and rotational velocity can be 
expressed in t erms of the drift and stream functions, D. and W, of the steady background 
flow. For this reason it is convenient to use an H-grid in which one set of mesh lines are the 
streamlines of the steady background flow for the numerical evaluation of these unsteady flow 
variables. The first step in the grid generation process is to specify the grid point locations 
on the boundary of the physical solution domain, i.e., a single extended blade-passage region 
of finite extent as shown in Figure 3. The boundaries of this region are the upper and lower 
surfaces of the blades, the upstream and downstream axial lines ~ = ~'f and the upstream 
and downstream mean-flow stagnation streamlines. The stagnation streamline locations are 
determined from the solution for the nonlinear steady background flow. 

The locations of the stagnation streamlines are found by particle tracing, i.e., by inte
grating the equation 

(5.1) 

using a variable-step, fifth-order, Runge-Kutta algorithm [24], from the leading and trailing 
edges of a blade to the far upstream (~ = ~_ ) and far downstream (~ = ~+) boundaries . The 
location of the leading-edge stagnation point is determined by curve fitting the blade profile 
and the steady potential distribution along the blade using cubic splines. The stagnation 
point is defined as the point on this curve at which the steady potential has a minimum 
value, and is found by bisection. After integrating equation (5.1) from the leading-edge 
stagnation and the trailing-edge points to the far-field boundaries, the calculated points on 
the stagnation streamlines are curve fit using cubic splines. 

Once the boundaries of the H-grid have been determined, the locations of the interior 
points are found using an elliptic grid generation technique similar to that developed by 
Thompson et al. [25]. An elliptic grid generator offers the advantages that relatively smooth 
grids can be determined, and grids for complicated flow geometries, such as those associated 
with cascades of thick, highly cambered blades, are easy to generate. Following Thompson 
et al. , the grid lines are described by the partial differential equations 

(5.2) 
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and 
(5.3) 

The "axial" and "streamwise" grid lines correspond to lines of constant 3 and H, respectively. 
The functions P and Q can be used to control the spacing and orthogonality of the grid 
lines. In this investigation , however , we have chosen the function Q so that H is the stream 
function W of the irrotational steady background flow, i.e., we set Q = V x V p. 

Rather than solve equations (5.2) and (5.3) for 3 and W as functions of e and Tt, we invert 
these equations to determine ~ and rJ as functions of 3 and W. It can be shown that 

(5.4) 

and 

(5.5) 

where D is the determinant of the Jacobian of the independent variable transformation, 
(3 , W) -* (e,rJ), i.e. , 

oe orJ oe orJ 
D = 03 ow - oW 03 ' (5.6) 

and the coefficients Q , (3, and 8 are given by 

( 
oe ) 2 ( oTt ) 2 

Q = oW + oW ' (5.7) 

The nonlinear partial differential equations (5.4) and (5 .5) are solved numerically over a 
rectangular region in :=:, W-space, subject to Dirichlet conditions on e and rJ at the boundary. 
The values of e and rJ along the boundary of the rectangular domain are defined by their 
values at the prescribed points along the boundary of the extended blade-passage physical 
domain. Because the 3 , W-grid is rectangular , difference approximations are easy to con
struct . For example, if the spacings between the grid lines are constant (i.e., ~3i = ~3, 
~Wj = ~W), then the difference equation for the e-coordinate at the i,jth node has the 
form 

(5 .8) 

A similar equation describes the rJ-coordinate at the i,jth node. In equation (5.8), it is 
assumed that the transformed grid spacings, ~3i and ~ W j, are constant. In the present 
investigation, however, nonconstant transformed grid spacings are used to control the spac
ings in the physical plane. For example, by choosing appropriate values of ~3i and ~ W j, 
the streamwise and axial grid lines can be packed near blade and wake surfaces and near the 
leading and trailing edges of the blades, respectively. 
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The difference equations for ~ and "I are solved using a successive line over-relaxation 
procedure in which the coefficients CY, f3 and 0, and the terms on the right-hand-sides of (5.4) 
and (5.5) are lagged, i.e., they are computed just prior to each line over-relaxation. Also, 
because the function Q is fairly expensive to compute, and because it is fairly insensitive to 
small changes in ~ and TJ, ·this function is updated only every tenth iteration. 

A typical grid generated for a compressor cascade operating at an inlet Mach number 
of 0.3 and an inlet flow angle of 40.0 deg is shown in Figure 3. The blades are thick and 
highly cambered, and the cascade has a gap.:to-chord ratio, G, of 0.6 and a stagger angle e 
of 15 deg. The steady flow, which was determined using the analysis of Ref. [22], is used 
to generate the stagnation streamlines and to determine the function Q in (5.4) and (5.5). 
For the grid shown in Figure 3, the function P was set equal to zero. Note the clustering 
of streamlines near the blade and wake surfaces and axial lines in the vicinity of the blade 
leading and trailing edges, which is achieved by employing nonconstant rectangular grid 
spacings, ~::::i and ~ III j, in the transformed plane. 

5.2 Evaluation of the Drift Function 

Because a streamline mesh is used, the drift function can be evaluated by straightforward 
numerical integrations of equation (4.1) . The procedure is simply to specify the drift function 
along the far upstream boundary ~ = ~_, and then to evaluate this function along each 
streamline using the second-order difference approximation 

~. . _ ~. . Ti+1,j - Ti,j 

1+1,) - 1,) + 0.5 (IV· ·1 + IV· ,1) 
1+1,) 1,) 

(5.9) 

Since the steady flow speed, V, appears in the denominator of the integrand in equation (4.1), 
the drift function will be singular at flow stagnation points . Hence, for a blade having a blunt 
leading edge this function will be singular along the entire surface of each blade and its wake. 

The calculated drift and stream function contours for the the compressor cascade of 
Figure 3 are shown in Figure 4. Note that, because of the manner in which the drift function 
has been defined in (4.1), the drift function contours are orthogonal to the streamlines far 
upstream of the blade row. This is not a requirement, but it does simplify the analytical 
expressions (4.5) and (4.12) for the entropy and rotational velocity. Note also the singular 
behavior near the blade and wake surfaces indicated by the drift function contours. 

The derivatives of the drift and stream functions at a given grid point are determined 
using the finite difference operators developed by Caspar and Verdon [18]. Because the drift 
function is singular at blade and wake surfaces, one-sided difference approximations are used 
to evaluate its derivatives at points on the first streamlines removed from these surfaces. 
The derivatives of the drift function at the blade and wake surfaces are singular , but are not 
required to evaluate vR and p-1 V . (pvR) at field points. 

As noted previously, a numerical resolution of the linear, variable-coefficient, unsteady, 
boundary-value problem that governs the velocity potential is required over a single extended 
blade-passage region of finite extent. The field equation (4 .14) must be solved in continuous 
regions of the flow , subject to the boundary or jump conditions that are imposed at the mean 
positions of the blade, wake and shock surfaces. Also, the unsteady near-field numerical 
solution must be matched to far-field analytical solutions (see [21]) at finite axial distances 
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1+1,) 1,) 
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(i.e., at e = ff) upstream and downstream from the blade row. The numerical procedures 
for determining ¢/ are described in Refs . [11, 18 and 19J . 
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6. Numerical Results 

Unsteady aerodynamic response predictions are given below to demonstrate important 
features of the foregoing linearized analysis . The unsteady flows considered here are entirely 
subsonic. Steady background flows have been determined using the methods of Ref. [22]. 
In each case a Kutta condition has been applied at blade trailing edges and therefore, only 
inlet uniform flow information, e.g., M-oo and fLoo, must be specified for the steady calcu
lation. First-harmonic unsteady solutions were determined on an H-type mesh (see Figure 
3) consisting of 120 "axial" lines and 30 mean-flow streamlines. These were packed near the 
blade and wake surfaces and near the blade edges, respectively. 

For the most part we have considered cascades consisting of blades that are constructed 
by superposing the thickness distribution of a modified N ACA four-digit series airfoil, i.e., 

T(x) = HT [2.969x 1
/

2 
- 1.26x - 3.516x2 + 2.843x3 

- 1.036x4
], (6.1 ) 

on a circular-arc camber line. Here, HT is the nominal blade thickness, and the coefficient 
of the X4 term in (6.1) differs from that used in the standard NACA airfoil definition [26], 
i.e., -1.015, so that the example blades close in wedge-shaped trailing edges. The camber 
distribution is given by 

C(x) = He - R + [R2 - (x - 0.5)2j1/2 , (6.2) 

where He (> 0) is the height of the circular-arc camber line at blade midchord and R = 
(2He)-1(0.25 + HE:) is the radius of this camber line. Thus, the surface coordinates of the 
reference blade are given by 

[X,Y]~ = [x =t= 0.5T(x)sinO, C(x) ± 0.5T(x) cosO] ,OS; x S; 1, (6.3) 

where 0 = tan -1 (dC / dx), and the superscripts + and - refer to the upper and lower surfaces 
of the blade. 

We will first apply the present analysis to flat-plate, HT = 0 and He = 0, cascades 
in which the blade mean positions are aligned with the inlet free-stream flow direction, 
i.e., e = fLoo, and compare present response predictions with those based on Smith's [4] 
classical linearized analysis. We will then consider cascades of uncambered NACA airfoils 
and cascades of cambered, 6% thick NACA airfoils to study the effects of blade thickness 
and mean loading on the unsteady aerodynamic response at a blade surface to an incident 
vortical gust. Finally, we will examine the response of three more realistic configurations: a 
compressor exit guide vane (EGV) consisting of thick, highly cambered blades (HT = 0.12, 
He = 0.13), a high speed compressor cascade consisting of moderately thick and cambered 
(HT = 0.06 and He = 0.05) blades, and a turbine cascade. As a representative turbine 
configuration we have selected the fourth standard configuration of Ref. [27]. However, we 
have extended the blade profiles defined in [27] so that our example turbine blades also close 
in wedge-shaped trailing edges. 

We are primarily interested in the linearized unsteady flows excited by vortical gusts, such 
as those that arise, for example, from wakes off the blades of an adjacent upstream blade row. 
If the "circumferential" spacing between the blades in the adjacent upstream row is GEXC 
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and if these blades move at velocity VEXCe1) relative to the blade row under consideration , 
then the interblade phase angle and temporal frequency of the fundamental or blade passing 
vortical excitation are (T = "'1),-oo G = -27rG/GEXC and w = -"'1),-oo VEXC = (TG-1VEXC , 

where "'1),- 00 = -27r/GEXC is the circumferential wave number of this excitation. For the 
present study, we will choose (T = -27r, W = 5 and Vg = (1,0) to describe a "standard" 
vortical gust excitation. Here, Vg is the complex amplitude of the gust velocity component 
normal to the inlet free-stream flow direction at the point (x ,y) = (0,0). In particular , V g 

is the amplitude at the leading edge of the reference blade that would exist if the incident 
gust was convected through the blade row, without distortion , by the uniform inlet flow. 

6.1 Flat-Plate Cascade 

The example flat-plate cascade has a stagger angle (e) of 45 deg and a blade spacing (G) 
of 1.0 and operates at three different inlet Mach numbers, i.e. , M- oo = 0.3, 0.5 and 0.7. In 
each case the inlet flow angle (fLoo) is 45 deg and vortical excitations with v 9 = (1 , 0) and 
w = 5 are imposed far upstream of the blade row . Since the inlet free-stream flow direction is 
aligned with the blade mean positions, the local steady Mach number, M(= M- oo ), and flow 
angle, 0(= 0_00 ), are constants for the flat-plate flow fields. Predicted unsteady pressure
difference distributions, ~p(x) = p[x,Ya(x)]- p[x,y~(x)], acting on the reference (m = 0) 
blade for the standard vortical excitation at (T = -27r (-360 deg) are shown in Figure 5, 
where the solid and dashed curves represent the results of the present and of Smith's analy
sis, respectively. Recall that in the present analysis the unsteady potential (4.14) equation 
contains the source term p-l V . (pvk) and V <P' . n = 0 on blade surfaces, whereas in the 
classical linearization the potential equation is homogeneous, and the normal component of 
the irrotational velocity must cancel the normal component of the gust velocity at blade 
surfaces . The results in Figure 5 show that the two analyses yield pressure-difference predic
t ions that are in very good agreement for M- oo = 0.3 and M- oo = 0.5, but the agreement is 
not quite so satisfactory for M- oo = 0.7. 

Similar results for unsteady flows driven by a prescribed blade translations, i .e., n = 
hyexp(iwt)ey, normal to the mean positions of the blade chords are shown in Figure 6 for 
an excitation with hy = (1,0), w = 5 and (T = -27r. The unsteady flows are irrotational 
and therefore, the unsteady potential equation is homogeneous. The agreement between 
t he pressure-difference predictions obtained from the present numerical analysis and Smith's 
semi-analytical solution procedure is somewhat better than that for the vortical excitation, 
but discrepancies still exist at the highest inlet Mach number. We suspect that the differences 
between the present and Smith's solutions for M- oo = 0.7 occur because the computational 
grid used in the numerical calculation was not dense enough to resolve the high wave number 
acoustic response phenomena that are associated with high subsonic Mach numbers and high 
excitation frequencies . Therefore, such differences should disappear if a mesh of sufficient 
density is employed in the numerical calculation. 

The unsteady lift, i y , responses at the reference blade of the flat-plate cascade operating 
at M-oo = 0.5 to prescribed vortical excitations with Vg = (1,0) and w = 5 and to prescribed 
blade translations with hy = (1,0) and w = 5 are plotted versus interblade phase angle in 
Figure 7. The excitations occur over interblade phase range extending from -37r (-540 deg) 
to -7r (-180 deg) . Abrupt changes in the lift response curves occur at (T = - 473.8 deg 
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and -471.1 deg. The excitations at these phase angles produce resonant acoustic response 
disturbances in the far field. The lift responses to the vortical excitations as predicted by 
the numerical and semi-analytical solution procedures are in good agreement; however, this 
agreement is not nearly as good as that between the lift responses to the blade translational 
excitations, suggesting that the present numerical analysis still requires some improvements 
so that the source term, p-1V . (pvRJ, can be evaluated more accurately. 

6.2 Effects of Blade Thickness and Mea n Loading 

We proceed to evaluate the present analysis by applying it to two families of cascade 
configurations. For the first, e = 45 deg, G = 1, the blades are uncambered (He = 0), but 
the blade thickness varies from HT = a to HT = 0.12; for the second, the blade spacing, 
G = 1, and thickness, HT = 0.06, are constant, but the height of the circular-arc blade 
camber line and the cascade stagger angle vary in such a manner that the tangents to the 
camber lines at the blade leading edges are aligned wi th the inlet free-stream flow direction, 
i.e., e = fLoo - (). The cascades in the first family operate at an inlet Mach number of 0.3 
and an inlet flow angle of 45 deg; those in the second family, at an inlet Mach number of 
0.5 and an inlet flow angle of 45 deg. The cascades in both families are subjected to the 
standard vortical gust excitation at Vg = (1,0), w = 5 and a- = -27r. 

The cascades in the first family have been studied to indicate the effects of blade thickness 
on the unsteady aerodynamic response to a vortical gust excitation. It should be noted that 
although the blades are uncambered and their chord lines are aligned with the inlet flow 
direction, i.e., e = 0-00 , there is a small mean or steady lift force acting on the blades of 
these cascades for HT #- O. This force increases in magnitude, from 0 for HT = 0 to 0.062 
for HT = 0.12, with increasing blade thickness. The exit Mach numbers (M+oo) vary from 
0.3 for HT = a to 0.314 for HT = 0.12, and the exit flow angles (0+00)' from 45° to 47.22° . 
The unsteady pressure-difference distributions along the reference blades of the cascades with 
HT = 0,0.04, 0.08 and 0.12 are shown in Figure 8. These results indicate that blade thickness 
has only a limited impact on the unsteady aerodynamic response to a vortical excitation. 
Indeed, the pressure-difference response for the cascade of 2% thick blades (not shown) 
closely resembles that for the flat-plate (HT = 0) cascade. This result provides an important 
check on the present analysis, indicating that the mathematical difficulties associated with 
mean flow stagnation at blade leading edges have been successfully overcome. 

The second cascade family, described above, has been studied to indicate the effects of 
blade loading on the response of cascades to incident vortical gusts. Numerical calculations 
were performed for cascades consisting of 6% thick blades with He = 0, 0.04, 0.08 and 0.12. 
The cascade stagger angles corresponding to these values of He are e = 45 deg, 36 deg, 
28.4 deg and 22.6 deg, respectively. The calculated exit Mach numbers and flow angles are 
0.515, 0.395, 0.346 and 0.328 and 46.2 deg, 31.9 deg, 18.6 deg and 6.9 deg, respectively. 
The predicted values for the steady lift force acting on each blade are -0.036 for He = 0., 
0.260 for He = 0.04, 0.412 for He = 0.08, and 0.508 for He = 0.12. The steady Mach 
number distributions along the blade surfaces are shown in Figure 9; the unsteady pressure
difference responses to the standard vortical excitation, in Figure 10. The latter indicate 
that the effect of mean blade loading, or mean flow turning, on the unsteady aerodynamic 
response of cascades to incident vortical exci tations can be significant . 
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6.3 C ompress or a n d Turbine Cascades 

We turn now to more realistic cascade configurations - a compressor exit guide vane 
(EGV), a high-speed compressor cascade, and a turbine cascade. In each case we will compare 
the unsteady response of the actual cascade to a corresponding flat-plate cascade having 
the same blade spacing and operating at the same inlet flow conditions . However ,the flat
plate blades are staggered so that their mean positions are aligned with the mean inlet 
flow direction, i.e., e = SLoo . Thus, the local steady Mach number, M = M- oo , and flow 
angle 0 = 0_00 , are constants for the flat-plate configurations. For each cascade we will 
examine the behavior of the unsteady vorticity, source term and pressure throughout an 
extended blade passage region. The source term is presented for its mathematical rather 
than its physical significance. This term depends upon the manner in which the imposed 
vortical gust is convected by the mean flow. An accurate numerical description of the source 
term is crucial to the successful prediction of the unsteady pressure field excited by the 
gust interaction. We will also examine the reference-blade pressure-difference responses that 
result from the interaction between each blade row and the standard vortical excitation at 
Vg = (1,0), w = 5 and 0- = -27r, and the unsteady lift responses to vortical excitations at 
Vg = (1,0), w = 5 and -37r :::; 0- :::; -7r . 

Exit Vane Guide 

The compressor exit guide vane (EGV) consists of thick, HT = 0.12, highly cambered, 
He = 0.13, modified NACA airfoils. It has a stagger angle of 15 deg, a blade spacing of 
0.6 and operates at a prescribed inlet Mach number and inlet flow angle of 0.3 and 40 deg, 
respectively. The calculated exit Mach number, exit flow angle and mean lift force acting 
on each blade are 0.226, -7.4 deg and 0.36 , respectively. The steady Mach number contours 
and Mach number distributions along a blade surface for this configuration are depicted in 
Figure 11 . 

We will examine the unsteady response of the EGV cascade to incident vortical excitations 
and compare it to that for the corresponding flat-plate cascade with e = n = 40 deg , G = 0.6 
and M = 0.3. Contours of the real part of the complex amplitude of the unsteady vorticity, 
source term and pressure for the EGV and flat-plate cascades are shown in Figures 12, 13 
and 14, respectively, for the standard vortical gust excitation. The prescribed gust is severely 
distorted as it is convected by the nonuniform mean flow through the EGV blade row . In 
contrast, it is convected without distortion by the uniform mean flow through the flat-plate 
blade row. Also, since the vorticity is convected at different mean velocities along the upper 
and lower surfaces of the EGV blades, it is discontinuous across their wakes. The contours 
shown in Figure 13 illustrate the rather strong variations in the source term, p-l V . pv~, 

particularly for the EGV configuration, that can occur within an extended blade passage 
solution domain . Finally, the pressure contours depicted in Figure 14 indicate that the 
unsteady pressure behaviors associated with the EGV and flat-plate cascades are similar far 
upstream, but differ substantially in the vicinity of the blade surfaces and downstream of 
the blade row. 

The pressure-difference responses along the reference blade of the EGV and flat-plate 
cascades to the standard vortical excitation at Vg = (1,0), w = 5 and 0- = -27r are shown 
in Figure 15. The unsteady lift forces acting on the reference blades of the two cascades 
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in Figure 15. The unsteady lift forces acting on the reference blades of the two cascades 
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are plotted versus interblade phase angle for vortical excitations at Vg = (1,0), w = 5 and 
-311" ::; a ::; -11" in Figure 16. The excitations at a = - 404.2 deg and -293.9 deg produce 
resonant acoustic response disturbances far upstream and far downstream of the flat-plate 
cascade and far upstream of the EGVj those at a = - 414 .3 deg and -308.8 deg produce 
such response disturbances far downstream of the EGV. The results in Figures 15 and 16 
indicate the relative importance of nonuniform mean flow phenomena on the local and global 
unsteady aerodynamic response at a blade surface for cascades subjected to incident vortical 
excitations. It should be noted that the unsteady lift acts in the direction of the positive 
y-axis (see Figure 1), and this is inclined at different angles relative to the axial flow direction 
for the EGV (0 = 15 deg) and flat-plate (0 = 40 deg) cascades. Also, the the flat-plate lift 
distributions in Figure 16 are in good agreement with Smith's results, except for interblade 
phase angles lying in the range -540 deg < a < -404.2 deg, where the out-of-phase, i.e, 
I m{fy} , lift responses predicted by the two analyses are similar qualitatively but show small 
quantitative differences. 

Compressor Cascade 

The high-speed compressor cascade consists of cambered, with He = 0.05, modified 
NACA 0006 airfoils (i .e ., HT = 0.06) . This cascade and the corresponding flat-plate cascade 
operate at high-subsonic inlet conditions, i.e., M- oo = 0.7 and fLoo = 55 deg, and have 
a gap-chord ratio, G, of unity. The NACA 0006 cascade has a stagger angle of 45 deg. 
The flat-plate blades are aligned with the inlet free-stream flow direction and are therefore 
staggered at an angle of 55 deg. The exit Mach number and flow angle for the NACA 0006 
cascade are 0.446 and 40.1 7 deg, and the mean lift acting on each blade is 0.348. The steady 
Mach number contours and Mach number distributions over a blade surface for the NACA 
0006 configuration are shown in Figure 17. 

Unsteady flow predictions similar to those given in Figures 12-15 are presented in Fig
ures 18-21 for the standard vortical gust . The unsteady lift responses to vortical gusts at 
Vg = (1,0), w = 5 and -540deg < a < -180deg are shown in Figure 22. Excitations 
at a = - 494.6 deg and a = -494.4 deg produce resonant acoustic response disturbances 
far upstream of the N ACA 0006 and flat-plate cascades and far downstream of the flat 
plate cascade. Excitations at a = -518.9 deg and a = - 420.6 deg produce such response 
disturbances far downstream of the NACA 0006 cascade. 

The vorticity and source term contours shown in Figures 18 and 19 indicate that the 
distortion of the vortical gust by the N ACA 0006 cascade is much less severe than it is for 
the EGV (see F igures 12 and 13) . Although t he mean lift forces acting on the blades of 
t he two cascades are nearly the same, the overall turning 10+00 - 0- 00 1 of the mean flow is 
much greater for the EGV (47.4 deg) than it is for the NACA 0006 compressor (14.8 deg). 
The pressure contours (Figure 20) for the NACA 0006 and flat-plate cascades also show 
much more similarity than those in Figure 14. Some differences between the NACA 0006 
and the flat-plate pressure fields exist just upstream of the blade rows, where relatively large 
amplitude unsteady pressures are associated with the NACA 0006 configuration. 

As shown in Figures 21 and 22, the unsteady pressure-difference responses of the NACA 
0006 and flat-plate blades to the standard vortical excitation (a = - 360 deg) differ along 
the blade surfaces, but the unsteady lift responses to vortical excitations at Vg = (1,0), 
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w = 5 and -540 deg < <7 < -180 deg are very similar, except for interblade phase angles 
lying in the range -540 deg < <7 < -490 deg. In the latter range, the numerical calculations 
for the flat-plate cascade do not agree with Smith's predictions. Because of this and the 
fact that the lift responses at <7 = -540 deg and <7 = - 180 deg predicted by the numerical 
analysis for the flat-plate cascade are not identical, we believe that the numerical results for 
the NACA 0006 and the corresponding flat-plate cascades are incorrect for -540 deg < <7 < 
-490 deg. Improvements to the present analysis are therefore required to permit a more 
accurate evaluation of the source term over a broad range of inter blade phase angles. 

Turbine Cascade 

As a final example we consider the turbine cascade proposed as the fourth standard 
cascade configuration in [27] and a flat-plate cascade operating at the same inlet free-stream 
conditions. These cascades operate at an inlet Mach number of 0.19 and an inlet flow angle 
of 45 deg, and they have a blade spacing G of 0.76. The turbine cascade has a stagger angle 
of 56.6 deg and the flat-plate blades are staggered at e = 0 = 45 deg. The calculated 
exit Mach number and flow angle for the turbine are 0.49 and 72.0 deg, respectively, and 
the mean lift acting on each blade is -2.09. The turbine cascade turns the steady flow 
through an angle 10+00 - 0- 00 1 of 27 deg. The predicted steady Mach number contours and 
blade-surface Mach number distributions are shown in Figure 23. 

Local unsteady response predictions for the turbine and flat-plate cascades subjected to 
the standard vortical gust excitation are shown in F igures 23 through 27, and the lift re
sponses to incident vortical gusts with 'Vg = (1,0), w = 5 and -540 deg < <7 < -180 deg , in 
F igure 28. Excitations at <7 = -396.8 deg and <7 = -311.7 deg produce resonant acoustic 
response disturbances far upstream of the turbine cascade and far upstream and far down
stream of the flat-plate cascade. Excitations at <7 = -389.0 deg and at <7 = -279.2 deg 
produce such response disturbances far downstream of the turbine cascade. 

As shown in Figure 24, the standard vortical gust is highly distorted as it is convected 
t hrough the turbine blade row. In addition, the source term (Figure 25) associated with this 
gust has relatively large gradients within the passage and downstream of the turbine blade 
row. These give rise to high unsteady pressures (Figure 26) along the suction surface of the 
blades and downstream of the turbine blade row. As indicated by the results in Figure 25 
the unsteady pressure fields associated with the turbine and the corresponding flat-plate 
cascades differ substantially. As a consequence, there are significant differences between the 
unsteady pressure-difference responses at the reference turbine and flat-plate blade surfaces 
for <7 = -27f (Figure 27), and between the unsteady lift responses over a significant range 
of interblade phase angles (Figure 28). The unsteady response predictions for the turbine 
and flat -plate cascades illustrate rather dramatically the substantial impact that mean flow 
t urning can have on the unsteady aerodynamic response of cascades to incident vortical gusts. 
We should add that, for this example, the flat-plate lift response predicted by the present 
analysis and the Smith analysis are in good agreement over the entire range, - 37f ::; <7 ::; -7f , 
of interblade phase angles considered. 
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7. Concluding Remarks 

A linearized analysis for predicting the unsteady pressure response of a cascade of airfoils 
to external aerodynamic excitations has been presented. The unsteady flow is regarded as 
a small perturbation of a nonuniform isentropic and irrotational steady background flow. 
Goldstein's splitting, [16,17]' along with a recent modification introduced by Atassi and 
Grzedzinski [20] have been used to decompose the linearized unsteady velocity into irrota
tional and rotational parts, leading to equations for the linearized unsteady entropy, rota
tional velocity, and velocity potential that are coupled only sequentially. The entropic and 
rotational velocity fluctuations are described in terms of the mean-flow drift and stream 
functions, and the potential fluctuation is governed by an inhomogeneous convected wave 
equation in which the source term depends on the rotational velocity field. In this report 
the analytical and numerical techniques used to determine the linearized unsteady flow have 
been described and demonstrated through a series of numerical examples . 

Numerical studies have been conducted to evaluate the capabilities of this linearized un
steady aerodynamic analysis and the LINFLO computer code for predicting the response 
of cascades to incident vortical gusts. For this purpose we have considered the following 
configurations: flat-plate cascades, cascades of uncambered N ACA OOXX airfoils, cascades 
of cambered N ACA 0006 airfoils, a cascade of thick, highly cambered blades that is represen
tative of the exit guide vane (EGV) of a high-pressure compressor, a high-speed compressor 
cascade consisting of cambered NACA 0006 blades, and a turbine cascade. In each case 
we have taken as a standard gust a unit-amplitude vortical excitation at reduced frequency 
w = 5 and inter blade phase angle (J" - 27r . 

The results obtained using the present analysis were found to be in very good agreement 
with the results of Smith's [4] analysis for flat-plate cascades operating at low (M = 0.3) and 
moderate (M = 0.5) Mach numbers, but the agreement for flat-plates operating at high sub
sonic Mach number (M = 0.7) was not satisfactory. It appears that the grid currently used 
in the numerical unsteady calculation is not adequate for resolving the high wave number 
acoustic response phenomena that is associated with high steady-flow Mach numbers and 
high excitation frequencies. Results for the cascades of symmetric NACA OOXX airfoils show 
reasonable trends with varying blade thickness, and indicate that blade thickness has only 
a limited impact on the response of a cascade to incident vortical gusts . The blade thick
ness study also indicates that the present analysis overcomes the mathematical difficulties 
associated with unsteady vortical perturbations of potential mean flows containing leading 
edge stagnation points. The numerical results for the cascades of cambered N ACA 0006 
airfoils show that the effect of mean blade loading, or mean flow turning, on the unsteady 
aerodynamic response of cascades to vortical excitations can be significant. 

More detailed gust response predictions have been presented for the compressor exit guide 
vane (EGV), the NACA 0006 compressor cascade, and the turbine cascade. These include 
vorticity and pressure contours that illustrate the manner in which a vortical gust is distorted 
as it is convected, by the mean flow, t hrough a blade row, and the unsteady pressure response 
that is excited by the interaction of this gust with the blading. The numerical results for 
the compressor and turbine cascades serve to demonstrate the current capabilities of the 
present unsteady analysis and LINFLO computer code for predicting the unsteady pressure 
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response of cascades operating under high mean load conditions and at high subsonic inlet 
Mach number. 

The analysis described in this report provides very efficient predictions of the pressure 
response of realistic cascade configurations to unsteady aerodynamic and structural excita
tions . Therefore, this analysis should be useful for turbomachinery aeroelastic and aeroa
coustic design investigations . Improvements are still needed so that high wave number 
acoustic response phenomena can be resolved and the potential-equation source term can be 
accurately determined over broad ranges of excitation frequency and interblade phase angle. 
Also, in future work, the composite-mesh solution capability of Ref. [19J should be applied 
to the gust response problem so that entropic and vortical perturbations of discontinuous 
t ransonic mean flows can also be analyzed. Finally, the LINFLO code should be coupled to 
the new steady potential code, currently being developed under a joint NASA Lewis/UTRC 
research effort, so that the unsteady pressure response of cascades that are representative 
of those found in the Space Shuttle Main Engine, i.e., cascades that operate at low Mach 
numbers but induce very high mean-flow deflections, can be analyzed. 
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List of Symbols 

All physical parameters listed below are dimensionless. Lengths have been scaled with 
respect to blade chord, time with respect to the ratio of blade chord to a reference flow 
speed, density and velocity with respect to a reference density and flow speed, respectively, 
pressure with respect to the product of the reference density and the square of the reference 
flow speed, and entropy with respect to a reference value of the fluid specific heat at constant 
pressure. The reference values of the fluid properties are taken to be their upstream free
st ream values. If an equation or figure is given after a symbol description, it is the equation, 
figure or figure caption in which the symbol first appears. 

Roman 

A 

A 

A 

B 

c 

D 

dr 

e 

F 

G 

G 

Vector function of X - V -cot, Equation (4 .6). 

Complex amplitude of A , Equation (4.9). 

Speed of sound in mean or steady background flow, Equation (3.3). 

Constant which describes mean flow behavior in the vicinity of a leading
edge stagnation point, Equation (4 .13). 

Mean position of references blade surface, Equation (2.1). 

Blade camber distribution function, Equation (6.2). 

Jacobian determinant for the independent variable transformation 
(3, \If) -+ (~,7]), Equation (5.4) . 

differential tangent vector, Equation (4.2) . 

Differential length, Equation (4.1). 

Unit vector, Equation (4.2). 

Arbitrary scalar or vector function of X - V - cot, Equation (4.4) . 

Complex function of the mean-flow stream function, Equation (4.11). 

Complex amplitude of first-harmonic unsteady lift, Figure 7. 

Cascade gap vector (= GeT)), Equation (2.1). 

Blade spacing in "circumferential-" or 7]-direction; circumferential 
wave length of an incident disturbance. 
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P, Q 
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'R 

R 
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Sh 
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T 

t 

V 

V 

V 

Height of circular-arc camber line at blade midchord, Equation (6.2). 

Nominal blade thickness, Equation (6.1). 

Complex amplitude of blade translation normal to chord line, 
Figure 6. 

imaginary unit, Equation (2.1). 

Mach number in steady background flow, Equation (3.3). 

Blade number index, Equation (2.1). 

unit normal vector, Equation (3.7). 

Grid control function, Equation (5 .2), (5.3). 

Pressure in mean or steady background flow, Equation (3.3) . 

First-order unsteady pressure, Equation (2.4) . 

Complex amplitude of first-harmonic unsteady pressure, Equation (2.4). 

Surface (blade, wake or shock) displacement vector, Equation (2 .1). 

Radius of circular-arc camber line, Equation (6 .2). 

Complex amplitude of surface displacement vector, Equation (2.1). 

Shock mean position, Equation (3.10) . 

First-order unsteady entropy, Equation (2 .2). 

Complex amplitude of first-harmonic unsteady entropy, Equation (2.2). 

Blade thickness distribution function, Equation (6.1). 

Time, Equation (2.1). 

Unsteady velocity, Equation (3 .1). 

Mean or steady velocity, Equation (3.1). 

First-order unsteady velocity, Equation (3.1). 
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v 

x 

X,Y 

x 

X,Y 

w 

Greek 

c¥, {3, 8 

e 

(J 

3, H 

Complex amplitude of first-harmonic unsteady velocity, Equation (3.19). 

CompLex amplitude, at x = 0, of incident gust velocity component 
normal to inlet free-stream direction, Figure 5. 

Rotational component of first-order unsteady velocity, 
Equation (3.5), (4.10). 

Complex amp Ii tude of first- harmonic unsteady rotational velocity, 
Equation (3.15), (4.12) . 

Lagrangian coordinate vector, Equation (4.3). 

Surface coordinate, Equation (6 .3). 

Position vector, Equation (2.1) . 

Cartesian coordinate along, normal to blade chord, Figure 1. 

Wake mean position, Equation (3.8). 

Coefficients of (3, \lI) ---+ (~, 7]) coordinate transformation, Equation (5.7). 

Fluid specific heat ratio, Equation (3 .3) . 

Complex amplitude of first-harmonic unsteady pressure difference, Figure 5. 

Drift function, Equation (4.1). 

Small parameter «< 1) . 

First-order unsteady vorticity, Equation (2.3). 

Complex amplitude of first-harmonic unsteady vorticity, Equation (2.3). 

Cascade stagger angle, Figure 1. 

Slope of blade camber line, Equation (6.3). 

Wave number vector, Equation (2 .2) . 

Independent variable in computational space, Equation (5 .2), (5 .3). 
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<p, 1/ 

~E 

x 

w 

Mathematical 

jj /Dt 

Dw / Dt 

Im { } 

Re{ } 

Cascade axial, "circumferential" Cartesian coordinate, Figure 1. 

Density in steady background flow, Equation (3.3). 

Inter blade phase angle, Equation (2.1). 

Unit tangent vector, Equation (3 .7). 

Velocity potential of the steady background flow, Equation (3.2). 

Velocity potential of the irrotational component of the first-order unsteady 
velocity, Equation (3 .6), (4.10) . 

First-order pressure-less or convected potential , Equation (4 .10). 

Complex amplitude of the first-harmonic unsteady velocity potential, 
Equation (3 .17) , (4 .14) . 

Velocity potential associated with acoustic excitation, Equation (3.16). 

Velocity potential associated with the far-field acoustic response and the 
far downstream vortical fluctuation, Equation (3.16). 

Coefficient that describ.es the axial variation of the first-order unsteady 
potential or pressure in the far field, Equation (3.17). 

Stream function for mean or steady background flow, Equation (4.2). 

Steady flow angle, Figure 1. 

Temporal frequency, Equation (2.1) . 

Mean-flow convective derivative operator, Equation (3.4) . 

Convective derivative operator for first-harmonic unsteady flow, 
Equation (4.14) . 

Imaginary part of { }, Figure 5. 

Real part of { }, Equation (2.1) and Figure 5. 
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Subscripts 

B 

EXC 

I 

Z,) 

m 

n 

N, T z, 'T} 

Ref 

+ 

=Foo 

Superscripts 

Gradient operator, Equation (3.2). 

Tensor or dyadic product, Equation (4.6) . 

Change in a flow quantity at a surface of discontinuity, Equation (3.8). 

Reference blade surface, Equation (6.3). 

Excitation generated by adjacent upstream blade row. 

Incident pressure or irrotational velocity disturbance, Equation (2.4). 

Mesh point indices, Equation (5.8). 

Blade number index, Equation (3.7). 

Shock number index, Equation (3.10). 

Direction of vector component; N - normal to inlet free-stream flow direc
tion, Equation (4.1); T - along inlet free-stream direction, Equation (4.3); 
z - out from the page, Equation (4.2); 'T} - the cascade circumferential 
direction, Figure 1. 

Reference wake location. 

Along streamline, Equation (4.1). 

Axial location at a finite distance upstream from blade row, point of intersec
tion (e-,'T}-) of axial line e = e- and reference blade stagnation streamline. 

Axial location at a finite distance downstream from blade row. 

Far upstream/ downstream value of an unsteady flow quantity, 
Equation (2.2); inlet/exit free-stream value of a steady flow quantity, Figure 1. 

Time-dependent flow quantity, Equation (2.2). 

Lower, upper surface of blade, Equation (6.3) . 

Modified first-order velocity potential or rotational velocity, Equation (4.10) . 
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Figure 2. Unsteady excitations: blade motion; incident vortical and entropic disturbances 
from upstream; and incident acoustic disturbances from upstream and downstream. 
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Figure 5. Effect of Mach number on t he unsteady pressure-difference response of a flat 
plate cascade with n = e = 45 deg and G = 1 subj ected to an incident vort ical gust with 
Vg = (1,0), w = 5 and (J' = - 27r : (a) in-phase component (real part) of 6p, (b) out-of-phase 
component (imaginary part); - - - Smith analysis (Ref. 4), present analysis. 
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Figure 8. Effect of blade t hickness on the unsteady pressure-difference response of ACA 
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Figure 9 Effect of mean blade loading on the steady Mach number distribution along a 
blade surface for cascades of cambered NAC A 0006 airfoils; - - - upper surface of blade, 
---- lower surface. 
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for cascades of cambered NACA 0006 blades subjected to an incident vortical gust with 
Vg = (1 , 0), w = 5 and a = -271": (a) and (b) as in figure 5. 
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Figure 11. Mach number contours and blade surface Mach number distributions for a 
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Figure 12. Contours of the real part of the unsteady vorticity for the EGY and the corre
sponding flat-plate (M = 0.3, n = e = 40 deg, G = 0.6) cascades subjected to an incident 
vortical gust with Vg = (1, 0), w = 5 and (J" = - 271" . 
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Figure 13 . Contours of the real part of the source term for the EGV and the corresponding 
fiat-plate cascades subjected to an incident vortical gust with Vg = (1,0), w = 5 and (7 = -27r. 
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F igure 14 . Contours of the in-phase component (real part) of the unsteady pressure for the 
EGV and the corresponding fiat -plate cascades subjected to an incident vortical gust with 
Vg = (1,0), w = 5 and (T = -27r . 
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Figure 15. Unsteady pressure-difference response for the EGV and corresponding flat-plate 
cascades subjected to an incident vortical gust with Vg = (1,0), w = 5 and (j = -27r: (a) in
phase component (real part); (b) out-of-phase component (imaginary part); - - - flat-plate 
cascade, EGV cascade. 
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Figure 17. Mach number contours and surface Mach number distributions for steady flow 
with M-oo = 0.7 and .fLoo = 55 deg through the cambered NACA 0006 cascade (8 = 45 
deg, G = 1.0, HT = 0.06 and He = 0.05). 
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Figure 18. Contours of the real part of the unsteady vorticity for the cambered N ACA 0006 
and the corresponding fiat-plate (M = 0.7 , n = e = 55 deg, G = 1.0) cascades subjected to 
an incident vortical gust with Vg = (1,0), w = 5 and (7 = -27r. 
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Figure 19. Contours of the real part of the source term for the cambered NACA 0006 and 
the corresponding flat-plate cascades subjected to an incident vortical gust with Vg = (1,0), 
w = 5 and (7 = -27r. 
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Figure 19. Contours of the real part of the source term for the cambered NACA 0006 and 
the corresponding flat-plate cascades subjected to an incident vortical gust with Vg = (1,0), 
w = 5 and (7 = -27r. 
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F igure 20 . Contours of the in-phase component (real part) of the unsteady pressure for the 
cambered NACA 0006 and the corresponding fiat-plate cascades subjected to an incident 
vortical gust with Vg = (1,0), w = 5 and (7 = -21r . 
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Figure 21. Unsteady pressure-difference response for the cambered NACA 0006 and cor
responding flat-plate cascades subjected to an incident vortical gust with Vg = (1,0), w = 5 
and a = -27r: (a) in-phase component (real part); (b) out-of-phase component (imaginary 
part); - - - flat-plate cascade, NACA 0006 cascade. 
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Figure 22. Unsteady lift versus interblade phase angle for the cambered NACA 0006 and 
corresponding flat-plate cascades subjected to incident vortical gusts with Vg = (1,0) and 
w = 5: (a), (b), - - - and as in figure 21. 
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Figure 23. Mach number contours and surface Mach number distributions for steady flow 
with M- oo = 0. 19 and fL oo = 45 deg through the turbine cascade (8 = 56 .6 deg and 
G = 0.76). 
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F igure 24. Contours of the real part of the unsteady vorticity for the turbine and the 
corresponding flat-plate (M = 0.19, n = 0 = 45 deg , G = 0.76) cascades subjected to an 
incident vortical gust with Vg = (1,0), w = 5 and (J = -271". 
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Figure 25. Contours of the real part of the source term for the turbine and the corresponding 
fiat-plate cascades subjected to an incident vortical gust with Vg = (1,0), w = 5 and () = -21r. 
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Figure 26. Contours of the in-phase component (real part) of the unsteady pressure for 
the turbine and the corresponding flat-plate cascades subjected to an incident vortical gust 
with Vg = (1, 0), w = 5 and (J" = -27T'. 
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Figure 27 . Unsteady pressure-difference response for the turbine and corresponding fiat
plate cascades subjected to an incident vortical gust with Vg = (1,0), w = 5 and (J = - 21r: 
(a) in-phase component (real part); (b) out-of-phase component (imaginary part); - - -
fiat-plate cascade, turbine cascade. 
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Figure 27 . Unsteady pressure-difference response for the turbine and corresponding fiat
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(a) in-phase component (real part); (b) out-of-phase component (imaginary part); - - -
fiat-plate cascade, turbine cascade. 
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F igure 28. Unsteady lift versus interblade phase angle fo r the turbine and corresponding 
flat-plate cascades subjected to incident vort ical gusts with Vg = (1 , 0) and w = 5: (a), (b), 
- - - and as in figure 27. 
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