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PREFACE

FIRE (First ISCCP Regional Experiment) is a U.S. cloud-radiation research program formed in 1984 to
increase our basic understanding of cirrus and marine stratocumulus cloud systems, to develop realistic
parameterizations for these cloud systems, and to validate and improve ISCCP cloud product retrievals.
A FIRE Science Meeting was held in Monterey, California, July 10-14, 1989, to highlight presentations
of results culminating 5 years of FIRE Phase I research activities that focused on these objectives.

This Conference Publication contains the full text of the papers presented at the FIRE Science Meeting.
The presentations describe important elements of the 1986 Cirrus Intensive Field Observations (IFO),
the 1987 Marine Stratocumulus IFO, the Extended Time Observations (ETO), and modeling activities.
A number of papers describe collaborative efforts involving the comparison of multiple data sets (i.e.
satellite, airborne, and surface), incorporation of data measurements into modeling activities, validation
of ISCCP cloud parameters, and development of parameterization schemes for GCMs.

In order to keep this volume to a manageable size and to encourage authors to complete their papers and
submit them to refereed journals, summaries were restricted to a maximum of 5 pages.

The managers of the sponsoring agencies wish to express their thanks and appreciation to the FIRE
investigators, not only for their conscientious and skillful efforts in preparation for and displayed at this
meeting, but also for their dedication, cooperation, and scientific excellence that they have performed
throughout the years of FIRE Phase I.

I am pleased to acknowledge the contributions of the session chairmen: Bruce A. Albrecht, James A.
Coakley, Stephen K. Cox, Howard P. Hanson, Michael D. King, Pat Minnis, David A. Randall, Kenneth
Sassen, David O'. C. Starr, and Graeme Stephens. It is with grateful appreciation that I recognize the
talents and efforts of Doris Stroup, STX, for the excellent logistics in planning, preparing, and conducting
this meeting and, with Ginanna Karalfa, STX, for the administrative and secretarial assistance in preparing
this document.
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Comparative Climatology of Four Marine Stratocumulus Regimes

HOWARD P. HANSON

Atmospheric and Climate Dynamics Program

Cooperative Institute for Research in Environmental Sciences

University of Colorado at Boulder 80309-0216

1. Introduction

Much has been made of clouds in

the climate system of late, including a

Symposium on the Role of Clouds and

Chemistry in Global Climate at the 1989

Annual Meeting of the AMS and a spe-

cial session on Clouds and Climate at the

Spring, 1989, AGU Meeting. On top of

this high visibility in the scientific com-

munity, there seems to be the popular

perception that, as climate warms, clouds

will tend to occur more often--i.e., their

time/space areal coverage will

increase--thus helping to ameliorate the

problem of global warming. Of course,

the FSET community is unlikely to take

such a stand, for at least two reasons.

First, it is overly simplified: if cirrus

cloud coverage increases, the problem of

global warming is likely to be exacer-

bated. Second, the relationship of cloud

coverage to average temperature is not at
all obvious. One of the reasons to con-

tinue FIRE toward Phase II is to attempt

to develop a quantitative understanding

of just this question.

As currently envisioned, the second

set of FIRE IFO's will again be process-

oriented, using a coordinated observa-

tional approach to examine the behavior

of cloud systems on the time and space

scales of the individual cloud elements

composing the systems. A complemen-

tary approach, embodied by the large-

scale, long-term FIRE components, is the

analysis of existing climate data sets

without specific concern about the

behavior of the individual cloud ele-

ments. One such study is the topic of this

paper. The focus here is on the climatol-

ogy of MSc cloud regimes off the west

coasts of California, Peru, Morocco, and

Angola. The material presented here

complements the brief climatology of

July that appears in the "Grey Book", the

FIRE Phase II Research Plan (FIRE Pro-

ject Office, 1989) 1. This abstract, due to

space limitations, presents the long-term,

annual averages of several quantities of

interest in the four MSc regimes.

The climatologies presented here

were constructed using the Comprehen-

sive Ocean-Atmosphere Data Set--

COADS (Woodruff et al., 1987). A 40-

year time series of the observations

(1948-1987) was extracted for 32°x32 °

analysis domains in the four MSc

regimes; the figures to follow are simply

averages of these data sets. The data

were taken from the monthly-averaged,

2 ° product, and the resolution of the

analysis is therefore limited to scales of

greater than about 200 km with sub-

monthly variability not resolved. Back-

ground maps for the four areas of interest

are shown in Fig. 1, with 2 ° squares

superimposed. In contrast to actual

coastlines, the COADS land squares

1 The July SST and cloud cover figure cap-

dons in the Grey Book were inadvertantly
transposed.
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(dark in Fig. 1) provide only a crude esti-

mate of geography. Consequently, cori-

tours near the coast are not necessarily

accurate; this point is underscored by the

contamination of coastal squares by
observations made near shore. In addi-

tion, the plotting package shifts data to

the centers of the 2° squares; therefore

the coastal observations do not represent

open ocean conditions well. The figures

to follow therefore take the expedient

approach of blanking out the near-shore

COADS data. In addition, the observa-

tions in the southwest comer of the

domain off Peru are sparse (the hatched

squares were omitted from the analysis),

and the resulting analyses are often noisy.

The averages of total cloud cover,

SST, and surface pressure are presented

here. "Cloud cover" in COADS is total

cloudiness, as observed from the surface.

For the regions under consideration, it

correlates well with low cloud cover, i.e.,

marine stratocumulus, broken stratus, and

trade cumulus.

Acknowledgments: This research is supported by

the National Aeronautics and Space Administra-

tion and the Office of Naval Research.
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are COADS continents; 2* grid is superimposed. Hatched squares in the South Pacific

were excluded from the analysis.
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2. Cloudiness

The long-term average of total

cloud cover (in tenths---below) is surpris-

ingly similar to that of July (shown in

Appendix B of the Grey Book [p.B-15]),

with the off-shore maxima of cloudiness

having somewhat lower values in the

annual mean. Although very noisy, the

data off Peru indicate that, both for July

and for the annual mean, the maximum

cloud cover occurs over the southeast

Pacific, with a large area just off shore

exhibiting coverage of more than 90% in

July and more than 75% in the annual

average. The least cloudiness occurs off

Morocco; in fact, the larger values to the

north of the Morocco domain are associ-

ated with frontal activity, and the sub-

tropical cloudiness, in the annual aver-

age, is shifted to the far southwest of the

domain.
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3. Sea-Surface Temperature

As with the cloud cover, the annual

mean SST (°C--below) is quite similar

to the July average (Appendix B [p. B-

13]), although, naturally, the July tem-

peratures are somewhat higher in the

Northern Hemisphere and cooler in the

Southern Hemisphere. Note that the coa-

stal upwelling is evident in all four

regimes even in the annual average, and

that the bias of the temperatures off

Morocco by about +3°C over the other

areas holds in the annual average as well

as for July. Also of interest is the much

stronger N-S SST gradient off California

compared to the other regimes.
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4. Surface Pressure

The surface pressure and wind fields

(below) for the annual average reflect

seasonality to a greater degree than does

the cloud field, but there are still large

similarities between the annual average

and the July average (Appendix B [p. B-

14]). The subtropical highs are

stronger--in both hemispheres--in July

and shifted northward slightly, but the

wind fields in the areas of maximum

cloud cover are remarkably similar.

There is an apparent correlation of the

areas of maximum cloudiness with

stronger winds, suggesting that either or

both advective effects and strong surface

fluxes play a strong role in cloud mainte-

nance, at least from the climatological

perspective.
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Large-scale Variability in Marine Stratocumulus Clouds Defined from

Simultaneous Aircraft and Satellite Measurements

Bruce A. Albrecht

Penn State University

University Park, PA 16802

and

Roy W. Barlow

Cloud Physics Branch

Meteorological Office, London Road, Berks RGI2 2SZ, UK

Satellite images often show significant variations in the structure of

marine stratocumulus clouds on scales ranging from I0 km to I000 km. This is

illustrated in Fig. I where a GOES West satellite image shows a well-defined

variation in cloud structure near 32 N, 122 W on 30 June 1987. Aircraft

measurements were made with the UK C-130 and the NCAR Electra on this day as

part of the FIRE Marine Stratocumulus IFO. The UK C-130 made measurements in

a solid cloud area at approximately 32.5 N, 123.5 W and just north of a more

textured cloud area sampled by the Electra at approximately 31 N, 122 W. In

this paper we compare the mean, turbulent, and the microphysical structure of

the clouds sampled in these two areas and attempt to explain the differences

in cloud structure at regions E and B in Fig. i.

The two aircraft used in this study were comparably instrumented and both

flew along-wind and cross-wind legs of about 60 km in length at several levels

in the boundary layer to make estimates of turbulent quantities. Mean

profiles of temperature, mixing ratio, winds, and microphysical quantities

were obtained during slow ascents and descents.

In an attempt to identify any systematic differences betwee_ the

measurements made with the two aircraft, we analyzed data that were collected

on 14 July 1987 with the C-130 and the Electra flying in close formation at an

altitude of 250 m. In general, both the mean and the standard deviation of

the temperature, moisture, pressure and the sea surface temperature were in

good agreement during the intercomparison. The mean temperature from the two

aircraft differed by about 0.2°C and the mixing ratio differed by about 0.i

g/kg.

The mean flow in the regions sampled by the C-130 and the Electra on 30

June was weak. A 1028 mb high was centered about 1500 km west of the Oregon

and Washington coast and resulted in relatively weak pressure gradients off

the coast of southern California (Kloesel et al., 1988). Boundary layer winds

were about 4 m/s from the northwest. The sea surface temperature was about

18°C in the area of the Electra compared with 16°C at the more northerly

location of the C-130. These differences in temperature are reflected in the

potential temperature profiles made during the early part of the mission (II00

LST) shown in Fig. 2. The boundary layer temperature at the Electra's

location is about 2% warmer than that at the C-130. The C-130 sounding is

about 1-1.5 g/kg drier than the Electra as shown by the mixing ratio profiles

in Fig. 3. Although the cloud thickness is about the same in the two regions,

.r__._,_'.,_,,,_..,:.,.=_,,!_,,['_OT FILMED
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the cloud liquid water content measured from the C-130 is about 0.2 gm -3

greater than that measured with the Electra (Fig. 4). Soundings taken later

in the experiment from 1600-1800 LST show similar differences in the boundary

layer temperature and moisture (Fig. 5 and 6).

The thermodynamic structures at the two locations are similar. The

inversion is at a height of about 900 m at both sites and varies little with

time. The air just above the inversion, however, is drier in the area sampled

by the Electra than it is in the area sampled by the C-130. This results in a

i0 K decrease in equivalent potential temperature (THETAE) across the

inversion in the Electra sounding with no jump in THETAE at the inversion for

the C-130. A well-defined moist layer extends from about 1250-1750 m in the

C-130 sounding. This moist layer is capped by a weak inversion. Evidence of

a moist layer is also present in the Electra sounding. These soundings

indicate that the relatively complicated moisture stratification above the

inversion on this day appears to have a large areal extent.

The soundings at both locations show a stable layer at about 450 m, which

indicates some decoupling (Nicholls, 1984). This stable layer is better

defined later in the day (Fig. 5), which is consistent with the diurnal

variations described by Nicholls. Although small cumuli were observed beneath

and sometimes penetrated into the main stratus deck in both areas sampled, the

stable layer is better defined in the Electra sounding than in the C-130

sounding. Lidar observations from the Electra indicate a cumulus cloud base

near the weak stable layer at 450 m, which is about 200 m below the stratus

deck. In addition, the moisture structure clearly shows the decoupling (Fig.

6). The lower layer is shallower in the late afternoon sounding than in the

earlier sounding. This may be due to the moistening of the low levels and a

drying of the cloud layer associated with the decoupling.

The microphysical and turbulence data are being compared in an attempt

to explain the differences in the cloud liquid water content obtained with the

two aircraft and the differences in cloud structure shown by the GOES image.

In addition, data are being analyzed for three other days during the

experiment when coordinated downstream flights were made with the Electra and

the C-130.
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Figure I. GOES West visible image for 30 June 1987 at 2015 UTC. The 'B' marks

the general area sampled by the UK C-130 and the 'E' marks the region

sampled by the NCAR Electra.
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Figure 2. Potential temperature profile from the C-130 at approximately 9:45

UTC and the NCAR Electra at approximately 19"I0 UTC on 30 June 1987.

11



E
V

N

2000 ] _

- _........ _.__

15oot

1000.

C-130

I - t

500 _

0 I I
0 2 4 6

Electro

8 10 12

. (g/kg)

Figure 3. Same as Fig. 2 but for mixing ratio.

E

N

2000

1500

1000

500

J

C-130

-_,

0 I I
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

Llquid woter content (gin -3)
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ON ESTIMATING SCALE INVARIANCE IN STRATOCUMULUS CLOUD FIELDS

Genevieve Seze ° and Leonard A. Smith °°

OLMD/ECOle Polytechnique 91128 Palaiseau Cedex (France)
OODAMTP, Cambridge University Cambridge CB3 9EW (UK)

Examination of cloud radiance fields derived from satellite observations sometimes indicates the

existance of a range of scales over which the statistics of the field are scale invariant. Many
methods have been developped to quantify this scaling behavior in geophysics. The usefulness of

such techniques depends both on the physics of the process being robust over a wide range of
scales and on the availability of high resolution, low noise observations over these scales. The

present paper applies these techniques (area perimeter relation, distribution of areas, estimation
of the capacity, d0, through box counting, correlation exponent ) to the high resolution satellite
data taken during the FIRE experiment and provides initial estimates of the quality of data

required by analysing simple sets. We procede by contrasting the results of the observed fields
with those of images of objects with known characteristics (e.g. dimension) where the details of

the constructed image simulate current observational limits. Throughout we shall speak of cloud
elements and cloud boundaries; it should be clearly understood that by this we mean structures in

the radiance field: all the boundaries considered here are defined by simple threshold arguments.

DATA

The satellite images considered here are Spot images (see Figure 1), covering aproximately60km

by 70km, which were taken during the FIRE experiment on stratocumulus on June 7th, 8th and
19th in the panchromatic mode (10m resolution at visible wavelengths) and the multispectral

mode (20m resolution at visible and near infrared wavelengths). The results presented here are
for the 10m resolution images unless otherwise stated. Two of the scenes, those from the 7th and

the 8th, show overcast conditions while the scene on the 19th is almost clear with only small

cumulus clouds present. For each image, several thresholds are chosen and the corresponding

binary images constructed. In order to test the reliability of the methods defined below, we
construct similar binary images of known scaling structure. Our aim is to determine the effect of
reasonable amounts of variation in the large scale structure; here we report initial studies

considering only the observational effects on the common Koch island. This set is constructed by

repeated replacement of a sample pattern at smaller and smaller scales and is shown in Figure 2.
In this case we know the boundary is a homogenous fractal with dimension(s) equal to

Iog(4)/Iog(3).

INDIVIDUAL ELEMENT ANALYSIS

Historically, the first approach to analysing the scaling behavior in cloud boundaries (Lovejoy,

1982) was through techniques which quantified the properties of individual cloud elements via

area-perimeter studies. This approactl is very appealing and we begin with it.

i) Area-Perimeter Studies

When self-similar objects are viewed under increasing magnification, details in the boundaries

appear in a rate determined by the dimension of the boundary. In a similar way, one expects a
relation between the area and perimeter of a collection of similar objects of different size all

observed at the same resolution (Mandelbrot , 1982). In an image the area is simply defined as

the number of pixel forming the cloud; the perimeter may be defined in one of two ways either (1)

as the number of pixels on the cloud boundary, or (2) as the number of pixel edges on the cloud

boundary.

To estimate the effects of finite resolution in the most optimal case, Koch islands of various sizes

and orientations relative to a 4096x4096 grid were constructed and their areas and perimeters

PRECEDING PAGE ELA[',]K NOT FILMED
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were computed. The results are shown on a log-log plot of the square root of area versus the

perimeter (Figure 3). The linear relation is evident. Note the variability due to the grid; this
would be the expected error if every cloud had exactly the same macroscopic structure; it is,

effectively, the smallest possible error level. A more complete study using clouds with
homogeneous boundary dimensions but different macroscopic characteristics will be presented in

a more detailed report. As expected the "scatter" in this area-perimeter graph is greater due to

macroscopic structure in the observations.

The area and perimeter of the cloud elements from the SPOT images were computed for a variety
of different subscenes of size 1024"1024 to 6000*7000 pixels. To avoid finate lengh scale

effects clouds smaller than 16 pixels in area were not included in the analysis. Figure 3 shows the

observed power law relation between these area and perimeters. The exponents found are almost

independent of the threshold and of the size of the sub-scene and were generaly similar for both
the 10m and the 20m resolution images. For the stratocumulus deck this exponent is between

(1.35-1.40); for the fair weather cumulus (19th) this exponent is between 1.30-1.32. A similar

behavior was found by Cahalan and by Welch el al. using Landsat images. We do not, however, see
the increase in these exponents with increasing threshold observed by Cahalan.

The variability found for clouds is larger than that for the Koch islands. This is in part due to the
different macroscopic structure of the various cloud elements. We are also concerned that high

elipticity clouds are selectively removed from the sample because they are more likely to cross
the boundary of the image. Such a bias could result in lowering the spread of observed areas for
a given perimeter and producing a misleading result.

Using definition (2) for the perimeter results in changes as large as 0.8 in the estimated vaiue of
the power law exponent. This change remain if the inner cutoff (i.e. the size of the smallest
clouds taken included in the estimate) is changed , such an effect does not occur in the scaling of

the Koch island and indicate the presence of macroscopique effects.

i) The distribution of observed areas

For the SPOT scenes, taking reasonable thresholds, our observations are in agreement with those

of Cahalan (1988) and Welch et a1.(1988). Specifically, we observe that the rate at which the

number of cells of a given surface area decreases with increasing surface area is well

aproximated by a power law over a range of scales compatible with the scene size. This result is
clear on the 1024"1024 scenes but not so evident from the 2048 scene compare to the 6000

scene. Again in agreement with Cahalan, the fair weather cumulus fields appear, in general, less

fragmented (exponent value smaller than 1) than the stratocumulus fields (exponent value larger

than 1). The results obtain from the 3 simultaneous 20m resolution scenes appear quite consistent

while they exist some differences between these results and those obtained with the 10m
resolution scene. The extend to which these differences are due to resolution, threshold, and

changes in cloud properties is not certain; however, resolution effect seems to dominate.

FULL FIELD ANALYSIS

Both the strength and the weakness of the area-perimeter method is that it does not consider the
interaction of the different elements which compose the field An alternative approach to

individual element analysis is to consider the scaling properties ol the boundary set of the entire
field as a whole. Once the behavior of the full field is considered, the potential complexity of the

structures observed increases greatly. As pointed out by Schertzer and Lovejoy(1989), the

disparity in the scaling exponents reported by different groups may be due to differences in the
absolute calibration and resolution of the instruments involved. Given a gridded field of fractal

boundaries, it is not yet clear how much data is required to estimate the dimension. The range of
scales, and hence the data requirements, will clearly depend on the complexity of the boundary.

Below we give an indication of data range required by analysing a single Koch curve.
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BOX COUNTING: COMPUTING THE DO OF BOUNDARIES

For lhe boundary sets , the estimated capacity or Iraclal dimension, dO, Is obtained by assufnmg
that the number of boxes (aligned with the grid) required to cover the set is related to their size

(side length) by a power law. The capacity is the exponent of this power law. When dealing with

finitely resolved sets, it is useful to consider the variations of this exponent with length scale.
We denote this quantity d0(I); dO is then the limiting value of d0(I) as I tends to zero.

Figure 5 shows this function for a single Koch island which fills the initial frame. Note the slow
transition to the asymptotic value; effectively scales greater than 2"'-6 times ( or

howevermany data points are bad) the size of the element must be treated as a transition zone.

This makes the analysis of a field composed of a variety of distinct elements of various sizes
difficult. For the SPOT images, for the cloud boundaries, the same estimation of dO has been done

for both 1024, 2048 and 4096 square scenes (Fig 5 ). The continuity of the boundary on the grid
can induce a value close to 1 for the smallest scales while the outer effects produce d0(I)= 2 for

the largest. The lack of a range of scales with a flat plateau makes it impossible to reliably
estimate dO from these curves. We note however, that near the smallest scales the slope is

roughly independent of the threshold; as the sub-scene size increases this range of this scaling
increases. This indicates that the technique might converge if observations over a slightly longer

range of scales were available.

POINT DISTRIBUTIONS: CORRELATION INTEGRAL

The correlation integral (Grassberger and Procaccia,1983) has become a standard measure of

the geometry of scaling point sets. This quantity has been computed for the boundary sets. The

integral is defined as
C2(I) = Number of pairs of points separated by less than I /

Total Number of Pairs of points.

When C2 is a power law in I, d2 quantifies this scaling in the limit of zero length scales. As with

d0(I) we consider d2(I), the local slope of C2, as a function of I.

For the cloud boundaries, at the smallest scales d2(I) shows variability due to finite (quantized)

length of the smallest scales used, while at large scales finite size effects bias d2(I) to smaller
values (see Smith, 1988). At intermediate length scales, some sub-scenes (and thresholds) sl}ow

a region in which d2(I) varies around a mean value. In general, the mean value decreases as tile
threshold increases. However, this variation around a mean value is not always present, and

increasing the size of the image considered does not always resolve this problem. In general,
increasing the true area considered is not expected to clarify the analysis if it results in the
inclusion of clouds with different scaling properties (or, for example, a cloud free regionl) One

method for improving the statistics is to analyse several images of similar radiation fields, for

example of the same region at the same time of day on different days. Cumulating the data in this
way(instead of increasing the area size) appears to yield good results. We are investigating
whether this approach will make it possible to use observations with lower spacial resolution data

sets which are extended in time.

CONCLUSION

We have quantified the scaling behavior of the terrestrial radiance field during the FIRE

experiment using observations from the SPOT satellite, noting the constraints and uncertainty
imposed by the range of scales available in the data set. SPOT provides data at 10 meter
resolution with an outer length scale of 100 km ° the longest scaling range yet considered from a

single instrument. Nevertheless the effects of a finite range of length scales and the outer

boundary cutoff are clearly visible in our results. An idea of the quantity and quality of data

required to acertain reliable eslimates from grid point data has been determined by examing the
scaling of simple sets. Finally, the correlation exponent has been computed for the radiation field

data with promising results.
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Inhomogeneities of Stratocumulus Liquid Water

Robert F. Cahalan
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Jack B. Snider
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There is a growing body of observational evidence on inhomogeneous cloud

structure, most recently from the extensive measuements of the FIRE field pro-

gram (Albrecht et al., 1988). Knowledge of cloud structure is important because

it strongly influences the cloud radiative properties, one of the major factors in

determining the global energy balance. Current atmospheric circulation models

use plane-parallel radiation, so that the liquid water in each gridbox is assumed

to be uniform, which gives an unrealistically large albedo, forcing the models to

divide the liquid water by a "fudge factor" to get the albedo right (Harshvard-

han and Randall, 1985). In reality cloud liquid water occupies only a subset of

each gridbox, greatly reducing the mean albedo. If future climate models are

to treat the hydrological cycle in a manner consistent with energy balance, a
better treatment of cloud liquid water will be needed.

FIRE concentrated upon two cloud types of special interest: cirrus and ma-

rine stratocumulus. Cirrus tend to be high and optically thin, thus reducing

the effective radiative temperature without increasing the albedo significantly,

leading to an enhanced greenhouse heating. In contrast, marine stratocumulus

are low and optically thick, thus producing a large increase in reflected radiation

with a small change in emitted radiation, giving a net cooling which could po-
tentially mitigate the expected greenhouse warming. The FIRE measurements

in California stratocumulus during June and July of 1987 show variations in

cloud liquid water on all scales. Boers and Betts (1988) describe the verti-

cal structure, while Cahalan and Snider (1989, hereafter CS) discuss horizontal

variations, which is our focus here. Such variations are associated with inhomo-

geneous entrainment, in which entrained dry air, rather than mixing uniformly

with cloudy air, remains intact in blobs of all sizes, which decay only slowly

by invasion of cloudy air. The following paragraphs describe two important

stratocumulus observations, then follows a simple f'ractal model which repro-

duces these properties, and the paper concludes by briefly discussing the model
radiative properties.

Vertically integrated liquid water was measured at 10 Hz and averaged over
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Figure 1: (a) Histogram of logarithm of vertically integrated stratocumulus

liquid water in mm along with a lognormal fit. The equivalent optical depth
scale shown at the top assumes a 10 micron effective radius. (b) Wavenumber

spectrum of integrated liquid water computed from time series assuming 5 m/s
frozen turbulence.

1 minute intervals during a 3-week period on San Nicolas Island. The histogram
of this data is shown in the first figure on a log-linear scale, with a lognormal fit

plotted for comparison. The lognormal roughly follows the data, while differing
in detail. The "shoulders" seen to each side of the observed central peak are a

reminder that individual days often show a bimodal distribution.

The liquid water wavenumber spectrum shown in the second figure was es-

timated from the frequency spectra computed from several 1-day time series

from the same 19-day data set used for the histogram. Results were translated

from frequency to wavenumber assuming frozen turbulence with a 5 m/s mean
advection. The least-squares fit over the mesoscale regime from about 400 km

down to about 400 m gives S(k) ,_ k -s/z.

This is the spectrum expected from a "passive" scalar (i.e. a scalar field

whose variations in space and time are due only to advection.) when energy

from a small-scale source (convection) is being transferred to larger scales by

2-dimensional homogeneous turbulence (Kraichnan, 1967; Lilly, 1989). This

mesoscale 5/3 power spectrum was previously observed in velocity and poten-
tial temperature spectra from commercial aircraft data (Gage and Nastrom,

1986). The fact that the mesoscale liquid water spectrum is that expected for

a 2-dimensional passive scalar -- one being forced by small-scale convection --

suggests that the total integrated liquid water in stratocumulus clouds fluctu-
ates with the mesoscale-averaged vertical velocity, being large in updrafts and
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small in downdrafts. This kind of behavior has been observed in fine-resolution

numerical simulations (MacVean and Nicholls, 1988), though they do not repro-

duce the highly irregular fractal structure described above. At scales smaller

than the cloud thickness (about 200 m) the spectrum drops off more rapidly,

the slope being closer to -3 (CS). This within-cloud regime is still poorly un-
derstood, but is apparently not consistent with a 3-dimensional homogeneous

cascade of energy from larger scales, which would also give a 5/3. The steep
falloff could be related to the distribution of energy sources and sinks, including

the active role of condensation, or to the inhomogeneity of the transfer process.

More work is needed on the within-cloud regime, but the following focuses upon

the mesoscale structure because of its greater impact on the large-scale energy

balance.
In order to simulate the mesoscale fractal structure of stratocumulus liquid

water, a procedure is needed to generate a random function having the probabil-

ity and spectrum shown above. As a first step, variations in only one horizontal
direction will be allowed, forming fractal streets, a simplified version of the cloud

streets observed in the July 7 Landsat scene during FIRE (CS). Consider a stra-

tocumulus cloud forming an infinitely long slab of horizontal width L _ 100km

and a typical optical depth of, say, To = 10. Divide this into two slabs of width

L/2, and transfer a fraction fl of the liquid water from one half to the other,
with the direction chosen at random. The optical depth in one half is then in-

creased (by increasing the density -- thickness is assumed unchanged), and the

other half is correspondingly thinned. This may be written r_+) = (1 + f_)r0.

where the superscript on the left indicates whether the brighter or darker half

is being considered.
To continue the process, each half is itself divided in half, and a fraction of

liquid water, f2, is transferred, again in a random direction. After iterating for
n cascade steps, there are 2 '_ segments, each with an optical depth of the form

tl

T(+'''+)= H(1 + f6)'ro, (1)
k=l

where 0 < f6 < 1. Any of the possible combinations of signs in (1) may be found

somewhere among the 2n segments. An upper hound on the optical depth of

the optically thickest segment may be found from

r,_ = (1 + f6) < exp(f_) = exp(_--_ f_). (2)
k=l 6=1 6=1

Consider two cases: a "singular model" in which the fraction does not change

with k (i.e. f6 = f), and a "bounded model" in which the fraction decreases

(i.e. f6 = fc 6, where f and c are both constants between 0 and 1). The upper

bound given by (2) diverges for the singular model, and one can show that the

liquid water becomes concentrated on a fractal set of singularities as n _ o3.
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The upper bound for the bounded model is exp(fc/(1 - c))ro, and is close to

r,n_. It is possible to show that both models have a wavenumber spectrum of

the form S(k) ... k-% where

1 - ln2(l + f2), (singular model)a = 1 - 1n2(c2), (bounded model) (3)

Note that as f -. 1, the exponent of the singular model approaches zero, giving
a flat spectrum, while as f --- 0 the spectrum steepens to k-1. No value of f

allows the singular model to fit the observed k -s/3 spectrum. The exponent of
the bounded model, on the other hand, gives oc = 5/3 if we choose c = 2 -t/3.

The probability density is sensitive to c, and often shows considerable structure,
but when e = 2-1/3 it is close to lognormal, and similar to the first figure.

These simple models of one-dimensional fractal cloud streets can be gener-
alized to allow variations in three dimensions and tuned to simulate other cloud

types. The albedo and other radiation properties are computed by Monte Carlo

techniques, and results are parameterized to provide alternatives to plane par-

allel theory. For the stratocumulus models the redistribution of liquid water
at each iteration decreases the mean albedo from the plane parallel case, since

the albedo of optically thick regions saturates for large optical depths, so that
realistic amounts of cloud liquid water lead to realistic albedos (Cahalan, 1989).

Much remains to be done both in documenting the global climatology of cloud

fractal structure and in understanding the physical processes underlying this

structure, but improved observations and more appropriate analytical tools are

finally allowing the great complexity of cloud liquid water to be approximated

as something other than a uniform distribution.
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1. Introduction

The spatial sampling limitations of surface measurement systems

necessitate the use of satellite data for the investigation of large-scale

cloud processes. Understanding the information contained in the satellite-

observed radiances, however, requires a connection between the remotely

sensed cloud properties and those more directly observed within the

troposphere. Surface measurements taken during the First ISCCP Regional

Experiment (FIRE) Marine Stratocumulus Intensive Field Observations (IFO)

are compared here to cloud properties determined from Geostationary

Operational Environmental Satellite (GOES) data in order to determine how

well the island measurements represent larger areas and to verify some of

the satellite-measured parameters.

2. Data

Total cloud amounts and visible (0.65 #m) top-of-the-atmosphere cloud

albedos were derived with the hybrid bispectral threshold method (HBTM;

Minnis et al., 1987) from hourly GOES-West data (Young et al., 1989) over

two 0.5 ° regions between II9°W and 120°W and 33°N and 33.50N for July 1-19,

1987. Cloud albedos, cloud fractions, and integrated cloud liquid water

contents were determined from measurements taken nearly continuously over

San Nicolas Island (Fairall et al., 1989) with a variety of instrumentation

during this same time period. San Nicolas Island (SNI) is located near the

center of the east-west boundary of two satellite regions. Results from

both the microwave and solar radiometer cloud liquid water content (LWC)

measurements are compared to the satellite albedos. These preliminary

comparisons match relatively large areal averages to essentially linear

averages of the cloud fields advecting over a fixed point.

3. Results and Discussion

Mean hourly cloud fractions are shown in Fig. 1 for the SNI and HBTM

results. The SNI cloud amounts, on average, are 0.045 ± 0.076 greater than

the HBTM total cloud amounts. The diurnal variations are similar with early
morning maxima and late afternoon or evening minima. The HBTM diurnal

range, however, is 0.50 compared to 0.30 for the SNI data. Peak cloud cover

occurs - 1 hour earlier for the HBTM results. The differences in the

cloud amounts may arise for several reasons. Cloud cover over the island

may not be representative of the larger area. Since the clouds generally
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pass over the island, there may be some surface heating during the day which

affects the cloud deck. During the night, the local heating ceases.

Radiative cooling of the island is limited by the large-scale cloud field so

that there should be little island effect at night. Sampling differences

may also affect the comparison. A visual examination of the data using the

video imagery developed by D. Wylie and P. Grimm (University of Wisconsin,

unpublished, 1988) revealed that of the 19 days, the cloud cover over the

island and surrounding regions appeared to vary the same during only 7 days.

During 5 of the days, a V-shaped clearing formed around and downwind of the

island during the afternoon. During another 5 days, the regions surrounding

the island showed considerable clearing while a strip centered on the island

remained overcast. The clouds cleared around the island and over the island

itself during the remaining 2 days, however, the clouds cleared over the

island last. In nearly all cases in the imagery, the cloud cover over the

island and surrounding regions was very similar at the beginning of each day

during the IFO. These visual findings are consistent with the means shown

in Fig. i and with SNI time series of cloud amount. The HBTM and SNI

results show good agreement after midnight until sunrise. Faster and more

extensive clearing occurs around the island than over the island itself.

This apparent island effect may also be responsible for the differences in

satellite and island cloud-top heights observed during the day (Minnis et

al., 1989).

A comparison of the satellite visible and SNI broadband shortwave cloud

albedos is shown in Fig. 2. The narrowband albedo is considerably lower

than the island-derived albedo values. Spectral differences, sampling, and

the atmospheric effects included in the satellite results are primarily

responsible for the differences. To minimize the spectral differences, the

visible albedos were converted to broadband shortwave albedos using an

empirical solar-zenith angle dependent ratio. The resulting albedos were

then corrected for atmospheric effects using the simple model of Chen and

Ohring (1984). Since the clouds are so low, it was assumed that they could

be treated like the surface. The resulting cloud albedos derived from those

in Fig. 2 are shown in Fig. 3. Cloud albedos were averaged without any

weighting by cloud amount for all cases with cloud amounts greater than 10P.

The dashed line represents a mirror image of the morning satellite results.

It is shown to demonstrate the sizable decrease in cloud albedo during the

afternoon. Despite the broadband and atmospheric corrections, the SNI cloud

albedos are still higher by -59 on average. If it is assumed that the SNI

clouds are more like those over the surrounding regions when there is more

cloudiness, then mean satellite cloud albedos derived by weighting the

albedo by the cloud fraction should be more similar to the SNI results than

those derived using a simple averaging technique. This approach was

implemented with the results shown in Fig. 4. In this instance, the mean

cloud albedo differences are only - 2_ with greater errors near the

terminator as expected (Chen and Ohring, 1984). The remaining discrepancies

may be due to sampling and technique differences, bidirectional reflectance

model biases, and island effects. Though visual examination of albedo is

unreliable, the clouds were distinctly brighter over the island than over

the adjacent areas during at least 2 days, July 5 and 8. An island effect

which results in more cloud cover may also alter the cloud composition

relative to the large scale.
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The LWC values derived from the SNI microwave and solar measurements are

correlated with the satellite visible albedos in Figs. 5 and 6,

respectively. Two curves are shown in each figure. The lower curve which

levels at an albedo of - 55% is based on the results of Coakley and Snider

(1989). Their regression is

I/p = 1.74 + 48#0/LWC , (I)

where p is the visible reflectance, #0 is the cosine of the solar zenith

-2
angle, and LWC is given in gm The second curve shown in these figures

is a regression fit to the observed data using the relationship,

in(l - _) = a + bLWC/ _0. (2)

The cloud albedo is _ = P / X, where X is an anisotropic reflectance

correction factor. The coefficients a and b are -0.44 and -0.0016,

respectively, for the microwave data. The coefficients for the solar data

are a = -0.46 and b = -0.0016. The curve for (2) is tangential to the

knee of the curve for (i). The latter seems to fit the data well for LWC/# 0

-2
< i00 gm , but does not provide for any albedos greater than - 55%. Thus,

the curve is unrealistic for higher values of albedo. Equation (2),

however, shows no skill for matching the lower albedos, but it allows for

additional increases in cloud albedos beyond 50%. It is concluded,

therefore, that a combination of these two functions would provide a more

complete representation of the relationship between albedo and LWC. This

combination is accomplished by matching the curves at _ = 45%.

4. Concluding Remarks

It appears that the SNI-observed clouds may be affected by the island.

Additional support for this thesis will require analysis of satellite data

over a small region centered on the instrument site. Accounting for these

potential effects, the satellite-derived cloud amounts and albedos are very

similar to those observed over SNI. The diurnal variations in cloud amount

and cloud albedo are also comparable to those seen over other areas (e.g.,

Minnis and Harrison, 1984). These preliminary results have also provided a

relationship which may be utilized during the day to determine cloud LWC

over other parts of the IFO area.
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i. Introduction

Determination of cloudltop heights from satellite-inferred cloud-top

temperatures is a relatively straightforward procedure for a well-behaved

troposphere. The assumption of a monotonically decreasing temperature with

increasing altitude is commonly used to assign a height to a given cloud-top

temperature. In the hybrid bispectral threshold method, or HBTM, Minnis et

al. (1987) assume that the lapse rate for the troposphere is -6.5 Kkm-land

that the surface temperature which calibrated this lapse rate is the 24-hour

mean of the observed or modeled clear-sky, equivalent blackbody temperature.

The International Satellite Cloud Climatology Project (ISCCP) algorithm

(Rossow et al., 1988) attempts a more realistic assignment of height by

utilizing interpolations of analyzed temperature fields from the National

Meteorological Center (NMC) to determine the temperature at a given level

over the region of interest. Neither these nor other techniques have been

tested to any useful extent. The First ISCCP Regional Experiment (FIRE)

Intensive Field Observations (IFO) provide an excellent opportunity to

assess satellite-derived cloud height results because of the availability of

both direct and indirect cloud-top altitude data of known accuracy. This

paper examines the variations of cloud-top altitude during the Marine

Stratocumulus IFO (MSIFO, June 29 July 19, 1987) derived from surface,

aircraft, and satellite data.

2. Data

The soundings taken by the NCAR Electra during the IFO are used to

characterize the vertical temperature and moisture structure of the lower

troposphere (surface to 850 mb) over the California marine stratocumulus

(MS) area. These soundings also reveal the location of the cloud top by

providing the altitude of the inversion base. The Electra flights used here

were confined to the Pacific between 30°N and 34°N and I19.5°W and 125.1°W.

A nominal low-level lapse rate, FBL, was constructed by averaging the lapse

rates between I000 mb and the inversion base. Average temperatures, T, and

specific humidities, q, were computed for each of six levels: the surface

PRECEDING PAGE E_LANK NOT FILMED
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(I000 mb), inversion base, inversion top, 850 mb, 700 mb, and 500 mb. NMC

analyses from the IFO time period were used to determine T and q at 700

and 500 mb. The six levels define five layers which are simplified to three

for discussion purposes: the boundary layer BL (surface to inversion

base), the above-cloud layer AL (inversion base to 850 mb), and the upper

layer UL (850 mb - 500 mb). The mean temperature and humidity of each

layer are the averages of T and q at the boundaries of the layer.

Continuous data taken from San Nicolas Island (SNI) with the Pennsylvania

State University sodar were used to measure cloud-top altitude over the

island. The instantaneous data were first averaged over all cloudy, 30-

minute intervals between July 1 and 19. A mean diurnal cycle of cloud-top

altitude, Zc, was computed from these interval averages

Cloud amount C, cloud-top temperature Tc, cloud albedo, and clear-sky

temperature Tcs , were derived from hourly GOES data using the HBTM on a

0.5 ° grid (Young et al., 1989). Surface temperature, Tg, was derived from

T using a simple flve-layer radiative transfer model employing the
cs

parameterization for absorption in the 11.5 _m window region used by the

ISCCP (Rossow et al., 1988). It is assumed that attenuation by the

atmosphere above 500 mb is negligible for this area. The resulting values

of T were generally 1.5 to 2.5 K warmer than those for T The effect
g cs"

of atmospheric attenuation on cloud-top temperature was also examined with

the model. In general, the warm AL increased the outgoing radiance

canceling the attenuation by the UL so that the resulting value of T was
c

- 0.I K colder than the original value. Therefore, it is assumed that the

satelllte-measured value of T c is representative of the actual radiating

temperature of the cloud top. Satellite cloud-top altitude, Zsc , was

determined by two techniques: (i) using FBL and the 24-hour average of T s

to compute the variation of T with height and (2) using the HBTM approach.

3. Results

Average soundings derived from the Electra results and corresponding NMC

data are shown in Fig. I. The NMC data lack the vertical resolution

necessary to detect the BL inversion. In general, the NMC humidities are

higher than expected from the aircraft data, but the i000- and 850-mb

temperatures were within ± 2 K of the Electra data. It was found that FBL

- 7.1 Kkm "I with a standard deviation of ± 1.5 Kkm "I for 23 soundings.

Satellite-derived cloud-top heights using methods (I) and (2) are compared

to the inversion base heights from the Electra in Fig. 2. The values of

Zsc are taken from the 0.5 ° region containing the flight track of the

Electra. The average difference in cloud-top heights are 0.2 ± 0.2 km and

0.3 ± 0.2 km for methods (I) and (2), respectively. The average value of

T is quite close to the mean temperature of the inversion base.
c

The average diurnal variations of z and cloud-base altitude over SNI
c

during the IFO are shown in Fig. 3. Maximum cloud-top height occurs near

I000 LST with a broad minimum around sunset. The cloud base is lowest

around 0430 LST before rising steadily to a peak value of - 0.5 km shortly
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after noon. Cloud thickness is relatively constant at - 0.25 km between

0200 and i000 LST. The clouds thin rapidly to about half the maximum

thickness by late afternoon before thickening again during the night.

Diurnal variations of z from both methods are superimposed on the SNI
sc

results in Fig. 4. SNI is situated between two of the 0.5 ° regions. The

results shown in Fig. 4 were derived from the combined averages for the two

regions. Data from hours with C < i0 percent were not used in these

comparisons. The relative changes in Zsc are similar to those for Zc,

except for the minimum in z near 1400 LST. The diurnal range in cloud-
sc

top height is greater for the satellite data. The satellite data also

appear to be noisier• Some of the noise may be due to missing data (up to 7

days of data were lost at some hours) and navigation errors (Young et al.,

1989). Average cloud heights from (I) are 0.08 ± 0.i km lower than the SNI

results, while the method (2) heights are 0.15 ± 0.8 km lower than z
c

Between 0 and i0 LST, the mean values of z are within ± 0.02 km of the
sc

sodar results. During the day, the differences increase steadily while the

cloud depths decrease (Fig. 2). After sunset, the differences decrease.

4. Discussion

The differences in cloud-top heights shown in Fig. 2 appear to be due to

a 0.8-K underestimate in the derived surface temperature. It is not known,

however, if the actual surface temperature is the same as the lO00-mb

temperature. Over SNI at night (Fig. 4), there is excellent agreement

suggesting that there is no problem with the satellite-derived surface

temperature. During the day, the underestimate of cloud-top height may be

due to several factors. Clear-sky contamination of the cloudy radiances is

more likely during the day when the clouds break up. This effect would be

manifest in lower values of Tcs during the day. The observed clear-sky

temperatures, though, increase during the day. Since the clouds thicken at

night and thin during the day (Fig. 3), there may be some variation in the

cloud infrared opacity. Figure 5 shows a correlation of cloud thickness and

the difference between the sodar and method-i cloud-top altitudes. These

data reveal that the two height values agree for cloud thicknesses greater

than 250 m. The differences increase almost linearly with decreasing

thickness. The diurnal variation of the mean visible cloud albedo (Minnis

et al., 1989) is also consistent with the cloud thinning during the day.

Initial estimates, however, indicate that the reduced opacity can account

for only - 0.02 km of the observed daytime differences. Other potential

effects include sampling differences and island heating during the day.

5. Concludln E Remarks

The results presented here clearly show the problems associated with

using temperature soundings with low vertical resolution to convert cloud-

top temperature to cloud-top altitude over regions with significant

• would have been
inversions It is clear that the average value of Zsc

closer to 680 mb instead of 913 mb if the NMC data had been used in the

analysis. Estimation of the vertical profile using a simple lapse rate and

a measurement of surface temperature appears to be an effective solution to

the difficulties of boundary-layer inversions. The differences between the

island and satellite-derived cloud-top heights are currently unresolved. A
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closer comparison using a smaller area corresponding to SNI and one-to-one

sampling is required to properly examine the differences.

Diurnal variations of cloud-top height and thickness deduced from the

satellite data are reasonably representative of the changes a_tually

occurring in the cloud field over the course of the day. The clouds thicken

and rise during the night and sink and break up while they thin out during

the day. This diurnal variation in cloud structure was also observed by
Minnis and Harrison (1984) from similar satellite measurements taken over

the southeastern Pacific during November 1978 as well as over other parts of

the California marine stratocumulus area (Young et al., 1989). These

intercomparisons are encouraging for the capabilities of satellite retrieval

algorithms to accurately determine low-level cloud properties.
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The classical cloud top entrainment instability condition is

commonly formulated as

g A8 e + h Aqt < 0 (1)

where g,h are slowly varying parameters taken to be constant,

&Be, Aq_ the jumps in equivalent potential temperature and total
water mlxing ratio at the cloud top.

Plotted in Be, qt coordinates the entrainment instability

criterion (EI) for a collection of different atmospheric

conditions appears as a highly elliptical point cluster as a

result of the strong correlation between 8e and qt- More

independent coordinates are 8_ and qt, where 8_ is the liquid

water potential temperature or saturation point potential

temperature. In this paper we examine EI in 84, qt coordinates.
Rather than focussing on jump conditions we w111 emphasize the

gradients &8_/6qt . EI occurs when

&8_/6q t < (68_/&qt)crit (2)

where the critical value represents the gradient along the moist

virtual adiabat. (2) is entirely consistent with (i), however the

manner in which EI is shown by (2) reveals that additional

parameters need to be considered in the entrainment of negatively

buoyant parcels. For simplicity we neglect radiation.

Figure 1 shows a 8_, qt plot typical of 6/29/87 (Cl30-data). M

corresponds to the in-cloud parcel, T to the parcel above the

cloud. Cloud top appears at 870 hPa. Mixtures of T and M fall

along the straight line TM. This diagram can be interpreted in

pressure (p) and saturation point pressure (p,) coordinates. The

p=870 hPa line shows the mixing level and whether M, or T or both

are cloudy or clear. Other mixing levels can be arbitrarily

defined by simply shifting the p-line up or down. If a point, say

M falls below that p-line it means that at that pressure level a

parcel with the coordinates M is cloudy. If it falls above that

line, it is clear. The p,-lines indicate how much lifting or

lowering is needed to make M or T just saturated. For example if

the cloudy boundary layer would be well mixed, it would be

o_,',-F_-,"',_ i ;..C;_ _.._.__'_"..,_,L,_T FILMED
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represented by M and the cloud thickness would be (937-870)= 67

hPa. In Figure 1 the moist virtual adiabat falls to the right of

the mixing line MT. This means that all cloudy mixtures (below

the level p=870 hPa) are denser than the unmixed cloudy parcel M.

Additional information about the mixing process is available if

we draw dry virtual adiabats on this plot as in Figure 2. The

moist virtual adiabat through M kinks at the p=870 hPa line at

point c and then follows the dry adiabat of 8vu=291.72 K. T lies
on the dry virtual adiabat marked as 299.27 K. Therefore there is

a difference of A8 v = 7.55 K between the dry air and the cloud

top so that the cloud is statically very stable. In order to make

the cloud statically unstable it would have to be raised several

hundred hPa's until point c would be above the dry virtual

adiabat through T. Entrainment at pressure level p=870 hPa takes

parcels with p,=566 hPa at T and mixes them with parcels at p, =

937 hPa. During the mixing process the saturation point

coordinates of the mixture slide from T along the mixing line MT

towards M. Entrainment will increase p, of the mixture until it

gains the same buoyancy as the cloudy parcel M at point a, where

the dry virtual adiabat 8vu=291.72 K intersects the mixing line.

At a the parcel is still clear. Subsequent mixing from a to b

decreases the mixture buoyancy below that of the cloudy parcel.

At b where P,mix_u?e=PmSxing._evel the mixture becomes cloudy.
Below b on _ne mlxlng ilne, llnes of equal buoyancy are

represented by lines parallel to the moist virtual adiabat. In

continuing the mixing process from b to M the buoyancy will

increase again until it becomes the same as that of the cloudy

parcel M.

Four points can be immediately recognized from this plot: First,

the densesst mixture is just cloudy (point b). Although this is

well known from the literature, the actual buoyancy difference

can be immediately read from this graph by drawing the dry

virtual adiabat through point b (8vu=291.45 K) and computing the

difference with 8vu through a and c (0.27 K); Second, the

fraction of dense buoyant mixtures to all possible mixtures is

given by (a-T)/(T-M); Third, the buoyancy difference of cloudy

mixtures with M can be increased if the unmixed dry parcel would

be cooler or dryer than represented by point T; Fourth, the

fraction of buoyant mixtures can be increased if the mixing level

is raised (pressure lowered). Lidar cloud top data shows that

over a 30 km flight leg cloud top variability of several hundred

meters (several tens of hPa's) is not uncommon. The two dashed

lines parallel to the p=870 hPa line indicate how variations in

the mixing level changes the fraction of potentially positively
buoyant parcels.

Neglecting radiation we can derive the virtual potential

temperature flux from this diagram as follows: Let FMT be the
convective flux in (Be, 8_, qt) and m e be the entrainment
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velocity, then

FMT = ( T - M ) w e = ( T - b ) w e + ( b - M ) w e (3)

where T = ( Be, 8_, qt )T

M = ( Be, 8_, qt )M

then the virtual potential temperature flux is defined as

Fsv = gu ( 8_T - 8_b ) We + hu ( qtT - qtb ) We +

gc ( 8_b - 8_M ) We + hc ( qtb - qtM ) We (4)

where g. , h, , g_, h c are the appropriate factors for clear and

cloudy condlt_ons. From (4) it is immediately clear that although

a portion of the buoyancy flux ( in cloud ) is indeed positive by

virtue of the slope of the mixing line MT, this flux is very

small in comparison to the flux necessary to create the cloudy

mixture in the first place. We believe that this is a point that

is commonly overlooked in EI-studies. The energy necessary to

create the cloudy mixture is very much greater (proportional to

the difference (299.27-291.45 K) than the energy created by

mixing inside the cloud (proportional to the difference

291.72-291.45 K). It is therefore not surprising that recent

studies have shown that in many cases where condition (i) or (2)

was satisfied, the clouds appeared to be stable.

So far we only considered mixing at pressure level p. However a

dry parcel from above the cloud is drawn into the cloud and

acquires a downward speed representative of the in-cloud

circulation. Let this speed be indicated by w T. w T is responsible

for lowering the mixing level of the parcel, Increasing the

pressure level. On the other hand We, the entrainment velocity is

responsible for increasing the saturation point pressure of the

mixture. The process of entrainment and vertical movement of the

parcel is schematically represented in Figure 3. Assume that the

highest cloud tops are at point b, and that at that level the dry

unmixed parcels have their saturation level at T (566 hPa). As

the parcel is drawn into the layer the mixing pressure level is

increased from point b to say point a. If point a corresponds to

the lowest cloud top we know that at point a all mixtures are

cloudy. This means that in moving an unmixed parcel at point b to

point a the saturation level of the mixture has increased from

its unmixed value at T to the actual pressure level at a. Simple

geometry on Figure 3 reveals the following constraint:

f = WT / We < ( Pa - Pb ) / ( Pa - PT ) (5)

For typical cloud top variations of 15 hPa we find f < 0.05

It means that the entrainment velocity needs to be very much
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higher than the translation velocity in order to get dense
sinking cloud parcels. This statement means that cloud top
entrainment instability is unlikely to break up a cloud in case
the circulation speed near the cloud top is large; in such cases
the strength of the circulation merely draws unmixed parcels into
the layer that do not have the chance to become cloudy in their
downward transport. Below the mean cloud base those parcels will
always be less dense than the mixed layer environment.

In conclusion we have shown that a saturation point diagram can
be used to investigate the details of mixing in cases where the
cloud top entrainment instability criterion is satisfied. We
find that for typical situations found during FIRE, where the EI
condition is satisfied clouds are likely to be stable because
energy required to create a cloudy mixture is much greater than
the energy which is released once the parcel has become cloudy.
The mixing level is crucially important in determining the
fraction of cool cloudy mixtures. The vertical levels at which
cloud tops can be found (derived from cloud top lidar data) puts
a constraint on the entrainment velocity and the transport
velocity of the mixture in such as way that the entrainment
velocity needs to be an order of magnitude higher than the
transport velocity in order to get any cloudy sinking mixtures.
If the transport velocity is too large, clouds will break up,
however mixtures will remain less dense than their environment.
Radiation was neglected in this analysis, but is likeky to
enhance the instability, as it cools the parcels once they become
cloudy. A complete analysis then involves another velocity scale
representing the speed at which a mixture moves along lines of
equal 8_. The mixing process will deviate from the simple mixing

line structure as shown in this paper and is the subject of
further research.
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1. Introduction

At last summer's FSET Workshop

in Vail, I presented preliminary results

from 16 July 1987, the day that the

NCAR Electra was allowed in the res-

tricted air space around San Nicolas

Island (NSI). We flew a cross pattern,

with one leg approximately NW-SE

between NSI and the R/V Pt. Sur, about

50 km "upstream" (although the surface

winds were weak and variable), and the

other leg at approximately right angles

(Fig. 1). There was a LANDSAT image

coincident with this mission as well.

This paper discusses one interesting

aspect of the "cross-stream" flight legs,

i.e., the legs between points "D" and "E"

in Fig. 1.

121W 120W 119W
+ ÷ 32N ÷

Fig. 1 FIRE operations, 16 July 1987.

The NCAR Electra flew the cross pattern;

the inset trapezoid is the LANDSAT

scene.

The LANDSAT images (not repro-

duced here) show a distinct difference in

cloud reflectance between the two halves

of the flight leg from D (which is at the

less reflective end) to E. Figure 2, which

shows IR lidar observations of the

cloud-top height and the reflectance cal-

culated from the Electra's pyranometers,

confirms this. Note also that that the

temperature of the upwelling IR radiation

is actually higher where the cloud top is

higher, suggesting that the cloud is

thinner there (and hence radiation from

the sea surface is being transmitted).

This corresponds to the less reflective

part of the cloud.

What I will discuss here is the

apparent reason for the variability of

cloud thickness alond this flight track.

The evidence points to variability in the

water vapor content above the inversion

as the controlling factor. This com-

pounds the difficulty of parameterizing

these clouds in GCM's.

2. Mixing Diagram

Figure 3, which summarizes

relevant Electra data taken just above and

within the cloud-topped boundary layer,

is sufficiently rich in information that the

remainder of this abstract will discuss it

in some detail. This is a mixing diagram,

plotted using total water mixing ratio and

liquid water potential temperature, con-

structed using 1-second averages of Elec-

tra data from various altitudes. Because

the two variables used are conservative to

water phase changes, mixing occurs

along straight lines unless there are

PRECEDING PAGE BLANK NOT FILMED
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significant diabatic effects (due to, e.g.,

radiative transfer or precipitation).

The ellipses summarize data from

the individual runs below cloud top, with

the center of each ellipse positioned at

the average values for each run and the

axes determined using +_2 standard devia-

tions. Each run has been broken into two

segments, corresponding to the less (seg-

ments 1) and more (segments 2)

reflective parts of the cloud. The surface

data ellipse (labeled "S") was determined

using the radiometric sea-surface tem-

perature (SST) and the associated satura-

tion vapor mixing ratio (the SST varied

little between D & E, and this is not seg-

mented). Proceeding generally down and

to the right, the other data ellipses are

from flight legs at 60m, 475m (the base

of the cloud layer), and 675m (in the

middle of the cloud layer. The asterisks

(circles) are 1-second data points from

the cloud top run corresponding to seg-

ment 1 (2), during which we "porpoised"
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Fig. 2 Downward solar radiation Fso],l,, cloud reflectance tx, upwelling IR radiation (in

terms of its temperature TI")) and cloud-top height ztop, along the flight leg from D to E

in Fig. 1.
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in and out of the cloud top (as can be
seenin the altitude data [solid] in Fig.

4).

Although the cloud was evolving

during the mission, these manuevers took

only about an hour to complete, so that

the data are nearly "synoptic" in terms of

the time scale of the cloud. Because of

this, several conclusions can be drawn

from Fig. 3. First, it can be argued that

the sub-cloud and cloud layers were

decoupled. Consider the mixing line

between the surface air and that at cloud

base. There is clearly a discontinuity

from this line to the (two separate) in-

cloud parcels. Also, the displacement of

the 60-m air parcels from the subcloud

mixing line can be accounted for by a

radiative cooling rate of- -0.5°/day, a

very reasonable value.

If the layers were decoupled at the

time of the measurements, then the sur-

face moisture supply for the cloud was

cut off, and entrainment of warmer air

3O

28

26

24

22

20

18

"_'p (qair+lair)(°C)

ir/Oht <0

o

CTEI
0

0 0

0

O

0

0 0

0 o 0
0

0

o
o

(el)ai r (°C)

I I I- I I I I I I J I I I I I I t J I I : J I

14 16 18 20 22 24

Fig. 3 Mixing diagram summarizing data between points D and E.
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from above combined with solar heating

(which probably lead to the decoupling in

the first place) would tend to decrease the

liquid water content of the cloud.

Note, however, the difference in the

moisture content of the air above the

inversion between segments 1 & 2. The

dashed lines through the asterisks and

circles in Fig. 3 are regression lines of

these data points, and therefore are the

best estimate of the mixing line for

entrainment in the two segments. The

difference in the slope of these two mix-

ing lines is highly significant.

At the top of Fig. 3, there are indi-

cated two critical mixing lines. Cloud-

top entrainment instability occurs for

mixing lines having slopes less than (i.e.,

more negative than, or clockwise from)

the line marked "CTEI". Clearly, that is

not happening in the data. The other line

is a mixing line for which entrainment

would produce no change in cloud liquid

water;, mixing lines with smaller slopes
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liquid water data.
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(in the samesenseaspreviously)tend to
decreasethe cloud liquid water,and the
rate of liquid water decreaseis propor-
tional to thedifferencein slope.

The difference in slopeof the two
regressionlines is, in this context,highly
significant. Although both imply mixing
by entrainmentthat decreasesthe cloud
liquid water, the segment2 mixing (the
circles) produces only about half the
decreaseof the segment 1 mixing. In
fact, for segment2, the above-inversion

air is acting as a moisture source for the

cloud layer.

3. Conclusion

The main point here is the impor-

tance of specifying correctly the upper

boundary condition in cloud models.

This example shows that relatively small

variations in the humidity of the air

above the marine inversion can be lead to

variations of cloud reflectance by as

much as 50% (about 0.4 to 0.6, here).

The relatively small scales of this

phenomenon in this data set (0[25 km])

are less important that the magnitude of

the reflectance variability. Particularly in

GCM's, calculating the humidity in the

lower layers of the model is crucial for

successful parameterization of marine

stratocumulus clouds.
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INTRODUCTION

As part of the FIRE/ETO program, extended time observations were made at

San Nicolas Island (SNI) from March to October, 1987. A small ground station

was installed at the NW tip of SNI, which is dominated by marine flow most of

the time. Hourly averages of air temperature, relative humidity, wind speed

and direction, solar irradiance, and downward longwave irradiance were

recorded. The radiation sensors were standard Eppley pyranometers (shortwave)

and pyrgeometers (longwave). San Nicolas Island also served as the focus of

the first stratocumulus IFO during July, 1987.

The SNI data have been processed in several ways to deduce properties of

the stratocumulus covered marine boundary layer (MBL). For example, from the

temperature and humidity the lifting condensation level, which is an estimate

of the height of the cloud bottom, can be computed. A combination of

longwave irradiance statistics (mean and standard deviation) can be used to

estimate fractional cloud cover. We will also describe an analysis technique

used to estimate the integrated cloud liquid water content (W) and the cloud

albedo from the measured solar irradiance. In this approach, the cloud

transmittance is computed by dividing the irradiance measured at some time by

a clear sky value obtained at the same hour on a cloudless day. From the

transmittance and the zenith angle, values of cloud albedo and W are computed

using the radiative transfer parameterizations of Stephens (1978). These

analysis algorithms have been evaluated with 17 days of simultaneous and

colocated mm-wave (20.6 and 31.65 GHz) radiometer measurements of W and lidar

ceilometer measurements of cloud fraction and cloudbase height made during the

FIRE IFO. The algorithms are then applied to the entire data set to produce a

climatology of these cloud properties for the eight month period.

SHORTWAVE CLOUD/RADIATION PARAMETERIZATON

Solar radiative transfer through stratocumulus clouds can be computed

with reasonable accuracy given a specification of the appropriate

microphysical variables (optical thickness, single scattering albedo,

asymmetry factor, and zenith angle). For our application, we wish to use

measurements of a particular bulk cloud radiative transfer property

(transmission coefficient) to deduce the integrated liquid water content and

the albedo (solar reflection coefficient) of the overlying cloud. In order to

streamline this process, we have chosen to use a radiative transfer

parameterization (Stephens, 1978), rather than a full blown multiband

radiative transfer code. From a measurement of cloud transmission coefficient

and a specification of solar zenith angle, we obtain from the parameterization

the optical thickness and the cloud albedo. A second parameterization

relating optical thickness to integrated liquid water is used to compute W.
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A detailed description of the algorithm and an evaluation using the

FIRE/IFO data has been previously described (Fairall et al., 1988) so we will

summarize here. Values of W estimated from the solar transmittance are on

average 65% of the values derived from the microwave radiometer. A log-log

linear regression yields a slope very near one with a correlation coefficient

of 0.87. The rms scatter about the regression line represents about 35%

variability in the value of W. In pondering the disagreement between the two

measurements, we feel the best evidence suggests that the microwave radiometer

values are quite accurate. It is possible that the actual cloud droplet

concentrations were substantially less than the assumed value of 100/cm^3.

Also, Coakley and Snider (1989) have suggested that nonlinear effects could

affect our result. Using a Taylor expansion of the transmission coefficient,

we can relate the mean water content to the mean transmission coefficient by

<W> - W(<Tr>)[I + S (aw/<W>)2 ] (i)

The dimensionless nonlinear sensitivity coefficient, S, is given by

S - -(1/2) [82Tr/8(In(W))2]/[aTr/a(In(W))] (2)

We have used the Stephen's parameterization to evaluate (2) by

numerically computing finite difference first and second derivatives at

various values of zenith angle and mean integrated liquid water content. As

defined here, S is positive over the range of values of W of interest here (it

becomes negative at very small values of W), so small scale cloud variability

tends to cause us to underestimate W from the mean transmission coefficient.

We have used the high speed time series of W from the microwave radiometer to

compute o on a one hour time scale. A typical value for aw/W is on the
order of _.25. Larger values are observed for smaller W, but this is

compensated by the decrease in S. Using a value of S-1.2 for W= 50 g m "2,

we find that nonlinear effects have reduced the pyranometer estimates of W by

about 3%. This appears to be almost negligible, but we admit that this result

is very sensitive to the value of aw/W used.

LONGWAVE PARAMETERIZATION FOR CLOUD FRACTION

Cloud fraction is a very thorny issue that is just beginning to receive

theoretical interest in cloud models. The definition of cloud fraction is

often confused by the concepts of scale. A 24 hour period of broken clouds

may yield the same average cloud cover as 12 hours of solid stratus followed

by 12 hours of clear skies, but on a larger scale the stratus may be

considered to be part of a broken cloud field. For our purposes, we will

consider cloud fraction, f, to be the fraction of time in one hour that a

narrow field of view instrument in a zenith pointing mode (i.e., a lidar

ceilometer) detects the presence of a cloud overhead.

Since it is well known that the downward longwave radiative flux received
at the surface is substantially greater (by roughly I00 W m- ) in the

presence of stratocumulus clouds versus clear skies, we decided to develop an

algorithm to use the pyrgeometer time series to estimate f. We considered two

approaches: (i) compute f by comparing the measured downward longwave, Lm, to

anticipated values for clear, Lo, and stratocumulus conditions, Ls, and (2)

compute f by comparing the standard deviation of downward longwave, al, to
Lo and Ls. The values for Lo and Ls are obtained from standard bulk models of

downward longwave irradiance. In the end we chose method (2) because it was

significantly less sensitive to the details of our determination of Lo and Ls
at the extremes (i.e., f-0 or 1.0).
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If the formulae for Lo and Ls were accurate, we would postulate that a

reasonable estimate of the cloud fraction would be given by f-(Lm - Lo)/A

where g-Ls-Lo. However, these simple models do not take in enough information

to describe a large part of the variability of Lo and Ls (Siegel and Dickey,

1986). In an effort to obtain a more reasonable estimate, we decided to use

the variance of the measured radiation, o i" With a bit of mathematical
manipulation, we can show that

2 , 2>
a I <(L - <L>) - f(l-f)_ 2 (3)

We can express the solution to (3) as

f - {i ± [i (mal/A)m]I/2)/2 (4)

where for the quadratic form of (4) we have m-2. We have left this exponent

as an adjustable parameter because of the field of wide field of view of the

pygeometer. A comparison with the lidar ceilometer showed (Fig. I) that m-i

gives a better fit to the FIRE IFO data. Since (4) is double valued, we need

a method to select which sign (+ or -) is appropriate. Here we use the

measured mean irradiance; if Lm<Lo+_/2, then we use the negative sign in (4).

This implies that our algorithm will be most inaccurate when it yields f=0.5,

where the result is critically dependent on the accuracy of the bulk formulae.

EIGHT MONTH STATISTICS

The system at SNI provided a continuous record of 30 minute averages of

the data from Julian day 50 to 285. One period (day 142 to 154) was lost due

to an extended power outage. The summer heavy stratocumulus season is

apparent in the time series of weekly averaged mean cloud cover (Fig. 2)

deduced from the longwave algorithm. A variety of statistics have been

computed from this data base. Frequency distributions have been computed for

albedo (Fig. 3a), integrated cloud liquid water (Fig. 3b), and cloud fraction

(Fig. 3c). These data imply that the typical daytime2stratocumulus at SNI has
an integrated liquid water content of about 75 g m" and an albedo of 0.55.

An average diurnal cycle of cloud fraction for the three summer months

(Fig. 4a) shows a substantial modulation of the clouds, presumably caused by

the cloud absorption of solar energy. The resultant warming of the mixed

layer raises the cloudbase and reduces W. Despite the limitations of the

solar data we have computed average diurnal cycles for albedo (Fig. 4b). In

order to broaden the part of the diurnal cycle covered, we have relaxed the

restriction on solar zenith angle to permit computation for #>0.I. The same

analysis for W (not shown) indicates that the mean values of W appear to

increase from very low values for the first three hours after sunup, which is

considered to be evidence that our algorithm is not reliable if #<0.4. Only

the seven hours centered about local noon can be considered usable for liquid

water. The albedo computation is probably reliable over the entire interval;

the increased albedo at low incidence angle is expected.

It is also important to avoid overselling this approach. The algorithms

developed here are considered to be most appropriate for marine stratocumulus.

They have been verified against a single 17-day data set. The cloud fraction

algorithm we have used is most effective as a cloud versus non-cloud

indicator, and obviously will work best with very low cloudbase and solid

clouds. The ceilometer is a more appropriate device for this purpose (it also

yields more accurate cloudbase height than the lifting condensation level

computation), but it costs an order of magnitude more than the pyrgeometer.
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The pyranometer algorithm provides important information on cloud

microphysical and radiative transfer properties, but only during the day. The

microwave radiometer provides far superior performance for measuring W, but

only a few systems exist In the world and their cost, compared to a
pyranometer, is astronomical.
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INTRODUCTION

Humidity variability at the top of the marine boundary layer (MBL) and

in the free troposphere has been examined using a variety of measurements

taken on and around San Nicolas Island (SNI) during the FIRE IFO in July,

1987. Doppler wind profiler reflectivity recorded at two minute time

resolution has provided the most continuous record and detail of small scale

humidity fluctuations. Rawinsonde data was available from both an island

site and the research vessel Point Sur. The information extractable from

these sources is somewhat limited due to the frequency of launches (3-4/day

at SNI and 6/day on the Point Sur). Some additional data was available from

instrumented aircraft although scheduling flights in the neighborhood of the

island was difficult due to restrictions on the air space. Other relevant

data was collected at SNI near the radar and rawinsonde launch sites. A

continuous record of cloud base altitude was logged by a ceilometer. Doppler

acoustic sounder (sodar) reflectivity data provided a good record of

inversion height. The sodar also monitored turbulent temperature

fluctuations in the MBL. A small ground station recorded hourly averages of

solar irradiance and downward longwave irradiance.

This paper describes analysis in progress of the various data sets

described above for two adjacent two day periods from Ii July to 14 July.

The earlier period was chosen because the marine inversion was unusually high

and there was increased frequency of rawinsonde launches at SNI. The later

period was chosen because of the significant descent with time of an elevated

inversion indicated by the radar data. Throughout the four day period, but

especially in the first half, the turbulent humidity structure calculated

from Doppler radar reflectivity shows excellent agreement with humidity

profiles evaluated from rawinsonde data.

INTERPRETATION OF DOPPLER RADAR REFLECTIVITY

Penn State's Doppler wind profiler used at SNI operates at a frequency

of 404.37 MHz. For FIRE, the pulse width was set at i _s to provide the best

possible range resolution while satisfying the receiver bandwidth constraint.

The pulse repetition frequency was I0,000 Hz. Processing of radar

reflectivity is accomplished in the following manner. The complex video of

288 consecutive pulses are coherently averaged (time domain integration). A

set of 64 of these integrations is processed by a fast fourier transform

(FFT) to produce one spectrum. Incoherent averaging is then performed on 8

of these variance spectra to produce the two minute averaged spectrum from

which the signal/noise ratio (SNR) is extracted.

Since radar backscatter occurs in a volume (Vs) defined by the pulse and
beam widths, volume reflectivity (N) replaces the more familiar backscatter

cross-section (a), where N=a/V_. The volume reflectivity is related to the

SNR by the spectral radar equation (VanZandt et al., 1978)
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9_ ckB(_T +

- __ c Trx) (A_)2(SNR), (i)

2 2p F A cos(x)
trp

where c is the speed of light, k is Boltzmann's constant, B is the bandwidth

of the integrating filter, _ is the combined antenna/line efficiency, T

and T are noise temperatures for cosmic noise and the receiver, P isCthe

transmitted power, F is the pulse repetition frequency, A is the _ntenna

area, X is the off vertical beam axis angle, R is the rang_, and AR is the

range resolution. Based on comparison with a previously calibrated 50 MHz

Doppler wind profiler located in central Pennsylvania, the overall antenna

efficiency was chosen to be 0.18. Additional calibrations of the antenna

using aircraft data are currently underway. At _-0.742 m, aT <<T so to a

first approximation cosmic noise interference may be neglecte_. _th the

appropriate values inserted, (I) becomes

- 7.67xI0-28R2SNR. (2)

The backscatter intensity of the radar's signal depends on the mean

refractive index gradient existing in the scattering volume. Therefore, the
refractive index structure function parameter (C ) can be written in terms

of the radar's volume reflectivity (Ottersten, I_69)

Cn2 = (_/0.38) _(I/3) (3)

Insertion of _=0.742 m and (2) into (3) yields

C 2 - 1.83xI0-27R2SNR. (4)
n

Both temperature and humidity fluctuations may contribute to variations

in2the refractive index within the scattering volume. In radar studies of

Cn at low altitudes, the contribution due to temperature _luctuations is
usually ignored (Wesley, 1976). Conversion from C to C is then

(following Burk, 1980) n q

C 2 = C 2(1667T2/p)2
q n ' (5)

where T is the temperature and P is the pressure (in mb) within the

scattering volume. Combinbin_ (5) and (4) yields the final form of the

equation used to determine C from Doppler radar reflectivity"
q

C 2 5o08XI0-21R2SNR(T2/p)2
q = (6)

RAWINSONDE DATA

During the FIRE IFO, Colorado State University operated a cross-chain

Loran atmospheric sounding system (CLASS) at SNI. Scientists from the Naval

Postgraduate School launched VIZ Loran-type sondes from the Point Suro For

additional information on the CLASS system and details on processing of the

SNI rawinsonde data, see Schubert, et al. (1987a). Water vapor mixing ratio

(q) was computed in the standard way.
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RESULTS

2
Fig. i shows a time-height cross-section of log(C_ ) contours (g/kg)

from (6) for July 11-12. In this and the following figures, time in _ours is
measured continuously starting at 0z on Ii July. Higher values of C

correspond to regions of increased scattering from turbulent humidit_

fluctuations. 2 In regions of active turbulence, the structure function
parameter (C ) for a particular variable (x) is proportional to the squarex
of the vertical gradient of x (Fairall et al, 1988)

Cx2 = 1.67 x(Cu2/N2)(ax/az)2, (7)

2
where x could be T, q, or n; C , a measure of local turbulence, is the

u
velocity structure function parameter, N is the Brunt-Vaisala frequency; and

7xDO.3 is a constant. Thus, C should correlate well with vertical humidity
gradients, q

For comparison, Fig. 2 shows q contours (g/kg) derived from rawinsonde

data for the same time period shown in Fig. I. The swath of high aq/az

across the middle of Fig. 2 is evidence of the MBL inversion height

decreasing from about i000 m at the beginning of ii July to about 750 m at

the end2of 12 July. Note that the humidity gradients _r_ well correlatedwith C except for a period from 23z to 29z in which reaches a local

minimu_ while _q/Sz approaches its maximum value, q

This apparent disagreement with the relationship in (7) can be analyzed

using additional data obtained from the remote sensors located at SNI. A

record of cloud base measured by the ceilometer (Schubert et al., 1987b), is

shown in Fig. 3. Clear sky is depicted by a point at 960 m. The period

labeled 23z to 27z shows a sharp decrease in cloud base, suggesting a period

of strong subsidence which eventually leads to clearing just after 27z. Wind

speed contours from merged sodar/wlnd profiler data sets (Syrett, 1988) are

shown in Fig. 4. Here, the period from 23z to 29z is characterized by light

winds and negligible vertical wind shear. Thus for the period in question,

one may conclude that although a strong humidity gradient exists, the

mechanisms that would normally generate turbulence in the region of the

gradient such as cloud top entrainment a_d vertical wind shear, are not
present, resulting in lower values of C

q
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Fig. 1 Time-height cross-section of log(Cq 2) contours (g/kg) calculated from

Doppler radar reflectivity.

Fig. 2 Time-height cross-section of specific humidity contours (g/kg) from

rawinsondes launched at SNI. Data was compiled by Schubert et al., (1987a).

Fig. 3 Filtered cloud base versus time from ceilometer data collected at

SNI during FIRE (after Schubert et al., 1987b). Clear sky is depicted by a
point at 960 m.

Fig. 4 Time-height cross-section of wind speed contours (m/s) derived from

merged sodar/wind profiler data sets (after Syrett, 1988).
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I Introduction

Analysis of thermodynamic parameters obtained over the

FIRE region from the NCAR Electra aircraft during ascent and

descent soundings through and above the subsidence inversion

reveals the existence of alternating dry and moist layers in

the free atmosphere Just above above the inversion. This

dry/moist wedge structure has been observed before over both

the tropical and subtropical oceans (Lillyt 1968; Miller and

Ahrens, 1970; Riehl, 1979; and kloesel and Albrecht, 1989).

In this presentation, the structure of these layers, as well

as a preliminary investigation of their source are examined.

II. Observed Moisture Structure

Three distinct types of above-inversion moisture
structure were encountered during the experiment. On some

flights_ a slngle moist layer was observed above a dry free
atmosphere/inversion interface (Figure IA). On other
flightsl the structure was much more complex with multiple

dry/moist layers (Figure IB). Furthermorel observations on
several 41ights show a free atmosphere above the inversion
with mixing ratios higher than those observed in the boundary

layer (Figure 1C).

Presently, radiosonde soundings from coastal stations

from AlasKa to Mexico, as well as CLASS soundings from San

Nicolas Island (Schubert, et al, 1988) are being used in

conjunction with the aircraft soundings to determine the

regional extent of this layered structure above the

inversion.

III. Determinino the source of the abo_e-inversion
moisture structure

The main process that would a11o_ moisture to be

injected into the free atmosphere is penetrating convection
that would occur in areas where the inversion is either
weakened or non-existent. Analysis of the soundings
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discussed above reveal that there is no significant breakdown

of the subsidence inversion over the FIRE region untll the
very end of the experiment (July 18, 1987). Therefore, the

source region for these layers is I ikely to be upstream of
the region. Analysis of the u and v components of the wind_
as well as comparisons of soundings taken several hours apart
in the same location reveal that ±hese layers may be advected

in the horizontal and vertical by the sub-tropical high
pressure system. Figure 2 illustrates two mixing Patio
soundings taken two hours apart in approximately the same

location on Electra Flight 4 (3uly 5, 1987). This comparison
shows a subsiding moist layer.

This mechanism of advection and subsidence of layers in

the free atmosphere is in agreement with a theory proposed by

Riehl, 1979, when discussing motions in the trade wind

regime. It appears that sinking motion in subsidence regions

does not occur uniformly over a deep atmospheric layer, but

is concentrated in thin isentropic sheets that slant downward

along air trajectories.

To determine the source region of these layers, 5-day

back isentroplc trajectory analyses from NMC Global grids

(provided by John Merrill, Univ. Rhode I$1and) were used.

While case studies of each Electra flight are still
being compiled, and some problems exist with the trajectory
analysis over a data sparse region such as the Pacific Ocean,
some interesting patterns are emerging. For cases that have
a layered moist/dry structure above the inversion such as

Flight 5 (Fig.lA)_ the air appears to have two different
points of origin, one moist and one dry. The trajectories

for this case are shown in Figure 3A,B. For cases that do not

have the layered structure, such as Flight I, only one source

region is suggested by the trajectory analysis (Figure 4A,B).

IU. Conclusions and further work

It appears that the alternating moist/dry layers above

the subsidence inversion/free atmosphere interface originate

upstream from the FIRE region and are advected along downward

slantlng Isentroplc surfaces around the seml-permanent sub-

tropical high pressure system. It also appears that the

layers are meso/synoptic scale in nature, and therefore their

occurrence may be predictable by current modeling techniques.

Ozone data is also being used to see if the dry wedges may
have stratospheric origins.

The importance of these layers with respect to boundary

layer modellng and the prospects of how these layers would

effect the type of air (moist or dry) entrained into the

boundary layer are still being developed. However, the
existence of these layers may have Implications in fore-
casting fractional cloudiness and stratocumulus break up.
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Reflectivities of Uniform and Broken Stratiform Clouds--An Update
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National Center for Atmospheric Research
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We have compared the reflectivities of uniform and broken stratiform
clouds obtained from the NOAA-9 and NOAA-10 overpasses collected during
the FIRE Marine Stratocumulus IFO, and we have compared these
reflectivities with those obtained through radiative transfer calculations

performed forplane-parallel cloud models. Our objective was to determine
the extent to which plane-parallel radiative transfer calculations could

reproduce the reflectivities observed for uniform clouds and to determine the
extent to which finite cloud effects cause broken clouds to reflect differently

than uniform clouds. The latter study is to provide guidance in the

parameterization of finite cloud effects in general circulation climate models
as well as to assess the ability of plane-parallel theory, which is used by

ISCCP to retrieve cloud properties, to treat the reflectivities of broken clouds.

Some results from this study were reported at the last FIRE Science

Team meeting and some were reported elsewhere (Coakley and Briegleb,
1989). Improvements since the previous reports include 1) the analysis of
additional satellite passes and 2) a modification to the analysis which helps
to show the significance of the differences in reflectivities for uniform and
broken clouds.

All NOAA-9 and NOAA-10 daytime passes for the FIRE IFO were

processed using the spatial coherence method. For this study observations
were collected for 60 km subframes which 1) contained a single layer of
stratiform clouds, 2) of the 1 km fields of view, had greater than 10% that
were overcast and 3) had a similar fraction that contained broken clouds. By

restricting the observations to such subframes we are able to report on the
properties of the reflectivities for uniform clouds, as deduced from the
overcast fields of view, and the properties for the same clouds when they are

broken, and thereby, are subject to finite cloud effects. For the broken clouds,
we obtain the reflectivity by taking the mean reflectivity for the ensemble of
fields of view containing broken clouds to be given by

= (1 - Ac) rs + Ac rc (I)

where Ac is the fractional cloud cover for the ensemble, rs is the reflectivity
for the cloud-free ocean background and rc is the desired cloud reflectivity, rs
is obtained from observations when the region is cloud-free. Ac is obtained

from the spatial coherence results using radiances at 11 lain.

For the calculated results we used an adding-doubling method for

solving the radiative transfer equation and Mie calculations for

pRECEDING PAGE BLA_'_K NOT FILMED
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representative droplet size distributions to obtain the single scattering phase
functions. These phase functions were fit to double Henyey-Greenstein phase
functions to capture both forward and backward peaks of the scattering.
Because the AVHRR is uncalibrated, we normalized the observations so that

a suitable average of the observed radiances was made to match a similarly
derived average of the calculated radiances.

Figure 1 shows comparisons of the calculated and observed anisotropy
of the 0.63 ttm reflectivities for the NOAA-9 and NOAA-10 overpasses. The
observed and calculated results match well within the uncertainties of the
observations.

Figure 2 shows differences (uniform - broken) between the reflectivities
of uniform clouds and their broken counterparts. Uniform clouds have
significantly higher reflectivities for all satellite zenith angles. Nevertheless,
at least for the stratiform clouds observed during FIRE, the anisotropy of the

0.63 p_a reflected radiation seems to be unaffected by finite cloud effects.

The reflectivity of broken stratiform clouds would appear to be
amenable to plane-parallel theory albeit at reduced reflectivities. The
reduction in reflectivity might be due to finite cloud effects, but the reduction
is also consistent with lower liquid water paths for broken clouds. We have

performed similar analyses for radiation reflected at 3.7 _m. The absorption
of solar radiation at 3.7 ttm by water droplets substantially alters the

findings.

Reference

Coakley, J.A., Jr. and B.P. Briegleb, 1989: Reflectivities of Uniform and
Broken Marine Stratiform Clouds. Proceedings of IRS '88. (in press).
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We have used the FIRE microwave radiometer observations of liquid

water path from San Nicolas Island and simultaneous NOAA AVHRR
observations of cloud reflectivity to test a relationship between cloud liquid

water path and cloud reflectivity that is often used in general circulation
climate models (Stephens, 1978). Here we report on the results of attempts

to improve the data analysis which was described at the previous FIRE
Science Team Workshop and elsewhere (Coakley and Snider, 1989). The

improvements included the analysis of additional satellite passes over San
Nicolas and sensitivity studies to estimate the effects on the observed
reflectivities due to 1) nonzero surface reflectivities beneath the clouds, 2) the

anisotropy of the reflected radiances observed by the AVHRR, 3) small scale
spatial structure in the liquid water path and 4) adjustments to the
calibration of AVHRR.

NOAA-9 and NOAA-10 AVHRR data and San Nicolas Island
microwave radiometer data were analyzed for all satellite passes for which

San Nicolas Island and neighboring 60 km regions were overcast and there
was no precipitation detected by the surface observers. The 1 minute liquid
water path measurements obtained from the microwave radiometer were
averaged for the hour containing the satellite overpass to obtain a value
resentative of overcast conditions. The average 0.63 _ reflectivity for 1 km
AVHRR fields of view that were within 60 km of San Nicolas Island and

which were identified as being overcast was taken to represent the

reflectivity of overcast conditions. The standard deviation of the reflectivity
for these fields of view was taken to represent the typical variability in the

reflectivity.

Figure 1 shows the observed 0.63 _n reflectivities and the
parameterized cloud albedo for the liquid water paths observed with the
microwave radiometer. The parameterized albedo is that developed by
Stephens (1978) for nonabsorbing clouds. To obtain the agreement shown,
we multiplied the reflectivities observed with NOAA-9 by 1.25 and those
observed with NOAA-10 by 1.35. These factors gave the best linear least-

squares fit with zero offset between the observed reflectivity and
parameterized cloud albedo. As discussed below, we take these factors to
represent adjustments to the calibration of the AVHRR instruments.

Because the parameterization is for cloud albedo while the
observations are of the bidirectional reflectivity for clouds over a reflecting

surface, we considered making corrections to the observations to allow for the
reflectivity of the underlying surface, the anisotropy of the reflected radiation
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multiplied by 1.35. The error bars indicate the typical variability in the
reflectivities as deduced from the observations.

and the small scale spatial structure in the liquid water path which is not
resolved by the AVI-IT_R observations.

To first order in surface albedo, the reflectivity as observed by the
AVHRR is given by

R' = R c + as (1 - Rc )2 (1)

where Rc is the cloud reflectivity and as is the surface reflectivity for the
particular viewing geometry, as is deduced from reflectivities observed
under cloud-free conditions. The desired quantity is the cloud reflectivity, Re,
which is deduced by solving (1). We find that for the current set of
observations R' - Rcis generally less than 0.02 and as a result is a fraction of
the typical variability in R' which is 0.05.

Concerning the anisotropy of the reflected radi_'ances, the observations
for NOAA-9 indicate that the reflectivities are nearly isotropic (after effects
due to surface reflectivities have been removed). Consequently, for the
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NOAA-9 observations no adjustments are made (Coakley and Briegleb, 1989).
For NOAA-10, the observations indicate that the reflected radiation is

slightly anisotropic. We allow for the anisotropy by assuming that for the
forward scattering direction the observations are representative of all
azimuths 0 < ¢p < rd2 and for the backward scattering direction the
observations are representative of all azimuths rd2 < ¢p_ < x. These
assumptions give rise to the definition of a bidirectional reflectivity which
can be used to convert the observed reflectivities to albedos. Allowing for the

anisotropy of the reflected radiances for NOAA-10, we find that the absolute
difference between the cloud albedo and the cloud reflectivity, I ac - r I is

generally less than 0.04, which is comparable to the variability oF the

observedreflectivities.

Because the 1 km AVHRR data is unable to resolve the spatial

structure which is evident in cloud reflectivities, and because the relationship
between liquid water path and cloud reflectivity saturates for large values of

the liquid water path, we suspect that the values of the reflectivities reported
here fall below those that would be expected from the parameterized

relationship using the mean of the liquid water path derived from the
microwave radiometer observations. To estimate the degree to which the

small scale variability in liquid water path affects the observed reflectivity,
we assume that the parameterized relationship holds, and we evaluate the
mean reflectivity which is taken to be given by

<rc> = _ rc(L)P(L)dL (2)

where P(L)dL is the probability of the liquid water path lying between L and
./

L+dL. We assume the probability distribution to be given by

P(L) = AI_exp(-rL) (3)

with N and F are adjusted to give the mean and standard deviations in the

liquid water paths observed with the microwave radiometer and A is a
normalization constant.

We find that the effect of small scale variability on the reflectivity is

small when L/oL << 1 where OL is the standard deviation of the liquid water

path, i.e. when the variability is indeed small, when L is small so that the
reflectivity becomes a linear function of L, and when L is sufficiently large
that the reflectivity has, for practical purposes, reached saturation.

Saturation appears to be reached for L > .05 ram. At most, the difference
between the observed and expected values of cloud reflectivity are, rc(<L>) -

<rc> = 0.03. Again the correction to the reflectivity is small compared to the
variability in the observed reflectivities.

If the factors used to obtain the results in Figure 1 are due to

calibration adjustments, then by far the largest corrections to the observed
data will be corrections for calibration. Corrections for the factors considered

above result in changes to the observations which are generally less than 5%
and only in one instance do the corrections amount to 22%. For the case of
the comparison for NOAA-9, we note that the correction, 1.25, is similar to
that obtained from experiments performed to determine the calibration, 1.20

77



(Whitlock et al 1988). Similar calibration experiments have been performed
for NOAA-10 but the results are as yet unavailable.

In conclusion, the results shown in Figure 1 indicate that at least the
functional form of the parameterization developed by Stephens (1978) is
correct. Furthermore, for the NOAA-9 observations, once corrections are

made for the instrument's calibration, the parameterized albedo is typically
within 5% of the observed reflectivities.
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1. Introduction

A multiwavelength scanning radiometer has been used to measure the

angular distribution of scattered radiation deep within a cloud layer at discrete

wavelengths between 0.5 and 2.3 _tm. The relative angular distribution of the

intensity field at each wavelength is used to determine the similarity parame-

ter, and hence single scattering albedo, of the cloud at that wavelength using

the diffusion domain method. In addition to the spectral similarity parame-

ter, the analysis provides a good estimate of the optical thickness of the cloud
beneath the aircraft. In addition to the radiation measurements, we obtained

microphysical and thermodynamic measurements from which the expected

similarity parameter spectrum was calculated using accepted values of the re-

fractive index of liquid water and the transmission function of water vapor.

In this paper, we present an analysis of the results obtained for a 50 km

section of clean marine stratocumulus clouds on 10 July 1987. These observa-

tions were obtained off the coast of California from the University of Wash-

ington Convair C-131A aircraft as part of the First ISCCP Regional Experiment

(FIRE). We will present a comparison of the experimentally-derived similar-

ity parameter spectrum with that expected theoretically from the cloud drop-

let size distribution measured simultaneously from the aircraft. The mea-

surements and theory are in very close agreement for this case of clean mar-
itime clouds.

2. Results from observations on 10 July 1987

On 10 July 1987 the C-131A flew a tightly coordinated mission with the

ER-2 aircraft, consisting of continually flying legs of 145 km in length. The C-

131A was primarily making cloud radiation and cloud microphysics mea-

surements deep within the cloud layer, whereas the ER-2 was flying well

above the clouds. Figure 1 illustrates the zenith and nadir intensities as a

function of distance (time) for measurements obtained inside clouds near the

central portion of one of these flight lines. These data, corresponding to ob-
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Fig. 1. Zenith and nadir intensities as a function of distance along the flight track for

measurements obtained inside the clouds between 9:41 and 9:51 PDT. These measurements were

obtained at a wavelength k = 0.503 _m.

servations obtained with the cloud absorption radiometer (King et al. 1986) at

= 0.503 p.m, show that the zenith and nadir intensities were quite uniform

within these clouds. A careful examination of Fig. 1 suggests that the data

near the start of the flight line are too optically thin to have a diffusion do-

main, as evidenced by very low zenith and nadir intensity measurements.

Furthermore, the measurements near 24.9 and 28.0 km, though probably in a
cloud of sufficient optical thickness to have a diffusion domain, were ob-

tained too near the cloud top, so the zenith measurements were contami-

nated by directly transmitted solar radiation.

The scaled optical thickness between the aircraft flight level and the base

of the clouds was derived by applying the diffusion domain method to all

scan lines of Fig. 1 that satisfied the diffusion domain criteria (see King et al.

1989 for details). Figure 2 illustrates the optical thickness 'co - • as a function of

distance, where we converted scaled optical thickness to optical thickness us-

ing the asymmetry factor g = 0.8579 applicable to this wavelength (K = 0.503

_tm) and derived for the measured cloud droplet size distribution. Of the 1000

scan lines presented in Fig. 1, 611 passed the restrictive selection criteria de-

scribed in King et al. (1989). Among those measurements excluded from our

analysis were the optically thin scans at the beginning of the time series and

the measurements that were contaminated by the sun (at distances of 24.9 and

28.0 km). As expected, the measurements between 11.5 and 19.4 km that had a
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Fig. 2. Optical thickness beneath the aircraft for all measurements of Fig. 7 that satisfy the

diffusion domain criteria.

relatively low zenith intensity and relatively high nadir intensity correspond

to a region of large optical thickness beneath the aircraft.

Given the surface reflectivity and optical thickness (or scaled optical thick-

ness) of an individual scan at a specified wavelength, the intensity ratio I(x,-

1)/ I(% 1) is reduced solely to a function of similarity parameter s. Utilizing

formulas summarized in King et al. (1989), we were thus able to calculate the

intensity ratio as a function of similarity parameter and match this functional

relationship with the measured intensity ratio to derive a value of the

similarity parameter for a given measurement and wavelength.

Figure 3 illustrates the similarity parameter as a function of distance for

four wavelengths of the CAR determined in this manner. The similarity pa-
rameter s, defined as s = [(1 - 0)0)/(1 - o)0g)] 1/2, is a function of the asymmetry

factor g and the single scattering albedo coo. The tendency for the similarity

parameter to decrease with increasing distance, especially noticeable at 1.64

and 2.20 I_m, is due to a modest decrease in the effective radius of the cloud

droplets over this distance and not to a decrease in the absorption content of

the cloud droplets themselves. Due to the use of a filter wheel to measure the

intensity field in channels 8-13, diffusion domain measurements were ob-

tained in this time interval for between 71 and 87 scans, depending on filter

position, in contrast to 611 for the first seven, simultaneously sampled, chan-
nels.
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Fig. 3. Similarity parameter as a function of distance for four wavelengths of the cloud

absorption radiometer.

Figure 4 illustrates the mean and standard deviation of the spectral simi-
larity parameter for all thirteen channels of the CAR obtained from aircraft

measurements on 10 July 1987. Although the conversion from s to cOo is not

unique, due to the moderate spectral variation of g, we have provided a sin-

gle scattering albedo scale in this figure as a matter of convenience. This scale,

shown on the right-hand side of Fig. 4, is strictly applicable at K = 0.754 pm.

Based on profile ascents and descents following these measurements, the stra-

tocumulus cloud layer was determined to be 440 m thick with a cloud base at
490 m.

In addition to the experimental results obtained using the CAR, Fig. 4 il-

lustrates calculations of the similarity parameter as a function of wavelength

for a cloud composed of water droplets only (solid curve) and droplets plus

saturated vapor at 10.3°C (dashed curve). The water droplet computations

were based on a combination of Mie theory and complex angular momentum

theory (Nussenzveig and Wiscombe 1980) applied to the measured cloud

droplet size distribution. The water vapor computations, on the other hand,

were based on assuming the cloud to be composed of saturated vapor and ap-

plying the necessary pressure and temperature scaling to obtain an equivalent

absorber amount (w = 0.41 g cm-2). The water vapor transmission functions

were then computed for this cloud layer at a resolution of 20 cm-1 using

LOWTRAN 5 (Kneizys et al. 1980). The absorption optical depths thus ob-
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Fig. 4. Calculations of the similarity parameter as a function of wavelength for water

droplets alone (solid line) and drops plus vapor (dashed line) for the cloud droplet size distri-

bution and water vapor conditions of the marine stratocumulus cloud of 10 July 1987. The single

scattering albedo scale is valid at _. = 0.754 pm, where the cloud asymmetry factor g = 0.848.

The measurements derived from the cloud absorption radiometer (solid circles with error bars)

are averages of the similarity parameter derived by applying the diffusion domain method to

the 50 km section of this cloud.

tained were combined with the corresponding optical properties for cloud

droplets, where we further assumed that the total cloud optical thickness Zc =

16 at a wavelength of 0.754 pm.

The very close agreement between the measurements and theory shows
that, in this case, the absorption of solar radiation by the clouds can be ac-

counted for largely by the droplets and that the large drops (drizzle) did not

produce significant "anomalous absorption." Based on these results we are
forced to conclude thai: "anomalous absorption," as discussed by Twomey

(1976), Davies et al. (1984) and Stephens and Tsay (1989), was not significant in

the marine stratocumulus clouds that we sampled on 10 July 1987.
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1. Introduction

Simultaneous measurements of the liquid water content and particle size

have assumed an important role in cloud physics as they help elucidate the

mechanism of cloud particle formation and the mechanism of air mass-mix-

ing in stratus clouds. Such measurements can reveal the modification of

cloud air masses by anthropogenic aerosol particles (Coakley et al. 1987,

Durkee 1989). Studies of the climatic impact of these modification processes

on cloud microphysics seems to be urgent for understanding mechanisms of

climate change. GCM simulations can be improved by introducing a parame-

terization of cloud optical properties in terms of integrated liquid water con-

tent (liquid water path) and particle size (Slingo 1989).

Motivated by the above mentioned circumstances, we have been develop-

ing remote sensing techniques for simultaneously retrieving the cloud optical

thickness and effective particle radius, from which the liquid water path can

be inferred. Nakajima and King (1989a) have shown a good agreement be-

tween the effective radius derived from in situ cloud microphysics observa-
tions and that derived from reflected solar radiation measurements, with a

slight overestimation occurring in the remote sensing method. Also Durkee

(1989) found a good correlation between the in situ value of the effective par-

ticle radius and the cloud reflectance at 3.7 _tm.

In this paper we will present statistical features of the cloud optical thick-

ness (or liquid water path) and effective particle size for marine stratocumu-

lus clouds. These results have been obtained during four days (7, 10, 13 and 16

July 1987) of observations with the Multispectral Cloud Radiometer (ER-2)

and Thematic Mapper (Landsat-5) during the First ISCCP Regional Experi-
ment (FIRE).

2. Results

The optical thickness ('_c) and effective particle radius (re) for 7, 10, 13 and

16 July 1987 have been retrieved by analyzing reflected solar radiation mea-

t Permanent affiliation: Upper Atmosphere and Space Research Laboratory, Faculty of

Science, Tohoku University, Sendal 980, Japan.
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surements at the 0.754, 1.65 and 2.16 _tm channels of the MCR onboard the

NASA ER-2 aircraft. The algorithm used to derive these parameters has been

described by Nakajima and King (1989b). We have also applied the same

method to data obtained from band 2 (0.56_m) and 7 (2.22 _tm) of the Landsat-

5 Thematic Mapper on July 7 and 16.

The areas used in the present analysis are approximately 30 km x 100 km

for the MCR data, and 150 km x 150 km for the Thematic Mapper. In situ

cloud liquid water content and effective radius were obtained from mea-

surements obtained with the Johnson-Williams (JW) liquid water content

meter and three different PMS cloud probes (FSSP, OAP-200X and OAP-200Y)

on board the University of Washington C-131A aircraft.

Figure 1 shows comparisons between the remote sensing-derived values

of the effective radius and the in situ values, where we have partitioned the

results into three different cloud optical thickness ranges, i. e., 5 < % < 10, 10 <

% < 15 and 15 < % < 20. The remote sensing values have been adjusted to the

cloud center where the C-131A was flying (see Nakajima and King 1989b for

details), and the data with x < 5 have been omitted because of the uncertainty

in the retrieval for optically thin clouds. From the results presented in this

figure we see that for thin clouds (5 < % < 10) the remote sensing values are in

excellent agreement with the in situ values. As the cloud optical thickness

increases, however, the remote sensing values become progressively larger

than the in situ values for re < 10 _tm, and vice versa for re > 10 _tm. The

former phenomenon is likely related to the so-called cloud absorption

anomaly in the near infrared region (NIR), i. e., the cloud looks darker than

the theoretical expectation from in situ microphysical parameters (e.g.,

Stephens and Platt, 1987). On the other hand, the latter phenomenon is

caused by the drizzle mode particles which can be measured by the PMS-OAP

cloud and precipitation probes. The remote sensing values have only a weak

sensitivity to these drizzle mode particles which tend to exist relatively low in
the clouds.

Figure 2 shows comparisons of the liquid water path (gm -2) estimated

from the remote sensing quantities as

Wremote = 2 rcenter % / 3, (1)

and by the in situ measurements as

Wtn situ = tom _, (2)

where rcenter is the effective radius derived from remote sensing after adjust-

ment for vertical inhomogeneity (Nakajima and King 1989b), zc the remote

sensing-derived cloud optical thickness, Wm the measured liquid water con-

tent from the JW liquid water content meter, and Az the cloud geometrical
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thickness. The geometric thickness of the cloud has been estimated as an

equivalent thickness which gives the liquid water path obtained by integrat-

ing vertical profiles of the liquid water content.

Although there is large uncertainty in the estimation of Az, we observe a

tendency to underestimate the liquid water path retrieved from our remote

sensing method by 20% to 40%. From Eq. (1), together with Figs. 1 and 2, we

conclude that the remote sensing optical thickness is somewhat smaller than
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Fig. 2. Comparison of the liquid water paths derived from in situ measurements and
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the expected value from in situ measurements by N50% for thick clouds with

= 20 and re - 8 _tm, roughly corresponding to the case for 10 July 1987. For

such thick clouds the channel 1 (_, = 0.754 _tm) intensity is mostly sensitive to

the optical thickness, with little sensitivity to particle radius, and thus the in-

tensity at X = 0.754 _tm is significantly smaller than the expected value from in
situ measurements.

Although there is some discrepancy between the in situ and remote

sensing values of W and re, it is worthwhile to examine the correlation

between these two quantites, especially given the recent interest in

parameterizing the shortwave radiative properties of clouds in terms of these

two parameters (Slingo 1989). Figure 3 shows two dimensional histograms of
W and re for the four days of our observations. The five contour lines for

each day show the 10, 30, 50, 70 and 90% occurrence levels. Other than 10 July,

the contour lines are confined in a rather small area having the different

peaks depending on days. The composite pattern of all contours with

different days shows a weak positive correlation between W and re. The

rough tendency may be expressed as

re --- 0.333 wl/4. (3)

A similar comparison for in situ quantities is shown in Fig. 4. Since we have

relatively large particles on 7 July and very large drizzle particles on 10 July,
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the overall pattern is more complicated than that presented in Fig. 3. If we

disregard the drizzle particles, the effective radius is relatively insensitive to

the liquid water path. The difference in the sensitive altitude within clouds

between in situ and remote sensing is at least partly responsible for some of

the difference in the tendency shown in Figs. 3 and 4.

3. Concluding remarks

As a result of our investigation, we have observed some interesting rela-

tionships between the liquid water path and the effective particle radius. We

observed a systematic bias in the effective radius derived by our remote sens-

ing method, with the tendency to overestimate the effective radius increas-

ing as the cloud optical thickness increases. Since this can be a good guideline

for solving the NIR cloud absorption anomaly problem, we need to compile

more data in order to determine whether this is a general tendency for ma-

rine stratocumulus clouds. Although we also found some tendency of un-

derestimating the cloud optical thickness from reflection function measure-

ments, we need to be careful about drawing any conclusions because of the

large uncertainty in estimating the liquid water path using Eq. (2).
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As for the dependency of the effective radius on liquid water path, we

conclude that the effective radius is relatively independent of the liquid water

path with some weak positive correlation for clouds lacking significant driz-

zle development. For reflected solar radiation the existence of drizzle particle

is not important, whereas the transmitted solar radiation is expected to have

some dependence on drizzle mode particles. Consequently we need to use a

vertically inhomogeneous cloud model with a two mode size distribution to

produce a consistent cloud radiative model valid for both reflected and
transmitted radiation.

Since the above results depend strongly on the calibration of the radiome-

ters and in situ instruments, more ground (aircraft) truth will be required to
further extend the results shown here.
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SATELLITE-DERIVED CLOUD AND RADIATION FIELDS

OVER THE MARINE STRATOCUMUIJJS IFO
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Patrick Minnis and Edwin F. Harrison

Atmospheric Sciences Division, NASA Langley Research Center
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i. Introduction

The Geostationary Operational Environmental Satellite (GOES) is the only

source for nearly continuous areal coverage of clouds within the California

marine stratocumulus region. This paper presents a summary of the cloud

parameters derived from GOES data during the First ISCCP Regional Experiment

(FIRE) Marine Stratocumulus Intensive Field Observations (IFO).

2. Data and Methodology

Hourly, l-km visible (VIS, 0.65_m) and 4xS-km infrared (IR, ll.5_m) data

from GOES-West (135°W) were analyzed with the hybrid bispectral threshold

method (HBTM) of Minnis et al. (1987) on a 0.5 ° latitude-longitude grid

which includes the area between 36°N and 28°N and IIS°W and 125°W. This

grid encompasses the locations of most surface and aircraft operations

during the IFO. Data were analyzed for the period July 1-19, 1987. Missing

data occurred for entire 24-hour intervals during July 5, i0, and 16. Other

sporadic data dropouts reduced the available data to 13 - 16 days for a

given hour. Some navigation problems were also encountered, so these

results are considered to be preliminary. The VIS data were converted to

narrowband reflectance using the calibration of C. H. Whitlock (1988,

personal communication). Vertically integrated liquid water content (LWC)

was derived from the cloud albedos using the regression fit to microwave

data derived by Minnis et al. (1989a). Cloud-top altitudes and surface

temperatures for the GOES-West results were estimated from the cloud-top

temperature and clear-sky temperatures in the manner described by Minnis et

al. (1989b). GOES-East (75°W) 3-hourly, 8-km VIS and IR data were analyzed

in the same fashion for July 2-19 except that a 2.5 ° grid was used. The

grid overlays the area between 10°N and 40°N and II0°W and 145°W. Poor

spatial and temporal sampling was encountered in the southwestern portion of

the grid. High viewing zenith angles reduce the quality of the results in

the northwestern corner of the area.

3. Results and Discussion

An overview of the mean cloud amounts is shown in Fig. 1 for (a) GOES

East and (b) GOES-West. The average total cloudiness is nearly the same for

both satellite views as seen in Fig. 2. Generally, the mean cloud amounts

within the IFO area ranged from 60 to 90% with steep gradients near the

coast. The diurnal variations of total cloudiness are also very similar for

the two views as seen in Fig. 3 for a 2.5 ° region centered at 31.3°N,

I18.7°W. Figure 4 gives the mean diurnal variations of total cloudiness for

all 0.5 ° regions viewed from GOES-West. These "mini-plots" were derived

from 3-hourly averages with missing data filled by linear interpolation.
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Thus, the curves are smoother and the extrema have been diminished compared

to the observed cloud amounts (e.g., Minnis et al., 1989a). The diurnal

ranges are greatest along the coastal regions. Cloudiness is relatively

constant south of San Nicolas Island (SNI) between the coast and 123°W.

Further west, the diurnal range increases again. According to the GOES-East

results (Young et al., 1989), this increase in the diurnal range continues

to at least 145°W. Clear-sky and cloud-top temperatures are presented in

Figs. 5a and 5b, respectively. The gradient in cloud-top temperature is

primarily from west to east, while the ocean clear-sky temperature varies

from north to south west of 120 ° and west to east eastward of 120°W. Mean

cloud-top altitudes (Fig. 6) range from 450 m northwest of SNI to values

greater than 750 m near the southwestern corner of the area. Average cloud-

top altitude for the entire area is - 600 m. The mean cloud albedos given

in Fig. 7 translate directly to LWC in Fig. 8. Maximum values of mean
-2

daytime LWC exceed 80 gm in the vicinity of SNI. Liquid water contents

decrease westward to a minimum of less than 30 gm -2 near 35 °N.

The results presented here summarize a much more detailed hourly data

set. Some of the parameters have been derived from relationships developed

from combinations of other FIRE data. Others were verified using various

FIRE data sets. Therefore, the derived parameters should be consistent with

other IFO data sets. In general, the results are not greatly different than

those found during previous years (Minnis et al., 1988). Thus, it appears

that the IFO period is relatively typical of California marine stratocumulus

during July. East-west gradients in cloud-top height, diurnal cloud

variations, and LWC, however, suggest that the IFO region may not be typical
of stratocumulus over the open ocean.
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Extensive remote sensing observations of

marine stratus clouds were acquired from

the NASA ER-2 aircraft during the 1987

FIRE stratus field experiment. The

observations included high spatial

resolution imaging radiometry at eighteen

wavelengths and active lidar cloud top

profiling. Analysis of these data can

provide results to both enhance and extend

aircraft in situ cloud physics observations.

Initial analysis results from the 1987 field

experiment are to be reported.

For the spectral imaging radiometry

observations of the marine stratus, a

unique and potentially useful result was

obtained. For near infrared wavelengths,

a large number of the bidirectional

reflectance observations included persistent

and significant single scattering features.

With few exceptions, the features were not

correspondingly observed at visible

wavelengths. Distinct variations of

scattering angles for these near infrared

glory measurements were observed which

are thought to result from changes in the

cloud top droplet size distribution. An

initial comparison to direct cloud physics

measurements gives a good agreement

(Spinhirne and Nakajima, 1989). The

initial results indicate that observation of

the single scattering features of the

bidirectional reflectance of water clouds

should be a direct and accurate means to

remotely sense microphysical parameters of

water clouds.

The analysis of lidar returns from

marine stratus cloud tops have been shown

to be potentially valuable for study of the

microphysical and dynamic characteristics

of the clouds (Boers et al., 1988, Spinhirne

et al., 1989). Analysis involving cloud top

water content and height spectra has been

applied to some of the extensive lidar

observations of the 1987 field experiment.

Derivation of cloud top radiative

parameters and comparison to in situ

observations are planned. Initial results

are to be presented.
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The Radiation Budget of Stratocumulus Clouds

Measured by Tethered Balloon Instrumentation:

Variability of Flux Measurements

David P. Duds, Graeme L. Stephens and Stephen K. Cox

Department of Atmospheric Science

Colorado State University

Fort Collins, CO 80523

Measurements of Iongwave and shortwave radiation

were made using an instrument package on the NASA

tethered balloon during the FIRE Marine Stratocu-

mulus experiment. Radiation data from two pairs of

pyranometers were used to obtain vertical profiles of

the near-infrared (.7 - 2.8 fm) and total solar (.3 - 2.8

fro) fluxes through the boundary layer, while a pair of

pyrgeometers supplied measurements of the Iongwave
fluxes in the cloud layer. The radiation observations

were analyzed to determine heating rates and to mea-
sure the radiative energy budget inside the stratocu-

mulus clouds during several tethered balloon flights.

The radiation fields in the cloud layer were also simu-

lated by a two-stream radiative transfer model, which

used cloud optical properties derived from microphys-

ical measurements and Mie scattering theory.

The vertical profiles of the observed Iongwave cool-

ing rates were similar in structure and magnitude not
only to previous measurements of marine stratocum-

lus (Stephens et al., 1978; Slingo et al., 1982), but
also to the cooling rates computed by the two-stream

radiative .transfer model. However, the solar heating

rates measured in the clouds were significantly larger
than the rates calculated in the model and appeared

more important to the radiative energy balance of the

cloud than previously expected. An analysis of the

variability of the radiative flux data is being made in

order to determine the reliability of the heating rate

measurements, and how the variability of the data

affects the radiative energy balance measurements in
the cloud.

Solar albedo measurements showed that the visible

spectrum tended to be reflected by the clouds more

than the near IR spectrum. This is similar to the

results reported by Hignett (1987), although the dis-
crepancies between the observed and calculated near

IR to visible albedo ratios were generally small and
could be explained by the uncertainties in the albedo
ratio measurements. The ratio of the reflected near

[1¢ to reflected visible light remain fairly uniform dur-

ing each flight except for the case on July 10, 1987,

which sampled a nonhomogeneous cloud. For this
flight, the visible albedo decreased relative to the near

IR albedo. This suggests that the effects of hetero-

geneities on the radiative transfer through the cloud
may be more important in the visible than in the near
IR.

The computed solar reflectivities and absorptivities
of the clouds tended to be lower than the observed val-

ues, while the calculated transmissivities were much

higher than those measured by the instrument pack-

age. Since these radiative properties are also sensi-

tive to the variability in the flux measurements, fur-
ther analysis will be done to examine the variability

of these properties.
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Structural Analysis of Stratocumulus Convection

S.T. Siems*, M.B. Baker# and C.S. Bretherton*

*Applied Mathematics Department, #Geophysics Program

University of Washington, Seattle, WA 98195

I. Introduction

In an earlier study (Siems et al, 1989) we found that explosive cloudtop entrainment instability

(CTEI) is possible only when a parameter defined as D is of order unity, where

O = -A0_(X*)/A0v. (1)

Here X* is the fraction of environmental air in the exactly saturated mixture of cloudy and environmen-
tal air. A0_(X*) is the virtual potential temperature difference of this mixture relative to the unmixed

cloud, while A0v is the difference between the unmixed fluids.

Our examination of data from the FIRE project and other data sets leads us to conclude that the

enhancement of D is unlikely to ever be sufficient to bring about explosive CTEI under stratocumulus

conditions. It therefore appears that cloud breakup occurs via other processes, possibly related to

decoupling of the cloud and subcloud layers. To better understand this latter possibility, we have inves-

tigated the nature of the turbulent elements and convective motions involved in transport of heat and
moisture in cloudtopped boundary layers. We have sought in particular to test the simple conceptual

picture of the turbulence which has emerged indirectly or by assumption in previous studies of radia-

tively driven Sc in which surface fluxes are weak. According to this picture, negatively buoyant thermal

or plume like structures descend from the bottom of the radiatively cooled layer near cloudtop, merging

to form downdrafts, presumably convective cell edges, within which heat and moisture are transported

down. The return flow is broader and pushes up the cloud-clear inversion into hummocks, creating

baroclinic torques and rebound momentum at the stratified interface. In the absence of overall shear,

these processes should be responsible for entrainment, which is maximum in the intermittent valleys

between hummocks. The descending streams are aided in their downward propagation until cloudbase

by evaporative cooling, to the extent they remain saturated. Purely evaporatively cooled parcels, how-
ever, can proceed downward once they become unsaturated only at the expense of TKE within the

layer. This conceptual model has been explored by Nicholls (1989). The situation in the case that
shear and/or surface fluxes are important has been documented (Brost et al, 1982) but a similar con-

ceptual picture is not available. Since both were important sources of TKE during the FIRE project, we

have investigated the structure of the small scale variability in dynamic and thermodynamic propertics

in order to construct such a picture. At the time of writing this abstract we have not had time to com-

pare our results to those of Nicholls (1989), but those comparisons will be presented at the FIRE

workshop. The emphasis of the work at present has predominantly been on small scale features; how-
ever, larger scales are noted throughout.

In this abstract we focus on the following questions:

1) What processes are important in entrainment, where is it maximum and what scales are important?

What is the nature of this mixing across the inversion?
2) To what extent are the local dynamics organised by large scale fluctuations in cloud properties?

(where here large means greater than ten kilometers or so)
3) Which parcels form the roots of the upward moving plumes/thermals at the top of the lower surface

layer, and which form the initial downdrafts at the base of the radiatively cooled layer at cloudtop?

What are the roles of radiative cooling, evaporative cooling and surface fluxes relative to mechanical

forcing in driving these parcels?
4) Is decoupling evident and to what extent does this affect the circulation?

II. Research Methods

We have examined I and 20 Hz data from the Electra flights made on July 5, 1987. The flight legs

consisted of seven horizontal turbulent legs at the inversion, midcloud and below cloud, plus 4 sound-
ings made within the same time period. The cloud deck was thin but solid, for the most part, with
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three dimensional structure intermittently noted by the flight scientist. Cloudtop was flat, sloping

upward to the south west. Cloudbase was quite ragged, with intermittent small cumulus clouds below.

We used the Rosemount temperature sensor and the average of the top and bottom dewpoint sen-

sors, lagged by two seconds, for preliminary temperature and humidity measurements at 1 Hz. The

FSSP was working poorly on this day. We therefore used the Johnson-Williams sensor for the 1 Hz

liquid water readings. This data was interpolated to 20 Hz data creating a source of error in the liquid
water content; however, this error this induces in the total water content and 0_ is quite small. The

noted drift of the JW sensor is also on this order of magnitude. The Lyman-alpha hygrometer was cali-

brated following the method of Paluch (personal communication 1989) for 20 Hz and corresponding 1

Hz measurements. This gave satisfactory agreement with the dewpoint sensors in cloud, but the cali-

bration is dependent on the relative humidity; extremely dry environmental parcels require special

adjustment. Ozone measurements are useful when crossing the inversion but lose importance in the
cloud layer as the noise exceeds possible shifts.

III. Results

a) Inversion Structure and Entrainment

A typical 20 Hz sounding near the inversion is shown in Figure 1. There is clear evidence of

several individually well-mixed regions, of vertical extent h= 50 meters or less, through which

Qr and 03 are quite constant and between which there are very sharp gradients over less than 1 mb. A

study of the conserved variables shows that these layers (hereafter referred to as intermediate inversion
layers or IlLs) are not the product of direct mixing between the cloud and environment at this instant.

Interestingly, the rather homogeneous nature of an individual IlL suggests that it did not arise from a

uniform or gradient mixing process, but rather from a discrete process similar to that of Broadwell &
Breidenthal (1982). Indeed even the transition between IlLs is nonuniform. The IlLs persist for hours

during which they radiatively cool to equilibrium and are sorted by buoyancy. The layers are distinctly

subsaturated, which could not arise from the removal of drops alone.

In examining the overall nature of this inversion region, we find that the velocity jump is approxi-

mately 8 m/s, A0_ about 8 K, and thus the Richardson's number, Ri=g'h/AU 2, where g'=gAO_/Ov, is

less than ¼ for h less than 60 m. These regions are thus probably Kelvin Helmholtz vortices forming

near the tops of the cloudy hummocks. Note that from vertical soundings it is impossible to distinguish
localised Kelvin Helmholtz vortices from horizontally extended layers.

We can roughly estimate the entrainment rate into this shear layer due to these vortices from
laboratory and theoretical studies of turbulent mixing in free shear layers (Dimotakis, 1989). These

results show that the entrainment into a shear layer of horizontal velocity difference AU is determined

by two parameters, namely, s=p2/Pl and r= UJUa, where the label 2 is associated with the more slowly

moving fluid. (i.e., the upper air, in the July 5 case study). In the presence of density stratification
one would expect the shear layer thickness to be fully developed near hmax=(AU)2/g '. The fraction of

fast moving air flowing into the shear layer, according to these studies, is

C = sla( 1+ .68( 1- r)/( 1+ r )) (2)

Thus for the free shear layer we can estimate an entrainment velocity

We -_ Ua_ehmaxL-]/(l+C) (3)

where L is the distance it takes for the shear layer thickness to grow to saturation. This entrainment

rate would be characteristic of those portions of newly created surface over which h/hmax< 1; as the

surface ages the shear layer thickness approaches hma x and entrainment stops, creating intermittency in

the entrainment. Using parameters characteristic of the inversion on July 5 we have

AU=8 m/s, Ua_,=8 re�s, g'=.2, s=.98, r=0.33, C= 1.3 (i.e., there is 30% more cloudy than noncloudy

air in the shear layer). For the laboratory free shear layer the thickness of the molecularly mixed shear
layer grows at a rate hmax/L=.075 at s = 1. Thus we estimate an entrainment velocity of .3 m/s in

regions of scale L = 60/.075 = 800 m. This entrainment velocity would destroy the cloud rapidly, if

prolonged; thus the problem is to determine what fraction of the surface is active at any given time and

the rate of removal of the lowest IlL. This could occur through the lowest IIL cooling until this layer
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alone becomes unstable to Kelvin-Helmholtz instability. Entrainment via shear is clearly much more

efficient locally than the baroclinic torque mechanism (Breidenthal and Baker, 1985) or the rebound
mechanism (Linden, 1973), both of which are proportional to the inverse Richardson's number for the

layer, yielding entrainment velocities of several tenths of a centimeter per second.

b) Local Dynamics and Large Scale Forcing

Two flight legs were examined at the inversion, passing in and out of cloud turrets. A two-stream
radiative transfer model estimates the cloud turrets on these legs are approximately 40 m deep if we

assume uniform liquid water mixing ratio .3 g/rn 3. This depth is consistent with the lidar measure-

ments. These variations are far greater than can be explained on the basis of turbulent velocities carry-

ing cloudy air into the stratified interface, and must result from a larger scale forcing.

Another symptom of the local effects of larger scale forcing appears to be the presence of upper

level fluid below cloudtop in mixed parcels of scales 100 m and more. According to the work of Dimo-
takis & Brown (1976), and Broadwell & Breidenthal (1982), molecular scale mixing of two fluids in a

turbulent eddy occurs only after the two fluids have been in contact over a time comparable to an eddy
revolution time. That is, the vortex Richardson's number for eddies responsible for molecular scale

mixing must be of order unity. From the observed velocity spectrum it can be shown that for a parcel
100 m in scale to meet this criterion the maximum fraction of upper layer fluid it can contain is on the

order of 8%. We have shown earlier that evaporative cooling does not substantially modify this picture.

One possible mechanism by which the unbalanced mixing ratios might be created is that small bits of

upper level air are drawn down by radiatively cooled cloud parcels, or by the cloud circulations on larger

scales, around the edges of the cloud top undulations.

Cloudtop radiative cooling modifies the properties of the upper 50 meters or so of the cloud. If

this dominates in driving local dynamics, we expect to see descending, negatively buoyant, liquid water

rich parcels whose scales are determined by the requirement that they remain coherent long enough to

be substantially cooled. However, the descending parcels are usually relatively dry and tend to be

grouped in thinner liquid water regions, indicating significant entrainment is involved in the downdrafts.

To understand this better, we note that for a longwave cooling rate,

dO/dt = (F/pcp)'l -_ (4)

in a parcel of scale 1, with F the net LW flux from the parcel. Assuming a persistence time x= (/2/e)1/3

(assuming an inertial subrange characterised by TKE dissipation rate e), we find the cooling possible in

a parcel of scale l is

_0/0 = w,/w(l) (5)

where wr = F/pcpO is a measure of the cooling rate and w(1)=(le) 1/3. For typical values of the cloudtop
parameters F=80 W/m 2, e= 10 -3 m2/s 3 as estimated from the vertical velocity spectrum midcloud, we
find that w,= 10 -4 m/s, so only very small parcels can cool several tenths of a degree at cloudtop before

losing their coherence. Thus the descending parcels which are several hundred meters or more in hor-

izontal scale are not driven directly by their own radiative cooling, but are rather responding to larger

scale forcing. This conclusion is supported by the fact that they are not always the coolest parcels, as
will be shown below.

c) Convective Elements

There were two flights at midcloud levels; one flying upwind and the other flying cross wind. The
downward solar flux ranged from 860 WIm 2 to 650 W/m 2 during this leg, which, by our simple radia-

tion model, would imply that the plane was between about 100 and 200 m below cloudtop. This is
roughly consistent with upward flux observations based on the soundings. The trend is consistent with

the observation that cloudtop sloped upward moving out to sea.

We have conditionally sampled the data in the horizontal flight legs at the inversion, midcloud
and below cloud, to determine the characteristics of the up- and downdrafts. Figures 2 and 3 show the

20 Hz histograms of 0, and Qr (a) for a 45 second subcloud section; (b) for the parcels for which w is

in the upper 10% of the values measured, and c) for those parcels for which w was in the lowest 10%
of the values measured. While this is not a sophisticated method to isolate u.p- and downdrafts, it is a
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conservative first cut. We see that average values of 0e and Qr are found in all parcels, independent of

w, whereas the uppermost values of Qr and 0e are found only in updrafts and lowest values of Qr and

0, are found only in the downdrafts. The distribution of values of these parameters is tighter in the
updrafts than in the downdraft data in the midcloud segments. We have looked at similar information

for all the flight legs, and find broadly similar patterns within and below cloud. We do not see organisa-

tion either in the spacing or location of the up- and downdrafts activity in the subcloud legs, whereas

there is a suggestion of roughly 5 km spacing in the downdrafts in the midcloud legs, consistent with
convective cell geometry. Moreover, the correlations of thermodynamic properties with extremes in

vertical velocity are fairly weak suggesting that buoyancy is not dominating the structure. We find the

cutoffs defining the up- and downdrafts change markedly on entering cloudbase; that is, the upper ten

per cent of the positive velocity excursions are much higher below cloud than in cloud, while the lowest

ten per cent of the velocities have small w below cloud and much larger in cloud. Thus buoyancy
differences are probably not driving these parcels continuously up to the inversion. An interesting note

is that the average velocity is positive in the subcloud layer, contrary to the classical picture of sub-
sidence. Simple parcel calculations show the buoyancy differences existing in this situation are so small

that minor excursions in initial vertical velocity (at top or bottom), due to initial forcing, can have sub-

stantial impact on velocities of parcels in the middle of the layer.

Horizontal wind variations are correlated with updrafts at low levels, in the sense that the air com-
ing from below has less horizontal momentum than that from above. These correlations are lost above

cloudbase suggesting that it should not be used as a horizontal tracer.

d) Decoupling of Cloud and Subcloud

As seen from above, it is not necessarily the warmest or the most buoyant parcels which rise the
fastest from low levels to mix with the air above. In fact, the strong updraft regions do not even

penetrate the cloud layer. This is seen in the Paluch diagrams (see Figure 4) which show two regions
for a given sounding. The first is the from near ocean surface to approximately cloud base. We see a

rather uniform mixing line. Note that moist, warm parcels correspond with the updrafts of the previ-

ous section. This mixing line can support the notion of mixing with the SST (Boers & Betts, 1988).

We next examine the cloud region only. We see that the warm, moist parcels of this section do indeed

mix with the air above the inversion but these updrafts do not correspond to the updrafts of the sub-

cloud region. Thus we find that the sounding is decoupled. This height-dependent variation is far

greater than has been observed in the course of longer level flights of the plane indicating that horizon-

tal motion is not believed to be accountable for the evident decoupling.

IV. Discussion

Our data suggest that larger scale forcing, both by shear at cloudtop and by surface fluxes, deter-

mine the small scale motions within clouds on July 5. Direct correlation of buoyancy fluctuations and

vertical motions on small (100 m to several kilometer) scales is weak. Analysis suggest that shear layer
mixing across the inversion dominates the entrainment.
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Latent heating effects on stratocumulus circulations have been studied successfully with a
nine-coefficient spectral model of two-dimensional shallow Boussinesq convection

(Laufersweiler and Shirer, 1989: JAS, 1133-1153). Further, more realistic investigations are
being performed currently with a larger, 18-coefficient spectral model, in which the effects of
cloud top radiational cooling and in-cloud radiational heating are also being represented.
Because assuming a rigid lid at the inversion base may have affected previous results

significantly, we have raised the domain top to include the lower portion of the capping
inversion. As in the previous model, a uniform cloud base is assumed and latent heating effects
are included implicitly such that the motions in the sub- and above-cloud regions are dry
adiabatic and the motions in the cloud region are moist adiabatic. The effects of forcing by
radiational heating profiles that are tied to the cloud layer, such as the one used by Nicholls
(1984: OJRMS_, 783-820), will be investigated, as will profdes measured during the FIRE

experiment.

One concern of using truncated spectral models is that the phenomena are so poorly

represented that they can change dramatically as the number of spectral coefficients is increased.
The efficacy of the nine-coefficient model results is checked by examining the steady state
solutions of the 18-coefficient model for parameter values used by Laufersweiles and Shires

(1989), which corresponds to the case of a moderately deep cloud and no capping inversion (Fig.
1). Here, the horizontally asymmetric circulation patterns that have narrow downdraft areas and

broad updraft areas are virtually the same as those found in the smaller spectral model (Fig. lb).
Also captured in the case of weaker heating is an elevated circulation centered at cloud base

(Fig. la). Thus, the results of the smaller model are substantiated.

Since one of the goals of studying the new model is to represent a more realistic domain,
the second test of the model is to investigate whether the steady solutions are suppressed in the
case of an inversion with no cloud. The capping inversion should limit the convective
circulations, but we do not force this to happen with the imposition of a rigid lid at the inversion

base. Figure 2 shows the steady solutions for the case of a relatively strong inversion of 10
*C/kin that begins at a height of 0.8z t, as indicated by the tic. For the case when the value of the

Rayleigh number is near its critical value (Fig. 2a), the circulations are weak and located in the
sub-inversion region of the domain. For a higher value of the Rayleigh number (Fig. 2b), the
circulation has intensified but is still restricted to the sub-inversion region; importantly, the

updrafts only penetrate into the inversion by a small amount. Thus, the model is correctly

representing the effects of an inversion by properly suppressing the convection.

Figures 3 and 4 are the first investigations into the performance of the model when both
the cloud and an inversion are represented. Figure 3 shows the steady solutions for a weak

inversion having a value of 2 *C/kin and Fig. 4 shows the steady solutions for a fairly strong
inversion having a value of 10 *C/kin. The higher value of the inversion strength, although

large, is still on the order of 1/2 of the values of the inversion strength that were measured
during FIRE, typically around 18 to 20 *C/kin. By comparing the figures, we observe that the
intensity of the circulation patterns for the weaker inversion is stronger than that for the stronger
inversion; however, we are concerned that for higher values of the Rayleigh number, the
circulations penetrate too deeply into the inversion. This result may be due to the fact that the
latent heating, as represented in this model, is warming the flow far more than that found in the
actual boundary layer. Possibly, inclusion of radiative forcing will compensate for this effect.

The research for this work was supported in part by the National Science Foundation through Grant ATM-8619854

and by the Office of Naval Research through Contract N000014-86-K-06880.
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A Stratocumulus Thermodynamic Analysis: July 5 Case Study

Philip Austin

Programme in Atmospheric Science, #217 Geography, 1984 West Mall,
University of British Columbia, Vancouver, British Columbia V6J IW5 Canada

1. Introduction

On July 5 (NCAR Electra flight 4, Mission 186-G) the Electra flew a single aircraft mission which consisted

of cross and along-wind legs at 6 different altitudes between 10:43 -- 16"00 PDT (17:43 --23:00 GMT). The leg

length was kept short (8-10 minutes) to permit maximum vertical resolution, and there were 8 soundings. Observer

notes report a thin, solid stratocumulus cloud deck which gradually became more broken in the afternoon. Winds
were from the north at 10 - 13 ms -l throughout the flight.

This abstract presents sea surface temperature measurements and conservative variable analyses for several of

the July 5 legs. These results are preliminary to a study of the thermodynamic budget on July 5; they indicate that:

1. The sea surface temperature dropped more than 1 K (from 17.3°C to 15.9°C) over the course of the

flight (18:01 and at 21:51 GMT).

2. Mixing lines for each of the horizontal sub-cloud legs show the effect of a strong north-south gradient

in SST. The source points for the observed mixtures have SSTs colder than those observed in the

flight area.

3. There is a clear demarcation over a transition of 5-10 km between air to the south and cooler, (AT=

---0.3°C) moister (Arv = 1 g/kg) air to the north. The FSSP measurements indicate there are small
clouds/scud 250 m below cloud base on the cold northern side of this transition. The transition is

seen in the saturation point diagrams at 984 mb, 959 mb, and 946 mb. There is no corresponding

change in the horizontal wind across the transition regions.

2. Observations

Figure 1 shows the height/latitude cross sections of the flight tracks. Also shown is the time at the mid-point
of the track, the pressure level (in mb), and the aircraft direction of travel. The stars indicate the location of the
transition between air masses mentioned above in item (3).

Two minute averages of sea surface temperature measurements from two of the surface legs are shown in

Figure 2a (18:01 -- 18:21) and 2b (21:56 -- 22:08 GMT). The technique of Liu and Katsaros (1980) has been used
to correct for emission from overlying clouds. The SST measurements show a strong north-south SST gradient late

in the flight, and a 1 K cooling (or 1 K radiometer drift) over the 4 hours of the flight.

An independent check of the SST measurement is provided by the mixing diagrams in Figures 3a and 3b. We

have used the saturation point notation of Betts (1982), with (0., Q,) denoting the potential temperature and total

water mixing ratio of air taken to its lifting condensation level. These variables mix linearly and are conserved

under adiabatic transformations, i.e. air that is a mixture from two sources will have values of (0., Q.) that fall on

a line between the two source points. The saturation points of 3 representative SSTs are also shown; it appears from

these mixing diagrams that the surface air was originally cooler than the (0. Q.) of the coldest 15.9°C observed

sea surface temperature.

P_ECEDING PAGE BLANK NOT FILMED
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Also striking in both 3a and 3b is the separation of the saturation points into two distinct groups. The separation
is observed in each of three sub-cloud legs. Figure 4 shows the temperature, mixing ratio, and droplet concentration
measurements for the 984 mb penetration. The lower 0. branch in Figure 3a is composed of points sampled over
the last 2.5 minutes of the time series shown in Figure 4. The radiometric temperature measurement from the PRT6
is included. It indicates that the observed cooling is real, and not an artifact of thermometer wetting by the cloud
droplets observed in the sub-cloud region.
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Turbulence Spectra of the FIRE Stratocumulus-topped Boundary Layers

by

C. S. Young, J. J. Nucciarone and B. A. Albrecht

Abstract

There are at least four physical phenomena which contribute to the FIRE

boundary layer turbulence spectra: boundary layer spanning eddies resulting

from buoyant and mechanical production of t_trbulence kinetic energy (the

microscale subransa); inertial subrange turbulence which cascades this energy
to slualler scales; quasi-two-dimsr,_ional _soscala variations; and gravity/

waves. The relative contributions of these four phenomena to the spectra

depend on the altitude of observation and the variable involved (vertical
velocity, temperature and moisture spectra are discussed). The physical

origins of these variations in relative contribution will be discussed below.

As expected from theory (Kaimal st. al., 1976), mixed layer scaling of the

spectra (is. nondimensionalizing wavelength by Zl and spectral density by ZL
and the dissipation rates) is successful for the microscale subrange and

inertial subrange but not for the aesoscale subrange.
The most striking feature of the normalized vertical velocity spectra

shown in figure 1 is the lack of any significant mesoscale contribution. The

spectral peak results from buoyant and mechanical production on scales similar
to the boundary layer depth. The decrease in spectral density at larger
scales results from the suppression of vertical velocity perturbations with

large horizontal scales by the shallowness of the a_osphera. The spectral

density also decreases towards smaller scales following the well known

inertial subrange slope.
There is significant variation in the shape of the nor_alized spectra

with height. However, the spectra assu_ silllar forms within each of _eo

height ranges: 0.1-0.4 Zl, 0.4-0.9 Zl, 0.9-1.0 ZI. The mid mixed layer

spectra, 0.4-0.9 Zl, closely resemble those observed in the overland
convective boundary layer (Young, 1987). The spectra for the lower mixed

layer, 0.1-0.4 Zl are similar but have a lower spectral peak than those for
the mid mixed layer or those for similar height ranges in the overland CBL.

This difference in spectral form nay be related to the greater contribution

of mechanical production relative to buoyant production for this height range
of the FIRE boundary layers. The FIRE turbulence kinetic energy dissipation

profiles fall into two classes which support this hypothesis. Some of these
dissipation profiles are nearly constant with height, suggesting that buoyant

production is the dominant energy source while, others of them decrease
linearly with height, suggesting that mechanical production resulting from
surface stress is an important energy source. This form of mechanical

production makes much less of a contribution to the turbulence spectra at

higher levels in the FIRE boundary layers and is entirely absent in purely
convective boundary layers. The peaks of the upper mixed layer spectra, 0.9-

1.0 Zi, are shifted to a significantly smaller scale than those at lower
levels because of the eddy size limitation imposed by the adjacent capping
inversion. This effect is physically similar to that observed in the surface

layer. There is also a secondary peak in the upper mixed layer vertical

velocity spectra at wavelengths much greater than Zl which may be associated

with gravity waves in the capping inversion. Thus, considerable insight into

#")ml"_':,"_-q _ P _l,.',_-:_.::'_,".',-PAGE IS
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the dynaalcal processes at work in the boundary layer and capping inversion
can be dlagnond from the observed variations of the FIRE vertical veloclty
spectra with height.

The temperature spectra shown in figure 2 have a somewhat different form

than the vortical velocity spectra because they do exhibit a arran s mesoscalo
contribution. The msoscalo subranse is separated from the mlcroscale peak by
a shallow spectral Sap ranslng up to a decade in width. The mlcroscalo peak
and the Inertial subranso are well normalized by mixed layer scallng while the
mesoscalo subranse is not. The temperature spectra in the aid and lower alxod
layer are similar without any indication of the charism in shape observed with
the vertical velocity spectra. It is posmlblo that because the stratification
is weak the Mchanlcal mlxln s does not affect the shape of the te_apera_re
spectra am such as it does the shape of the vertical velocity spectra. Any
sravlCy wave contribution to the tempera_-re spectra in the upper mixed layer
is Ind£stlnsulshable from the mesoscale contribution. The differences between
the temperature and vertical velocity spectra hlshlisht the relative
importance of mesoscale and microscale contributions to the variance of these
two quantities.

The moisture spectra shown in figure 3 are doalnsted by their meeozcale
contribution to an even sreater extent than are the teapera_uce spectra. The
mesoscale contribution to the moisture spectra is so arran s that except in the
lowest layer, 0.1-0.3 Zi, no mlcroscale peak can be dlzttnSulshed. In the aid
and upper mixed layer the aesoscale spectra mmrses more or 1eros smoothly into
the inertial subranse spectra. In the lower mixed layer, on the other hand,
there is a separate microscale peak separated from the mesoscale by a shallow
spectral sap a decade wide. Further investigation Involvln s dissipation rates
for temperature and awlsture variance will help explain the differences in
relative contribution of aesoecale and mlcroscale processes to the FI_

boundary layer. The relative contribution of these two scales may have a
siSntftcant impact on other aspects of the marine atmospherlc boundary layer
Includln s the cloud size distribution and the hor£zon_al scales of variation
in th$ radiative bud£et.
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Normalized Temperature Spectra
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Turbulence Structure in Clear and Cloudy Regions
of the 7 July 1987 Electra Mission

Siri Jodha Singh Khalsa
Cooperative Institute for Research in Environmental Sciences

University of Colorado
Boulder, Colorado 80309-0216

I. Introduction

The 7 July mission of the 1987 FIRE marine stratocumulus intensive field observations has been
chosen by several researchers for analysis because a well-defined transition from stratocumulus
to clear conditions was sampled by the aircraft on this day. It is hoped that by studying this case
we can learn something about the processes responsible for the maintenance and breakup of
stratocumulus layers, a primary objective of FIRE.

The preliminary analysis reported on here is based on data from the Electra flight of this day.
The properties of turbulence elements, i.e. updrafts and downdrafts, are examined to gain infor-
mation on the nature of the turbulent exchanges through the boundary layer and across the inver-
sion. Since such exchanges in large measure determine the stability and structure of cloud layers,
a study of draft properties should be informative. These results will also be useful in the devel-
opment of boundary layer models that are based on draft circulations (e.g. Randall, 1988;
Hanson, 1988).

H. Methodology

The technique that we use is conditional sampling based on an indicator function. The indicator
function is set to +1 or -1 when the vertical velocity exceeds predetermined positive or negative
thresholds. Other variables are sampled based on this indicator function and conditional averages
computed. Prior to computing the indicator function all variables are linearly detrended and a
high pass filter is applied to remove fluctuations greater than about 8 km in length. As done is
previous studies (e.g. Khalsa and Greenhut, 1985) the thresholds are based on the one-sided
vertical velocity variances about zero. Also, no change of state that lasts less than 0.2 sec is
allowed.

HI. Conditions on 7 July 1987

Four turbulence measuring legs were flown on 7 July 1987 (Fig. 1). The first 50m leg was flown
towards the west, followed by a 370m leg just below cloud base and a 580m leg just below
cloud top. A leg at 50m was repeated approximately 2 1/2 hours after the first, but shifted to the
east because of the movement of the cloud boundary.

The cloud boundary that was the focus of this mission was aligned approximately with the mean
wind, making the cross-wind turbulence legs normal to it. The cloud boundary in the measure-
ment region was found to move to the east at approximately 3 ms -1. Each flight leg was divided
into cloudy, transition and clear segments. The cloudy region to the east was generally solid
stratocumulus, transition had approximately 50% cloud cover and "clear" had only widely scat-
tered small cumulus.

The wind speed at 50m was from 330 ° and varied from 15 ms -1 in the east to 10 ms 1 in the west.
Sea surface temperature was lower in the east by about 1°C. Momentum flux and sensible and
latent heat fluxes at 50m were smaller in the cloudy region. The smaller stress in the east despite

greater wind speed implies a smaller transfer coefficient, in accord with the greater stability
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implied by cooler surface temperatures. The sensible and latent heat fluxes in all three regions
were much smaller during the second 50m leg.

Another difference between the f'trst and second 50m legs was in skewness which was a factor of
two smaller during the second leg in both clear and cloudy regions. At 370m the second, third
and fourth moments are all larger in the cloudy region compared to the clear region, probably a
result of circulations originating in the cloud layer. In the cloudy region near cloud top the
skewness is negative and the kurtosis is 3.6 compared to a positive variance and a kurtosis of 9.5

in the clear region. Negative skewness probably arises from strong sinking motions. The large
kurtosis in the clear region is due to the fact that the latter part of the highest leg in the clear
region actually penetrated the inversion towards the end of the run (the inversion sloped down-
ward towards the west) resulting a high degree of intermittency in the time series.

IV. Conditional Sampling Results

Conditional sampling results from the four aircraft flight legs in the clear, transition and cloudy
regions are shown in Fig. 2. Lines show the vertical variation of conditional averages for up-
drafts, downdrafts and the environment (i.e. everything that is not updraft or downdraft). The
second 50m leg was slightly lower in altitude than the first.

The conditionally sampled vertical velocity (Fig. 2a) for updrafts and downdrafts ranges in
magnitude from 0.5 to 1 ms -1 except for the 580m level in the clear region. Updrafts leave the
surface layer with positive buoyancy but soon begin to decelerate as they entrain environmental
air and do work against a slightly stable stratification.

The cloudy region has the smallest 50m magnitudes of w', a consequence of the cooler surface
temperatures and therefore weaker buoyant forcing. In contrast, this region has the largest
magnitudes of w' at 370m and magnitudes near cloud top exceed those of the clear region by
approximately a factor of two, with downdrafts having larger magnitudes than updrafts. This
suggests that circulations in the upper half of the boundary layer are being driven by local proc-
esses and not surface forcing.

In the transition region the magnitudes of w' at 50m are similar to those in the clear region but
w' does not decrease away from the surface. The magnitudes at cloud top are the largest of the
three regions. It may be that the vertical motions in this region were driven by both surface and
cloud layer processes.

Updraft temperature perturbations (Fig. 2b) are positive at 50m in the clear region and switch to
negative above. Downdrafts have negative T' at 50m and slightly positive T' at 370m. A nega-
tive value of T' near the inversion in the clear region is somewhat unusual in that downdrafts are
expected to contain warm air entrained from above the inversion. However, if entrainment is
weak, the downdrafts that are measured will be dominated by cool updrafts that have turned over
at the inversion. Further discussion of draft overturning is contained in the next section.

In the cloudy region updraft T' is near zero at all levels except near the inversion where it attains
the largest value of any class in all 3 regions. Downdraft T' at this level has the largest negative
value of any region. These magnitudes are approximately 50% of the standard deviation in T at
this level. The signs of the perturbations indicate that the circulations in the cloud layer are
thermally direct and are being driven by processes near the cloud top.

The transition region displays a mixture of properties found in the clear and cloudy regions. For
example, updrafts in the first 50m leg have positive T' and a negative T' at 370m, as in the clear
region but a negative T' again near the cloud top, as in the cloudy region.
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Conditionally sampled absolute humidity perturbations are shown in Fig. 2c. All updrafts are
moist and all downdrafts are dry, as expected. Downdraft 9, ' is nearly constant with height in the

• . . . . .V . . . ,

cloudy and transmon regions whereas _t decreases with height m the clear region. As with the T
perturbation for downdrafts near the inversion in the clear region, this is contrary to what would

be expected if downdrafts were mainly air entrained from above the inversion. The large Pv'
perturbations for updrafts in the transition region are also puzzling. To explain these results we
have to look in more detail at the nature of the drafts near the inversion.

V. Draft Characteristics Near the Inversion

A greater understanding of the nature of turbulent elements can be gained by further classifying
updrafts and downdrafts by their mean temperature and moisture perturbations. In this way we
can distinguish, for example, between downdrafts that originate as entrained inversion air and
downdrafts that originate as overturning updrafts. In the first case the drafts will be dry and in
the second moist. In Tables 1, 2, and 3 the following conditional sampling results from the 580m
leg are given: number of events expressed as percentage of total events in each state (up, down
or environment); mean draft length; horizontal wind perturbation in the direction of the mean
wind; and virtual temperature perturbation. Only the dominant classes which together account
for 80-90% of the drafts in each region are given.

In the clear region the significant classes are warm/dry and cool/moist. Entrained air will be
warm and dry and will have a positive u' perturbation due to a positive shear across the inver-
sion. Warm/dry events make up 49% of all downdrafts at this height in this region. The most
common updraft class is cool/moist. These drafts carry a u' deficit. Both of these classes,
warm/dry and cool/moist exist as both updrafts and downdrafts, indicating that drafts can over-
turn and still remain distinct. Note also that in the clear region the size of the overturned drafts is
greater that the originating draft. The u' perturbation is not always preserved which may be a
result of vertical momentum being converted to horizontal momentum in the process of over-
turning. The small mean q' for downdrafts (Fig. 2c) probably results from the compensating
effects of dry entrained downdrafts and moist overturned updrafts in the average.

In the cloudy region cool/dry is by far the dominant downdraft class, accounting for nearly
three-fourths of all downdrafts. This air has a positive momentum perturbation, indicating it has
come from above the inversion, and is negatively buoyant. This entrained air is probably cooled
by evaporation of cloud liquid water making the parcel negatively buoyant. Radiative cooling
may also play a role. These downdrafts descend to below cloud base, as suggested by the sub-
stantial magnitudes of conditionally averaged vertical velocity at 370m. A fraction of the
cool/dry downdrafts turn over and are sampled as cool/dry updrafts. These retain, in the mean,

the positive u' and negative T v' perturbations they had as downdrafts.

The dominant updraft class is warm/moist, which has negative u' and positive buoyancy pertur-
bations. The downward flux of mass in sinking parcels produces compensating upward motion,
but the conditionally averaged w' for warm/moist updrafts is nearly a factor of two greater than
the threshold value used to define the updrafts making it unlikely that this is mere "compensat-
ing" motion. Moisture-driven updrafts from lower in the boundary layer may attain a positive
temperature perturbation upon reaching the cloud layer as latent heat is released. Overturned
warm/moist events are also seen as downdrafts. The portion of the time series not classified as
updraft or downdraft, the environment, has equal numbers of the dominant updraft and down-
draft classes.

Both clear and cloudy conditions are sampled in the transition region so some of each type of
thermodynamic class is represented. Cool/dry is the most common downdraft class, characteris-
tic of the cloudy region. The average negative buoyancy is half that for the cloudy region.
Cool/moist events are also present but the sizable positive u' perturbation suggest that they are
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not overturned surface-based updrafts. The large negative u' for warm/moist events suggests that
these have come from below, as conjectured for the cloud region. Even in the environment state
warm/moist events have a u' that is an order of magnitude greater than for the other classes. The
warm/moist environment class is also distinguished by small mean size which more characteris-
tic of draft states.

Warm/dry downdrafts are also present in the transition region, indicating entrained air that has
not mixed with cloud layer air. Warm/dry air makes up over one third of the environment with

event sizes over twice as large as for the other classes. This air probably occurs in the region
between clouds.

VI. Conclusions and Future Work

A conditional sampling analysis has shown that the properties of updrafts and downdrafts reflect
the nature of the forcing of convective motions in the clear and cloudy boundary layers of the 7
July 1987 flight. In the clear region, draft statistics are characteristic of a boundary layer in
which convective motions are forced from the surface and entrainment is driven by impinging
surface-based updrafts (and perhaps also horizontal wind shear). In the cloudy region, the
strongest convective motions are driven by cloud layer processes, apparently evaporative cool-
ing of entrained parcels. If this were strong enough it would lead to cloud breakup. In the transi-
tion region there is a combination of clear and cloudy layer processes. Cool/dry downdrafts,
which we believe to be the "agents" of cloud-top entrainment instability (CTEI), are more preva-
lent and more negatively buoyant in the cloud layer than in the transition layer. Thus it is diffi-
cult to use CTEI to explain why the transition region was less cloudy that the region to the east.
Apparently the cloud layer is maintained through the resupply of moisture from lower in the
boundary layer evidenced by the greater number and larger vertical velocity of cool/moist up-
drafts at cloud base in the cloudy region compared to the transition region.

Further work needs to be done before we have a full understanding of the processes producing
the cloud conditions observed on this day. We plan to include cloud liquid water, particle size
and ozone in the conditional sampling analysis. A conserved parameter analysis of draft proper-
ties will be performed and results compared with the analysis of Betts and Boers (1989) who
looked at mean conditions in each region. We will also examine draft statistics for evidence of
differences in conditions above the inversion that may have been a factor in determining whether
or not a cloud layer could be maintained.
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During the 1987 FIRE marine stratocumulus experiment the U.K.

Meteorological Office operated a set of turbulence probes attached to
the tether cable of a balloon based on San Nicolas Island. Typically

six probes were used; each probe is fitted with Gill propeller

anemometers, a platinum resistance thermometer and wet and dry

thermistors, to permit measurements of the fluxes of momentum, heat and

humidity. The orientation of each probe is determined from a pair of

inclinometers and a three-axis magnetometer. Sufficient information is

available to allow the measured wind velocities to be corrected for the

motion of the balloon, h full description of this turbulence system

can be found in Lapworth and Mason (1988).

On the 14th/15th July measurements were made over the period

1530-0200 UTC and again, after a short break for battery re-charging

and topping-up the balloon, between 0400-0800 UTC. Data were therefore

recorded from morning to early evening, and again for a period

overnight. Six probes were available for the daytime measurements,

five for the night. Data were recorded at 4 Bz for individual periods

of a little over an hour. The intention was to keep a minimum of one

probe at or just above cloud top; small changes in balloon height were

necessary to accommodate changes in inversion height.

The most direct comparison, and contrast, can be drawn between the

overnight period and that around local noon. In both cases the mean

inversion height was very similar and the parameter u./fz (_R) was

equal to_3.5. This parameter, being proportional to the ratio of the

height of a steady neutrally-stable boundary layer to that of the

capping inversion, is useful in establishing the broad relationship
between the current observations and those of other experiments. For

example, Nicholls(1984) and Nicholls and Leighton(1986) present
observations for which R varied mainly from 0.6 to 3, with a single

strong wind case at R_7. This latter case is similar to the
observations of Brost et ai(1982) for which RN10. Bence we might

expect the current observations to show most similarity to the buoyancy
dominated flows of Nicholls and Nicholls and Leighton.

The ability of the balloon system to make simultaneous
measurements at several levels allows the vertical structure of the

boundary layer to be displayed without resort to composites. Figures 1

and 2 show the velocity vectors of the longitudinal and vertical
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components over 30 second averages (giving a spatial resolution of NI70

metres), with the mean horizontal wind subtracted. The daytime data of

Figure 1 are from 1908-1958 UTC (i.e. immediately before local noon)

and correspond to an horizontal length scale of 18km, based on the mean

wind. The upper 2 levels were above cloud, while the third was just

below cloud top; the cloud base in this period varied from about 220 to

300 metres. The nocturnal data in Figure 2 were taken between

0645-0738 UTC, and again correspond to a length scale of 18km; the top

level is just below cloud top and cloud base was approximately 140

metres.

There is a striking contrast in the degree of variability between

the velocity fields in Figures 1 and 2. Both show regions of

divergence and convergence near cloud top and organised up and down

draughts; however, at night the magnitudes of these gust velocities are

much higher and coherent structures occupy the whole depth of the

boundary layer, rather than just the cloud layer.

Turbulent statistics were calculated from 2-hour periods, one

straddling local noon and one at night. These were sub-divided into

half-hour averaging intervals for the evaluation of variances and

fluxes. The vertical velocity variances for the day (closed squares)

and night (open triangles) are plotted on Figure 3; the heights have

been normalised by the inversion height. The daytime profile

characteristically shows very low values above cloud, a distinct

maximum in the cloud layer and evidence of a second weak maximum below

cloud. In contrast, the nocturnal data show a more turbulent layer

well-mixed from inversion to surface in a manner analogous to that of a

convective boundary layer heated from below (e.g. Lenschow et

ai,1980).

These features are also reflected in the behaviour of the

equivalent potential temperature flux, shown in Figure 4. During both

day and night the flux maxima are located close to cloud top; however,

whereas the nocturnal data give the appearance of a single mixed layer

driven by a cloud-top buoyancy flux, the daytime profile shows a

distinct minimum in the region of cloud base increasing again to a weak
surface flux.

The daytime boundary layer, around local noon, therefore consists

of a cloud mixed layer, driven by a cloud-top buoyancy flux,

surmounting a weakly-driven layer of depth_O.2u./fzi, a value
reminiscent of the results of the JASIN experiment (e.g. Slingo et al

(1982), Nicholls(1985)). The top of this layer, however, and the base

of the cloud mixed layer are not clearly associated with cloud base, as
observed from the surface, which tended to be variable and ill-defined

during this period. Mixed-layer similarity of the two datasets can be

shown by normalising and replotting against 1-z/h, where h is the mixed

layer depth. The vertical velocity variances were normalised by w.,

the convective velocity scale, and the fluxes by the maximum value at

cloud top. The results are displayed on Figures 5 and 6. A

satisfactory collapse of the data is achieved except for w 2 as l-z/h

approaches unity; the lower boundary condition for the daytime mixed

layer will be different from that at night when w 2 must go to zero at
the surface.
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The evidence presented strongly supports the notion that, for at

least part of the daytime, the cloud layer becomes decoupled from the

surface following the absorption of solar'radiation at depth within the

cloud layer. The surface fluxes on this occasion are weak and the

growth of any surface Ekman layer is limited. Further evidence,

derived from the I_E budget and turbulence length scales, for this

argument will be presented.
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SUPERSATURATION, DROPLET SPECTRA, AND TURBULENT MIXING IN CLOUDS

H. Gerber
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I. Introduction

Much effort has recently gone into explaining the observed broad precoales-

cence size distribution of droplets in clouds and fogs, because this differs

from the results of condensational growth calculations which lead to much nar-

rower distributions. The correct explanation of this difference is important,

since the observed broadening has a strong influence on the optics of the

clouds, as well as on their colloidal stability. Existing explanations, which

have yet to be proved definitive, have generally dealt with the interaction of
turbulence with the cloud, such as in entrainment and mixing (Telford et al.,

1984; Jonas and Mason, 1982; Baker et al., 1980; Clark and Hall, 1979; and many

others). Most have dealt with the "favored-droplet hypothesis", which states

that due to the statistical nature of turbulence some "favored" droplets experi-

ence a lifetime in the clouds which is more conducive to condensational growth

(or evaporation) than other droplets, and hence cause the broadening (e.g.,

Cooper, 1989).

A good example of droplet size-distribution broadening was observed on

flight 17 (25 July) of the NRL tethered balloon during the 1987 FIRE San Nicolas
Island IFO. On this date a stratocumulus cloud cover formed rapidly from clear

sky conditions. The balloon was aloft at the time, and was able to penetrate
the Sc clouds 7 min. after their formation. These virgin clouds, which could

not include the complexity of upwind evolution, contained significant numbers of

32.5 # diameter droplets (the largest size bin of the CSASP particle spectrome-

ter). Such large droplets cannot easily be explained by a standard updraft

argument. Instead, observed RH and wind shear in the vicinity of these clouds

suggested a formation mechanism which included Kelvin-Helmholtz induced mixing

of a nearly saturated layer. These observations motivated us to take another
look at the interaction between cloud microphysics and turbulent mixing. We

used the findings of Broadwell and Breidenthal (1982) who conducted laboratory

and theoretical studies of mixing in shear flow, and those of Baker et al.

(1984) who applied the earlier work to mixing in cloud. Rather than looking at

the 25 July case at SNI, we chose instead to look in detail at earlier fog ob-

servations made at SUNY (6 Oct., 1982) which also indicated that shear-induced

mixing was taking place, and which had a better collection of microphysical

measurements including more precise supersaturation measurements (see Gerber,

1980 for description of technique) and detailed vertical profiles of meteorolog-

ical parameters; see Fig. i.

In this study we address the following questions:
I. Does B-B (Broadwell-Breidenthal) mixing, or gradient diffusion control

droplet evolution in shear situations involving nearly saturated air?

2. Can B-B mixing account for the observed large transient supersaturations

which can last as long as tens of seconds?

3. Can B-B mixing account for strong droplet broadening and the appearance

of the largest droplets?

II. Broadwell-Breidenthal Mixing

B-B mixing describes a mixing process different from the usual approach in

which turbulent mixing occurs via gradient diffusion. The latter is only

reasonably successful when the scale of the turbulence is small in comparison to
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the distance across which the diffusing quantity is changing significantly.

Broadwell and Breidenthal (1982) clearly demonstrated in laboratory measurements

that gradient diffusion between two species in shear flow does not hold, but is

instead governed by another mechanism consisting essentially of a two stage

mixing process: For most of the lifetime of a decaying eddy containing two

species, the identity of the species remains largely intact. 0nly as the Kol-

mogorov microscale is reached do the two species rapidly mix with each other by
molecular diffusion.

We first apply B-B mixing to an eddy with properties estimated from the 6

Oct. fog case. The eddy had a characteristic dimension L = 6.9m, it consisted

of two saturated parcels with a difference in temperature of 3°C (which is the

maximum temperature difference observed over the height of the micromet tower),

and it contained droplets with a size distribution given by curve 0715 in Fig. 1

and measured at about RH = 100Z. We derive an expression similar to the classi-

cal equation

S(t) = Qlfdh- Q2fdw (1)

giving the time evolution of supersaturation S(t) in terms of the mass balance

of total water in an ascending cloud parcel (e.g., see Squires, 1952). Instead

of the excess (supersaturated) vapor released by the change in height dh of the

parcel, we include the release of excess vapor by the B-B mixing of the satu-

rated parcels. Under isobaric conditions, and under the assumption that the

rate of release of excess moisture is proportional to the rate of formation of

interfacial area between the two saturated parcels in the eddy we find

3/2 -3/2

Xs K - I i - i t - _ _ 4frN(r)C S(t) A + B
Pa xs r - r _ at (2)

r

K - L2M_ + 1

 2Cp

where x = vapor mixing ratio of mixed eddy, x s = saturation mixing ratio of

mixed eddy, w = liquid water mixing ratio, N(r) = particle density at radius r,

C = rate constant, tk = time to reac h Kalmogorov turbulence scale, T L = time for

complete homogenization, and other symbols have the usual meaning.

The predictions of (2) are illustrated in Fig. 2. The curve labeled 0715

shows a rapid release of excess moisture at around 35 sec of the calculation,

with a maximum value of S near the maximum S = 0.43Z that can be achieved by

mixing two saturated parcels with a 3-°C temperature difference, and with a

decrease of S from the maximum corresponding to the takeup by growing droplets

and lasting tens of seconds. Curve 0719 corresponds to the use of the distribu-

tion labeled 0719 in Fig. 1 as the initial condition (initial LWC = 0.09 g/m3);

and the curve for XI0 uses the 0719 distribution with i0 times the LWC value.

We can conclude from Fig. 2 that (a) the B-B mixing mechanism causes the forma-

tion of transient supersaturations in the fog, (b) the release of excess vapor

is faster than the time scale of droplet response, and (c) the time constant of

the decay of the transient S is approximately proportional to the integral

radius of the droplets as is evident from the second term of (2).
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These conclusions are supported by the observations in the 6 Oct. fog.

Mixing was clearly shear induced as indicated by the stable temperature profile,

gradient diffusion could not have caused the observed supersaturation transients

because of the magnitude of the temperature gradient, and the observed tran-

sients were of a magnitude consistent with the maximum temperature differences

observed with height.

IIl. Broadening of Droplet Size Distribution

An important consequence of B-B mixing as illustrated in Fig. 2 is that the

release of excess vapor appears to be essentially independent of the droplet

content, and thus can be treated separately from the conversion of the vapor to

liquid, which depends approximately on the integral radius. It is thus possible

to use the droplet growth equation

ffi c s - - + (3)
r r

with an average S parameterized in terms of the integral radius, if the maximum

value of S(t) is measured or estimated.

To fully exploit this possibility, the integral form of (3) was rewritten to

give a set of analytical expressions

r d > 10-6cm

[ 1 I r° > rdr = f ro,S,t,r d for S > -i (4)

_t > 0

tparticle type

which give one-equation solutions to the time dependence of r, given S (r o =

initial radius, r d = dry nucleus radius). This approach greatly speeds up the

calculations, because (3) is implicit in r and usually requires numerical inte-

gration, and is difficult to use for small droplets. Equation (4) is mathemati-

cally well behaved, and it gives the proper transitions between activated drop-

lets and haze particles; see Fig. 4. Equation (4) should be useful in improving

the coupling between microphysics and dynamic models.

A model was developed to evaluate the effects of B-B mixing on droplet

broadening. The approach, as in Nichols (1987), was to combine the effects of

stochastic turbulent diffusion with explicit microphysical calculations. How-

ever, in the present case only droplet growth by diffusion is considered. Fur-

thermore, this model, rather than being driven by models of turbulent diffusion,

is driven by the observed statistics of S and eddy size (see Fig. 3). High-

lights of the model include: The Monte-Carlo approach is used to randomly mix

eddies in a Lagrangian framework. The mixing process includes contributions

from mixing eddies proportional to their volume, and conserves particle concen-

tration, liquid water volume, and total nuclei volume. Calculations are done in

N(r) space using (4), and timescales are estimated from Eulerian observations of

eddy frequency and the droplet integral radius.

Some initial runs of the model are shown in Figs. 5 and 6. Using the

measured cumulative probability of S and L shown in Fig. 3 with the 0715 size

distribution to initialize the model, results in the droplet spectrum for t = 15

min shown in Fig. 5. On the average droplets have evaporated to smaller sizes
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in this case. This is consistent with'the slightly subsaturated conditions

reflected by the means in Fig. 3. The statistics in Fig. 3 were collected 1.5-m

above a grassy surface in post sunrise fog where some warming of the surface was

taking place. The second example in Fig. 6, which illustrates the flexibility

of this model, shows a double-peaked distribution with significant broadening

and maximum droplet sizes close to the ones observed in the 6 Oct. fog. For

this case the S distribution in Fig. 3 was biased by S = + .001, the time scale

of the excess S decay was set at a constant 20 s, and 80_ of the final eddies

making up the distribution in Fig. 6 correspond to t = 3 min while the rest is

for t = 15 min. Other runs of the model (not shown), using S decay coupled to

the integral radius as suggested by B-B mixing, gave significantly broadened

size distributions, but none with peaks in the size distribution exceeding about

i0 _m diameter even for t = 60 min.

IV. Conclusions

The observations in the 6 Oct. fog and the initial results of the stochastic

condensational growth model suggest the following conclusions on the importance

of Broadwell-Breidenthal mixing in fogs and clouds:

(a) B-B mixing of nearly saturated parcels at different temperature causes

large transient supersaturations as observed in the 6 Oct. and other fogs.

(b) These transient supersaturations and turbulent mixing cause droplet

spectral broadening governed by the "favored droplet hypothesis".

(c) The effect of B-B mixing on droplet broadening is approximately propor-

tional to the temperature difference of nearly saturated mixing parcels and

inversely proportional to the integral droplet radius, thus hazes and clouds of

low LWC with strong temperature gradients will see the largest effects.

(d) B-B mixing could not explain the observation of 30-_m diameter droplets

in the 6 Oct. fog. The rapid increase of droplet size observed 1.5-m above the

surface is partially explained by the downward mixing of this fog which formed

20 min earlier aloft. It is proposed that B-B mixing contributes primarily to

the mid-size peak (about 5 _m diameter) often found in these fogs, and that the

large droplet peak is due to very large supersaturations generated by another

mechanism found higher up in the fog.
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Department of Meteorology, 63De
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Monterey, CA 92943

INTRODUCTION

The effects of aerosols on the microphysical characteristics of marine stratocumulus clouds can

have a significant impact on climate processes through modification of cloud radiative properties. The
effect of aerosols on clouds and the impact on climate processes have recently been discussed by several

authors (Twomey et al., 1984; Coakley et al., 1987, Charlson et al., 1987). Of particular concern in this

presentation is the potential for observing variations of cloud characteristics that might be related to
variations of available aerosols. The results of comparisons between aircraft-measured microphysical

characteristics and satellite-detected radiative properties of marine stratocumulus clouds are resented here.

These results are extracted from Mineart (1988) and Durkee and Mineart (1989) where the analysis

procedures and a full discussion of the observations are presented. Due to the space available, only a brief

description of the results will be presented.
The satellite data used here are from the National Oceanic and Atmospheric Administration

(NOAA) Advanced Very High Resolution Radiometer (AVHRR) collected at the Scripps Satellite

Oceanography Facility. The AVHRR channel 1 (0.63 # m), channel 2 (0.86 # m), channel 3 (3.7 # m), and

channel 4 (11# m) data were used in the analysis. Cloud microphysical data were obtained by instruments
on the NCAR Electra during cloud-penetrating missions in support of the field operations from 29 June -

19 July 1988.

RESULTS

Mineart (1988) presents four case studies that show a consistent relationship between cloud

microphysical characteristics and cloud radiative properties. The most dominant effect is observed in cloud
reflectance at 3.7 # m wavelength (AVHRR channel 3). Fig. 1 shows the observed relationship between

aircraft-measured cloud droplet size and satellite-measured cloud reflectance. At this wavelength,

moderate absorption by the cloud droplets limits the dependence of cloud reflectance on cloud thickness

and liquid water content (primary determinants of reflectance at visible wavelengths). Therefore the

primary determinant of cloud brightness at 3.7 #m is the cloud droplet size distribution (reflectance

increases with decreasing droplet size). The dashed lines in Fig. 1 are the theoretical relationships for three
size distributions.

The effects of droplet size on cloud reflectance are also theoretically expected at shorter

wavelengths although the effects of cloud thickness and LWC will be come more important as absorption
decreases. To assess the effects at 0.63 #m wavelength (AVHRR channel 1), reflectance values were

normalized to a constant LWC (0.3 g m "3) and thickness (200 m). The results of normalization are shown

in Fig. 2. Although the relationship appears weak and there is significant scatter, a decrease in reflectance

with increasing droplet size is suggested (_ 10% decrease with droplet size increase from 5 to 12 #m

radius).
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The primary modifier of cloud brightness at 3.7 # m wavelength shown in Fig. 1, is influence from

continental air masses (Mineart, 1988). Presumably, continental air containing significantly more CCN

than marine air, produces clouds with smaller droplets relative to clouds in typical marine air masses.
These microphysical differences between marine and continental clouds can be observed in the satellite-

detected radiative properties of the clouds. The connection between cloud brightness and continental air

mass is made through analysis of air motion trajectory calculations. Cloud brightness is directly related to
cloud droplet size distribution through analysis of particle measurements made on board the NCAR

Electra aircraft. Analysis of CCN measurements on board the Electra still need to be performed.
Continental aerosol sources were observed during the FIRE IFO to interact with marine

stratocumulus in three ways:

1) During periods of large scale offshore flow and subsequent cloud development. Most of

these events occur to the north of the main stratus deck (coastal OR and northern CA during
the FIRE IFO). The continentally influenced air-mass then moves southward under the

influence of the subtropical high pressure system and is incorporated into the main stratus
deck.

2) By local scale offshore flow and entrainment into the cloud. This off shore flow is usually
confined to stable layers just above preexisting cloud. Hudson has reported large increases in

CCN concentration above cloud during the FIRE IFO (reported in Albrecht, et al., 1988).
These processes need further study.

3) By direct injection into the cloud in coastal regions, especially from urban sources. Durkee

(1989) reports several cases of urban influence on aerosol and cloud processes. These effects

are identified by the spatial and temporal relationships to urban centers.

Composites of satellite-measured radiative characteristics have been prepared to assess the large-
scale effects of continental aerosol sources on cloud characteristics. Tettelbach (1987) presented the first

monthly summary of the eastern North Pacific Ocean. Fig. 3 and 4 are the results of cloud reflectance
composites for August 1986. These results illustrate a clear distinction between cloud reflectance at

3.7 #m and 0.63 #m wavelengths. As mentioned above, 0.63 #m reflectance is primarily determined by
cloud thickness and LWC. The brightest clouds in Fig. 1 (AVHRR channel 1) are associated with the large

scale divergence pattern of the subtropical high and the region of coldest upwelled water along the northern

CA and OR coast. Reflectance at 3.7 #m is determined mostly by droplet size. Fig. 4 (AVHRR channel

3) shows bright clouds are associated with the coastal regions of CA, with the brightest clouds occurring
immediately downwind of Los Angeles, CA. Summaries of the FIRE IFO time period and other months of

1987 are being processed and should be ready for presentation at the workshop.

CONCLUSIONS

Relationships between cloud reflectance and cloud characteristics have been illustrated by

comparing AVHRR satellite data and aircraft measurements. A relationship of higher reflectances from

smaller cloud droplet size spectra is confirmed for 3.7 #m wavelength (AVHRR channel 3) and is
suggested for 0.63 #m wavelength (AVHRR channel 1). A primary source of droplet size variations is

related to continental/marine air mass differences. Continental air masses are generally have higher
concentrations of aerosols, higher concentrations of cloud droplets, and therefore smaller mean cloud

droplet radius, than marine air masses. The strong dependence of 3.7 # m reflectance on cloud droplet size

distribution allows inference of cloud composition characteristics from satellite observations. Further,
satellite-detected cloud reflectance can be used to investigate the influence of continental air masses on

marine cloud formation and subsequent effects on the cloud radiative properties.
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Fig. 3. Cloud reflectance from composited AVHRR Channel 1 (0.63 #m wavelength) data for

August 1986.

Fig. 4. Same as Fig. 3 but for AVHRR Channel 3 (3.7 #m wavelength) data.
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CCN concentrations and spectral measurements obtained with

the DRI instantaneous CCN spectrometer (Hudson, 1989) over the

last few years are presented. Recent articles by Wigley (1989),

Schwartz (1988), Charleson et al (1987), Coakley et al (1987),

and others have pointed out the climatic importance of cloud

microphysics. The particles which affect cloud microphysics are

cloud condensation nuclei (CCN). The commonly-observed order of

magnitude difference in cloud droplet concentrations between

maritime and continental air masses (i.e. Squires, 1958) was

determined to be caused by systematic differences in the

concentrations of CCN between continental and maritime air masses

(e.g. Twomey and WoJciechowski, 1969).

Twomey (1977) first pointed out that cloud microphysics also

affects the radiative properties of clouds. Thus continental and

anthropogenic CCN could affect global temperature. Resolution of

this "Twomey effect" requires answers to two questions I)

whether anthropogenic CCN are a significant contribution to

atmospheric CCN and 2) whether they are actually affecting cloud

microphysics to an extent which is of climatic importance. The

reasons for the contrast between continental and maritime CCN

concentrations are not understood. Ayers et al. (1982) measured

the anthropogenic CN (total particle) production rate for

Australia to be 1.4 x 10 , cm _ s-t over the entire continent. Thus

even in this most sparsely populated continent the anthropogenic

production of CN seemed to completely dominate natural CN

production. The issue is far from resolved and the anthropogenic

rate is at least a significant fraction of the natural rate.

The work presented here addresses the question of the

relative importance of anthropogenic CCN. These observations

should shed light on this complex question although further

research is being conducted in order to produce more quantitative

answers. Accompanying CN measurements made with a TSI 3020

condensation nucleus (CN) counter are also presented.

The first part of fig. 1 shows extremely low CCN

concentrations obtained with light onshore winds along the

California coast. This figure also shows a typical example of

the immediate change to much higher CCN concentrations in urban

areas. This seems to indicate that there is direct production of

CCN with no intermediate coagulation processes needed in order to

explain the existence of the CCN as the air would have spent only

a few minutes over land. The higher concentrations shown in the

second part of this figure were obtained throughout the city of

Santa Cruz on untravelled residential streets as well as main

highways. Fig. 2 shows a nearly simultaneous measurement
obtained 10 km inland from the coast with only unpopulated and

undeveloped land between. These results indicate that natural

processes were not causing a change in the CCN concentration as
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the air moved in from the coast over a period of about an hour.

This again demonstrates the weakness of the natural source of
CCN.

Fig. 3 shows one specific particle formation process which
was observed on numerous occasions at various locations. The

order of magnitude increase in CCN concentration was associated

with the passage of a diesel powered vehicle. Fig. 4 shows

another example of CCN production from a diesel or fuel oil

engine; in this case a plume from a ship offshore from San

Diego. This shows that ships indeed are a source of CCN as

suggested by Conover (1966} and Coakley et al (1987).

Fig. 5 was obtained under conditions of offshore flow over

the southern California area. In the rural areas of California

throughout the Owens Valley and on into the Los Angeles basin the

concentration of CCN was very low as shown in the early part of

this figure. This is a concentration level which is more

characteristic of maritime rather than continental air. However

these low concentrations were measured over a very wide area and

the air must have spent considerable time over the continent in

this type of weather situation. As the vehicle moved into the

Los Angeles basin through the CaJon pass much higher

concentrations were encountered. From that point and to the west

and south the CCN concentration was uniformly higher.

Consistently high concentrations were detected with the 12 second

data collection times which were used. Even though there was a
continuous offshore flow of air (Santa Ana condition} the

concentration within the basin was continuously maintained at

high levels by the production of particles. This result seems to

indicate that the concentration of CCN here is dominated by

anthropogenic processes.

The aircraft measurement shown in fig. 6 shows an abrupt

transition from maritime to continental air over the state of

Washington. This order of magnitude change occurs over a

horizontal distance of about 30 km at an altitude of about 3,300

m above sea level. This abrupt change which was observed several

times is indicative of a rather strong continental source. This

is more consistent with the anthropogenic sources which were

observed at the surface rather than natural sources which were at

best very weak. These higher concentrations were consistently

measured over the North American continent except at low

altitudes. A weak continental source ought to result in a more

gradual transition to higher concentrations over the continent.

Fig. 7 shows an example where the CCN concentration seems to

be proportional to the population within an air basin. These
measurements were obtained from the vehicle as it was driven on

U.S. highway 395 through Reno, Carson City, Hinden,

Gardenerville, and Topaz Lake on the California border. These

measurements were obtained under stagnant weather conditions

which held the air stationary for more than a day. This allowed

particle concentrations to build up within each a_r basin. The

highest concentrations were obtained in Reno which has the

highest population and population density. The concentration

showed an abrupt decrease upon entering the Carson City basin

which is much less populated. The lowest concentrations are seen
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in the least populated Topaz Lake basin. This certainly shows

that the CCN concentration in these continental air basins is

dominated by local anthropogenic processes.

The most important result of these measurements is that the

production of CCN by anthropogenic processes is quite apparent

but the natural continental source of CCN has still not been

measured. If the increased CCN concentrations of continental air

are due to anthropogenic processes then this could constitute a

significant element of climatic change. Even if this were true

for only the continental air and not at all for maritime air then

this would constitute a significant climatic change even through

the Twomey effect alone. However the continental aerosol may

also influence maritime clouds. Prospero and Savoie (1989) show

that much of the nitrate aerosol in the mid Pacific is of

continental origin while a portion of the sulfate is also of

continental origin (Savoie and Prospero, 1989). These results

indicate that much of this continental component of CCN is

probably of manmade origin. However further research is

continuing to quantify this source.
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DIRECT AND REMOTE SENSING OBSERVATIONS OF THE EFFECTS OF

SHIPS ON CLOUDS

LAWRENCE F, RADKE AND PETER V. HOBBS

Department of Atmospheric Sciences, University of Washington, Seaulc, WA 98195

JAMES A. COAIU.£Y JR,

Department of Atmospheric Sciences, Oregon State University, Corvallis, OR 97331

and

MICHAEL D. KING

Laboratory for Atmospheres, Goddard Space Flight Center, NASA, Greenbelt. MD 20771

Under certain conditions ships can affect the structure of shallow overlying layer

clouds. It has been suggested that this Is due to particles emitted from the ships,

which increase the concentration of cloud condensation nuclei in the air, which,

in turn, increases the concentrations of cloud droplets and reduces the average

size of the droplets. Two ship track signatures in stratus clouds were observed

simultaneously from a satellite and from an aircraft. The airborne measurements

showed that in the "ship tracks" the droplet sizes and concentrations, as well as

the total concentrations of particles, were substantially different from those in

adjacent clouds. Furthermore, _ solar radiation measurements showed a

significant enhancement in the upwelling radiance withln the ship tracks at visible

wavelengths and a significant reduction in radiance at 2.2 micrometers. Remote

sensing measurements from the NOAA-10 satellite showed the effects of these

differences in cloud structure as an enhancement in cloud reflectivity at 0.63 and

3.7 micrometers. These observations support the contention that ship track

signatures in clouds are produced primarily by particles generated by ships.
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Optical Properties of Marine Stratocumulus Clouds Modified by

Ship Track Effluents

MICHAEL D. KING AND TERUYUKI NAKAJIMAf

Laboratory for Atmospheres, Goddard Space Flight Center, NASA,
Greenbelt, MD 20771, USA

1. Introduction

The angular distribution of scattered radiation deep within a cloud layer

was measured in marine stratocumulus clouds modified by the emissions

from ships. These observations, obtained at thirteen discrete wavelengths be-

tween 0.5 and 2.3 I.tm, were obtained as the University of Washington Con-

vair C-131A aircraft flew through a pair of roughly parallel ship tracks off the

coast of southern California on 10 July 1987.

In the first of these ship tracks, the cloud droplet concentration increased

from 40 cm-3 to 107 cm -3 (125 cm -3 in the second ship track). Simultaneous to

this spectacular change, the aircraft measured interstitial aerosol (Aitken nu-

cleus) concentration that increased from 400 cm -3 to 1000 cm-3 and cloud liq-

uid water content that increased from 0.30 g m -3 to 0.75 g m -3. Broadband

pyranometer measurements showed that the upwelling flux density in-

creased from 150 W m -2 to 280 W m -2. These in situ microphysics and broad-

band pyranometer results, together with AVHRR satellite images obtained

with the NOAA-10 satellite, are described in detail by Radke et al. (1989).

In this paper, we present internal scattered radiation measurements at se-

lected wavelengths obtained with the cloud absorption radiometer (King et al.

1986) for a 100 km section of marine stratocumulus clouds containing these

two ship track features.

2. Results from observations on 10 July 1987

On 10 July 1987 the C-131A was flying within a marine stratocumulus

cloud layer enroute to a planned mission with the ER-2 aircraft when it

encountered two regions approximately 17 km in width that were apparently

modified by the effluents from ships. The C-131A was primarily making

cloud radiation and cloud microphysics measurements deep within the cloud

layer, which was located ~300 km from the airfield on Coronado Island, San

Diego.

? Permanent affiliation: Upper Atmosphere and Space Research Laboratory, Faculty of

Science, Tohoku University, Sendal 980, Japan.
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Fig. 1. Zenith and nadir intensities as a function of distance for measurements obtained in-

side the clouds between 8:49 and 9:10 PDT. These measurements were obtained at a wavelength

_, = 0.744 IJm.

Figures 1 and 2 illustrate the zenith and nadir intensities as a function of

distance (time) for measurements obtained inside clouds for a 100 km section

of this cloud. These data, corresponding to observations obtained with the

cloud absorption radiometer at 0.744 and 2.20 _m, respectively, show that the

zenith and nadir intensities were substantially modified by the effluents from

the ships. At X = 0.744 _tm (Fig. 1), the upwelling (nadir) intensity increased

from approximately 4 to 11 mW cm -2 _tm -1 sr -1 in the first ship track, with a

somewhat less dramatic, though more uniform, increase in the second ship

track. The downwelling (zenith) intensity, on the other hand, showed a

modest decrease in both ship tracks. These changes are consistent with the

fact that the total optical thickness of the cloud layer increased, and are a direct

consequence of the observation that the total concentration and concentration

of small droplets increased, while the mean droplet radius decreased. In fact,

Radke et al. (1989) estimate, based on these microphysical changes, that the to-

tal optical thickness of the cloud layer increased by a factor of -2.6 in the first

ship track (2.1 in the second ship track).

At X = 2.20 _tm (Fig. 2), both the upwelling (nadir) and downwelling

(zenith) intensities decreased within the ship tracks. Again, the change is the

most dramatic and the least uniform in the first ship track. The explanation

for these changes can be understood as follows. As the optical thickness in-
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Fig. 2. As in Fig. 1 except for _, = 2.20 _rn.

creases, the additional scattering leads to increased attenuation of solar radia-

tion at this absorbing wavelength. The intensity distribution is thus reduced
in all directions within the cloud. This is not the case for reflected solar radia-

tion, on the other hand, since increasing the optical thickness will always lead

to increasing the reflection function at all wavelengths.

Figures 1 and 2 represent dramatically different similarity parameters, and

hence single scattering albedos, within the cloud (cf. King et al. 1989). At X =

0.744 _tm the single scattering albedo coo - 1.0, whereas at _ = 2.20 um coo - 0.99.
In order to examine the transition of the zenith and nadir intensities as the

single scattering albedo, and hence wavelength, varies, we have examined the

nadir intensity (Fig. 3) and zenith intensity (Fig. 4) as a function of distance for

selected wavelengths between 0.744 and 2.20 _tm. The curves for 0.744 and

2.20 _tm are the same as those presented in Figs. 1 and 2. For the zenith inten-

sity (Fig. 3), the transition from an enhanced intensity at 0.744 _tm to a re-

duced intensity a 2.20 _tm is striking. At some wavelength between 1.20 and

1.64 _tm, these result suggest that the changes in the optical properties of the

cloud resulting from ship track effluents would be imperceptible. The broad-

band pyranometer measurements, which integrate over all angles and the en-

tire solar spectrum, follow very closely the changes at 0.744 _tm (cf. Radke et
al. 1989).

For the zenith (downwelling) intensity, illustrated in Fig. 4, the intensity

decreases at all wavelengths, though the reduction at 0.744 _m is extremely
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Fig. 3. Nadir (upwelling) intensities as a function of distance for measurements obtained in-

side the clouds between 8:49 and 9:10 PDT. These measurements were obtained at selected

wavelengths between 0.744 and 2.20 I_m.

small, as noted above (cf. Fig. 1). The effects of increasing absorption

(wavelength) are quite apparent in this figure. The broadband pyranometer,

which again reflects primarily the measurement at nonabsorbing wave-

lengths near 0.744 I_m, showed that the zenith (downwelling) flux density is
virtually unchanged in the ship tracks, as expected from an examination of
Fig. 4.

Though the major changes in the internal scattered radiation field within

the ship track events of these marine stratocumulus clouds can be explained

by changes in cloud optical thickness, both above and below the aircraft, it is

conceivable that soot particulates from the ship exhaust could also affect the

spectral intensity field within the clouds. In fact, one would expect that, in

addition to increasing optical thickness by the emission of cloud condensation

nuclei, the ship exhaust might lead to increased absorption by the cloud

droplets. Two competing effects are possible: 1) increasing absorption from

aerosols, either as a result of dirty water or interstitial aerosol; or 2) decreasing

absorption because the cloud droplets are smaller. Our initial analysis, based
on the diffusion domain method of King et al. (1989), shows that the latter ef-

fect dominates. In the first ship track the effective radius computed from the

in situ cloud droplet size distribution decreases from 12.5 to 10.5 _tm, and in

the second ship track from 11.2 to 7.5 _m (Radke et al. 1989).
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Marine Stratocumulus Large-Scale Environment and Modeling Session

A UNIFIED VIEW OF CONVECTIVE TRANSPORTS
BY STRATOCUMULUS CLOUDS,
SHALLOW CUMULUS CLOUDS,

AND DEEP CONVECTION

David A. Randall

Department of Atmospheric Science
Colorado State University

Fort Collins, Colorado 80523

1. Introduction

We have developed a bulk PBL model with a simple internal vertical structure and a simple
second-order closure, designed for use as a PBL parameterization in a large-scale model. The
model allows the mean fields to vary with height within the PBL, and so must address the vertical

profiles of the turbulent fluxes, going beyond the usual "mixed-layer" assumption that the fluxes of
conservative variables are linear with height. This is accomplished using the same convective mass

flux approach that has also been used in cumulus parameterizations. The purpose of this brief
paper is to show that such a mass flux model can include, in a single framework, the
"compensating subsidence" concept, downgradient mixing, and well-mixed layers.

2. Generalized mass flux model

The "convective mass flux" concept introduced by Arakawa has been used in a variety of

modeling and observational studies, most directed either at deep cumulus convection or at
stratocumulus convection; the connections between the two applications have not been made

previously.

For an ascending region with fracitonal area (_, the conservation equations for mass and an

arbitrary scalar _ can be written as

(2.1)
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(2.2)
for the ascending parcels. Similar equations can be written for the descending regions. Here the

generic variable V represents an intensive thermodynamic variable such as the potential temperature

or the the mixing ratio of water. Other notation is as follows: p is the density; V is the horizontal

velocity vector, m = -pgw, where w is the vertical velocity, and g is the acceleration of gravity; and
p is pressure. The air entering rising parcels has been assumed to have the average properties of
the sinking parcels, and vice versa. Area averages satisfy

(--)=()_r+(),(l-a),

(2.3)

where an overbar denotes an area average (over a grid box, say); this notation will be used only
where necessary to avoid confusion. Subscripts u and d denote upward and downward moving
parcels, respectively. We can interpret p.-_ and v q as time scales for mass flow from downdrafts

into updrafts, and from updrafts into downdrafts, respectively. The vertical turbulent flux of _t
due to small eddies is denoted by f¥. The small-eddy fluxes are logically necessary near the top
and bottom of the PBL, where the organized vertical motions associated with the convective

circulations must vanish. The time scale for destruction of the convective circulations by lateral
mixing due to smaller-scale turbulence is x_. The source of V per unit mass per unit time is
denoted by S¥. This could represent, for example, the effects of radiation.

From (2.1) and (2.2) and the correponding "downdraft" equations, and using (2.3), we
canrecover the area-averaged conservation equations for mass and V:

0 0g
=-v (ov)-p-$-,

(2.4)

_(p¢) = -V. (pV"_)-p p S_.

(2.5)

Naturally, all terms involving it, v, and x_ have dropped out of (2.4-5). In (2.5), the turbulent

fluxes associated with the conv_.tive circulations are represented by

where

;)(¢.- +(=,-
=

(2.6)

to.- o'(1 - o')(a_ - tad)

(2.7)

is a convective mass flux, which has been defined in such a way that it is less than or equal to zero.

The total turbulent flux of _1/is F v = Jl'v + fv.
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From the "updraft" mass conservation equation (2.1) and the corresponding "downdraft"

equation, we can derive an expression for/k_/Ot

`9tr -- `9 ,9

-_-+w_a+_. = #- v.

(2.8)

By neglecting the local time rate of change and large-scale advection terms, we can simplify (2.8)
to a more recognizable form:

,9os. / 3p =/a - v.
(2.9)

According to (2.9, the vertical distribution of co. is closely related to the prof'fles of gt and v.

We can also derive the conservation equation for the variance of _g that is associated with
the convective circulations:

m

,gV -[(_ + v)- 2Aco./(Ypu](I//. - Va) 2[a_.(1- 2tr)(g.- gG)]= 2gJ',,

+2(gt - gd)Z,,,
(2.10)

where

,9

Z,= ty(1- tr)[g-_(f,,.,,-f,,._)+(S,,.,-S,,._)].

(2.11)

In (2.10), we have neglected the local time-rate-of-change and large-scale advection terms,
although we use them in our numerical model. According to (2.12), transport balances the
combined effects of dissipation and production. Using conventional Reynolds averaging, we find

corresponding to (2.10) that

-_ _to lV )=2 VIF + gF,,-- _-

(2.12)

Here _ is the molecular dissipation rate. Comparison of (2.10) with (2.12) reveals a term-by-term
correspondence. Note that, in (2.10), the sign of the triple correlation is determined by the value

of ts. Variance is transported upward for ts < 1/2, and downward for ts > 1/2.

The damping factor ts(1-ts)'ra_, which appears in (2.10), can be simplified by noting that
small eddies will be most effective at reducing the differences between the ascending and

descending branches of the plumes when one of the two branches is much narrower than the other,
and least effective when the two branches have the same width. On this basis, we assume that Ta?,

- ts(1-ts) xa_ is independent of g. We also adopt the definition (T_,) 1 - -A 0_./$pM, where A is

positive and nondimensional. This is motivated by the idea that the capacity of small eddies to

dissipate the convective circulations by lateral diffusion increases as o. increases, and as the PBL
depth decreases, so that A should be less variable than T,_.
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Assuming that the inflow and outflow layers do not overlap, we can eliminate gt and v in
(2.12), to obtain

F,,X-(1-2a) =-g-_ co.O-_-V+Z,, ,
\ op

where
(2.13)

___ A+ (1 - o" - S) co:-_ + &----_.

(2.14)

t 03o.

1, for ---_>0 (inflow)

8= &0.

0, for ---_-<0 (outflow).

(2.15)

The co. term of (2.14) is never negative, so it contributes to X in the same sense as the positive A

term. It follows that X _>0 unless es increases strongly upward. The co. and A terms of (2.14)

both arise from dissipative processes. The O¢s/Op term of (2.14) arises from the transport term of
(2.10).

3. Discussion

Several conclusions can be drawn from (2.13-14), by considering the case S, = 0, so that
z.=0.

First, if (1-2cs)/X is small (¢s near 1/2 and strong dissipation), we get

(3.1)

This is a downgradient diffusion formula, with diffusion coefficient -o./(gX).

Next, consider a layer that is well-mixed in several conservative variables V_, V2, etc. In
order to satisfy (2.13) simultaneously for all of the variables we must take

X =0,

(7=1/2.
(3.2)

(3.3)

Since, according to (3.3), _ is a constant, (2.14) implies that X is the sum of two non-negative
terms. Then (3.2) implies that each term must be zero, so that
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tO, = constant,
(3.4)

A-0.

(3.5)

Referring back to (2.10), we find a trivial balance in which gradient production, transport, and

dissipation are all zero. (When _ = 1/2, the variance transport by triple correlations vanishes.)

Finally, suppose that X is small (weak dissipation), and that t_ is small. Then (2.14)
reduces to

m

cgp g _p
(3.6)

This balance is characteristic of the temperature and moisture budgets of tropical cumulus layers, in

which "compensating subsidence" produces the convective effects on the mean profiles. Arakawa
(1969) derived (3.6); it has also been discussed by Ooyama, among others. [The "detrainment"
term included in cumulus parameterization theories is also present in (2.13-14); it arises from the

gradient of co. in (2.14).]

For the cumulus regime, the conservation equation for V can often be approximated by a
balance between vertical advection and convective transport, i.e.

Comparing (3.6) and (3.7), we find that

_-g o_

(3.7)

(3.8)

For tropical cumulus layers with large-scale rising motion, co. = _, so that (3.8) is consistent with
observations that show t_ << 1. For the case of large-scale sinking motion, (3.8) predicts larger

values of t_, again in qualitative agreement with observations.

These results show that (2.14-15) are consistent with a variety of observed balances in

convective layers. They provide a dynamical interpolation between the "compensating subsidence"

and "mixing length" regimes.
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STRATUS: AN INTERACTIVE STEADY STATE MIXED LAYER MODEL

FOR PERSONAL COMPUTERS

Thomas A. Guinn and Wayne H. Schubert

Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523

1. INTRODUCTION

We present here a steady-state, horizontally homogeneous, cloud-topped marine bound-

ary layer model based primarily on the work of Lilly (1968) and Schubert et al. (1979).

The conservative thermodynamic variables are equivalent potential temperature 8e and to-

tal water mixing ratio q + g. Some of the differences between this and Lilly's (1968) model

are: (1) radiation is allowed to penetrate into the boundary layer; (2) cloud top values

of longwave radiation, equivalent potential temperature, and water vapor mixing ratio are

linear functions of height derived from climatological data at California coastal stations; (3)

the closure assumption assumes a weighted average of Lilly's (1968) maximum and mini-

mum entrainment theories. This model has been programmed in FORTRAN and will run

interactively on an IBM-compatible personal computer. The program allows the user to

specify the geographical location, the wind speed, the sea-surface temperature, the large

scale horizontal divergence, and the initial guess for cloud top height. Output includes

the steady state values of cloud top and cloud base height, mixed layer equivalent poten-

tial temperature and total water mixing ratio, and the associated convective and radiative

fluxes. The notation used throughout this abstract is that of Lilly with the exception that
the subscript U replaces UH.

2. RADIATION PARAMETERIZATION

Since longwave cooling off cloud top is the important driving mechanism in the cloud-

topped marine boundary layer, the radiation paramaterization warrants a detailed descrip-
tion. We follow the philosophy that, consistent with the limitation of the vertical thermo-

dynamic structure to two degrees of freedon, the vertical resolution of the radiative cooling

should also be limited to two degrees of freedom. This means radiation can appear at most

in the mixed layer thermal budget equation, and the cloud top jump condition. This is

slightly more general than Lilly's restriction of the radiative cooling to the cloud top jump

condition. Thus, we write the equations for the changes in radiative fluxes across cloud top
and across the mixed layer as

FU - F H = (pCp) -1 {(1- _)(oT h - _b)- (1- #')$}, (1)

and

-]2H -- _S = (pCp) -1 {.(o'T_4 -- _IU) - JARS}, (2)

where p is the constant air density, a is the Stefan-Boltzmann constant, TH is the cloud

top temperature in Kelvin, L:Lu is the downward longwave radiative flux attributed to that

portion of the atmosphere which lies above the mixed layer, S is the absorbed broadband

pRECED]';'IG Pf_GE _LA!VK NOT FILMED
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shortwave radiative flux, and # and p_ aie the longwave and shortwave radiation partitions

respectively. These partitions can take on values from zero to one. If both are set to zero,

the radiation parameterization reduces to Lilly's case. Here and in the following sections

the subscript U will refer to those properties of the upper air just above cloud top, the

subscript H will refer to those properties just below cloud top, the subscript S will refer to

those properties at the surface, and the subscript 0 will refer to those properties at some

small height above the surface (typically taken to be 10 m). For this model, the downward

longwave radiative flux term in (1) and (2) is expressed as a linear function of cloud top

height. The function was derived based on the July average sounding data for the five years

1976-1980 as extracted from the U.S. Dept. of Commerce Climatological Data, Nationa!

Summary. Two California locations were used, San Diego and Oakland. The sounding data

combined with the midlatitude ozone profile as taken from the U.S. Standard Atmosphere

Table, 1976 and a uniform carbon dioxide profile of 0.501 gkg -1 was input into a broadband

longwave radiation model written by Cox (1973). The model output was used to calculate

the required linear relationships for the two locations. The resulting equations are given by

£:lu = { 314.0 + 0.03077H for Oakland,333.1 + 0.32360H for San Diego, (3)

where the units for L:tu and H are Wm -2 and m respectively. The value of the absorbed

solar radiation is that suggested by Lilly (1968), i.e. S = 22.3 Wm -2.

To calculate TH, we start with the equation for potential temperature at cloud top (OH).

The potential temperature at cloud top is equal to the potential temperature at cloud base

(Sh) plus the change that occurs when following a moist adiabat from cloud base to cloud

top, i.e.

9H = 9h + - (H - h). (4)a

In addition, _h can be calculated from our conservative thermodynamic variables by use of
the definition of _e, i.e.

0h = 0e-- L(q+£) • (5)
Cp

To obtain the expression for the temperature at cloud top (TH), we use both Poisson's equa-

tion and the integrated hydrostatic equation in potential temperature form. The resulting
expression is

TH = 8h+ b _ (H-h) \Po/a

where PH is determined hydrostatically from H.

3. THE COMBINED CONVECTIVE-RADIATIVE MODEL

With the discussion of the radiation parameterization completed, we can now write the

combined convective-radiative model. The model equations, which are listed below, consist

of two surface flux equations, the cloud base equation, the cloud top jump definitions,

the cloud top temperature equation, the radiation equations, the consistency relation, the

entrainment assumption, the mixed layer equivalent potential temperature and total water

budget equations, and the cloud top jump condition on equivalent potential temperature.
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These thirteen equations form a closed set in the thirteen unknowns H, h, 0e, (q + g), A0_,

A(q + g), TH, (Fu - FH), (FH - Fs), (w'O_)o, w'(q' + g')o, (w'O_)H, and w'(q + g')H"

(w'O')o= CTV(O_s- 0_) (7)

w,(q' + e,)o= crv[qs - (q+ e)]

h = (1 + a)(qs - qo) - a(O_s - 0_)
b

AO_ = O_u - O_

A(q + t) = qu - (q + g)

TH = Oh+ b a (H-h)
a

Fu - F. :(pcp)-' {(1- #)(aT 4 - £Iu)- (1- #')S},

F. - F. --(pep)-' - .'S},

[°" [o
OOe (WtO'e)O-- (w'Ote)H -- (FH -- FS)

Ot H

O(q+ e) (_'q')o - w'(q' + e).
Ot H

OH _ Fu - FH - (w'O_)H _ DH.
ot Ao"

Equations (15) and (16) are simply a shorthand matrix notation for the consistency relation

and the closure assumption. In the following section we discuss the steady-state solutions
to the above model.

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15,16)

(17)

(18)

(19)

4. THE STEADY-STATE SOLUTIONS

In the steady-state case all derivatives with respect to time are set to zero, which results

in a system of nonlinear algebraic equations. The method we have chosen to use in solving

for the steady-state solutions is to reduce our system of equations to one equation in H.

We can then use a simple secant method algorithm to iteratively find its zero. Before

describing the steady-state model equations, it should be mentioned that the total water

flux w'(q' + g') becomes constant with height. This can seen directly from (18). For this
reason, the subscripts on this variable are deleted.

The first step is to derive expressions for the surface fluxes of equivalent potential tem-

perature and total water. The former is accomplished by eliminating the dependent vari-

ables 0e and (wrOte)H between the steady-state forms of (7), (17) and (19). The resulting
expression is

(w' O_)o = ( Fu - FH ) + (FH - Fs ) + D H (O_s - O_u )

(1 + c_v) (20)
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The latter expression is derived similarly, resulting in

DH(qs - qv)
w'(q' + g') = --- -D--H--_" (21)

It should be noted that the cloud top values of equivalent potential temperature and water

vapor mixing ratio (Sev and qv respectively) are linear functions of height derived from the

same climatological data as used in the radiation paramaterization.

We can also eliminate 8_ from our cloud base equation. This is accomplished by substi-
tuting (7) and (8) into (9). The resulting expression is

h = (1 + o)w'(q' + e) - a(w'e_)0
bCTV

(22)

To derive an expression for (w'O_)H, we eliminate Oe from (19) by using (7), which results
in

(w'O_)H = (Fu - FH) DH --
-- CT---"_(wtOle)O+ DH(O,s - O_v). (23)

Finally, we need to derive the steady-state closure equation. Before this can be done,

however, it is necessary to provide expressions for the virtual potential temperature flux at

the surface, just below cloud base, just above cloud base, and at cloud top, respectively.
These expressions expressions can be shown to take the form

(w'O_)o = (w'O_)o- (_p -O6) wqq + g'), (24)

(w'O_)h- =(wOe)h--'" (--_p - OS) w'(c[ + g'),L

(w'O" )h+ = ( l + aO( l + _) ) (w'O" )h - O w'(q' + g')'l+ c_

(w'O'v)H = ( l + aO(l + 6)) (w'O$)H-Ow'(q' + g')'l+ _

where (w'O_)h is given by

(25)

(26)

(27)

h) h(w'O_)h = 1- -if) (w'O_)o + -_(w'O_)H. (28)

With the above variables defined, we can now derive our closure equation. We use a weighted

average of Lilly's (1968) maximum and minimum entrainment case to close our system
equations. This closure equation takes the form

k/0-_ ! ! .

H w'O_dz + (1 - k)(w Ov)mlnimu m : O, (29)

where k is a weighting parameter which can take on values in the range 0 _< h _< 1. If we

assume the daily averaged solar radiation is never strong enough to overcome the longwave
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cooling and thus produce a net warming affect, the minimum virtual potential temperature

flux must always be just below cloud base. This can be seen from (17). With this in mind,

(29) can be integrated to give

h ii
2(1k- k)(w'0")h- + (w,0,). + (_,0,)_+ + _[(_ 0_)s+ (_'0")h- - (_,0,). - (w'e')_+] = 0.

(30)
We now have a closed set of equations (12)-(14), (20)-(28), and (30)in the unknowns

H h, TH, (Fu - FH), (FH - Fs), 'w'8 '_ w' ', _ _m, ( 0o)h,(_'0')o, _'(q' + e), (_'o'_)., (_'0")h+,
(w'8")h- , and (w'8'_)o. The method we have chosen to solve this system of equations can

be explained in the following four step iteration sequence.

(1) Make an initial guess of the cloud top height H and the cloud top jump in radiative

flux (Fu - FH ).

(2) Using the current estimates of H and (Fu- FH), calculate in order (w'8_)0, w'(q' + l'),

h, (w'_)H and the four virtual potential temperature fluxes using (20)-(27).

(3) Again using the current estimate of H, calculate the new radiation variables TH,

(Fu - FH), and (FH -- Fs). This newly calculated value of (Fu - FH) will be used in

the next iteration if another iteration is required.

(4) Using the above fluxes, check to see if (30) is satisfied to within some tolerable limit.

If it is not, use the secant method to produce a new estimate of H and repeat steps

(2)-(3) until (30)is satisfied.

5. RUNNING THE PROGRAM

The FORTRAN source code for the above model is stored on the attached floppy disk
in the file STRATUS.FOR and the executeable code in the file STRATUS.EXE. To run the

program, simply enter STRATUS. You will be prompted to enter the sea-surface tempera-

ture, the large scale horizontal divergence, the wind velocity, and the initial guess for cloud

top height. The output consists of cloud top and cloud base height, mixed layer equivalent

potential temperature and total water mixing ratio, values of the convective and radiative

fluxes and the cloud top temperature.
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Introduction:

On several occasions during tile FIRE Marine Stratocumulus IOP off tile

Californian coast, small cumulus were observed to form during the

morning beneath the main stratocumulus deck. This occurs in the type of

situation described by Turton & Nicholls (1987) in which there is

insufficient generation of TKE from the cloudtop or tile surface to

sustain mixing throughout the layer, and a separation of the surface

and cloud layers occurs. The build up of humidity in the surface layer

allows cumuli to form, and the more energetic of these may penetrate

back into the Sc deck, reconnecting the layers. The results presented

in this abstract were collected by the UKMO C-130 aircraft flying in a

region where these small cumulus had grown to the extent that they had

penetrated into the main Sc deck above. In the following paragraphs we

will examine the structure of these penetrative cumulus and discuss

their implications on the layer flux and radiation budgets.

Aircraft Observations :

An aircraft profile through the boundary layer on the 16th July is

shown in fig.l, and illustrates the main features of the case very

well. The local time was about midday, and the weak mixing is evident

from the slope of the theta-v line. The separation of the layers can be

seen as a discontinuity in the Qt profile, although no density

interface is visible in theta-v.
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The C-130 flew 60km legs along a north/south line at various levels.

Due to the extremely light winds (less than 1.5 m/s mean) the aircraft
ground position corresponds to its air position for the section of the

flight we will examine. Thus we are justified in overlaying data from

different times. Fig.2 represents a cross-section along the flight line
for the Johnson-Williams derived liquid water content. Each JW trace

has been plotted with its origin position representing the height of
the run. The JW values are not absolute. The lower two runs are below

the main Sc base, and the upper two are at the Sc base and top. Several

areas of small cumulus can be seen in the lower runs, but there are two
zones (marked in fig.2) where the enhanced LWCs in the upper runs show
that they have penetrated right up to the inversion at the top of the
m:till deck, spreading as they rise. For each run shown the times when

the aircraft was well within the cumulus or penetration regions were

determined. We can characterise the zones by calculating mean
quantities for them separately, and comparing them with the whole-run
quantities. {Because the duration flying in the zones is much smaller

than the whole run, the whole-run means approximately represent the
stratocumulus layer).

Fifl.2 : Liquid water cross-section alon9 flight track
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Thermodynamics and microphysics:

Taking the surface layer air as representative for the source air of

the cumuli, it is found that thermodynamicall_ there is very little

difference from the Sc layer air. Mean Theta-e is indistinguishable,

but Qt is 8.7 g/kg for the the upper layer and 9.1 g/kg for tim surface

layer air. These agree with the observed cloud bases from the Q1

profiles shown in fig.3(a). The dots are uiiole-runs and the means from

the two zones are numbered accordingly. The best fit line for tile zones

uses both sets of data. The whole-run profile has a ratio of Q1 to the

adiabatic value of 0.76, wtlile the zones values is lower at 0.56 due to

Like ascending Cu entraining air of lower total water content from the

surrounding Sc as it rises.
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This mixing process is well illustrated by the profile of FSSP derived

droplet concentrations in fig. 3(b). Within stratocumulus droplet

concentration is usually found to be constant with height (Nicholls &

Leighton, 1986), and so we can use it as a roughly conservative

variable. When we look at the microphysics of the zones as opposed to

tile whole run, we find that the air they are bringing up from tim

surface layer has a far higher droplet concentration. The whole-run

values are constant at about 80 cc-l, whereas the zone values at the Cu

cloudbase are close to 150 cc-l. As the Cu plumes rise they spread out

and mix with the surrounding Sc layer air, and we see the mean

concentration in tlke zones linearly decreasing until it almost equals

the whole-run value by the time the inversion is reached. Tim profiles

of mean volume radius are almost identical for the two situations.

Fluxes:

I_oth heat and moisture fluxes for the whole-run averages tend to be

about half an order of magnitude smaller than typical values from other

FIHE flights. Due to their size, the scatter is relatively large and

so no pattern can easily be seen. This is consistent with the picture

of a poorly mixt'd layer. It would seem reasonable to expect the fluxes

ih Like zones to be higher, as tlJe Cu carry heat and moisture up through

t.h_ layer, but here we find a measurement problem. Because of the very
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short sampling distance in the zones (3 to 4 km) the error variance is

large (upto 80% using the method of Lenschou & Stankov, 1986). Thus we

cannot determine a representative flux measurement for the zones.

More structure is apparent if we consider the TKE flux (fig.4(a)).

The whole-run values are small, but tile zone values show a clear

maximum at tile Cu base, decreasing towards the cloud top (as TKE is

used to entrain more quiescent surrounding air) to equal tile Sc value.

Scatter is still fairly large due to the short sampling period.
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(b) Mean vertical velocity (in zones}

The mean vertical velocity also shows the structure of the Cu in the

zones, following the same trend as the TKE flux. The updraft values are

small compared to normal Cu values, but an inspection of a vertical

velocity timeseries shows that there are several sharp updrafts within

the zones, and that we are averaging across some quiescent areas

between them.

Radiation:

Because of the non-linear relationship between cloud water and

radiation, it is likely that the radiative properties of the mean cloud

will not be the same as the mean radiative properties. So to assess the

impact of the presence of the zones on the radiation budget, radiation

models using whole-run conditions and zone conditions were compared.

The models used were those of Slingo & Schrecker (1982) for the

longwave and Roach & Slingo (1976) in the shortwave, with nine levels

below the inversion and a subtropical standard atmosphere above it (As

Turton & Nicholls, 1987). Comparing the radiative properties of the

zones with those derived from whole-run thermodynamics we find that (i)

the albedo increases, reflecting more shortwave back into space, and

letting less through into the boundary layer and (ii) the absorptance

of tile cloud increases so that a smaller proportion of tile cloudtop

flux reaches the ground. Tile longwave fluxes are virtually unchanged

between the two cases. Quantitatively, this means that:

(I) The cloud layer ['eceives 12 Wm-2 more, almost doubling its

previous budget of 13 Wm-2.

(2) The surface receives 139 Wm-2 less, a reduction of 37%.

(3) about 130 Wm-2 more are being reflected back into space. This has

been verified using the upward and downward facing radiometer data for

the two regions. However it is apparent from this data that the regions

corresponding to the radiative properties of the Cu are much wider than
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the vertical velocities or LWC'a would suggest, occupying more than

half of the run.

Landsat thematic mapper band-4 reflectivity data taken at the time

the C-130 was operating shows bright spots corresponding exactly to the

positions of the zones. The Landsat picture shows that regions of

penetrative convection lie in streets, and that the C-130 track has cut

across about 3 perpendicularly. Hence we know that the cross-section

sampled by the C-130 is representative of the whole region. Because

band-4 is sensitive to total liquid water column, it also detects small

Cu beneath the Sc that have not yet penetrated it, and so there is no

sharp change in intensity at the edges of the zones. Thus we cannot use

this kind of image a priori to diagnose the existence of Cu

penetration.

Summary:

Small cumulus were observed to form beneath and penetrate into a

stratocumulus sheet. No discontinuity in theta-v could be found between

the surface and detached mixed layers, but there was a clear jump of

0.4 g/kg in Qt. FSSP data showed that the surface layer air produced a

far' higher droplet concentration in the Cu than the Sc layer air above.

The decrease of the concentration with height in the Cu shows that the

plumes penetrated right up to the inversion, but spread out and

entrained lower total water content air as they rose.

||eat and moisture fluxes within the Sc were small, but values could

not be determined for the Cu areas due to the short sampling times. In

the Cu areas TKE flux and mean vertical velocity both showed a maximum

near Cu cloudbase, decreasing as the plumes rose into the Sc.

Using typical values for the Sc layer and the penetrative Cu

(regarded as a cloud-layer from Cu base to the inversion) radiative

properties were modelled for the two cases. Under the Cu areas the

surface budget decreases by 37%, and 130 Wm-2 more are reflected back

into space from cloud-top, relative to areas just containing Sc.

Radiometer data showed that the radiation conditions predicted for

the Cu occupy more area than suggested by Q1 or vertical velocities.

Hence any calculation of mean radiative properties based on mean

thermodynamic properties will not be valid when penetrative convection

is present.
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i. INTRODUCTION

The Naval Oceanic Vertical Aerosol Model (NOVAM) has been formulated to

estimate the vertical structure of the optical and infrared extinction

coefficients in the marine atmospheric boundary layer (MABL), for

wavelengths between 0.2 and 40 _m I. NOVAM was designed to predict,

utilizing a set of routinely available meteorological data, the non-uniform

and non-logarithmic extinction profiles which are often observed. NOVAM is

based on a combination of empirical and physical models for the processes

that determine the aerosol dynamical behaviour. The extinction properties

are calculated from the aerosol profiles using Mie theory.

NOVAM is restricted to the marine atmosphere. The differences between

NOVAM and land-based models are the marine type of scaling used for the

turbulent controlled processes near the sea surface, and the determination

of the surface concentrations with the Navy Aerosol Model (NAM). 2 NAM has

been extensively updated from the original. It produces a particle size

distribution at a height of I0 m above the surface from the input data of

wind speed, visibility and relative humidity. This NAM-generated surface-

layer particle size distribution is mixed throughout the MABL by turbulent-

controlled processes, further modified by relative-humidity effects.

Various models describin_ these processes are included it NOVAM, such as a
simple mixed-layer model J and a shallow convection case. Provision has

been made to include other models such as for deep convection. The

selection of the model is based on the vertical stratification, cloud

cover, cloud type, wind speed, and the requested wavelength for the

extinction calculation. If the information on the vertical structure is not

available a default relative humidity profile, based on the surface

observations, is generated. 5 This default profile is also used when the

required input parameters do not satisfy the presently supported models.

For the calculation of extinction for wavelengths between I and ii _m below

marine stratus clouds an empirical model 6 is used. This stratus model

applies only to wind speeds less than 5 m/s.

For the initial evaluation of NOVAM, data from the July 1987 FIRE

experiment was used. Aerosol particle size distributions, aerosol

scattering and required meteorological parameters throughout the MABL were

obtained from both airborne and surface based platforms. The aerosol-

derived extinction properties throughout the MABL are compared with the

NOVAM estimates.
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2. THE FIRE/EOMET EXPERIMENTS

The Navy's EOMET (Electro-Optics METeorology program) participation in

FIRE was both to be supportive of FIRE and to build a quality data base

from which NOVAM could be evaluated. Measurements were made from an

aircraft, a balloon and a ship. An overview of the measurements made by the

EOMET group is presented in table I.

The R/V Point Sur, operated for the National Science Foundation by the

California State University System for the Naval Postgraduate School (NPS),

made continuous (24 hour/day) measurements for the period 7-16 July, 1987.

The R/V Point Sur was generally located 30-40 km upwind (Northwest) of San

Nicolas Island (SNI).

The Naval Ocean Systems Center (NOSC) airborne platform was utilized to

characterize the low level structure of the marine boundary layer. Flights

were made on 15, 19, 23 and 24 July, 1987. The prescribed flight pattern

for the NOSC aircraft consisted of spiral profiles taken near the Naval

Research Laboratories (NRL) ground facility at SNI and upwind of SNI near

the R/V Point Sur. Each flight was scheduled to occur simultaneously with

the NOAA-9 satellite overpass.

The NRL balloon facility 7 was located at the northwest tip of SNI

approximately 17 m above sea level. The NRL aerostat system consisted of a
538 m 3 balloon, with a lifting capacity of 227 kg and a flat bed trailer

which serves as a "mobile" mooring system. The instrument package hangs 35

meters below the balloon and the power source to eliminate exhaust

contamination near the sensitive aerosol sensing devices. The platform is

aligned with the wind by an aerodynamic mechanism. During FIRE, 13 aerosol

profiles were measured on 16, 18, 19, 20, 22, 23, 24 and 25 July, 1987.

Extinction profiles were obtained in three independent ways:

-NOVAM calculations utilizing measured meteorological parameters,

-Mie calculations utilizing aerosol size distributions,

-Direct measurements of extinction (molecular and aerosol) at one

wavelength by means of a spherical nephelometer.

3. SYNOPTIC SITUATION AND SURFACE MEASUREMENTS ON THE R/V POINT SUR, 14-16
JULY

The meteorological synoptic scale situation during the 14-16 July

period was controlled by two pressure systems. A stationary 1032-1036 mb

closed surface high pressure system was located west of Washington State

and British Columbia, Canada. A well-defined thermal low was located over

Southern California. These two systems caused west to northwest winds in

the vicinity of SNI due to the outflow from the high located to the
northwest.

The time series of surface-layer parameters obtained from the R/V Point

Sur for 14-16 July are presented in Figure i. Features of interest are the

steadily decreasing wind speeds and the diurnal variation of both the wind

speed and direction. The steady decrease in wind speed was associated with

the thermal low which was moving northeast (more inland) from the Baja of

California on 14 July to the California-Nevada border on 16 July. The

eastern Pacific surface high pressure systems remained nearly stationary

during this period. Steadily decreasing wind speeds are important to the

production of marine aerosols.
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d. visibility and Radon concentrations (+)

e. extinction coefficients calculated fro_ the aerosol particle size

distributions for wavelengths of 0.55, 063, 0.69, 1.06 and I0.6 _m

(top to bottom traces).

Note that the time is L7, i.e. 7 hours ahead of local time (PDT).



The diurnal variations in wind speed and direction, during the 24-hour

periods, were concluded to be due to the intensification of the thermal

low, east of the area, during the local afternoon. This could imply a local

circulation influenced by the land-sea proximity.

Evidence that there was a land-sea influence associated with the

diurnal variation appears in the diurnal variation of the Radon

concentration. Whether the Radon was advected horizontally or arrived in

the mixed layer due to entrainment is unknown. The increase in temperature

and decrease in humidity on the diurnal scale could be associated with

entrainment of warm dry air from above the inversion. The entrainment of

overlying air with continental aerosol is as important to NOVAM's
performance as the horizontal advection of continental air.

The continental influence is obvious in the afternoon of 15 July, when
the Radon concentrations peaked to 60 pCi/m 3. The increased Radon

concentrations, a clear indication of continental influences, are followed

by an increase in the extinction coefficients. The increase in the

extinction coefficients is observed at all wavelengths from the visible to
the far IR.

4. SIMULTANEOUS AIRCRAFT AND BALLOON FLIGHTS DURING THE STRATUS CASE OF 15
JULY 1987

Evaluation of the NOVAM stratus model utilized the aircraft- and

balloon-derlved meteorological profiles and surface-based observations for

the stratus conditions of 15 July 1987, 1500-1700 (PDT). A uniform stratus

layer (100% cover) existed at and upwind of SNI with a base around 400 m

and tops at 700 m. Winds were northwesterly at 5 m/s. Cloud base at SNI

was determined at 320 m from the balloon llquid-water measurements. Drizzle

was observed at the ground. Extinction coefficients fluctuated from 80 km "I

in the cloud, to low values (0.01 km -I) above the cloud layer. The balloon

RH instrument was pegged at 100% throughout the whole boundary layer.

Upwind, however, the relative humidity below the clouds varied in the

vertical between 95% and 100%, as determined from the aircraft data. The

surface relative humidity at the R/V Point Sur, approximately 30 NM upwind

from SNI, was 92% (Figure i). This is a classic case of a stratus deck in

which warm dry conditions existed above the moist marine stratus layer.

Extinction profiles for this situation are shown in Figure 2. Figure 2a

shows the AMP sensitivity of NOVAM for the visible wavelengths. Note that

NOVAM selected the mixed-layer model for these calculations because the

sub-stratus model does not apply to wavelengths smaller than I _m. The

fluctuations in the extinction coefficients determined from all sources are

generally contained within the AMP limits. In the regions around 120 m and

those above 320 m, where the extinction coefficients are outside the NOVAM

bounds, the aircraft-observed relative humidities approached 100% - a

region where NOVAM is not applicable. The problem here is that the

hygroscopic aerosol (like sea salt droplets in the MABL) can be activated

when relative humidities go slightly over 100%. The activated aerosols grow

in size very fast and behave as cloud droplets 8 and cannot be described by

equations that apply to subsaturated aerosol. This puts them into the arena

of fog or cloud physics, and outside of the realm of aerosol modeling -

including the capabilities of NOVAM. Figure 2d shows the liquid water

concentration profile and Figure 2e the measured size distributions

associated with this supersaturation phenomenon.

Figures 2b and 2c show the 1.06 _m and 10.6 _m extinction profiles. The

sub-stratus model is not as sensitive to the AMP as the mixed-layer model.

194



Differences between the measured extinction coefficients and NOVAM

estimates are in the high-humidity regions just described. The peak in the

size distributions shown in Figure 2e affects the far IR more than the near
IR.

5. CONCLUDING REMARKS

We have illustrated the value of NOVAM for estimating the non-uniform

and non-logarithmic extinction profiles, based on a severe test involving

conditions close to and beyond the limits of applicability of NOVAM. A more

comprehensive evaluation of NOVAM from the FIRE data is presented in ref.

9, which includes a clear-air case. For further evaluation more data are

required on the vertical structure of the extinction in the MABL,

preferably for different meteorological conditions and in different

geographic areas (e.g. ASTEX).
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Figure 2. Stratus case for 15 July:

a. extinction profile= tot 0.53 pm, derived from the

balloon (_) and aircraft (o) aerosol

measurements, the balloon nephelometer

measurements (0) and estimated with NOVAM /or

/d4P's of i and iO. The NOVA profile is estimated

utilizing the mlxed-layer model because the sub-

stratus model does not apply to wavelengths

smaller than I pm. The curves are further

explained in the text.

b. extinction profiles for 1.O6 _m wavelength,

derived from the balloon (0) and aircraft (o)

aerosol measurements and estimated with NOV/_

(sub-stratus model) for _4P's of I end 10.

c. as figure b, but for 10.6 _m wavelength.

d. liquid _acer content profiles measured from the

balloon'.

e. aerosol size distribution measured at a level of

125 m from the balloon. The pronounced peak in

the spectr_= is due to the growth of activated

aerosols in supersaturated conditions (relative

huJaidity slightly higher than 100t).
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MODIFICATION OF THE BACKGROUND FLOW BY ROLL VORTICES

Hamvton N. Shkcr and Tracy Haack
Department of Meteorology

The Pennsylvania State University
University Park, PA 16802

Use of observed wind profdes, such as those obtained from ascent or descent aircraft

soundings, for the identification of the expected roll modes is hindered by the fact that these
modes arc able to modify the wind profiles. When such modified wind profiles arc utilized to
estimate the critical values of the dynamic and thermodynamic forcing rates, large errors in the

preferred orientation angles and aspect ratios of the rolls may result. Nonlinear analysis of a 14-
coefficient spectral model of roll circulations shows that the primary modification of the
background wind is the addition of a linear component. When the linear profile having the
correct amount of shear is subtracted from the observed cross-roll winds, then the prc-roll wind

prof'dc can be estimated. In this paper, a preliminary test of this hypothesis is given for a case in
which cloud streets were observed during FIRE,

The amount of error in the expected orientation angle that is introduced by using the
roll-modified winds as the basic state can be illustrated using the Ekman wind profde. A typical

Ekman cross-roll pro/de Up is given in Fig. la. The geostrophic wind is from the west and the

Ekman wind direction is also from the west when z = xD, where D = 115 m is the Ekman depth;

because the model contains a right-handed coordinate system in which the roll axis is parallel to

the y-direction, southerly winds have negative values. An inflection point mode may develop

from this wind profde. It has a preferred orientation angle of 5° to the right of the geostrophic

wind, or 275 °. while the preferred aspect ratio a = 2ZT/L is 0.7; here z T = 600 m is the domain

height, so the expected roll spacing L is approximately 1700 m. The 14-coeHicient model is
integrated for these values of orientation angle and aspect ratio and for a set of supercritical
values of the dynamic forcing rates, given by a Reynolds numbcr Re = IV(zT)lZT/(Xv), and the

thermodynamic forcing rates, given by the Rayleigh number Pat = gzT3AzT/(vKT0oz4);, hcre

IV(ZT)l is the wind at the domain top, v and x: are the eddy viscosity and thermometric

conductivity respectively, and AzT is a combined measure of the sea surface/air temperature

difference and the environmental lapse rate of potential temperature. For this example, the

critical values are Re c = 91 and Ra c = 0, and the forcing rates Re = 100 and Ra = 100 are used in

the integration. The linear cross-wind profde U L created in this case is shown in Fig. lb. After

this linear profile is added to the original Ekman one, the low-level wind speed increases, as
does the shear near the inflection point (Fig. lc). Use of this modified profile UM in the stability

analysis produces an orientation angle for the inflection point mode that is 15 ° further to the
right of the geostrophic wind than the angle produced by the original Ekman pro/de. However,
the preferred aspect ratio does not vary considerably. For this example, therefore, the primary
consequences of using the wrong basic wind profile are a large error in the expected orientation
angle of the rolls and an overestimate of the cross-roll shear in the basic state winds.

Cloud streets in relatively clear air were observed in the western half of the Landsat

scene on July 7, 1987. A descent sounding measured on Flight 5 of the Electra between 2136
and 2137:30 UTC was used to provide the observed wind and temperature profiles for the

analysis (Figs. 2a, 3b). Moisture measurements, lidar data, and flight video tapes were used to

provide an estimate of the domain height z T = 450 m, and the layer mean wind direction of 3400
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gave an estimate of the observed roll orientation; this orientation agrees well with that found on
the Landsat image provided us by Dr. Robert F. Cahalan. When the observed wind profile is

used in the stability analysis, an orientation 35 ° to the right of the mean wind direction, or 150
(slightly east of north), is obtained for the thermal mode. This is the only likely mode since the
cross-roll proFtle does not have an inflection point (Fig. 2a), and. as calculated by Dr. Bruce A.
Albrecht, the sea surface temperature exceeded the surface air temperature by approximately

0.5 OC. Clearly 35 ° is an unacceptably large error in the orientation angle. Thus the next task is
to find the linear cross-roll wind pro/de U L that must be removed from the one in Fig. 2a in

order that the resulting profile produces the correct orientation angle 13= 0 °. A range of slopes is

considered, and the effects on the preferred orientation angle _p given by the stability analysis

are shown in Fig. 2b. Because the orientation angle varies monotonically with changes in the
slope m of the removed profile, the hypothesized roll contribution is easy to identify. The linear

cross-roll profile whose removal gives 0 ° as the preferred roll orientation is displayed in Fig. 2c.
A total wind speed variation of 1.6 m/s is estimated to have been produced by the rolls. The
estimated pre-roll basic wind profile Up that gives the correct orientation angle is shown in Fig.

2d; note its quadratic form that is often associated with thermally forced roll circulations.

The above method for estimating the roll contribution to the background wind profile is
acceptable only if integration of the model for reasonable values of the parameters produces the
necessary wind modification U L. The results of this test are given in Fig. 3. In Fig. 3a the

transition curves are shown, together with an estimate of the forcing valuescharacterizing the
atmosphere. The dashed line shows the transition curve forthe thermal mode when the ol_:rved

profile U M in Fig. 2a is used, while the solid llne shows the curve when the estimated pre-roll

profile UI, in Fig. 2d is used. A few of the preferred orientation angles/_p and aspect ratios ap

are given for both curves; note that when the assumed roll modification is removed from the
observed wind profile, the orientation angle is much improved and the aspect ratio is increased,
implying that the expected roll spacing is decreased. The quadrilateral encloses the parameter
region corresponding to that for the atmosphere. A sea surface/air temperature difference

ranging between 0.2 °C and 0.8 °C, a lapse rate of 9.5 °C/kin characterizing the lower portion of

the temperature pro/de in Fig. 3b, and eddy viscosity and thermometric conductivity variations

between 10 m2/s and 50 m2/s wcr© used to produce the vertices of the quadrilateral; these
vertices are (Ra, Re) = (0,45), (10,45); (0,190); (125,190). It is reassuring that the _ransition

curves pass through the left side of the quadrilateral, implying that rolls supporting the cloud
streets were generated by the thermal mode. The star in Fig. 3a shows the values of Ra and Re
used to integrate the model. Because this point is well beyond the critical values given by the
solid curve, a range of aspect ratios may be used in the integration; if too large an aspect ratio is
chosen; then a temporally complicated roll solution results. However, when an aspect ratio of 0.9

is picked, which implies that the atmosphere evolved along a p.ath roughly paralleling the right
edge of the quadrilateral, then a nonlinear solution representing a propagating roll having a
steady amplitude results, This solution is shown in Fig. 3c, and it produces the cross-roll wind
profile modification shown in Fig. 3d. Clearly, this roll produces the necessary modification that
is given in Fig. 2c, indicating that the amount of shear removed to estimate the pre-roll profile in
Fig. 2d is plausible. This roll mode propagates from right to left at the rate 0.3 m/s, as might be
expected in these coordinates because the pre-roll winds are mostly negative and of this
magnitude in Fig. 2d. Moreover, the maximum speeds in the updraft are 0.8 m/s. Finally, the
roll spacing of approximately 1 km is also reasonable, as indicated by inspection of the Landsat
image. Thus by removing the contribution of the roll circulations to the measured wind profile,
a pre-roll basic state wind profile is found that gives a reasonable roll mode. Further tats of this
approach are planned with other wind profiles measured during FIRE.
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Introduction:

Boundary layer cloudiness plays several important roles in

the energy budget of the earth. Low level stratocumulus are highly

reflective clouds which reduce the net incoming short-wave

radiation at the earth's surface. Climatically, the transition to

a small area fraction of scattered cumulus clouds occurs as the air

flows over warmer water. Although these clouds reflect less

sunlight, they still play an important role in the boundary layer

equilibrium by transporting water vapor upwards, and enhancing the

surface evaporation (Betts, 1986; Betts and Ridgway, 1989). The

First ISCCP (International Satellite Cloud Climatology Project)

Regional Experiment (FIRE) included a marine stratocumulus

experiment off the southern California coast from June 29 to July

19, 1987 (Randall et al, 1984; Albrecht et al, 1988). Among the

objectives of this experiment were to study the controls on

fractional cloudiness, and to assess the role of cloud-top

entrainment instability, CTEI, (Randall, 1980; Deardorff, 1980)

and mesoscale structure in determining cloud type.

The focus of this paper is one research day, July 7, 1987,

when coordinated aircraft missions were flown by four research
aircraft, centered on a Landsat scene at 1830 UTC The remarkable

feature of this Landsat scene (see other papers for photo) is the

transition from a clear sky in the west though broken cumulus to

solid stratocumulus in the east. In this paper, we analyze the
dynamic and thermodynamic structure of this transition in

cloudiness using data from the NCAR Electra. By averaging the

aircraft data, we shall document the internal structure of the
different cloud regimes, and show that the transition between

broken cumulus and stratocumulus is associated with a change in

structure with respect to the CTEI condition. However, this results

not from sea surface temperature changes, but mostly from a tran-

sition in the air above the inversion, and the breakup appears to

be at a structure on the unstable side of the wet virtual adiabat.

2) Data Collection and Processing

The flight plan for the Electra (Kloessel et al (1988)), and
the data processing is discussed in the extended paper.

a) Averagin_ of Data into Cloudiness Regimes

The boundary between the cumulus and stratocumulus regimes
was moving slowly eastward throughout the time of the Electra
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flight. We used observer's notes and the lidar on the aircraft to

give an estimate of the mean velocity of the boundary of 3ms "l.
Four regions were identified according to the observed cloudiness

which we will refer to as Clear, Cumulus, Broken and Stratocumulus.

Clear refers to the far western area where no clouds were present.
Only a small fraction of the flight time was spent in this area.

Cumulus refers to the region where small puffs of cumulus clouds

were visible, but before the clouds developed into larger cells.

Broken refers to the transition region between the Cumulus and
Stratocumulus where the fractional cloudiness varied between 30%

and 75%. Stratocumulus refers to the region towards the west where

few holes appeared between clouds and the boundary layer was almost

overcast. Approximately equal flight time was spend in the last
three regions.

We computed the saturation level quantities of equivalent

potential temperature, liquid water potential temperature, and
total _water mixing ratio and averaged the data of the main east-

west flight legs and profile runs in pressure interval bins of 5
hPa for the four cloudiness regimes.

b) Determination of sea surface pressure and temDerature

We attempted to compute the sea surface pressure by averaging

the sea surface pressure values on the NCAR-Electra aircraft tapes.
Inconsistent results were found when different flight legs and
levels were compared, with variations of as much as 3 hPa between

flight legs means. However horizontal pressure gradients showed

consistently an approximately 1.2 hPa decrease in pressure from

east to west over a 1 degree longitude interval. We also

extrapolated the pressure versus radar altitude plot to the

surface,but this surface pressure extrapolation suffers from an

uncertainty of 1-2 hPa. We decided to retain the gradients in

average sea surface pressure, and use a mean sea surface presure
of 1016 hPa consistent with surface synoptic charts.

For the sea surface temperature we used the radiometric

temperature from the downward looking radiometer corrected for sea

surface emission of sky radiation. A necessary estimate of the sky
radiation was available from the upward looking radiometer.

a) Horizontal gradients and fluxes near the surface.

Fig. 1 shows _he west-east cross-section of 8 for the sea

surface and the average of the two runs at 1010mb. This average
was generated by binning the data in 0.05 longitude intervals. To

the west in the cumulus and clear regions there is a positive sea-
air 8 difference, while under the stratocumulus there is a reversal

because of the large drop of SST. We computed the surface sensible

and latent heat fluxes using the bulk aerodynamic method_ Wind-

speeds are much higher on the stratocumulus side. We used a

constant transfer coefficient of 1.10 .3, estimated from Stage and
Businger (1981). We compared these bulk fluxes with those measured

with the gust-probe system on the Electra (Albrecht, 1989, personal



communication), and found good agreement, considering the number
of independent measurements being combined,the residual
uncertainties in the sea surface pressure, and our corrections to
the Electra temperature and dewpoint observations. The surface
latent heat flux decreases across the cumulus-stratocumulus
transition, and the surface sensible heat flux falls to near zero
or becomes negative.

b) Thermodynamic Profiles

Fig. 2 has four panels showing the average vertical profiles

of potential temperature and dewpoint (as a potential temperature)

through the BL. Several features can be seen clearly. With the
transition from cloud free to stratocumulus regimes (panels (a) to

(d)). The BL deepens and, as would be expected, becomes moister

until it is saturated. The inversion lifts but becomes stronger.

The thermodynamic structure above the inversion shows dramatic

differences. There is a tongue of very dry air immediately above

the clear region, and this is capped by a moist layer above. The

dry tongue disappears with the transition to stratocumulus, and so

does the moist layer.

c) Conserved Variable Diagrams

Fig. 3 shows the four thermodynamic profiles on a conserved

variable plot of saturation potential temperature, 8* against total

water q_ (Boers and Betts, 1988). Below cloud-base one can see a

mixing line profile (Betts, 1982) nearly parallel to the dry

virtual adiabat as found by Betts and Albrecht (1987). Above

cloud-base and through the inversion, a linear mixing profile with

a characteristic slope can be seen. The wet virtual adiabat 8e,J =
310K is shown. We see that because of the relatively cool and dry
tongue of air above the cloud-free and cumulus CBL's, the mixing

line profile through the CBL is very unstable to the wet virtual

adiabat in_ Figs. 3a, 3b. However, the profile through the

stratocumulus, and overlying inversion is close to neutral with

respect to a wet virtual adiabat. The wet virtual adiabat

represents the stability criteria (Betts, 1983) for cloud-top

entrainment instability (CTEI), which was suggested as one

mechanism for the breakup of stratocumulus by the unstable downward

mixing of inversion level air (Randall, 1980; Deardorff, 1980).
There has been considerable discussion as to whether CTEI is a

sufficient condition for the breakup of stratocumulus (Hanson,

1984, Albrecht et al, 1985; Randall, 1984; Rogers and Telford,

1986; Kuo and Schubert, 1988; Siems et al, 1989 and others). Fig.

3 suggests that CTEI i2_ an important reference process associated

with the transition between cumulus and stratocumulus boundary

layers, because the [nixing line profile through the cumulus layer
is very unstable to CTEI whereas through the stratocumulus, it is

nearly neutral (albeit slightly unstable). At this time near local

noon the stratocumulus does appear to be thinning through the rise

of cloud base as it is strongly destabilized by radiative cooling

at cloud-top and warming at cloud-base. In this case the highly
unstable thermodynamic structure on the cumulus side arises from
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the relatively cool layer above the inversion, not from the modest

increase in S;_T, or a large change it, mixing ratio above the
inversion.

4. Discussion and Conclusions

The transition in structure associated with this transition

in cloudiness from a clear sky through tiny cumulus, broken
stratocumulus to a solid stratocumulus deck appears to be

associated with a large change in the slope of the mixing line.
Above the cumulus, the inversion is lower but much weaker in

strength and the air above still quite dry, so that the mixing line

through the cloud layer is very unstable to the wet virtual

adiabat: the criterion for CTEI. Above the stratocumulus, the

much stronger inversion gives rise to a mixing line which is only

marginally unstable to the CTEI criterion, apparently not enough

to break up the solid cloud layer in the face of mixing driven by
radiative destabilization and shear generation at the surface. The

figures show a clear progression from the clear air, where the
mixing down of very dry air (= 2gKg "I) appears to be sufficient to

prevent any cumulus from forming, to the cumulus regime. Likewise

the transition region shows an intermediate thermodynamic structure

between cumulus and stratocumulus. From the thermodynamic

structure of the broken stratocumulus we can make an estimate (if

we ignore all advective effects and assume local equilibrium) of
the critical mixing line slope for the formation or breakup of the

stratocumulus. Expressed in terms of %he slope of the wet adiaba%
we obtain

(Se/'_P)czIT = 0.7 rw

This is more unstable than the wet virtual adiabat which has a

slope of 0.9 ru. There is also some indication in this data that

the stratocumulus layer partly uncouples near local noon as has

been suggested by Nicholls (1984), and seen in the FIRE data (eg.
Betts (1989). The stratocumulus cloud-base as determined by lidar

rises lomb during the flight pattern (2.5 hrs), while the LCL of
the low level air descends about lomb during the same time.
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ANALYSIS OF MARINE STRATOCUMULUS CLEARING EVENTS

DURING FIRE

(POSTER SESS IOil)

Kevin A. Kloesel

Department of Meteorology
Penn State University

University ParK, PA 16802

I Introductioq

During FIRE, three major stratocumulus clearing events

took place over the project region. The purpose of this
poster session is to analyze these clearing events using
synoptic variables to determine if these clearing events can
be predicted by current modeling techniques. A preliminary
statistical evaluation of the correlation between satellite

cloud brightness parameters and NMC global model parameters

is available in Wylie, et al, 1989.

If. Analysis ot1: clearino events

The three major clearing events over the project area
occurred July 3-4, 3uly 6-7, and July 17-18. A fourth major

clearing event occurred July 13-15 just to the north of the
project area and will be included in this analysis.

Two synoptic scenarios appear to govern the clearing

events, The first is the occurrence of a ridging of the
surface Pacific sub-tropical high into the Pacific Northwest.
This ridging enhances the offshore flow at the surface along

the Oregon and northern California coastlines resulting in a
dryer boundary layer than if the fetch was over water. This

occurred as a prelude to the clearing events 3uly 3-4, 3uly
6-7p and 3uly 13-15. This synoptic scenario also occurred,
h(:_ever, when no substantial clearing took place. Therefore,
other processes must be evaluated. The second scenario is

the existence of strong cold air advectlon (as determined by
lO00-500mb thickness patterns) in association with the

northwesterly flo_ on the back side of synoptic disturbances.
An especially strong low pressure disturbance with strong
cold air advection was responsible for the widespread

clearing at the end of the experiment (July 17-18).

III.

Wylie, D., B.B.Hinton, and K.A.Kloesel, 198P! The
relationship of marine stratus clouds to wind and

temperature advection. Pfon Wea Re_ (accepted for
publication).
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FIRE Aircraft Observations of Horizontal and Vertical Transport

in Marine Stratocumulus

Ilga R. Paluch and Donald H. Lenschow

National Center for Atmospheric Research"

Boulder, Colorado 80307

INTRODUCTION

A major goal of research on marine stratocumulus is to try to understand the

processes that generate and dissipate them. One approach to studying this problem is to

investigate the boundary layer structure in the vicinity of a transition from a cloudy to a

cloud-free region to document the differences in structure on each side of the transition.

Since stratiform clouds have a major impact on the radiation divergence in the boundary

layer, the transition from a cloudy to a clear boundary layer is a region of large horizontal

inhomogeneity in air temperature and turbulence intensity. This leads to a considerable

difference in horizontal and vertical transports between the cloudy and cloud-free regions.

We use measurements from the NCAR Electra aircraft during Flights 5 (7 July

1987) and 10 (18 July 1987) of FIRE for this purpose. Flight 5 coincided with a Landsat

overflight, and was designed to investigate the transition across a well-defined N-S cloud

boundary, since the Landsat image can document the cloud cover in considerable detail.

Turbulence legs were flown about 60 km on both sides of the cloud boundary. Flight 10

was flown at night in an area of scattered small cumuli and broken cloud patches.

DISCUSSION OF OBSERVATIONS

Figure 1 shows data from two soundings, about 200 km apart, from Flight

5. The sounding on the left was taken in an area covered with a stratiform deck; the

sounding on the right was in a cloud-free region. Profiles of liquid water content, potential

temperature, and total water mixing ratio are shown. As can be seen in the stratiform

sounding, there are sharp changes in potential temperature and total water mixing ratio at

the inversion, whereas in the clear-air sounding the changes are gradual. These differences

are a common feature of the cloudy and cloud-free soundings observed during both the

Dynamics and Chemistry of Marine Stratocunmlus (DYCOMS) experiment and FIRE.

" The National Center for Atmospheric Research is sponsored by the National Science
Foundation.
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Figure 2. Total water and buoyancy fluxes measured by the Electra on flight 5, 7July
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Figure 2 shows vertical moisture and buoyancy fluxes I measured during constant altitude

flight legs on this day. The circles and squares represent data from stratiform regions,

the crosses are data from clear air regions. At the two lowest levels (at 1010 and 975

rob), the squares represent portions of the flight leg where the sea surface temperature,

measured by a surface temperature radiometer, was in the 15.0-15.8 C range; the circles

and crosses correspond to a sea surface temperature in the 15.7-16.5 C range. As expected,

the fluxes show some dependence on the sea surface temperature at the two lower flight

levels. The buoyancy flux at 975 rob, however, is very small compared to that in cloud,

which indicates that the surface buoyancy flux is likely to be relatively unimportant in

tile turbulence energy budget of this boundary layer. Tile upper level (950 rob) flight

passed through the stratiform deck, and there the sea surface temperature could not be

measured. In cloud, the buoyancy flux rises because of radiational cooling near cloud-top,

which enhances mixing and entrainment at cloud top; consequently the moisture flux in

cloud is also enhanced. By comparison, in the cloud-free region the moisture and buoyancy

fluxes are negligible at 950 mb. As a result, there is little mixing and the temperature

stratification is more stable (Fig. 1).

It is possible that at least some of the differences between the cloudy and cloud-

free soundings in Fig. 1 are due to differences in horizontal advection. That is, the air in

the cloudy region may have a different origin and have different thermodynamic properties

than that in the cloud-free region. To minimize tile effect of advection we examine several

short soundings from Flight 10, where adjacent cloudy and clear areas were traversed in

several up and down passes, as sketched in Fig. 3.

P

9o ,

riCO. I , , " '
0. 10. _0. 30. qo. 5"o.

t ,srA,vce

Figure 3. Sketch of the flight pattern used in Fig.4.

Soundings from the above passes are shown in Fig. 4. The plots show liquid

water content, potential temperature, total water mixing ratio, vertical velocity, east ve-

locity component, and north velocity component. As in the sounding in Fig. 1, here too

z i. e. w'q' and w'8", where w is vertical velocity, q the total water mixing ratio, 8,, the

virtual potential temperature, the prime indicates departures from a least squares linear

fit to the time series, and the overbar an average over a horizontal flight segment.
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the clear-air temperature and moisture pj_ofiles change gradually with height (B and C),

whereas in the presence of cloud or cloud patches there are abrupt changes in temperature

and moisture at the inversion (A and D).

Comparing the first two soundings we note that the temperature in the cloudy

air is significantly colder than in the adjacent clear air. The maximum difference in tem-

perature reaches 4 K just below the inversion, at 875 mb, where the horizontal separation

between the two soundings was only about 4 kin. Clearly, such a temperature difference

can be expected to lead to a circulation that would tend to reduce the difference. This

instability can be viewed in terms of a simple situation, described by Margulis (1906) and

often discussed in textbooks (for example, Hess, 1958), where two airmasses of different

temperatures are side-by-side. Seeking a stable configuration, the airmasses then rearange

themselves so that the colder air rests below the warmer air. It can be shown from energy

balance that the velocity of such a circulation is of the order of

where g is the gravitational acceleration, and AS_ is the virtual potential temperature

difference between the two airmasses, initially extending over a height h. For the present

case A8 -,, 3K and h --_ 200m, so that the mean velocity V _-- 2m s -1, which is well within

the range of the present observations. Thus we expect that motions due to instabilities at

the cloud and clear-air interfaces contribute to the velocity fluctuations. Since they tend

to move cloudy air downward and under the adjacent cloud-free air, they likely erode the

cloud edges and may lead to dissipation of the cloud.

In the last sounding the aircraft encountered a few turbulent cloud patches

below an inversion located about 8 mb lower than the inversion in the first sounding. Below

the inversion there are large fluctuations in temperature but, unlike the first sounding, the

temperature fluctuations are positive as well as negative with respect to the nearby clear-

air temperature profile. Thus, while there are large temperature instabilities locally, the

region as a whole is more stable with respect to the nearby clear-air temperature profile

than tile cloud region encountered in the first sounding. It is likely that this sounding

represents the dissipating stages of a cloud region which earlier may have been similar to

that encountered in the first sounding.

REFERENCES

Hess, S., 1958: Introduction to theoretical meteorology. Holt, Rinehart and Winston, New

York; pp. 297-302.

Margulis, M., 1906: Zur Sturmtheorie, Met. Zeit., 23, pp. 481-497.
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VERTICAL-VELOCITY SKEWNESS

IN THE MARINE STRATUS-TOPPED BOUNDARY LAYER

Chin-Hoh Moeng, Richard Rotunno, and Ilga Paluch

National Center for Atmospheric Research*

P.O. Box 3000, Boulder, Colorado

1. Motivations

Vertical-velocity skewness, Sw - wa/(w2) 3/2, in a turbulent flow is important in

several regards. S_, is indicative of the structure of the motion--wtmn it is positive,

updrafts are narrower and stronger than surrounding downdrafts, and vice versa. The

quantity w 3 represents tile vertical flux of tile vertical component of turbulence energy,

which donfinates the turbulent energy transport in buoyancy-driven turbulence. Therefore,

w 3 may be an important quantity that determines the entrainment rate in the buoyancy-

driven boundary layer.

Aircraft measurements often suggest cool, narrow downdrafts at some distance below

the stratus cloud top, indicating a negative Sw (Nicholls and Leighton, 1986). This seems

natural as the turbulence within the stratus-topped boundary layer (CTBL) is driven

mainly by the radiative cooling at tim cloud top (although sometimes surface heating can

also play a major role.) One expects intuitively (e.g., Nicholls, 1984) that, in the situations

where cloud-top cooling and surface heating coexist, the turbulence statistics in the upper

part of the CTBL are influenced more by the cloud-top cooling, while those in the lower

part, more by the surface heating. Thus one expects negative S_o in the upper part, and

positive in the lower part, in this ease. In contradistinction, large-eddy sinmlations (LES)

of the CTBL show just the opposite: The Sw is positive in the upper part and negative in

the lower part of the layer. Figure 1 shows the vertical distribution of w 3 and Sw from a

(40) 3 large-eddy simulation (Moeng, 1986) of the CTBL with both cloud-top cooling and

surface heating.

To understand the nature of vertical-velocity skewness, we study the simplest type of

buoyancy-driven turbulence--turbulent Rayleigh-Benard convection--through direct nu-

merical simulations. The following is an abstract version of the paper by Moeng and

Rotunno (1989).

2. Turbulent Rayleigh-Benard convections

Consider a shallow, incompressible fluid between two infinite horizontal plates with the

bottom one maintained at a higher temperature than the top. When the Rayleigh number,

R_ =- g/3ATD3/(pK), is larger than a critical number, the fluid is unstable and if large

enough becomes turbulent. Here, D is the distance between the upper and lower plates,

* The National Center for Atmost)heric Research is sponsored by the National Science

Foundation.
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AT is the temperature difference between the plates, g is the acceleration of gravity,/3 is

the coefficient of volume expansion, and # and t¢ are the coefficients of molecular viscosity
and conductivity.
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Figure 1 Profiles of (a) flux of vertical-velocity variance, and (b) vertical-velocity skewness

in the stratus-topped boundary layer obtained in a (40) 3 large-eddy simulation

(after Moeng 1986.) The convective scaling velocity, w. = [/3gz_Bc]l/3, where Bc

is tile layer-averaged buoyancy flux ill tile cloud layer.

Direct numerical simulations solve the Navier-Stokes equations e4_ctly with no un-
certain parameters, thus tile simulations are in a sense exact except possible numerical

errors. We carry out two experiments in the fully turbulent regime ('at Ra on the order

of 105): Experiment HC (for 'Heating and Cooling') includes both bottom heating and

top cooling. Experiment H (for 'Heating') has only bottom heating. Although we do not

actually carry out an Experiment C (for 'Cooling'), we will refer to it as such with the

understanding that it is a symmetry of Experiment H with obvious sign changes on the w
and T fluctuations.

Figure 2 shows S_,-distributions for Experiments H, C, and HC. Bottom-heating-only

generates positive vertical-velocity skewness throughout and Su, increases with height alway

from the source. Similarly, top-cooling-only generates negative vertical-velocity skewness

throughout and its negative magnitude increases downward away fi'om the source. When

bottom heating and top cooling coexist, S_, is positive in the upper layer and negative in

the lower layer. Adding Sw-distribution from Experiment H to that from Experiment C,

we obtain a profile similar to that from Experiment HC.

Therefore, understanding the nature of the S,,-distribution for the bottom-heating-
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only (or the top-cooling-only) is necessary first step toward understanding why there is

negative Sw in the lower half and positive S,o in the upper half in the case with both

top-cooling and bottom-heating.

1

Z.4

C

0 1 2 3 4 -4 -3 -2 -1 0

HC

"j.¢.-,
-2 -1 0 1 2

Figure 2 Profiles of vertical-velocity skewness from Experiments H, C, and HC.

3. Physical mechanism responsible for w-skewness

The mechanism responsible for the increase of S_, with height in the bottom-heating

case can be easily understood by examining tile structure of the turbulent eddies. Tile

planform structure shown in Fig. 3 indicates an irregular cellular pattern in tile lower

levels, and more isolated and discrete updrafts in tile upper levels. The total area covered

by updrafts decreases with height. Since the skewness is related to the ratio of the total

area covered by updrafts to the area covered by downdrafts, Fig. 3 indicates an increase

of S,,, with height.

Figure 3 Horizontal cross sections of w from Experiment H. The shaded areas indicate

positive values. The solid and dashed contour lines (contour interval, 0.1) rep-

resent positive and negative values, respectively. Vertical cross sections through

the locations marked A,B,C and D are shown in Fig. 4.
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To get a better view of tile eddy-structure, we show in Fig. 4 the vertical cross

sections along four y-locations marked in the left panel of Fig. 3. Here we see a few big

eddies penetrate into the top, while others never make it to the top, which is typical for a

fully developed turbulent flow. The area covered by individual updrafts remains relative

constant with height, while the number of updrafts decreases. Therefore, the net area

covered by updrafts decreases with height, and S_, increases with height.

Z

0

I

0

I

0

I

0
-3

A

•." ."_.'_'_5 .iii::".: i!i:i:!:i:!:i:i::::" !:!:_t._:i:'," .................... ;Y'

B

"'"'""_'....... °_'"_ .... " ":'"'"''"_" .... :i

C
_':_::._: : : :. I "':::_4 I I ==,=:::=:::::=::=;:===:=====:;=;:1===== =: =: : == == == ==; = ==: : : : ::_lt

•' " " _ " '. ".. :i:..... ;'_.."

D
'":':':':':":'_:':":"" ".... "_'" ' l............. J "'.'.. ".'.'.'.'." ..........• '""::""/;:" ..:: " -'..t_:::: ::::._:-::::.;. ......... .:: "::'_i::::_::' .::::::::

_.:.::.,:_ _I _.:__:.:.::2,.:.:.:..... • .:.,._ . =============================

. " t ...... • ......... • _ .........._.' ..........

0 $

Figure 4 Vertical (x-z) cross sections through the locations marked in Fig. 3. The shaded

area represents regions where T - T > 0.3. Areas of w > 0 are enclosed by the

thick solid line; the solid and dotted coutour lines (contour interval, 0.1) indicate

positive and negative values of w, respectively.

4. Stratus-topped PBL

When a stratus cloud layer exists in the upper part of the PBL, there is always

longwave radiative cooling at the cloud top. For the case of no surface buoyancy flux, the

CTBL resembles Experiment C, and for the case with a positive surface flux, it resembles

Experiment HC, except for the difference of cxisting entrainment process in the CTBL.

In the case with a positive surface flUX, the LES results show negative S_ in the lower
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half and positive S_o in the upper half of the CTBL, in agreement with Experiment HC.

Nicholls and Leighton (19_6)'s aircraft data show negative S,_, within some distance below

cloud top (their Fig. 12). With only one exception, the cases they analyze have zero

surface fluxes. Therefore Sw should be negative throughout the CTBL, as indicated by

Experiment C, and it is so observed.

We have analyzed the FIRE data for Sw. We will present our results in the meeting.
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LABORATARY EXPERIMENTS ON STABILITY AND ENTRAINMENT OF

OCEANIC STRATOCUMULUS -- Part I: Instability Experiment

SHENQYANG S. SHY

Department of Aeronautics and Astronautics, FS- I0
University of Washington, Seattle, WA 98195

1. INTRODUCTION

The existence and persistence of marine stratocumulus play a significant role in the overall energy budget of
the earth. Their stability and entrainment process are important in global climate studies, as well as for local weather

forcasting.
Lilly(1968) and Randall(1980) recognized that the evaporative cooling of unsaturated ak which had been

entrained into a cloud can under some conditions cause the entrained air to sink unstably as a convective downdraft.

They called it conditional instability of the first kind upside-down (CIFKU). It was suggested (Randall, 1980;
Deardorff, 1980) that the CIFKU was responsible for the breakup of subtropical stratocumulus layers as long as such
nonlinear buoyancy reversal occurred. Contrary to the expectations of Randall and l;_.ardodt', Turner and Yang (1963)
in their laboratory simulation on entrainment at the top of stratocumulus clouds suggested that the entrainment was
slightly reduced by nonlinearity and the change would be negligible in practice. Caughey et al. (1985) and Nicholls
and Turton (1986) suggested that evaporative cooling enhances entrainment over that expected in the linearly mixing
case from observations in stratocumulus. However, Hanson (1984) and Albrecht et al. (1985) observed that clouds

do not necessarily thin or breakup due to evaporative cooling, as had been suggestd by Randall and Dea_orff.
These apparent contradictions may arise from three reasons; namely, (1) the Richardson number effect, (2)

the mixing model, or (3) the Reynolds number effect. First, cloud top entrainment instability (CTEI) is an
interfacial instability. It requires that the dry unsaturated air entrains into the cloud and then the two fluids mix

together to release additional kinetic energy from mixing-induced buoyancy reversal, thereafter leading to a runaway
entrainment. The questions then arise: What is the entrainment mechanism in order that the two fluids can be mixed
together across an inversion? What are the key parameters that dominate the process of entrainment? What is the
physical mechanism that determines instability? As Miles (1986) noted, the Richardson number is seminal for our
understanding of atmospheric dynamics and is the dominant parameter in any mona] discussion of stratified flow. It
indicates the response of the interface to the turbulence. Neither the experimental approaches nor the numerical
simulations have investigated the effect of the Richardson number on the buoyancy reversal case. Therefore, that may

explain why so little is known about the impact of buoyancy reversal on entrainment rate. The physics of the
breakup process remains poorly understood and unsolved. Second, in many numerical simulations of cloudtop
turbulent entrainment and instabilities the equations of motion are two dimensional and laminar, neglecting the

density perturbation everywhere except in the gravitational term (Boussinsq approximation) with the consequence
that the convective motions due to perturbation from buoyancy reversal may be sustained much longer than it should

be. The highly dissipative behavior which necessarily accompanies the turbulent mixing is missing in the simplified
equations. Third, neither the experiments nor the numerical simulations have studied turbulent flows at large
Reynolds number. The Reynolds number based on the eddy's characteristic length scale at the interface estimated
from Turner and Yang (1963) and Townsend (1964) papers to be below 50. It follows that their results may not
correspond to fully turbulent mixing flow.

The puqx)ses of our experimental simulations are to study this process and to address these paradox. In this
paper we investigate the effects of buoyancy reversal, followed by two types of experiments. (1) An instability
experiment involves the behavior of a fully turbulent wake near the inversion generated by a sliding plate. Due to
buoyancy reversal, the heavy, mixed fluid starts to sink, turning the potential energy created by the mixing process
into kinetic energy, thereby increasing the entrainment rate. (2) An entrainment experiment, using a vertically

oscillating grid driven by a controllable speed motor, produces many eddy-induced entrainment at a surface region on
scales much less than the depth of the layer.

2. EXPERIMENTAL METHODS

2-1 Density as a Function of Mixture Ratio
Evaporative cooling in atmospheric clouds produces mixtures whose density can be greater than either

parent parcel. In clouds, the density relationship is composed of two essentially straight lines (Fig.la). In the
laboratory, an imperfect approximation to this has been realized. Density is plotted as a function of the mixture
fraction of the upper fluid for water-alcohol mixtures in figure lb, using the same fluid system as Turner (1966).
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Glycol is added to the alcohol in order to raise the density nearer to that of water. The density is a maximum at a

mixture fraction l_p*. For these experiments, p* is in the range of about 0.3 to 0.7. The range can be extended from
0.1 to 0.7 by adding appropriate amounts of potassium iodide and glycerine into the two fluids. A dimensionless
buyancy reversal parameter is defined as follows:

D m P(P*)" p(p) for p < p*.
p(p)- p(0)

which indicates the ratio of the maximum density change at p* to the density difference between two layers fluid.
p(p) is the density of mixed fluid consisting of p pasts of pure fluid and (l-p) pans of pure lower fluid; p(I) is the
density of pure upper fluid (the simulated dry. unsatarated layer), p(0) is the density of pure lower fluid (the simulated
cloud). Before a run (p=0), the initial value of D, D i, was selected from avalue between 0 to 15 for these

experiments.

2-2 The Apparatu$

The apparatus is sketched in figure 2. Two lucite mixing boxes with different geometries were used, a
vertical circular cylinder of 15 cm inside diameter and 30 cm height which we call 'small box' and one 28x28x60 cm

height, the 'large box'. Both boxes were separated into two compartments by a thin, horizontal sliding stainless steel
plate of 0.07 cm thickness. Before a run, the compartment below the plate was filled with water and that above the
plate with a mixture of alcohol and glycol.

2-3 Flow Visulization Technique

By adding a pH indicator, phenolphthalein in one fluid and appropriate base in the two-layer fluids, the
initially colorless fluids became dark red when they mixed. The volume mixing ratio of lower to upper fluid at which
this occurs is the equivalence ratio ¢_,which can be chosen to be about 20. This means that 100 c.c. of pure lower
fluid needs only to mix with 5 c.c. of pure upper fluid to turn red. The chemistry is fasL

3. RESULTS FOR INSTABILITY EXPERIMENT

3.1 Large Disturbance
It is important that the initial perturbation be sufficiendy large at the interface to insure that the flow is

above the mixing transition (Breidenthal, 1981) so that the results correspond to the high Reynolds number
atmosphere case. The plate was withdrawn quickly enough to create a fully turbulent wake at the interface, where the

Richardson number (Ri=ApgS/pct,O.) based on the thickness (5) of the wake, its maximum density difference (Ap)
with the underlying fluid, and the average speed of the withdrawing plate (0J) was small (Ri<6). Then the behavior of
the interface depended on the initial D=Di.

(A)Flow Suuctta¢
The results of several runs are described for several values of the initial buoyancy reversal parameter DL
(I) Linear case. Di=O

The iniaal disturbance decayed quickly. The mixture was intermediate in density between that of the two

initial fluids, and therefore it accumulated at the inversion. The evolution of the experiment at different stages is
shown in figure 3a.

(2) Nonlinear case, Di>O

' a) 0 < Di < 1.0 Figure 3b shows the evolution of the system at different times for relatively weak

nonlinearity (Di--O.2). For Di<l, the interface tilted gendy and then promptly retarned back to horizontal after the

heavy mixed parcel descended. Note that the interface remained almost flat After the turbulence decayed, samples of
the fluid at the bottom of each tank and just below the interface were taken to determine their composition and the
current value of D. These measurements were repeated at five and ten minutes. Neither the composition of the
bottom fluid nor D changed signiflcandy during this time.

b) Di > 1.0 Figure 3c shows the evolution of the flow at different times for a case of suonget buoyancy
reversal (Di=2.0). For Di>l, again the heavy, mixed fluid produced by the initial perturbation descended into the

lower layer. However, a distinct difference was observed in the interface for this case: It became s0"ongly tilted. The
heavy, descending parcel formed a vortex structure which tilled the interface, which in turn fed the structure fresh
fluid from above, thereby maintaining the smacture as it grew. An 'entrained tongue' of upper fluid was pulled into

the lower fluid. Sustained vigorous entrainment and mixing occurred. Soon, however, the walls constrained the flow
as the structure fdled the lower region and consumed all the lower fluid. Then the effective value of D across the
inversion was reduced, and the Richardson number was increased. The system became stable again. Figure 3d shows
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the ev_dution of the flows at four times for Di=5.0. The interface tilt is even more pronounced. The system was

ull_laldc in the sense that an 'entrained tongue' was formed. ]eating to a plume like runaway ¢Jrtlra_mc_L

(ll) Inslability Condition for Large Disturbance
The results for the large box are qualitatively the same as those for the small box, except for a time lag.

Figure 4 shows D at 40 sec in the small box and at 100 sec in the large box as a function of its initial value. We
•_w above that for Di greater than 1.3, the interface became strongly tilted to form a tongue of upper fluid which
descended below the level of the undisturbed inversion. This tongue was engulfed into the descending parcel.

Runaway entrainment proceeded until a large enough fraction of upper fluid was mixed into the lower fluid to change
the composition to where D was reduced to be about 1.

3.2Small Disturbance

Iftheplatewas pulledout slowly such thatthe Richardsonnumber was large(Ri >> 6) and Reynolds

number based on the thickness of the wake at the interface was small (Re < 100). the sustained vigorous mixing was

absent for even Di up to 10. The mixtures due to this small diturbance started to descend and result in slowly

convective motion in the lower layer fluid especially near the interface that slowly drained the layer fluid above. The
observation showed that many convective cells on the inversion wapped and produced the mixtures which sank and
dripped many streamers from the interface, and thus generated further agitation and mixing, but at a relatively slow
rate as long as D > 0. This slowly convective motion continued until D went to zero, in which the mixtures were
no longer heavier than the lower fluid (enviroment saturated). Although this phenomenon may be important in
nature, the present experiments are to study the case where the disturbances are driven from some turbulent source
other than a laminar molecular diffusion process.

4. DISCUSSION AND MODEL

The cenwal smprise of these results is that the system is stalbe to su-ong perturbation unless the buyancy
reversal parameter D is greater than 1. The original concept of the instability predicts a crilical value of D near zero,
so that any heavy, mixed parcels produced would, upon falling, energize the tarbulence in the lower fluid enough to
precipitate enough additional mixing to generate runaway entrainmenL Apparently, the mere production of heavy
mixed fluid is neither a sufficient condition nor a necessary condition for instability.

Here we presenta simple physical model based on the experimen_ observations. Consider a sizable vortex
8 of large enough circulation F in which the v_ex has an excess of kinetic energy (small Ri). it engulfs fluid from
above and below the inversion, mixing them together to form a heavy vorlex core of density p" as skeehed in figure

5a. The experimental data indicate flint Ri=g'fi/co2 < 6 for the occurrence of such phenomenon (Shy. 1989), where
the velocity of the vortex o_ is proportional to Ff6 and g'=Co*-po)g/po. At point A in the figure, the heavy vortex

induces an overturning force per unit volume Fo=(p*-po)g. At _ same time, baroclinic torques generate vorticity at

the tilted interface (tongue) near A which tends to restore the interface to horizontal. In other words, the rebounding
vorticity at the interface corresponds to a restoring force per unit volume F_-(Po-Pl)g at A. Stability depends on the

ratio Fo/Fr. Therefore.

Ovea'mmin_ Force = p* " p,, = DI.
Restoring Force p. - pl

It is important to note that the initial perturbation be sufficiently large at the interface (Ri - 1) to ensure
that the vortex reaches approximately its maximum density of p*, followed that the instability may depend on the
initial value of D, Di. The interface is stable to su'ong perturbation if Fo<Fr (Di<l), the mixing is largely confined

to that of the initial heavy vortex without much additional engulfment of upper fluid (dry dir). The votex can not
pull down the tongue due to its relatively weak buoyancy reversaL Indeed, the tilted interface (tongue) will recoil
back to hrizontal because of its lighter density (131)" This mixing sm_cture is teamed 'thermal-like mode' as shown in

figure 5b, implying that the heavy parcel would sink like a downward movement of thermal convection due to
gravitation, thereafter detaching from the interface and re-distributing itself into the lower layer fluid (clouds). For
Fo>Fr (Di>l), the votex bas strong buoyancy reversal to pull the tongue down further to trigger sufficiently
additional entrainment from above. The interface is unstable and the vortex will continue to engulf fluid. Such a
structure is then termed 'plume-like mode' as shown on figure 5c, suggesting that the heavy, descending pacel could
tilt the interface to form an entrained tongue, leading to a plume-like runaway entrainment or penetrative downdraft.

The transition from stable to unstable behavior is sharp because the criterion for instability depends on the amount
of mixing due to the depressed tongue. Until the tongue can be drawn down further by strong buoyancy reversal
(Di>l), the amount of mixing is modest. Indeed, other experimental results, to be reported in Pan II, indicate that

the entrainment rate under continual forcing is a weak function of D below the instability transition.
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Figure 1: Mixing density as a function of mixture fraction p of
upper fluid. (a) Cloud at 20c and 700 rob, containing lg/kg of

liquid water mixing with an environment 20c cooler having
various relative humidities (R.H.) (Turner, 1966) (b) The
experimental two-layer fluids, ccesisting of alcohol and glycol
mixtures in various proportions, mixing with water, using the
same fluid system as Turner (1966). The dash line represents the
linearly mixing case (enviroment saturated).
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Figure2: Sketch of the apparatus.A - mixturesof alcoholand
glycol.B - water.
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Figure3: The evolutionof theflows.
(a)Di=O.O i)l.Osecii)2.Ssecill)45.4sec.
(b)Di--O.2i)O.9secii)5.7seciil)13.$seciv)44.7sec.
(c)Di=2.0 i)3.Tsecii)7.4seci/i)9.9seeiv)27.4sec.
(d)Di=5.0 i)1.0secii)3.Ssecill)9.9seeiv)97.2sec.
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LABORATARY EXPERIMENTS ON STABILITY AND ENTRAINMENT OF OCEANIC

STRATOCUMULUS -- Part II: Entrainment Experiment

SHENQYANG S. SHY

Department of Aeronautics and Astronautics, FS-10
University of Washington, Seattle, WA 98195

1. INTRODUCTION

In the classic stable layer case in which density is a linear tracer of the mixture composition between two
layers of fluid, turbulent entrainment destroys the available turbulent kinetic energy or it re-stratifies the flow during

the decay of a turbulent event. This is because the stratification inhibits the vertical motions of the interface which
marks the edge of the turbulence. In contrast to the classic case, the evaporation of the cloud droplets for which
unsaturated air is entrained into a cloud causes cooling, and hence an increase in density, such that this additional
downward movement due to buoyancy reversal may affect the dynamics of entrainment and instabilities of cloudtop.

The primary interest in this study is to investigate the effect of buoyancy reversal and Richardson number
on the simulation of turbulent entrainment into marine stratocumulus clouds or the Weddell Sea. The key question
to be addressed in this note is: What is the effect of buoyancy reversal (evaporative cooling) on entrainment rate ?

The oscillating grid-turbulence experiments, in which the turbulent kinetic energy is mechanically produced
at a surface region on scales much less than the depth of the layer, have been used to investigate the entrainment
mechanisms across an inversion for a couple of decades. For instance, many experiments have been made at
observing and parametering the entrainment across a density stratification after the basic laboratory grid-oscillation

experiment of Rouse and Dodu (1955). Turner (1968) showed that the turbulent motions producing the entrainment
were directed toward the interface and the entrainment rate was a function of Richardson number in linearly stably
stratified fluid. Oscillating grid-turbulence measurements (Thompson & Turner, 1975; McDougaU, 1979; Long &

Fernando, 1983; E & Hopfinger, 1986) indicated a spacial decay of the horizontal root mean square (r.m.s.) turbulent

velocity w near the interface of the form wct z "l, where z was measured from a virtual origin.
In order to make the comparison of entrainment rate with and without buoyancy reversal, a series of grid-

oscillation experiments with linear density change of the matures (water - salt water system) was first completed
using the same flow visulization techniques as before (Part I). In this note we organize our results using three
parameters, namely, buoyancy reversal parameter (D), Richardson number (Ri) and Reynolds number (Re). Only one
variable can be changed at a time. Conditions may be controlled. Most importandy, runs may be repeated.

2. EXPERIMENTAL METHODS

2-1 The Apparatus
The apparatus is sketched in figure 1. A transparent tank of 28x28x60 cm height is separated into two

compartments by a thin horizontal sliding stainless plate of 0.07cm thickness. Before a run, the compartment below
the plate was filled with water and that above the plate with a mixture of alcohol and ethylene glycol for nonlinear
case, using the same fluid sytem (Part I: Fig.l). It consists of a grid of 1.12 cm square bars, aligned in a square array
of mesh size M=5.60cm. The grid, placed horizontally in the tank, can be oscillated vertically with varied frequencies
from 1 to 10 Hz by a speed-controlled motor. The stroke was fLXed at S=2cm for all experiments. The grid was
mounted on a 0.64cm diameter connecting rod which was supported by a 7.62cm long linear bearing and connected
with the motor by two ball bearings on a cam. Compared to the earlier non-buoyancy-reversing experiments in
which the density of mixtures is a linear function of the concentration, the improvements here are the following.
First, there is no interference between the connected rod and the interface during the grid-oscillation, because the rod
dose not penetrate the interface. Second, the sliding plate sealed by o-rings is provided across the center so that the
tank can be filled conveniently while maintaining the purity of the two layers before the run. Without this feature,
the nonlinear density changes can cause considerable mixing during the filling even before the mechanical stirring is
begun. Therefore, a thin removable partition between two layers is necessary for the buoyancy reversal case. An
electrical timer recorded the elapsed time for these experiments.

2-2 The Charq.cteristics of Oscillating Grid Turbulence

According to E & Hoprmger (1986), the empirical relations for calculating the r.m.s, horizontal component
of turbulent velocity w and the integral length scale d of the turbulence near the interface are

¢0 = CiS3t2M1/2fz-I and 8 = C2z (1)

P_CE_,t_ PA,_L ULANK NOT FILMED
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where C1 _ 0.3 and C2 -_ 0.1, using the same constants as Mory & Hoprmger (1985); M, S and f are the mesh

size, stroke and frequency of the oscillating grid respectively. To reduce the wall effect, the grid was designed by
assuming the walls were planes of symmetry as suggested by E & Hopf'mger (1986). Also, the maximum frequency
used in this study was 6 Hz to avoid the unwanted circulating motions at high frequencies (McDougall, 1979).

(A) Experiments for linearly mixing case

Figure 2 is the schematic diagram of the experiments in the linear case. Choosing the Z* axis as positive-
upward (figure 2a), the density p(Z*) is given by

p = {_pl fz° > z) (2)
P (-H0<Z*<z-h) .

where h is the interface thickness, which is generally much less than z. Here
. z-Z0 + poZO-H0

= Pt z--L-_o z-Ho

md O)
Ap = P---P1 = (l_-pl)* ZO+HO .

z+EI0

where Z 0 is the initial position of the interface measured from the mid-plane of the oscillating grid and Pl and P0
are the initial densities of the upper and lower layers respectively.

For these linearly stratified experiments, the initial normalized density difference between two layers ((P0 -

P 1)/90) was typically set around 0.5% to 3%. The Reynolds number based on the grid's mesh size and frequency can

be up tol04 and the typical Reynolds number wd/n near the interface was -_ 120, which may be large enough for

viscous effects to be negligible. The mixed-layer depth z, as shown in figure 3a, is a function of time. The
evolution of growing interface was recorded to establish a depth-time relation. The entrainment rate and Richardson
number are then denoted as follows:

_'_ "* _'_-d' (4)

where we = dz/dt and w, d, p and Ap are given in Eq. (1) and (3). It is important to note that the scales used

to define Ri are the r.m.s, horizontal component of turbulent velocity w and the integral length scale d of the

turbulence near the interface instead of the velocity of oscillating grid and layer depth, using the same empirical
relations found by E & Hopfinger (1986).

03) Experiments for nonlinearly mixing case

Figure 3 shows the schematic diagram of the experiments in nonlinear case. Three different grid locations
with respect to the interface were used: above (A), below 03) and center (C) on the interface. For these experiments,
the stroke was set at 2 cm with a frequency of 1 - 6 Hz. The density p(Z*) as showing in figure 3b is given by

pcz.)= {_1 z.>,. (,)-H <Z*<z,

where H' is the actual mixing region indicated by color. H' is equal to H o after the full lower layer has turned

dark red. The density jump across the inversion is then approximately given by

(po- m) + p*- po.z-Zo ...... bcfort samrt_on
p* z+H'

f
Ao

t P*-pl .Zo + I__ ...... Lrtezut_fion,
l-p" z+Ho (6)

where p* is the maximum density at mixing fraction p* on the buoyancy reversal curve as shown in figure lb (Part
I). The buoyancy reversal parameter D is then denoted by

P"P .... b_o_ ummi_ (7)

0 .... aft- uturtfion

We used the same empirical equation (Eq. 1) to determine the characteristic turbulent velocity and length
scales near the inversion for the nonlinear case because the same grid-turbulence was used as that of the linear case.
From Eq. (4) and (6), the entrainment rate and the Richardson number were then calculated. A pH sensitive dye
identified regions of mixing was used to detect opocally how 'buoyancy reversal' created by mixing process disrupted
the inversion leading to plume-like runaway entrainment.

3. RESULTS FOR ENTRAINMENT EXPERIMENT

3-1 Stably Stratified Flow Without Buoyancy Reversal
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Figure 4 shows the evolution of the flow which developed in experiment (A) at different times. At time = 7
sex after the motor started (Fig.4(a)), the stratification flattens the eddies generated from the oscillating grid. The

eddies recoiled back, entrained and mixed fluid, turning it dark red into the turbulent flow, where Ri is about 47. As
time increases, the mixed-layer deepens and the Ri near the interface increases, corresponding to a low value of

entrainment rate. The experimental data for the mixed-layer depth v.s. time can be best fitted by a power law relation

of the form z = at b, with a being a constant for a given oscillating frequency and b = 0.18 for these experiments.

Both constants are determined by a small least square program. Compared to the earlier linear experiments, the
exponential constant b is close to b _ 1/5 (E & Hopfinger, 1986) and b = 2/11 (Fernando & Long, 1983). Figure 5
shows the logarithmic plots of the entrainment rate E as a function of local Richardson number Ri. For the different
grid positions, these experimental data approximately obey

E = C Ri "3/2, for Ri>6_ (8)

where C -- 2.0. For comparison, E & Hopfinger's data are included in Fig.5, where C = 3.8 (E & Hopfinger, 1986),
and C = 2.5 (Turner, 1973) with the same slope for Ri>7. It is important to note that the entrainment rate tends to
depend less strongly on Ri and flatten to a somewhat constant level at small value of Ri(<6). The transition of Ri 6

is close to the value of maximum internal wave generation (Carruthers & Hunt, 1986) and the E & Hopfinger's data.
For Ri _ 1, the vortex or eddy has the excess kinetic energy such that it engulfs fluid into itself as it rotates. As Ri

increases (Ri>6), the buoyancy becomes important, so that the entrainment is dominated by an eddy-rebounding
process (Linden, 1973).

3-2 Stratified Flow with Buoyancy Reversal
(A) Experiment A

(1) Di=l.0

Figure 6 shows the evolution of the nonlinear experiment A for Di=l.0 at four different times. The
mixtures are either trapped by the interaction among these eddies or created by internal wave breaking as interface
tilted, where upon they descend and detach slowly from the inversion, while the turbulent layer remains pure and
unmixed (colorless). At time ,- 5sec after the grid started, the heavy mixtures descended, while the interface remained

flat where Ri = 97 and D -- 0.9. As time increases, more entrained fluid sinks into the non-turbulent layer, bringing

the interface even closer to the oscillating grid, where the Ri and D are reduced. The changes in interface's structure
with varying Richardson number are also shown in figure 6. At about 20 minutes after starting grid the upper
turbulent layer starts to turn red because of entraining fluid from below, where the growing interface is about 5 cm
away from the middle plane of oscillating grid and Ri _ 6. Some mixtures still continue to descend into non-
turbulent layers due to buoyancy reversal. The key point regarding the interfacial instability is that the system is
stable in the sense of no runaway entrainment occurrs in this case. For Di<l.0, we saw that the turbulent kinetic

energy of the mixed parcel created by the mixing-induced buoyancy reversal was not large enough to ruin the
interface leading to positive feedback entrainment. Indeed, the heavy mixture only re-distributes itself into the lower
layer (the simulated clouds) without much perturbance of the interface. The entrainment was modest during a run.

(2) Di=2.5

Figure 7 shows the evolution of experiment A for Di=2.5 at five subsequent times. At t = 14sec after
starting the grid motion, the interface remained stable even at D = 1.9, when Ri =15. At t = 33sec, there was more
dilution of the lower fluid layer by the upper fluid, reducing both the Ri and D. At t = 45sec, the interface became
more convoluted such that runaway entrainment was incipient, while the upper layer (grid-turbulence side) still
remained pure and unmixed, when Ri = 6 and D -- 1.3 as shown in figure 7c. A strikingly vigorous entrainment then
occurred that disrupted the interface. Very quickly, the two layers were mixed together. The instability is apparently
parameterized by the Richardson number as well as the buoyancy reversal parameter.

(B) Experiment B (Di=2.0, f=4Hz)
Figure 8 shows the evolution of the flow which developed in experiment B for an initial value of D=2.0 at

four different times. At t = 5 sec, the interface became strongly convoluted. The associated rapid entrainment
occurred. This rapid entrainment was sustained only a couple seconds. The heavy mixtures, upon descending, were
quickly homogenized by grid turbulence which in turn restrained the vertical motions of the interface because of the
strong stratification. At t --13sec, the heavy mixed fluid reached the bottom of the tank, while the interface relaxed
back to horizontal, associated with a low entrainment rate. At the turning point in which rapid entrainment relaxed
to slow entrainment, the measured Ri was again about 6 and D>I. As time passed, there was more dilution of the
lower fluid layer (the simulated clouds) by the upper fluid (the simulated dry air), decreasing D and increasing Ri. The

variations in the structure of the interface are shown in figure 8(a-d), which are photographs taken at Ri --- 5.0(a),
8.8(b), 16.1(c) and 30.3(d).

3-3 Instability Condition
In figure 9 we have plotted the buoyancy reversal parameter D as a function of local Ri for two series of

experiments A and B. These experiments reveal three main points. First, it is surprising that the system is stable for
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strong perturbations if buoyancy reversal is comparable to or less than the initial stratification (I_-1.0) as shown in

figure 9. Second, the interface can be stable for D>I.0, if Ri is much larger than 6. Third, the system is unstable in
the sense of the inversion becoming largely convoluted associating a rapid positive feedback entrainment, if D>I and
Ri<6.

3-4 Entrainment rate as a function of Ri and D
For simplicity, in figure 10 we only include two runs of experiment (B) with two different initial values of

D, which indicates the nonlinear entrainment rate as a function of Ri and D. It shows that the entrainment rate in the
nonlinear case only increases about twice that of the linear case due to buoyancy reversal at D _- 0.5 and Ri = 10. As

Ri increases, the stronger stratification inhibits the vertical motion of the interface, followed by inhibiting the effect
of buoyancy reversal. The current experimental data suggested that the effect of buoyancy reversal on the entrainment
rate can be negligible, if Ri is large (Ri > 50) and D is small (D < 0.5).

4. DISCUSSION AND CONCLUSION

A stratified interface is stable to the buoyancy reversal instability for surprisingly large values of D. A new

instability mechanism is proposed, which considers the mixing process at the interface. For the type of density
curves studied here, under strong perturbations, the mixed parcel must have a buoyancy reversal comparable to the

initial stratification before the interface is unstable. This is in accord with a simple model of the interface mixing
process, as well as aircraft observations of long-live marine stratocumulus clouds. These clouds' remarkable

longevity in the face of finite D indicates that they can be stable (Hanson, 1984; Albrecht et al., 1985; Siems et al.,

1989). The present work suggests that buoyancy reversal as well as the disturbance must be large for Cloudtop
Entrainment Instability. The effect of buoyancy reversal (evaporative cooling) does not always enhance the
entrainment rate over that in the inert case, but it may be negligible if Ri is large (Ri > 50) and D is small (D <
0.5). This work may shed some light on the fundamental mechanism of the breakup process of the subtropical
stratocumulus clouds into tradewind cumulus. These results may also be related to the instability in the Weddell Sea
off of Antarctica.
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Figure 2:Schematic diagram of the experiments in linear case. Three

different grid positions with respect to the interface were used: (a)
Below (B); (b) Center (C); (c) Above (A) the interhce.
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Figure l:Sketeh of the apparatus. A: Mixures of alcohol and ethylene
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Figure 3:Schematic diagram of the experiments in nonlinear case: (a)

Experiment (A); (b) Experiment (B); (c) Experiment (C).
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Figure 7:The evolution of experiment A for Di : 2.5. Where Z O = 10
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Figure lO:Log plot of nonlinear entrainment rate E •s • function of

Richardso_ number and buoyancy rcversaJ parameter D. Where Z 0 = 5

crn, f = 4Hz and S = 2 cm for both runs with Iwe different initial values

of D. Dash line z E v.I. Ri for linear case.
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HIGH RESOLUTION INFRARED MEASUREMENTS

B. Kessler* and Robert Cawley

Naval Surface Warfare Center

White Oak, Silver Spring, MD 20903-5000

Sample ground-based cloud radiance data from a high resolution infrared

Sensor are shown and the Sensor characteristics are presented in detail. The

Sensor was funded by NSWC and is dedicated to the Navy's Infrared Analysis

Measurement and Modeling Program (IRAMMP) sponsored by ONT. The purpose of

IRAMMP is to establish a deterministic radlometrlc data base of cloud, sea and

littoral terrain clutter to be used to aovance the design and development of

Infrared Search and Track (IRST) systems as well as other infrared devices.

The Sensor is a dual band radiometric Sensor and its description, together

with that of the Data Acquisition System (DAS), are given in Tables I and

II. The Data Acquisition System was designed by NRL and built by Telenetics

of Seabrook, Maryland under NRL direction. Its characteristics are described

in Table III.

A schematic diagram of the Sensor optics is shown in Figure I. The optics

are a three mirror all reflective system; off-axls, nonspherical surfaces are

used to provide good area coverage in the focal plane. The scan mirror is

external to the optics assembly which is sealed off from the outside

environment by a ZnSe plate. The sealed off optics section is kept at a

slight overpressure by exhausting the used dry nitrogen gas used for the J-T

cryogenics for the Dewar/detector assemblies. The only other transmissive

optical component is a dichroic beamsplitter to separate the 3-5 pm and 8-

12 #m radiation. Athermal optics is achieved by using an all aluminum

structure for the optical bench and the mirrors.
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i
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Figure i

Dept. of Physics, Catholic University of America, Washington, D.C. 20064
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Table I

Sensor Description

Feature Description

Dual Window IR operation

Telescope Aperture

f/#
IFOV (AZ.xEL.:mrad)

Dwell Time

TFOV

narrow TFOV (AZ)

wide TFOV (AZ)

narrow TFOV (EL)

wide TFOV (EL)

Detector crosstalk between channels

AZ Scan Rate

Revisit Time

(5 5/8°AZ x 1.6°EL.

at 33.4°/sec scan)

Sensor Head Weight

Focal Plane Array Compatibility

Detectors

No. detectors/waveband
Detector Size

I/f noise shoulder

MWIR (HZ)

LWIR (HZ)

NEAT at 33.4°/sec scan speed
MWIR

LWIR

NEI (W/cm 2)

MWIR

LWIR

Detector and Electronics

Dynamic Range

Pixel Registration

Single Color

Color-to-Color

Detector Array

D* Detectivity

6 Selectable Spectral filters in MWIR

Samples/dwell
Azimuth Shaft Encoder

Scan Linearity
Scan Mirror Drive

Radiometric Absolute

Repeatability

Temperature Range to be measured

3-5 _m

8-12 _m

nominal 2-5 _m (MWIR) and

8-12 _m (LWIR)

4.2"

f/3.2
0.22 x 0.23

370 _sec

5 5/8 °
22.5 °

1.6 °

3.2 °

<-27db

33.4°/sec or 17.4°/sec

3.5/sec
80 ibs.

Modular Dewars

120

3 mils x 3 mils

0.4

3OO

0.047C °

0.032C °

2.7 x i0 -14 , 10%

2.7 x 10 "13 , 10%

84db

<0.3 x IFOV

<0.3 x IFOV

120 detectors, staggered, contiguous
MWIR = 8 x I0 I0

LWIR = 3.2 x i0 I0"

YES

3.25

18 bits; incremental

1/8 IFOV per 4 ° of AZ. Scan

Digital serve control system
better than 5%

better than 3%

270°K to 450°K

220°K to 700°K
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Table I -- Continued

Sensor Description

Feature Description

Electronics

Dynamic Range

Video bandpass (3db)
MWIR

LWIR

Cold Shielding

Geometric Re-lmaglng cold shielding

84db

0.0 to 2500 HZ

0.4 to 2500 HZ

>95% effective

Figure 2 is a photograph of the Sensor head.

Raytheon _:

Figure 2

Filter No

Table II

MWIR Spectral Bandpass Filters

Cut-On (microns) Cut-Off (microns)

1.96

2.21

2.98

3.45

3.79

6.15

2.45

5.05

4.18

4.87

% T

8O

77

87

79

92
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Table III

DAS (NRL)

Sensor Inputs DAS Action

analog: -IOv to +IOv(LW)

Ov to +IOv(MW)

rms noise _ O.O007v

digital:

scan mirror shaft

position

Digitized to 15 bits

Digitized to 14 bits

1 bit - 0.00061v

Digitization rate is

8800 12B-word samples/sec

15 bits recorded,

I bit - 47.937 _r (average)

of optical scan angle

housekeeping recorded in header words

(see attached sheet)

Digital time (to 0.1ms) obtained

from time code generator

Synchronization words put in

header for recognition at playback
Sample clock 8800 HZ.

Angular spacing of sample 0.0664 mr/sample
Samples per detector for 5.6 ° picture - 1480

Total data for each 5.625°picture

Data rate

One HDDR tape

Bit error rate (BER)

NRL "Quick-Look"

Data Base Management System (DBMS)

380 kB

4.5 MB/sec

30 minutes of real time data

60 standard 9-track tapes

( 250ips 
i0" to I0 "_

To examine data base in the field

(VAX 11725)

Questech Incorporated

The point response function for the Sensor is shown in Figure 3. The

sampling resolution is 0.0664 mr. It can be seen that the half power full

width is approximately 3.6 samples in LWIR and 3.9 in MWIR. Since there are

3.25 samples/dwell the resolution is 3.6/3.25 - I.i IFOV for LWIR and 3.9/3.25
- 1.2 IFOV in MWIR. This translates into I.i x 0.22mr - 0.24mr LWIR and 1.2 x

0.22mr - 0.26mr MWIR.

Figure 4 shows a sample "carpet plot" of cloud radiance against azimuth

using the new IRAMMP Sensor. Results of a fractal characterization analysis

of similar data, taken by a similar, progenitor Sensor under the older, Navy

Background Measurement and Analysis Program (BMAP) are given elsewhere at this
meeting. _

Patricla H. Carter and Robert Cawley, "Fractal characterization of

infrared cloud radiance", ASTEX Workshop, Monterey, 12 July, 1989.
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A poster presented at the FIRE/ASTEX Workshop, Monterey, CA, July 10-14, 1989.

Turbulent Statistics in the

Vicinity of an SST
Front: A North

Wind Case, FASINEX

February 16, 1986.

Steven A. Stage & Chris Herbster

Department of Meteorology

Florida State University
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Turbulent Statistics in the

Vicinity of an SST
Front: A North

Wind Case, FASINEX
1

February 16, 1986.

Steven A. Staoe & Chris Herbster

Department of Meteorology

Florida State University

Tallahassee, Florida 32306-3034

1. This is F_INEX contrlbuUon nummJr 76,

Summary

The technique o! boxcar variances and covariances is

used to examine NCAR Electra data from FASINEX.

This technique has been developed to examine changes

in turbulent fluxes near an SST front. The results

demonstrate the influence of the SST front on the

MABL. Data shown here are for February 16, 1986,

when the winds blew from over cold water to warm. The

front directly produced horizontal variability in the turbu-

lence. The front also induced a secondary circulation

which further modified the turbulence.

References

Gennaro H. Crescenti: Turbulent Variances and

Covariance in a Non-Homogeneous Marine

Atmospheric Boundary Layer. M. S. Thesis,

Florida State University, Tallahassee, FL, April,

1988.

Stage, S.A., and R.A. Weller, 1985: The Frontal Air-

Sea Interaction Experiment (FASINEX)); Part h

Background and Scientific Objectives. Bull

Amer. Meteor. Soc., 66. 1511-1520.
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Sea Interaction Experiment (FASINEX)): Part I1:
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Boxcar Covariances

The technique follows Crescanti (1988). Let the boxcar

average of any measured variable S(t) be defined by

<s>(t)=(l/T) ._"s(t+r)dr (1)

where T is the length of the boxcar. Then we can define

the boxcar covariance of S and R by

COV.(S,R)=

T,"Z

(l/T) j [S(t+t') - <S>(t)] [R(t+t') - <R>(t)] dr'.

-,,= (2)
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Note that the arguments of <S> and <R> are functions

of I and therefore that the covariance is just the covari-

ance which would be obtained by breaking the data into

blocks of length T. This is not the value obtained by

finding S' and R' using a high pass running mean filter

and then taking the boxcar average of their product.

That covariance would have t+t' as the argument for

<S> and <R> above. Further let the correlalJon between

S and R be given by

COR.(S,R)=

COV.(S,R) [ COV.(S,S) COV.(R,R)]_'.

(3)

We are then able to define the detrended covariance of

S and R as

COV(S,R) - COVo(S,R)

[ 1 - COR.(S,t) COR.(R,t) / COR.(S,R) ].

(4)

The above is the same value obtained by taking a block

of data centered at time t and computing the covariance

between lineady detrended S and R. A detrended corre-

lation can also be defined from COV. All of the figures

shown here use detrended covariances and correlations.

Further let R denote the Hilbert transform of Rand
H

define the boxcar coherence as

COH(S,R) = [ COV(S,R)'. COV(S,R )' ]='. (5)

Finally let the boxcar phase angle be

Phase(S,R) = Tan 1 [ COV(S,R) / COV(S,R ) ].

(6)

Results

The Data: All data shown are from the Frontal Air-See

Interaction Experiment (FASINEX, see Stage and Welter,

1985, 1986). These data were obtained by the NCAR

Electra flying at 35 m elevation on February 16, 1986.

On the flight leg shown the mean winds were 7.8 rrVs

from 31 deg--nearly perpendicular to the SST front from

over cold to warm water (dght to left in these plots).

Other flight legs on this same day show similar features.

Following Crescenti (1988), all boxcars shown here use

60 s (6 kin) averages. Horizontal wind components have

been rotated so that U is along the mean wind for the leg.

Regions in the flow: The SST front was very sharp and

was located between 60 and 64 kin. The total magnitude

of the front was 2.5°C. Based on exan'dnation of all the

statistics, the flow can be divided into 5 regions as fol-

lows:

RI: Over the cold water upwind (north) of the front.

R'2: A dry dewndraft region -20 km wide over and just

upwind of the front.

R3: A -30 km wide region of enhanced convection just

downwind (south) of the front believed to reprgsent a

secondary circulation cell.

R4: A narrow (-10 km wide) region at the downwind

edge of R3 believed to be the boundary of the secondary

drculation cell.

RS: Flow over warm water farther downwind.
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The heat flux, COV(W,e), was upward and produced

increasing e throughout the leg. COV(W,e) decreased

from R1 to R2 Men sharply increased at the front and

remained high in R3. It decreased in R4 and RS, bul

remained higher than in R1. COR, COH and Phase were

all relatively flat indicating than changes in the heat flux

were caused by changes in ',he variances of W and e.

R2 is seen in Q, W and P35 m as a dry, high pressure

downdra_

Q was high in R1, was suppressed by the dewn(:_ratts in

R2., and then gradually increased in R3 before decreas-

ing in R4. Vapor flux (not shown on poster) was upwards

and showed little change during ¢_e leg.
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Momentum

U shows locally lower wind in R2 and R4 and higher in

R3. V is remarkably sinusok:laJ suggesting possible wave

motion. Winds are more westerly in R2 and R4 and more

easterly in R1, R3, and R5. Stress (-COV(U,W) ) is

largest in R2.. This enhanced stress near the trent is the

result of a change in the phase angle between U and W,

not COR or COH. Stress is surprisingly simil_ in R1 and

R3,

Stress, COR, and COH are near zero in R4. It is this

feature which led us to identify R4 as a distinct region

rather than simply the boundary between R3 and R5.

Both U and W have high variances in R4. We do not yet

understand the mechanism producing low stress in R4,

but believe that it is associated with the boundary of the

secondary cell in R3.
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I. Introduction

One of the goals of the First ISCCP Regional Experiment (FIRE) is the

quantification of the uncertainties in the cloud parameter products derived

by the International Satellite Cloud Climatology Project (ISCCP). This

validation effort has many facets including sensitivity analyses (Rossow et

al., 1989) and comparisons to similar data or theoretical results with known

accuracies. The FIRE provides cloud-truth data at particular points or

along particular lines from surface and aircraft measurement systems.

Relating these data to the larger, area-averaged ISCCP results requires

intermediate steps using higher resolution satellite data analyses. Errors

in the cloud products derived with a particular method can be determined by

performing analyses of high-resolution satellite data over the area

surrounding the point or line measurement. This same analysis technique may

then be used to derive cloud parameters over a larger area containing

similar cloud fields. It is assumed that the uncertainties found for the

small-scale analyses are the same for the large scale so that the method has

been "calibrated" for the particular cloud type; i.e., its accuracy is

known. Differences between the large-scale results using the ISCCP

technique and the "calibrated" method can be computed and used to determine

if any significant biases or rms errors occur in the ISCCP results. In this

paper, selected ISCCP results are compared to cloud parameters derived using

the hybrid bispectral threshold method HBTM (Minnis et al., 1987) over the

FIRE IFO and extended observation areas.

2. Stratocumulus

GOES-West ISCCP B3 data taken every 3 hours during July 17-31, 1983

analyzed with the HBTM on a 2.5 ° latltude-longitude grid between 40°N and

10°N and 145°W and II0°W (Minnis et al., 1988) are compared to the

corresponding CI (Rossow et al., 1988) results. The cloud data have been

stratified as total, low, midlevel, and high clouds. The ISCCP low, middle,

and high clouds are those with cloud-top pressures p > 800 mb, 800 mb _ p >

440 mb, and p _ 440 mb, respectively. HBTM low, middle, and high clouds

are those with cloud-top altitudes, z < 2 km, 2 km _ z < 6 km, and z _ 6

km. There are two primary types of ISCCP cloud cover, VIR, determined with

visible and infrared data, and IR, determined with infrared-data alone. The

two cloud amounts are the same at night. As noted by Minnis et al. (1988),

the cloud amounts, diurnal cloud variations, and cloud-top heights do not

vary dramatically on an interannual basis over this area. Also, the cloud

properties derived from the satellite near the coast are very much like

those determined over the open ocean within this grid. Thus, the large-

scale average properties derived for this region are similar to those

determined over smaller areas. Initial validations of the HBTM are

,, .... > ..... ,_ -,,_;( NOT F;LMED
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described elsewhere (e.g., Minnis and Harrison, 1984; Minnis and Wielicki,
1988; and Minnis et al. (1989a,b).

Figure i shows the mean HBTM-derived total, low, and sum of middle and

high cloud amounts. Total and low cloud amounts increase from the

California coast to a maximum of 91% near 20°N, 130°W with a relative

maximum in low cloudiness within the IFO region. This extensive cover of

low clouds is referred to as the main stratocumulus region. Significant

amounts of upper-level clouds occur in the southeastern quadrant of the

grid. Differences between the HBTM and VIR results are shown in Fig. 2,

while the HBTM-IR differences are plotted in Fig. 3. Neglecting the land

areas, the mean VIR total cloud amounts (Fig. 2a) are 2 ± 6% greater than

the HBTM values. Most of the ISCCP clouds, however, are placed in the

middle layer as seen in the differences in Figs. 2b and 2c. More clouds are

found with the HBTM over the main stratocumulus region than with the IR

results. The IR underestimates total cloudiness by 7 + 11%.

The differences in the 3-hourly means are examined-in Fig. 4 for two
large regions outlined in heavy lines in Fig. ic. The western box is

designated the PAC region, while the other is the IFO region. Over the PAC

region (Fig. 4a), there is generally good agreement between the results for

all three analysis techniques. The HBTM cloudiness is very close to the IR
results during the day but greater at night. Addition of the visible data

increases the ISCCP cloud amounts so the VIR cloud cover exceeds the HBTM

amounts during the day. On average, the HBTM and IR cloud amounts are the

same, while the VIR cloudiness is greater than the HBTM's. This tendency
for slight daytime overestimation by the VIR technique (relative to the

HBTM) and underestimation with the IR method is accentuated near the coast

over the IFO region (Fig. 4b). There, the IR diurnal range is much smaller

than the HBTM's with a 20% underestimate in total cloudiness at night and

more than 10% during the day. The VlR data only underestimate the cloud

cover during the night leading to an overall cloud amount deficit of 10%.

The overestimation of ISCCP cloud-top heights over the stratocumulus

region is probably due to the use of low-resolution NMC soundings over areas
with strong boundary-layer inversions (Minnis et al., 1989b). The VIR cloud

amounts agree quite well with the HBTM results primarily because of the

effects of underestimation at night and overestimation during the day. This
result is consistent with the Landsat analyses of Parker and Wielicki

(1989). The differences between the results over the PAC and FIRE regions

are attributable to the variations in contrast between the clear-sky and
cloudy temperatures. Near the coast, the clouds are lower than those

further west so fewer pixels are cold enough to pass the 3-K threshold.

Diurnal variations in cloud amount determined with either the VIR or IR

techniques should be used carefully. While both techniques appear to give

the correct times for maximum and minimum cloudiness, there may be
significant discrepancies in the diurnal ranges and the variations in
cloudiness between the extrema.

3. Cirrus

Another method for validating an algorithm is to apply it directly to a
hlgh-resolutlon satellite data set corresponding to a cloud-truth set. The

complete ISCCP algorithm was not available for this study so an attempt is

made here to simulate its relevant characteristics. The adjustment of cloud-

top temperature to account for the infrared semi-transparency relies on a
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relationship between the visible and infrared optical depths, _ and
V re'

respectively. In the ISCCP algorithm, _v - 2_ (Rossow et al. 1988) Thee P "

value of _v is determined from the observed reflectance by first_ isolating

the cloud reflectance by accounting for the surface and atmospheric

contributions to the reflectance. The cloud reflectance is related to
V

using the results of a radiative transfer model of clouds based on a

scattering phase function determined from Mie theory using a droplet size

distribution with an equivalent radius of i0 _m. Once the value of _ is
V

determined, the observed cloud temperature for a given pixel is adjusted in

the same manner used by Heck et al. (1989). The corrected temperature is

then compared to the tropopause temperature and, if lower, set to the

tropopause value. The temperatures or corresponding pressures for each

pixel are then averaged for the area of interest to obtain an average cloud-

top temperature or altitude.

The approach of Heck et al. (1989) is used here with some modifications

to simulate the ISCCP cloud-height adjustment scheme. Instead of an

empirical cloud bidirectional reflectance model, a f -dependent model is
V

used here which was constructed from the results of an adding-doubling model

of radiative transfer (Takano and Liou, 1989) using a Mie-scattering phase

function determined for a droplet distribution with an effective radius of

i0 _m. The temperature of each cloudy pixel is adjusted individually using

_v - 2_e" Averages are constructed from the adjusted pixel temperatures.

Otherwise, all other steps are the same as those used by Heck et al. (1989).

This simulated ISCCP algorithm was then applied to the lidar-satellite data

used by Heck et al. (1989). The lidar-derived cloud-top heights are used as

a reference set in the same manner used by Heck et al. (1989) to determine

uncertainties in the results from the empirical method.

Comparisons of the simulated ISCCP cloud-top heights and the lidar

cloud-center and cloud-top altitudes are shown as crosses in Figs. 5a and

5b, respectively. On average, the simulated ISCCP cloud-top heights are 2.8

km lower than the lidar cloud-center heights and 4.7 km lower than the lldar

cloud-top altitudes. The range of differences leads to a large rms error of

3.4 km in the cloud-center height comparison. Average cloud heights for the

2.5 ° region bounded by 42.5°N and 45°N and 87.5°W and 90°W are also shown in

Fig. 5 as circles. The ISCCP adjusted cloud-top heights are taken from the

GOES CI data for October 27 and 28, 1986. Averages from the 0.5 ° regional

results of Heck et al. (1989) are used as the reference heights. The two

lower cloud heights were observed on the 27th. The other three cases fall

within the envelope of simulated data. Without the two low-level clouds,

the observed ISCCP cloud-top heights are 1.7 km lower than the reference

cloud-center heights and 2.5 km lower than the cloud-top heights.

The results shown in Fig. 5 demonstrate some consistency between the

simulated and actual ISCCP cloud-top height results for semitransparent

cirrus. Other cirrus IFO studies have indicated that the Mie scattering

phase function is not a good representation of scattering in cirrus clouds.

These preliminary findings support those conclusions.
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1. INTRODUCTION

One difficulty in using satellite remote sensing data is the spatial variability of cloud

properties on scales smaller than most meteorological satellite fields of view (approximately 4 to

8 km). The present study examines the variation of satellite derived cloud cover as a function
of the satellite sensor spatial resolution for seven cloud cover retrieval methods:

1. Reflectance Threshold:

2. Temperature Threshold:
3. ISCCP:

4. HBTM:

5. NCLE:

6. Spatial Coherence:

7. Functional Box Counting:

Threshold = clear-sky reflectance Rclr + 3%

Threshold = clear-sky temperature Tclr - 3K

Bispectral threshold (Rclr + 3% , Tclr - 3K)

Hybrid Bispectral Threshold Method (Minnis et al., 1987)

Bispectral method (Stowe et al., 1988)

Coakley and Bretherton (1982)

Lovejoy et al. (1987)

The first two methods are simple mono-spectral thresholds which specify a satellite pixel
as cloud filled if the measured reflectance is greater than the threshold, or if the measured

equivalent blackbody temperature is less than the threshold.
The next three methods are bispectral, using one visible wavelength window channel and

one thermal infrared wavelength window channel. For ISCCP, the pixel is classified as cloud
filled if the measurement exceeds either one of the single spectral channel thresholds. The

HBTM has a more complicated strategy explained in Minnis and Harrison (1984) and Minnis et

al (1987). One of the critical features of the HBTM is a series of checks of retrieved cloud

albedo against climatological values. The NCLE yields a weighted cloud cover from two

independent estimates of total cloud cover (one from an infrared channel at l l.Sum and one
from a UV channel at 0.38urn). The philosophy of the NCLE is to use the TOMS reflectance

channel for boundary layer clouds (i.e. low thermal contrast) and to use the THIR 11.5 um

channel for middle and high level clouds (i.e. strong thermal contrast) as detailed in Stowe et

a!(1988).
The final two algorithms rely on the spatial variability within the cloud field to determine

cloud cover. Spatial coherence assumes only that the cloud field occurs in a single layer and

that the clouds are optically thick in the infrared window. Functional box counting uses the
variation in reflectance threshold cloud cover over spatial scales observed by the satellite (here

assumed to be l to 8 km for meteorological satellites) to predict the cloud cover for scales

smaller than those observed (less than l km). This method relies on spatial scale invariance of
the radiance fields to account for the resolution dependence of cloud cover. The study of

Lovejoy et ai (1986) used radar and GOES satellite data to indicate that this scale invariance
held to scales in the atmosphere as small as l km.

Landsat Thematic Mapper (TM) data is used to test the spatial resolution dependence of

the cloud algorithms. The TM radiometer has a near visible channel at 0.83urn and a thermal
infrared window channel at l l.5um. The spatial resolution of the visible channel is 28.5 meters

and the infrared channel is l l4 meters. The full resolution data for these two spectral bands is

then averaged in steps of two to provide spatial resolutions of 28.5m, 57m, ll4m, 228m, 456m,
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912m, 1824m, 3648m, and 7296m. These spatial resolutions are referred to in the following
discussions as nominally 1/32, 1/16, 1/8, 1/4, 1/2, 1, 2, 4, and 8 km resolution data.

The ISCCP bispectral threshold applied to the full resolution data is used as the reference
or "truth" cloud cover, after which the retrieval methods are applied to each of the spatial
resolutions. For most of the scenes, sufficient clear regions are present in the full resolution
Landsat data to use the peak of the bispectral histogram to define Rclr and Tclr. In the
remaining scenes, the cloud field images were examined to select radiances in clear regions
between cloud cells (at least 0.5 km from the nearest cloud cell). The same Rclr and Tclr are
used at all spatial resolutions, for all retrieval methods, with the exception of the spatial
coherence method which calculates its own clear and cloudy radiances. Note that reflectance is
defined by R = 100 _ L / (S(t) coso.) where L is spectral radiance derived using the calibration

_i
coefficients of Markham and Barker (1986), S(t) _s the spectral solar constant for the date of the
observation and o is the solar zenith angle. Brightness temperature calibration for the thermal
channel is also takSen from Markham and Barker (1986). The Landsat viewing angles are within

5 degrees of nadir.
Studies of the fraction of pixels in the scene at cloud edge, and of the profile of

reflectance and temperature near cloud edges indicate an uncertainty in the reference cloud

fraction of 1 to 5% (Minnis and Wielicki, 1988).

2. RESULTS

The 24 cloud regions are 58.4 km by 58.4 km and are grouped and analyzed by cloud type
(cirrus, cumulus, etc). Table 1 gives the location, date, reference cloud fraction, clear-sky
brightness temperature (Tclr), clear-sky reflectance (Rclr), average cloudy pixel temperature
(Tcld), average cloudy pixel reflectance (Rcld), and a description of the cloud types present.
The descriptions are based on examination of the full resolution visible and infrared cloud
images, and the bispectral histograms of the cloud fields. The cloud top temperatures given in
the description are taken from the optically thick portions of the cloud fields as identified in
the bispectral histograms (i.e. nadir reflectance greater than 40%). Where two distinct cloud
levels occurred, both cloud tops are given. Time of observation for the Landsat sun-
synchronous orbit is approximately 9:45 a.m. local time.

TABLE 1. CLOUD FIELD LOCATIONS, TIMES, AND PROPERTIES
Date Cloud Rclr Rcld Tclr Tcld

Scene L_It/L0n Da/M0/Yr Cover (%) (%_ K(_K__)__(K)
A 19.7S/ 75.3W 7/13/87 0.671 2.5 19.5 289.7 287.5
B 20.7S/ 75.1W 7/13/87 0.915 2.5 28.2 289.7 286.5
C 33.7N/129.9W 7/10/87 0.521 3.3 21.4 288.8 285.6
D 26.4N/ 79.4W 1/14/83 0.708 4.0 44.6 298.0 280.5
E 25.7N/ 78.3W 1/14/83 0.390 3.5 52.4 296.3 277.4
F 31.8N/122.2W 7/07/87 0.662 3.8 33.3 289.7 284.8
G 31.8N/120.7W 6/30/87 0.889 2.7 38.7 288.8 282.9
H 28.3N/ 90.0W 1/06/83 0.718 3.2 11.8 305.4 279.2
I 44.6N/ 86.9W 10/28/86 0.950 4.3 13.8 280.5 266.5
J 43.0N/ 87.5W 10/28/86 0.646 3.6 9.1 283.5 273.9
K 40.3N/ 71.8W 4/19/85 0.568 4.1 6.2 276.9 269.1
L 40.3N/ 70.3W 5/30/85 0.839 5.3 8.6 278.5 270.5
M 28.9N/ 87.6W 3/15/84 0.625 3.5 14.9 287.8 273.1

Description (Cld top temp)
Stratocumulus (285K)
Stratocumulus (284K)
Stratocumulus (283K)
Stratocumulus (272K)
Stratocumulus (270K)
Stratocumulus (283K)
Stratocumulus (282K)
Cirrus (=220K)

Cirrus (-_243K,_220K)
Cirrus ("238K)
Cirrus (--264K,--254K)
Cirrus (=262K)
Cirrus (--254K)

a. Stratocumulus Cloud Fields
Results for stratocumulus are given in Fig. 1 (Scenes A-G, Table 1). The Reflectance,

ISCCP and HBTM methods are within 0.05 of cloud "truth" for spatial resolutions less than 1/2

kilometer. These methods show a strong dependence on spatial resolution for pixel sizes beyond
1/2 kilometer. The Reflectance and ISCCP methods overestimate cloud fraction by 0.16 and the
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HBTM by 0.09 for 8 kilometer data. The overestimation of cloud fraction is caused by partially
filled pixels being considered as cloud filled pixels.

The Temperature threshold method underestimates cloud cover by about 0.20 at all spatial
resolutions. Comparing the ISCCP bispectral result to the Reflectance and Temperature
threshold results, we conclude that the solar reflectance channel dominates the bispectral cloud
retrieval for stratocumulus. While this result is qualitatively expected, the magnitude of the
difference in cloud cover (0.35) between the mono-spectral threshold methods is surprising.

Examining Table 1, three of the stratocumulus cloud fields have Tclr - Tcld of 2.2 to 3.2K.
These same three cases also have the lowest cloud reflectances, ranging from 19.5 to 28.2%.
The low reflectances indicate that substantial portions of the cloud field have 11.5um emittances
less than 1.0. In this case, substantial portions of the cloud field are missed by the Tclr - 3K
threshold. These optically thin portions of the cloud fields are also the cause of the
underestimate of cloud cover by 0.12 for the Spatial Coherence results in Fig. 1. The Spatial
Coherence method derives an effective cloud cover which is cloud fraction times cloud

emittance.
For low clouds the NCLE algorithm gives strongest weighting to the cloud cover derived

using the reflectance of the TOMS 0.38urn channel. Therefore, we would expect good results
for the stratocumulus clouds. Fig. 1, however, indicates that the NCLE underestimates the
cloud fraction by about 0.20. The NCLE algorithm determines its TOMS-based cloud cover as
a linear function of reflectance between the clear reflectance and an assumed overcast cloud
albedo of 50%. In the present analysis, Landsat nadir reflectance is substituted for albedo using
the Earth Radiation Budget Experiment (ERBE) anisotropic models for overcast cloud (Suttles et
al, 1988) to convert albedo to an equivalent nadir reflectance. This gives an overcast nadir
reflectance of 51%, 48%, and 45% for solar zenith angles of 32°, 41°, and 49 ° respectively. The

average stratocumulus nadir reflectance in Table 1, however, is only 34.0%. As a result, the
NCLE algorithm underestimates the cloud fraction for these cloud cases. The NCLE albedo for
overcast low cloud was derived by averaging the 0.38urn reflectance of TOMS fields of view (45

km at nadir) judged to be cloud filled (L. Stowe, personal communication). An examination of
the Landsat spatially degraded data showed that the albedo of cloud filled pixels is a systematic
function of pixel size. The average reflectance of 1/32 km pixels is 34.0%, 1/8 km is 37.0%,
1/2 km is 42.3%, and 2 km is 47.0%. For 8 km pixels, only cloud fields D-G have overcast
pixels, with an average reflectance of 58.1%. We conclude that the larger the spatial extent of
the contiguous cloud cover, the larger the cloud optical depth. This brings into question the
NCLE assumption of cloud cover linear in cloud reflectance. A caveat on this result, however,
is the use of the Landsat 0.83urn Landsat channel to mimic the 0.38urn TOMS channel.

Finally, Fig. 1 shows that the Functional Box counting method underestimates cloud
fraction for spatial resolution less than 1 kilometer. This method assumes the slope of the

change in cloud cover from 1 to 8 km can be extended to scales less than 1 km. Fig. 1
demonstrates this method is incorrect. Cahalan (1988) and Welch et al (1989) found a break in
the scale invariance between 0.5 and 1.0 km, consistent with the present results.

Fig. 2 gives a scatter plot of the estimated versus reference cloud fraction for each
retrieval method. This figure demonstrates that the mean errors examined in Fig. 1 vary greatly
from cloud field to cloud field.

Fig. 3 gives the Temperature, Reflectance, and ISCCP Bispectral thresholds which would
result in unbiased cloud cover estimates for the seven stratocumulus cloud fields. As spatial

resolution degrades, the reflectance and ISCCP thresholds must be further removed from the
clear-sky background to avoid the biasing effect of partially cloudy pixels. ISCCP and the
Reflectance threshold would require a threshold of 9.5% for stratocumulus clouds using 8kin

spatial resolution data. The Temperature threshold would require a threshold of Tclr - 1.5K
colder than the clear-sky temperature. Unfortunately, use of temperature thresholds much less
than Tclr - 3K would cause false detection of cloud given typical variations in ocean surface

temperature and atmospheric water vapor.

265



b. Cirrus Cloud Fields

Results for cirrus are given in Fig. 4 (Scenes H-M Table 1). The results for cirrus are
very different from the stratocumulus results. The cirrus results show little dependence on the

sensor spatial resolution, indicating that the cirrus are not dominated by the small scale cellular
features prevalent in the stratocumulus fields. The effect of spatial resolution on derived cloud

cover is less than 0.02 for spatial scales less than 2 km, reaching 0.07 for the ISCCP algorithm
using 8 km resolution data.

The agreement between the Temperature threshold and ISCCP bi-spectral results indicates
the dominance of the 11.5um channel for cloud detection of cirrus. Consistent with this view,
the Reflectance threshold underestimates cirrus cloud cover by 0.18 to 0.25, depending on the
spatial resolution. The cirrus clouds are optically thin with an average Rcld of 10.6%. As a
result, the Reflectance threshold misses a substantial portion of the cloud field with reflectances
less than 3% above the clear reflectance. The HBTM results are intermediate between the

Reflectance and Temperature threshold results, underestimating cirrus cloud cover by 0.10 for 8
km resolution data.

The cloud cover underestimate by the Spatial Coherence method is larger than that found

for stratocumulus because the cirrus emittance is lower. The Box Counting method
underestimates cirrus cloud cover for two reasons. First, the reflectance threshold causes an
underestimate as discussed above. Second, the scale invariance is again a poor approximation
for spatial scales less than 1 kin. For these cirrus clouds, the scale invariance appears to be a
poor approximation even for scales of 1 to 8 kin, in contrast to the result for stratocumulus
cloud fields.

Finally, the NCLE result underestimates cirrus cloud cover by 0.38 to 0.42. This result
appears to be caused by two factors. First, the NCLE uses a Tclr - 6K threshold at 11.5um,
thereby missing some of the cirrus detected by the ISCCP method using a Tclr - 3K threshold.
This was especially important for cloud fields K and L for which the average Tcld was only 7
to 8 K colder than Tclr. A second difficulty is that the TOMS reflectance channel cloud cover
estimate is still being given significant weight by the NCLE algorithm. This is because much of
the cirrus cloud field is warmer than the approximately Tclr - 9K temperature used to separate
low level from middle and high level clouds. These "warm" portions of the cloud field are
treated as if they were low cloud, thereby using the TOMS channel cloud estimate. Since the
cirrus reflectance is much less than 50%, the TOMS channel greatly underestimates the cirrus
cloud cover.

Figure 5 gives the estimated versus reference cloud cover results for each individual cloud
field. As for stratocumulus, the errors are not a simple constant bias. Figure 6 gives the
threshold levels which if applied to the 6 cirrus fields would have resulted in an unbiased cloud
cover. The thresholds show less dependence on spatial resolution than was found for the
stratocumulus cloud cases.

3. SUMMARY

1. For the threshold methods, stratocumulus cloud cover is strongly dependent on satellite
sensor spatial resolution. Cirrus cloud cover is weakly dependent on satellite sensor
spatial resolution.

2. Differences between current cloud retrieval algorithms are large, especially between the
ISCCP and NCLE algorithms.

3. Varying treatment of cloud optical thickness (i.e. shortwave reflectance or thermal
emittance) appears to account for many of the differences in the cloud retrieval
algorithms.

4. Functional Box Counting incorrectly estimates cloud fraction below 1 km due to breaks in
the scale invariant power law between 0.5 and 1 km for stratocumulus and 2-4 km for
cirrus.

5. For the threshold cloud retrieval methods, the solar reflectance channel dominates cloud
cover retrieval for stratocumulus, while the thermal channel dominates for cirrus.
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ETO Lidar Studies of Cirrostratus Altocumulogenitus:

Another Role for Supercooled Liquid Water

In Cirrus Cloud Formation

Kenneth Sassen

Department of Meteorology

University of Utah

Salt Lake City, Utah 84112

ABSTRACT

Cirrus clouds have traditionally been viewed as cold, wispy or

stratiform ice clouds, typically displaying optical phenomena such as

haloes. A composition entirely of hexagonal ice crystals, of one habit or

another, seems implicit in the definition of cirrus. Supercooled cloud

droplets could only have a transitory existence in cirrus, since the

concentrations of ice nuclei (IN) measured by various techniques (at the

surface or in the lower troposphere) indicate an enormous number of IN that

should be active at cirrus cloud temperatures. Reports of aircraft icing

at cirrus cloud altitudes (itself a poorly defined criterion) were gener-

ally not well documented in the literature (for recent surveys see Rangno

and Hobbs 1986 and Sassen et al. 1989a), and in view of the accepted --35 °

to -40°C threshold for "instantaneous" homogeneous nucleation, such reports

do not appear to have altered the prevailing convention of viewing cirrus

as exclusively ice clouds.

In light of recent instrumented aircraft and polarization lidar

studies of cirrus clouds, however, it is clear that highly supercooled

cloud droplets can sometimes be a component of cirrus clouds. The question

of the prevalence of supercooled liquid water (SLW) in cirrus has implica-

tions for climate research, for it has been shown theoretically that thin

SLW layers at the base of elevated cirrus clouds can have a relatively

significant impact on radiation transfer through the cloudy atmosphere

(Sassen et al. 1985). It remains to be determined if SLW is present

abundantly enough in cirrus to play a significant role in the planet's

radiation balance, or is merely a curious, infrequent occurrence.

To help evaluate this issue, the University of Utah polarization

lidar FIRE Extended Time Observations (ETO) of cirrus clouds are being

utilized to compile, among other parameters, a climatological record of SLW

clouds associated with and within cirrus. Although our program is ongoing,

and a proper assessment of the growing data base is in the future, on the

basis of the observations collected so far it is appropriate to define the

various modes of occurrence of SLW in cirrus clouds. (Note that the

"definition" of cirrus clouds could seemingly exclude SLW-containing clouds

as cirrus, but, as a former National Weather Service meteorological

technician, my classification of cloud types is based on the "standard"

visual appearance of clouds, with supporting all-sky photography.)
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Figure I illustrates four distinct modes of the occurrence of SLW

connected with cirrus cloud development identified from polarization lidar

observations. Before discussing this figure, however, it is important to

note that SLW (as used here) refers to the supermicron-sized cloud droplets

measurable by in situ aircraft probes, which are shown by the stippled

areas in Fig. I. Thus ice nucleation at temperatures less than about -35 °

to -40°C likely involving the homogeneous freezing of haze particles (shown

as dots in Fig. i) is not considered here (see the companion paper by

Sassen, Dodd and Starr). The existence of SLW clouds associated with

cirrus can potentially impact radiative transfer to a much more significant

extent than haze particle effects, and clearly affect attempts to evaluate

satellite-viewed scenes containing high clouds (see, e.g., Wielicki et al.

1989).

Three of the modes have been described previously--the incorporation

of supercooled altocumulus (and associated virga) into deepening cirro-

stratus (Sassen et al. 1989b), and the formation of SLW layers at the base

of deep convective cirrostratus and orographic cirrus wave clouds (Sassen

et al. 1989a). The cirrus cloud generation mechanism shown at the top of

Fig. i involves the glaciation of a supercooled altocumulus cloud layer

(essentially without ice particle "seeding" from higher cirrus), which can

produce a fairly extensive cirrostratus cloud with cloud tops at or near

the previously water-saturated layer. The resulting cloud is termed

cirrostratus altocumulogenitus in recognition of the generation mechanism.

The initial altocumulus glaciation may result from cloud top penetration

into temperatures cold enough to promote homogeneous cloud droplet freez-

ing, or according to the entrainment/drop evaporation mechanism proposed by

Hobbs and Rangno (1985), for example. It is uncertain at this time whether

significant additional ice nucleation occurs after altocumulus glaciation,

or whether the cirrostratus ice particles are capable of persisting for

long periods until complete sedimentation occurs and the altocumulus may

again form to repeat the sequence. It is important to note that the

precipitating ice crystals frequently, if not typically, display laser

backscattering properties indicating horizontally oriented planar ice

crystals, which minimizes the ice crystal fall speeds. Horizontally

oriented plate crystals with diameters up to about 0.5 mm display terminal

velocities in the 10-20 cm s -I range (see Sassen 1980), such that periods

of -2 h are required for crystals to sediment through a 1.0-km depth, even

without considering the large-scale ascent rate. Cirrostratus altocumulo-

genitus clouds typically appear to have cloud thicknesses on the order of a

few kilometers.

Acknowledgments. The FIRE Extended Time Observations based at our Facility

for Atmospheric Remote Sensing (FARS) are currently being supported by NSF

Grant ATM-85 13975 and NASA Grant NAGI-868. FARS has been jointly devel-

oped with funding from the National Science Foundation and the University
of Utah.
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1. INTRODUCTION

FIRE Extended Time Limited Area (ETLA) observations provide year-round information critical to

gaining a better understanding of cloud/climate Interactions. The Lamont/Rutgers learn has

participated in the ETLA program through the collection and analysis of shortwave and Iongwave

downwelling irradiances at Palisades, NY. These data are providing useful Information on surface

radiative fluxes with respect to sky condition, solar zenith angle and season. Their utilily extends to
the calibration and validation of cloud/radiative models and satellite cloud and radiative relrlevals.

Here, the impact cirrus clouds have on the surface radiative environment is examined using Palisades
ETLA information on atmospheric transmlssivlfles and downwelling Iongwave fluxes for winter and
summer cirrus and clear sky episodes in 1987.

2. MEASUREMENT PROGRAM

Downwellin9 hemispheric shortwave (SW: 0.28-2.8p.m) and Iongwave (LW: 4.0-50.0p.m) Irradiances

have been measured at Palisades, NY since December 1986. Observations are made with an Eppley
Precision Spectral Pyranometer and an Eppley Pyrgeometer which were calibraled with Colorado Slate

University instruments during the Cirrus IFO In October 1986, and have since been periodically
recalibraled by the Eppley Laboratory. Pyrgeomeler output contains an adjustment for body

temperalure but not for dome temperature. Data are transmitted to a Campbell CR-21 Digital

Recorder, where one minute averages of ten second samples are stored and subsequently dumped to a

casselte recorder. Using a Campbell C-20 Cassette Interface, these data are transferred to an Apple

Macintosh computer for analysis and archivlng. In addition Io the full shortwave and Iongwave

irradiances, hemispheric near Infrared irradtance (NIR: 0.7-2.81Jm) and diffuse components ol the SW

and NIR fluxes have also been measured for all or part of the past two and one half years.

Among Ihe variables generated from Ihe measured data Is shortwave atmospheric transmissivily,

which is simply the ratio of downwelling SW at the surface Io Incoming SW at the top of the
almosphere. Between 0.28-2.8p.m, Ihe lalter Is equal to 0.971 limes the solar conslant of 1366.97
W/m 2.

Palisades, NY (41o00 . N, 74°55 ' W) is situated approximately 10 km north of the northern limits of

New York City. The radiometers are mounled on the roof of a two story building approximately 130

meters above sea level. A daily log of sky conditions Is maintained and fisheyo (180 o) sky pholos are
taken periodically coincident with overpasslng NOAA 9 and Landsat satellites.

This work is supporled by NASA grant NAG-l-653.
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3. EXPERIMENT DESIGN

The success of a comparative analysis such as this strongly depends on the selection of appropriate

regional cirrus and clear episodes. In the present study, this involved interrogating detailed
meteorological observations from NOAA first-order observation sites at Newark and LaGuardia

Airports along with the more qualitative Palisades sky log. Palisades Is situated 25 km north-

northwest of LaGuardia and 40 km north-northeast of Newark. Airport observations of cloud type,

percent total and percent opaque cloud cover, altitude of visible cloud bases and horizontal visibility

were available digitally at three-hour intervals. Data were obtained from the National Climatic Data
Center.

An interactive data management system was developed to extract intervals of cirrus and clear skies

meeting specified criteria from the airport data files. To insure a regional nature to any interval

selected, the criteda had to simultaneously be met at LaGuardia and Newark and be in agreement with

the Palisades sky observations. Cirrus criteria included: 1) solar zenith angle (SZA) less than 80 °

(data quality diminishes greatly at higher SZAs due to pyranometer design and the presence of groves

of trees near the horizon), 2) a full, broken or scattered cloud cover with bases of 6100 m (20000 ft)

or higher, 3) no other clouds present, 4) horizontal visibility greater than 16 km (10 miles). Clear

criteria included: 1) SZA less than 80 o, 2) no clouds present and 3) visibility greater than 16 kin. The

visibility specification was made to reduce the influence of water vapor or dust in the lower

troposphere on downwelling Irradiance, thus, as much as possible, isolating the impact cirrus have on

surface fluxes. Cirrus and clear episodes of at least three hours duration (eg. including at least two

consecutive airport observations) from the winter (Jan., Feb., Dec.) and summer (Jun., Jul., Aug.) of
1987 were analyzed.

The study region sky is rarely reported to be completely covered with cirrus with no other clouds

present. When cirrus are alone their coverage is normally observed to be broken (.6-.9) or scattered

(.1-.5). For instance, in all of 1987 only 18 of the four daytime three hourly reports at Newark and 5

at /aGuardia noted overcast (1.0) cirrus with no other clouds present when visibility exceeded 16 kin.

This is partly due to the physical nature of cirrus clouds, but also appears to result from the subjective

task of defining just when or where a cirrus cloud begins or ends; no doubt observers often miss

subresolution cirrus. As the goal is to better understand cirrus impacts on the surface radiative

environment, it is important to investigate these natural cirrus episodes, rather than the few cases

when an easily observed cirrus ovemast is present.

4. RESULTS

In 1987, some 46 winter hours met the cirrus criteria and 75 hours met clear specifications (fig. 1).

The criteria were met less frequently in the summer of 1987, with 25 hours of cirrus and 36 hours of

clear skies observed. The summer minimum was partly due to the limitations imposed by the visibility
criterion

al

i 'tOO

.,oo , [ ]"_ Winter 1987 • cm_ Summer 1987 I s,_mu,_

200

= 200

1oo _ loo

za za

Figure 1. Number of minutes meeting prescribed cirrus (cl count) and clear (clr count) criteria in the

winter (left) and summer (right) of 1987. Information is segregated by solar zenith angle (za) in

2 ° (winter) or 5 o (summer) increments.
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a) Shortwave transmissivity

Transmissivities for cirrus and clear episodes in winter and summer and seasonal values within each

sky category were compared. All results were segregated according to zenith angle due to the impact
SZA has on surface fluxes. For instance, in both seasons clear and cirrus transmissivities increased

approximately 0.18 as the SZA decreased from 80 ° to 50 °, This increase continued in summer as mid-

day SZAs fell to 18 °, however the rate from 50 ° to 18 ° was about half that found at higher SZAs.

These curves roughly parallel atmospheric path lengths which vary from 5.8 at 80 ° to 1.6 at 50 ° to
1.1 at 20 °.

Transmissivities during winter cirrus episodes were approximately 0.03 lower than clear-sky

values (fig. 2). Cirrus values had a range of 0.05-0.10 within :1:1 standard deviation (SD) of the mean

as compared with a 0.02-0.04 range with clear skies. The +1 SO transmissivities were similar for

both cirrus and clear episodes. This is probably due to the presence of relatively clear skies between
discontinuous cirrus.

Summer transmissJvities during cirrus episodes ran some 0.01 to 0.08 lower than clear-sky values

at zenith angles between 15 ° and 80 ° (fig. 2). On average, it appears that the difference is close to the

0.03 seen in winter, with the range in means primarily a function of the small cirrus sample.
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Data are plotted by solar zenith angle (za).
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During cirrus episodes, winter transmissivities at a given zenith angle were approximately 0.06-

0.07 larger than summer values (fig. 3). Differences approached 0.10 when skies were clear (fig. 3).
Seasonal differences may be a function of the several times greater amount of water vapor found in the

summer atmosphere. Increased atmospheric dust and pollutants in a generally more stable atmosphere

may also contribute to lower summer transmissivities. Again, it is worth emphasizing that this study

minimized the effects of lower tropospheric moisture and turbidity by only considering episodes where
horizontal visibility at the surface exceeded 16 km.

Coincidentally, winter and summer mid-day transmissivilies under cirrus (0.76) and clear (0.79)

skies were almost identical, despite roughly a 30 ° difference in SZA. This Is at least partly a result of

the seasonal differences in atmospheric composition.
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Figure 3. Summer versus winter transmissivities with cirrus (top) or clear (bottom) skies present.

Data are plotted by solar zenith angle (za).

b) Downwelling Iongwave irradiance

Winter Iongwave irradiance with cirrus present was approximately 210 W/m 2 (fig. 4). This was

some 30 W/m 2 higher than clear-sky values, In fact the -1 SD value for cirrus skies consistently

exceeded the clear mean. Cirrus/clear differences of only about 15 W/m 2 were noted in summer (fig.
4). The clear mean and +1 SD values often fell between the cirrus mean and -1 SD cirrus values.
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Longwave irradlance exhibited zenith angle dependence in the summer, Increasing from 315 to 380

Wlm 2 between SZAs of 80 ° and 20 ° in cirrus cases and 305-350 Wlm 2 when skies were clear. Dome

heating may have been responsible for a porlion of the diurnal trend. The remainder may have been due

to atmospheric temperature fluctuations. Evidence for the latter includes: 1) morning irradiances were

consistently below afternoon readings at similar zenith angles, 2) cirrus irradiances increased more

with decreasing SZA than clear values and 3) little SZA dependence was noted in the winter.

Interseasonal Iongwave values for cirrus and clear skies illustrate the warmer summer atmosphere.

Irradiances were approximately 120 W/m 2 higher in summer than in winter during cirrus episodes and

about 140 W/m 2 higher for clear skies.
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Figure 4. Downwelting Iongwave Irradiance with cirrus and clear skies in winter (top) and summer

(bottom). Data from 1987 daylight hours are plotted by solar zenith angle.

S. CONCLUSION

A limited data set gathered in 1987 at the Palisades, NY FIRE ETLA site suggests that cirrus have a

larger impact on the surface radiative environment in winter than in summer. The presence of cirrus

clouds in both seasons resulted in a decrease in atmospheric transmissivity of approximately 0.03 over

clear skies. Downwelllng Iongwave irradiances were about 30 Wlm 2 higher for winter cirrus episodes

and 15 W/m 2 higher in summer cases compared with clear-sky episodes. Data continue to be gathered

at Palisades to refine these analyses and to expand the study by incorporating data on spectral and

directional components of incoming shortwave fluxes and on the net radiation balance.
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THE EFFECTS OF CLOUDS ON C02 FORCING

David A. Randall

Department of Atmospheric Science
Colorado State University

Fort Collins, Colorado 80523

The cloud radiative forcing (CRF) is the difference between the radiative flux (at the top of
the atmosphere, say) which actually occurs in the presence of clouds, and that which would occur
if the clouds were removed but the atmospheric state were otherwise unchanged. We also use the
term CRF to denote warming or cooling tendencies due to cloud-radiation interactions. Cloud
feedback is the change in CRF that accompanies a climate change.

The CO2 forcing is defined, in analogy with the cloud forcing, as the difference in fluxes

and/or infrared heating rates obtained by instantaneously changing the CO2 concentration (doubling
it, say) without changing anything else, i.e. without allowing any feedback. An increased CO2
concentration leads to a reduced net upward longwave flux at the Earth's surface. This reduced net
upward flux is due to an increased downward emission by the CO2 in the atmosphere above. The
negative increment to the net upward flux becomes more intense at higher levels in the troposphere,
reaching a peak intensity roughly at the tropopause. It then weakens with height in the
stratosphere. This profile implies a warming of the troposphere and cooling of the stratosphere.

The CO2 forcing has been evaluated in the past using highly simplified models (e.g.,
Ramanathan et al., 1979), but it is nevertheless highly desirable to evaluate it using GCMs, for two
reasons: First, the GCMs take into account many more geographical and temporal variations, so
that they can be expected to give more accurate and realistic results; and second, the CO2 forcing
should be determined using the same computational tool that is used to predict the response to the

forcing, i.e. the GCM itself.

The CSU GCM has recently been used to make some preliminary CO2 forcing calculations,
for a single simulated, for July conditions. We called the longwave radiation routine twice, to
determine the radiative fluxes and heating rates for both 2 x CO2 and 1 x CO2. As diagnostics, we
have saved the two-dimensional distributions of the longwave fluxes at the surface and the top of

the atmosphere, as well as the three-dimensional distribution of the longwave cooling in the
interior. In addition, we have saved the pressure (near the tropopause) where the difference in the
longwave flux due to CO2 doubling has its largest magnitude. For convenience, we refer to this
level as the "CO2 tropopause". We have also saved the actual difference in the flux at that level.
Finally, we have duplicated all of these fields for the hypothetical case of no cloudiness (clear sky),
so that we can isolate the effects of the clouds.

Fig. 1 shows the zonally averaged net upward longwave flux difference due to a doubling
of CO2, at three levels: the Earth's surface, the CO2 tropopause, and the top of the atmosphere

(where p = 0). All of the numerical values are negative, since doubling CO2 reduces the net
upward flux at every level. At the Earth's surface, the CO2 forcing reduces the net upward flux by

about 2 W m -2 in high latitudes, where there is little water vapor, but by only about 0.5 W m -2 near

the equator, where the lower troposphere is very humid and therefore relatively opaque in the
infrared. The flux reductions at the CO2 tropopause and the top of the atmosphere are not very
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different from each other; this means that the flux difference across the stratosphere is relatively

small (on the order of 0.5 W m-2), but since the stratosphere contains much less mass than the

troposphere, the stratospheric cooling and tropospheric warming can be of comparable magnitude,

as we will see below. The flux reduction at the top of the atmosphere reaches about 5 W m -2 in the

tropics, where the lower boundary is relatively warm, and is near 4 W m -2 at the summer pole, and

near 2 W m -2 at the winter pole. It has a dip near the equator, which is due to the presence of
extensive upper tropospheric cloudiness in the intertropical convergence zone (ITCZ). The clouds
block the upwelling tropospheric radiation anyway, so that increasing the CO2 concentration has
relatively little effect. These cloud effects are discussed further later.

Fig. 2 shows the changes in the longwave heating of the troposphere and the longwave
cooling of the stratosphere (both plotted as positive values, for convenience), in units of

hundredths of a degree per day. The tropospheric warming peaks at more than 0.05 K day -l in the

tropics, where the downwelling infrared flux due to emission by warm CO2 converges almost
entirely within the humid atmosphere, so that very little reaches the surface (refer back to Fig. 1).
The tropospheric warming is relatively weak in high latitudes, where the atmosphere is relatively

dry. The stratospheric cooling is between 1.0 and 1.5 K day -1, almost independent of latitude.

Fig. 3 shows the effects of clouds on the CO2 forcing, in terms of the reduction in the net
upward infrared flux at the surface, the CO2 tropopause, and the top of the atmosphere. For the
Earth's surface (solid line), a positive value on this plot indicates that the clouds act to reduce the
CO2 forcing of the surface. The largest positive values occur in high latitudes, where there are

extensive low clouds that block the downward radiation due to CO2 emission from the atmosphere.
The tropical atmosphere contains so much water vapor that the clouds have relatively little effect; at
any rate, the tropical clouds tend to have their bases in the middle troposphere, further away from
the surface. The effects of the clouds on the CO2 forcing at the CO2 tropopause and the top of the
atmosphere are practically the same, since the stratosphere is essentially cloudless. Again, positive
values for the dashed and dotted curves indicate that the clouds tend to mitigate the reduction in the
net upward longwave flux due to doubling CO2. Where the solid curve lies above the

dashed/dotted curves, the clouds increase the CO2 forcing of the troposphere. This occurs in high
latitudes, where the clouds are found at low levels. Where the solid curve lies below the

dashed/dotted curves, the clouds reduce the CO2.warming of the troposphere. This occurs in the

tropics and the middle latitudes of the summer hemisphere, where high clouds block the upwelling
longwave radiation anyway.

Fig. 4 shows the latitude-height distribution of the CO2.forcing, in hundredths of a degree
per day. The tropospheric warming is most intense near the surface in the tropics, reaching about

0.16 K day -1. There is actually a weak cooling at low levels in high latitudes, where temperature
inversions occur near the surface. Recall that the CO2 tropopause is defined as the level where the

CO2-induced reduction in the net upward longwave flux is most intense; it separates tropospheric
warming from stratospheric cooling. Fig. 4 shows that the height of the CO2 tropopause is about
12 km, at all latitudes. There is a minor excursion to higher altitudes just north of the equator, due
to the upper tropospheric cloudiness associated with deep convection in the ITCZ. Finally, Fig. 5
shows the effects of clouds in Fig. 4. The clouds tend to reduce the warming in the tropical and
summer-hemisphere troposphere, and to increase it in the middle and high-latitude troposphere.
They tend to increase the warming near the tropical tropopause, and to reduce the stratospheric
cooling slightly.

Two strong caveats are needed here. First, these results are for a single day. They do not
show how the CO2.forcing varies diurnally or seasonally; we plan to investigate such diurnal and
seasonal changes in the future. Second, these results tell nothing about how the climate system
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will respond to the CO2 forcing, since that response depends strongly on feedbacks within the

system.
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FIGURE CAPTIONS

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

The meridional structure of the zonally averaged net upward longwave flux difference

due to a doubling of CO2, at the Earth's surface (solid line), the CO2 tropopause (long
dashes), and the top of the atmosphere (short dashes).

The meridional structure of the CO2-induced changes in the zonally averaged longwave
heating of the troposphere (solid line) and the zonally averaged longwave cooling of the
stratosphere (dashed line), both plotted as positive values, for convenience, in units of
hundredths of a degree per day.

The effects of clouds on the CO2 forcing, in terms of the reduction in the net upward

infrared flux at the surface (solid line), the CO2 tropopause (long dashes), and the top
of the atmosphere (short dashes). The units are W m -2.

The latitude-height distribution of the CO2.forcing, in hundredths of a degree per day.

The effects of clouds on the latitude-height distribution of the CO2.forcing, in
hundredths of a degree per day.
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SEASONAL AND INTERANNUAL CHANGES IN CIRRUS

Donald Wylie

Space Science and Engineering Center
University of Wisconsin-Madison

I. Introduction

Statistics on cirrus clouds using the multispectral data from the GOES/VAS satellite have

been collected since 1985. The method used to diagnose cirrus clouds and a summary of the first

two years of data was given in Wylie and Menzel (1989) and at the 1988 FIRE Meeting in Vail,

CO. This study has been expanded to three years of data which allows a more detailed discussion

of the geographical and seasonal changes in cloud cover, lnterannual changes in cloud cover also
have been studied.

GOES/VAS cloud retrievals also have been compared to atmospheric dynamic parameters

and to radiative attenuation data taken by a lidar. This abstract will discuss some of the highlights

of these studies.

2. Geographical Distributions

Fig. 1 summarizes the geographical distribution of cloud cover over three year. This

summary is very similar to the two year graphic in Wylie and Menzel (1989) except for some small

regional features which appear because finer contour intervals were used (10% probability rather

than the 20% previously used). This was possible because the increase in cloud observations from

the extra year of data.
Similar winter to summer seasonal changes in the locations of cloud cover minima (top

panels) and clear sky maxima (bottom panels) can be found in the three year summary as in the

previously published summary. The same migration of the "sun belt" from Arizona and New

Mexico in the winter (upper left panel) to southern California and southern Nevada in the summer

(upper right) is apparent. The Probability of Clear Sky (lower panels) show the same general

trends as the Probability of Opaque Cloud (upper panels) between the seasons.

Other seasonal changes include the increase of cloud cover off the California coast (top

panel) as the marine stratus clouds become predominant in summer. A minimum in cloud cover

along the East Coast appears in winter (upper left panel) and disappears in summer. A local

maximum in opaque cloud cover occurred along the Appalachian mountains in the summer (upper

right). Other cloud cover maxima were found in Washington and Oregon corresponding to the
Coastal mountains.

Differences with the previous results can be found in western Missouri over part of the

Ozark mountains in summer and over Lake Michigan in winter where small opaque cloud maxima

are now apparent. The Northern Rocky mountains in Idaho and Montana show more local detail

in both seasons. All of these features were in the previously published data but hidden by the

choice of a large contour interval.

In the summer of 1988, an opaque cloud minima was found in central Montana extending

down into Wyoming (upper right) which was part of the extreme drought.

Cirrus clouds (middle panels) exhibited very small geographical and seasonal variances

over the continental U.S as previously published. They were found 20-40% of the time with a

slight drop in the summer over the continent and a large drop over the Eastern Pacific ocean.
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3. Interannual Variances

The variances in cloud cover between 1988 and 1987 were examined because the extreme

drought and heat in the summer of 1988. The largest deficit in rainfall occurred in south and Ohio

Valley in June, the states of Indiana, Ohio, Kentucky, Tennessee, Mississippi, Alabama, and

Georgia according to Ropelewski (1988) see Fig. 2. Other rainfall deficiencies were found in the

Midwest and northern plains states. The drought areas are indicated with shading in Fig. 2. But in
June 1987, the drought areas received nearly normal precipitation (Arkin, 1988).

Cloud analyses from the two June.s were compared in the area of largest drought, form 30-

42°N and 82-90°W (the box in Fig. 2). The GOES/VAS cloud analysis showed a decrease in high

clouds, <400 rob, which was mainly cirrus (Table 1, 24% in June 87 compared to 20% in 88) and

also a decrease in mid level clouds, 400-699 rob, (13% in 87 vs. 7% in 88). While low cloud reports
increase from 24% in 87 to 33% in 88. The number of clear sky reports was nearly constant

between the two years. These data indicate a change in the type of clouds found in this area

between the two years. An large increase in low cloud occurred which were non-precipitating at
the expense of deeper middle and high clouds.

Table 1: A comparison of GOES/VAS cloud analyses in the area, 30-42 ° N, 82-90°W, (box
in Fig. 2) for June of 87 and 88.

June 1987 June 1988

Cloud Type Cirrus _ All Cirrus Opaque All
High <400 mb 24% 4% 28% 20% 4% 24%
Middle 400-700mb 4 9 13 3 4 7
Low > 700 mb 24 24 33 33
Total 28% 37% 65% 23% 41% 64%
Clear 35% 36%

4. Comparison to Atmospheric Dynamic Features

Cirrus cloud observations from the GOES/VAS system were inspected to see what fraction

were found inside dynamic features commonly thought to produce clouds and what fraction

occurred outside of these dynamic features or in areas where dissipation of clouds was expected.

This is an extension of the statistics presented at the 1988 FIRE meeting. More analyses have
been added in more seasons.

The conclusions remain the same as last year. In summer, roughly one half of the cirrus

observations were found near radar echoes while the other half was not. In winter this dropped to

only 22% of the cirrus obs. being near radar echoes. No new data were added for this part of the
comparison. Jet streams of >35 ms "1 in winter and >25 ms "1 in other seasons, contained 40 to

60% of the cirrus. However, in months when upper level winds were light, cirrus observations

were found with nearly the same frequency as when winds were strong. Inside the jet stream most

cirrus, 13 to 33%, were found accelerating into the entrance to the south of the jet axis (right rear

quadrant). While the least cirrus were found, 4 to 10%, north of the axis in the entrance region

(left rear quadrant). Approximately 20 to 23% of the cirrus were found in the exit of the jet core,
the deceleration region (from left and right quadrants). Warm temperature advection was found

with 44 to 71% of the cirrus in months where winds were high enough to define jet streams and
temperature advection. Positive vorticity advection was found with 24 to 52% of the cirrus.

However, a substantial amount of cirrus, from 19 to 35%, also occurred in negative vorticity
advection.

These statistics show that large scale dynamics can explain up to one half of the cirrus over

the U.S. Most of the other cirrus occurs in areas where the dynamic variables are weak or in a
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transition from a positive to negative sign. The great complexity of the structure of cirrus and the

thermodynamic conditions in which they were found is discussed in Starr and Wylie (1989).

Greater detail in the analysis of atmospheric dynamic and thermodynamic features is needed to

explain a large portion of the cirrus.

5. Comparison of Satellite with Lidar Radiative Properties

The GOES/VAS cloud analysis system estimates both the height of the cloud top and the

emissivity of the cloud. This is defined as;

I - Id
N, = (I)

B[T(Pc)] " Icl
I is the radiance of the cloud measured by the satellite in the II.I/_ window channel. Icl is

the clear radiance of the window channel estimated for the location from surrounding clear fields

of view N and BIT(Pc) ] is the radiance for the altitude temperature of the cloud. N_ is thus an

effective emmissivity that is the product of the clouds fractional coverage of the satellite field of

view (N) and the emissivity ( _ ) of the cloud.

The infrared emissivity of cirrus clouds is related to the visible optical depth in that the

lower the emittance of the cloud, the smaller its optical depth and reflectivity. There have been

several models of this relationship. For this study the model of Hansen (1971) was used. Optical

depths were measured by the HSRL lidar at UW on 28 October 1986. The mean altitude of the

cirrus cloud was also taken from the lidar backscatter vertical profile while the infrared radiance of

the cloud (1) and clear sky (Icl) was measured by the GOES satellite. The radiance for the altitude

of the cloud (B(T(p))), was derived from the mean cirrus cloud altitude and the temperature for

that level given by a local sounding.

The results of the visible optical depth and infrared emissivity comparison are shown in

Fig. 4. The model prediction of Hansen (1971) also is shown as a solid line. These data have a lot

of scatter, however, they are distributed around the model results of Hansen. A comparison of

similar visible and infrared data to model predictions is given in Minnis et al. (1989).
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PROBABILITY OF OPAQUE CLOUD IN WINTER
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PROBABILITY OF CIRRUS IN WINTER
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PROBABILITY OF CLEAR SKY IN WINTER PROBABILITY OF CLEAR SKY IN SUMMER

THREE YEAR SUMMARY

WYLIE/MENZEL UNIV OF WISCONSIN-MADISON
®

Figure 1: The probability of opaque doud, transmissive cirrus doud, or dear sky from the
GOES/VAS multispc_ral infrared data from 1985 to 1988.
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RELATIONSHIP BETWEEN THE LONGWAVE CLOUD RADIATIVE FORCING
AT THE SURFACE AND THE TOP OF THE ATMOSPHERE

Harshvardhan

Department of Earth and Atmospheric Sciences
Purdue University, West Lafayette, IN 47907

In order to achieve global coverage, any surface radiation climatology has to be based on
satellite observations. In the last decade several schemes have been devised to obtain the surface

solar insolation from top of the atmosphere reflected solar radiation (Tarpley, 1979; Gautier et
al., 1980). More recently, attempts have been made to infer the components of longwave
radiation at the surface from satellite sounder data using a radiative transfer model (Schmetz et
al., 1986; Frouin et al., 1988; Gupta, 1989). In addition to the radiative transfer scheme, these
methods require assumptions about the effective emitting temperature of cloud tops and bases.
The one common theme in these methods is an assumption regarding the vertical extent of the

cloudiness detected in the upwelling radiation. Once the top is placed using a coincident
sounding, the position of the base is estimated by various methods, the simplest being an
assumption of constant cloud depth. During the day, the reflected solar radiation has also been
used to estimate the geometric depth of the cloud layer (Frouin et al., 1988), a complex
procedure that involves assumptions regarding cloud microphysics and morphology.

Modeling studies have shown that although there are strong correlations between the
solar upwelling radiative flux and surface flux, this is not true of the longwave (Ramanathan,
1986). However, if the clear sky component is considered separately such that the cloud
longwave forcing at the top and at the surface are compared, a slightly different picture emerges.
Figure 1 shows the monthly mean simulated longwave radiation at the top of the atmosphere and
at the surface from a general circulation model (Harshvardhan et al., 1989). Each point
represents a 4 ° latitude x 5 ° longitude grid. During the simulation, in addition to the hourly
radiative fields generated as part of the model integration, a clear sky computation was also
made every hour. The difference, which is the cloud forcing, was thus obtained at the top of the
atmosphere and the surface. Figure 2 shows the longwave cloud radiative forcing at these levels
for all the grid points in the model. This figure contains information on the relationship between
emission from the cloud tops and bases in the model. For example, a subset of the simulated
data for two latitude bands is shown in Figures 3 and 4. Figure 3 is for a region of high
convective clouds and the cloud radiative forcing at the top is very large when cloudiness occurs
where as the surface longwave fluxes are not affected much. Figure 4 is for a region of low
clouds such that the cloud top emission is not too different from the surface emission but the

downward longwave radiation is altered quite drastically in the presence of clouds.

During the FIRE Cirrus IFO, surface radiation measurements were made at several sites
and co-incident satellite overpass data was also collected (LeCroy et al., 1989). It may be

possible to extract the longwave cloud radiative forcing at the top and the surface from these
data. If relationships, such as shown in Figures 3 and 4 are verifiable by observations, this
information can be useful for the extraction of the surface longwave radiation from satellite data.
The radiative transfer schemes used to convert upwelling spectral radiances into a downwelling

longwave radiation can provide the clear sky component. The cloud radiative forcing at the top
of the atmosphere can then modify the surface fluxes according to relationships shown in Figures
3 and 4. It should be noted that this procedure may be considered only for temporal averages
and not for instantaneous deductions of surface fluxes. This would be most useful in compiling

monthly mean regional climatologies of the surface longwave fluxes.
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Comparison of 30 Day Integrations with and without Interactive Clouds

C.T. Gordon

Geophysical Fluid Dynamics Laboratory/NOAA

Princeton University, P.O. Box 308
Princeton, NJ 08542

A cloud-radiation interaction parameterization package has recently been

incorporated into a global spectral GCM used for extended range prediction

studies at GFDL. The elements of this package are summarized. Analysis of the
time mean radiative and dynamical responses suggests that cloud-radiation

interaction has a favorable impact, overall, on systematic errors. The

possible relevance of this sensitivity study to FIRE is mentioned.

Fractional cloud amount is predicted empirically in a manner similar to

J. Slingo (1987), although the humidity threshold is reduced to 70%, the
relationship between cloud fraction and relative humidity is linear, and a

shallow convective cloud type is predicted for radiative purposes. The optical

depth of sub-freezing, cold clouds varies quadratically with temperature
following Platt and Harshvardhan (1988). Otherwise, distinct constant values

are specified for high, middle and low clouds. The long- and shortwave cloud

optical properties are linked to the cloud optical depth, employing an
algorithm of V. Ramaswamy (1987, personal communication).

The GCM's sensitivity to interactive clouds is investigated for the

extended forecast range, by performing two sets of 30 day integrations for
3 winter and 3 summer cases (referred to by the respective dates of the initial

conditions): (i) CLDRADI employs the above package of parameterizations;

(ii) LONDON utilizes the GCM's standard specification of zonal mean cloud
amount, absorptivity, reflectivity and blackbody emissivity. The CLDRADI and

LONDON GCM's are identical in all other respects. The model resolution is

R21L18, denoting rhomboidal spectral truncation at wave number 21 and 18 sigma

levels in the vertical. The usual physical parameterizations are retained -
Mellor-Yamada turbulence closure, Monin-Obukhov surface boundary layer, water

bucket hydrology, Fels-Schwarzkopf radiation, moist convective adjustment and

orography; and linear mountain gravity wave drag is incorporated. A few

auxilliary integrations are performed for a single case to help clarify the

results. For example, parameterized shallow convection in the spirit of Tiedke

et al. (1988) is added in KSHLCNV; and the Platt-Harshvardhan temperature

dependence of cloud optical depths is suppressed in WARM T.

The 30 day mean CLDRADI total cloud amount for one winter and one summer

case are shown in Fig. 1, and the CLDRADI, LONDON and observed OLR (winter case

only) in Fig. 2. The GCM-predicted cloud amount fields and corresponding OLR

fields are plausible in many respects, especially in the tropics, where they
exhibit ITCZ-like and SPCZ-like features. In contrast, the OLR fields from the

control integrations do not. The CLDRADI OLR fields agree better, overall,
than LONDON with NIMBUS 7 earth radiation budget data. The tropical OLR minima

are nonetheless too weak, especially over the Amazon. Some stratus may be
noted off the west coasts of South #(nerica and Africa in January. Moving on to

longwave radiative heating/cooling rates (not shown), the CLDRADI cirrus level
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Fig. 1 Day 0-30 30 day mean CLDRADI total cloud amount for 05 Jan 1979 (top)
and 11 June 1979 (bottom) cases. Blank = 0-20%; progressively darker

shades of stippling for 20-100% in intervals of 20%.

heating is moderately stronger in amplitude, is much more zonally asymmetric,
and occurs ~75 hPa higher in the atmosphere, compared to LONDON. Meanwhile, at
low cloud top level (e.g., at ~700 hPa in the tropics), the longwave cooling is
dramatically reduced in CLDRADI, accompanied by weaker latent heating and
adiabatic cooling. The response is considerably enhanced, because the longwave
cooling for clouds more than i layer thick is not smoothed. LONDON low clouds
are particularly sensitive to this adjustment, heing always 2 layers thick and

zonally symmetric.

The zonal mean OLR tropical bias is positive and surprisingly similar

(~7 or 8 Wm-2) for both CLDRADI and LONDON. The higher tops of LONDON vs.

CLDRADI low clouds apparently tend to compensate for the higher tops of CLDRADI
high clouds. But the CLDRADI tropical bias can be almost eliminated, by

suppressing the temperature-dependent Platt-Harshvardhan parameterization of

cloud optical depth (not shown). Conversely, we were able to increase the OLR
5 to 6 Wm-2 by incorporating shallow convection and another 2 to 4 Wm-2 by

confining the shallow convective cloud tops beneath 800 hPa instead of 750 hPa.
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After Sirutis and Miyakoda.

Since contributions to OLR come from various vertical levels, it would be

useful to have observations of cloud top and cloud base pressure in the
subtropics and tropics as well as the observed vertical profiles of radiative
flux and water vapor.

To assess the GCM's dynamical response to cloud-radiatlon interaction, we

shall focus on systematic errors (with respect to NMC observation) and
CLDRADI-LONDON differences of the zonal mean temperature and wind fields,

because the CLDRADI-LONDON differences (not shown) tend to be statistically
significant. The 3-case winter ensemble mean, zonal mean zonal wind and

temperature errors are illustrated in Figs. 3a and 3b. The following features
of the CLDRADI distributions compare more favorably with observation: a weaker

cold bias, i.e., ~2k warmer, centered near the tropical tropopause, and weaker

easterlies in the tropical lower stratosphere; weaker SH mid-latitude westerly
jet and slightly stronger westerlies poleward of the jet during SH summer; a

weaker cold bias in the tropical middle troposphere, and tropical and
mid-latitude lower troposphere. In particular, the cold bias near the 700 hPa

level in the 30°N-30% latitude belt is _4k. Near the South Pole, the lower

troposphere is considerably warmer during SH winter and colder during SH
summer, in closer agreement with observation, when cloud-radiation interaction

is incorporated. The latter responses are essentially radiatively driven by a

relative reduction in cloud cover. During NH winter, the CLDRADI zonal mean

wind in the tropical upper troposphere is westerly, like observation, but too
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strong, while the corresponding LONDON
winds are easterly. Fig. 3b indicates
that these westerly and easterly wind

errors are of comparable magnitude.

The sensitivity of the systematic
temperature error of a 30 day mean
forecast by a 2° resolution 9 level GCM
to the parameterization of cumulus para-
meterization is illustrated in Fig. 4.

The results are based on an 8 case study
by Sirutis and Miyakoda (1989). Note the
dipole error structure associated with
the Arakawa-Schubert (AS) parameteriza-

tion in the tropical upper troposphere
and the sign reversal near tropopause
level when moist convective adjustment is

replaced by AS. While the result may not
surprise anyone, it illustrates that the

systematic temperature error may not be a
good indicator of the performance of a
cloud-radiation parameterization.

Clearly, some pairs of cumulus + cloud-
radiation parameterizations are more

effective than others at minimizing the
systematic temperature error in the upper
troposphere. Our present cloud

prediction scheme tends to compensate for
the apparent cold bias of the moist

convective adjustment scheme. Similarly,
the anvil cirrus parameterization of
Randall et al. (1988), which promotes
radiative cooling at tropopause level and

warming at ~400 hPa, would tend to oppose
the dipole structure of AS in Fig. 4.
Conversely, the combination of Randall et
al. + moist convective adjustment would
probably increase the cold bias in our
GCM. Under these circumstances, observed
vertical profiles of radiation fluxes in
the tropics or subtropics would be a
useful verification tool.

The phase and amplitude prediction

of geopotential height troughs and ridges
at 500 hPa in SH summer is discernably
improved when cloud-radiation interaction

is incorporated into the model (Fig. 5).
Also note the amplification of wavenumber

3. It may be primarily forced by

stronger (radiative) diabatic heating in
the SH tropics near the tropopause in the

CLDRADI (top), LONDON (mlddIe) and NMC presence of more favorable zonal winds,
observation (bottom), Contour Int, - 60 m, In particular, the CLDRADI upper
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tropospheric zonal mean westerlies may favor wave propagation to the SH

extratropics, whereas the LONDON easterlies may inhibit it. In addition,
radiatively induced warming in the tropics, and hence, a strengthening of the

equator-to-pole temperature gradient could play a complimentary role, in
analogy to Meehl and Albrecht (1988). Their GCM predicted a stronger

circumpolar trough in SH summer, in response to enhanced tropical diabatic

heating associated with a new parameterization of cumulus convection.

Meanwhile, in the NH, where there is more background asymmetric forcing, the

500 hPa ridges tend to be stronger and troughs weaker; and there is no visible

evidence of improved phase prediction, at least at R21 resolution.

The relevance of a global GCM sensitivity study to FIRE is not immediately

obvious. But perhaps, the favorable impact of cloud-radiation interaction on

systematic forecast error in our GCM is at least reassuring. More importantly,

awareness gained of the limitations of OLR and temperature data for validating

cloud prediction schemes, from the perspective of a GCMer poses a challenge to

FIRE II or ASTEX. Namely, can their future observational programs measure

vertical profiles of radiative cooling rates, cloud-related variables, water

vapor and temperature over the entire troposphere for a region the size of a

GCM grid box 250 km square? Horizontal means, computed from these measurements
for a range of horizontal scales, could prove valuable for the development and

validation of meso-scale and GCM scale cloud parameterizations.
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Spatial Scales of Cirrus Cloud Properties

Paul F. Hein and Stephen K. Cox

Colorado State University

Department of Atmospheric Sciences

Fort Collins, Colorado 80523

June 1989

1. Background

Through recent observational programs, such as

FIRE, the structure of the cirrus cloud layer has re-

cently been determined to be quite complex. Work

of Sassen, et al. (1989) with lidar, aircraft and radar

found a wide range of spatial scales from generating

cells of about 1 km in size to mesoscale complexes of

these cells on the order of 10's km, which are imbed-

ded in the larger cirrus cloud. Smith, et al. (1989)

with aircraft and Grund and Eloranta (1988) with li-

dar also found much spatial variability in the cirrus

cloud parameters.

This research in studying the spatial scales of the

cirrus, used data collected during the flight legs of

the NCAR Sabreliner aircraft on four days during

the FIRE Cirrus IFO to study the spatial scales of

the cirrus, and will concentrate on the scales of the

horizontal wind. The days examined are 22, 24, 28,

and 31 October 1986. A variety of conditions ex-

isted on those days. On the 22nd and the 24th, a

cirrostratus deck with convective cells was sampled

in the vicinity of the exit region ridge of a closed low

pressure system. Starr and Wylie (1988) classified

the cirrus as _closed low cirrus _. The cirrus of the

28th was classified as _warm front cirrus _ (Starr and

Wylie, 1988) because the cirrus was found ahead of

the upper level short wave trough, capping the short

wave ridge. The cirrus was optically thin and ten-

uous. The cirrus of the 31st was classified as "cold

front cirrus _ (Stair and Wylie, 1988) or "jet stream

cirrus _ (Conover, 1960) and was found on the eastern

side of a short wave trough. A jet with wind speeds

of about 50 m/s was measured in the cirrus top.

2. Data Analysis

The spatial scales of the cloud features can be de-

scribed by power spectra (or spectral density graphs)

and cumulative variance graphs. The cumulative

variance graphs were created by first using a Fast

Fourier Transform (FFT) to create variance spectra.

The variances were then summed in a cumulative

fashion from the largest scalelengths (wavelengths)

to the smallest. No detrending was done to the orig-

inal data, and no smoothing or averaging was done

to the spectral points. All the spectral points were

included. This means that the values of the first five

to ten spectral points of the large scalelengths should

only be considered to be qualitatively correct. The

cumulative variance at smaller scahlengths should be

correct because a more axcurate representation of the

variance at the larger scadelengths should only redis-

tribute the energy amongst the larger scahlengths.

Note that each scalelength (or wavelength) contains

both a "peak" and a "valley _. The following graphs

of cumulative variance may be interpreted as showing

the percentage of variance explained by scalelengths

larger than the given scalelength.

The power spectra likewise were created using an

FFT and differ from the variance spectra by only a

constant factor. However, the data for the power

spectra were detrended and the first five spectral

points were not used. The power spectra were

smoothed with a six point average.

The optical properties of a cirrus cloud resulting

from the downwelling shortwave and infrared radia-

tion can be expressed by the infrared downward effec-

tive emittance (e* _) and the shortwave effective ex-

tinction (C),which are defined by the following equa-

tions.
--IR

H_R I--HT 1
--IR

--SW HS WHT ,L- _,
= --sw

tit J,

--SW

where T is the mean cloud temperature, H T _ is the

mean cloud top incident shortwave irradiance, and
--IR

H T _ is the mean cloud top downwelling infrared
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irradiance. This makes e" _ and f dependent only on

the downwelling irradiance values (H_ TM _, H_ R _)
at cloud base. Note that there may be a significant

reflected component of upwelling irradiance inherent
ine* _ andf.

3. Results

The spatial scales of infrared downward effective

emittance and the shortwave effective extinction are

described by the cumulative variance graphs of Fig-
ures 1 and 2 for the 28th. Most of the variance

is found at the large scalelengths. For the infrared
downward effective emittance, 90% of the variance

is explained by scalelengths larger than 10 km; and
for shortwave effective extinction, 90% of the vari-

ance is explained by scalelengths larger than 5 km.

Thus, most of the variability of these clouds, as seen

by the Sabreliner radiometric instrumentation, is de-

termined by the larger features. Also, the similar-
ity between the shortwave effective extinction curves

shows that the clouds have the same spatial scales

even though Cloud Sample 2 is less optically thick

than Cloud Sample 1. A higher percentage of the

variance is found at the larger scalelengths in the
infrared downward effective emittance than in the

shortwave effective extinction• This is because the

shortwave radiation, being highly anisotropic, is not

smoothed as much by the hemispheric view of the
radiometric instrumentation as is the infrared. The

scales are then better represented in the shortwave
effective extinction graph. The cumulative variance

graphs of the 28th show this dominance of the larger
scales in providing the majority of the variance, and

are representative of the other days.

Representative power spectra of the alongwind and
crosswind components of the horizontal wind are seen

in Figures 3 to 6, and of the corresponding down-

welling shortwave and infrared irradiances in Figures

7 to 10. The power spectra show a range of slopes
from/c-6/3 to/c -3. The wind power spectrum of the

22nd shows a/c-5/3 slope, while the wind spectrum

of the 28th shows a k -3 slope. The power spectra

of the wind for the 24th and the 31st have a range
of slopes in between the/c-s/s and k -3 slopes. The

power spectra of the irradiances ahso have slopes con-

strained by the/c-6/3 slope and the/c -3 slope, though

the slopes are not always the same as the correspond-

ing wind spectra. It is probable that the downwelling

irradiances, modulated by the cloud elements, have
their scales determined by eddies of the wind.

4. Discussion

The slope of the power spectra of the horizontal

wind cam be used to determine the energy transfer
between the scales. Three dimensional turbulence

has a k-5/s slope in the power spectra showing an

energy cascade to smaller scales or larger wavenum-

bet (k). The power spectra of effectively two di-

mensional turbulence displays a /c-3 slope and a

k-6/3 slope in different wavenumber regions. The

k -3 slope is a result of the transfer of eddy enstro-

phy (mean-squared vorticity) or the transfer of the

square of quasi-geostrophic potential vc_ticity toward
smaUer scales. The k-6/3 slope is a result of an en-

ergy cascade to larger scales. These cascades have

been described by Gifford (1988), Charney (1971)
and Kralchnan (1967). Gifford (1988) suggests that
in the atmosphere the net energy cascade of the two
dimensional k-s/3 slope is to smaller scales. An alter-

nate theory offered by VanZandt (1982) suggests the

slope can be explained by internal gravity wave dy-

namics. However, Gage and Nastrom (1986) did not

find the wave model to be completely supported by
the observations. They suggested that observations

of the background vertical velocity spectrum supports

the wave model while the turbulence model is sup-
ported by the horizontal wind spectrum. It needs to
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be noted that the two dimensional turbulence also

known as geostrophic turbulence is normally applied

at the synoptic scale and mesoscale motions. In this
case the scales are smaller, having measured small

mesoscale and large microscale motions (7 mesoscale

and a microscale as characterized by Orlanski, 1975).

The scales are likely too small for Charney's

geostrophic turbulence, however, the close proxim-

ity of the tropopause and the strong temperature in-
version is likely constraining the eddies with a k -3

slope into an effectively two dimensional flow with

an enstrophy cascade. The stabilities of the layers
as described in Table 1 further support this hypoth-

esis. Table 1 contains the vertical temperature gra-

dient for the layer, the wind shear for the layer, and
the Richardson number of the layer. The Richardson

number is defined as

8o
Ri=g a'-;

"6t a___2
_.a= I

where 8 is potenti=l temperature, = is height, u is

the wind speed, and g is the gravitational constant.

The layer measured of the 22nd with the k -5/3 slope
is the most unstable of case, while that of the 28th

with the k -3 slope is the most stable, supporting the

hypothesis that strong stability restricts the eddies

to an approximate two dimensional flow.
To summarise, the majority of the variance of the

cirrus cloud properties is found at the larger scales.

The radiative properties of the cloud appear to have

their scales determined by the surrounding eddies,
which modulate the cloud elements. The amount of

variance or energy contained at each scale appears

to be determined by the stability of the layer, which
determines whether there is a two dimensional or a

three dimensional turbulent cascade.

Table 1. Stability parameters for the cirrus layer.

Day

22

24

28

31

o..._e
8z

° K/m X
1.9

10-3 -I X I0-°

3.3

Ri

5.1

2.5 3.7 5.3

2.9 2.1 19.2

3.1 4.0-4.6 4.3-5.8
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I. Introduction

The First ISCCP Regional Experiment (FIRE) Cirrus Intensive Field

Observations (IFO) provide a unique opportunity to examine the relationships

between the satellite-observed radiances and various parameters which

describe the bulk properties of clouds, such as cloud amount and cloud-top

height. In this paper, lldar-derived cloud altitude data, radiosonde data,

and satellite-observed radiances are used to examine the relationships

between visible reflectance, infrared emittance, and cloud-top temperatures

for cirrus clouds.

2. Data

Lidar backscatter data taken over Ft. McCoy (FMC), Wausau, and Madison,

Wisconsin during the FIRE Cirrus IFO (October 19 - November 2, 1986) were

used to define the cloud base, cloud-top altitude zt, cloud thickness h,

and effective cloud center altitude z . The last parameter is based on the
c

distribution of backscatter intensity. Sassen et al. (1989) discuss the

instrumentation and measurements in more detail. Soundings from Green Bay,

Wisconsin, were used to determine the temperature-height relationships for

all of the data. Cloud-top temperature T t corresponds to z t on the

soundings. Mean cloud-center temperature T c is found from z c. Surface

temperatures were used to supplement the clear-sky temperatures T
cs

derived from the satellite data. Half-hourly VIS (0.65_m) and IR (ll.5_m),

4-km data from the Geostationary Operational Environmental Satellite (GOES)

were extracted along the wind vector at z c for areas 4-pixels wide and

- 16-pixels long. The VIS data were converted to reflectance p using the

calibration of C. H. Whitlock (1988, personal communication). Clear-sky

temperature is derived for each data strip whenever some clear plxels are

observed in the VIS data. Otherwise, alternate methods are used to compute

PRECEDIi',!G PAGE ELA,_,;K NOT FILMED
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T . For all pixels (denoted as cloudy pixels) having an equivalent
CS

blackbody temperature, T < T 3K, the effective cloud beam emittance is
CS

e = {[B(T) - B(Tcs)] / [B(Tz) B(Tcs)]), (i)

where T refers to the temperature at altitude z.
Z

calculated twice for each satellite data strip using

of T . It is also assumed that
Z

The emittance is

Tc and T t in place

e = I - exp (-r e / #), (2)

where the cloud IR optical depth is r and _ is cosine of the viewing
e

zenith angle. The cloud reflectance, Pc' is assumed to be related to the

observed reflectance in the following manner.

p = TaP c + PsTcTu + asd(l _d)(l T - _ )C C'
(3)

where T a is the transmittance of the atmosphere above the cloud; T and
c

T are the transmittances of the cloud to downward and upward direct
u

radiation, respectively; Ps and _sd are the clear-sky bidirectional

reflectance and diffuse albedos, respectively; and _d and _ are the
C

albedos of the cloud to diffuse and total radiation, respectively. Thus,

_d = ad(rv)" _c = _c(rv, #0)', and Pc = Xc_ c. The cosine of the solar

zenith angle is #0. It is assumed that the anisotropic reflectance

correction factor Xc is independent of the VIS optical depth r . Values
V

for Xc are taken from the empirical model of Minnis and Harrison (1984).

The relationship bewtween r and cloud albedo is based on the results of
V

Takano and Liou (1989) for a cloud containing randomly oriented hexagonal

ice columns 125 #m long and 50 _m wide. Cloud transmittance also depends on

the VIS optical depth. Mean values of T were computed for each discrete
reflectance value.

In the ISCCP methodology, the scattering ratio, r, is used to relate the

VIS optical depth to r in order to correct for the semitransparency ofe

the cloud. This quantity is equivalent to r / r . It is calculated here
v e

as

r

N

E

i=l

(r v / re) . / N,
1

where N is the number of cloudy pixels for each data strip. Details

concerning the data and methodology are given by Minnis et al. (1989).
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3. Results and Discussion

Figure i shows an example of the observed values of c p, and _ for
' C

cirrus clouds over FMC at 15 UTC, October 28, 1986. Averaging the

temperatures minimizes some of the noise introduced by cloud structure

variations. Mean values of r computed at each half hour for the cirrus

days during the IFO (October 22, 27, 28, and 30; November I and 2) are

summarized in Table I. It is expected that r is constant for a given

cirrus cloud. Thus, the systematic variation of r with scattering angle

@ indicates that the values of Xc used here are inadequate. The mean

value of r = 2.1, however, is very close to the value of 2.0 expected for

large-particle clouds (e.g., Hansen and Travis, 1974). Assuming that the

computed mean value of r is correct, it is possible to compute more

realistic values of Xc by forcing the results to yield r = 2.1 for each

data strip. The average values of Xc resulting from this process are

shown as the dashed lines in Fig. 2. Obviously, the cirrus clouds scatter

radiation more anisotropically than the average cloud. Optically thin

clouds tend to mimic the single-scattering phase function. Optically thick

clouds tend to reduce anisotropy through multiple scattering. Scattering

are shown in Fig. 3 Theratios from Table i averaged according to T c

average values of r are 2.5 + 0.2 for T < 235 K and 1.9 + 0.2 for T >
-- C -- C

235 K. The larger values of r are significantly different from 2.0

suggesting that the colder clouds contain a substantial number of small

particles. The temperature dependency of r is similar to that found by

Platt and Dilley (1981). The variation of cloud emittance (corrected for

_) with T given in Fig. 4 for the case study (October 27-28) is much like
C

that determined by Platt et al. (1987) from ground observations. The data

for the entire period, however, show greater increases of _ with

temperature than found by Platt et al. (1987). Cloud thickness (Fig. 5)

during the case study is also similar to the Platt et al. (1987) results.

Ratios of _(Tt) / E(Tc) are plotted against Tc in Fig. 6. The nearly

linear dependency of these ratios on T c indicates that the actual cloud-

top temperature can be determined if T is found first. Other results
c

from these analyses (Minnis et al., 1989) indicate that cloud shadows have a

significant effect on the retrieved cloud albedos. This shadowing can

result in "dark" pixels which are colder than Tcs and darker than Ps"

Their effects must be considered in the retrieval of cirrus properties from

VIS and IR data.

4. Concluding Remarks

The analysis of IFO data shows consistency with earlier cirrus studies

suggesting that some simple parameterizations of cirrus cloud properties can

be effectively utilized. Other results indicate that additional parameters

may be derived from the satellite data. More cases taken over other areas

will be needed to confirm the results presented here.
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(') T v r

i09 0.97 1.08

117 1.84 1.42

124 0.90 !.75

131 1.46 2.01

146 2.31 2.22
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160 1.78 2.9_

173 2.20 3.49

115 3.52 1.96

168 2.$0 2.81

162 1.$2 2.'/3

154 1.93 2.68

147 1.40 2.47
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132 1.15 1.30

125 0.67 0.83

"'- 1.69 2.08

Case Study

_v r
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1.46 2.01

1.72 1.98

1.39 2.94

1,94 5.65

0.63 3.13

0.74 2.76

1.28 3,06

1.63 2.34

0.97 2.46

0.53 1.20

0.26 0.69

1.04 2.07

UTC C_es

(IFO)

1330 4

1400 3

1430 2

1500 3

1600 $

1630 2

1700 6

1900 6

1830 I

1900 ?

1930 4

2O0O 9

2030 6

2100 6

2130 • 4

2200 5

totalsl

• nd I

ne_s ! 11

!

Table 1. Reflectance parameters computed
for all data.
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The discovery that the 11 _m and 12 pm window channels of AVHRR
could be used to detect and even characterize the properties of cirrus (Inoue,
1985 and others) stimulated the present study which re-examines the general

multispectral approach for retrieving cirrus cloud top temperature and
emissivity. The approach is based primarily on work done for METEOSAT

by Szejwach (1982) and draws on a wealth of previous investigations of
multispectral approaches (Coakley, 1983; Platt, 1983; Arking and Childs,

1985,). The generalized ,,multispectral approach described here compliments
the CO2 slicing method used by Wylie (1988) and the bispectral threshold
method used by Minnis et al (1988).

The approach is based on the recognition that for a cloud system that
is semitransparent in the infrared, the emission for channel i which senses
radiation with wavelength ki is given by

Ii = Is/ + eciAc(Ici - Is/) (1)

where Is/is the emission from the cloud-free region of the field of view and Ac

is the fractional cloud cover within the field of view. Eci in (1) is an effective
mean emissivity for the clouds within the field of View. Effects due to
reflection of thermal radiation by the clouds are ignored in (1). Ici is the
emission that the clouds would have were they blackbodies. Determining Ici

is equivalent to determining the cloud top temperature.

Consider now the behavior of observations at independent infrared

wavelengths _.i and k/ under three conditions: 1) single-layered, opaque
clouds, 2) single-layered, semitransparent clouds (cirrus) and 3) multi-level
opaque clouds. In general, a cloud system will exhibit any combination of
these three cases. Here, wavelengths that are independent are taken to be
those that exhibit different sensitivities of the emission to temperature, i.e.

are at substantially different wavelengths, or they exhibit different
sensitivities to the dependencies of the optical properties to hydrometeor
concentrations or both.

For single-layered, opaque clouds, i.e. clouds that possess a single
cloud top temperature, Is and Ici are constants at all wavelengths for the
region containing the system. Likewise, because the clouds are opaque the
emissivities, ec, are also constants and equal to the maximum values that the
clouds can obtain. As a result, Ii is linearly proportional to Ij. This lin. ear
relationship is shown in Figure 1 for the 11 lma and 12 pzn radiances obtained
from NOAA-9 on the afternoon of October 28, 1986 during the case study

period. The data is for a 250 km region containing the array of lidars that
participated in the case study (Sassen et al, 1989). The linear relationship
that is shown in the figure indicates that the upper-level clouds were opaque

at 11 and 12 _m at the time of the satellite overpass. On the basis of the 11
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and 12 _lm radiances, these clouds would not be interpreted as cirrus with
missivities less than unity. While effects due to the reflection of thermal
radiation have been ignored in this discussion, it is recognized that the
maximum values of the emissivities attained by the clouds may be less than

unity. The differential between unity and the maximum emissivity will
affect the estimate of the cloud top temperature.

For a single-layered, semitransparent cloud system Is and Ici are
constant for the region containing the clouds. The emissivities, however, can
vary according to their dependence on hydrometeor concentrations. In

general eci is a nonlinear function of the hydrometeor concentration, and as a
result _ci is a nonlinear function of ecj. Consequently, I i will also be a
nonlinear function of Ij. This nonlinear relationship is exhibited in Figure 2
which shows 11 _Lm and 12 _m radiances from the October 28 NOAA-9 pass
for the 250 km region southwest of the lidar array. The curvature exhibited
by the envelope of points is due to the semitransparency of the upper level
clouds. The linear relationship exhibited by the other envelope indicates that

within this 250 km region, the upper-level clouds also become opaque at some
locations.

For clouds that are opaque but distributed in altitude, Ic will no longer
be constant for the region containing the clouds. The emissivities, ec, will
however be constant and near unity. As a result, the relationship between Ii

and Ij will closely follow the dependence of the Planck function on
temperature. That is, the relationship between Ii and I] will again be
nonlinear. In this case, however, the curvature will be 5pposite to that

shown in Figure 2.

One notes that taking the three cases together, one obtains a linear

relationship between Ii and Ij for opaque, single-layered clouds, a no_inear
relationship between Ii and I3 for semitransparent, single-layere(1 clouas ana
another nonlinear relations_p for opaque, multi-layered clouds which follows

the relationship given by the Planck function. The latter relationship may be
calculated apriori. All three curves, however, intersect at Is and Ic where Ic
is that of the upper-level system which is semitransparent. So, in principle,
one should be able to extract estimates for the cloud top temperature from

the intersection. Having the cloud top temperature, one then estimates the

distribution of ecA c in (1) from the distribution of observed intensities.

While the results shown here were for 11 and 12 _rn radiances, better

definition of the cloud top temperature is probably obtainable using 3.7 _n
radiances in combination with the 11 and 12 _m radiances. During the day,

however, at least for the cases shown in Figs. 1 and 2, reflection of solar

radiation at 3.7 pm by low-level water clouds makes the analysis untenable.
At night, at least with the NOAA-9 AVHRR, instrument noise in the 3.7 I_m
channel also makes the analysis untenable. The identification of

semitransparent systems using 3.7 _an radiances has, however, been noted
elsewhere (Molnar and Coakley, 1985).
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I. Introduction
The collection of long term global statistics on cloud cover, a major goal of ISCCP, may (potentially)

be most easily accomplished with satellite based observations; however, measurements derived from
passive satellite retrieval methods must be calibrated and verified by insitu or ground based remote
sensor observations. Verification is not straight forward, however, because the highly variable nature
of cloud altitude, morphology, and optical characteristics complicates the scaling of point
measurements to satellite footprint sized areas. This is particularly evident for cirrus clouds which may
be organized on horizontal scales of 10's of meters to 100's of kilometers, may exhibit physical depths
of 1O's of meters to 8 km or more, and have optical depths ranging from less than .003 to greater than
3. Cirrus clouds can strongly influence earths' radiative balance, but, because they are often
transmissive, cirrus clouds are difficult to detect and characterize from satellite measurements.

Because of its precise ranging capabilities, spatial resolution and sensitivity, lidar observations
have played an important role in the detection, depiction, and characterization of cirrus clouds. This
paper summarizes some of the characteristics of cirrus clouds observed by the University of Wisconsin
High Spectral Resolution (HSRL) and Volume Imaging Lidars (VIL) during the phase IIFO and ETO
periods. Because of the volume of material, we have split our presentation into two parts: an overview
oral summary and a more detailed poster presentation. Since the VIL data are most easily summarized
in a visual format unsuitable for reproduction here, we have primarily reported HSRL measurement
contributions in this 2 part abstract. Both poster and oral presentations will include this additional
material, as well as examples of new VIL and HSRL instrument capabilities.

II. U.W. Lidar Instrumentation

The University of Wisconsin lidar group operates two unique lidar systems: the High Spectral
Resolution Lidar (HSRL) and the Volume Imaging Lidar (VIL).

The HSRL is optimized to produce calibrated measurements of optical depth, extinction corrected
cloud morphology, and backscatter phase function 1 (determined by particle size, composition, and
shape). The HSRL spectrally separates Doppler broadened molecular backscatter from unbroadened

(primarily elastic) cloud particle and aerosol backscatter. Using the known distribution of molecular
scattering cross section to provide a calibration reference at every range, extinction is unambiguously
determined from the observed molecular backscatter intensity. HSRL measurements of cirrus cloud
optical properties were first acquired during the FIRE cirrus IFO in 1986. Since then, the HSRL has
routinely operated to collect statistics on cirrus optical properties and in support of VAS cloud height
verification studies 2.

The VIL, is optimized for rapid scanning of large atmospheric volumes. A high repetition rate laser
(30 Hz) coupled with fast scanning mirrors (25° / sec) and a high speed data logging system (~.5

gigabyte/hr) writing to optical disk (2.6 gigabyte capacity) allow this system to produce 3-D
reconstructions of cirrus cloud backscatter by assembling successive 2-D cross wind scans on a
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graphicsdisplayterminal.Movieloops of successive wide angle scans taken along the mean wind
direction reveal a mesoscale time history of cirrus evolution. From a single ground based location, the
VIL can scan a 60 km wide segment of cirrus with 100 m resolution in 20 seconds. Cirrus data have

been acquired with this system since the summer of 1987 in conjunction with specific field
experiments.

III. Observed cirrus properties
a. Optica//y thin cirrus

Extensive fields of optically thin clouds are important for a number of reasons: background noise
generated by thermal emissions from the cloud and ambient light scattered by the cloud can interfere

with IR remote measurements, and, attenuation along shallow view angles, as in limb scanning, can
become significant. If present globally, they may also have a significant impact on earths' radiative
balance while going largely undetected by space-borne passive remote sensing techniques.

Plotted in fig.'s 1 and (2) are two of our best examples of this type of cloud. The data on these
clouds were acquired during the FIRE IFO case study day3 October 26, 1986. Solid lines represent
backscatter cross section contours in 10 -7 (10 -8) m-1 sr-1 . The dashed lines indicate optical mid-cloud
altitude (half the cloud optical thickness is accumulated to either side of this line), and dotted lines are
wind speeds in m/s. Because the HSRL cannot distinguish between backscatter from aerosols and
that from cloud particles, we cannot be certain that these tenuous veils of enhanced backscatter are
cirrus; however, since denser cirrus were observed at these altitudes both before and after this time

period, these features at least appear to be associated with cirrus. Average layer optical thickness in
the vertical was ~.01 (~.003). Wind-drift estimates suggest these layers extend for at least 266 km
(180 kin).

Isotachs plotted in fig. 1 from the special FIRE three-hourly radiosonde data show a general
correlation between wind speed maxima and backscatter cross section contours (note the 26 m/s and
29 m/s patterns). Fig. 2 also suggests a correlation between wind sheer and backscatter cross section
(note the region between 9.5 and 10.5 km at 1000 UTC). These apparent pattern correlations have
been observed in several cases, though a consistent set of correlation characteristics has not been
established. It is not certain if the sheer is part of the cirrus generation mechanism, or if cirrus formation
and winds are both responding to the same environmental forcing.

b. Mesoscale uncinus complex (MUC)

Fig. 3 shows a contour map of a MUC 5 observed on October 28, 1986 from 0500 - 0900 UTC.
GOES IR images of this phenomena, combined with radiosonde winds, suggest that the MUC is a

south-eastward propagating cirrus generation region embedded in a less intense, generally eastward
moving, wind-driven cloud band. The NW-SE oriented cloud band was part of a more extensive cloud

shield covering northern Wisconsin. The GOES IR images show the MUC passed directly over
Madison, with the radiance minima occurring ~0700 (interpreted as the densest cloud region, not
necessarily the highest cloud top, as for opaque clouds).

A series of uncinus generating cells are evident between 9.5 and 11 km, particularly between
0530 and 0700. Each of these cells is about 150 m thick. Cloud translation with the 10 km wind (20
ms -1 + 10 ms-1) would suggest the cells are ~4 - 12 km across; thus, they have a height to width

aspect ratio in the range ~1:54- 1:180. The maximum _a_/4R (normalized backscatter cross section)
for this MUC was determined to be .024 km -1 sr -1 at 0722 near 8.7 km altitude, preceding the
passage of a wind jet maximum of ~34 ms-1. Both the Ft. McCoy and Platteville soundings at 0300
and 0900 (0600 was not acquired) indicate the regions above 7.4 km were consistently moist (>70%
RH with respect to ice) and occasionally reached supersaturation as high as ~108 % with respect to
ice. The radiosonde profiles also show an abrupt decrease in relative humidity below 7.4 km
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suggestingthe steep contour gradient at 0700 at 7.2 km altitude is related to rapid ice crystal
evaporation in the dry environment beneath the complex. Profiles averaged from 0600-0750 indicate
this system had a mean optical thickness of .58+0.05 which varied from 0.09+0.03 at 0750 to 1.1+0.3
at 0718. The bulk backscatter phase function averaged over the same time period was 0.042+0.015
sr-1.

Isotachs, interpreted from the 0300 and 0900 Ft. McCoy radiosonde data, show an apparent
relationship between wind speeds and the MUC backscatter cross section distribution. Note the close
proximity in time and altitude between the wind speed maximum and the backscatter cross section
maximum. Cloud bottom seems to occur where the time height cross section indicates relatively
steady winds. The decrease in cloud top altitude seems to be related to the development of a wind
minimum at 10.5 km. The jet and the wind minimum are of smaller scale than the FIRE IFO radiosonde
network. They appear strongly only in the Ft. McCoy soundings, and are just discernible in the
Platteville sounding data; thus, no attempt has been made to interpolate the radiosonde data to
Madison observation times. Future observations of this type would benefit from a more dense
temporal and spatial net of wind observations.

The MUC observations also demonstrate the limitations inherent in interpreting cirrus cloud

morphology strictly from zenith time height cross section measurements. If the wind sheer is deduced
from the apparent slope of the virga trails, the wind maximum would be expected near the upper cloud
level at ~10 km. In fact, the wind contours indicate the maximum of ~35 m/s near 8.5 km, decreasing to
~18 m/s at 10 km. Clearly, the time height cross section of this complex does not represent a
stationary phenomena translating with the ambient winds but that the clouds are undergoing
significant evolution. Cloud genesis is probably related to circulations about the mesoscale jet, and
the apparent shape of virga may be partially governed by the local distribution of moisture.

¢. Altocumulus vs. cirrus

From 1200 - 1500 UTC on 10/28, a two level cirrus / alto-cumulus formation was observed. Fig. 4
highlights the dissimilarity in lidar backscatter between these cloud types. The lower layer cloud
appears to be formed from a series of relatively dense alto-cumulus cells with a .5-1 km long ice crystal
fallout tail (identification as ACu is inferred from an all-sky photograph taken at Wausau and the fact that
similar cloud structure was observed at Ft. McCoy and Wausau lidar data around this time period 4. Ice
virga is inferred from the environmental temperature (-25 ° to -30 o C) and from higher resolution
images of lidar backscatter. Wind-drift estimates indicate the ACu were about 20 km across, yet they

were ~200 m thick, producing a height to width ratio of only 1:100. As the ACu developed, fig. 5
shows an increase in both the total cloud optical thickness and the backscatter phase function while
the optical mid-cloud altitude decreased from ~11 km to ~7.5 km. The average cloud backscatter
phase function peaks with the passage of each ACu cell. Because similar cloud features were also
observed to produce little depolarization at Wausau and Ft. McCoy, we can infer, with some
confidence, that the backscatter phase function peaks suggest these clouds are composed of super-
cooled spherical water droplets 4.

The ACu bands at ~7.6 km produce significantly greater backscatter than either the 9-12 km cirrus

or the lower level virga between 6.4 and 7.1 km. The I]a_/4= maximum reached at 1419 exceeded
0.15 km-1 sr "1 . One reason for this is that ACu are primarily composed of super-cooled liquid water
droplets; because of optical surface wave phenomena, such droplets are more efficient at
backscattering than non-spherical ice crystals. A second reason is that super-cooled water droplets
are necessarily quite small, whereas, once glaciation begins, cloud particles accumulate mass rapidly
because of the reduction of saturation vapor pressure with respect to ice; hence, ice particle fall
speeds rapidly exceed vertical atmospheric motion, and particle mass distributes over an extended
column, decreasing the local backscatter intensity. Since particle mass increases as the cube of the

radius while the scattering cross section approximately follows the radius squared, the backscatter
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crosssectionwillalsodiminishasgrowthprocessesredistributewatermassfrommanysmallparticles
tofewerbutlargericecrystalswithsubstantialfallspeeds.

TheACu dominatethe opticalthicknessprofile.Clearly,the occurrenceof ACu can have
significantimpacton the radiativepropertiesof the cloudindependentof cloudtop altitudeand
bottomaltitudes.

d. Cirrostratus

Cirrus frequently form continuous layers with vertically developed cells of enhanced backscatter
appearing near both cloud top and cloud bottom. Fig. 6 illustrates this type of formation observed on

10/28/86. The vertical elongation of backscatter cross section contours suggests an upward and/or
downward redistribution of cloud particles. The top and bottom cellular morphology of this layer is
most evident ~1610 where an apparent generating region near cloud top produces a virga trail which
extends to, and perhaps seeds, a second region of strong backscatter near ~7.5 km. The lower
regions (at 1610 and 1640) also appear to be precipitating as evidenced by the vertical elongation of
the cloud bottom backscatter cross section contours. Note that the mid-cloud altitude follows regions
of enhanced backscatter very closely and that there is no obvious relationship between the
appearance of these regions and either cloud top or cloud bottom altitudes. Thus, the structures
which dominate cloud optical properties are not necessarily indicated by either the cloud boundaries
or the physical mid-cloud altitude.

With the exception of two periods, near 1540 and 1915, the cirrus optical thickness exceeded 0.1
forming an apparent cirrostratus layer (see fig. 7). The gap in cloud cover at ~1900 corresponds to the
passage of a clear arc identified from satellite imagery5. Peaks in backscatter phase function (~.038
sr -1) tend to coincide with the occurrence of the regions of enhanced backscatter cross section

independent of total optical thickness, while the regions between the cells usually produce the
minima in the backscatter phase function of ~.02 - .026 sr -1. This suggests differences in the
microphysical properties for the particles associated with the cells compared with those of the
surrounding cloud. One explanation may be that the regions of enhanced backscatter are areas of

cloud particle generation which may contain an abundance of small supercooled water droplets
(temperature at 7.5 km: ~-30 ° C, at 9.5:~-45 ° C). An abundance of particles approaching molecular
diameters could also produce the observed backscatter phase function and depolarization ratio
effects. Unfortunately, the issue cannot be settled by insitu probe data because current instruments

are incapable of resolving such small particles. In regions between the cells, it may be that sufficient
time has elapsed so that the number density of droplets has been substantially diminished by
differential vapor pressure effects between ice and water. The modulation of the bulk backscatter
phase function also suggests that some of the apparent structure observed in the backscatter cross
section plots is generated by microphysical changes and is not simply related to the cloud extinction

cross section. This effect should be considered when deducing cloud morphological and optical
characteristics from simple plots of lidar backscatter.

The backscatter contours in fig. 6 indicate a large scale pattern of intensification with a period of
about 45 minutes; however, an examination of the higher time resolution pictures of the raw laser

returns reveals the clouds contain a finer scale (~5 minute) structure imbedded in the larger scale
organization. Wind drift estimates would suggest that these features have a horizontal scale of about
9-11 km. Thus, the height to width aspect ratio of the elementary structures is ~1:5 while the larger
scale field of enhanced backscatter exhibits an aspect ratio of ~1:25.

Fig. 8 presents the backscatter cross sections observed for the cirrostratus, pre-warm frontal
cloud system observed on Jan. 29-30, 1988. The maximum backscatter cross section of 4.3.10 -5
m -1 sr °1 was observed near 1:30 GMT. Twenty minute averaged optical thickness varied between
between .081 and 2.27, while the backscatter phase function varied from .031 - .057 sr -1 .
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Note the pattern of repeated, overlapping tilted cells evident in the first half of this data set.
Optically thick cirrus frequently exhibit similar morphology. Using the mean cloud level wind to
translate the temporal coordinate into the spatial domain suggests the cells are inclined at ~7 ° from

the horizontal. A cloud of this type may appear homogeneous to a nadir viewing satellite sensor, but
would not exhibit an optical thickness dependent only on the secant of the view angle. Wind-drift
estimates indicate the cells were ~30-50 km wide producing height to width aspect ratios of ~ 1:10.
Patterned departures from inverse-cosine-law behavior can have implications for radiative heat
balance calculations and for the calibration of wide beam radiometers.

e. Particle microphysics

Cirrus sometimes form plate-like crystals which fall flat-face-down because of aerodynamics. In
scanning through the zenith, the VIL has observed specular backscatter enhancements by a factor of
at least 13, and larger enhancements seem possible. The e-1 full width of the forward scatter
diffraction peak in one of these observations was ~1.5 ° (at 1.06 pm) suggesting a minimum crystal

diameter of ~50 pm. Some VIL cross sections have revealed thin (<200 m) layers exhibiting specular
reflection immediately adjacent to similar layers which do not show specular backscatter
enhancements. This suggests the microphysical properties of cirrus are quite heterogeneous.
Because of the three dimensional heterogeneity of cirrus, the scientific yield from future experiments
could be enhanced by a real time mapping of extended volumes around insitu microphysical
measurements. Such mapping might even be used as an element in the selection and execution of

flight plans.
Because of this potential for specular backscatter, the HSRL has been operated 30 - 50 from

zenith, minimizing the impact of this effect on the measurements of backscatter phase function and
backscatter cross section.

NOTE: Summary, References and Figures 3 - 8 may be found in:
p_LrL_LLofGrund and Eloranta ... see poster presentation section.
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MOISTURE AND HEAT BUDGETS OF A CIRRUS

CLOUD FROM AIRCRAFT MEASUREMENTS DURING FIRE

Ismail GULTEPE and Andrew HEYMSFIELD
National Center For Atmospheric Research 1

P.O. Box 3000
Boulder, Colorado 80307

1. INTRODUCTION

Increasing knowledge of cirrus cloud properties can contribute to general circulation
model development and ultimately to a better understanding of climate. The objective of
this study is to gain a better understanding of cirrus cloud characteristics. Observations

from different sensors during the FIRE (First ISCCP (International Satellite Cloud Cli-

matology Program) Regional Experiment) which took place in Wisconsin over Oshkosh

(Start, 1987) together with pertinent calculations will be used to understand the dynami-
cal, microphysical, and radiative characteristics of these clouds.

2. SYNOPTIC CONDITIONS

Cirrus clouds on 31 October over Wisconsin formed in a thermally stable atmosphere.
A cold front moved over the Wisconsin region at 0600 UTC. The winds were averaging 50

2m
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Figure 1. A cross section parallel to the jet stream at 12:00 UTC on 31 October 1986.
Wisconsin region is between 1500 and 2000 kin. The solid lines are for isentropic surfaces
and the dashed lines are for relative humidity with respect to water.

1 The National Center for Atmospheric Research is sponsored by the NationM Science

Foundation.
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m s -1 at 300 mb at 1200 UTC over Wisconsin. There was a weak upper level trough which
deepened at 0000 UTC on i November. The cirrus cloud was situated between 400 and
300 mb over Wisconsin approximately between 1400 UTC and 1830 UTC on 31 October.
Moisture advection from the southwest probably played an important role in the cirrus
formation (see Figure 1) over Wisconsin.

3. MEASUREMENTS

The data for this research were taken by the NCAR King Air and rawinsondes on 31
October 1986 over Oshkosh. The primary measurements from the NCAR King Air were ice
crystal concentration, size, habit, temperature, pressure, dew point, horizontal and vertical
wind speed and direction, and infrared and solar radiances. The raw measurements were
available for calculations at a rate of 1 Hz.

Two different flight patterns are used in this study: the first is the step-up maneuver
and the second is the Lagrangian descent maneuver. The length of each constant altitude
penetration was about 30 km and the separation in the vertical between two penetrations
was about 300 m. The second maneuver called the Lagrangian spiral descent covered a time

period of about 20 minutes (1616-1633 UTC for spiral I and 1657-1720 UTC for spiral II)
for an entire cloud sounding on 31 October 1986. During these spirals, the aircraft descent
rate was about 1.5 m s -1.

4. METHODS OF ANALYSIS

In this section, the moisture and heat budget equations including internal sources

(e.g., ice crystal growth) and external sources (e.g., radiative flux divergence) are given.
The most important parameter in the budget equations is vertical velocity w. Therefore,
first we explain its calculation in the following subsection. Then, different terms (e.g.,

advection and turbulent flux divergence) in the budget equations are discussed.

a. Vertical velocity calculation from hydrometeor data

Vertical velocity w used in the budget equations is calculated from the particle size

spectra measurements. The simultaneous solution technique (Heymsfield, 1977) is used
to obtain w. This technique requires the following terms derived from the PMS 2D-
C probe measurements: ice water content (IWC), precipitation rate (PR), and terminal
velocity (Vt) which are all dependent on habit. This technique does not need dew point
temperature measurements.

b. Moisture budget calculation

The moisture budget for a cirrus cloud is calculated from the continuity equation of

the water vapor mixing ratio. To the equations used by Wilfried (1984), we add two more
terms: the vertical turbulent flux of the moisture and the ice crystal growth rate, and write
the equation as:

Oq --Oq (:3q cOw'q' Owi 1 _ 0 , (1)
o--i+v +WOz+ o---Z-+ pa

where t is the time, q the vapor mixing ratio, s the length along the aircraft longitudinal

axis, z altitude. In Equation (1), the first term is the local change of the vapor mixing
ratio, the second the horizontal advection, the third the vertical advection, the fourth the
divergence of the turbulent moisture flux, and the last term the loss of moisture because
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of the growth of ice crystals (-_t')" The first term is calculated from two Lagrangian spiral

descents which are separated from each other by approximately 43 minutes. The second

term is obtained from the product of the longitudinal wind U with respect to cloud and
the change of the mixing ratio over the constant flight leg. The _ in the third term is
average vertical velocity. Perturbations (e.g., w') are obtained from the measured (w) by

substracting the average (e.g., _). The _ is obtained from q at two constant altitudes

(from the step-up maneuver). The fourth term is calculated from the vertical variation of
the turbulent flux at two constant altitudes. The depletion of vapor from the environment

because of ice crystal growth is determined from equations given by Heymsfleld (1975).

The p_ in the last term is air density.

c. Heat budget calculation

The calculation of the heat budget of a cirrus cloud is also obtained from the continuity

equations used by Telford and Warner (1964) with four additional terms as follows:

() (00) 000 _00 00 0w,0, 00 + + p?6p '+ ,R
(2)

where the first term is the local change of potential temperature 0, the second the horizontal
temperature advection, the third the vertical temperature advectlon, the fourth the vertical
divergence of temperature flux. The fifth and sixth respectively are the local chan_e of
temperature due to the IR and SW radiative fluxes and the last term the latent heat remase
because of the ice crystal growth. In this term. L, is the latent heat of sublimation and
Cp the specific heat at constant pressure. The f_rst term is obtained from the Lagrangian

spiral descent profiles as discussed previously for the moisture budget. The over bar in (2)

signifies the constant altitude flight leg (30 km) averages of the various parameters. The
radiative cooling rate due to the IR and SW radiative flux divergences is calculated from
the IR and SW upward and downward looking radiometers. The radiative cooling rate is

obtained from the following equation (Welch et al., 1980):

I I 8F W
ae _ (3)
--g-i zR,sw-- Cpp_ '

where F is measured irradiance.

5. RESULTS AND CONCLUSIONS

a. Relative importance of the moisture budget terms

The moisture budget of the cirrus on 31 October is calculated from (1). The terms used

in (1) are the local change, horizontal and vertical advections, turbulent flux divergence,

and ice crystal growth terms.

The values of the terms in the moisture budget equations are shown in Table 1. The
layers from I to V in this table are between 7.9 and 9.4 km altitude with a vertical separation

approximately 300 m. The negative (positive) sign indicates the moisture convergence

(divergence) due to the advection. Moisture convergence is seen at low levels. At the
upper levels, moisture divergence is more important. The sum of the terms in the layers,
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excluding the local change term, gives a divergence of 0.031 m 8 kg -1 s -1 which is very
close to t-he local change term. Moisture convergence is seen at layers II, III, and IV. The
sum of the vertical moisture advection values results in a convergence of about -0.095 mg
kg -1 s -1. Turbulent flux divergence is one order of magnitude lower than other terms in
the moisture budget equation. Turbulent flux divergence values add to about 0.003 mg

kg -1 s -1. As a negative source (moisture divergence), ice crystal growth plays relatively
an important role on the expenditure of vapor from the environment at mid-layers. The

small residual value of about 0.002 mg kg -1 s -1 is probably due to errors in the wind
component and the dew point measurements.

b. Relative importance of the heat budget terms

The heat budget of the cirrus cloud on 31 October is calculated from (2). The terms

in the heat budget equation (see Table 2) are the local change, horizontal and vertical ad-

vection, turbulent flux divergence, ice crystal growth rate, and IR and SW flux divergence.
A layer number in this table has the same meaning for those used in Table 1.

Negative values of the terms used in this section will represent cooling in the cirrus
layers. Cold air advection in the lowest layer is about 8°C day -1. Warm air advection is
seen in layers III and V. The net warming due to the horizontal advection term through the

layer is found to be about 0.5 °C day -1. The vertical heat advection is the most important
term in the heat budget equation. Values of the turbulent flux divergence and ice crystal

growth terms are about the same, but they are much smaller than the other terms in (2).
The magnitude of the growth term for the entire cirrus is greater than that of the absolute
radiative flux divergence terms in (2). The IR cooling rate shows that the cirrus cloud

is warming at cloud base with cooling in the upper levels. The maximum cooling rate is
found to be about 14°C day -1 in layers III and IV, and warming about 7°C day -1 in layer

I. The IR coolingrate for the entire cirrus cloud is about 5°C day_ -1. The SW cooling
rate shows that the cirrus is cooling at cloud top and base. At mid-levels, a warming oT
about 8°C day -1 and a similar cooling occurs in the adjacent layers. The sum of the IR
and SW cooling rates for the entire cirrus cloud shows that the net cooling is about 1.1°C

day -1. Error in IR and SW irradiance measurements can be as much as 15% and 50%,

respectively. The residual of about 7.0×10-4°C s -1 between the local cooling rate and the
sum of the other terms in (2) can be attributed to errors in the aircraft measurements.

. Overall, itappears that the dynamic characteristicsof the environment play a crucial
rolein the structure of the cirruscloud. The IR cooling rate and releaseof latentheat are
important in the upper layers,indicating higher ice crystalgrowth rates.
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Table 1. The terms used in the moisture budget equation except the local cooling rate (see

text for detailed discussion).

LAYER U __a _a._, , a,._ _(_-'Tq')
AS P6 At AZ

[mg kg-' sec -1] [mg kg-' sec-' I img kg-' sec-'] [mg kg-' sec-']

I -0.04 0.003 0.0062 -0.0098
II -0.018 -0.041 0.0073 0.0057
III 0.05 -0.028 0.0056 0.0047
IV 0.031 --0.049 0.0053 -0.0023
V 0.008 0.020 0.0034 0.0054

TOTAL 0.031 -0.095 0.0284 0.003

Table 2. The terms used in the heat budget equation except the local cooling rate (see

text for detailed discussion).

LAYER t--_x i0-' w_ × i0-' _-:x 10-' _ i0-' (_' ("') 10-'a* C,p. × _T)/R x 10 -4 "_7 SW ×

I -0.94 -1.31 0.20 0.18 0.80 -0.19

II -0.1 -3. I0 0.04 0.21 - I, 39 1.05

Ill 0.29 --4.40 -0.07 0.16 1,50 -0.98

IV 0.05 -6.09 0.14 0,17 -1.45 0.97

V 0.85 -2.59 0,01 0. I0 -0.06 -0.38

TOTAL 0.05 -17.50 0.32 0.82 -0.60 0,47
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ABSTRACT

Detailed descriptions of the rawinsonde-resolved meteorological conditions (3-hourly soundings)
associated with a succession of five distinct mesoscale cirrus cloud regimes, that were intensively
observed over a 36-hour period, are given. The synoptic scale systems in which these features
were embedded are described and a brief overview of the experiment is given. Regional analyses
of the static stability structure and vertical motion are presented and interpreted with respect to the
characteristics of the corresponding cloud fields as deduced from satellite and lidar observations.
The cloud fields exhibited a high degree of persistent mesoscale organization on scales of 20-500
km reflecting corresponding scales of dynamic and thermodynamic structure/variability as on the
synoptic scale. Cloud generation was usually confined to layers less than 1 km deep (typically
0.5-km in depth) and cellular organization was evident in most cases irrespective of the thermal
stratification. Multilayered development was prevalent (2-3 layers) and was associated with
vertical structure of the temperature and moisture fields resulting primarily from vertical gradients
in horizontal advection. One convective generation layer was usually present. Destabilization
resulted primarily from advective processes that also led to the formation of a transient stable layer
above and/or below the convective layer. Though resembling elevated frontal surfaces, the stable
layers were not extensions of surface features. Cloud processes, primarily ice particle fall-out and
evaporation but also including cloud top detrainment, contributed to generating the multilayered
structure. Two cases of clouds spawned from an overlying cloud deck were seen where one
involved natural seeding of an ice-saturated and conditionally unstable layer in which vigorous
convective development was subsequently observed. Subvisual cirrus in the lower stratosphere
were found to be associated with prior tropopause features (upwind) where denser cirrus existed.
Inferences are drawn with respect to the parameterization of cirrus in large-scale models. In

particular, vertical resolution on the order of 0.5 km will probably be required to adequately
resolve the forcing required for implementation of a physically-based parameterization. Greater
understanding of the nature and causes of the observed mesoscale structure is also needed.

L_'_ ':¢'t,-_''_!;:''_ ': '_' ._,...I.,A i'_-O_ _'_-J_,__
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SUMMARY AND CONCLUSIONS

The cirrus clouds observed on 27-28 October 1986 during the FIRE Cirrus Intensive Field
Observation campaign were organized on a wide range of spatial scales. Three synoptic scale
systems were identified: the "ridge-crest" cloud, the "ridge-axis" cloud band and the "baroclinic
leaf' cloud. Each of these interconnected and long-lived cloud features had a length scale of 1000
km or more. Relative to the position of a weak low level cyclone, the ridge-crest cloud occurred to
the northeast of the cyclone center and surface warm front, the ridge-axis cloud overlay a persistent
weak trough in the surface pressure field and the baroclinic leaf cirrus shield was associated with

the pre-cold frontal region. However, these extensive cloud systems resulted from upper level
processes. Ageostrophic flow (slightly cross-isobaric) within a region extending from just upwind
of the large-scale ridge axis (and over the ridge-crest) back toward the following trough axis was
responsible for weak ascent and the resultant moisture supply to the large-scale cloud systems.
The approximate coincidence of surface features and upper level cloud features reflects their

common causes and mutual development rather than indicating a simple cause-effect relationship.

A high degree of persistent mesoscale organization was evident within each of the larger
scale cirrus features. At least five distinct mesoscale regimes were intensively observed during the
two-day period. Mesoscale uncinus complexes (after Sassen et al., 1989a) in the form of

longitudinal bands (20 km in width) along the ambient wind direction but propagating in the
transverse direction in correspondence with the movement of the large-scale upper air pattern were
observed during the early afternoon of the 27th. They were associated with the entrance region of
a strong jet stream core and constituted the leading edge of the ridge-crest cloud that passed mostly
to the north of the experiment area. Individual bands were maintained for up to nearly six hours.
Later, patches of dissipating cirrus were observed that had formed near the juncture of the three
large-scale cirrus systems. During the night, another banded and well-developed mesoscale
unclnus complex was observed (Grund and Eloranta, 1989). On the 28th, a large mesoscale cloud
system dominated (500 km across). Observations were made of the pre-disturbance cirrus and thin

altocumulus and of the denser cirrus and cirriform altocumulus within the disturbance. The large
wedge-shaped mesoscale cloud feature was embedded within the synoptic scale baroclinic leaf

system and was evident for more than 12 hours. Later, irregular mesoscale patches (50 km across)
of significantly enhanced cirrus were observed within the trailing portion of the baroclinic leaf
cirrus shield. Other distinct mesoscale cirrus features were also evident as they propagated along
the upwind edge of the baroclinic leaf region and had the typical "comma" shape often associated
with extensive cirrus shields on the synoptic scale.

The high degree of mesoscale organization in the observed cirrus cloud fields was a

manifestation of significant mesoscale structure in the dynamics and thermodynamics of the upper
troposphere as shown by our analysis of the available rawinsonde data. Large-scale processes
created a favorable environment for the realization of cloud features in association with this

structure. The dominance of mesoscale processes, found here and in other recent studies (Sassen
et al., 1989a), has significant implications with respect to the parametric representation of cirrus
clouds in large-scale atmospheric models. For example, even using three-hourly rawinsonde
observations, analyses of the conditions associated with the 500-km disturbance observed on the

28th were unable to quantitatively diagnose the corresponding forcing (upward vertical motion)

although there was strong evidence for ascent based on single station analyses. A judiciously
placed special rawinsonde site would probably have allowed us to resolve this forcing. The

diagnosed vertical motions for the two regimes observed on the 27th and the last regime on the
28th were quite reasonable and likely reflect the smaller amplitude of mesoscale variations of
vertical velocity during these events.

Greater understanding of the origin and nature of the mesoscale cloud systems and the
responsible dynamic processes is needed. If strong mesoscale organization is an important global
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characteristic of cirrus, this must be taken into account in parametric treatments of cirrus for large-
scale atmospheric models. We recommend that studies on this topic be initiated.

Another significant conclusion with respect to the structure of the cirrus cloud systems is
that cloud generation typically occurred at multiple levels. This tendency for multilayered
cloudiness conflicts with the assumption of a single cloud layer that is often invoked in the design
of cloud retrieval algorithms for application to satellite observations. Furthermore, the depth of
individual generating layers ranged from less than 0.5 km to about 1 kin. If the tendency for
multilayered structure and shallow cloud generation layers is widely prevalent, there are important
ramifications for modeling cirrus. We suggest that the vertical resolution in mesoscale "cloud
process" models (e.g., Starr and Cox, 1985a) should be on the order of 50 m to adequately capture
the true character of the cloud generation and maintenance processes. It is also clear that the
vertical resolution of large-scale atmospheric models must also be compatible with the observed
scales in order that diagnosis of cirrus generation proceed from physical principles (Start, 1987a).
Otherwise, the parametric treatment must also account for the important effects of unresolved
vertical structure of essentially large-scale model parameters in determining cloud response. Based
on this case study, a vertical resolution of about 0.5 km is needed. Substantial improvements in
the resolution of jet streams and interactions between the upper and lower troposphere would also
very likely result.

Very detailed analyses of the rawinsonde soundings have been presented and compared to
qualitative physical descriptions of cloud structure derived from the extensive cloud lidar
observations reported in Sassen et al. (1989b). In essence, we have attempted to understand why
the clouds occurred and what determined their character. This task was greatly complicated by the
lack of horizontal resolution of the sonde data. This was compounded by the rather poor vertical
resolution of standard rawinsonde data at middle and upper tropospheric levels that made it difficult
to unambiguously identify similar features at different locations and times. The enhanced temporal
resolution (3-hourly soundings) was crucial and somewhat compensated for the deficiencies in
spatial resolution. We also benefited greatly from the availability of high vertical resolution data
routinely obtained at a special supplemental rawinsonde site. Despite the inherent uncertainties and
the lack of moisture data at high levels, good correspondence between observed thermodynamic
and dynamic structure and the cloud observations was found.

The lidar observations reported in Sassen et al. (1989b) revealed that small scale cellular
structures (0.5 to 2 km in width) were prevalent in most of the observed cirrus strata. In some
cases, we were able to identify a corresponding layer of nearly neutral thermal stratification. When
free convection was indicated, it was common to find some cells penetrating significantly into
overlying stably stratified layers. A thin cirrostratus layer usually occurred at about the height of
the highest cell tops. The underlying layer was often conditionally unstable though generally dry.
Evaporation of falling ice crystals (precipitation streamers) may have contributed significantly to its
destabilization. However, cellular structures were also found when there was no evidence of
convective instability. Maintenance of these structures, likely initiated by shear-induced small scale
waves, may have resulted from the effects of latent and radiative heating patterns as shown by
Starr and Cox (1985b). Alternatively, local pulsations in microphysical processes (crystal
nucleation, growth and fallout) in a sheared environment might be responsible, as shown in Sassen
and Dodd (1989). Nonetheless, it is important to note that cellular convective-appearing structure
does not always indicate the presence of free convection although it often does. Furthemaore,
layers of conditional instability are more likely to be associated with the precipitation zone than
with the cloud generation layer itself. More-detailed considerations of the nature and origin of
observed cellular structure are possible based upon the aircraft observations as in Heymsfield et al.
(1989) and Smith et al. (1989).

Differential (in the vertical) temperature advection appears to have been an important factor
in producing the static stability structures that were found to be highly related to cloud generation
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and character. In this respect, the effects of vertical shear of the horizontal wind speed associated
with embedded jet flows were paramount on the 27th while temperature gradients associated with a

pool of relatively warm air were important on the 28th. Vertical structure in diabatic heating (and
cooling) associated with cloud processes was also significant in this respect. In some instances,

the region of cloud formation could be characterized as strongly resembling a frontal overrunning
situation, i.e., ascent and destabilization over a sloped elevated layer of substantial static stability.
However, the underlying stable layer was transient and not an extension of a surface front.

Rather, it appeared to form somewhat in place through a frontogenetic process driven by vertical
gradients in horizontal temperature advection.

Evidence was found for cloud-spawned multilayered development resembling the subcloud
moistening and destabilization mechanism hypothesized by Starr and Cox (1985b). Late on the
28th, an initial non-convective cirrus layer appeared to spawn a highly convective cirrus layer
below. Natural cloud seeding may have played an important role in the development of the 2-km
deep cirriform altocumulus within the mesoscale disturbance on the 28th. Glaciation and growth
of large crystals in a stably stratified thin altocumulus layer (pre-disturbance) likely led to natural
cloud seeding of an underlying ice-saturated and conditionally unstable layer resulting in cloud
formation and vigorous convection extending upward through the initial cloud layer. In each case,
generation of the lower cloud layer may be partly attributed to the ice fallout process associated
with the presence of relatively large particles in the spawning cloud layer.

Another interesting aspect of this case study is that subvisual cirrus were observed on the

27th in a stably stratified layer in the lower stratosphere. These "clouds" were a residual (mostly
evaporated) of subtropopause cirrus formed upwind in association with a higher tropopause and
had advected over the lower tropopause that was forming. The temperature lapse rate in the

upwind source region was more tropospheric. The juxtaposition of tropopauses in the vicinity of
the subvisual cirrus and the rapidly changing stratification in the intervening layer coincided with
the presence of a strong jet core at the lower pause and a secondary wind maximum above

We acknowledge that uncertainties exist in our analyses and interpretations. Nonetheless,
the information and insights represent important and unique inputs for model-based efforts to

understanding of cirrus. For example, suitably initialized cloud process models may be used to
investigate relationships between atmospheric structure and local cloud response for the variety of
situations comprising this case. Results of such simulations can be compared to the observed
cloud properties to provide a basis for model improvement and validation. Efforts in this area are
planned. The available data base will be even greater after additional case studies of the 1986 FIRE
Cirrus IFO observations are completed.
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i. Introduction

The First ISCCP Regional Experiment (FIRE) Cirrus Intensive Field

Observation (IFO) program measured cirrus cloud properties with a variety of

instruments from the surface, aircraft, and satellites. Surface and

aircraft observations provide small-scale point and line measurements of

different micro- and macrophyslcal properties of advecting and evolving

cloud systems. Satellite radiance data may be used to measure the areal
variations of the bulk cloud characteristics over meso- and large-scales.

Ideally, the detailed cloud properties derived from the small-scale
measurements should be tied to the bulk cloud properties typically derived

from the satellite data. Full linkage of these data sets for a

comprehensive description of a given cloud field, one of the goals of FIRE,

should lead to significant progress in understanding, measuring, and

modeling cirrus cloud systems. In this paper, the relationships derived

from intercomparisons of lldar and satellite data by Minnis et al. (1989a)

are exploited in a mesoscale analysis of the satellite data taken over

Wisconsin during the Cirrus IFO Case Study.

2. Data and Nethodology

Daytime half-hourly, l-km visible (VIS, 0.65 _m) and 4xS-km infrared (IR,

11.5 _m) GOES data were used to construct bispectral histograms on a 0.5 °

latitude-longitude grid between 42°N and 47°N and 87°W and 92°W during 27-28
October 1986. The VlS data are stored as counts between 0 and 63 which were

converted to radiance and reflectance, p. The IR data are stored as counts

between 0 and 255 which are converted to equivalent blackbody temperature,

T. Soundings taken every 6 hours over Green Bay, Wisconsin were used to
determine the vertical variation of temperature. Linear interpolation

between the soundings was used to estimate the temperatures at each half

hour.

The parameters of interest here are cloud amount, C; cloud-top

temperature, Tt; cloud-center temperature, Tc; cloud-top height, zt; cloud-

" cloud thickness, h; cloud emittance, e; VIS opticalcenter height, zc,

depth, rv, and clear-sky temperature, Tcs. The relationships between these

parameters during the IFO were explored by Minnis et al. (1989a,b) using
combined satellite-lidar data. A simple physical model is used here to

relate the observed reflectance to cloud optical depth:

- a ) (I)
9 = TaXc=c + TcTuPs + asd(l " ad)(l " Tc c "
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Cloud albedo is _c- _c(rv ' _o); the diffuse cloud albedo is a d - _d(rv);

and the cloud anisotropic reflectance factor is Xc. The values for the

albedos are determined in the same manner as Minnis et al. (1989b) using the

results of Takano and Liou (1989). Values for Xc are taken from the

results of Minnis et al. (1989a). Ozone transmittance above the cloud is

Ta; T and T are the transmittances of the cloud to direct downward andC U

upward VIS radiation, respectively; Ps is the clear-sky reflectance; esd

is the diffuse clear-sky albedo; and _0 is the cosine of the solar zenith

angle. The infrared optical depth is re - 2.17r . The effective infraredV

beam emittance is _ - I exp(-r / _) where _ is the cosine of the
e

viewing zenith angle. Assuming a pixel is completely cloud-filled,

Tc - B'I{[B(T) (I - _)B(Tcs)] / c}. (2)

Details for computing T t, z c, zt, and h are given in Minnis et al.

(1989b).

The basic approach to deriving these parameters from a histogram is
outlined below.

I) Consider all pixels with T < Tcs - 3K as cloudy.

2) Assign pixel to altitude level: low, middle, or high (Fig. I).

3) Compute average reflectance for each temperature in a layer.

4) Compute rv for each observed temperature within the layer.

5) Compute T Tt, and _ for each observed T in the layerC _

6) Compute average T c, Tt, rv, and _ for each layer.

7) Compute z c, zt, and h for each layer from results of (6).

8) Compute mean values for each variable by combining layer reults.

The functions Pm and Ph describe the VIS-IR thresholds between low and

middle and between middle and high cloud, respectively.

3. Results and Discussion

This approach was applied to the lidar-satellite data of Minnis et al.

(1989a) to determine the errors in the resulting cloud parameters. A

comparison of selected parameters for total cloudiness is shown in Fig. 2

for Fort McCoy data. Figure 3 shows the comparison of the lidar cloud-top

heights and the satellite-derived high cloud-top altitudes. The comparison

results are summarized in Table I. The satelllte-derived total cloud-center

heights agree well with the lidar, on average, while the corresponding

cloud-top altitudes are underestimated by 0.5 km. If only high clouds (as

detected by the satellite) are considered, the satellite results agree with

the lidar values of zt, but underestimate the values of z . These
C

differences may be attributed to several effects. Some midlevel cloudiness

may have been within the satellite field of view and still not have advected

over the lidar sites. Partially cloud-filled pixels may have decreased the

altitudes of some pixels or the values of Xc may have been inadequate at

some hours.
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Examples of the derived values of hlgh and midlevel cloud fraction, z
C'

and _ are shown in Figs. 4 - 7 for 15, 18, and 21 UTC during October 28,

1986. At 15 UTC, most of the clouds are above 6 km (Fig. 4). Midlevel

cloudiness is confined to the southern portion of the region (Fig. 5).

Average values of z c range between 7 and 9 km (Fig. 6). The thicker

clouds, as determined by the emlttances, are primarily in the northern half

of the IFO box (Fig. 7). By midday (18 UTC), an area of clearing has moved

into central Wisconsin. Cloud-center heights have increased to Ii km in the

east while some scattered high and mldlevel clouds follow the clearing llne.

At 21 UTC, the average cloud heights vary from 7 to 9 km again with

significant midlevel cloudiness in the northern half of the box. Some

mesoscale structure is evident in the emlttance fields.

4. Concluding Remarks

The cloud parameters derived with the empirical technique described

represent the most accurate, detailed areal cloud properties available for

the Case Study. Additional research using other IFO results with

theoretical calculations is needed to generalize the technique used here.
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Fig. I. Schematic diagram of histogram analysis.

Difference bias rme
(Ltdar -

Satelli¢o)

Total cloud

z c (kin) -0.08 0.94

z t (kin) 0.53 0.90

h (kin) 0.29 1.00

c 0.00 0.05

'v -0.03 0.13

High cloude
only

z c (km) -0.41 1.13

=t (ks) -0.09 0.63

Table I. Differences between cloud parameter

values derived with lidar-satelllte

data act and satellite data only.
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INTRODUCTION - One objective of the FIRE Project is to validate the cloud

parameters given on ISCCP tapes. ISCCP first defines whether or not a region
is clear or has clouds based on two threshold algorithms. If the region has

clouds, then a cloud optical depth is given as well as a cloud height.

Special high-resolution ISCCP CX tapes were created for the time period of the

Wisconsin FIRE experiment. These tapes did not include the cloud height

product, however, other parameters used to make up the standard ISCCP CI

products were available. It is the purpose of this paper to compare the ISCCP

cloud/no cloud and cloud optical depth parameters with surface-derived values

for the Wisconsin FIRE region during the October 27 and 28 case study days.

DATA - A total of 6 daylight scenes on October 27 and 28 were examined.

For sake of brevity, only 3 scenes are presented in this paper to illustrate

typical results. Four types of images are presented for each scene as shown

in figures 1 through 3.

For each figure, both images on the left side of the figure are based on
instrument measurements from the surface at various ground-truth sites during

the experiment. Cloud fraction and optical depth are half-hour averages shown

as lines based on wind velocity and direction at cloud altitude. Cloud

fraction results were obtained from hemispherical surface radiometers. Optical

depth values were obtained from a narrow-beam radiometer at Ft. McCoy, a
combination of shadow-band and hemispherical radiometers at Wausau, and a lidar

at Madison. (See reference I for a more complete description of these data and

instruments used for the measurements.)

The images on the right side of the figure are based on data from the special

ISCCP CX tape. Data are given for pixel locations based on sampling of the

basic satellite data every 30 km instead of at the ground truth sites. The

pixel locations are held constant for each month, but may change from month to

month. Cloud/no cloud conditions were determined using 3 parameters from the

CX tapes in the same manner as used to obtain CI cloud parameters. If the
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parameter CLOUD CODE indicated clear, then the "no cloud" condition was

assumed. If CLOUD CODE indicated as either undecided, mixed, or co___q_q__, an

additional test was done. If either the VIS THRESHOLD or IR THRESHOLD codes

had a value of 4 or 5, it was assumed that "cloudy" conditions existed,

otherwise the sky was assumed to be clear. (Undecided clear skies existed on

Oct. 27.) A zero value in the ISCCP cloud optical depth image indicates clear
sky locations.

RESULTS - Figure 1 is a scene when nearly clear sky conditions existed. Surface

cloud fraction values are zero for much of the scene except for the most

western site (Ft. McCoy) and patches near the most southeastern site (Madison).

The ISCCP data indicates totally clear skies. Review of the original l-km

satellite images indicates that clouds did exist suggesting that the ISCCP

procedure may not detect some thin clouds because of either threshold or

navigation errors.

Figure 2 is a cirrus cloud day at the same solar angle as figure i. Surface

data show broken or overcast cloud fractions over every site, and most ISCCP

locations are indicated as cloudy. Non-zero surface cloud optical depth values

are indicated at each station where ground measurements were made. At Wausau,

the ISCCP optical depth at a nearby pixel is of the same magnitude as the

surface measured value, but a precise comparison is impossible. The Ft. McCoy

optical depth value (0.22) is probably of the same magnitude as ISCCP values

(between 0 and 0.75), however, ISCCP values near Madison (1.42 - 2.55) appear

much larger than the ground truth value of 0.24.

Figure 3 is a cirrus scene with a higher solar angle than figures I and 2.

Again surface-measured cloud fraction is non-zero, and ISCCP indicates clouds

over the central and eastern portions of the region. Surface-measured optical

depth at Ft. McCoy is very low, explaining why ISCCP is indicating no clouds in

that region. ISCCP cloud optical depth values near Madison range from 0 - 1.73

which may be near the measured value of 0.34. A large discrepancy exists at

Wausau, however. ISCCP nearby-pixel values range from 1.82 to 5.45 as

compared with a measured value of 0.98. Examination of the original l-km

satellite imagery indicates sharp changes in cloud reflectance around Wausau.

Again the satellite pixel to ground station navigation mismatch may be the

reason for the large discrepancy in cloud optical depth values.

CONCLUDING REMARKS - Satellite pixel to ground station navigation mismatch

precludes a direct quantitative validation of ISCCP cloud/no cloud and cloud

optical depth parameters. In a qualitative sense, ISCCP procedures seemed to

predict cloud/no cloud conditions reasonably well over grassland and forests,

with a slight tendency not to detect very thin clouds. It is not known how

well the algorithm operates over more difficult surfaces such as snow and

deserts. Accuracy of ISCCP cloud optical depth values is not known.

Comparisons were inconsistent with factor of i0 differences in some cases. A

revised validation strategy is desirable.
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Figure 1. Surface-measured cloud fraction and cloud optical depth compared to

ISCCP cloud parameters under nearly clear sky conditions with solar

zenith angle - 67.3 °.
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Figure 2. Surface-measured cloud fraction and cloud optical depth compared to

ISCCP cloud parameters under cirrus cloud conditions with solar

zenith angle - 67.7 °.
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Figure 3. Surface-measured cloud fraction and cloud optical depth compared to

ISCCP cloud parameters under cirrus cloud conditions with solar

zenith angle - 61.3 ° .
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1. Introduction

Usinj_ aircraft in situ measurements, we

examined tlae microphysics of cirrus clouds

observed on 28 October 1986 during FIRE.

We present our results as one component of

an extensive coordinated study of the cirrus
on this clay. Our study contributes to the

understanding of cold clouds by (i) provid-

ing microphysical data to supplement satel-
lite and aircraft radiometer data for investi-

gating cirrus cloud radiative effects; (it) pro-

viding more complete information on ice par-

ticle evolution and cloud forcing mechanisms

than was available in the past, through the

use of instrumentation with higher resolution

and more accurate calibration; (iii) expand-

ing our knowledge of tile particle characteris-

tics in cold liquid water clouds, through im-

proved instrumentation and by making use
of seTlsors on other l)latforms, such as lidar;

and (iv) by estimating the ice nucleus con-

centrations active at low temperatures in the

l,pper troposphere from the concentrations of

ice particles in colloidally stable liquid water
clouds.

2. Aircraft instrumentation and flight

locations

The clouds were saualdtql t,n 2,_ O,'l<,-

ber 1986 in the vicinity of (lr(.en Bay ,nd

Wausau, WI. An upper level trough and a

cold front from 400 mb to the surface were

located in western Wisconsin. Details of the

synoptic conditions are given by, Starr and

Wylie (1989).

The NCAR King Air turboprop and

Sabreliner jet aircraft were used for the data

collection. The period analyzed for the
Sabreliner coincided with data collected from

LANDSAT at 1553 UTC. The flight pattern
included racetracks oriented about 30 ° off the

mean horizontal wind direction of 260* at six

altitudes from 8.6 to 11.3 km. The period an-

alyzed for the King Air was just prior to and

overlapped that for the Sabreliner. The flight

pattern consisted of level traverses from 7.0
to 7.5 km.

Temperatures measured by the Rose-

mount sensors were accurate to -F 0.25°C,
with a resolution of 0.006°C. Dew point tem-

peratures were obtained from E(_,%(; frost

point hygrometers, which, at low tempera-

tures, respond slowly and are of dubious ac-

curacy. Liquid water (T,W) was detected ariel

the liquid water ('_mlf.tll (I,W('.) I,t('_sur,',l

using IlosenllmtWt i,'ilUZ (letr,'t_,v's (I{l(!l",).

I)r_,plet sizP Sl_CClv'a nn_l the I,W(' w,'r,' Ill,';_

.qllre,l otl the' l(Itlg Air u,qlIl_,n. I'_,rli('l,' lkl,,a

suring Systems (I_I_IS) I:_,rw, rd .Sc_tt¢.ritlr.

._l)q-,'tl'mllel.,'r l't',d_' (I"HSI') sizin,g frolº! I.F,
to d6.5 p,m in 3 finn bitls be.ginning at 3 pi..

Both aircraft were equipped with two PMS

1The National Center for Atmospheric Research is sponsored by the National Science l"oull,lnt i,),.
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71) I.',,I-'._I_,(l('I('q'lil't"l_arlhh's l;_ru,_'rlh_i.

2.e'l rio [till, hul we will Io,>k _t _Jnly iIw Sahl'e-

liner (lala here. Ice I)art.lcle sh,'llWS (haliits)

llliq[ :_ize ._llel.'l.la iiliql eslililille(I ch,l_l ice wa-

ter conlent (IW(J) w,'l'e derived fruin the 21)

_[<qtil iili(I direcl c_llieclh>iis (if liarticles (ill oil-

i ,,;lle, I _li,l,'s.

3. lee particle and droplet micro-

I:iKiire I del)icls a verlical ¢l'OSS sect.ion

,if lht. ;it I_.liu;lle_l liackscat.ter oliserve(I lly l.he

1':11-2 ihiwiiw;i.rll-hltlkinl4 Ihlar fl_r I.%2 1,%8

IIT(_ ;is Ih_. aircr;lll overflew Ihe study area.

Ill lh<' i'e_hin shown, lhere are Iwo cloud lay-

_-i's. The ill)per ('ili'liS layer extends froill .(J.0

1_, II ._', kill. Mul'h _)r ;ill (if the lower slruet, ure

,)1 lhi_ ril'lllS ill)lieal'S Io result t'l'Olii lirecil)it.a -

lion ill h'_" ci'yslals h'oui the {hhl layer al)ow-

II kill. The _ahi'eihier traverses were ('on-

dueled withhl this higher cloud layer. ]'lie

1,,wer ('h,lld layer fro)in 7 Io 8 kin consists of

t.wo clolld lyl)es. A hiw dellsity cirrus cl.ud

is fi)uild 1)etween 15 and 25 kin distance; this

Figure 1. A vertical cr_)ss ,_l., _illll _il Ih,' tll.-

I<-liilated I)ackscaller ()l)sel've_l ILV Ih,' Ell ?

(l_wnwal'd-lookililz li_lal' flir IDF_:! IDr,l; I1'1'1!

;l_ th(" <_ircraft. overflew t.]le sl Jill)' iil','li.

.'hlud, I_,,,, i,lily ieslill. Irlllli I)i'eCiliit;llillli i,I

ice panicles t'l_nl illmul 8 kill. All all()stra-

t us chmd less lhali 250 in t.hh'k is t'l,llli(I else-

where. I,id;Ir _lel)(,larizati(,li dal,a illdicate

thai tile altoslr,'ltus layer w,as conll)osed pri-

lllarily of water dropiels.

[c_" parlides >15() /_lll s,'tllll,h'_l It,' ltw

Sal)reliner 1)relies at the Ul)lWr ('htild levels

were l)l'illiai'il) ' i'tlllllilllS ali([ Cllllililill Sl);lti;ll

I)arl.icles ,,villi exlensh_iis; tll_tse sanll)h'd ;ll

the lower levels w<'re lirilnarily l>ullet rl,selles.

l)ossilily lliis Hr_<-i was due 1_) Ihe fasler

14rowi.h Ial, e (if the I)lilll'l I'l>selles ()1" I(i Ihe

_rowth of C()lli])a('t Sllalial ])al'liries anli/l_r

a(Idit.ional lill('lealil)n in a ('l)llVel'liyeiy IlllS|a-

ble layer ])eLWeeli ,q..r)0 ;lll(I 9.(iVl kill. liarlitles

< l,r')fO/llll were ('()ili])art Sl)alia] I)arlirles, I)ul

we ]lave Iiiile elilifi(lelice in the hahit ,assil4n-

nient.; these I)arlh'les ('liuhl have ])eeu l)lales

or evell ('lillllllll,,:i,

PARTICI.E CONCENTRATION PROFILE

! .

I0 ¸_ I0 I 16-! iO'l 10 t i01 iO I

I_'ill(ure 7. I,,' lilirli,'h" ,',,ll,',.lilliili,ln I,y >.i:,'

rllll'hlllil'_ I1_; I| IIIIIrli_dl ill il[lilll_lr ( t : '1',,i;*1

I : • ']111) 11111; '' : ..Itll qllll 11111; " : .r_llll ;;llll

[llll).

1"il4ure 7 sli,,w._ I,ilrli,'le i_lllrelitr,-ili,lli_

l),v size calelAlilies ;Is a fllll('lil)ll ,,[" ;tlli
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tude. (!oncentrations decreased with increas-

ing particle size, a spectrum typical of cirrus
clouds. The total concentration was domi-

nated by the coucentration in the first size

category. The concentrations in all size cate-

gories remained fairly constant with altitude;

it is no! known if this effect was due to par-

ticle fallout. But, notably, a sharp decrease

in the concentrations of the larger particles

occllrred at the colder temperatures. The

concentratiou of aggregates--particles con-

taining two or more individual ice crystals---

increased with decreasing altitude (Fig. 2,

dashed fine). Most of the large particles were

aggregates.

The maximum ice particle dimensiou

i)lotted in Fig..q shows a trend from smaller

sizes a| the cohl temperatures near the cloud

top to larger sizes at the base. The mass-

weighted mean diameter shows a similar

trend.

MASS-WEIGHTED MEAN DIAMETER

12000 •

I1_

II000

.IOC_XI

95_

9OOO

0

I t I i

.015 .03_1

I i L i I i I i I i I i i .

.045 .060 .0 "¢q5 .1_ .166 .120 .175 .150

Dream (era)

Figure 3. ?vla×iuml_ all,I lll,'nll llmss-

weiglfled ice particle dime_lsitms as u.l'utlcli_m

of altitude.

The IWC (Fig. 4) was c,h'ul,ltc(I I',,,1,,

the particle size spectra and habit percent-

al_es. The data show wide horizontal vari-

ability as indicated by the standard deviation

about the mean. A dependence ou north-

south variability in the traverses is evident.

Looking at the southern seglllenls (traverse_

1, 3, 5. from the top) and the northern seg-

ments (2, 4, 6) grouped sel,arately, two dis-

tinct patterns of increasing IW(! with ,le-

creasing altitude are seen; the value of I\.V(! is

consistently higher in the southern traverses.
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Figure 4. Ice water content as a function of

altitude.

The cumulative distribution of ice mass

as a function of altitude and particle size ap-

pears in Fig. 5. At. the upper levels, the

distribution indicates that considerable mass

might be present below the minimum ice par-

ticle size detectable with the 2D-C probe.

At. the lower levels, l)rol_ably most of the ice

n_,ss is _Mccl,l,le.

I,i,l_ti,I w,t,'r w,s t_l,._ttr,',l Ir,,i,, t1_,.

ISt_I'. Air il_ t,'1_ s,'lml'nte ,'V,'llls nt ;lIlil_l,l,'r

, h,_riz,,nlt,I ,listntl,," ,,I lit, t,, '/.(I kill. All

,'v,'_t was _ I-'ri,,,I ,_1",',,l_ti_t,,_s 13'\" del,',

ti_m, that is, where no _ore lhan one cousec-

ufive second elapsed wil.hout I,W deterti_.
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Tile LWC averaged over each traverse was

typically less than 0.00fi g m -3. Droplet con-

centrations were less than 70 cm -3, and av-

erage diameters were smaller than 7 pro. Ice

particle concentrations ill these events were

extremely low, less tha, 0.05 e -'.

Figure 6 shows a high resolution view of

the lidar backscatter within the altocumulus

layer. The mean droplet diameters and the

LWC observed from the King Air during an

ascent through this layer are shown in Figs.

7A and 7B. The scale of horizontal variabil-

ity in LWC is cotnmensurate with the scale of

changes in lidar I)ackscatter, approximately
0.5 kin. The LWC was about half the adia-

batic value, and since ice mass was negligi-

ble withi, the layer, nfixing was evidently re-

(h,cing the LWC. From the temperature data,

we concluded that the cloud was convectively

stable, and that the cloud layer lifted from
above a, inversion at the base of the LW re-

gion.

4. Conclusions

We examined the nficrostructure of the

ice and liquid water phases for the FIRE cir-

rus case study of 28 October, 1988, using
measurements taken from two aircraft be-

tween 6 and 12 kin. We characterized ice

particle and droplet concentrations, and ice

and liquid water contents.

Our data indicate that the cirrus re-

suited from weak uplift of 10 cm s -1 or less

and the LW layer sampled at the satellite

1 "

0.9.

0.8.

0.7,

©um..6.
frsc.

or0.5'

ms Sill

0.4.

0.3'

overpass time resulted Irom forced ascent at

25 cm s -j above a sloped temperature inver-

sion. The LW layer was capped by a stable

layer; calculated Richardson re, tubers were <

0.25, suggesting that this zone may have con-
tained Kelvin-Hehnholz waves.

The most significa,t microphysical find-

ing was the persistence of liquid water clouds

at temperatures about -30°C. Virtually ,o

ice particles were detected in the cloud. Also

of importance was the observation of ice

crystal aggregates at temperatures as low as

-56"12. Aggregation accounted for the de-

velopment of most of the larger particles

present, since the growth rates of aggregates

are much higher than the rates for single crys-
tals.
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Figure 6. l,idar hackscatter cross section observed by l,R-21idnr 1552 1556 I1'1'C showinR

nltocull,lllus layer sampled by King Air. (lleight is km _ 10.)
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I. INTRODUCTION

The radiative properties of cirrus clouds present one of the

major unresolved problems in weather and climate research.

Uncertainties in ice particle amount and size and, also, the

general inability to model the single scattering properties of

their usually complex particle shapes, prevent accurate model

predictions. For an improved understanding of cirrus radiative

effects, field experiments, as those of the Cirrus IFO of Fire,

are necessary. Simultaneous measurements of (i) radiative fluxes

and (2) cirrus microphysics at multiple cirrus cloud altitudes

allow to pit calculated versus measured vertical flux profiles;

with the potential to judge current cirrus cloud modeling.

2. MEASUREMENTS

As part of the detailed cirrus case study (Starr and Wylie,

1989), data are analyzed for a 75 by 50 km cirrus cloud field

that moved over Wausau, WI, in the morning of October 28 th, 1986.

The observing systems provide simultaneous measurements of

radiative broadband fluxes and cloud microphysics at altitudes of

6.1, 6.4, 7.0, 7.3, 7.6, 7.9 and 8.2km altitude within the cirrus

cloud (NCAR King-air) and cloud geometry data from stratospheric

(NASA ER-2) and groundbased (Wausau) remote sensing measurements.

Trajectories of the two aircraft and the position of Wausau with

respect to the moving cloud-field (78km/h 245 ° ) in Figure 1 show

that these measurements rarely occured at the same cloud field

position, so that flux profiles at cloud height from measurements

are only realistic, if homogeneity of the cloud field can be

guaranteed. Unfortunately, strong inhomogeneities are indicated

by 10_m upwelling radiance measurements of the ER-2 and are

illustrated by the contour plot of Figure 2. Equivalent blackbody

temperatures of in the right half of the cloud field compared to

those in the left half are lower by about 15K. Assuming an

effective cloud altitude of 7.6km (240K atmospheric temperature),

infrared optical depths larger than 2 for the right side and

optical depths smaller than 1 for the left side of the cloud-

field are detected. The groundbased lidar (Sassen, 1989) reveals

an uniform cloud base at 6km altitude, while the ER-2 lidar

(Spinhirne et ai.,1989) detects cloud tops as high as llkm for

the optically thicker right part of the cloud-field. Despite

these cloud top heights, the chosen effective cloud altitude may

even be lower than 7.6km (and optical depths larger), because
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strong extinctions directly above the cloud base between 6.5 and

7.5km altitude generally dominate the radiative character of the
cirrus cloud. The detected two natured character of the cloud-

field is also supported by flux measurements, with solar and

infrared optical depths of 5 and 3 for the right region being

larger by a factor of 3 over those from the left cloud-field

region. Thus, any comparison between measured and calculated

fluxes has to treat both cloud-field domains separately.

3. MODELING

Calculations of broadband radiative fluxes are performed

with an accurate I-D spectral radiative transfer model. For the

atmospheric profile, the 18 GMT Greenbay radiosonde data (Starr

and Wylie, 1989), have been adjusted (T:-3K, water vapor

saturation at cloud height) to make the sounding consistent with

the King-air measurements. Humidity data above ii km altitude and

the ozone profile were taken from the US-Standard Atmosphere.

Solar calculations assume a solar constant of 1360 W/m 2 and a

solar zenith angle of 60 ° . This angle is accurate to within a few

degrees with respect to local time (10.30 - 11.30 am), latitude

(45 ° ) and time of year (October 28th). A solar surface albedo of

15% was adopted, which is typical of midlatitude land surfaces.

The cloud is modeled in 300 km thick layers from the cloud base

at 6.1km to 8.2km altitude in the optically thinner and to lO.6km

altitude in the optically thicker region of the cloud-field.

Single scattering properties for ice particles, which are compact

crystals with branches, bullet rosettes and hollow-ended single

columns in that order (Heymsfield et ai.,1989), are derived from

2-D imaging probe data. First, columns and column rosettes are
modeled from measurements of cross-section area and maximum

particle dimension. Then these columnar shapes are expressed by

spheres of equivalent surface area, which provide in Mie

calculations almost identical extinctions. Non-spherical shape

effects are accounted for by reducing the solar co-single

scattering albedo of spheres to 0.7 of its original value and by

reducing the solar asymmetry-factor by 0.05.
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4. COMPARISON

The comparison between measured and calculated fluxes

suffers from the inhomogeneity of the cloud-field. Measurements

at the lower cloud altitudes occurred in the optically denser

right section of the cloud-field (see Figure 1 and 2), while

measurements above 7.5km altitude ocurred in the optically

thinner left section. This makes it difficult to establish an

accurate radiative flux profile. Moreover, even within these

regions for each cloud altitude a wide range of flux values is

detected, especially at solar wavelengths. Since it is difficult

to judge the accuracy for measurements in the optically thinner

cloud region with measurements at only two cloud altitudes, the

comparison, here, concentrates on results for the optically

denser region of the cloud-field. Horizontal bars in Figure 3

indicate ranges of flux measurements in areas of the cloud-field,



where the equivalent blackbody temperature TB (see Figure 2)
dropped below 250K. To represent this cloud-field section in
calculations, particle size distributions based on 2-D imaging
probe averages from the five lowest flight legs between 6.1 and
7.5 km altitude have been modeled into a cloud layer between 6.1
and 10.6km altitude. These distributions are characterized by
large crystals, since particles with equivalent radii of about
70_m provide the largest cross-section. However, there is an
uncertainty towards smaller particle sizes with radii less than
20_m, the instrumentation was unable to detect. Assuming a
decreasing particle density from 7.Skm upward towards the cloud
top, the total cloud optical depth amounts to 2.6. The comparison
in Figure 3 shows that measurements indicate larger optical
depths, especially at solar wavelengths. Even with the
microphysics from region with TB less than 240K the smallest
solar downward fluxes cannot be reproduced. Since microphysical
measurements might have overlooked a possible influence of small
particles, additional small particles with radii of about 3_m in
the water and in the ice phase have been added in two different
cases to the detected average size distributions near the cloud
base. Their addition certainly cloud explain the disagreement
between calculated and measured fluxes.

5, Conclusion

Most of the problems in this study are linked to the

inhomogeneity of the cloud-field. Thus, only studies on more

homogeneous cirrus cloud cases promise a possibility to improve

current cirrus parameterizations. Still, the current inability to

detect small ice-particles will remains as a considerable

handicap.

In future experiments an instrument is needed, that can
detect concentrations of ice particles for sizes between 1 and

40_m. Most desireable in future experiments are measurements of

microphysics and radiation, which are simultaneously taken at
different cloud altitudes. Due to the lack of airborne

instrumentation, however, measurements along altitude legs will

generally be time delayed. Then a drift with the ambient air will

make cloud measurements much more useful.

Heymsfield, A.J. and K.M. Miller, 1989: October 27-28 1986 FIRE

cirrus case study: Cloud microstructure.

Sassen K. 1989: Wausau-lidar observations on October 28, 1986

Spinhirne J.D. and W.D. Hart: ER-2 lidar and spectral radiometer
cirrus observations for October 28, 1986.

Starr D. and D.P. Wylie, 1989: The 27-28 October 1986 Fire case

study: Meteorology and Cloud-Field.

all submitted to Mon.Wea.Rev.
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1. INTRODUCTION
Theoretical calculations predict that cloud reflectance in near-infrared windows such as

those at 1.6am and 2.2am should give lower reflectances than at visible wavelengths (Pollack et
al., 1978; Hansen and Pollack,1970; Twomey, 1971). The reason for this difference is that ice and
liquid water show significant absorption at these wavelengths, in contrast to the nearly
conservative scattering at wavelengths shorter than l urn. In addition, because the amount of
absorption scales with the path length of radiation through the particle, increasing cloud
particle size should lead to decreasing reflectances at 1.6am and 2.2um. Measurements at these
wavelengths to date, however, have often given unpredicted results. Twomey and Cocks (1982) found
unexpectedly high absorption (factors of 3 to 5) in optically thick liquid water clouds. Curran
and Wu (1982) found unexpectedly low absorption in optically thick high clouds, and postulated the
existence of supercooled small water droplets in place of the expected large ice particles. We
will examine the implications of the FIRE data for optically thin cirrus.

2. RESULTS
The Landsat satellite has spectral bands at 0.83am, 1.65um, and 2.21am which cover this

range of variation in cloud absorption. Each pixel has a nominal spatial resolution of 28.5
meters. Figure 1 gives the region covered by the Landsat data over Lake Michigan on October 28,
1986. Figure 2 gives the Landsat measured nadir reflectance ratio R(2.21um)/R(0.83um) for the
58.4 km square analysis region (solid line) in Fig. I. At 15:38:30 UTC the King Air aircraft took
a direct sample of the cloud particles on an oil covered slide. The sample is shown in Fig. 3b
and is dominated by water droplets with a mean radius of about 4urn. This sample corresponds to a
reflectance ratio of about 0.75 found in the Landsat data at location "1" in Fig. 2. There is a

time difference of 15 minutes between the King Air and Landsat observations. The liquid water

regions of this cloud, however, appear to have been colloidally stable (Heymsfield et al, 1989).
A second direct cloud particle sample was collected at 15:52 UTC. This sample is shown in Fig. 3a
and contains only ice particles (broken spatial plates and some columns, 20 to 300am in length).
This second sample corresponds to a reflectance ratio of about 0.4 found in the Landsat data at
location "2" in Fig. 2. Note that the reflectances used to derive the image in Fig. 2 are not
corrected for surface reflectance. In this case the reflectance ratios are a mixture of clear and

cloudy signatures.
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Given this qualitative agreement between the satellite and aircraft data, the next step is
to test the quantitative agreement along the King Air aircraft track. The Landsat radiance data

are spatially averaged to l km resolution, sampled every 0.5 km along the King Air groundtrack.

Cloud reflectances are then corrected for surface reflectance effects as in Platt et al (1980).
The 1.65_tm and 2.21#m channels are found to require less than 0.01 correction for surface
reflectance. The correction for the 0.83/_m channel is less than 0.05.

Figure 4 compares theoretical radiance calculations using the Finite Difference method

(Suttles, 1981, 1985; Barkstrom, 1976) with the measured nadir cloud reflectance at 0.83_m and at

both 1.65#m and 2.21_m along the King Air groundtrack. Calculations use a solar zenith angle of
60 ° . The phase function for ice particles is taken from the laboratory measurements of

Volkovitskiy et al (1980). The phase function for water particles is taken from theoretical Mie

calculations with an effective radius of 3.8/zm. Figures 4a and b give results for 1.65#m.

Figures 4c and 4d give results for 2.21#m. The Landsat data are shown with symbols indicating the

corresponding portion of the King Air track shown in Fig. 2.

It is evident that there are two distinct populations of cloud particles along the 88 km

track. The high reflectance ratio values in Fig. 2 (15:38:10-15:39:09 UTC and 15:49:40-15:50:39

UTC) appear along the diagonal of nearly equal reflectance at the two wavelengths and are

consistent with water droplets or ice spheres with radius less than 7.5/Jm. The remaining data
indicate larger particles of about 60#m radius. Examination of the 1.65/_m versus 2.21#m data

given in Fig. 4 indicates that the large particles are ice. An assumption of liquid water for the

large particles would give inconsistent particle sizes at 1.65 and 2.21#m. An assumption of ice

gives consistent particle size in the two wavelengths. The small particles are too small to

reliably distinguish ice from liquid water phase for these optically thin clouds.

Figure 5 gives the King Air particle size distributions using the combined FSSP, 2D-C, and

2D-P probes. F_r the 2D-C and 2D-P probes, particle size is calculated as a sphere with cross-
section area rl r equal to the area of the particle image in the 2-D probe. For compact non-

spherical particles, this specification is similar to using equivalent volume spheres (Pollack and

Cuzzi, 1980). Pollack and Cuzzi (1980) found that for large size parameter x = 2ar/_ >> l, and

moderate absorption 2n'x < l) (where n' is the imaginary index of refraction), equivalent volume
spheres are most accurate for absorption efficiency determination. For the 1.65/_m and 2.21#m

spectral bands, the appropriate radius range would be from about 3#m to 400#m. Given the compact
particle habits observed in the microphysical data, the use of equivalent cross-section area

spheres should be reasonably accurate. Large aspect ratio particles would lead to an overestimate

of the true particle volume, and therefore an overestimate in particle absorption at 1.65 and

2.21#m. Such particles, however, were rarely noted in the data.

Four characteristic size distributions are given in Fig. 5. The data for 15:38:10 to

15:39:09 UTC cover the high ratio of R(2.21)/R(0.83) found in Fig. 2 near the location "l" in the

figure. The microphysical data are dominated by small water droplets with radius about 4_m. The

next section of the flight track (15:39:10 to 15:45:24 UTC) shows a peak at about 150#m, but no

water droplets. The third section (15:49:40 to 15:50:39 UTC) has the smallest particle

concentrations, and is taken from the high ratio of R(2.21)/R(0.83) found just before the end of

the King Air track in the Landsat image. The Landsat data imply small particle sizes, while the

aircraft finds no small drops in the FSSP probe. Spinhirne and Hart (1989) noted from the ER-2

lidar data (ground track shown in Fig. 2) that the mixed phase cloud occurred in vertically thin
layers (100 - 200 meters thick) at heights between 7.3 and 8.0 km. The lidar depolarization data

at location 'l' in Fig. 2 verifies the existence of a mixed ice/liqu{d _vater phase cloud layer at
7.3 km altitude (Spinhirne and Hart, 1989), the position of the King Air at 15:38:30 UTC. The

King Air altitude at 15:50 UTC is 7.0 km, which is below the lidar detected altitudes for mixed

phase cloud. It is likely that the King Air data at 15:50 missed the liquid water layer. We

conclude that the aircraft microphysics and Landsat reflectances are in qualitative agreement,
subject to uncertainties in the vertical variation of cloud microphysics and temporal evolution of
the cloud field.

The quantitative comparison of aircraft and radiometrically derived particle size requires

the determination of an effective mean particle radius. Figure 6 gives the Lands_t 2.21/0.83/_m
cloud reflectance ratio versus effective radius r . We define r = f r"N(r)dr / f r'N(r)dr, where

e e
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N(r) is the size distribution derived using the King Air microphysics data. This effective radius

is a cross-section area weighted radius and has been shown useful in characterizing overall

radiative properties of a particle size distribution. The number densities are averages over

5-second intervals, which results in size distributions representative of 500-meter sections of

the cloud field.

Figure 6 indicates a significant but poor correlation between aircraft particle size and

the 2.21/0.83um reflectance ratio. There appear to be three clusters of data, one with r of
• e .

about 4urn, and two with r about 200urn. The apparently anomalous data with large particle s_ze

and large reflectance ratio e (15:50 UTC) are the liquid water layer missed by the King Air as
discussed above. Recall that the data in Fig. 4 also clustered in two particle size groups, water

droplets with radius less than 7.5 micron, and ice particles with radius about 60urn. While the

water droplets appear consistent between the two data sources, the ice particles are in

substantial disagreement, the radiative measurements indicating a smaller particle size by about a
factor of 3. In order to understand this discrepancy, the uncertainties inherent in such a

comparison are examined below.

i. Uncertain Index of Refraction." factor of 2.

Warren (1984) estimates that the uncertainty of the imaginary index of refraction for ice

in the 1.4 to 2.8urn spectral region is a factor of 2.

ii. Uncertainty in the scattering phase function." = 30%.
Use of the Mie scattering phase function in place of the VPP gave particle sizes about 60%

smaller than those predicted in Fig. 4. This is an extreme test of the phase function.

iii. Uncertainty in the use of a single particle radius to represent an entire size
distribution." = 15% at r < 200urn.
Mie calculations were eun to determine single scatter albedo as a function of r for the

King Air size distributions (5 second averages) for each wavelength. These complete calculations

were then compared to Mie calculations using a single particle size (as in Fig. 4).

iv. Uncertainty in converting 2D image area to equivalent sphere." Unknown.

The good agreement between the King Air median mass-weighted diameter determined as a
function of crystal habit and 2 r determined using particle cross-section area (Fig. 6) argues

• e
that this error is of secondary importance.

v. Inadequate microphysical sampling." Unknown.
The size comparisons in Fig. 6 are given using the King Air measurements in the lower cloud

layer at 7.3 km. Measurements of the upper cloud layer by the Sabreliner show mean particle

radius decreasing from 200urn at 9 km to 40urn at I I kin. Note that a 20urn radius is the smallest

particle size measured by the 2D-C probe at the Sabreliner airspeed. Many small particles in the

upper cloud layer are undoubtedly missed by the 2D-C and 2D-P probes (Heymsfield et al, 1989). In

support of this concern, Spinhirne and Hart (1989) estimate a mode radius of 20um for the upper

cirrus layer on October 28 using integrated lidar backscatter and l lum emittance. For the lower

cloud layer at 7-8 kin, Fig. 5 shows that all of the 2-D size distributions at 7.3 km have maximum

number density for the smallest particle size measured by the 2D-C probes. While the effect of

these unsampled small ice particles on the determination of r is unknown, it seems reasonable
from the size distributions shown in Fig. 5, that this effect aleone might explain the discrepancy

between 60 and 200urn values for r .
e

3. CONCLUSIONS

The FIRE October 28, 1986, data provide a unique opportunity to compare measured and

theoretical cloud properties for cirrus clouds. Overall impressions are:

I. The lower cloud layer (7-8 kin) appeared to dominate the cloud radiative properties as

viewed by the ER-2 and Landsat. This result is consistent with the King Air and Sabreliner

microphysical measurements and with ER-2 lidar observations.
2. Particle size inferred using Landsat cloud reflectance at 0.83urn, 1.65um and 2.21um gave

good agreement with the King Air cloud particle samples for portions of the cloud field dominated

by small water droplets with r e = 3.8_m. For the larger ice crystals, the radiation measurements
determined an r of about 60urn, compared to about 200um determined using the King Air FSSP, 2D-C,

and 2D-P prot_es. We conclude that the discrepancy is caused by two uncertainties. First, ice
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particle sizes below about 20pm are not detected by the aircraft probes. The particle number
densities are maximum at the smallest particles sensed by the 2-D probes, indicating the presence

of smaller ice particles, even in the radiatively dominant lower cloud layer at 7-8 km. Second,

uncertainties in the imaginary index of ice for the 1.65 and 2.21um spectral bands causes an

uncertainty of a factor of two in the Landsat derived particle size. The effect of small ice

particles in the upper cirrus layer at 9-11.6 km is estimated to be of secondary importance.
3. Recommendations for future cirrus experiments include improved measurement of ice particle

concentrations for sizes between 1 and 50urn, improved sampling of the vertical variation of cloud

microphysics, more accurate radiometric calibration of aircraft radiometers, and more accurate

values for the imaginary index of ice between 1.5 and 2.5urn wavelengths.
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Fig. I. Location of the Landsat image area for the
study. Solid line box gives the 58.4 km square area over
Lake Michigan analyzed and shown in Fig. 2.

Fig. 2. Landsat reflectance ratio, R(2.21um)/R(0.83#m)
over the analysis area. Aircraft tracks and observation
times are also given in the figure. Data in Figs. 5 and
6 is taken along the King Air ground track.
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King Air, 15:51957 UTC, 7.0 km
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Fig. 3. Photographs of cirrus particles

collected by the King Air on oil coated slides.
3a shows ice crystals collected at 15:51:57 UTC

and corresponds to location "2" in Fig. 2. 3b

shows water droplets collected at 15:38:30 UTC,

and corresponds to location =1" in Fig. 2.
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RADIATIVE IMPACT of SMALL PARTICLES
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1 Introduction

An understanding of the way radiation interacts with clouds is vital for understanding the sensitivity of the
earth's climate to both natural and anthropogenic changes in the atmosphere. Cirrus clouds are thought to be

an important modulator of climate sensitivity (see Manabe and Strickler, 1964; Cox, 1973 and Stephens and

Webster, 1981 among others). Stephens et al. (1989) show the that the feedback effect of cirrus on climate

can be positive or negative depending upon the microphysics and scattering properties of the cloud. These

properties of cirrus clouds are not well understood partly because of their thin tenuous nature and partly
because of their microphysieal properties. The high altitude and cold temperatures within these clouds along

with their transparency greatly increase the difficulty in which accurate measurements can be obtained and

interpreted both by aircraft and remote sensing. Therefore, the understanding of the interaction of radiation
in cirrus clouds is crucial to determining the ways in which these clouds interact with climate forcings.

The purpose of the present work is to examine the sensitivity of the radiative budgets of cirrus cloudiness

to their microphysical composition and the environments in which they occur. Especially important is the

impact of small particles on the radiative properties of cirrus. Remote sensing estimates of the effective

crystal size of cirrus and in situ measurements show large differences up to 100 pro. Thus it becomes

important to identify the sources of these differences. For this reason, simulations of actual FIRE cases
are compared with the in situ radiative observations and inferences are made concerning the causes of the

disprepancies.

2 Summary of the Radiative Transfer Model

A two stream radiative transfer band model for the solar (0.28 #m - 3.8 #m) and infrared (3.8 #m - 200.0 #m)

wavelengths, is chosen and formulated in a way which allows for the consistent treatment of physical processes

such as absorption and scattering by both molecules and particles which occur during the interaction of

cloud and radiation (Stackhouse and Stephens, 1989). This is accomplished by solving the radiative transfer

equation in terms of reflectance and transmittance coefficients and source terms dependent upon the optical

depth, single scatter albedo and asymmetry factor of the optical media (Preisendorfer, 1976). The above

three parameters represent the optical properties of molecules and particles for absorption and scattering

processes and are weighted according to Slingo and Schrecker (1982). The particulate optical properties are
determined using Mie solutions assuming equivalent diameter spheres from the particles measured during

the IFO. Gaseous absorption is calculated using narrow band k-distribution data for H20, COs, O3 and

02 having resolutions of 20 cm -1 and 50 cm -1 in the infrared and solar wavelengths respectively. Sum of

exponential fit data is used for the ultraviolet wavelengths less than 0.68 #m. Optical paths were computed

using the simple pressure temperature scaling parameterization with constants given for each gas by Chou

and Arking (1980), Chou and Arking (1981), Chou and eeng (1983) and Chou (1984). Parameterizations of

Rayleigh scatter (Paltridge and Platt, 1976) and e-type absorption (Kneizys et al., 1982) are also included.

3 Radiation Budgets: Cirrus in Various Atmospheres

Some of the phenomenological properties of cirrus clouds are investigated by simulating cirrus clouds imbed-

ded in various atmospheres. The atmospheres in which cirrus are imbedded include the FIRE October 28,
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1986 sounding and the McClatchey e_ aJ. (1972) Tropical and Subarctic Winter soundings. The 3 km

uniform cirrus is positioned such that cloud top corresponds to the tropopause height in each atmoshphere.

Figure la summarizes the infrared radiation budget of cirrus and shows that the net radiative effect of cir-

rus is largely determined by surface-cloud base temperature difference (and thus altitude) and that heating

(cooling) increases with increasing (decreasing) altitude. Also the net infrared radiative effect of the cirrus

is seen to be more sensitive to cloud thickness with increasing height. Infrared spectral anaylsis reves_ that:

a) radiative heating dominates in the window region (8-12/_m) while cooling is dominated more in the far

in_rared (_'. 15-200/_m), and b) the heating (cooling) of the window region (far infrared) increases in both

magnitude and spectra/width with increasing (decreasing) altitude.

In the solar wavelengths, simulations reveal that the net solar heating of the clouds decreases with

decreasing cloud top altitude, and the changes in the spectra] distribution of absorption as a function of

altitude were mainly confined to the 2.6 - 2.9 _m region where CO= is an active absorber.

The behavior of the radiative characteristics of cirrus in various atmospheres as deduced by the two-

stream model agrees qualitatively to studies presented by Ackerman et oJ. (1988). Additional]y, these

results have profound c]/matological implications. It is not enough to know the amount or distribution of

cirrus about the globe to understand their influence on the earth radiation budget. In order to understand

the climatological effects of cirrus clouds, information regarding temperature and height as well as their
distribution and microphysical characteristics must also be understood.
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Figure 1: Schematic of the net infrared energy budgets of the three 3 kra uniform cirrus clouds situated in

their respective atmospheres as shown with a) each having effective radii of 118/_m for ice water contents

as shown, b) each with ice water content of 0.002 g • m -s having effective radii as shown.

4 Radiation Budgets: The Radiative Impact of Small Particles

Simulations assuming size distributions chosen from the FIRE observations and adjusted to include varying

concentrations of small ice particles, are performed to evaluate the effect of these small particles on the

radiative characteristics of cirrus clouds. Particles less than 50.0 _m in size were not measured during the

cirrus IFO but their presence is speculated (Heymsfield and Miller, 1989). Concentrations of particles less

than 100 _m in size are noted to be a source of uncertainty in understanding the radiative characteristics of

cirrus clouds. To assess the importance of this uncertainty small particles axe added to the observed crystal
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size distributions. The sensitivities of the model to the reduction of the effective radius of the observed

crystal size distribution by the addition of small particles for constant cloud ice water content (IWC) is

shown in Figure lb. This figure shows that the sensitivity of the net infrared radiative budget of the cloud
to the effective radius reductions, increases with increasing altitude.

Additional simulations, where the IWC is allowed to increase with the amount of small particles added to

the size distribution, show that the effect of the I_VC increase on the cloud radiative characteristics is small

relative to the enhanced extinction cnsued by the presence small partlc]es. All simulations show that the

addition of relatively small concentrations of small particles results in a substantiai enhancement of cloud

radiative heating and cooling rates, cloud emittances and albedos. It can be concluded that appreciable
differences between observations of cirrus radiative characteristics and theoretical calculations may be partly

attributable to uncertainties of the amount of small particles in the observed size distributions.

5 Comparison to Observations

Comparisons between the thin cirrus case observed during the FIRE cirrus IFO on October 28, 1986 over
the vicinity of Green Bay, Wisc. and simulations of this case are shown in Figure 2. The observations

are derived from the upward and downward looking pyrogeometers and pyranometers flown on board the
Sabreliner for this case. The irradiances axe stratified along each aircraft leg corresponding to mean, thin

and thick cloud cases after Smith et al. (1989). In addition, it was determined that two different types of
clouds were observed corresponding to the north and south legs of the racetrack flight pattern. The curves

on Figure 2a and b are the result of two cloud cases one of which contains the measured size distributions

from the Sabreliner flight data and the other with the same measured size distributions pins an exponetial
distribution of small particles less than 25 pm in radius. The greatest amount of small particles comprising

20% of total ice water content, is assigned to the top cloud layer. This amount is decreased linearly toward
cloud base where no small particles axe assumed. In Figure 2c, a third cloud case corresponds to the resulting

albedo when the asymmetry factor is artificially set to 0.7 for all the solar wavelengths. The comparisons

shown in Figure 2a and b reveal that the simulated emittances of cirrus with the small particles added to

cloud top agree most closely to the observed emittances. However, Figure 2c reveals that simulated albedos

agree more closely to the observed albedoes with the addition of small particles but, the best agreement
occurs when the asymmetry factor in the solar wavelengths is approximately 0.7. Thus the addition of small

particles may be sufllcient to explain discrepancies between the observed and simulated clouds in the infrared

wavelengths but not in the solar wavelengths.

6 Conclusions

The radiative budgets of cirrus clouds are shown to be sensitive to the environment in which they are
imbedded, the effective radii of the size distribution of which they are composed and their total ice water

content. The comparison between the observations and simulations show that: a) underestimstions of the

infrared emittances are perhaps largely due to the overestimation of the effective cirrus crystal size which,
may be traced to both the equivalent diameter sphere approximation and the underestimation of particles

smaller than 100 _m by observations and b) model underestimation of solar albedos is perhaps due in part
to the overestimation of the asymmetry parameter as a result of the assumption of spherical particles.

It is clear from these results that the uncertainties involved in the estimation of the scattering properties

of ice clouds remain one of the major hurdles that separates the agreement between the observations and

simulations. Until the scattering properties of cirrus clouds are better understood, the interactions of radi-

ation with microphysical parameters in the life cycle of these clouds will remain somewhat of a mystery. In

addition, the climatic feedbacks of this radiation microphysical interaction will remain uncertain.
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Cirrus/Altocumulus Case Study

David O'C. Starr

NASA Goddard Space Flight Center
Greenbelt, MD 20771

Kenneth Sassen

Department of Meteorology
University of Utah

Salt Lake City, UT 84112

The regional cloud and meteorological conditions are described for this case using satellite imagery
(GOES), dual polarization lidar data (from Wausau), NWS radar, NMC analyses, rawinsonde data
including special soundings, and analyzed vertical motions. These observations are interpreted
with respect to relationships between the observed cloud characteristics and corresponding
atmospheric structure. Similarities with the 27-28 October FIRE Cirrus Case Study are noted.

Visible satellite imagery reveals overcast conditions over the upper Midwest at 2000 UTC
on 25 October (Fig. la). Radar observations showed a band of light precipitation across south-
eastern Wisconsin at that time (echo tops to 7 kin). Drizzle and light rain were also found to the
south where the clouds were brightest. The decreased cloud albedo over southern Wisconsin
indicates the presence of overlying cirrus clouds. The cirrus are more evident in the infrared
imagery where a band of cold clouds stretches from western Iowa to Michigan (Fig. lb). To the
north and south of this feature, the high clouds appear more variable and were responsible for the

patches of lower albedo seen over northern Illinois (Fig. la).

These clouds were associated with a nearly stationary occluded cyclone at the surface and
closed low aloft (Fig. 2). The cyclone was centered in southern Illinois with the occluded front
lying through southern Indiana and then southward to Georgia. The high clouds were located in
the exit region of the upper level vortex and were bounded on the west by the interface between
northerly flow (entrance) and southerly flow (exit). The northern boundary of the cirrus (Fig. 1b)
lay along the transition between southerly flow out of the closed low and westerly flow in Canada.
The cloud features moved steadily to the NNW during the afternoon.

Surface-based, dual-polarization lidar observations at Wausau prior to 1730 UTC detected

fairly dense midlevel cirrostratus between 5.5 and 8 km (Fig. 3a). Observed polarization ratios (5)
of 0.55 to 0.65, corresponding to rimed (or very complex) ice crystals, were widespread in the
lower portion of the cloud (Fig. 3b). At about 1730 UTC, cloud base height began to increase

rapidly and evidence of supercooled liquid water was found between 7.8 and 8 km (5 < 0.15). An
overlying layer of cirrus between 9.5 and 11.1 km was observed at this time. Concurrent satellite
observations indicate that this higher cirrus layer was present earlier but obscured by the midlevel
cloud. Lidar observations after 1900 UTC may have also been significantly attenuated by the

midlevel cloud layer. Subtropopause cirrus were sporadically detected above 10.5 km and another
cirrus layer was observed between 8.5 and 9.8 km around 2000 UTC (Fig. 3a). Airborne
observers noted the distinct clear region between this cirrostratus layer and the underlying midlevel

cloud (Shanot, personal communication).
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From 1900 to 2030 UTC during the King Air flight operations near Wausau, altocumulus

clouds were observed between 7.8 and 8.1 km (-31 to -33 C) capping a 2.5-km deep ice cloud

with a variable base around 5.5 km. Values of _ in the ice cloud were generally near 0.3 which is
characteristic of some forms of cirrus. Low depolarization ratios (_ < 0.15) in the ice cloud were

likely associated with oriented plate crystals in sheared fallstreaks (in contrast to the liquid phase

altocumulus layer, significantly increased li and decreased return energy were found when the lidar
was tipped off vertical by a few degrees - points labelled "x" along the bottom of Fig. 3). The
strongest orientation effects were apparent below 7 km and well below the base of the altocumulus

layer. This indicates that growth of the crystals to sizes greater than 200 mm, as required to
maintain a stable orientation, or a change to a less complex crystal habit occurred during
sedimentation. The flight crew of the King Air reported a continuous sloping cloud base during
transit from Wausau, where cloud base was near 5.5 km, to Madison (2030 UTC), where the base
height was about 3 km and drizzle was observed from a lower cloud layer.

Vertical velocities were estimated using the adiabatic method (three-station technique with

an estimated uncertainty of+_2 cm s-1) applied to rawinsonde data from eight stations as in Starr
and Wylie (1989). The location of the analyzed band of weak ascent (Fig. 4) on the 321 K
isentropic surface (7.7 km at Green Bay and 8.2 km at Platteville in southwestern Wisconsin)

corresponds very well to the position of the band of cold clouds (cirrus over midlevel cloud, Fig.
lb) at 0000 UTC on the 26th. Ascent rates of more than 3 cm s -1 were found at this level.

The corresponding vertical velocity profile computed from soundings at Green Bay (GRB),
St. Cloud (STC) and Platteville (PLA) is shown in Fig. 5. The 1800 UTC profile (supplemental
soundings at those stations) is consistent with upper level cloud generation at two primary levels -
near the tropopause (11 km) where cin'us were detected and near the level where the altocumulus

cloud layer was observed. Later, more uniform uplift is indicated throughout the upper
troposphere when cirrus cloudiness was detected in the intervening layer (Fig. 3a). The fact that
the maximum ascent rate at 1800 UTC was diagnosed above the altocumulus layer is not
necessarily inconsistent with the observed cloud location since, as noted by Gedzelman (1988), the
pre-existing vertical structure of water vapor plays a major role in determining the level of cloud
formation. Rawinsonde-resolved vertical motions were quite weak below the level of the
altocumulus layer where the adjoining 2.5-km deep ice cloud was observed.

Rawinsonde data from three soundings that ascended through the cloud band are shown in
Fig. 6 - see Start and Wylie (1989) for discussion of data quality. At Platteville (PLA), ice-
supersaturation was observed at all levels colder than 0 C (no data at temperatures colder than -50
C), except for a layer from 8.9 to 9.7 km where relative humidity with respect to ice (RHI)
decreased to 95% (Fig. 6a). Relative maxima of 102% were measured from 7.8 to 8.4 km and at

the 9.9 km level (-50 C) corresponding to relative humidity with respect to pure liquid water (RH)
of 73% and 64%, respectively. Greater humidities were found at lower levels (RHI = 108% at 5.5
km). The Wausau (WAU) sounding (released at 1855 UTC) exhibited more structure with RHI

equal to 112% (RH = 85%) from 7.5 to 7.6 km (RHI > 100% from 6.8 to 7.8 km) and decreasing
to 60% at -50 C and to 67% at - 14 C (5.5 km). The lower vertical-resolution (standard) sounding
at Green Bay (GRB) showed ice-supersaturation at 5.6 km (105%) and 7.7 km (101%) with drier
but still humid conditions between these levels (RHI = 91% and 75% at 6.6 and 7.3 km,

respectively) and above (91% and 86% at 8 and 8.9 km, respectively). Thus, each sounding
indicates a relative humidity maximum near 7.8 km corresponding to ice-supersaturation but
subsaturated with respect to the liquid phase. Both the GRB and PLA soundings show moist
conditions at most levels while, except for the layer from 6.8 to 7.8 km, the WAU sounding is
significantly drier. On this basis, it appears that the GRB and PLA soundings were representative

of the more disturbed conditions to the south of Wausau where the base of the altocumulus-topped,
midlevel, ice cloud extended to below 5.5 km.
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The temperature profiles each show an inversion-capped boundary layer with a second
inversion near the 3 km level at WAU and GRB (Fig. 6a). At WAU, a third inversion was found

at 5 km. Tropopause heights ranged from 10.6 km at PLA to 11.2 km at WAU (11 km at GRB).
The Platteville sounding is generally colder than the other two at a given height but this is mostly
the result of the lower surface pressure (0.4 kPa) at PLA. Static stability structure is more evident
in the potential temperature profiles (Fig. 6b). The high vertical-resolution sounding from Wausau
exhibits a lot of fine structure in the upper troposphere that is not found in the PLA sounding of

comparable resolution.

A striking feature of the GRB sounding is the nearly dry adiabatic stratification found from

6.6 to 7.3 km (9.4 C km-1). This layer was capped by a relatively stable layer (5.8 C km -1)

extending to the 8 km level. There is also evidence for a statically stable layer at both Wausau (6.1
C km -1 from 7.7 to 8 km) and Platteville (7 C km -1 from 8 to 8.2 km) although the feature was
weaker at those locations. The height of the stable layer corresponds closely to that of the thin,

supercooled liquid phase, altocumulus layer observed over Wausau.

If the anomalously cold data point at the 7.3 km level in the GRB sounding is removed

(regarding it as erroneous - possibly due to evaporative cooling of a wetted thermistor), the stable
layer then extends from 7.7 to 8 km in accord with the other two soundings. In this case, the
stratification below 7.7 km is also comparable in each of the soundings - lapse rates within 0.5 C

km -1 of the ice-pseudoadiabatic lapse rate down to the 6.6 km level. The Green Bay sounding is

still conditionally unstable in this layer but only slightly. Below 6.6 km, the GRB and PLA
soundings become increasingly stable while the lapse rate at Wausau remains close to ice-
pseudoadiabatic down to the inversion at the 5 km level. It is also of note that lapse rates were near
ice-pseudoadiabatic in the layer where the overlying cirrostratus layer was observed - within 0.3 C
km -1 from 8.5 to 9.8 km at WAU.

Upper level winds at Platteville were generally stronger than at Green Bay (Fig. 6c),
especially from 8 km to the tropopause (unfortunately, the wind observations from Wausau were
unusable). Of particular note is the more southerly wind directions found at GRB in the layer
where the altocumulus layer and underlying ice cloud were observed (5.5 to 8 km). This may be

interpreted as indicating deformation along the cloud band (see Figs. lb and 2). The computed
vertical velocity profile at 1800 UTC (Fig. 5) implies that horizontal mass convergence existed
from roughly the 5 km level to near 9 km and was strongest between 7.5 and 8.5 km with
divergence from 9 to 10.5 km and convergence from there to the tropopause. [Computed
divergence profiles exhibited large variations depending on the stations used - probably attributable
to the mesoscale character of the situation as discussed by Start and Wylie (1989). Corresponding
vertical velocity profiles computed by the kinematic method were judged to be relatively useless.]
Similarly, convergence is indicated from 6.5 to 8.5 km at 131300UTC on the 26th with divergence
below.

Relatively strong wind shear was observed near the tropopause at both locations as wind
direction veered from SE to SSW in the lower stratosphere. Weak veering was found near the 7
km level at PLA in association with a relative minima in wind speed. A similar feature occurred at

GRB but at a lower height (near 6 km). Weak backing was found from there to 8.5 km.

In summary, regional analysis of the available rawinsonde data show that the supercooled
altocumulus cloud occurred in a statically stable layer (7.8 to 8.1 km). Saturation was likely

induced by adiabatic cooling due to weak ascent (-2 cm s -1) and enhanced by infrared cooling as
described by Gedzelman (1988) and Starr and Cox (1985b) - solar wanning was suppressed by
the overlying cirrostratus cloud. Cellularity in the cloud was likely induced by infrared cooling at
cloud top (see Start, 1987b). Dynamic interaction with the adjoining 2.5-km deep ice cloud below
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may also have been significant given the near ice-pseudoadiabatic stratification observed from 6.6
to 7.7 km which is consistent with weak convective overturning.

Uplift was associated with horizontal mass convergence that was strongest above 7.5 km.
Given that the midlevel moisture supply associated with the convergent flow was fed by the more
disturbed conditions to the south where precipitation was observed (echo tops to 7 km), the stable
layer in which the altocumulus formed would be consistent with maximum detrainment of cloud

water at that level in the disturbed region and maintenance of the midlevel cloud layer downstream.
Furthermore, downward growth of the underlying ice cloud via ice particle sedimentation would be
consistent with horizontal moisture supply near cloud top and maintenance of convective
overturning (Starr and Cox, 1985a; Starr and Wylie, 1989) in the absence of significant mean
ascent below the 7 km level. Maintenance of convective currents in the ice cloud would provide
further moisture to the cloud by recycling vapor from evaporated particles below (Starr and Cox,
1985b).

Some notable similarities to the 27-28 October FIRE Cirrus Case Study (Starr and Wylie,
1989 - conclusions summarized in paper C02.01) are: 1) synoptic control dominated with a
persistent cirrus shield maintained over a ridge axis (exit knee in the case here), 2) significant
mesoscale structure was evident over a variety of horizontal scales (the long-lived 100 x 500 km
altocumulus cloud band and smaller scale [10 km in width] transverse banding in cirrus here, Fig.
la), 3) cloud generation occurred at multiple levels (optically thin subtropopause cirrus layer, an
underlying cirrostratus layer and a lower altocumulus/altostratus/cirrostratus layer), and 4)
relatively shallow (< 0.5 km) cloud generation layers were found.
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Figure 1: Visible (a) and infrared (b) satellite imagery from GOES-6 at 1800 UTC on 10-25-86.
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Figure 3: Time-height display of (a) range-corrected returned power (E)
and Co) polarization ratio (6) observed at Wausau by the University of

Utah cloud lidar.
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respect to ice (RHI) which is plotted at temperatures colder than -20 C.

.... :,,.. PAGE IS

,.,_,"::fCOR QUALITY

385





CIRRUS
SESSIONC03: Large-ScaleEnvironmentandModeling
CHAIRMAN;DavidO'C,,Start

Thursday,July13,1989

PAGE

C03.01CirrusCloudsandClimateFeedback:
theKing?

Stephens,GraemeL.

IstheSkyFallingandShouldWeGoTell 389

C03.02Low-FrequencyCloud-RadiationInteractions
Randall,DavidA.

395

C03.03PreliminarySimulationsoftheLarge-ScaleEnvironmentDuringtheFIRECirrusIFO
WestDhal. Douglas L., and Owen B. Toon

401

C03.04 Microphysical Fundamentals Governing Cirrus Cloud Growth: Modeling Studies
Sassen. Kenneth, Gregory C. Dodd, and David O'C. Starr

407

C03.05 A Scheme for Parameterizing Cirrus Cloud Ice Water Content in General
Circulation Models

Heymsfield, Andrew J., and Leo J. Donner

411

C03.06 Radiative Diffusivity Factors in Cirrus and Stratocumulus Clouds--Applications to
Two-Stream Models

Stephens, G. L., P. J. Flatau, S.-C. Tsay, and P. Hein

415

PRECEDING PAGE BLANK NOT FILMED

387





N90-28288

Cirrus Clouds and Climate Feedback: Is the sky falling

and should we go tell the king?

Graeme L. Stephens

Dept. of Atmospheric Science, Colorado State University, Ft. Collins, CO 80523

1. Introduction

Global warming is a contemporary topic of great

scientific interest. With the projected rise in sea level

and the anticipated effects of climate change on agri-

culture among others, global warming has escalated

to a major societal issue. At the grass-roots scientific

level however, global warming has not yet been pro-

claimed as an accepted truth and it has been realized

for some time that potential feedbacks via the effect

of cloud on the Earth's radiation budget make non-

sense of any prediction of a global temperature rise. A
number of recent scientific studies have attempted to

investigate the perplexing effects of cloud feedback in

the context of a global warming. Some climate model

results suggest that the feedback may even accentuate

the warming induced by a CO_ increase largely due to
the enhancement of cirrus clouds in the models (e.g.,

Roeckner et al.; 1987).

It is a widespread belief that thin cirrus clouds act

to enhance the 'greenhouse effect' owing to a partic-

ular combination of their optical properties (Manabe

and Wetherald, 1967; Cox,1971; Stephens and Web-

ster, 1981). It is demonstrated in this study how this
effect is perhaps based on inadequate resolution of the

physics of cirrus clouds and that the more likely im-

pact of cirrus to climate change remains somewhat

elusive. These conclusions are developed within the

context of a specific feedback mechanism incorporated

into a simple 'mechanistic' climate model. A specific

scientific question addressed here is whether or not

the observed relationship between the ice water con-

tent and temperature of cirrus provides any significant

feedback to the C02 greenhouse warming. A related

question is also examined concerns the specific role

of cloud microphysics and radiation in this feedback.

This raises several pertinent issues about our under-

standing of cirrus clouds and their likely role in cli-

mate change as there presently exists a considerable
uncertainty about the microphysics of these clouds

(e.g. size and shape of ice crystals) and their radia-

tire influences.

2. Cloud microphysics and ice water content

Characterization of the shape and size of ice crys-

tals in terms of their environmental parameters con-

tinues to be a heavily researched area of cloud physics.

It is a topic crucial to the cloud climate preblem. The

observations of Heymsfield and Platt (1984) indicate

that both the size of these ice crystals and the ice wa-

ter content increases with increasing cloud tempera-

ture. Their results are reproduced in Fig. 1 together

with the empirical relationship

w = O.O007e °°41(T+6°) (1)

where w is in g.m -3 and T is in °C. This relationship
forms the basis for the ice water feedback studied in

this paper.

01

001 -
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8

H.e__ ! field
i a PIoM (1904-)
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/

£)0(31 i -60 ' '

Fig. 1. The relationship between cirrus cloud ice wa-

ter content and cloud temperature ( after Heymsfield

and Platt, 1984} and the relationship expressed by (1)
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3. Cloud optical properties

The optical properties of the ice crystals were as-

sumed to be spherical in shape and parameterized in

the manner described by Stephens et al. (1989). A

simple diffraction theory was adopted as the frame-
work for this parameterization and the relevant prop-

erties of volume extinction and single scatter albedo
were derived as functions of the effective radius of

the size distribution (re) and the bulk absorption co-

efficient of ice. Typical values of r_ were chosen to

be consistent with the observations reported by Platt

and Harshvardhan (1988). Figure 2 shows the val-

ues of aab, derived from a series of lidar-radiometer

measurements (LIRAD) (e.g., Plattet al., 1987) to-
gether with additional aircraft observations. Shown

as curves are three relationships calculated from Mie

scattering theory for a wavelength of 10.8 pm asaum-

ing an analytic size distribution with re = 4, 16 and

64 pro. The three theoretical relationships included

on the diagram are therefore based on the assumption

that crystal size is invariant to temperature change
and that the increase of ice water content with in-

creasing cloud temperature occurs through an associ-

ated increase in total particle concentration. This is,

by necessity, an overly simple assumption as already

noted and a better understanding of the role of cirrus
cloud microphysics in relationships like that shown in

Fig. 2 is sorely needed.

10-
6.4_m

_ i.Aeym_d _ F_kzlt(19e,4j - \/

o Smithelol (19e91 /,_
' a Poilrid_e8, Piatltigeo} ./_,K

.01 q2

.oo, ........ ,b ....... ,6o

T* 82.5 [*C)

F:g. 2. The observed relationship between the volume

absorption coefficient and cloud temperature taken
from the sources indicated. The three curve were de-

rived from Mie theory for the values of re indicated.

The asymmetry parameter was selected in the fol-

lowing way. Combined analyses of aircraft radiomet-

ri¢ data and satellite data were employed to obtain

albedo (R)-emittance (e) relationships that are then

matched to theory in such a way as to provide a value

of the asymmetry parameter. The values of R and
e derived from the satellite data and the values ob-

tained from the near coincident aircraft measurements

are shown in the form of a scatter diagram in Fig.

3. Two theoretical relationships between albedo and

emittance were also derived and are shown on Fig. 3.

The (elationship depicted by the solid curve is that

derived from Mie theory with re = 16 pm and the

value of the solar zenith angle corresponding to the

time of observation (po = 0.496). The broadband av-

erage g determined from Mie theory and used to pro-

duce the solid curve is 0.87. The second relationship

(dashed curve) provides a better fit to the observa-

tions and was obtained with g = 0.7. The difference
between the Mie value of g and the value chosen to

fit the observations is both significant and expected.

It is straight forward to show that the reflectance of

thin clouds is directly proportional to the backscatter

fraction bo and hence a function of 1 - g. The albedo

of a cloud estimated using g = 0.7 is therefore greater

than the albedo calculated using g = 0.87 (the emit-

tance is largely independent of g). We show below

that this difference in albedo significantly influences

the predicted response of a climate model to the pres-
ence of cirrus cloud. It is also expected that real cirrus

clouds, composed of irregularly shaped particles, have

values of g that are smaller than the values of g as-

sociated with the more ideal spherical particles (e.g.,
Stephena, 1980).

tO P

i ; so,,,,,,,}
0.8 _- Aircroft 28th 0ci, 1986

--. -- re : _6/_'_ g, 0.7 ].
_r e • I6_u./n,q, 0.87

0.6--

__o,i

" i ///

ob=.'RaI P 
C 0.2 0.4 06 0.8 _0

Emdtonce

F:g. 3,The relationship between cirrus cloud albedo

and emittance derived from aircraft and coincident

satellite data obtained for the 28'h October FIREcir-

was case. For explanations of the curves consult the
text.
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4. The effects of cirrus optical properties in

a simple climate system

The effects on a simple climate system of the cloud

optical properties and their relation to ice water con-

tent on a simple climate system defined by a radiative

equilibrium climate model which are examined. The

radiative properties of the clouds were determined us-

ing the optical properties as specified above in a two

stream model. Details are provided in Stephens et al.

(1989).

(a) Simulations with fixed ice water

The results of a series climate equilibrium exper-

iments are shown in Fig. 4 and 5 expressed as the
difference between overcast and clear skies of the sur-

face temperature ATg, cloud temperature ATe (up-
per panel), cloud albedo 7_ and emittance e (lower

panel) as a function of r_. The ice water path pre-
scribed for these experiments was 3 g.m 2 which cor-

responds to a lkm thick cloud at a temperature of

229°K. The model simulations were carried out using

the two values of g mentioned above. The resultant

surface warming reported in earlier studies like that

of Stephens and Webster (1981) is also reproduced

in this study. However, the magnitude of this warm-

ing is strongly dependent on both the value of 9 and

the value of re which is assumed for "/_ and e. For

example, the surface warming tendency is enhanced

by either decreasing the particle size or by assuming
more forwardly scattering cloud particles.

A principal driving force of the surface warming is

the radiative heating of the cloud layer that results

primarily from the absorption of infrared radiation.

According to the analysis shown in Fig. 4, the cloud

warming is more than twice the warming calculated at
the surface. This is seen in the time evolution of the

model solutions displayed on Fig. 5. The simulations

were carried out with the following prescribed values;

re = 16 /Jm,g = 0.7 and W = 4.7 g.m -2. The simu-

lated surface temperature undergoes a slight cooling

during the first few simulation days and only signifi-
cantly differs from the clear sky equilibrium value af-

ter about ten days into the simulation. By contrast,

the cloud temperature systematically increases dur-

ing the early stages of the simulation and after about

l0 days of the simulation the increased emission from

cloud base due to this temperature increase is enough

to drive a surface warming.

16
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Fig. 4 The difference in equilibrium surface (Ts) and

cloud (Te) temperatures as a function of r, for two

values of g (upper panel} and the respective variation

in albedo ('g) and emittance (e) with re (lower panel).
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Fig. 5 Time evolution of the surface (solid) and cloud

(dashed) temperatures predicted by the model•

(b) Simulations with ice water feedback

The ice water feedback was examined by analyzing

pairs of control/perturbation simulations with the ra-
diative equilibrium model. The perturbation experi-

ment represents the simulations with twice the present

day COs concentration and the control simulations
were run with the present day concentrations of C02.

The notation Az is used to represent the difference

between the perturbation and control simulations of

a particular climate parameter of interest (say surface

2o

L

<_
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temperature). Two pairs of perturbation/control ex-
periments are then compared; one pair was conducted
with the ice water feedback included in the model and

the second pair assumed fixed values of ice water path.

These comparisons are presented in terms of the pa-

rameter//z = Az( with feedback) - Az(fixed). Posi-
tive values of 5Tg therefore indicate that the ice water

feedback acts to reinforce the simulated CO_ warming

and negative values of 6Tg indicate a buffering effect
against such a warming.

Values of _Te,ST c (upper panel), 6W (middle
panel) and _e and 5R (lower panel) are presented as

a function of r_ in Fig. 6. All simulations were per-

formed with 9 = 0.7. These results indicate that the

sign of the ice water feedback varies according to the

value of r_ used in the model to obtain the cloud oF-

ticai properties. According to these simulations, the

feedback is negative when re < 24tJm and positive

for larger crystal clouds. The explanation for this is
revealed by comparison of 6_ and 6e.

I'01 '
St_['xI o

-I.0.'

I.
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-_-O
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re_panl

Fi 9. 6 The .feedback parameter as defined in the tezt
as a function of re.

5. Summary and Conclusions

Is the sky falling and do cirrus clouds make it

worse? While the first part of this question was not

explicitly addressed in this study it is clear that, from

a scientific viewpoint, the potentially large but not
well understood effects of cloud feedbacks cast serious

doubts over any proclamations of impending climate
change. The focus of this paper was directed towards

the second question; is there overwhelming scientific
evidence in support of a positive cirrus cloud feed-

back? Despite accepted wisdom to the contrary, the

resultsdemonstrate that the sign of the cirrusfeed-

back isuncertain,letaloneitsmagnitude, and isinflu-

enced by cloud (microphysicaland dynamical) prop-

ertiesthat are presentlyneitherwell known nor well

understood. The resultsalsosuggestthat the surface

warming induced by cirrusclouds as predicted pre-

viouslyby severalothers (includingthe author) may

be model dependent and unrealistic.It was shown

how _he cirruswarming was governed by the radia-

tivebudget ofthe cloud itself.The absorbed infrared

radiationgave riseto a directwarming of the cloud

layerand itwas shown that thiswarming was largely

responsiblefor the associatedsurfacewarming. This

scenarioisclearlyartificialas dynamical and turbu-

lentmotions, induced by the radiativewarming, will

likelyact to alterthe structureofrealcirrusand per-

haps even the character of the feedback. Thus an

understanding ofthe dynamical aspectsofcirrus,cou-

pled tothe microphysicaland radiativeproperties,are

likelyto be important to the problem of understand-

ing cirruscloud feedback to climate.
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CLOUD-RADIATION INTERACTIONS
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Colorado State University

Fort Collins, Colorado 80523

1.Introduction

The observed 30-60 day oscillation of the tropical winds (Madden and Julian, 1971), often
referred to as the Madden-Julian oscillation, has excited considerable interest in recent years,
because its existence suggests the possibility that the behavior of the atmosphere is at least partially

predictable on such relatively long time scales. Most theories of the Madden-Julian oscillation have
been based on wave-instability theories, such as wave-CISK. As discussed by Hu and Stevens
(1989; hereafter HS), these theories have not yet satisfactorily explained the observations.

Recently, HS have suggested that the Madden-Julian oscillation is actually a forced
response to periodic heating. They suggested that the oscillatory forcing originates in the
hydrologic cycle, without the active participation of large-scale dynamics. They constructed a very
simple model to support their hypothesis. According to their model, the oscillation originates in a
progressive build-up of atmospheric water vapor, which continues until a (prescribed) threshold is
reached, after which precipitation begins and rapidly dries the atmosphere. The drying due to a
precipitation episode is followed by renewed gradual moistening, and the cycle continues
indefinitely in this way.

In this paper we present preliminary results from a one-dimensional (I-D) version of the
UCLA / CSU GCM (Randall et al., 1989), which lend further support to the ideas of HS (1989).

The present 1-D results also differ in important ways from those of HS, however. In particular,
cloud-radiation effects are essential for the oscillatory behavior of our model, although they are not
essential in the model of HS.

2.Model description

The 1-D model incorporates the full radiation and moist physics parameterizations of the
GCM, including interactive cloudiness (Harshvardhan et al., 1989).

In some of the simulations, the 1-D atmospheric model is coupled to a slab ocean of fixed

depth. For simplicity, the slab does not exchange energy with the "deep ocean;" its temperature is
controlled entirely by the surface energy flux.

In each of the simulations discussed below, the daily-mean incident solar radiation at the

top of the atmosphere is set to the observed globally averaged value for the Earth. The model is
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spun up for 1000 simulated days in order to reach statistical equilibrium, and then is run for an
additional 2000 simulated days to produce results for analysis.

3.Results

When the sea surface temperature (SST) is fixed, the model produces strong oscillations of
the precipitation rate, cloudiness, and surface energy flux, with a period of about 66 days. The
only other spectral peak is diurnal. Figs. 1 and 2 show the time histories of the precipitation and
surface solar radiation, for a particular 500 day segment. Fourier analysis (e.g., Fig. 3) shows
that the 66-day spectral peak is both strong and sharp. In the following, we refer to this as the
"control run."

As an experiment, we performed a simulation with fixed atmospheric radiative heating
profiles, prescribed to be the same as the 2000-day average radiative heating profiles in the control
run. No oscillations occurred in this "fixed-cloud" run. This indicates that cloud-radiation
interactions are necessary to produce the oscillations.

To gain an understanding of the mechanism by which the oscillations are generated, we
have examined in detail individual cycles of the oscillations produced in the control run. The

results show that during periods of weak precipitation the upper troposphere is relatively warm, so
that the static stability is relatively high. The warming of the upper troposphere is due primarily to
the absorption of upwelling infrared radiation by the clouds, and to a lesser extent to the absorption
of solar radiation.

When run with an ocean mixed-layer with a depth of 60 m, the model produces oscillations
of the SST, with an amplitude of 0.4 K, and a period of 60 days. These are forced by the
oscillations of the net surface energy flux, which are due to changes in the absorbed solar radiation;

these are controlled, in turn, by the cloudiness fluctuations. The amplitude of the precipitation
oscillation is slightly greater when the SST is allowed to vary. This may be because the ocean is
relatively cool during the periods of weak precipitation, and relatively warm during periods of
strong precipitation; the SST fluctuations thus act to reinforce the precipitation fluctuations.

4.Conclusions

Our results show that an atmospheric heating oscillation with a period of about 60 days can
be generated by cloud-radiation interactions, without the participation of large-scale dynamical
processes. This suggests the possibility that the observed Madden-Julian oscillation of the tropical

winds is a passive dynamical response to such oscillatory forcing. A logical next step would be to
explain why the observed oscillation originates near the maritime continent; there may be some
reason why the oscillatory forcing is particularly strong in that region.
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Figure 1 The time history of the precipitation, for a particular 500 day segment of the control
run.
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PRELIMINARY SIMULATIONS OF THE LARGE-SCALE

ENVIRONMENT DURING THE FIRE CIRRUS IFO

Douglas L. Westphal and Owen B. Toon

NASA Ames Research Center

Moffett Field, CA 94035

INTRODUCTION

Large-scale forcing (scales greater than 500 km) is the dominant factor in the generation,

maintenance, and dissipation of cirrus cloud systems. However, the analyses of data ac-

quired during the first Cirrus IFO have highlighted the importance of mesoscale processes

(scales of 20 to 500 km) to the development of cirrus cloud systems (Starr and Wylie,

1989). Unfortunately, Start and Wylie found that the temporal and spatial resolution of

the standard and supplemental rawinsonde data were insufficient to allow an explanation

of all of the mesoscale cloud features that were present on October 27-28, 1986. Below we

will describe how dynamic initialization, or four-dimensional data assimilation (FDDA),

can provide us with a method to address this problem. Then we will describe our first

steps towards application of FDDA to FIRE.

FOUR-DIMENSIONAL DATA ASSIMILATION

In FDDA, asynoptic data are allowed to modify a numerical forecast by adding additional

terms to the equations in the model which will force, or 'nudge', the model state towards

the observations. The additional terms are weighted according to the proximity, both in

time and space, of the observation to the model grid point. In this manner, the resultant

modeled state reflects the observations in the vicinity where they were taken, and utilizes

the model's forecast ability to determine the atmospheric state in data-sparse regions.

For FIRE, the supplemental rawinsonde network data from the first Cirrus IFO and the

anticipated time-continuous profiler data from the second Cirrus IFO can be systematically

processed to form four-dimensional datasets describing the IFO's.

The FDDA method has been successfully applied to the Penn State/NCAR mesoscale

model in studies of tropical cyclones (Anthes, 1974), severe weather (Kuo and Guo, 1989),

terrain-induced flow (Stauffer and Seaman, 1987), and developing continental cyclones

(Stauffer and Seaman, 1988). The study by Kuo and Guo has particular relevance to

the Kansas IFO since they studied the impact, on mesoscale simulations, of FDDA of a

network of 77 simulated wind profilers. Assimilation of the profiler data was effective in

recovering mesoscale circulations which were not resolved by the conventional analyses

of the rawinsonde data. In particular, the divergence field, which is critical for vertical

motions, clouds, and precipitation, was significantly improved. Kuo and Guo suggest that

even a small network of profilers, such as that which will be available in 1990, will improve

the analyses; however, the impact is greatest in the region covered by the profilers.
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PSU/NCAR MESOSCALE MODEL

As a first step towards applying FDDA to the FIRE IFO's, we have made a preliminary

simulation over the continental United States from 0000 to 1200 UT, November 1, 1986

with the basic version of the PSU/NCAR mesoscale model without FDDA.

The PSU/NCAR mesoscale model used here is described in detail by Anthes et al. (1987).

It is a hydrostatic, three-dimensional, primitive-equations model with a terrain-following

vertical coordinate (a). The model has a sophisticated multi-level planetary boundary

layer parameterization and simple diagnostic parameterizations of convective and non-

convective precipitation. The experiment described here was performed on a 61X46 grid

with a 70-km mesh. We define the model top at 100 mb and the boundaries of the vertical

levels at a -- 1.0, 0.99, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.43, 0.36, 0.29, 0.22, 0.15, 0.1 and 0.0.

These midpoint of these layers are approximately at 995,970,930, 865, 775, 685, 595, 520,

455, 390, 330, 265, 210, and 145 mb.

NOVEMBER 1, 1986 STUDY

We use NMC 2.5 ° analyses, interpolated to our grid, to initialize the model at 0000 UT

November 1, 1986 (Fig. la). During this period a ridge lies to the east of Wisconsin and

a trough to the west. Wisconsin is in generally WSW flow at 0000 UT and nearly zonal

flow at 1200 UT. We then carry out a 12-hour simulation.

The results of this simple experiment demonstrate the ability of even a simple version of the

mesoscale model to develop mesoscale features starting from the initial highly smoothed

NMC analyses. As an example, we show in Figs. la-c the 0000 UT and 1200 UT analyses,

and the 1200 UT simulation of 325 mb relative humidity. Both analyses show a smooth

field with high values of relative humidity aligned parallel with the large-scale wave. In

the 1200 UT simulation the horizontal gradients are sharper, especially along the northern

boundary, and the separation in the moisture field over Wisconsin is more distinct than in

the analyses. In Figs. 2a-c we show the 0000 UT and 1200 UT analyses and the 1200 UT

simulation of relative humidity and potential temperature along a cross-section running

southeast from the point A in Fig. 1 just north of International Fallg, through Wisconsin,

to the point B on the Indiana-Ohio border. A comparison with the 0000 UT and 1200 UT

analyses (Fig. 2a-b) indicates that dry air at mid-levels has descended north of the front

and that the relative humidity has increased at upper-levels directly above and south of

the front. The 1200 UT simulated thermal structure (Fig. 2c) is nearly identical to the

1200 UT analyses. The 1200 UT simulated relative humidity exhibits the same trends seen

in the analyses. However, the horizontal and vertical gradients of relative humidity are

sharper and three maxima in the relative humidity field, not found in the NMC analyses,

have developed between 300 and 200 mb (9.5 and 12 km). At the southern two maxima,

the model has injected moisture above the tropopause. This is unrealistic and probably

related to the simple moisture physics used for this experiment and to the coarse vertical

resolution at the model top. Nevertheless, the model has developed vertical and horizontal

structure in the moisture fields with scales of order 200 km that were not found in the

NMC analyses. We are currently comparing both the analyses and the simulation with
the observations.
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FUTURE APPLICATIONS

The general structure of the PSU/NCAR mesoscale model and its widespread use allow

us to easily optimize the model for this study. In subsequent runs we will increase model

resolution to 40 km in the horizontal and to 0.5 km in the vertical in the upper half of the

troposphere and in the vicinity of the tropopause. We will improve the initial conditions

by using the rawinsonde data to desmooth the NMC analyses. Then we will use the FDDA

scheme to produce a four-dimensional dataset for the first Cirrus IFO. We will then have

the capability and experience required for handling the large amount of profiler data that

is expected during the second Cirrus IFO. We have long-range plans to replace the model

moisture scheme with an explicit prediction scheme (Toon et al., 1988) that will resolve

the spectra of ice particles. We will also add a detailed radiative transfer scheme (Toon et

al., 1989). A discussion of these topics, however, is beyond the scope of this paper.
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O

Fig. 1:325 mb fields of relative humidity (solid lines,

contour interval of 10%) and geopotential height (dashed

lines, contour interval of 12 dam) for November 1, 1986.

(a) 0000 UT NMC analysis and model initial condi-

tion; (b) 1200 UT NMC analysis; and (c) 1200 UT
PSU/NCAR mesoscale model simulation. The line A-B

denotes the location of the cross-section shown in Fig. 2.
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ABSTRACT

For application to Global Climate Models, large-scale numerical

models of cirrus cloud formation and maintenance need to be refined to more

reliably simulate the effects and feedbacks of high level clouds. A key

aspect is how ice crystal growth is initiated in cirrus, which has trig-

gered a cloud microphysical controversy between camps either believing that

heterogeneous (Detwiler 1989) or homogeneous (Sassen 1989) drop freezing is

predominantly responsible for "cold" (i.e., _ -35°C) cirrus ice crystal

nucleation. In view of convincing evidence for the existence of highly

supercooled cloud droplets in the middle and upper troposphere, however, we

conclude that active ice nuclei are rather scarce at cirrus cloud alti-

tudes, and so a new understanding of cirrus cloud formation is needed.

Previously, in the large-scale cirrus model of Starr and Cox (1985),

for example, ice mass increases were linked to the maintenance of a rela-

tive humidity with respect to ice (RHi) of 105%. Any growth above 105%

occurred with regard to both the introduction of new crystals and the

increase in mass of existing crystals, according to generalized cloud

microphysical parameters. Where the cirrus cloud was absent, an RH i of

120% was required to produce new ice crystals regardless of an understand-

ing of ice nucleation mechanisms. The consequences of this simplified

treatment cannot be evaluated without specific knowledge of cirrus ice

crystal nucleation, which is considered here on the basis of detailed cloud

microphysical modeling studies.

Our model, as described in Sassen and Dodd (1989), treats ice crystal

nucleation and fallout in uniform 0.1-0.25 m s -I updrafts embedded in a

"cold" cirrostratus environment displaying vertical wind shear. Ice

crystal nucleation occurs exclusively from the homogeneous freezing of haze

particles composed of ammonium sulfate solutions using the freezing rate

derived in Sassen and Dodd (1988) from cirrus cloud observations, which has

been shown to be in good agreement with the theoretical and experimental

results of Heymsfield and Sabin (1989) and DeMott (personal communication),

respectively. Although the one-dimensional framework of the model limits

large-scale model applications in some respects, the results are useful for

comprehending basic cirrus cloud nucleation and laser scattering proper-

ties, for example (see Sassen and Dodd 1989).
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A chief finding is that, even in a uniform updraft, ice particle

generation in deep cirrus is accomplished in a pulse-like fashion due to

the water vapor competition effects between growing haze particles and the

initial ice crystals nucleated homogeneously. Figure I illustrates this

basic characteristic in terms of relative humidity with respect to water

(RHw) and nucleated ice crystal concentrations within an impulse rising at
0.i m s -I in an environment with a 5 m s -I km -I wind shear. The cloud base

temperature is -40°C, and the 0, i, and 5 1 -I curves refer to the back-

ground ice crystal concentrations allowed to be entrained into the updraft.

What is more important than the predicted frequencies of the ice generating

pulses, which are influenced by the model framework, is the temperature

dependency in the RH w peaks. In particular, rather consistent results are

generated over a range of likely cirrus conditions, suggesting that cirrus

ice crystal nucleation occurs under reasonably predictable conditions.

The domain in the temperature/humidity field where the model simula-

tions indicate that new cirrus ice particle generation is possible is

depicted in Fig. 2. The symbols denote the results of tests using differ-

ent maximum ammonium sulfate CCN masses, compared with results from basic

theoretical homogeneous freezing considerations (the solid lines labeled by

the CCN mass in grams). It is clear that to produce ice crystals within

the homogeneous haze particle freezing regime, the required RH w decreases

with decreasing temperature, and water saturation is not required for

temperatures _ -35°C. In effect, cold cirrus cloud processes follow an

adjusted pseudoadiabat affecting fundamental thermodynamic and micro-

physical processes.

Fig. 1
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With increasing background crystal concentrations of O, i, and 5

1-1 , N i in each nucleation pulse decrease due to increasing vapor

competition effects between haze particles and the total number of

crystals present.
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On the basis of the model findings, we offer the following formula to

describe the approximate temperature dependency in RH w needed to introduce

new ice crystals in large-scale cirrus cloud models:

RH w = 5.36 x i0 -3 T(K) - 0.276 (1)

This relation offers a considerable improvement over earlier attempts to

parameterize cold cirrus cloud growth, as exemplified earlier, but at the

same time further research is clearly needed to describe cirrus ice

particle generation at temperatures warmer than about -35°C, where homo-

geneous nucleation would likely be ineffective. As a first step, however,

available large-scale cirrus models should incorporate these findings to

compare and evaluate the impacts of ice particle generation based on

realistic microphysical considerations.
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1. INTRODUCTION

Clouds strongly influence the earth's energy budget.

They control the amount of solax rafflati'g.c.energy

ah_l_rl>ed by the clitmtte ,ystet_l, partitioning the energy

iJctwcrtt the ttt,:o,._phclc attd the eaith'b surface. They

also control the loss of ettcrgy to space by their effect
on thermal emission. Cirrus mad altostratus are the

most frequent cloud types, having an annual average

global coverage ,,f 35% and 40%, respectively. (Compiled

from ]labs, ct al., 1984, who used surface synoptic

observations for the period 1971-1980). Cirrus is

composed almost entirely of ice crystals and the same i_

frequently true of the upper portions of Mtostratus since

riley are often formed by the thickemng of cirrostratus

and by the spreading of the middle or upper portions of

thunderstorms. Titus, since ice clouds cover such a large

portion of the earth'_ surface, they almost certainly have

an important effect on'climate. With this recognition,

researchers developing climate models are seeking largely

unavailable methods for specifying the conditions for ice

cloud formation, and quantifying the spatial distribution

of ice water content, IWC, a necessary step in deriving

their radiative characteristics since radiative properties

are apparently related to IWC (e.g. Grimth, et. at.,

1980). This study develops a method for speeifyit,g
ice water content in climate models, based on theory

and measurements in cirrus during FIRE and other

experiments.

2. APPROACH

A conceptual model of the production of ice within

a lifting layer is illustrated in Fig. 1. The horizontal

extent of the layer is commensurate with one GCM

grid, > 100 kin, and in the vertical it is 1 kin.

The para2meterization will generate mean IWC for this

layer, whose horizontal dimensions do not enter the

parameterization, and whose vertical dimensions enter

only weakly. The layer lifts at constant velocity, to (taken

as the large-scale vertical velocity prognosed by the
GCM or obtained from aircraft data in the verification

experiments), from some initial state characterized by

temperatures Ti and _'i_and pressures pi and /_i,at

its base and top, respectively. The relative humidity is

assumed to be at ice saturation. After lifting for time

i, the layer contains an ice water content given by the

difference between the vapor mass sublimated onto the

ice crystals and the net fallout of ice mass from the

layer. Fallout must be considered since ice crystals have

terminal velocitlcsof tens of cm s-l, much more than

synoptic scale verticalvelocitles.

J The Nmiona] Center for Atmospheric Research is

Leo J. Donner

Department of Geophysical Sciences

University of Chicago

Chicago, IlLinois 60637

In this section the theoretical development of this

conceptual view is given, and a discussion of aircraft

flights used to characterize the ice mass distribution in

deep ice clouds will be presented. The IWC's from the
aircraft rlleagurelllents are cab/raced ill s()llle instances

by hotiz_ntM ttdvcdioa of itc f_J:t,cd #tl]c,vt: slid outside

of Lk_ layers in cirrus convective cells, a factor which

must be considered in comparing the measurements to

the model results.

A. Theoretical Development

The total water mass in a layer undergoing ascent

and cooling is constant, except for the accumulated mass

which settles out of the layer:

.X,,(1 + S,)+ X, =C-F, (1)

where X,,, is the mixing ratio of the vapor at saturation

with respect to the solid (ice), X, is the ice mass mixing

ratio, S, is the supersaturation with respect to ice, C is

the initial water mass, and F is the mass mixing ratio of

ice which has settled out of the layer.

The mass settled out of the layer (in a Lagrangian

framework) is given by the vertical divergence of the ice

mass txfixing ratio integrated over the time of the parcel's

ascent:

j: 0[yo°- ]F= -_-ff_ N(D,f')m(D,t')Vt(D,t')dD dt'

tl 0= pN [pX, V,] (p,,t')dt',

(2)

where p is the density of air, z is the height, p is the

pressure, t is the time, N, m, and Vt the concentration,

mass and terminal velocity of ice crystals of dimension D,

and V-a the mean mass-weighted terminal velocity. The

bracketed term on the right-hand side of Eq. (2) is the

precipitation mass flux (or precipitation rate) relative to

the lifting layer.

Taking the time differential of Eq. (2), using

the Clausius-Clapeyron and hydrostatic equations, and

taking _ = w_;, where w is the layer ascent velocity,

the following isobtained 2:

a We have denoted Lagrangian derlvates as total deriva-

tives,although strictlyspeaking these are partial time

derivatives with the initialposition of the layer held

constant, as noted explicitlyin Eq. (2).

sponsored by the National ,qcience Foundatic, n.
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ICE PRODUCTION IN LIFTING LAYER
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Figure 1. A conczptual model of the production of condensate in an ice cloud.
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where L, is the latent heat of sublimation, R. and R_I

are the ideal gas constants for water vapor and dry air,

T is the air temperature, and g is the gravitationM

acceleration constant. The change in temperature is

computed on the basis of dry adiabatic ascent and latent

heat released due to vapor deposition onto ice crystals:

dT g L, d

d-3-= _, _, d, [0 + s.)x..]. (4)

If supersaturation with respect to ice So is known _

as a function of z, Eq. (4) provides an expression for dT"

for use in Eq. (3).

The Vt is evaluated from calculations of the ice mass

precipitation rate in deep ice clouds by Heymsfield (1977).

Converting to the terms used here,

V, = 1.09 (pX,) TM, (5)

where Vt is in units ofm s -1, p is in units ofg m -3, and

X, is unitless. Values predicted from this equation are in

accord with estimated particle termlnM velocities of 0.3

to 2.0 m s -1 in virga falling from ice and snow generating

cells (e.g., cirrus uncinus).

Our calculations assume an ice-saturated mixing ratio

through the cloud depth.

Fig. 2 illustrates the ice water content for several

layers undergoing ascent for t=10,000 see., obtained by

solving Eq. (3). Temperatures indicated are those at

the end of the time period, and vertical velocity is held

constant throughout. A common characteristic is a phase

during which IWC increases with time, followed by a

phase during which it decreases. Ice m_ss first incre_es

in the layer by condensation; as the ice content incre_es,

settling becomes increasingly important in removing ice,

eventually dominating as the layer continues to cool moist

adiabatically and the condensation rate decreases. Thus,

Io__A' w = Ictus -t

iO__

iO -?

IOo

A

io-Z
IE

c_

10_4

I I I

......_-"2-;;- K
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.... Seltling

I I J

8, w = 20cm $-I

1 I I

............. £--2-i_;K -
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Figure 2. The ice water content as a function of

time for several layers undergoing ascent for various

temperatures (at the end of the ascent) and vertical

velocities. A: w = 1 cm s -1. B: w = 20 cm s -l
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the ice content of a layer depends on its ascent time.

In later comparisons with aircraft measurements the ice

content for a fully developed ice cloud will be taken as

the maxlmum value during the layer ascent. These

contents are appropriate for comparison with ice contents

measured in clouds by aircraft which typically sample the

densest regions of clouds undergoing penetration.

Later in this paper we wiLl be comparing data from

aircraft taken at particular temperatures and pressures

with those predicted from Eq. (3). The comparison

should be for the time the maximum IWC is reached

in the parcel. Therefore, the history of parcel ascent

must be reconstructed so that the initial conditions of

the parcels ascent can be deduced. An estimatc,_0.f.the

ascent time to maximum ice content for the conditions

at the end of the parcel's ascent is made by tracing a

parcels ascent backwards in time. The estimated initial

temperature and pressure is iterated using the ascent

times to maximum ice content until the cycle does not

change the ice content significantly.

B. Aircraft Data Collection

Data were collected by aircraft in cold clouds

over the continental United States in the mid-1970's

during the Environmental Definition Program (EDP)

(Heymsfield, 1977) and from the F/RE cirrus IFO.

Measurements in the twenty EDP flights were acquired

in the densest (visually) regions of deep winter- and

springtime ice clouds associated with warm frontal

overrunning systems, warm frontal occlusions, closed lows

aloft, and jet stream bands. Sampling patterns consisted

of 25-km-long constant altitude legs oriented parallel to

the wind direction, beginning at the cloud top (8.5 to

11.0 km), and descending in 600-m steps to below cloud

base (1 to 5 km). Four of the flights were coincident

with single Doppler radar measurements. The FIRE data

reported here were collected during eight flights by the

NCAR King Air aircraft in visually dense cloud during

spiral descents which began near cloud top (8 to 0 km)

and ended at or below cloud base (5 to 6 km). The

aircraft drifted with the wind and descended at a rate

of about 2 m s -t to follow approximately the fallout of

the ice particles. The flights occurred on 19 October, 22

October, 25 October (2 flights), 28 October (2 flights), 1

November, and 2 November 1980. Horizontal distances

covered by each loop of the spiral, were from 5 to 10

km. Synoptic systems sampled were the same as those

discussed above for the EDP data.

Aircraft size spectra measurements were used in

conjm_tion with the ice crystal shape data to calculate

the ice water content and precipitation rate. Vertical air

velocity was calculated by equating the change in the

calculated precipitation rate between two sampling levels

to the vertical flux of moisture producing this change

(Heymsfield, 1977).

3. RESULTS

The variation of ice water content with temperature

and vertical velocity from the parameterization is illus-

trated by the lines in Fig. 3. These curves are computed

by assuming ice-saturated ascent in Eq. (4) over times

required for condensation and settling to balance (about

1800 to 4000 seconds). Pressure at the end of the

ascent time is taken as the average for a specified vertical

velocity from the aircraft data. The IWC depends

primarily upon T, varying by four orders of magnitude

over temperatures found in the troposphere. Increasing

I0 0

IO-t

g--
I

E I0-z

(,.)

._ I0-3
H

10-4

EDP

I I 1 I / m s-iw ;50
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×

_ x
X
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210 220 230 240 250 260 270
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Figure 3. IWC values for each constant altitude penetration from the EDP data,

plotted against temperature and partitioned into vertical air velocity intervals. Curves

for the told-point of the vertical velocity intervals from the parameterization are shown

with dashed Lines. Crosses: 0 to 2.5 cm s-l; triangles: 2.5 to 10 cm s-I; circles: 10

to 33cms-t;squares: >33 cms -t.
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Figure 4. Same ms Fig. 3, except for the FH_'I_measurements. Each data

point is from the told-altitude of a loop during a Lagrangian spiral descent.

w produces less than linear increases in IWC, because

the ascent times required to reach equilibrium between

settling and condensation are less at higher values of w.

Individual IWC from the EDP and FIRE data sets

are partitioned into vertical velocity intervals bounding

those from the parameterization and plotted against

temperature in Figs. 3-4. The curves from Fig. 3 are

reproduced in Fig. 4. In general, the parameterization

has reasonably captured the variation of IWC with tem-

perature mad vertical velocity. The FIRE data at low w

does not compare as favorably with the parameterization

as the other methods; this might possibly be due to

the small horizontal distances over which this data was

averaged.

4. CONCLUSIONS

A simple parameterization for atmospheric ice water

content can account reasonably well for ice water contents

observed by aircraft in numerous synoptic contexts in

mid-latitude and tropical areas. The physical processes

are idealized condensation and crystal settling. Starr

and Cox (1985) constructed a model in which many

of the processes contributing to ice-cloud formation, as

well as the circulation in which the cloud formed, were

calculated explicitly over the development history of the

cloud; phase changes, crystal settling, a_d radiative

processes were the key elements in their model. The

parameterization developed here is intended for use in

large-scale models in which atmospheric ice distribution

is sought diagnostically as a function of an instantaneous

atmospheric state, so some of the details of the Starr and

Cox model cannot be included. Atmospheric ice water

content in large-scale models will, of course, interact

with the radiative field, so feedbacks, which axe likely

to be significant, will develop between the cloud field

and atmospheric dynamics and thermodynamics. This

parameterization is essentially a simplification for the

solution of large-scale equations for atmospheric ice,

analogous to those for water vapor, which could added

to large-scale models as a more explicit means of treating
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ice clouds (or atmospheric liquid water in general).
Since the history of atmospheric ice which would be

contMned in such large-scale equations is absent, the

parameterization has adopted assumptions to permit
diagnostic solution.
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1. Introduction

A diffusion-like description of radiative transfer in
clouds and the free atmosphere is often employed.

The two strearn model is probably the best known

example of such a description, e'12'° The main idea

behind the approach is that only the first few mo-
ments of radiance are needed to describe the radia-

tive field correctly. Integration smooths details of

the angular distribution of specific intensity and it

is assumed that the closure parameters of the theory

(diffusivity factors) are only weakly dependent on the
distribution. In this paper we investigate the diffusiv-

ity factors using the results obtained from both Stra-
tocumuhs and Cirrus phases of FIRE experiment. A
new theoretical framework is described in which two

(upwards and downwards) diffusivity factors are used
and a detailed multi-stream model is used to provide

further insight about both the diffusivity factors and

their dependence on scattering properties of clouds.

2. Diffuslvlty factors

There are many diffusion-like approximations in ra-
diative transfer theory, l° The most intuitive being

dU S' (2.1)
F = D-d_r +

where flux and scalar irradiance vectors

(2.2)F= F- ' U= U-

are defined by the following hemispheric averages

o fo,F+= f-- /z/(v,/z)d/_ F-= /_I(r,#)d/_(2.3a)
J-- 1

u ÷ = I(.-,.)a. u- = I(.-, _,)d. (2.3b)
1

of specific intensity 1(% _). Vector S' is related to
the source term. The sign convention is as follows:

the instrument located on a airplane and facing the

Earth's surface will measure the upward flux of radia-
tion, here indicated by the + sign, the corresponding

0 values are between (Tr/2,1r) and # E (0,-1). The

instrument facing skywards will measure downward

flux, here indicated by the - sign, the corresponding

0 values are between (0, _r/2) and # E (1, 0).

Equation (2.1) is a direct analog to the Fickian
diffusion law where the flux quantity is related to

the gradient of a scalar quantity (scalar irradiance)
through the diffnsivity matrix I). In oceanography tl

and atmospheric science 2 another diffusivity matrix

is often employed

U = DF (2.4)

where D is the 2 × 2 matrix

(D + 0) (2.5)D= 0 D-

and the diffusivities D- and D + are defined as

v-(_-) u+O-) (2.6)
D--- F-(v) and D +- F+(I.).

It can be seen that (2.6) involves the first two mo-

ments of angular radiance dependence. These quanti-
ties are used to close the set of hierarchy of equations

for various moments of radiance. The resulting set of

equations is called the two-stream approximation.

3. Measured diffusivities from the

CSU bugeye

The Marine Stratocumulus Intensive Field Obser-

vations (MSIFO) of the First ISCCP(International
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Figure 1: CSU bugeye instrument

Satellite Cloud Climate Program) Regional Experi-
ment (FIRE) was conducted off the coast of Cali-
fornia at and in the vicinity of San Nicolas Island

in July 1987. On San Nicolas Island, a tethered
balloon with radiometrlc instrumentation from Col-

orado State University (CSU) probed the marine
stratocumlus. 7 The shortwave radiometric instru-

rnentation measured both the downwelling and up-

welling irradiances, and consisted of four Epply pyra-
nometers (measuring wavelengths from 0.3 to 2.8 ltm

and from 0.7 to 2.8/*m), and two CSU bugeyes. The
bugeye measurements will be used to derive the ra.
diative diffusivities.

The Bugeye, the CSU Multidirectional Photodiode

Radiometer 4 measures the angular distribution of the

radiance field. It consists of a hemispherical array of
thirteen silicon photodiodes and associated electrical

circuitry mounted on an aluminum housing (Fig. 1).
The upward looking bugeye had diodes with a 10 °

field of view. Each diode of the downward looking
bugeye had a 50° field of view. The spectral range of
both bugeyes is from 0.36 to 1.10 14m but the diodes

of the downward looking bugeye were covered with a
blue tinted Schott glass filters. Figure 2 shows the

spectral response of the downward looking bugeye
(solid line) and the upward looking bugeye (dashed
line). The peak sensitivity of the downward looking
bugeye is at 0.40 #m while the upward looking bugeye
has a peak sensitivity at about 0.93 pm. The bug-
eye voltages are actually irradiances seen within each

bugeye diode's field of view. These voltages were nor-
malized to the sensitivity of the first diode after being
corrected for a zero offset. A field of view correction

was then applied to each diode voltage to provide the
proper steradian weighting on the hemisphere. A cor-
rection for the pitch and roll of the platform was also
accounted for. From the 13 diode measurements, the
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0 t t
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Figure 2: Spectral response of CSU Bugeyes

diffusivity factor was deduced as

D = E_I _A,(hemi)/A(diode) (3.1)
V,A,(hemi)/A(diode)co,0,

where V_ is the voltage of diode i, A(diode) is the
steradian field of view of each diode, A_(hemi) is the
steradian area that diode i voltage represents, and 0_

is the zenith/nadir angle (accounting for the pitch
and roll of the platform) of diode i. Comparison
of (3.1) to (2.6) and (2.3) emphasizes the approxi-

mations used to integrate over angle. To test the
approximation, the irradiances obtained from sum-

mation of the diode measurements (the denomina-
tor of (3.1)), were compared to the shortwave irra-

diances obtained directly from the Epply pyranome-

ter. An excellent relationship (not shown) between
these measurements was obtained despite the differ-

ent spectral characteristics of the bugeyes and pyra-

nometers. The diffusivities for the downweiling ra-
diation (D-) and for the upwelling radiation (D +)
are shown in Figure 3 for a Sc cloud smapled on

the morning of Julian Day 189 (8 July 1987). The
diffusivity values average about 1.62 with D + being
slightly larger than D-. Cloud base is at about 970

mb and cloud top is at about 930 mb. As the b,g-
eye entered the base of the cloud the value of D +

rapidly increases until D + assumes a in-cloud profile
and then decreases through out the cloud. D- in-

creases with height through the cloud to cloud top
where it has has the same value as D +.

We also performed some preliminary calculations of

diffusivities for the downward looking (and only) air-
craa_ bugeye from FIRE Cirrus, Oct. 28, 1986. The

results for several passes through two cirrus samples
give results of D + _ 1.7.
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Figure 3: Diffusivity coefficient. Marine stratocumu-
lus. FIRE 8 July 1987

4. Model results

A. Diffusivity factors from the de-

tailed radiative transfer code

To demonstrate further the structure and depen-

dency of diffusivity factors under various condi-
tions, we have employed a comprehensive radiation

model TM which includes scattering and absorption by

molecules, as well as by particles. The midlatitude

summer s atmospheric profile is employed in which a
cloud layer of 1 km thick is located with a base 1
km above the surface. The cloud layer is assumed

to be homogeneous with a mean liquid water con-

tent of 0.2gin -s and a mean effective radius of 10pro.

Three spectral bands of 0.52-0.57.m, 1.28-1.53.m,
and 2.38 - 2.91.m are selected, respectively to repre-

sent the cases of no, moderate and strong absorption

by water droplets. Three solar zenith angles of 0%

30 ° and 75 ° are also chosen to investigate the angu-

lar dependence of diffusivity factor. The results of

these calculations are shown in Fig. 4. These cal-

culations clearly demonstrate the dependence of D +
and D- on absorption strength, solar zenith angle,

and optical depth. The diffusion domain in which

D + (r,/_o) = D + and D-(r, po) = D- is also appar-
ent for large r. The results also indicate that the

diffusivity is higly variable for clouds of r < 1.

B. Two-stream approximation

The azimuthally and hemisphericaly averaged

monochromatic radiative transfer equation for diffuse

radiation, I(r, #), in a plane-parallel, horizontally ho-

mogeneous medium which scatters, emits and absorbs
can be written as

dF+(_) _ v+(_) - coo _(.)_(nl,)d.
dr

-coo _0,)_(n-J,)d.- S+(_)(4.1)

dR-(,-) _ V-(,-) +_o _(.)I(,-,-.)d.
dr

1I"

+cooJo _,(.)I(,-,.)d. + s- (,-)(4.2)

where the backscatter fraction is

_(_,) = _ PO,,-_/)d.' (4.z/

and the forward scattering fraction

lfo'_o(.) -- 1-/3(.) = _ P(.',.)d.' (4.4)

Equation (4.1-4.2) doesn't involve any approxima-
tions. Unfortunately it is a system of 2 equations and
6 unknowns: F +, U +, F-, U- and 2 independent

integrals involving scattering fraction. To overcome

this difficulty all two-stream models introduce some

kind of closure hypothesis. °'1 The particular choice
below follows the discussion given in Preisendorfer it

and Buglia. 1 To close the system of equation we need

the relationships between F, U (eq. 2.1 or 2.1, for in-
stance), and the integrals involving backscatter. For

this purpose we introduce diffusivities as defined by

(2.6) and assume that the back and forward scatter
fractions are independent of angle. It follows that

dF
-- = AF + S (4.5)
dr

where A is the 2 x 2 matrix

( 7+_ --7?--72-) (4.6)x = _.
7

and

7 + =D +(1-_o_), q'?=D-(1-_o_O) (4.7a)

3"+ = D+COo_, 3"_-= D-COo_ (4.7b)

and

F= F- ' S= S-
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Matrix A depends on local optical properties of the

atmosphere (such as the single scattering albedo _o

and the asymmetry parameter g). With the typi-
cal assumption that D + = D- - D, i.e. that the

properties of the homogeneous layer are radiatively

isotropic, we write scalars 71 and 72 as

71 -- D (1 - &0_0) (4.9a)

72 = D&o_ (4.9b)

For the case D + = D-, the matrix A exhibits spe-

cific structure and is defined by two scalars. It is this
fact which allows us to introduce only two physical

parameters defining the homogeneous and isotropic
medium: transmittance t and reflectance r. For

the anisotropic (but homogeneous) layer, for which
D + # D-, the matrix structure (4.6) is defined by
four scalar entries and two transmlttances and two

reflectances are needed to define the system. The ap-

parent n anisotropy of the medium is forced by dif-

ferences in the distributions of the intensity incident

at cloud top and base. The solution of (4.5) may be
written in the form s

F (r) = PF (re) (4.10)

where P is a 2 x 2 fundamental solution matrix. The

propagator for a homogeneous atmosphere, i.e. for
constant A , is

F (r) = eA(r-rOF (rt) (4.11)

for a layer of thickness I" - re. For the case of a two-
stream model and we can represent the propagator
as

1 [ex'_" (A - A21) - e x_" (A - A,1)]
Peep-- A,-Aa

(4.12)
where 1 is the 2 x 2 identity matrix. The eigenvalues

AI and A2 are roots of the characteristic equation

A2 - pA + q = 0 (4.13)

and

0.8
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Figure 5: Reflectivities from the four parameter
two-stream model

1

1 +
P2, = _7, (e x'' -- ex'r)

1
r_2 = -_- [e_""(_'i- + x2) - ex"(_i -

and I = A, - A2. Figure 5 presents

(4.16b)

(4.16c)

+ A,)] (4.16d)

results for two

sets of diffusivities. First D + = 2.2, D- = 2 which

corresponds to the no absorption case (compare Fig.

4). The second set D + = 2.8, D- = 1.2 is more
typical of the absorption case. The results indicate

that the medium becomes anisotropic (r + # r-) and
that refiectances and transmittances of the cloud are

sensitive to changes in the diffusivity matrix.

p = trA = 7+ -- 7,- (4.14a)

q -----det A = 7+7_ - - 7+7_ - (4.14a)

It can be shown that the refiectances and transmit-

tances are directly related to the propagator

(r + t+)=____l ( -P*2 1) (4.15) 5. Summary
t- r- PI* \PlIP22 -- P21PI2 P21

The diffusivity factor has been studied in the con-

where text of two-stream approximation of the radiative

transfer equation using data obtained from both Stra-1
Pn _- [eX'r ("f + A2) - eX"(7 + A,)] (4.16a): -- -- tocumlus and Cirrus phases of FIRE project. De-
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tailed radiative transfer calculations have been em-

ployed. The theoretical framework of the two-stream

model for homogeneous but anisotropic (anisotropy
being forced by the boundary conditions) atmo-
spheric layer is described. It is shown that the to-

tal extinction matrix is defined by four components.
Preliminary results indicate that the diffusion coef-

ficients depend on the specific spectral region un-

der consideration, absorption strength, optical thick-
hess and solar zenith angles. In the strong absorp-

tion case, upward and downward diffusivities separate

and the two-stream model predicts large differences
in upward and downward reflectances and transmit-
tances for such a case. Model results indicate the

existence of a diffuse region in which the diffusion

matrix doesn't vary with respect to solar zenith an-

gle and/or increased optical thickness. Experimental
data indicate the variability with the sun's zenith an-

gle of the downward diffusivity in the free air overly-
hag the cloud. In the cloud layer the upward diffusiv-

ity is larger than the downward diffusivity which is in
agreement with the strong absorption case obtained

from the numerical model. Downward diffusivity is
fairly constant throughout the cloud and below the

cloud layer. The upward diffusivity adjusts rapidly
to the existence of the cloud layer. Model results

indicate that a 'skin' layer in which rapid changes
in diffusivity occur is of the order of ;- = 1. Thus

constant-D models may not be suitable for thin cir-
rus clouds.
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A Comparative Study of Infrared Radiance

Measurements by an ER-2 Based Radiometer and the

Landsat 5 Thematic Mapper (TM-6)

Philip D. Hammer, Francisco P. J. Valero, and Stefan Kinne

NASA Ames Research Center, Moffett Field, CA 94035

1 Introduction

Infrared radiance measurements were acquired from a radiometer on the NASA ER-2 during a

coincident Landsat 5 overpass on October 28, 1986 as part of the FIRE Cirrus IFO in the vicinity of

Lake Michigan. A comparative study is made to infer microphysical properties of the cirrus cloud
field. Radiances are derived from the image by convolving the ER-2 radiometer's effective field

of view along the flight path. A multistream radiative transfer model is used to account for the

differences in spectral bandwidths, 10.40-12.50/am for the Landsat band and 9.90-10.87/am for the
radiometer.

2 Instruments

The primary aircraft based instrument employed for this study is a two spectral channel nar-

row field of view radiometer (NFOV). This instrument was mounted within a pod attached to the
fuselage of the NASA ER-2 aircraft. Both channels detect upwelling infrared radiation within a

conical field half-angle of 8.3 degrees. The optically sensitive components are electrically calibrated

pyroelectric detectors (Valero et al. 1982; Geist and Blevin 1973}. A reflective chopper operating

at 18 hz alternately exposes the detectors to external radiation and a liquid nitrogen cooled zero-
radiation reference. The temperature corrected spectral bandwidths (full width at half maximum)

of the interference filters are 6.14-7.14 and 9.90-10.87/am. In this study only the 10 /am channel

bandwidth overlapped one of the Landsat 5 bands: TM-6.

The basic operation principles of the Landsat thematic mapper are described elsewhere (Engel

and Weinstein 1983). Standard relations were used for converting the digital pixel counts to radi-
ance and brightness temperature (Markham and Barker 1986). The Landsat 5 TM6 band has an

equivalent rectangular spectral bandpass of 10.40-12.50/am (Wielicki and Parker 1987). Radiances

derived from the Planck function integrated over this bandpass agree very well with the Markham

and Barker formulas for which this integral is approximated by a simple analytic expression.

3 Analysis

In order to make meaningful comparisons between our NFOV ER-2 radiometer and Landsat

image data, a systematic procedure was used to prepare both data sets. First, a geometrically

registered satellite image was obtained. Next, the aircraft flight tracks derived from navigational

data were adjusted for cloud level winds. Radiances were determined from the image by convolving

the ER-2 radiometer's effective field of view with image pixel values along the flight track. The

previous two steps require an estimate of the altitude of the optically dominant cirrus layer; this was

aided by lidar data. The resulting signals were expressed in spectral bandpass independent units of

iCCt_.L ,",_ Y_'_ U--'_,,_ NOT FILMED

423



brightness temperature verses aircraft coordinates. Finally the two sets of radiance measurements

were prepared for a 2 channel radiance correlation plot for comparison to model calculations.

4 Model

A discrete ordinates radiative transfer code designed for multi-layered plane-parallel media

(Stamnes et al., 1988) was used to calculate radiance values at the corresponding altitudes of the

measurements, 19.1 km for the ER-2 and >70 km for Landsat. The number of computational polar
angles {streams) was set to 8, as larger values did not generally yield significant differences in the

results. 17 atmospheric layers were chosen so as to achieve reasonable homogeneity in temperature

{less than 10°K variation) and particle composition within each layer. The upwelling radiance was
evaluated at a polar angle of 0 degrees to correspond to the conditions of the measurements.

The assumed ice particle size distributions are described in terms of Mie spheres of a single

equivalent radius. Mie calculations were done for a selection of water and ice sphere radii using ex-

perimentally determined values for the complex index of refraction of ice (Warren, 1984) and water
(Downing and Williams, 1975). Particle concentrations were chosen to yield the desired zero zenith

angle optical depths for extinction through all the cloud layers at a reference wavelength of 11.4 pm.

The atmospheric profile input to the model was derived from the 1500 GMT Greenbay radiosonde.
Since direct measurements of the Lake Michigan surface temperature were not available the Green-

bay surface temperature was used: 7', --- 281.9°K. The lake surface was assumed to be Lambertian

with a wavelength independent albedo of 0.04. ER-2 based lidar measurements (Spinhirne et al.

1988) indicate that there are two distinct cloud layers over most of the Landsat image extract, with
altitude ranges of about 7 to 8 km and 9 to 11 kin.

5 Results and Conclusions

Fig. la is the Landsat image extract. Fig. lb shows the ER-2 radiometer and Landsat signals
along the flight track in units of brightness temperature. Figs. 2 and 3 are correlation plots. The

ER-2 and satellite scales are expressed in radiance units (Wm-_sr -1) for the instruments' respective

bandpasses. The measured data points of Fig. 2 {represented as small dots in Fig. 3) are derived
from the data represented in Fig. lb. Data is distinguished as to ice or water according to the lidar
plot of Fig. lc.

The model calculations are plotted as connected sets of specific symbol types. Each set cor-

responds to radiance results for a range of optical depths using particles with particular radius

selections. Beginning at the upper right convergence point the optical depth values (referenced at
11.4 _um) are 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 1.0, 1.25, 1.5, and 2.0. For the standard model

{connected unfilled symbols in Fig. 2 and solid symbols in Fig. 3) a two layer cloud profile was

chosen with ice spheres in the upper layer having about half the effective radius of spheres in the
lower layer. The 11.4 pm optical depths of the lower and upper layers were set equal. Unfilled

symbols in Fig. 3 represent a profile with water drops present in the lower layer and nothing in
the upper. The following conclusions are based on comparisons of measured radiances with model
results on the correlation plots:

1. Assuming the above standard model, ice particles with equivalent sphere radii of 8 to 15 pm

for the upper layer and 15 to 30 pm for the lower layer may be inferred. This contrasts with particle

sizes typically greater than 100 pm determined by in-situ measurements. The lack of sensitivity
of the in-situ probes to small ice crystals and the uncertainties in ice-water content determinations

causes difficulties in resolving whether a large number of small particles are actually present as

opposed to complex large particles with small protrusions. The combined cloud extinction optical
depth for both layers at the reference wavelength of 11.4 pm ranges from about 0.3 to 2.

2. Assuming a l-layer lower water cloud yields results consistent with approximately 8 pm radii

water droplets. This compares with in-situ measurements of radii about 4 pm. Distinguishing mea-

surements made with water clouds present from those made for just ice clouds gives no apparent
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separation on the correlation plots. Thus water and ice clouds cannot be distinguished from the
correlation plots alone under the conditions of this case study. The optical depth scale is only mod-

erately changed (< 20%) from the 2-layer ice model results.
3. Limits on the estimated instrument error may be established by means of self-consistency of

the model results. Specifically, if Landsat radiances values were too high, the inferred water cloud

droplet sizes would be unrealistically large. Thus our retrieval of relatively small ice crystals cannot

be attributed to a Landsat (nor an ER-2 radiometer) calibration error.
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I. Introduction

It is well known that clouds are significant modulators
of weather and climate because of their effects on the ra-

diation field and thus on the energy balance of the earth-

atmosphere system. As a result, the accurate prediction

of weather and climate depends to a significant degree on

the accuracy with which cloud-radiation interactions can
be described.

It is the purpose of this investigation to report the

broadband radiative and microphysical properties of five

cirrus cloud systems, as observed from the NCAR Sabre-

Uner during the FIRE first Cirrus IFO, in order to better
understand cirrus cloud-radiation interactions. A broad-

band infrared (BBIR) radiative transfer model is em-

ployed to deduce BBIR absorption coeffcients in order
to asseas the impact of the cirrus clouds on infrared ra_.

diation. The relationships of these absorption coefficients

to temperature and microphysical chaxacterieics are ex-
plored.

2. Flight and Data Description

The analysis presented here wu conducted for five cir-

rue systems that were penetrated by the NCAR SabreUner

during the first Cirrus IFO in the fall of 1986. Broadband,

infrared (4-50_m) and shortwave (0.3-2.8_m) fluxes were

obtained from measurements made by pyrgeometers and

pyranometers manufactured by Eppley Laboratories Inc.
For a description of these radiometers and calibration pro-

cedures, see Albrecht and Cox (1976, 1977) and Smith,

Jr., e| _., (1988). In addition, the shortwave irradlances
were corrected to a horizontal plane and normalized to

common time for each flight by taking into account Sabre-

Uner flight information (i.e. pitch, roll, and heading),

as well as the sun-earth geometry (Rockwood and Cox

1976; Ackerman and Cox 1981). The microphysics data

were obtained from the Particle Measuring System, Inc.

(PMS) 2-D probes. These data are described by Heyms-

field and 2vfiUer (1989). For a description of the Sabreliner

data set, see Hein, et a£, (1987). A brief description of

each of the four _ghts and the associated synoptic con-

ditions axe given in Smith, Jr., and Cox (1989).

3. Broadband Infl-ared Radiative Transfer Model

In order to assess the impact of the cloud layers on

infrared radiation, the broadband (4-50 _m) irradiance

data were analysed utilizing a broadband infrared rxdi_-

tire transfer model similxr to that described by Cox and

Griffth (1979). For clear sky, this model is capable of re-

producing broadband divergence values which s_'ee with

observations (Albrecht, et a£, 1974). This model has been
modified to include the effects of clouds and is described

in detail by Smith, Jr., and Cox (1989). In this model,
the cloud is treated aa a greybody where

Eei.I ----1 -- • -r'4a (1)

and

= "-'2.,(K,.re'c,. ,,z,) = Az, . (,)1"eid

In (5), K_ is the greybody mass absorption coefficient,

/WC_ is the mean ice water content, _ is the broadband

absorption coefficient (units m-') and AZ; is the thick-
ness for the i tj" cloud layer. Paltridge (1974) and Stephens

(1978) have shown that when employing a constant value

of K, (5) is a good descriptor of the radiative properties of

water clouds. Griffth, et aL, (1980) successfully employed

this relationship, a_uming a constant value of K, to fit

irradiance observations of cirrus obtained during GATE,

although to date, there is no theoretical buis supporting

the assumption that the broadband cloud transmittance

through cirrus is an exponential function of optical depth.

Therefore, we have adopted (5), but with the assumption

that K may be variable through the cirrus layer. Thls p_-

rameterization of cloud emittance permits us to retrieve

profiles of K" that yield calculated irradiance profiles that
precisely match the measured infrared ]rradlance profiles

(Fig. 1) through the cirrus clouds. Vertical profiles of
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mean IWC deduced from the 2-D PMS probe measure-

ments are shown in Fig. 2 for the four flights analyzed

here. The IWC generally increases with decreasing alti-

tude (increasing temperature) a_ expected. These values

are generally lower than those measured in tropical cirrus

systems (i.e. Griffth, ct el., 1980) and range from 0.0
in clear regions to about 0.07 near the base of the cirrus

cloud sampled on 22 October.

Platt and Ha_hvardhan (1988), hereafter referred to
as PH, discuss the relationship between cirrus cloud ab-

sorption and ice water content and provide insight as to

why the mass absorption coef_cient, K, may not be a con-

stunt through a cirrus cloud of variable ice particle size
distribution. As in PH, K may be considered a_:

K= _ Q-_
/_C " _ ro ' (3)

where Q, is the "effective absorption efficiency', ro the

"effective radiuJ" for the size distribution and p is a con-

stunt which includes the density of ice and an ice particle
orientation factor. Theoretical computations of the ab-

sorption efffciency Q, (or extinction efficiency) as a func-

tion of 9ize paraJneter have been carried out by Herman
(1962), Pinnick, et el., (1979) and others. For incident

energy in the infrared wavelengths, Q. ;_ c. r0 (c is some

constaat) for size parameters typically found in fogs and
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Figure 3: Vertical profiJee o.f -D,,,, (see te:d .for descrip-
tion).

6tratiform water clouds and thus K is approximately con-

,taut. However, for ice clouds where typical ice crystal

dimensions are known to be an order of magnitude larger
than the water droplet dimensions found in stratiform

clouds, the absorption efficiency approaches a value of

unity so that K cannot be treated as a constant through

cirrus unless r. remains constant. This is clearly not the

case for the cirrus clouds ol_erved during the FIRE tint

clrrns IFO. Fig. 3 shows the parameter D,*e,, varying as
a function of height for the five cirrus systems described

here where D..,. i9 the median ma_ weighted Ice parti-

cle dimension as defined by Heymafield and Ivfiller (1989).

4. Results

In order to deduce the impact of cirrus clouds on in-

frared radiation, the data sampled in five cirrus systems

were analyzed to infer cloud emittancee (c._a) and broad-

band, infrared absorption coeffcientz (K). The relation-

ship of the absorption coeffcient8 to temperature and mi-

crophysical chazacterhtic9 of the clouds are explored. Be-

cause only one aircraft was ns_l, measurement6 at differ-

eat levek in the cloud were not made simultaneously. As

a result, sampling errors may occur due to the nonsteady

state of the cloud field and/or due to the possibility that

the flight legs were not flown directly above or below each

other. To minimize these errors and in an attempt to set

some limits on the observed radiative properties (¢,ia and

K), the downwelling irradiance and IWC data for each

flight leg were stratified in the following ways:

MEAN: Average using every measurement along the flight
leg to det_mine a nman value for the cirrus
cloud field.

THINNER: Average the lowest 30% of the irradiance mea-
surements and the lowest 30% of the IWC data
to repreNnt the optically thinner part of the
cloud field.

THICKER: Same as above but for the highest 30% to repro-
sent the optically thicker part of the cloud
field.
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4.1 Radiative Properties

The model deduced cloud emittances, that is, the emit-

tances due to the cloud ice (water) itself, are shown in Fig.

4 as a function of ice water path (IWP) for the five cir-

rus clouds for the case using the flight leg means. For

the geometrically thinner clouds (19 Oct., 28 Oct.) the

emittance approaches about 0.4-0.5 while for the geomet-

rically thicker clouds (22 Oct., 31 Oct.) the emittance

approaches 0.7-0.8. This figure suggests that _oi_ is a

similar function of IWP for these 5 cirrus clouds sampled
during FIRE.

Fig. S depicts the resulting cloud emittances for the

stratified irradiance and IWC profiles of 31 October. For

the case of 31 October, eet_ was about 0.67 for the thinner

cloud and 0.75 for the thicker cloud. It is interesting to

note that the functional dependencies of the cloud emit-

tance on IWP are similar between the mean and thicker

cloud, but not for the thinner cloud. This occurred in

the other cirrus cloud systems as well. It is possible that

when stratifying the data as described above, the infrared

radiative properties of the thinner clouds are being signif-

icantly modul,_ted by unmeaJured small particles.

Stackhouse (1989) has shown that small particles (d<
50/_m) can significantly modulate the transfer of infrared

radiation. Furthermore, Prabhakara, et at., (1988) and

Ackerman, et at., (1989) have demonstrated that a unique
spectral signature which occurs across the infrared win-

dow region (8-12 #m) due to cirrus clouds is consistent

with radiative transfer c,dculations for ice particle size

distributions with effective radii lees than 40 tim. Unfor-

tunately, small particles (d<36 urn) were not measured
during the FIRE first cirrus IFO and have not been mea-

sured anywhere in high altitude cirrus clouds. This short-

coming must be dealt with in the future in order to un-

derstand the relationship between small particles and the

measured radiative properties of cirrus clouds. Broad-

band ma_ absorption coeffcients (K in units of m2/kg)

have been deduced and are shown for the five cirrus clouds

investigated here and for the different cloud stratifications

in Fig. 6 versus the parameter D ..... Fig. 6 shows the
K values retrieved from the mean irradiance and IWC

profiles. As expected from the theoretical considerations

in Section 3, K is shown to decrease with increasing par-

ticle size. The magnitude of K is shown to vary by about

two orders from about 0.48 to 0.007. Grlffth et at., (1980)

deduced K values of 0.096, 0.080 and 0.076 to fit irraAi-

ance observations of three cirrus clouds observed during

a tropical eastern Atlantic experiment (GATE). Those

cirrus systems were anvils very close to deep convection.

Paltridge and Platt (1981) deduced a K value of 0.056 to
fit irradiance observations of cirrus cloud decks over New

Mexico. This investigation is the first which attempts to

deduce profiles of K through cirrus clouds. The physi-

cal significance of K as it is defined in Eqn. 2 may best
be described as a coefficient which relates the IWP to

all other microphysical characteristics important to the

modulation of the incident irraAiance. These other mi-

crophysical chaJracteristics probably include, but are not

limited to, the effects of small particles, particle orien-

tation and ice crystal habit. The functional dependence

of K on the parameter D .... shown in Fig. 6 appears

to be somewhat dissimilar from one cirrus cloud to the

next although the general negative slope is common to

aJl ca_es. This may indicate that the microphysical prop-

erties that the K values characterize in Eqn. 2 are dis-

similar from one cirrus cloud to the next. Fig. 7 depicts
the retrieved K values for 31 October for the different

cloud stratifications. As in the case of the cloud emit-

tance, the functional dependence of K for the mean and

thicker stratifications are similar to each other but rather

different from that of the thinner clouds. It is likely that
the data stratified into the thinner clouds are more efsc-

tively characterized by small particles. In other words,

the thinner clouds represent data with lower IWC and

lower irradiances, however the high values of K that are

retrieved from this data indicate the significant effect of

some unmeasured microphysical characterisitic (i.e. small

particles) on the ra_ative properties of the cirrus.

Platt and Ha_shvaz_han (1988) (hereafter referred to

as PH) discuss the temperature dependence of cirrus in-

frared extinction based on data obtained by Platt, et

at., (1987) and Heymsfield and Platt (1984). The beam

volume absorption coefficients (10-12 #m) deduced from
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these two independent data sets were found to be similar

functions of temperature. Broadband volume absorption

coefficients (or) have been computed where

. = X rwc (s)

for the five cirrus clouds examined here and for the mean

cloud cases. ¢r is plotted _u, a function of temperature

in Fig. 8 agu_nst two regression lines for the data in PH.

The solid line fits the beam absorption coefficients as pre-

asnted in PH while the dashed line fits these same values

multiplied by a diffusivity factor of 1.66. The agreement

between the o values and the regression lines from PH is

very good. It should be noted that the data of PH were

obtained by first deducing a single volume absorption co-

efficient from ground-based radiometer and lidar observa-

tions of a cirrus cloud with some mid-cloud temperature.

The absorption coefficients were then averaged for many

clouds with similar mid-cloud temperatures. Here, vol-

ume absorption coefficients have been determined as a

function of depth through cirrus clouds and have been re-

luted to the mean temperature of the appropriate layer.

The degree with which these two data sets compare may

suggest that the bulk infrared properties of cirrus may be

adequately parameterized aa a function of temperature.
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i. Introduction

A large part of the earth is covered by thin semi-transparent cirrus

cloud (Wylie et al., 1989). The cirrus results from the natural injection of

moisture into the upper troposphere by deep convection (i.e., anvils) and from

man-made moisture injected into the upper troposphere by jet aircraft.

Although most cirrus cloud is semi-transparent to infrared wavelengths, their

heights, thicknesses, and spectral absorption properties must be known in

order to retrieve atmospheric temperature and moisture profiles from the data.

In this paper, an algorithm is developed for accounting for the radiative

properties of semi-transparent cloud in the retrieval of vertical temperature

and moisture profiles. The algorithm is to be applied to the NASA ER2 HIS

data collected during the FIRE cirrus field program. The results of its

application will be reported at the second FIRE Annual Meeting to be held July

10-14, 1989 in Monterey, California.

2. The Cloud Algorithm

The retrieval of temperature and moisture profiles from spectral

measurements of upwelling radiances are most efficiently achieved through the

simultaneous solution of the radiative transfer equation of the form (Smith et

al., 1989)

o o N Ps o o din r°(vj)

&l(_j) = &Tsfjrs(Vj) Z f * 6ri(P)fjr (vj) dp (i)
i=l p dp

where I is spectral radiance, v is wavenumber, T is temperature, f is the

derivative of Planck radiance with respect to temperature computed for a

"guess" temperature profile condition, r ° is the total atmospheric

transmittance (i.e., the transmittance due to all absorbing constituents) for
o

the "guess" atmospheric conditions, r i is the transmittance due to

individual absorbing constituents (e.g., C02, H20, and cloud). The subscript

"s" denotes the surface value, N the number of individual absorbers to be

considered, and the transmittance function is understood to pertain to the

atmosphere between the instrument level (p*) and the level of interest (p).

The symbol _ denotes a perturbation from the "guess" condition. For a

constituent whose concentration is known apriori, _T i represents the deviation

of the actual temperature profile from the "guess" profile. For all other

constituents,
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aT

6T i - 6T - (U i - U_) (2)

where 6T - T-T °, U i is the total path length of the gas between the instrument

and the level of interest. The significance of Eq. (i) is that it is linear,

the only unknowns are the temperature perturbations, 6Ti(P) and they can be

determined by the linear inverse of (i).

Neglecting scattering, clouds can be treated in the very same manner as a

molecular absorber, provided its spectral dependence is known. In this case,

the total transmittance _°(vj) is given by

O O
(vj) = 11 ri(vj)

i

where the "guess" cloud transmittance (e.g., i-3) has the form

P-Pt

rcd(V j ) = r°B(Vj) - EXP { -= f(vj,r °) (--) }

Pb -Pt

(3)

In (3), _ is a constant dependent upon the total ice or water content of the

cloud, f(v,r °) is a spectral function dependent on the effective radii, r °, of

the absorbing particles (ice or liquid water drops), Pt and Pb are the top and

base pressures of the cloud. Assuming that the cloud is purely absorbing, a

good approximation for f(v,r °) can be obtained by the Modified Anomalous

Diffraction Theory (MADT) presented by Ackerman and Stephens (1987). In this

case,

m _ -4X ni I m -4xni_-m'2 m

f(v'r°) = QABS = l+--e (i+--) ---e (_--i+--) (4)

2xn i 4xn i 2xn i 4xn i

where QABS is the absorption efficiency, X is the size parameter 2=r°/A, where

r ° is the effective particle radius and A is the wavelength, m is the index of

refraction, and n i is the complex part of the index of refraction. Figure i

shows a comparison between the absorption efficiency computed for ice clouds

using modified anomalous diffraction theory and Mie theory. It can be seen

that the difference in spectral dependence for large and small particles is

explained with MADT. In fact, if the effective radius is a free parameter, as

it is in the retrieval problem, an effective radius for Eq. (4) can be chosen

which provides an even closer fit to the Mie calculations.
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Thus, given (3) and (4), one has the following four cloud parameters, _,

r°' Pt' and Pb o If we consider the cloud term of Eq. (I), we can write

Ps din Tcd(_ j) Ps

f .6rcdr°(vj) dp = /3°f(vj,r °) f . 6rcdfjr °(Vj)dp

p dp p

(5)

where 8 = _/(Pb-Pt ). Thus, given an initial guess of a, r°' Pt' and Pb from

which r°(_i)can be specified, one could solve for the profile

6T i = 6Tcd = (Tcd - T) Pt_P_Pb

As with the molecular absorber

aT
O

Tcd - T = - (Ucd - Ucd)

aUc_

Since

Ucd = 8(p-pt )

Then,

O

aT P-Pt

rcd-r = - -- [ 68 (--) 6P t] (6)

ap 8 °

If the true temperature profile, T, and the cloud temperature profile, Tcd,

are known from the increase solution of Eq. (I), Eq. (6) can be solved for 6_

and 6pt. Given 6_ and 6Pt , a new base pressure can be defined from

0 0

Pb = Pt + -- = (Pt ° + 6Pt) +

8 8°+_#

(7)

The solution for the absorber temperature profiles and cloud parameters depend

upon an initial estimate of the particle radius r ° and the particle

concentration variable n °. It can be shown that for an isothermal cloud, and

at a wavenumber void of molecular absorption (i.e., a "window")
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f(uo,r °) n ° = In {

l(Vo) - B[T°(P°t) ]

B(Ts °) - B[T°(P°t)

) (8)

In order to solve (8) for r ° and n °, the initial cloud top pressure can

be defined using the CO 2 slicing technique (Menzel, 1986; Smith and Frey,

1988). Given the product f(vo,r°)_ ° for two window wavelengths whose cirrus

optical properties are expected to differ (e.g., 8.5 and ll.5#m as shown in

Fig. i), r ° can be defined from the ratio of Eq. (8) applied to the two

wavelengths since n ° cancels. Once r ° is known, n ° can then be obtained from

Eq. (8) applied to either one of the two window wavelengths. Given n ° an

estimate of 8 ° can be obtained from an initial guess of cloud-base altitude,

o 8oPb (i.e., = _°/(pb°-Pt°)).

In summary, the following steps can be taken to solve simultaneously for

temperature and water vapor profiles and cloud parameters from cirrus cloud

contaminated radiance spectra"

(I) Using the CO 2 slicing technique with the guess temperature profile,

solve for an initial cloud top pressure, p_.

(2) Using the 8.5#m and ll.5#m window radiances and the initial guess

surface and cloud temperature conditions, use Eq. (8) to determine the ratio

f(8.5#m, r°)/f(ll.5#m, r°). Use (4) to determine r ° and then Eq. (8) applied

to one of the two window wavelen§thsotO d_termine n °. This step yields the
initial guess cloud parameters _ , _ , Pb "

(3) Specify the initial guess cloud transmission profile using Eq. (3)

where f(uj, r °) is calculated using Eq. (4).

(4) Solve for the profiles 6T i through the linear matrix inverse

solution of Eq. (i).

(5) Use Eq. (6) to solve for 68 and 6Pt.

(6) Use Eq. (7) to provide Pb"

The entire process could be iterated until the cloud parameters cease to

change from one iteration to the next.

3. Summary

A method for direct and simultaneous solution for temperature and

moisture profiles and cloud parameters is outlined. The method takes into

account the spectral dependence of cloud emissivity/transmissivity which has

been found to be a function of particle size. The results of the application

of this technique to cirrus radiance spectra achieved with the HIS

interferometer flown on the NASA ER2 during the FIRE will be reported at the

meeting.
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The recent focus of parameterizations of the radiative properties of clouds has been to include

the microphysical properties of the cloud. A variety of parameterizations have been developed

for both the shortwave and the longwave. In parameterizing the longwave properties of clouds, it

is useful to consider the two stream solution of the radiative transfer equation appropriate for a

thermal source. While various solutions exist, here we consider the form

where

F-(rt)J = r t F-(r_)J + 1-s-r s-t B(rb)

r -- p(1 - e -r'') (2)
1 - p2e-r"_

t -- e-"" (1 - p2) (3)
1 - p2e-r*f!

(1 -t+r)s : (4)

 ,fI : PK, : .P f f KQ,=tn(r)r dr dz (6)

(7)
P= 1-wo+Wo_+ K
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where B isthe Plank function/_ isthe backscattercoefficientand _ isthe diffusivityfactor(/_

1.66). For an isothermal cloud, B(_), equations (12)-(18)indicate the necessityto parameterize

two variables,p and KQezt. Physically,p isthe reflectancefor an infinitelythick cloud. The value

of p as a function of wavelength isshown in figureI for icespheres. For wavelengths between I0

and 13/_m, p isa weak function of the particlesizeand p < 0.08. p can become large for small

particlesfor regions outside thiswindow.

To parameterize KQezt we considerthe ratioofKQezt to Qabt. This ratio(Figure2) displaysa

similardependency on wavelength and particlesizeasthat depicted by p,with a strong dependency

on particlesizeoutsidethe window region.For wavelengths between 10 and 13/_m, KQ_t _ Q_b,.

In parameterizing the longwave propertiesofclouds in the 10-13/_m window region,itistherefore

useful to parameterize Qabs. An appropriate parameterization of Qa_, isthat of the modified

anomalous diffractiontheory. Figure 3 depicts the relationsbetween wavelength and Qabs for

two differentdroplet sizes. The stars represent Mie calculationswhile the circlesdenote the

approximation ofequation (9).The open symbols are for a 30/_m particlewhile the solidsymbols

represent the calculationsfora l#m droplet. The approximation isexcellent,even fordroplets as

small as l_m.

The dependence of effective emittance on the particle size can be expressed to second order

using MADT as

==,-exp f [1- (1 - m-2)3/2)]dr + r4=2m2 [1-(1- m-2)2)] } drdz)

where _¢ = 41rni/A is the absorption coefficient of water/ice. The first term of the exponential

represents the dependency on the water content of the cloud, while the second term displays a

dependency on the fourth moment of the size distribution. As an estimate of the particle size at

which the emissivity becomes dependent on the droplet size we consider the radius at which

_m2_[1-(1-m-2)s/2)] =R_2m2[1-(1-m-2)2)] (9)

,4.42
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Figure 4 depicts this radius, R, as a function of wavelength for water (solid lines) and ice

(dashed lines) spheres. A cloud with a monomodal distribution of particles of size R or greater

will display a sensitivity to droplet size. For example, if we have two water clouds, one with a

monomodal size distribution of 12#m particle and the other with a 8#m droplet distribution, the

cloud emissivity in the 8-11.5 #m band will be sensitive primarily to the LWP, while the 11.5 to 14

#m band emissivity would also display a sensitivity to the size distribution. This is in agreement

measurements and calculations of fogs. In the the case of ice clouds, the 11- 13 #m band will

display a dependency on the size distribution for particles greater than 4/_m.

In summary, high spectral resolution measurements in the 8-13 #m "window" region are

appropriate for remotely sensing the microphysical properties of ice clouds as: windows in gaseous

absorption are available; this is the most sensitive region to particle size; the value of p is small

compared to other wavelengths; and KQezt _ Qab,.

To demonstrate this dependency of particle size on IR observations, we consider the spectral

variation of the equivalent blackbody temperatures in the "window" region, four spectral band-

widths: 8 #m (8.3-8.4), 10 pm (10.07-10.173), 11 #m (11.062-11.249) and 12 #m (11.93-12.063).

The equivalent blackbody temperature observations were made with the HIS (High resolution In-

terferometer Spectrometer) aboard the NASA ER2 during FIRE on 2 November, 1986. Figure 5

is a scatter diagram of the BTs-BTll versus BTll-BT12. Each symbol in figure the figure repre-

sents a range in the BTll as noted in the legend. The differences in the brightness temperatures

observed in these channels are very useful in detecting the presence of cirrus clouds. The cloud

free regions have negative differences in BTs-BTll due to absorption by water vapor. While cirrus

clouds have positive differences owning to the optical properties of ice. The cirrus BTs-BTll are

greater than the BTI1-BT12 as expected from figure 3.

The magnitude of the HIS measured BT differences is related to the cloud particle size dis-

tribution. This is demonstrated in figure 6 where the brightness differences are determined with

theoretical radiative transfer calculations using a doubling/adding model and assuming various

surface temperatures, cloud top temperatures, and different ice water content and geometric thick-
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nesses.The cloud isassumed to have a lapserate of-6 °K km -I and ishomogeneous. The cloud

particlesare assumed to be spheres with a gamma sizedistributionand effectiveradiias denoted

in the symbol legend. These calculationsdemonstrate that the ice cloud with the smaller re//

(stars)display the large BT differencesobserved by the HIS while the ice cloud with the larger

re�� do not. The magnitude of the ABT is also relatedto the IWP (e.g. very thin clouds are

similarto the clearsky values.

The envelope of the calculationsis depicted on figure5 by the solid line. Differencesbe-

tween the theory and observations are seen at the largerBTs-BT11 values. This differencemay

be attributed to particleshape, or to a non-homogeneous vertical/horizontaldistributionof the

particles.The effectof particleshape isdemonstrated by the dashed linewhich isthe envelop for

a cirruscloud consistingof small ice cylinders.

4. SUMMARY

• The HIS spectra show spectralvariationsinequivalentblackbody temperatures in the win-

dow region of greater than 5°C, for a given cirruscloud.

• The brightness temperature differencesbetween 8 and 11 pm and 11 and 12 pm are useful

parameters fordetecting the presence of cirrusclouds.

• Theoretical calculationsindicate that the magnitude of the spectral variation in bright-

ness temperature isrelatedto the particlesize.The smaller particlesare associatedwith larger

brightnesstemperature differences.

• The magnitude of the brightness temperature differencesare also related to the particle

shape. Calculationsassuming sphericalparticlesare in betteragreement with the majority of HIS

observations than similarcalculationsassuming cylindricalparticles.
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AIRBORNE LIDAR/RADIOMETRIC MEASUREMENTS OF CIRRUS
CLOUD PARAMETERS AND THEIR APPLICATION TO LOWTRAN RADIANCE EVALUATIONS

Edward E. Uthe

Geoscience and Engineering Center
SRI International

Menlo Park, CA 94025 USA

EXTENDED ABSTRACT

SRI has assembled an airborne lidar/radiometric instrumentation suite for mapping cirrus cloud
distributions and analyzing cirrus cloud optical properties. Operation of upward-vlewing infrared radiometers
from an airborne platform provides the optimum method of measuring high-altitude cold-cloud radiative
properties with minimum interference from thermal emission by the earth's surface and lower atmospheric
constituents. Airborne installed sensors can also operate over large regional areas including water, urban and
mountain surfaces and above lower atmospheric convective clouds and haze layers.

F'_qn'e 1 illustrates currently available sensors installed on the SRI Oueen Air aircraft. The upward-
viewing lidar (ALPHA-2) transmits energy pulses at two wavelengths (0.53 and 1.06 # m) at pulse rates to 10/sec.
Backscattered energy is collected in a 14-inch diameter telescope and is wavelength separated into two
independent detector systems that produce range-dependent fidar signatures representing a profile of the
scattering medium above the aircraft. Because an upward-viewing airborne radiometer views a low-radiance
background in the absence of clouds, radiance perturbations introduced by low-density aerosol and cloud layers
may be detected by a high-sensitivity infrared radiometer. The upward-viewing 8- to 14_ m infrared radiometer
is calibrated for equivalent blackbody temperatures as low as -80" C.

Lidar and radiometric data records are processed for real-time viewing on a color video screen. Figure
2 presents a cirrus cloud data example as a black-and-white reproduction of a color display. Upward-viewing
lidar backscatter signatures are plotted as an altitude/distance intensity-modulated display with relative density
scale shown to the right of the iidar data display.Aircraft latitude data are overpiotted on the lidar display
between 10,000 and 15,000 ft. Longitude data are overplotted between 15,000 and 20,000 ft. Downward-viewing
solar flux radiometer data are overplotted between 20,000 and 25,000 ft. Downward-viewing infrared radiometer
data are overplotted between 25,000 and 30,000 ft. Upward-viewing solar-flux radiometer data are overplotted
between 45,000 and 50,000 ft. Upward-viewing infrared radiometer data are overplotted between 50,000 and
55,000 ft.

The data presented in F'gure 2 show that at the aircraft altitude of 12,000 ft, the 8- to 14-_ m
atmospheric radiation background was equivalent to a blackbody temperature of about -60" C and, therefore,
the radiometer did not respond strongly to low-density cirrus cloud concentrations detected by the fidar. At
an altitude of about 20,000 ft, the radiation background was near -80" C and the radiometric temperature of
low-density c_'ns clouds could better be measured. For the sensitivity of the radiometer flown on the Queen
Air aircraft, an altitude of at least 20,000 ft is required for making optimum cirrus cloud radiance measurements.

F'_,m-e 3 presents cloud blackbody temperatures (observed by radiometer) plotted against midcloud
temperatures (derived from lidar-observed cloud heights and supporting temperature profiles) for data collected
on 30 June and 28 July. The radiation temperatures for 30 June were generally warmer (5" C) than cloud
temperatures, indicating an effective cloud emissivity greater than 1.0. Data from optically dense clouds observed
on 28 July agree with the 30 June results; while radiation temperatures were significantly lower than cloud
temperatures for optically thin clouds, indicating cloud effective emissivities were substantially less than 30 June
radiation temperatures were related to cloud base height, while the 28 July radiation temperatures were related
to cloud thickness.
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Table 1

LOWTRAN-7 INPUT PARAMETERS

PARAMETER (WAVELENGTH)

CLOUD BASE ALTITUDE

CLOUD THICKNESS

TEMPERATURE PROFILE

WATER VAPOR PRC]FII_E

BOUNDARY TEMPERATURE (PRT-5)

CLOUD EMISSIVITY (PRT-5)

CLOUD ABSORPTION OPTICAL DEPTH

(PPT-5)

S_LE.SCATTE_NG ALBEDO (11 pro)

Ct.OUD TOTAL OPTICAL DEPTH (1_1T-5)

EXTINCTION COEFFICIENT (PRT-5)

ASYMMETRY PARAMETER (11 pro)

SYMBOL SOURCE

Z c LIOAR

A Z c LIDA R

T(Z] SOUNDING

W(Z) SOUNDING

T B DOWN-VIEWING RADIOMETER

• UP-VIEWING RADIOMETER/

LIOAR/CLEAR AIR LOW'TRAN-7

Ua Ull = -In (1 - ()

= PLATT AND STEPHENS (t980)

u u • ua/(! - -)

ae o,B = uI&Z c

| PLAT_ AND STEPHENS (1980)

PARAMETER VALUES

30 JUNE 14 JULY

(1855 IR_) (2235 ING)

11.9 kw. 12 km

3.0 tm 1.5 km

2100 tRIO 2400 IRIO

2100 _ 2400

302"K 3043" K

O.RO 0.099

1.59 0.10

0.53 0.53

3.38 0.21

!.!3 km -1 ,0.14 kl -1

0.70 0.70

20 JULY

(2233 IRIO)

8.4 ki

2.1 km

2400 _3

2400 IRIG

_'K

0 62

0.9"/

053

2.06

0,98 km ''1

0.70
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Actual cloud emissivities were evaluated from the measured effective emissivities by applying corrections
for (1) dear-air thermal emission from the intervenin 8 aircraft-to-cloud base layer as computed from the
LOWTRAN-7 radiance code using measured temperature and water vapor profiles as model input and (2)
reflection by the cloud of upweilin 8 infrared radiation emitted by the earth's surface and lower atmospheric
constituents. The cloud base altitude, cloud thickness, and cloud emissivity can be used as LOWTRAN-7 model
inputs to evaluate cloud effects on atmospheric radiances. The LOWTRAN-7 code is attractive as it incorporates
.wavelength-dependent absorption and scattering parameters, multiple-scattering parameterizatlon, and two new
ch-rus cloud models. The code is widely used to evaluate atmospheric effects on electro-optical systems. Table
I presents model parameters derived for three airborne lidar/rudiometric measurement periods. It should be
noted that the fidar data are used only for deriving cloud height and thickness and not for estimating cloud
optical parameters. Because of uncertainties introduced by scattering from the irregularly shaped ice crystals,
optical analysis of lidar signatures in terms of cloud optical properties is believed to be less desirable than
derivation of cloud emissivity based on radiometer readings. The method of deriving cloud parameters from
lidar/radiometer observations has been extensively discussed in a series of papers by Platt (1973).

lr_gure4 presents an example of LOWTRAN-7 model simulations for infrared radiometer measurements
of the cloud/atmospheric conditions observed on 30 June 1989. In this case, the standard LOWTRAN-7 cirrus
cloud model, in which cloud emissivity is based on cloud thickness, gives about half the radiance of the
LOWTRAN-7 model using the parameters listed in Table 1. The LOWTRAN-6 model gives radiances about
halfway between the two LOWTRAN-7 model results. Using the standard LOWTRAN-7 cloud slngle-scattering
albedo and asymmetry parameters based on spherical scattering particles rather than parameters based on
scattering cylinders (Platt and Stephens, 1980) results in lower radiance as observed by the upward-viewlng
radiometer. The radiometer measurement supports the standard LOWTRAN-7 model, although other cases
support the modified LOWTRAN-7 model.

A methodology of applying airborne lidar and radiometer measurements for deriving LOWTRAN-7
radiance model parameters and for predicting cloud effects on atmospheric radiances has been illustrated. This
study was supported by the U.S. Air Force, Aeronautical Systems Division, Wright-Patterson AFB.

REFERENCES

Piatt, C.M.R., 1973: Transfer of Solar lrradiance through Cirrus Cloud Layers. J._.AIJZQI,.._, _, pp. 1191-
1203.

Platt, C.M.R. and G.L. Stephens, 1980: The Interpretation of Remotely Sensed High Cloud Emittances. J,
Atmos. Sci., _.7, pp. 2314-2322.

45O



"1"1

ALTITUDE, km

I ! I I II | I I ! I I|

o D,_Ix • I I I '_ ,
r- r- r-

.<,_,_ / "_ i .,<"/_'

3 .....
_'...S'-- _'.....

•,,,,,',,.,.--- !
/ I

I

I

! I I , I , I , I i '1 , I ,, I I

.-,,,,t.





CIRRUS
SESSION C05: FIRE Phase II
CHAIRMAN: Ste[_=n K. Cox

C05.01 Objectives
Cox, Stephen K.

C05.02 Future Plans

Cox, Stephen K.

Thursday, July 13, 1989

453





CIRRUS
SESSIONC06:FocusedIFO
CHAIRMAN:DavidO'C.Starr

Thursday,July13,1989

PAGE

C06.01TheMay-June1989WisconsinFocusedIFO
Eloranta,EdwinW.,ChristianJ.Grund,andDonaldWylie

C06.02TheColorado/Missouri1989MiniCirrusIFO
Heymsfield,AndrewJ.,andDonaldHagen

C06.03TheCentralPennsylvaniaFocusedIFO:UtilizationofaSurface-BasedCloud
ObservingSystem

Ackerman,ThomasP.,BruceA.Albrecht,andChristopherW.Fairall

457

C06.04UtahFocusedIFO
Sassen,Kenneth

C06.05TOGA
Stephens,GraemeL.

C06.06ATropicalCirrusMiniIFOatKwajalein,MarshallIslands
Heymsfield,AndrewJ.

C06.07GeneralDiscussion
Cox,StephenK.

PRECEDINGPAGE BLANK NOT FILMED

455





N90-28299

The Colorado/Missouri 1989 Cirrus Mini IFO

Andrew J. Heymsfield

National Center for Atmospheric Research l

Boulder, Colorado

and Donald Hagen

University of Missouri

Rolla, Missouri

A series of experiments with aircraft are

planned for November and December 1989 to

study cirrus ice crystal nucleation mechanisms
and to test new aircraft instrumentation. The

measurements will be conducted using the

NCAR Sabreliner (Drs. Don Hagen and Andy

iIeymsfield) and King Air (Dr. AI Cooper).

Sampliug will be conducted near Boulder,

Colorado, in lenticular (mountain wave) clouds,

att(l over Missouri in cirrus generating cells.

Field samples of aerosol and ice crystal replicas

and melt-water from these cirrus clouds will

be collected and studied in Prof. Hagen's

laboratory.

One of the limitations of FIRE Phase I

was the inability to collect particles fi'om the

Sabreliner and estimate their shape; shape is

iml)ortant for estimating ice water content and

ice particle scattering properties. A saml)ler

sinfilar to that used on the King Air during

FIRE Phase I (a rod containing a coated

slide) will be extended through the skin of the

Sabreliner. Owing to the comparatively high

speed of the Sabreliner, the collection area is

reduced from the probe used on the King Air

to improve collection efficiency. Our initial

tests of this collection apparatus indicates that

oil on the slides is stripped-off in the high

velocity air. Therefore, we will use other
collection media. Soot-coated slides will be

used as the impressions can be used to discern

particle phase (Fig. 1A, particles in cirrtts front

the Sabrellner, Fig. 1B, water droplets in the

laboratory, courtesy Nancy Knight). (Water

droplets cause soot to concentrate at their

centers and leave diffuse edges, ice particles

leave slreaked iml)ressions ). Gelatin-coated

slides containing dye can also be used to

decipher phase. We will also use replication

techniques as these proved to provide high

quality images of ice particles during FIRE

phase I. Collections will also be made from the

King Air, as was dolte during FIRE Phase 1.

A major linfitation of the FIRE Phase

I microphysical data set was the lack of

measurements of particles below 50 ailerons

with the Sabreliner att(l below 25 microns wil It

the King Air. A new instrument currently

being fabricated which collects particles in

oil on a continuously moving belt and then

photographs them with a video camera will

be tested on the King Air and possibly the
Sabreliner as well. The nfinimum detectable

crystal size is about 7 nficrons, with 1 nficron
resolution. The device will fit within a

Particle Measuring Systems (PMS) 2D probe

cannister and thus will be interchangeable

between aircraft. (However, removal of a 2D

probe is required, and consequently 2D data

from will be lost). A photograph of a prototype

of the instrument appears in Fig. 2 and imaged

ice crystals in tile laboratory appear in Fig. 3.

We hope to obtain ice particle concentration

data continuously clown sizes lnucl| smaller

than previously possible with aircraft.

Relaliw. humidity, crucial to underslanrl-

ing ice particle growth and verlical nloliol_ in

cirrus, was poorly measured by aircraft dur-

ing FIRE Phase I. A ilew cryogenic h)'gr_,l,t-

eter which is purl)orted to provide high act'u-

racy relative hunfidity measurements down to

temperatures below -50°C will I)e tested. This

instrument hits been fabricated at NCAR using

a design developed by NOAA to itteaStll'V i'td-

ative hunfidity frout balloons. The iltMtttltlel|t

is contained within the aircraft ralfin, and air

1 The National Center for Atmosl)heric Research is sponsored by tile National Science Foundation.
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is drawn iu to the sensiug area using a metal

bellows pump. Flights ill lenticl,lar clouds are

ideal t,_ test the accuracy of this device since

lhe leading; edge _l' the cl,m<l will cout_iu wa

ter droplets (approximately 100% relalive hu-

Inidity) and humidities upwind of the cloud are

easily calculable. Flights in and below cirrus

Kellel'atillK cells which contain liquid water can

als_ lw llsed to test t ll_- accuracy of the me_-
su|eTiwnl.

Inll)r,wed methods for measuring the

vevlical velocily from the aircraft will be tested

as verlical veloci|,ies during FIRE Phase I could

only be reliably measured to 50 cm s -]. The

method involves using Lagran_;ian-type spiral

descents. The horizontal velocity lateral to the

aircraft is measured in each loop of tiw spiral.

Divergence values are f_mnd fl_r each h_,,l_ ,

and the e(luation ,,f couiinuit.y is iuteKratcd

to tlnd the verlical veh_city distrilmtion will,

altitude. It is necessary to deiine the I)_,undary

conditi_ms at the cloud top before iuieKralin K

I.he equation of coniimfity. We h,,l>e t,,

test various methods f,,r ol)tail_inK l he Ul,per

boundary condition, possibly I>y makiur, a

circular, constant altilude track immediatcly at

or inmwdiately above cloud top t'r_ma which a

divergence value ear, be ol)tained.

Figure 1. Microphotographs of images of particles collected in s,,,,t-covere,1 sli,l,.s

A: Ice parlicles with the Sabreliner in cirrus. Note the columnar in,a_es at tlw celll.,.i _f

the each ilqpression. These particles were about 120 microns. I3: Wate, <tr_q)lets in the

laboratory. The droplets forming these impressions were l0 to r_0 microns <liametm-. This
<lata is courtesy Nancy Knight.
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Another unknown from FIRE Phase I was

tile cloud condensation nucleus (CCN) spectra

and nuclei composition; further understanding

of cirrus crystal nucleation and cirrus crystal

concentrations requires such knowledge. Air

samples will be collected in mylar bags from

the aircraft. Air will be pumped (metal bellows

pumps) into the aircraft through a manifold

*with an inlet beyond the aircraft's sphere of

influence. Following salnple collection, the bags

will be transported rapidly to the Rolla airport

and the CCN spectrum and composition will be

characterized. Decay of the CCN spectrum due

to collection on the walls of the bag, expected

to be small, will be evaluated by experiments.

ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPI_

Figure 3. Photograph of ice particles imaged with sampler in the laboratory.

Crystals are approximately 20 microns diameter.
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Summary of Results and Conclusions Based on Analysis of Volume

Imaging and High Spectral Resolution Lidar Data Acquired During

FIRE Phase h Part II

C. d. Grund and

University of Wisconsin

Department of Meteorology
1225 West Dayton St.

Madison, Wl 53706

NOTE: Continuation from part I... see Grund and Eloranta in oral presentation section.

IV. Summary
Since the fall of 1986, we have observed cirrus clouds with backscatter cross sections ranging

from <1.10 -7 - 4.2.10 -5 m-1 sr"1, optical thicknesses ranging from <.003 to >2.7, and bulk average
backscatter phase functions from .02 - .065 sr-1. We have recorded cirrus cloud structures ranging in
vertical extent from 0.1 to 8 km, having horizontal scales from 10's of meters to 266 km, and exhibiting
aspect ratios of from 1:5 to 1:100.

The altitude relationship between cloud top and bottom boundaries and the optical center of the
cloud is influenced by the type of formation observed. Altocumulus and uncinus generating regions
tend to concentrate attenuation in regions of less than 200 m thickness which dominate the vertical
extinction profile, even when the generating cell caps an extended column of virga. Virga exhibits
complicated fine scale structure, often lying in interleaved, sheared sheets. In cirrostratus, imbedded
vertically developed cells frequently occupy a significant altitude range and create large spatial
inhomogeneities in optical properties.

Cirrus morphology and generation processes appear to be related to the wind field. Better
temporal and spatial resolution in wind measurements in future experiments would aid the
understanding of cirrus generation and dissipation mechanisms.

The characterization of the microphysical, morphological and optical properties on satellite

footprint and model grid sized areas could be improved in future experiments by characterizing the 3D
volume in which the insitu measurements are acquired. High spatial resolution characterization of the
distribution of cirrus could be profitably used to shed light on the relationship between aircraft
measurements and cirrus formations.

The HSRL has been successfully adapted to the task of cirrus cloud optical property
measurement. The HSRL data reported here were collected with the CuCI 2 transmitter producing 50

mW of output power, achieving eye-safe, direct optical depth and backscatter cross section
measurements with 10 minute averaging times. A continuously pumped, injection seeded, doubled
Nd:YAG laser has just been installed and has increased temporal resolution by a factor of ~20, while
improving the aerosol-molecular signal separation capabilities and wavelength stability of the
instrument. We expect considerable further improvements as we fine tune the system.

We are just beginning a several week long field experiment in which the VIL will be operated from
a site just west of Madison while the HSRL produces vertical optical property measurements. By

scanning the VIL in two approximately cross wind planes, we expect to deduce high resolution winds
when cirrus are present (by a time lag structural correlation technique), and to characterize the 3D
context for cirrus optical properties deduced from HSRL measurements. We will be launching
radiosondes in support of this effort. Satellite data acquired by Don Wylie will be subsequently used to

PEECED;NG PAGE BLANK NOT FILMED
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compare passive retrievals to the HSRL optical properties and the VIL contextual information.
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A SYSTEM FOR RECORDING PHYSICAL PROPERTIES OF CLOUDS

G. C. Purgold and C. H. Whltlock

Atmospheric Sciences Division

NASA Langley Research Center

Hampton, Virginia 23665-5225

INTRODUCTION - Characterization of the physical properties of

clouds is an important objective of the FIRE Project intensive

field operations (IFO) planned for 1990 thru 1992. Physical

properties observed from satellites will be directly compared to

ground based observations during this period. It is the purpose

of this paper to provide the technical information required to

record local cloud parameters such as type of clouds, direction

of travel, layering, and cloud fraction data. Such information

should be very useful in analyzing other cloud and

meteorological data. A system of the type described in this

paper was successfully deployed as part of the First Global

Surface Radiation Budget Experiment in April 1989.

HARDWARE DESCRIPTION - A video-based system to monitor and

record cloud properties during daylight hours was developed

around state-of-the-art video equipment, a time-lapse format

video recorder, and off-the-shelf optical hardware shown in

figures 1, 2, 3, and 4. The optical system consists of a 28 mm

auto-lris lens, and a mirrored acrylic hemispherical dome. The

outdoor physical set-up, shown in figure 2, includes a tripod to

support the solid-state video camera and it's weather proof

housing. The electronic hardware including the ac power

adapter, time-lapse recorder, and video monitor, should be
located in a normal indoor environment.

Long term recording of video images of cloud movements is

accomplished using an off-the-shelf video time-lapse recorder as

shown in figure 3. This recorder uses standard VHS format video

cassettes which are the same as used on home video cassette

recorders. Recording speeds from 2 to 480 hours in 8 steps are

possible on the AG-6050, however the 480 hour range has proven

to be the most effective for recording cloud movements.

The solid state video camera, shown in figure 4, was selected

for it's small size and automatic gain control feature. Equally

important was the auto-iris lens which is available for this

type of camera. The auto-iris automatically compensates for the

wide range of light levels which will be encountered over a 14

hour data collection period. The combination of the auto-iris

lens and the automatic gain control feature enable the camera to

adjust to all light levels from early dawn, or heavy overcast
conditions, to very bright sunlight.

Recording images of cloud movements over an entire local

hemisphere required a "fish-eye" type view of the sky. This

implied a set-up where the camera would be looking skyward. This

was undesirable because relatively small droplets or other
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contaminants could obstruct the cameras view and therefore would

require frequent cleaning. To minimize these effects, an

inverted camera and a dome shaped reflector were used.

FIELD EXPERIMENT AND OPERATION - The cloud imaging system was

operated continuously for a period of 35 days in support of the

First Global Surface Radiation Budget Experiment in April, 1989.

The entire cloud imaging system was co-located with a cloud

lidar ranging system. The cloud camera setup was installed on an

elevated platform, shown in figure 2, to allow an unobstructed
view of the hemisphere 10 degrees above the horizon. This

prevented local site activity and buildings from blocking the

cameras view above i0 degrees and also provided a measure of

physical security for the system. The dome and camera window

required cleaning only once a week and then only as a prudent

operational requirement. Occasional bird droppings on the dome

were seen, but only obscured a minute portion of the whole sky
image. Salt spray build-up was not a problem from a video

imaging standpoint but could be detected by visual inspectf0n
when cleaning the dome.

The format employed by the time-lapse recorder is not compatible

with a standard VHS video cassette player. However, images

recorded on the time-lapse recorder may be played back from that

machine and re-recorded on a standard VHS machine for general

distribution. The limitation to this procedure is that the

playback speed must be chosen prior to conversion, and the

multi-speed viewing capability of the tlme-lapse recording is

not transferable to the VHS format. However, all playback

features normal to a standard VHS player such as slow motion,
stop action, and copying, will still be possible with the

converted tapes. The time-lapse recorder can be programmed to

turn itself on and off at pre-selected times which is a valuable

feature for conserving tape and increasing storage capacity. The

480 hour recording rate combined with the on-off timer mode will

allow over one month of sky data to be recorded on a standard

T-120 two hour video cassette tape.

CONCLUDING_REMARKS - Rosultn are currently being stud led and

initial indications are that the system provided excellent data

on cloud movements, multiple layers, and surface conditions such

as dew, rain, and sea spray. When combined with lidar cloud

height data, this system can also yield quantified estimates of

cloud fraction at a spatial resolution similar to that of the

satellite pixel. A graphic representation of this approach is

shown in figure 5. The system is first calibrated to determine

angular distribution within the near-hemispherical image. If the

satellite view angle is known, the pixel centerline can be

located on the video image. If cloud base is known along with

satellite pixel size, trigonometry can be used to calculate the

solid angle about the centerline which defines the effective

satellite viewing area. The portion of clouds in this angular

area of the image is then an indicator of cloud fraction in the

same region of the sky as being viewed by the satellite.
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TIME-LAPSE CLOUD CAMERA SETUP

ENCLOSURE CAMERA

SUPPORTS_I _

I

1-}'....io:_:_o___

STANDARD TIME-LAPSE

viDEO RECORDER
MONITOR

Figure I. Video equipment and associated hardware.

Figure 2. Outdoor physical set-up of camera and dome.
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Figure 3. Panasonic time-lapse recorder model AG-6050.

Figure 4. Sony solid-state camera model CCD-G5.
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POSSIBLE CLOUD FRACTION APPROACH
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Figure 5. Graphic representation of cloud fraction approach.
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Cirrus Parameterization from the FIRE ER-2 Observations

J. D. Spinhirne

Laboratory for Atmospheres

NASA Goddard Space Flight Center

Greenbelt, MD 20771

Primary goals for the FIRE field

experiments were validation of satellite

cloud retrievals and study of cloud

radiation parameters. The radiometer and

lidar observations which were acquired

from the NASA ER-2 high altitude

aircraft during the FIRE cirrus field study

may be applied to derive quantities which

would be applicable for comparison to

satellite retrievals and to define the cirrus

radiative characteristics. The analysis

involves parameterization of the vertical

cloud distribution and relative radiance

effects. An initial case study from the

October 28, 1986 cirrus experiment has

been carried out, and results from

additional experiment days are to be

reported.

The meaning of cloud parameters

retrieved from remote sensing are to an

extent defined by the observation and

analysis technique by which the parameter

is derived. Satellite retrievals such as the

ISCCP products which involve observations

at limited wavelength channels and large

spatial averages are in particular subject to

interpretation. The ER-2 observations

included combined active and high

resolution passive observations. Due to the

large difference in observational scales and

techniques, the eventual comparison

between the aircraft and satellite derived

parameters is of interest. A discussion of

analysis procedures and the

parameterization from the aircraft

observations is given in more detail by

Spinhirne and Hart (1989).

{ ocT28

243, 5 WAUSAU

\ \ /1

Fig. 1 ER-2 flight line map for October 28 1986.
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Fig. 2 The lidar observed vertical cloud structure for the fourth flight line of

October 28 and the calculated equivalent cloud height.

1. Cloud Height and Vertical Structure

Cloud height is an important

variable for satellite cloud retrievals and

for the general meteorological description

of clouds. The cloud top height zt

detected by lidar is very sensitive to even

small increases of scattering above clear air

levels, and the top of even thin subvisible

cirrus is accurately found. However cirrus

layers may be many kilometers thick and

the top height is not a singularly

meaningful description. An alternate

cloud height level may be defined for

cirrus which more closely relates to

satellite observations and radiative

influence. The equivalent height ze may
be defined such that

tm- I.m

(= b(T(ze))_L,

where E is the emittance derived from a

calculation procedure that makes use of

the distributed vertical structure of the

cirrus cloud as obtained from the lidar

measurements. The radiance L m and L s
are the measured cloud top and cloud base

values. The equivalent height is thus the

weighted level which would define the

upward radiance of an isothermal layer of

the lidar defined effective emittance.

On a typical FIRE field experiment

day ER-2 observations were acquired over

a 1500 km operational distance. The

flights were broken into a series of

approximately ten flight lines. A map of
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flight lines for October 28 is shown in the

first figure. Lidar backscatter data for the

fourth flight line is shown Fig. 2. In the

figure is also given the comparison

between the lidar derived true cloud top

and the calculated equivalent cloud height.

The equivalent height is several kilometers

lower than the cloud top height in most

instances. In some areas where the cloud

density increased toward the cloud base

the equivalent height is closer to the cloud

base height than to the actual cloud top.

From the combined lidar and

radiometer data analysis, an average

vertical structure may be defined for the

cloud field which was overflown. The

analysis involves a correction for

attenuation for the lidar data and an

iterative solution for radiation parameters.

The averaged vertical distribution of the

derived infrared absorption cross section

(10.8 _m) for the entire data set of

October 28 is shown in Fig. 3. The

averaged vertical source function, defined

as the relative contribution to the upward

10.8 #m radiation, is also given. The

cloud layers extend over a six kilometer

altitude range. The lower cloud layers are

seen to have dominated the infrared

radiative effects, but for the overall

observations of October 28, the upper

cirrus layers remain significant. The

cirrus heating and cooling influence would

have been important for this case from

cloud bases at 6 km to the tropopause at

11.4 kin.

II. Visible reflectance

and infrared emittance

An important aspect of cirrus are

the relative visible and thermal radiative

influence. An initial parameterization to

study the relative influence is the relation

CROSS SECTION 11/kin)

0.8 1.8

154137 - 181749

SF_

CS ...........

4.0

10 20 30

RELATIVE SOURCE FUNCTION

Fig. 3 Average vertical structure of infrared

absorption cross section and upward source function.

between visible reflectance and infrared

emittance at selected wavelengths. The

relation of reflectance and emittance is

also a key factor for satellite cloud

retrievals such as the ISCCP algorithm.

The ER-2 data permits a direct correlation

between reflectance and emittance over a

small field of view. The relative visible

reflectance at 0.76 Hm and emittance at

10.8 gm for October 28 is shown in Fig.

4. The two main groupings of points for

the scatter diagram are the result of the

difference of surface reflectance for the

lake and land surface which were over

flown on the first flight line. The

dispersion of points for the land surface

grouping is also primarily due to the

variability of surface reflectance. In

general the dispersion of the cirrus

reflectivity and emittance relation is not,

in comparison, strongly influenced by the

variation of cloud type that was found to

OCCUr.

For satellite observations the surface
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Fig. 4 Emittance and reflectance for the entire October

28 data set.

reflectivity may be obtained from previous

clear air observations of a scene and a

correction to the cloud reflectivity

estimated. That is not possible from the

aircraft observations. However an overall

surface reflectivity for a scene type may

be estimated by extrapolating the data as

in Fig. 5 to zero emittance. Using the

lidar derived effective beam transmittance,

the influence of the surface reflectance on

the total reflectance may be estimated for

a pixel and a normalized cirrus reflectance

derived. If a parameterization for cirrus

bidirectional reflectance is assumed, a

1.0

0.8

0.6

,.=,0.4

0.2

.0.0
O.O

• , .......... , . ,

0.1 0.2 0.3 0.4
ALBEO0

Fig. 6 Functional fit and variance of overall values of

the cirrus emittance and defined albedo.

0.5

defined visible albedo for the cirrus may

be obtained from the normalized

reflectance. A significant dispersion to

emittance values is still found which

would most probably result from the

average nature of the surface reflection

correction and inhomogeneity and shadow

effects for the cirrus.

The calculated emittance and albedo

relation for the entire October 28 data set

is summarized Fig. 5. A third order

polynomial was fitted to the scatter of

measurement to give the line shown, and

the error bars in Fig. 5 represent two

standard deviations of the emittance for an

average over 0.05 albedo intervals. The

functional line fit for the overall effective

emittance and defined cirrus albedo a may

be reproduce by the equation below up to

the limit of a=0.45.

=2.709a + 1.603a _ ÷ 6.870a _

III. Summary

The observations reported in this

abstract are for one day. Analysis of the

many other cirrus observation cases from

the FIRE study show variability of results.

In addition, only a fraction of the spectral

and other data that was collected for this

one case has been studied. Additional

parameterization of cirrus properties from

the aircraft remote sensing data and

comparison to satellite retreivals are

planned.

Reference.

Spinhirne, J. D. and W. D. Hart, 1989: Cirrus

structure and radiative parameters from airborne lidar

and spectral radiometer observations: the 28 October

1986 FIRE study. (submitted to Mon. Wea. Rev.).
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1973-1974 LIDAR OBSERVATIONS OF CIRRUS CLOUDS AT KWAJALE1N

Edward E. Uthe

Geoscience and Engineering Center
SRI International

Menlo Park, CA 94025 USA

EXTENDED ABSTRACT

A series of surface-based lidar measurements was made in support of reentry tests at Kwajalein (9 ° 6'N,

167° 43'E). The measurement periods were conducted during May-June 1973, August 1973, December 1973

and March-April 1974. The lidar used was the SRI Mark IX, a ruby lidar (694.3 nm wavelength) installed
within a van complete with its own power supplies, azimuth and elevation scanning capabilities and real-time
digital data recording, processing and display system (Uthe and Allan, 1975). The digital data system was
used to estimate cirrus cloud equivalent ice-water content as the cloud was being observed. Other supporting
equipment included an instrumented WB-57 aircraft used for sampling cirrus cloud ice crystals (Jahnsen et
al., 1974).

Figure I presents an altitude-time intensity modulated video display of cirrus cloud structure observed
on 17 December 1973. The cloud is seen to consist of multiple thin layers that show horizontal density
variations as the cloud traversed the lidar site. The cloud was subvisible to surface observers and was visible
to the WB-57 pilot only when the aircraft operated above the cloud and the pilot observed downward in the
direction of the sun. The equivalent ice-water content of the cloud was estimated from the lidar backscatter
signature by deriving absolute backscatter coefficients based on normalizing clear-air lidar returns to standard
tropical atmospheric density data and using the following expressions:

o = volume extinction coefficient = 4 _r 13
0.25

N = crystal number density
tY

W = ice-water content = 4/3 n a2 p N

where /5 = volume backscatter coefficient

a = particle radius

p = ice density

N = particle number density.

The particle size (a) assumed was based on previously collected aircraft data that indicated particle size
decreases with altitude. For the data shown in Figure 1 the maximum ice-water content derived from the
lidar records was 10"4g/m 3 and agreed with the aircraft cloud density measurements. During the course of
the measurement program, lidar-observed clouds were inferred to have a maximum ice-water content ranging
from 10-5 to 2 g/m 3. Although a wide range of cloud densities was observed, the aircraft and lidar-derived
values normally agreed to within a factor of+ 2 when particle size was taken from the aircraft measurements.

When particle size was based on previously collected data, uncertainties of the lidar derived ice-water content
were increased by an additional factor of + 2. Other results are given by Uthe and Russell (1977). This

paper will present several data examples illustrating the high-altitude low-density and persistent nature of
cirrus clouds over the Kwajalein area. The clouds were found to be more reflective of lidar energy than for
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FIGURE 1 EXAMPLE OF HIGH-ALTITUDE LOW-DENSITY CIRRUS CLOUD OBSERVED

OVER KWAJALEIN WITH THE MARK IX RUBY LIDAR SYSTEM

(17 DECEMBER 1973, 1220-1330 LOCAL TIME). The maximum cloud

density was computed as 2 X 10 -4 g/m 3.
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equivalent spherical particle clouds although backscattering from cylinders is expected to be significantly less
than from equivalent volume spheres (Liou, 1972). Therefore, reflection of incoming solar energy and
outgoing infrared energy emitted from the earth's surface and lower atmospheric constituents could serve as

important climatic change mechanisms.
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THE USE OF AN AIRBORNE LIDAR FOR MAPPING CIRRUS
CLOUDS IN FIRE PHASE II

Lawrence F. Radke and Peter V. Hobbs

Atmospheric Sciences Department, AK-40, University of Washington,
Seattle, WA 98195

The University of Washington and Georgia Tech have recently built a dual-
wavelength airborne lidar for operation on the University of Washington's Convair
C-131A research aircraft. This lidar has been used successfully in studying aerosols
and clouds. These studies have demonstrated the utility of airborne lidar in a variety

of atmospheric research and prompt our suggestion that this facility be included in
the next FIRE cirrus experiment.

The vertically-pointing airborne lidar would be used as a complement to ground-
based lidars. The airborne lidar would ensure extended coverage of IFO cases that

develop upwind of the surface lidars or which miss the ground-based lidars while
still being the focus of satellite and aircraft in situ studies. The airborne lidar would
help assure that cirrus clouds were simultaneously viewed by satellite, sampled by
aircraft, and structurally characterized by lidar.

Table 1 lists system specifications and Figure 1 shows a schematic of the lidar
system aboard the C-131A. Polarized, incoherent, monochromatic light is emitted
from the neodymium-doped ytrrium aluminum garnet (Nd:YAG) laser
simultaneously at both the primary (1.064 lam) and frequency-doubled (0.532 _m)
wavelengths. The beam is reflected by a mirror 90 ° toward the center line of the
telescope assembly. The beam is then reflected by another mirror and is emitted
upward along the axis of the telescope. Alignment of the laser beam with the
telescope is controlled by adjusting the second mirror. The emitted laser pulse,
which has a pulse width of 20 ns (or 6 m) and energies of 70 mJ at 1.064 ].tm and 45
mJ at 0.532 ktm, travels upward while diverging at an angle of approximately 1

mrad. The laser pulse interacts with gas molecules, aerosol and cloud particles,
returning a small fraction of the energy as backscattered light at the same
wavelengths. This return pulse is received and focused by the 0.356 m (14 in.)

Cassegrainian telescope.

After the light passes through the telescope, it strikes a dichroic mirror. This

beamsplitting device allows the infrared wavelength to pass without reflection; the
visible light is reflected 90 °. The 1.064 _m beam is detected by as silicon avalanche
photodiode (APD), while the visible light is sensed with a photomultiplier tube
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TABLE 1

THE UNIVERSITY OF WASHINGTON-GEORGIA TECH LIDAR SYSTEM

Specifications

A) Laser

Type: Neodynium-doped Yttrium Aluminum Garnet (Nd-YAG)
Wavelengths: 1.064 and 0.532 ktm
Energies: 70 and 45 rnJ
Pulse width: 20 ns

Beam divergence: 1 mrad

B) Telescope

Type: Cassegrainian
Diameter: 0.356m (14 in)

C) Detection

Polarizing f'dters: selectable for parallel and perpendicular polarizations
Detectors: 1.064 t.tm

Type: Silicon Avalanche Photodiode
0.532 I.tm
Type: Photomultiplier tube

D) Data acquisition/control system

Data input and shot summing
Type: CAMAC crate

Manufacturer: DSP Technologies, Inc.
Digitization rate: 50 ns

Control/display computer: 20 MHz AT-compatible microcomputer
Data display: VGA monitor, 640 x 480 resolution

Data storage: 80 megabyte hard disk and
2.2 gigabyte mini-video cassettes

A schematic of the lidar system is shown in Fig. 1
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(PMT). The signals from each of these detectors pass through separate pre-
amplifiers (to convert current to voltage) and logarithmic amplifiers. The logarithmic
amplifiers are needed to detect a wide range of signal strengths without electronic
saturation.

The amplifier outputs are received by a data acquisition system (DAS, DSP
Technologies, Inc.), which has a variable signal digitization rate of 25 or 50 ns,
corresponding to vertical resolutions of 7.5 and 15 m, respectively. The data are
summed in the DAS for a user-specified number of laser shots, and are then dumped
to an IBM clone 20 Mz/80386 AT microcomputer through an input board supplied
with the DAS. An Exabyte 8mm cartridge tape (2.1 gigabyte) recorder is used to log
the data. The microcomputer also displays both wavelengths in a false color vertical
cross-section (at half resolution) in real-time aboard the aircraft. As an example we
show in Fig. 2 a gray-scale depiction of thin altostratus clouds some 4-6 km above
the lidar and higher and rather complex cirrus clouds near the tropopause. Despite
modest transmitted energies, the lidar has demonstrated more than sufficient
sensitivity for cirrus measurements in a full daylight environment.

With the lidar's laser aboard the C-131A aircraft pulsing at 20 Hz (maximum
rate), we can achieve a horizontal resolution of 4 m and a vertical resolution of 7.5 m

(at a maximum range of 7.5 km) or 15 m (at a maximum range of 15 km). The
aircraft would have a mission endurance of N7 hr at a flight elevation of 3 km MSL.

This lidar, combined with the aircraft's radiometric and cloud physics
instrumentation, as well as a vertically-pointing (up or down) 8.6 mm radar, would
be of significant utility in FIRE Phase II.
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ON THE USE OF IR LIDAR AND Ka-BAND RADAR
FOR OBSERVING CIRRUS CLOUDS

Wvnn L. Eberhard, R. Michael Hardesty, and Robert A. Kropfli

NOAA Wave Propagation Laboratory
325 Broadway

Boulder, Colorado 80303

I. Introduction

Advances in lidar and radar technology have potential for providing new and better
information on climate-significant parameters of cirrus. Consequently, the NOAA Wave
Propagation Laboratory is commencing CLARET (Cloud Lidar And Radar Exploratory
Test) to evaluate the promise of these new capabilities. Parameters under investigation
include cloud particle size distribution, height of cloud bases, tops, and multiple layers, and
cloud dynamics revealed through measurement of vertical motions. The first phase of
CLARET is planned for September 1989 at the Boulder Atmospheric Observatory (BAO)
near Erie, Colorado.

II. Lidar and Radar Caoabilities

The CO2 coherent lidar operating at 101.6 um wavelength is a relative newcomer in

the arsenal of cirrus remote sensors. It differs from the other lidars commonly used for
cirrus studies in several important respects. First, its wavelength is an order of magnitude
larger, so size parametes for scattering are smaller. Second, absorption by cloud particles is
substantial. Third, the CO2 lidar operates in the atmospheric window, whereas others are
in or near the visible. And fourth, it has Doppler capability for observing cirrus dynamics.
Some introductory research on cirrus with this lidar has already been accomplished (Gross
et al., 1984; Hall ¢t al., 1988; Sassen et al., 1990). Recently, however, the stability of the
transmitter frequency has been improved for better Doppler estimates, and the pulse can
now be shortened to approximately 50 m range resolution instead of exceeding 300 m
(Eberhard et al., 1989). This eyesafe instrument is now much more suited to cirrus
measurements.

The longer wavelength of a sensitive radar can provide a somewhat different
perspective on cirrus. The ice content can be estimated from the backscatter, but depends
strongly on size distribution (Sassen, 1987). A radar can penetrate optically thick clouds to
reveal the height of cloud top and the presence of multiple layers. During the first phase
of CLARET we are limited to the use of an X-band radar (3.2 cm wavelength), but we will
use extensive coherent averaging to detect weak signals. Preliminary data sets have shown
that this radar can detect some cirrus. Our considerably more sensitive Ka-band radar (0.86

cm wavelength) will be available after renovation and testing are completed within a year.
Both radars have Doppler capability to study the dynamic structure of cirrus clouds.

CLARET will explore what new kinds of information on cirrus can be extracted
from measurements by these two instruments operating individually and in combination
with each other and with more common instruments.

PRECEDING PAGE BLANK NOT FILMED
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III. CLARET Experiment

The CO2 lidar and the X-band radar will operate in a coordinated fashion when

cirrus appears. They will be joined by a ruby lidar (694 nm wavelength; Eberhard and
McNice, 1986) with polarization discrimination and perhaps an additional 347 nm
wavelength.

Other instruments at the BAO site will include a microwave radiometer that
measures integrated liquid water and precipitable water. Radiation data from a
pyranometer, pyrgeometer, and pyrheliometer (shortwave and Iongwave channels) will help
in interpreting the results. A narrow-field radiometer with bandpass centered at 10.7 um
will point parallel to the lidars so the LIRAD (Platt et al., 1987) method can be applied.
Time-lapse pictures with an all-sky camera are also planned. Data from twice-daily
radiosonde launches from Stapleton Airport 30 km away will be collected.

Data sessionswill be coordinated as much as practicalwith overpasses of the NOAA
polar orbiter,and corresponding AVHRR and TOVS data willbe stored. Winds at cloud

height are needed for using advection to connect satellitedata with the ground-based data.
The wind profilerat Stapleton,Doppler lidaror radar,and all-skymovies will be used to
accomplish thiscorrectly.The cloud signalsfrom the lidarsand radar can therefore be
compared with the clouds'effectson radiativetransferas measured at the surface and
from space.

IV. Parameters to be investilatfd

The main cloud and instrumental parameters under evaluation in CLARET are as
follows.

1) SENSITIVITY FOR DETECTING THIN CIRRUS

Visible lidars have demonstrated detection of optically thin cirrus, including
subvisual clouds not observable by ¢y¢. The ability of the CO2 lidar, operating with the

short pulse at reduced power (maximum 100 mJ pulse energy), for detecting diffuse cirrus
will be compared to that of the ruby lidar. Tlt¢ detection threshold of the radar will be
compared to those of lidars and radiation instruments.

2) SIZE DISTRIBUTION FROM MULTIWAVELENGTH BACKSCATTER

The widely varied wavelengths of the two lidars and radar are expegted to be
sensitive to different parts of a cirrus particle size distribution. We therefore anticipate
that simultaneous measurements will give information on the cloud particle size
distribution. Another perspective is that the three instruments can indicate the size-
dependent balance between ice content, longwave radiation, and shortwave attenuation.

CLARET will provide an opportunity to evaluate this possibility in a preliminary
way. The wavelength dependence of the backscatter measured by the two lidars and the
radar will be examined for correlation with other indicators of particle size, such as cloud
temperature. A first-cut analytical study, using Mie scattering and published results on
scattering from nonspherical particles, will also search for size-dependent signatures.
Because the radar backscatter cross section of complex-shaped ice particles is nearly equal
to the cross section of an ice sphere of equal mass (Marshall and Gunn, 1952), the Rayleigh
scatter approximation will easily apply to the radar scatter. If the outcome is positive,
further research should ensue using in situ size distribution measurements and perhaps new
scattering calculations for nonspherical particles to verify the lidar-radar results.

3) EMISSION PROFILE FROM IR PROFILE OF BACKSCATTER

The absorbing character and large-sized, complicated shapes of ice particles may
cause the backscatter of the CO2 lidar to be related to the effective volume at which the

particlcs rndlatc in thc Iongwnvc. 1Fso, thc backscattcr and tcmpcraturc profilcscould
give the emission profile of cirrus. This suggestion will bc tested empirically by vertically
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integrating the backscatter from the CO2 lidar and comparing this with the emissivity

obtained from measurements by the narrow-field IR radiometer.

4) DEPOLARIZATION OF IR BACKSCATTER
The degree of depolarization at visible wavelengths is a useful tool for determining

the phase of the cloud particles (Sassen et al., 1989). Depolarization for an IR lidar may be
somewhat different because of a smaller size parameter and substantial absorption.
Multiple scatter, which contaminates the measurement by most visible lidars, is negligible
in the coherent CO2 lidar. Depolarization at CO2 and ruby wavelengths will be compared

to find what information may be available from the CO2 lidar data alone and in

combination with visible lidar depolarization.

5) WAVELENGTH DEPENDENCE OF ANGULAR WIDTH OF SPECULAR PEAK
The angular width of the enhanced backscatter from oriented ice crystals is

believed to depend on the size of the particles through diffraction effects and on the
extent of their fluttering motion (Platt, 1978). We will compare the magnitude and angular
widths of such scatter at visible and IR wavelengths. Differences may allow a separation
of size and flutter effects.

6) VERTICAL DOPPLER MEASUREMENTS
Velocity measurements from the Doppler li'dar and radar pointed at the zenith will

be examined for consistency, which will that both are trustworthy. Case studies of small-
scale vertical motions and the corresponding cloud structure should provide valuable
insights about the mechanisms involved in the various stages of cloud evolution.

7) IR EXTINCTION-TO-BACKSCATTER RATIO
The range-averaged ratio of extinction-to-backscatter for a lidar can be obtained

from range-integrated measurements on optically thick clouds (Platt, 1979). This method
should be particularly straightforward for the coherent CO2 lidar because multiple scatter

is very small. One use of this ratio is to obtain optical depth from the measured profile of
backscatter.

8) ECLIPS
CLARET will also be a component of I_CLIPS (Experimental Cloud LIdar Pilot

Study; WCRP, 1988). The extent of data acquisition and archival will depend on the
amount of financial resources that become available.

V. Summary

The CO2 coherent Doppler lidar and the sensitive Ka-band radar hold considerable

promise for providing valuable information on cirrus that is beyond the grasp of current
visible lidars.

Some of the possibilities are particularly noteworthy. First, the effective size
distribution is a critical parameter in understanding the climate effects of cirrus. A
multiwavelength measurement may be able to provide such information as a function of
height. Second, a CO2 lidar can reveal cloud height, probably the phase, and perhaps the

long-wave emission profile. If so, addition of these measurements to the proposed space-
borne Laser Atmospheric Wind Sounder would be extremely cost-effective and should have
high priority. Third, the sensitive Ka-band radar is expected to detect cirrus often,

including cloud top and multiple layers. And fourth, the vertical motion and structure
information from zenith-pointing Doppler lidar or radar is expected to reveal much about
formation and maintenance of cirrus clouds.

These possibilities will be explored in CLARET. Successful methods can be used in
Phase II of cirrus FIRE and similar intensive field programs. A suite of lidar(s), radar,
and radiation instruments may also be ideal for extended observations of clouds to study
their climatic influences.
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INTRODUCTION - One objective of the FIRE Cirrus IFO is to characterize

relationships between cloud properties inferred from satellite observations at

various scale_ to those obtained directly or inferred from very high resolution

measurements.- It is the purpose of this paper to compare satellite-derlved

NOAA-9 high and standard resolution TOVS soundings with directly measured

lidar,surface temperature,humidity, and vertical radiosonde profiles associated

with the Ft. McCoy site. The results of this intercomparison should be useful

in planning future cloud experiments.

DATA - Satellite derived results were obtained by two methods. First, standard

resolution (250 x 293 km subsatellite pixel size) TOVS sounding values were
obtained from NOAA in the form of their standard product. Second, a special

high-resolution (18 x 18 km subsatellite pixel size) sounding product wa._

created by the University of Wisconsin using only HIRS/2 instrument raw data. 3

Radiosonde temperature and geopotential height data were extracted from

the FIRE Cirrus radiosonde data set for Ft. McCoy in NASA's Climate Data

System. Precipltable water amounts were calculated from raw radiosonde
profiles using a method suggested by Charlock , integrating all possible 1.5

second reporting levels in each layer. A total of 9 cases were examined in

this study. In 8 of the 9 cases radiosonde data from Ft. McCoy had launch

times sufficiently close (within 3 hours of NOAA-9 overpass) as to permit a
reasonable intercomparison.

Surface lldar measured cloud base altitudes for mid- and upper-altltude

clouds. These data were averaged over time periods which were consistent with

standard and high resolution TOVS-product plxel sizes. Additional surface

observations in the form of thermograph and hydrograph data were taken on a

continuous basis throughout the study period.

RESULTS - Figures I and 2 show that typical temperature soundings from both

standard- and high-resolution TOVS compare reasonably well with the radiosonde

trace. TOVS Surface temperatures displayed, in figure 3, are generally within

2 to 3°K of radiosonde and/or thermograph results except on October 17th and

24th. This was also the case in the mid-tropospheric levels; however,

temperatures at the 925 millibar level often displayed the greatest differences
in the vertical profile.

In figures 4, 5, and 6; preclpltable water amounts from both TOVS products

under-estimate observed radiosonde values in the lower atmosphere while over-
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estimating in the 500 to 300 millibar layer. Estimates for the 700 to 500

millibar layer are split with hlgh-resolutlon TOVS over-estlmatlng and standard-

resolution TOVS under-estlmating precipltable water amounts.

Comparisons between lidar-measured cloud base altitudes and cloud top

altitudes derived from the two TOVS products show considerable disagreement as

is evident in figures 7 and 8. With the exception of October 22nd, TOVS cloud

top heights were at or below measured cloud base altitudes. Of the two, the

standard-resolutlon TOVS cloud tops display the greatest errors (approximately

5 km on average) compared to only 2.3 km for the hlgh-resolution product.

Figure 9 compares cloud fractions from standard and high resolution

products. Combining these data with cloud observation histories indicates that

the cloud fraction comparisons are closest during periods approaching total

overcast, while the greatest discrepancies exist with reported clear or

scattered conditions. High resolution TOVS results are particularly poor on
October 16th, 17th, and 18th.

CONCLUSIONS - Standard and high resolution TOVS temperatures compare reasonably

well with both surface and radiosonde observations. The greatest differences

occurred at the 925 millibar level. At no time are differences more than 6°K

and generally temperatures measured by TOVS were within 2 to 3°K of the
radiosonde observed values.

Precipitable water, cloud top altitudes, and cloud fractions do not

compare well, or with any consistency, either with observed radiosonde values

or between the TOVS products themselves. In the case of preclpltable water, it

appears that both TOVS products show wide scatter compared to radiosonde

observed conditions. The high-resolutlon product appeared to give the better

estimate of cloud top altitude even thought its cloud top value was less than

lidar-observed cloud base for some days. For cloud fraction determination,

high-resolution TOVS appears to be biased toward either clear or overcast cloud

fractional amountB, while the standard-resolutlon TOVS fractions more closely
reflect actual conditions.

REFERENCES

I. Starr, D. O'C., 1987: A Cirrus-Cloud Experlment:Intensive Field

Observations Planned for FIRE. Bull, American Meteorological

Society, Vol. 68, Number 2, 119 - 124.

. Whltlock, C. H., S. R. LeCroy, and W. L. Darnell: Standard

Resolution TOVS Observations for the FIRE/SRB Wisconsin

Experiment Region from October 9 Through November 2, 1986.

NASA TM 89151, May 1987.

. Whltlock, C. H., D. P. Wylie, and S. R. LeCroy: High-Spatlal-

Resolution TOVS Observations for the FIRE/SRB Wisconsin

Experiment Region from October 14 Through November 2, 1986.

NASA TM 100522, January 1988.

4. T. P. Charlock, NASA Langley Research Center, Personal Communications,

April 1989.

492



1000.00

RGURE 1. RADIOSONOEVERSUS
STANDARD AND HIGH RESOLUTION
TOYS |EMPERATURE SOUNDING
OCTOBER IS, 1986 1957 G_T.

1000.00

FIGURE 2. RADIOSONDE VERSUS
SIANDARD AND HIGH RESOLUTION
TOVS 1[MPERATURE SOUNDING
OCIOBER 2l. 1986 2033 GMT.

nGURE 3. FORT McCOY
SURFACE TEMPERATURES

14 OCTOBER - 2 NOVEMBER 1986.

Z

Ld

a"
C_

#

eL

300.00

2g0.00

280.00

j:

A it

270._ :::::::::4_::::

DATE

THERMOCRAPH
m-m.-a HIRES TOV_
• --a. _ STORES IOVS
w.-.x-,_ RADIOSONDE

493



C.D
4_

m c

PRECIPITABLE WATER (MM)

f'/ I

P_p J°"

%J

%, i>
I o o"

'%0' ¢ .....

"'t_6

No_.

Ng_z

a_
z

PRECIPITABLE WATER (MM)
o _ ._ .m ._

g g g g ,g
| i i | i i,, ,,I,,a , • _ I • I I , I I I I I , I I I , I I I I I 1 I I • ,

"o .....

_:::::::,-
_z _ _ ............

--4 ,P.> _--_._--_--.......---.............
7--

"'t

m c

_c_

_z
o
o_m

m

PRECIPITABLE WATER (MM)

%
%

%
%
%

.

I _ .°°

.°°°°'°

/ °°°°°'°

% "'-.

• "'_I

"t
(S_ ..,t O



12.00

FIGURE 7, 5 HOUR AVERAGE LIDAR
CLOUD BASE VERSUS STANDARD
RESOLUTION TOVS CLOUD TOP
ALTffUDES.

r-, I0.00
(/I
nr"
ILl

_,j 8.00

0
_J
-- 6.00
5_

F--
"1- 4.O0
C_

I,I

-F 2,00 /

I

0'00 ,. tO .1_,% _'_

®

®

®

I \

s®_ ,A,

K
I \

®

(_®®AVERAGE LIDAR CLOUD BASE
• -_ -_ SIORES TOVS CLOUD TOP

I # I I # I

DATE

FIGURE B. 30 MINUTE AVERAGE
UDAR CLOUD BASE VERSUS
HIGH RESOLUTION TOVS CLOUD
TOP ALTITUDES.

! 0.O0

(/1 8.00
_Y
LLI

"_ e.0o
0
.J

4.00 I
I-- t
T I

O t

Ld I
-11- 2.00

---_

O.O0 i

f,
I

I
I

I
I
I

I

®

®
®

® / x

I \
\

I

®®®AVERAGE UDAR CLOUD BASE
• -_ -_, HIRES TOVS CLOUD TOP

I O II I I I

%

DATE

120.00

FIGURE 9. HIGH AND STANDARD
RESOLUTION TOVS CLOUD FRACTIONS.

"_1o0.oo
tR

Z
0 80.00

l--
C_)
.<
rY 60.00
LL

Z_ 40.00
0
__J

20.00

I

I
I

I
®

I

I
I

I

®® ,
®t

I
t

®,, z

(,®I

I
L
t

®l
!
I

|

I
L_

ii

I
I

l®

I
i ®

....... [/.'a,, ..... I • . . .

.... ,,.:,,,._,,,:,,,:,,,,_o,._.:,_ k_k__,,._ k_,_ #,k, ,__"

DATE

• *'_ _, HIRES TOVS
®®®S_ORES ;ors

495





CIRRUS
SESSION C08: Midlatitude Cirrus IFO
CHAIRMAN: DavidO'C. Starr

C08.01 Objectives
Cox, Stephen K.

C08.02 Climatology
Wylie, Donald

C08.03 Methodology
Starr, David O°C.

C08.04 General Discussion
Starr, David O'C.

Friday, July 14, 1989

PAGb

PRECED!NG PAGE BLANK NOT FILMED
497





Ackerman, Steven A.

Ackerman, Thomas P.

Albrecht, Bruce A.

Alvarez, J. M.

Ardiuni, R. F.

Arking, Albert

Austin, Philip

Baker, Marsha B.

Barlow, Roy W.

Bell, K. L.

Betts, Alan K.

Blaskovic, M.

Boers, Reinout

Bretherton, Christopher

Briegleb, B. P.

Cahalan, Robert F.

Cawley, Robert

AUTHOR INDEX

_ssbn

Case Studies

Radiative/Optical Properties

Case Studies

Focused IFO's

Physical Properties

Physical Properties

Dynamic/Thermodynamic Properties
Focused IFO's

Physical/Microphysical Properties
Poster Session

Poster Session

Case Studies

Satellite Studies

Dynamic/Thermodynamic Properties

Dynamic/Thermodynamic Properties

Physical Properties

Transport Mechanisms and Modeling

Case Studies

Transport Mechanisms and Modeling

Physical Properties

Physical Properties

Radiative Properties

Transport Mechanisms and Modeling
Poster Session

Dynamic/Thermodynamic Properties

Optical Properties

Physical Properties

Poster Session

PaDer No.

C04.03

C04.04

C02.05

C06.03

M01.02

M01.06

M04.04

C06.03

C01.02

C07.07

C07.08

C02.06

E01.03

M04.03

M04.01

M01.02

M06.03

C02.03

M06.06

M01.06

M01.07

M03.02

M06.06

M08.03

M04.01

M02.01

M01.04

M08.06

435

441

363

0O9

033

125

317

491

369

119

107

009
185

351

203

033

039

101

203
,t**

107

071

021

241

499



/_,hor

Coakley, James A.

Cox, Stephen K.

Davidson, K. L.

Davies, Roger

de Leeuw, G.

Dodd, G. C.

Donner, Leo J.

Duda, David

Durkee, Philip A.

Eberhard, Wynn L.

Eloranta, Edwin W.

Fairall, Christopher W.

Flatau, Piotr

Frei,Allan

Gatham, S. G.

Gerber, Hermann E.

Gibson, Gary G.

AUTHOR INDEX

sess_n

Optical Properties
Optical Properties
Microphysical Properties
Physical/M icrophysical Properties

Radiative Properties
FIRE Phase II
Physical/Microphysical Properties
Case Studies
Radiative/Optical Properties
FIRE Phase II
FIRE Phase II
Focused IFO's
Midlatitude Cirrus IFO

Transport Mechanisms and Modeling

Physical Properties

Transport Mechanisms and Modeling

Large-Scale Environment and Modeling

Large-Scale Environment and Modeling

Radiative Properties

Microphysical Properties

Poster Session

Physical/Microphysical Properties
Focused IFO's
Poster Session

Physical Properties
Physical Properties
Physical Properties
Focused IFO's

Large-Scale Environment and Modeling

Surface Based Studies

Transport Mechanisms and Modeling

Microphysical Properties

Satellite Studies
Case Studies

M02.01
M02.02
M05.04
C01.03

M03.03
M07.05
C01.01
C02.07
C04.02
C05.01
C05.02
C06.07
C08.01

M06.04

M01.06

M06.04

C03.04

C03.05

M03.03

M05.02

C07.06

C01.04
C06.01
C07.01

M01.05
M01.09
M01.10
C06.03

C03.06

E02.02

M06.04

M05.01

E01.01
C02.02

071
075
163
323

103

311
375
429
*,lb*

191

033

191

407

411

103

151

487

327

463

027
051
057

415

275

191

145

257
345

5OO



Author

Gordon, Tony

Grund, Christian J.

Guinn, Thomas A.

Gultepe, Ismail

Haack, Tracy

Hagen, Donald

Hammer, Phillip D.

Hanson, Howard P.

Hardesty, R. Michael

Hare, J. E.

Harrison, Edwin F

Harshvardhan

Hart, W. D.

Heck, P.

Hein, Paul F.

Herbster, Chris

Heymsfield, Andrew J.

AUTHOR INDEX

Sessbn

Large-Scale Environment and Modeling

Physical/Microphysical Properties

Physical/Microphysical Properties
Case Studies

Focused IFO's

Poster Session

Transport Mechanisms and Modeling

PhysicaVM icrophysical Properties

Transport Mechanisms and Modeling

Focused IFO's

Radiative/Optical Properties

Physical Properties

Physical Properties
Poster Session

Poster Session

Physical Properties

Radiative Properties
Satellite Studies

Case Studies

Large-Scale Environment and Modeling

Radiative Properties

Satellite Studies
Case Studies

Physical/M icrop hysical Properties

Large-Scale Environment and Modeling

Poster Session

PhysicaVMicrophysical properties
Case Studies

Case Studies

Case Studies

Large-Scale Environment and Modeling
Focused IFO's

Focused IFO's

paDer No.

E03.04

C01.02

C01.04

C02.03

C06.01

C07.01

M06.02

C01.05

M06.05

C06.02

C04.01

M01.01

M01.08

M08.04

C07.06

M01.09

M03.01
E01.01

C02.02

E03.03

M03.02

E01.01

C02.02

C01.01

C03.06

M08.09

C01.05

C02.04

C02.05

C02.06

C03.05

C06.02

C06.06

P_am

301

317

327

351

463

179

333

197

457

423

003

O45

487

051

095

257

345

295

101

257

345

311

415

247

333

357

363

369
411

457

501



Hignett, Phillip

Hobbs, Peter V.

Huang, Allan H.-L.

Hudson, James G.

Hunt, W. H.

Jensen, D. R.

Kessler, Bernard V.

Khalsa, Siri Jodha Singh

King, Michael D.

Kinne, Stefan

Kloesel, Kevin A.

Kropfli, Robert A.

Kukla, George

Laufersweiler, M. J.

LeCroy, Stuart R

Lenschow, Donald H.

McDougal, David S.

Miller, Karen M.

AUTHOR INDEX

Sess_

Dynamic/Thermodynamic Properties

Optical Properties
Microphysical Properties
Poster Session
Poster Session

Case Studies

Microphysical Properties

Poster Session

Transport Mechanisms and Modeling

Poster Session

Dynamic/Thermodynamic Properties

Optical Properties
Optical Properties
MicrophysicalProperties
MicrophysicalProperties
PosterSession

Case Studies
Radiative/Optical Properties

PhysicalProperties
Transport Mechanisms and Modeling
PosterSession

PosterSession

Surface Based Studies

Dynamic/Thermodynamic Properties
PosterSession
Case Studies

Transport Mechanisms and Modeling

FIRE Phase II

Case Studies

Paper No.

M04.06

M02.03
M05.04
M08.08
C07.05

C04.03

M05.03

C07.08

M06.04

M08.06

M04.05

M02.03
M02.04
M05.04
M05.05
M08.08

C02.05
C04.01

M01.11
M06.07
M08.02

C07.06

E02.02

M04.02
M08.01
C02.03

M06.08

M07.03

C02.04

137

079
163

481

435

157

tt**

191

241

131

079
085
163
165

363
423

063
211

487

275

113

351

213

_t,t*

357

502



h.t_or

Minnis, Patrick

Moeng, Chin-Hoh

Moore, J. G.

Nakajima, Teruyuki

Nicholls, Stephen

Nucciarone, J. J.

Olsen, Lola M.

Paluch, Ilga

Parker, L.

Poole, Lamont R.

Purgold, Gerald C.

Radke, Lawrence F.

Randall, David A.

Robinson, David A.

Rossow, William B.

Rotunno, Richard

AUTHOR INDEX

Sess_

Physical Properties

Physical Properties

Radiative Properties
Satellite Studies

Physical/Microphysioal Properties
Case Studies

Transport Mechanisms and Modeling

Poster Session

Optical Properties
Radiative Properties

Microphysical Properties

Transport Mechanisms and Modeling

Dynamic/Thermodynamic Properties

FIRE Phase II

Transport Mechanisms and Modeling

Transport Mechanisms and Modeling

Satellite Studies

Case Studies

Case Studies

Poster Session

Optical Properties
Microphysical Properties
Poster Session

Poster Session

Transport Mechanisms and Modeling
FIRE Phase II

FIRE Phase II

Large-Scale Environment and Modeling
Large-Scale Environment and Modeling

Surface Based Studies

Case Studies

Case Studies

Transport Mechanisms and Modeling

paper No.

M01.05

M01.06

M03.01

E01.01

C01.02

C02.02

M06.09

C07.08

M02.04

M03.02

M05.05

M06.03

M04.04

M07.04

M06.08

M06.09

E01.02

C02.06

C02.03

C07.02

M02.03

M05.04
M08.08

C07.05

M06.01

M07.01

M07.02

E03.01

C03.02

E02.02

C02.03

C02.03

M06.09

027

033

095
257

317

345

219

O85

101

165

185

125

213

219

263

369

351

467

079

163

481

173

283
395

275

351

351

219

5O3



Aulhor

Sassen, Kenneth

Schubert, Wayne H.

Seze, Genevieve

Shirer, Hampton N.

Shy, Shenqyang S.

Siems, Steven T.

Smith, Jr., William L.

Smith, L. A.

Smith, William L.

Snider, Jack B.

Spinhirne, James D.

Stackhouse, Paul

Stage, Stephen A.

AUTHOR INDEX

Sessbn

Surface Based Studies

Physical/Microphysical Properties
Case Studies

Case Studies

Large-Scale Environment and Modeling
Focused IFO's

Transport Mechanisms and Modeling

Physical Properties
Poster Session

Dynamic/Thermodynamic Properties

Transport Mechanisms and Modeling
Poster Session

Transport Mechanisms and Modeling
Poster Session

Dynamic/Thermodynamic Properties

Radiative/Optical Properties

Physical Properties
Poster Session

Case Studies

Radiative/Optical Properties

Physical Properties

Physical Properties

Optical Properties

Physical Properties

Radiative Properties
Poster Session

Case Studies

Case Studies

Case Studies

Poster Session

Case Studies

Poster Session

Paper No,

E02.01

C01.02

C02.05

C02.08

C03.04

C06.04

M06.02

M01.03

M08.07

M04.02

M06.05

M08.01

M06.10
M08.05

M04.01

C04.02

M01.03

M08.07

C04.03

C04.04

M01.04

M01.09

M02.02

M01.07

M03.02

M08.03

C02.04

C02.05

C02.06

C07.03

C02.07

M08.09

P_Ea_

271

317

363

381

407

179

015

113

197

225

235

107

429

015

435

441

021

051

075

039

101

357

363

369

473

375

247

5O4



Starr, David O'C.

Stephens, Graeme L.

Suttles, James D.

Thomson, Dennis W.

Toon, Owen B.

Tsay, S.-C.

Uthe, Edward E.

Valero, Francisco P. J.

Vaughn, M. A.

Welch, Ronald M

Westphal, Douglas L.

Wheeler, R. J.

White, Allen B.

Whitlock, Charles H.

Wielicki, Bruce A.

Wu, Man-U

AUTHOR INDEX

Sessbn

Case Studies
Case Studies

Case Studies

Large-Scale Environment and Modeling
Poster Session

Midlatitude Cirrus IFO

Midlatitude Cirrus IFO

Radiative Properties
Case Studies

Large-Scale Environment and Modeling

Large-Scale Environment and Modeling
Focused IFO's

Case Studies

Physical Properties

Large-Scale Environment and Modeling

Large-Scale Environment and Modeling

Radiative/Optical Properties
Poster Session

Case Studies

Radiative/Optical Properties

Poster Session

Case Studies

Large-Scale Environment and Modeling

Poster Session

Physical Properties

Case Studies

Poster Session

Poster Session

Satellite Studies
Case Studies

Case Studies

paper No.

C02.01

C02.06

C02.08

C03.04

C07.07

C08.03

C08.04

M03.03

C02.07

C03.01

C03.06
C06.05

C02.06

M01.10

C03.03

C03.06

C04.05

C07.04

C02.05
C04.01

C07.08

C02.06

C03.03

C07.07

M01.10

C02.03

C07.02
C07.07

E01.02

C02.06

C02.06

.P_am

341

369

381

407

491

103

375

389
415

369

057

401

415

447

477

363

423

369

401

491

057

351
467

491

263

369

369

505



Author

Wylie, Donald

Young, David F.

Young, George S.

AUTHOR INDEX

Sess_

Large-Scale Environment and Modeling
Case Studies

Focused IFO's

Poster Session

Midlatitude Cirrus IFO

Physical Properties

Physical Properties

Radiative Properties
Satellite Studies

Physical/Microphysical Properties

Dynamic/Thermodynamic Properties

Paper No,

E03.02

C02.01

C06.01

C07.07

C08.02

M01.05

M01.06

M03.01

E01.01

C01.02

M04.04

P_,lm

289
341

491

027

033

095

257

317

125

506



Report Documentation Page
_C_C e _rnq_STrEll_l

1. Report No.

NASA CP-3079

4. Title and Subtitle

FIRE Science

7 Author(s)

David S.

Results 1989

McDougal, Editor

2. Government Accession No 3. Recipient's Catalog No

5. Report Date

July 1990

6. Performing Organization Code

8. Performing Organization Report No.

L-16792

10. Work Unit No

9. Performing Organization Name and Address

NASA Langley Research Center

Hampton, VA 23665-5225

12 Sponsoring Agency Name and Address

National Aeronautics and Space
Washington, DC 20546-0001

Administration

672-22-10-70

11. Contract or Grant No.

13. Ty_ of Report and Period Covered

Conference Publication
14. Sponsoring ._gency Code

15. Supplementaw Notes

Presented at the FIRE Science Meeting, Monterey, California, July 10-14, 1989.

Co-sponsored by National Science Foundation, Office of Naval Research, Department o"

Energy, Air Force Geophysical Laboratory, and National Oceanic and Atmospheric
Administration.

16 Abstract

FIRE (_irst_ISCCP Regional _xperiment) is a U.S. cloud-radiation research program
formed in 1984 to increase the basic understanding of cirrus and marine strato-
cumulus cloud systems, to develop realistic parameterizations for these systems,
and to validate and improve ISCCP cloud product retrievals. A FIRE Science
Meeting was held in Monterey, California , July 10-14, 1989, to highlight presenta-
tions of results culminating the first 5 years of FIRE research activities.

This Conference Publication contains the full text of the papers presented at the

FIRE Science Meeting. The papers describe important elements of the 1986
Cirrus Intensive Field Observations (IFO), the 1987 Marine Stratocumulus IFO, the

Extended Time Observations (ETO), and modeling activities. A number of papers
describe collaborative efforts involving the comparison of multiple data sets (i.e.

satellite, airborne, and surface), incorporation of data measurements into modeling

activities, validation of ISCCP cloud parameters, and development of parameteri-
zation schemes for GCMs.

17. Key Words (Suggested by Author(s))

FIRE Cirrus

ISCCP Marine Stratocumulus

Cloud-Radiation

18. Distribution Statement

Unclassified - Unlimited

Subject Category - 47

19 Security Classif. (of this report)

Unclassified

20 Security Classif. (of this page)

Unclassified

21 No. of pages

52]

22. Price

A22

NASA FORM 1626 OCT

For sale by the National Technical Information Service, Springfield, Virginia 22161-2171




