
Encoding Techniques for Complex Information Structures in
Connectionist Systems

John Barnden & Kankanahalli Srinivas

MCCS-90-186

Computing Research Laboratory
Box 30001

New Mexico State University

Las Cruces, New Mexico 88003

The Computing Research Laboratory was established by the
New Mexico State Legislature,

under the Science and Technology Commercialization Commission

as part of the Rio Grande Research Corridor.

Encoding Techniques for Complex Information Structures

in Connectionist Systems*

John Barnden _; KankanahaIli Srinivas

Computing Research Laboratory and Computer Science Department
New Me.co State University

Box 30001-3CRL

Las Cruces, New Me.'dco 88003-0001, USA

(50.5) 646-6235/4535 jbarnden/srini_.nmsu.edu

Runtdng Head: Connectionist Encoding Techniques

ABSTRACT

Two generM information-encoding techniques called "relative-position encodinE'" and "'pattern-

similarity association" are presented. They are claimed to be a convenient basis for the c_Jnnec-

tionist implementation of complex, short-term information processing of the sort needed lit com-
monsense reasoning, semantic/pragmatic interpretation of natura2 language utterances, and other

types of high-level cog_fitive processing. The relationslfips of the techniques to other connectionist

information-structuring methods, and also to methods used in computers, are discussed in detail.

The rich iater-relationslfips of these other connectiorfist and computer methods are also clarified.

We detail the particular, simple forms that the relative-position encoding and pattern-similarity
association techniques take in our own connectionist system, called Conposit, in order to clarify

some issues and to provide evidence that the techniques are indeed useful in practice.

* This work was supported in part by grant AFOSR-88-0215 from the Air Force Office of Scientilic
Research, to Barnden, and grant NAGW-1592 under the Innovative Research Program of the NASA Office
of Space Science and Applications, to Barnden and C.A. Fields.

1. INTRODUCTION

Our purpose is twofold: to present and discuss two somewhat atypical techniques for short-

term i.nfo,'matio,z .structuring in connectionist systems, and to use them as a starting point for
a detailed examination of the space of such techniques. This examination also brings in the

connections to basic information-structuring techniques used in computer science -- connections

which are often ignored and whose significance is underestimated.

The issue of short-term information structuring is one of the major problems facing the

application of connectionism to "high-level cognitive processing". We use this phrase as a shorthand
to cover, for instance, commonsense reasoning, action planning, and the semantic and pragmatic

aspects of natural language understanding and generation. In these areas there is a 1_,ee(l for a

cognitive system to be able to deal with highly dynamic and unanticipa.ted cong;lomeratio_s of
inforlnation. For instance, in understanding the sentence "Mike gets angry whenever Sally ta.lks

about going t.o Tibet", the system must cope with the particular combinatio_ of ideas pr,,sonted
by the sentence. Although we presume that tile system in some sense knows who ._Iike and

Sally are and is familiar with the notions of someone getting angry, someone talking, someone

going somewhere, and so on, it is quite possible that the system has never before had to consider

Mike being angry, Sally talking about going to Tibet, or of someone's getting angry whe_zez'_.v (or
becr_use) someone talks about going somewhere. It is very likely that the system has never before'

encountered the particular proposition conveyed by the sentence.

Thus, it is important for a tfigh-level cognitive system to be able to bring together, in some

sense or other, some of its representations, concepts, knowledge or whatever, in a way that is

una,zticipated in detail, even though it may have had much experience in using those ideas it_ other
combinations in the past. Moreover, the system must do the bringing together very ,'(_12i(tl_j.and

the result of doing it must be that the system is now in a state that enables it to process the

combined information in efficient ways.

Strongly related to the unanticipatedness issue is the arbitrariness of the way' information can
be combined. For instance, although normally it is people who are the agents of sI)eaking actions.

in children's stories one might find a banana talking; similarly, the system has to have the ability

to represent a situation in which an adult believes that a banana can speak. It is very difl'ic,flt to
think of any firm constraints on what can be combined with what, especially when ont_ briags in

metaphorical language. Although one may legitimately claim that it is too early to start devising
detailed connectionist systems that deal with real children's stories, radically unusual belier;, and

metaphorical language (though see Weber 1989 for a start on the last of these), one cannot use
this claim to shut one's eyes to tile problems that such applications will obuiou.sly bring in when

they are eventually considered.

To the issues of unanticipatedness and arbitrariness we can add the sheer fact that the
information structures that need to be processed cover a wide range of compIeocity. For instance.

our example sentence above conveys a much more complex inforlnation structure than does a

sentence like "Mike is angry". The variability of comple:dty is also self-nourishing ill the sense
that a "slot", like the agent slot for a talking action, can itseK be filled with information ot'

widely varying comple_ty. A sentence might specify that it is Sally who is doing something, or
Martin's mother, or the perso,_ down the road who always trips over her cat wheT_ co,zfl_g back

from work. The reason we stress the three issues of unanticipatedness, arbitrariness and variability

of comple_ty is that much connectionist research focuses on tasks that to a large extent lack

these qualities. For instance, in a printed letter recognition task, only certain highly-restricted,

anticipated combinations of features need be recognized, and for any given letter the complexity

of tile (:oml)ination of features is essentiMlv fixed (and different letters have roughly c(mli)arable

levels of complexity of feature combination).

Many of the techniques to be discussed in this paper are promising approaches to dealing with

some or M1 of the three problems of unanticipatedness, arbitrariness, and variability of complexity,

though it cannot be claimed that any of these problems have been ful]y solved. The intent of our

discussion is to illuminate the true richness and subtlety of the space of possible ways of structuring

short-term information in connectionist systems. We believe that this illumination is boosted by

bringing out also the rich connections between connectionist techniques and computer techniques.

One motivation for doing this is to resist the excessive paradigmatic distance that has been placed

between connectionism and computer science.

The two short-term information-structure techniques we ourselves will be putting forward

are called "relative-position encoding" and "pattern-similarity association". We emphasize that

it is not our purpose to argue that our techniques are superior to others, although we certainly

hope the reader will agree they are useful. "We should also emphasize that our own connectionist

system (Conposit) is presented only in order to clarifv the nature of our techniques and to make

the discussion of generM issues clearer and more precise.

We do not have rooul in the paper to do more than occasionally touch upon the important

issue of the ways in which the various representational techniques that we address facilitate or

hinder efficient processing, and aJJow sufficient "systematicity" of processing (a matter stressed

recently by Fodor & Pylyshyn 1988,and which underlies the "variable-binding" issue). \\"e are

well aware that representation and processing are indissolubly linked, but must defer attention to

details of the linkage to later papers. However, see Barnden (1984b) for an early though detailed
treatment.

In the remainder of the paper, we will first review some important existing connection-

ist information structuring methods, aiming primarily for ones that have interesting relation-

ships with our own techniques. Then in Section 3 we will briefly review the basic information-

structuring methods used in computers. Section 4 will describe relative-position encoding and

pattern-similarity association. Section ,5 will explain how straightforward forms of relative-position

encoding and pattern-similarity association are used in Conposit, our connectionist rule-based sys-

tem. Section 6 will discuss the relationships among the various techniques described in the paper.

Section 7 will conclude.

2. SOME CONNECTIONIST INFORMATION STRUCTURING TECIINIQUES

The purI)ose of this section is to outline some major connectionist information-structuring

techniques which we will relate to PSA and RPE, and to each other, in Section 6. We defer the

detailed discussion of the inter-relationships until that section. Although we will be covering many

of the ideas to be found in the literature, we will not be exhaustive, either with respect to ideas

or with respect to the particular svstems embodying the ideas. Our review will not attempt to

outline each system as a whole, and will omit many interesting aspects of the systems referred

to. Nor will we be saying much about the relative strengths and weaknesses of the systems and

techniques portrayed. And, we will be ignoring hybrid symbolic/connectionist systems -- systems

that are partially connectionist but have symbolic-processing aspects that purposely are given no

connectionist imt)lementation (see e.g. Itendler 1989, Lehnert 1990).

Our focus throughout this section will be on the following basic question, which lies at the

heart of the technicM challenge that high-level cognitive processing presents to connectionism: How

arepiecesof informatio_*put into temporary association with each other i. a col_t, ctio_i._!

system? For instance, how are the different parts of a conlplex temporary Im)l)osith)tl. _r of a

dynamically created plan of action, or of a complex temporary description of a visual scolie, put

together? t[ow are rule variables bound to values" How are frame slots bound to vahms"

Positional Techniques

The label "positionM" is our own name for a very comlnonly used, though rolatively weak.

type of technique. It is especially prevalent in connectionist systems directed at visual perception.

The generM idea is best approached by looking at a simple, prototypical system. This example

system is hypothetical, but is abstracted from the word-perception system of McCl(qland and

Rumelhart (McClelland & Rumelhart 1981, Rumelhart & McClelland 1982). The basic id<,s to

be attended to crop up in many other perceptual svstems.

Our hypothetical systenl is designed to recognize single written words up to a certain length

1, and its visual fieht is divided up into I separate regions, one for each letter position in a word.

A word is always presented with its first letter in region 1, its second in region 2. and so on.

Corresponding to each region there is a subnetwork dedicated to recognizing the letter atq)earing

in the region, hi each such subnetwork, there is for each particular letter a single unit dedicated

to indicating, by mealls of a high level of activity, the presence of that letter in the sul)netwovk's

region. We give the unit that indicates the preseuce of letter 'T' in position 1 the nalm_ 7i. the

unit that indicates the presence of letter 'It' in position 2 the tmme fl._,, the unit that indic;ttcs tilde

presence of letter 'T' in position 4 the name T4, and so on. The system also contains a sil_gle ulLit

for each word up to length l in some lexicon. The unit for the word 'TIIAT' is connected (in some

way that we do not detail) to the "'letter units" TL, H,, Aa and T._. One of the ('onSC_l*l_ences of

these connections is that when these units are highly active, the 'TIIAT' word unit becom,'s highly

active as well. We call these connections the "basic letter/word connections" for l'efereacc.

Let us abstractly think of a word, say 'THAT', as a set of letter instances glued together

by temporary associations of type "followed by". So, there is an instance of letter 'T" that does

sot follow anything and is foUowed by an instance of letter 'H'. The question we wish to ask is:

how are these abstract temporary associations represented in the system? The answer is that

they are implicit in the sheer "positions" of the letter units 7'1, H_, Aa and T4 in the ,,gste,_ as o

whole. Bv the "position" of a unit we mean something abstract, namely the way it is connected
into the network as a whole. The sheer fact that T1 and H; are highly active represents the fact

that a 'T' instance is followed by an 'H' instance. Further, the rest of the system "knows" that,

say, T_ represents a 'T' in first position. This "knowledge" is embodied in the fact that 7_ has

basic letter/word connections onlg with word units for words whose first letter is 'T'. An analogous
observation holds in the case of He and word units for words whose second letter is 'tI'.

Now. letter units are of course what represent the letter instances (in our abstracl view)

t hemselvesl Therefore, no temporary state (activation values etc.) other than the temporary states

of the units representin9 the abstracily-associated items themselves is involved in tile representation

of the abstract associations. In particular, there is no change of connection weights, and no setting

of particular activation vMues at units other than the letter units.

hi sum, the space of possible abstract associations of interest has been in a sense "'hardwired"

into the gross structure of the system, We like to talk in terms of the "'position" of units in the

whole network, because it provides a more evident link to other ideas we will be discussing. It

is important to realize also that the label "positional" does not derive from the fact tha,t wlLat is

encoded in many applications of the technique is physical position, in words or some other type of

space.Nor doesit derivefrom anynotionof physicalpositionin a physicalrealization(biological
or electronic)of tile networkitself.

A lessobviousinstanceof the positionalcategoryis evident in applicationsof a m(,thod
derivedfrom Wickelgren(1969)and well-known(asthe "Wickelfeatures"technique)fol its ap-
pearancein the past-tensemodelof Rumelhart& McClelland(198_)).For ourcurrent illust_'ative
purposes,the basicideais to havedifferentunits representdifferent trit:lesof letters, and to l'ep-
resentthe presenceof a word by lighting up the units for the triples of consecutive lettel's in the

word. For the word 'TIIAT' we would have high activity at the units for the triples '-TII', "T]tA',

'HAT' and 'AT-', where a dash indicates the absence of a letter. (A set of such triples does not

necessarily represent a word unambiguously -- see Pinker & Prince (1988, pp.96-97) -- but we will

ignore this comphcation in the following comments.) There would be word units as before, but in

place of the basic letter/word connections we would have, analogously, triple-to-word connections.

The abstract associations represented by the system on presentation with a particular word would

be overlap relationships between successive triples, such as between 'TI[A' and 'IIAT'. Again, we

note that the abstract associations between triples in the presented word are entirely _mcoded in

tile activity levels of the triple units, given that they are linked to the word units in a particular

W av.

The positional encodings used in our hypothetical letter-based and tl'il_h>based systems

are absolute positional encodings. The reason we say this is best brought by an example of a

relatic,e positional encoding of abstract associations. The (quasi-)connectionist sentence-parsing

system CONPARSE of Charniak & Santos (1987) uses such an encoding. The model is c,_.nt_,red

on a two dimensional array of registers, which could in principle be implemented as conl>clionisl

subnetworks. See Fig. 1, where each square illustrates a register.

FIGURE 1 ABOUT tIERE

By putting the registers into suitable states representing syntactical categories, the array can

hold parse trees. The tree structure is encoded partially by the relative positioning of states

in registers. Different directions in the array have different representational significance. The

up-down dimension is for representing constituency. If a register in the array denotes a particular

constituent found in the sentence, e.g. the particular verb phrase "ate the cheese", then tlle register

ilnmediately below it represents a sub-constituent of it, e.g. the noun-phrase "the cheese". On

the other hand, directions involving a left-right aspect are for representing identity of constituents.

Thus, if a register L in one column represents a particular constituent, then it may be that a

register R in the column immediately to the right of it denotes the very same constituent. If so,

a special, so-called "binding unit" in L has as its value the row number (up-down position) of R.

Such settings of binding units are illustrated in the figure by means of arrows.

If we ignore this left-right dimension, we have a straightforward "relative position encoding"

of constituency in the up-down dimension. The way that CONPARSE differs from the previous

example systems is that the absolute positions of constituent representations in the aH'av are in-

significant (from tile point of view of the parse tree structure itself -- but the absolute positioning

does reflect factors such as how far through the sentence the parsing has got). No register per-

manently represents any particular thing, in contrast to the letter units and triple units above.

although of course a CONPARSE register does denote a particular thing at any 9ive_z m_:_ae_t. _

All that needs to be done to represent the fact that one constituent, A, is a direct sub-constituent

of another, B, is to ensure that a representation of A is in a register immediately below a l'egister

containing a representation of B.

Actually, a register can denote several constituents with varying degrees of confidence, but this com-
plication does not significantly affect the present discussion.

Despitethis very significantdifferencefrom absolutepositionalsystems,we still havetile
notion of a "position" asbeinga matter of the way in whichsomething(a registerill the present
case)is connectedinto tile rest of the system.The array-nessof tile set of registersis of course
justa conceptualview,andis not to be takenasreflectinganyphysicalnotion of position. The
array-hessis reflectedin the total networkconnectivityasthe fact that neighboringregistersare
connectedin special ways to each other.

Although the actual and hypothetical systems referred to in this subsection have a localist

flavor, in that some particular nodes are dedicated to denoting particular things (only tempo,arily.

in the case of CONPARSE), the discussion can be extended to distributed systems as well. If, for

instance, letter instances had a distributed representation rather than a locakist representation by

means of the individual units like T1, then we would modify our observations by talldng about tlle

way that sets of nodes, rather than individual nodes, are connected into the rest of the s,vstom.

Path-Marking Techniques

Path-marking methods appear in many ditl'erent detailed forms in e_stil_g connectionisl

systems. The basic idea is that ifa system contains subnetworks A and B repre,_entiug entities,,

and b respectively in the domain of discourse, then an abstract association between a and b could

be represented by temporarily nlarking one Or more connection paths between A and B in some

way. The two main ways this can be done are (i) to change one or more connection weights on

each path, and (5) to change tile activation level of one or more intermediate nodes on each path.

Connections allowing fast, short-term weight change have occasionally been suggested (see

e.g. Goddard 1980, Hinton & Plaut 1987 and references therein), as has the closely" related notion

of "multiplicative" connections (tIinton 1981, McClelland 1986, Pollack 1987). However, for the

purpose of representing temporary" associations in complex information structures, path marking

method (5) is more common than the weight-change method. It is also more powerful, since
activation levels of binder nodes can be transmitted from place to place (thus facilitating operations

such as the copying of complex temporary structures), whereas in most views of conneclionism

weights as such cannot be transmitted. Of course, if a weight is maintained at sonic level as a

result of a. signal continuously impinging on the connection from some node N, then N's vahl, could
be transmitted elsewhere; however, the method is then tantamount to method (ii) for the purposes

of the discussion in this paper. Also, a large proportion of what we will be saying about method

(ii) applies also in modified form to method (i). ttence, for the sake of brevity we will concentrate

on method (ii) in this paper. (Some discussion of method (i) can be found in Barnden 1984b).

In method (ii) tile intermediate nodes are typically called "binder", "binding" or "bind" units

or nodes. We will uniformly use the term "binding node". A clear example of the technique appears

in Feldman (1982). A more elaborate form of the idea appears aJso in the BoltzCONS system of"

Touretzky (1986) and the distributed connectionist production system (DCP$) of Touretzky &

Hinton (1988). Here a production rule can contain variables, as in the following examplo:

(=x A B) (=x C D) ==* +(='< E F) +(P D Q) -(=x S T).

=x is the variable here. The rule is enabled if, for some symbol ,/ the system contains the repre-

sentation of a triple (,_ A B) in a subnetwork called the C1 clause space and the representation of a

triple ()_ C D) in a subnetwork called the C2 clause space. When this happens the variable =x is,

abstractly speaking, bound to the symbol ,_. The binding is realized in the "bind space", which is
a set of interconnected binding nodes which "coarsely" encode bindings. Specifically, each binding

node is thought of as representing the binding of =x to one of a set of three symbols. A binding of

=x to a unique symbol ,\ is represented when about 40 binding nodes, all of which include ,\ in their

symbol-sets, are active. Now, tile representation of triples in the two clause spaces is also coarse,

so any given triple is represented in a clause space by activity at about 28 different nodes, each of

which includes the triple in question in its "receptive field" of triples. For each clause space, some

of the nodes that include in their receptive fields a triple starting with the svmbol A are excitatorily
connected to the ,_ clique of binding nodes in bind space. Thus, the binding nodes can be thought

of as devices for the marking of connection paths between distributed representations of symbol

triples in the clause spaces. We note in this system that not only are the representations that are

bound together distributed, but the representation of the binding, as a set of binding node,s none

of which encodes a unique binding, is itself distributed.

We see this same possibility of distributed binding in Smolensky's tensor-product framework

for role/filler binding (Smolensky 1987). In one type of application of this frame, work there is
a tuple of filler units and a tuple of role units. A particular role (of some concept or l'r_me) is

represented by a particular activation vector over the role milts. Similarly. a particular filler (for

the role) is represented by a particular activation vector over the filler units. Several fillers and

roles might be simultaneously represented. There is "also a binding node bij for each pair (ri, ¢_)

where r, is a role unit and fj a filler unit. Node bij is connected to both ri and f;. If the tiller tuple

and the role tuple are representing just one filler and role respectively, then the activity of/_j is
the product of the ith component of the role and thejth component of the filler. Otherwise, the

activity of b,j is the sum of such products. At one level, bij represents a degree of binding between a
role unit and a filler u_,it. At the level of the representations, on the other hand, a binding between

a role and a filler is represented in a possibly distributed way as activity across the set of binding
11o(t eS.

As stated in the previous subsection, the CONPARSE system of Charniak & Santos uses

"binding units" as an adjunct to its relative positionM encoding of constituency. The numerical

value of the binding uait in a register indicates which register in the next column to the right is to
be taken as temporarily associated with it. The binding unit so described does not immediately

fit the concept of binding nodes we have been using. However, it is easy to imagine connectionist
implementations of CONPARSE in which binding units are mapped to binding nodes in our sense.

For exampte, if there are n rows in the array, each binding unit could be ilnplemented as a tuple o1

_ binding nodes, with the integer value r of the binding unit being implemented as high activity at

the rth binding node and zero activity at the others. Because of the dynamic interactio_s between

registers that are required during parsing, each binding node would have to be connected to units

within the register to which it "points". Therefore, each binding node would be a vehicle for

marking one or more connection paths between its home register and the register it poixt_s to.

To return to the hypothetical word-recognizing systems discussed in the subsection on posi-

tional encodings, the word units themselves can be said to be binding units, supplying encodings

of the abstract associations among the letter instances or triples in the words. High activity a.t

the 'TtIAT' word unit can be cast as one representation the system has for the presence of certain

triples or letter instances and certain abstract associations among them. Since a word unit is

connected to the triple units or letter instance units that are appropriate for the word represented
by the unit, there is a case for viewing it as a binding unit sitting on paths joining those units. \Ve

wi[l consider this possibility further in Section 6.

A High-Level Associative Technique

Under this heading we will discuss only the techltique for representing symbol-triples, and

associative linkages among them, in BoltzCONS (Touretzky 1986). As stated above, triples are
represented within a space (actually, more than one space) of nodes, in which each node is deemed

to coarsely represent many triples. A given triple is unambiguously and full)' represented when

the 2S or so nodes that represent that triple are all highly active. Notice that there is no sep_rate

representations of the three parts of a triple; essentially, the system is a distributed "conjunctively

coded" one that is not parasitic on a nlore low level representation of tlle svmbols con.joined in

triples.

Triples are thought of as being (bidirectionally) linked by virtue of .sDnzbol .shacil_9. For

example, suppose the space is representi,lg the triples (T U V), (U A B) and (\: C I)). l{egard

the first symbol in each triple as a name ("tag") for the triple, under the assumption thai no two

co-active triples start with the same symbol. Then the state of the space can be thought oi'as

consisting of a root triple {tile first one) that points to other triples hy virtue of including their

names, U and V. I,l fact., triples can be thought of as Lisp-like "cons cells" (the basic re)des used

in the implementation of Lisp list structures on a computer). The BoltzCONS system cot_tains

mechanisms such that, if it has access a certain sense to the triple (T U V). it can gain acc(_ss to

(U A B) or (V C D), and vice versa. The ability to traverse tile "links" between t rit)lcs ill eith<

direction is all important feature of BoltzCONS.

The BoltzCONS associative linkage technique is cast as "high level" because it is ,i,_turallv

described at tile level of triples t.heluselves, rather than at. tile conneclionis! networl,: lev(q. "l'[tel_'

is no straighlforu'ard description of the technique at the latter level.

Reduced Descriptions

A number of connectionist systems are interesting ill that they use a "'reduced descriptioa'"

(or "reduced representation") technique for assisting in the representation of complex information
st.ructures. To abstract away from tile details of various versions of it that have appeared -- tlit_l,on

(1988), Touretzky & Geva (1987), Sumida g: Dyer (1989)" -- we call give the following general,

idealized account. Suppose there is some transformational mechanism T that takes as input an

e,,dsting complex data structure (description, representation), realized as a possibly' large pa_tern
of activity D, and produces from it a considerably smaUer activity pattern d. Let us call d _he

reduced ciescription or reduced representation produced from D. Suppose also there is an inverse

transformational meclmnism t that reconstructs, retrieves or accesses D from d. Suppose that it

is required to use the data structure represented by D as a component in a logically larger data

structure. Then the activity pattern DD for the larger structure can be built using the reduced

pattern d as a "representative" or "ambassador" of D, rather than using D itself. One simple

option is for DD to be the concatenation of d with the reduced descriptions for other parts. The

pattern DD can in turn be reduced by T if it is required to have the data. structure il represents

be part of a yet larger data structure.

Different svstems inav differ on how DD is formed from the reduced descriptions d. and

therefore differ o;_ their overall handling of temporary associations. However, the use of reduced

descriptions is an important component of the overall handling, since it allows the size el' the

activity patterns being put into temporary association to be standardized. This has certain benetits

in terms of the circuitry needed to effect and use the associations.

Signatures

Lange & Dyer (1989) and Lange & Dyer (in press) describe ROBIN, a connectionist svstem

capable of performing high level inferences, with powerful capabilities for temporary association. A

special node called a signature node is attached to each concept-representing node. Also, each role

(slot) of a frame-like concept in ROBIN has an attached binding node. A signature is an activation

value or pattern emitted by the signature node attached to a concept node. Different concepts have

-" The Recursive Auto Associative Memory scheme of Pollack (1988) for encoding slacks and t.rccs can

also be cast as using reduced de,scriptions.

differentsignatures.Temporaryassociationsareachievedbetweena conceptanda roleof another
conceptwhenthe bindingnodefor the roleis supportingtheconcept'ssignatureasits activation
pattern. ROBIN performsinferenceby acombinationof the spreadingof ordinaryaclivatiOllover
theknowledge-levelsemanticnetworkcontainingtheconceptnodesandthespreadingofsi:_l_atures
overanothercontrolnetworkparallelto thesemanticnetwork.

A Time-Phase Technique

An interestingwayof dealingwith temporaryassociationsis to implementthemin the time
dimension.Clossman(1987)and Shastri& Ajjanagadde(1989)presentschemesof this sort. In
the latter, "constant"nodesrepresentingobjects(e.g.JohnandMary) in the domainof discourse,
and nodesacting asthe argumentpositionsof a predicate,arephase-sensitive binary units that

become active in the phase i of every clock cycle once activated in the ith phase of a clock cycle. An

argument node is considered to be bound to a constant node simply by virtue of being active at the

same phase of each clock cycle. Therefore, the representation of the proposition that ".John loves

Mary" would involve (amongst other things) two argument nodes, one for the "lover" argunient

and one for the "lovee" argument, where the lover argument node has the same phase as the John

node, and the lovee argument node has the same phase as the Mary node.

3. INFORMATION STRUCTURING IN COMPUTERS

Here we look briefly at the three basic ways in which information is structured in computer

memories: sequential allocation, pointers and associative addressing. It is convenient to consider

the hashb_ 9 technique here as well, Mthough it is a less basic technique and rests on the others.

Readers wishing for further information may turn to, say, Hwang & Briggs (1984) for associative

addressing and to an introductory data structures text (e.g. Standish 1980) for the others.

Although much of what we say in this section will of course be falniliar to many if not all

readers, there are certain observations arid perspectives that may yet be a little unfamiliar and

that are important in the context of the paper as a whole.

Sequential Allocation

The "sequential allocation" technique can be found to some extent in virtually all data

structures as implemented on e.,dsting computers. 3 One form in which it commonly appears is

that an abstract body of information, containing information about, say, a particular employee

in a company, could be realized in computer memory as some "concrete record" -- a group of

consecutive cells in primary memory. In saying this we rely on the idea that the memory consists of

a linear sequence of cells, so that it makes sense to talk about the (absolute and) relative po._-itions of

cells in memory. Indeed, cells are conventionally viewed as being consecutively numbered, starting

at 0, say. Let the lowest-numbered cell in our concrete record have number (i.e. address) b, the

rest being numbered b + 1, b + 2, etc. One simple scheme for mapping the information about the

elnployee into the concrete record might be to have the employee's identification nun_ber in cell b.

his/her name in cell b+ 1, his/her salary in cell b+ 2, etc. However, more complex schemes are

possible: for instance, two or more such pieces ("fields") of information might fit into one cell, or

one field might have to be spread over several cells. We will suppress these complications in what

follows, but what we say could easily be adjusted to take account of them.

3 The adjective "sequential" is to do with the linear nature of computer memory, and 7_ot with scquen-

tiality of processing.

An important point for our purposesis that tile significanceof anygivencell in a concrete
recordis determined,at leastin part, by its relative position with respect to tile base cell b. Notice

here that tile absolute position of the whole record in memory will typically be insignificant, and

crucially so. For instance, it may be required to move/copy a record around in memory in order

to have it take part in various larger data structures. It is then assumed that a given piece of

program call access and nlodify the information in the record merely by knowing the base address

b and tile scheme whereby information is packed into the record, where that scheme is independent

of b itself.

A particular form of a concrete record is the sequentially allocated array -- that is, an array

(of any dimension) implelnented in the familiar way in consecutive memory locations starting at

some base address b. In tile simplest case, a one-dimensional array is ilnplemented so as to make

the first array element's value be in cell b, its second element's vahae be in cell b + 1 and so %rth.

Once again, tile absohlte location in nlenlory of tile whole COIlcreto record is not signiticattt, a>

long as any piece of program that needs to use the array knows the base address b. The crucial

point, therefore, is tile relative positioning of the array values with respect to the base cell. Also.

tile relative positioning of cells within the record may have a more general significance, in tha_

neighboring elements ill tile (one-dimensional) array map to neighboring cells in the record. (:\

somewhat more complex relationship holds for higher-din_ensional arrays).

\Ve have so far described a pure form of sequential allocation, in that there is nothing tHtl_in

any given cell ill the record to say what its significance is -- only its displacenlent from t_ does *hat.

A less pure form is to allow the fields to occur ill any order starting at b, though still occupying

consecutive cel]s, and to have in some part of each cell some information, such as a field name or

arrav subscript, specifying tile cell's exact significance. Such a scheme can be useful if concrete
records are able to miss fields out. either because fields are sometimes not applicable (e.g. spouse

nalne in the case of an under-age employee) or because if a field is missing it is to be taken as

having a default value. However. in all impure fornl of sequential allocation like this the notion

of relative position is still crucial: the represented fields for the concrete record based at b are

still bunched in consecutive cells starting at b -- it is not the case that just any cell in memory

containing a given field number (say) is part of that concrete record, or indeed any concrete record.

Another type of impurity is for the value of one cell to help specify" the significance of others.
This is found, for instance, in the concrete records implementing tile abstract "variant records"

of the programming languages Pascal (Jensen & Wirth 1974) and Modula-2 (\.Virth 1955). In

a concrete record representing a person, a cell ill a specific position relative to the base address

might say whether tile person is a child or an adult. The ceils following it would then encode
child-relevant fields ill one case and adult-relevant fields in the other.

SequentiM allocation is also commonly used at higher levels of conceptual organiza_ioll than

assumed in the above examples. For instance, tile concrete records for some set of employees might.

themselves be placed consecutively" in memory.

Pointers

The "pointer" technique for information structuring relies on interpreting the contents of

sonic cells as being cell names ("addresses"). For this purpose it is not necessary in t)rinciple for

addresses to be in any way thought of as numbers, although of course they are so in practice. Tile

use of pointers is alnlost always parasitic on a non-trivial use of tile sequential allocation technique,

since what is pointed at is ahnost always some sort of concrete record containing more than one cell.

(The pointer is typically the base address of the concrete record pointed at.) Further, pointers are

almost always in particular cells of concrete records. The most familiar exanlI)]e of this is provided

by a linked list of concreterecords,where,say,the third cell in each record always contains the

address of tile "next" record. Conversely, the use of sequential allocation is a.lmost ahvays parasitic

on at least a mininlal use of pointers, since a piece of program call only use a concrete record in a

conventional computer memory if it knows its base address (i.e. has a pointer to the record).

It is rarely pointed out in discussions of traditional symbolic processing as contrasted with

connectionist processing that there are compromises between the pointer technique and the se-

quential allocation technique. Pointers can be relative as opposed to absolute addresses, so that

some base value needs to be added to them to produce absolute addresses. In particular, size fields

in different-sized concrete records that are arranged consecutively ill memory can act as relative,

addresses, in that the base address of a given record plus the value in its size field equals the base

address of the next record.

Associative Addressing

The third basic type of information structuring in computers is "associative addressing" (also

called "content addressing"). It is much less prevaaent than sequential allocation and pointers, but

is nevertheless used for cache memory in ordinary computers (e.g. the Va_x 11/780- see Starlings

1987, pp.ll4) as well as for general purposes in some unusual types of computers (usually highly

parallel ones).

The basic idea, on which there are many variants, is to use the value in a specific portion (or

all) of a inemorv cell C as a key with which to access other cells D whose corresponding portions

contain the same value. The key value obtained from cell C is broadcast in some way to all ceils,

and these independently and in parallel decide whether they contain that value. If so. they "light

up" in some way that is visible to other machinery.

Associative addressing can achieve what absolute or relative pointers do. It also naturally

allows bidirection,_l pointing, since if cell C associates to cell D then (in typical schemes) D also

associates to C. Further, associative addressing gets further away from the linear structure of

memory, since concrete records that are interlinked by associative addressing can be moved about

fl'eely within memory.

In an associative memory, sequential allocation and associative addressing are typically mu-

tually parasitic ill much the way sequential allocation and ordinary pointers are. When a value is

used to associatively access a given cell, it is likely that the cell is in a concrete record that is of

interest. Conversely, a concrete record is likely to have special cells containing associative keys for

accessing other records.

Hashing

tIashing is a way' of storing items of information in a concrete record -- the "hash table"

-- in such a way that the position in the hash table where a given item is stored can on average

be computed very efficiently from the item itself. In one standard application, the items are

words (variable identifiers, function names, etc.) in a particular program, and there is a "hashing

function" h that applies some transformation to the bit-string representations of the characters

in any given word in order to come up with a rdative address in the hash table. The word itself

together with important information associated with the word (such as a data type if the word

is a variable identifier) would be stored in that position in the table. This account is an over-

simplification, because there must be some way of dealing with collisions -- that is, casks when

two different items are mapped by the hashing function to the same address. Several difl'erent

methods are in common use (see e.g. Standish 1980).

10

Two features of hashing are important for us here. First, hashing can be applied to items

nmch more complex than character strings, such as board positions in games, or frame slructures
as used in AI. Second, hashing is in a sense a way of emulating a form of associative addressing
in non-associative memories. This is because it enables a program to gain efficient access, on the

basis merely of I itself, to the [)lace where information related to I is stored.

4. RELATIVE-POSITION ENCODING and PATTERN-SIMILARITY ASSOCIATION

One promising way to approach high-level cognitive processing in con_lectionist svs'¢:ms is

to encode complex teml)orary information structures by means of two techniq,lo_ call<:d "'t{_q_ltiv(_-

Position Encoding" (RPE) and "'Pattern-Similarity Association" (PSA). These a r<' answ(_,'_ to t }k,'

Temporary-Association Question presented at the start of Section 2. The present section gives an

overview of the general ideas of Rt_E and PSA. Our own connectionist system's partic_dar t'orms
of RPE and PSA are described in Section 5.

Relative-Position Encoding (RPE)

A simple instantiation of the general idea of relative-position encoding is as follows, hnagiae
a network that can be viewed as a two-dimensional array of "component subnetworks". See Fig.

2, where each square illustrates a component subnetwork.

FIGURE 2 ABOUT HERE

Assume that there is a set of activity patterns any of which can be temporarily installed in Jay

of the component subnetworks. Consider two adjacent component subnetworks h and j. Suppose
that at some moment they hold, respectively, an activity pattern tIUNGRY representing the idea

of being hungry' and an activity pattern JOHN representing a particular person, John. Finally.
take this "subconfiguration" of adjacent activity patterns to encode the temporary prol)osition

that John is hungry. It could also have been encoded by using any two other adjacent comI)onet_
subnetworks in the array in a similar way. The absolute position of the subconfiguration, as w<ell

as the direction of the adjacency within each subconfiguration, is insignificant.

To encode a two-or-more place proposition, such as that John loves .Mary, we couhl basicalls'

follow the same approach. We could have activity patterns LOVES, JOHN aad MARY in comI)O-
nent subnetworks 1, j and m respectively', where j and m are adjacent to I (but not necessarily to

each other). This is not quite adequate, since we need to be able to distinguish the proposition
that John loves Mary from the proposition that Mary loves John. A simple way to ensure this is

to let a "Role" part of each component subnetwork be available for containing an activity pattern

which signifies the role, if any, that that subnetwork is playing in some proposition. Thus. in
the John-loves-Mary proposition, j's Role part would contain an activity pattern signifying *'first

argument", while n,'s Role part would contain an activity pattern signifying "second argument".

In principle, there is no need to assume that such activity patterns have a fixed meaning in them-
selves -- rather, it could be that the pattern used to specify the first-argument role in LOVES

propositions could be the very same pattern used to specify" the second-argument role in tlATES

propositions. This is not to say, however, that there might not be good reasons for giving fixed

meaning to the patterns.

Different propositions can be simultaneously maintained in different regions of the array.

The propositions can share relationships or arguments-- say JOHN -- since the JOHN pattern or

any other can be simultaneously instantiated in several different component subnetworks at once,.

ll

More sophisticated versions of the RPE idea could depart from the simple oxampl,e in a

number of directions. Tile closest departure would be to have all array whoso numbm" of dii_el_sions

was not two. A flu'ther departure would be to have a network with a non-array structure, whih_

still providing a useflfl notion of relative position. On the other hand. keeping to the idea of an

array, it could be more like a TV screen on which patterns (like images on a screen) cax_ appear

in any position on a quasi-continuous range, rather than being confined to discrete componeHt
subnetworks. 4

Further, in any array-based version of RPE, whether using discrete component subnetworks

or not, one could allow relative-position relationships other than strict adjacency to have asso-

ciational significance. In particular, we could simply allow, say, the agent-denoting component

subnetwork in a love proposition to be two steps away from the one containing the LOVES pat-

tern, rather than requMng it to be closer. More interestingly, different degrees of closeness could

conceivably be used to encode different degrees of association. Also, the array could be used ana-

logically as a map of some physical space (or of some domain mathematically cast in terms of

a space), so that long-distance relative positional relationships in the arrav, not just adjacmtcy

relationships, would have structural significance. See Barnden (1985, 1987) for suggestiol_a along
these lines.

Another departure from the simple RPE described above is for component subllelwork.,

not to contain separate parts (main part and Role part). Rather, a component subnetwork would

contain a monolithic activity pattern. If the subnetwork was to be made to contain a repl'esent:_tion

of John as first argument of a loving proposition, the system would insert a John-as-tirst-argument

pattern. If on the other hand the subnetwork was to be made to cont_n a represeutatiott of John

as second argument of a loving proposition, the system would insert a .John-as-second-argumet_t

pattern. For the purposes of inference there would have to be some way of detecting that these

two patterns represent the same person. For instance, if the system is to reason from the premises

that A loves B and B loves C (where C is different from A) to the conclusion that A is jealous of C.

then it must recognize that the same person B appears appropriately in two loving propositions.

RPE in any of its forms, but most clearly when based on an array of discrete component sub-

networks, can be viewed as an extrapolation from the sequential allocation technique in computers.

More exactly, it is an extrapolation from the "impure" sequential allocation technique described

in Section 3, under which the structuring of a concrete record is indicated partly by special tags

in cells. These tags are very like the Role activity patterns proposed above for RPE.

The (quasi-)connectionist system, CONPARSE, of Charniak & Santos that was mentioned in

Section 2 clearly uses a form of RPE, in that much of the structuring of a parse tree is embodied it,

the relative positional relationships of cell states. In fact, as far as we are aware, amongst systems

other than our own this one comes closest to fitting the above general description of RPE.

In principle, none of the above comments imply that the array structure of the pool of

component subnetworks be reflected in any particular ph_lsical arrangement of the subnetworks.

"Adjacent" subnetworks need not be physically adjacent in any hardware or biological realization

of the system, tlowever, if the network does have a physical embodiment, then there will be

consequences for the physical layout of the array. For instance, one operation that is likely to be

4 In early work leading to our own system, Conposit, arrays like this were adopted (Barndell 198,ta).
These were later replaced (Barnden 198,5) by arrays of discrete component subnetworks so as to allow a system
that could be more easily simulated and aualyzed. Also, a mechanism for processing subconfigurations is
much easier to devise for the discrete case. However, it is possible that there is ultimately more future in
a "TV-screen" version, especially from the point of view of brain theory. This shows one respect in which

Conposit is to be viewed as heuristic guidance for the development of future, more sophisticated systems.

12

requiredis the traversalof an association.Supposethe systemis in somesenseattendingto one
componentsubnetworkN -- so perhapssomespecial"degree-of-attention"units within N have
a particularly high levelof activation. Onetype of traversaloperationthen consistsin switching
attention to the neighboringcomponentsubnetworkthat hassomegivenactivity pattern in its
Rote part. Presumably, there must be circuitry that allows the activity on the degree-of-attention

units in N to spread to neighboring subnetworks. The neighbor that has a suitable Role pattern

then lights up its degree-of-attention units. Thus, each component subnetwork must have speci_

connections, whether direct or indirect, to its neighbors-- special in the sense that they are different

in function from any other connections that might e_st between subnetworks. Thus, the overall

special connectivity between neighbors is the network realization of the notional array structure.

Moreover, since the traversal operation mentioned should be as efficient as possible, it could well

follow that, other things being equal, it was advantageous to have notio_zally adjacent component

subnetworks be spc, t#_llT.l adjacent as well, assuming the system has a physical embodimen*. This

naturally suggests a spatial array as a reasonable and motivated embodiment of the notional array

structure.

Pattern-Similarity Association (PSA)

A simple illustration of the general PSA idea is as follows. We assume as before that there is

a pool of discrete "component subnetworks", but now the pool is just regarded as a set. and does

not need to have any overall structuring, adjacency' relationships, etc. Imagine two component

subnetworks h. and j, each divided into two parts called the Information Part and the Associator

Part. See Fig. 3.

FIGURE 3 ABOUT HERE

The temporary proposition that John is hungry could be encoded by letting the Information Parts

of j and h contain activity" patterns JOtIN and IIUNGRY representing .John and the property of

being hungry, respectively, and letting the Associator Parts of h and j contain the same activity

pattern X. The component subnetworks h and j are deemed to be temporarily associated by virtue

of this equality of their "associator" patterns (X).

Clearly, this example is a simple extrapolation from a possible use of associative addressing

in a computer. For the latter, there would be two-cell concrete records instead of subnetworks h

and j. In each record, the first cell (say) would be called the Information cell and the second would

be called the Associator cell. Bit-strings would correspond to the connectionist activity patterns.

Some bit-strings would represent JOHN, the HUNGRY property, and so on, and would go into

Information cells, while some would be reserved to act as associative addressing keys, anti would

go into Associator cells.

Of course, we do not assume in general that h (or similarly j) is restricted to containing

tile patterns HUNGRY and X. On another occasion it might contain TIRED and Y instead.

Conversely, it should be clear that we do not assume that the HUNGRY and JOHN patterns, etc..

can o,zly go into the particular subnetworks h and j. By default, we assume that any Informa.tion

part can contain any of the information patterns, and any Associator parts can contain anv of tile

associator patterns. It does not matter, logically, which component subnetworks are used -- all

that matters is that the right temporary associations between subnetworks be einbodied in the

assignment of activity pa.tterns to subnetworks. Nevertheless, one can imagine a type of PSA in

which a component subnetwork could be reserved for use in some particular class of propositions

(e.g. propositions about personal relationships).

\Ve need to be able to disambiguate the roles in a two-or-more place proposition, such as

that John loves Mary. \Ve can proceed analogously as in the case of RPE, introducing a Role part

13

into each component subnetwork, as well as all Information part and Associator part. For John

loving Mary, we then have component subnetworks l, j and m, where l is analogous to h and has

the LOVES pattern in its Information part, j is as before, and rn is like j but with the MARY

pattern in its Information part. All three subnetworks have the same associator pattern X. Each

subnetwork's Role part contains an activity pattern specifying its role: relationship, first argument
or second argument. As in the case of the role patterns discussed above fox" RPE, there is no need

to assume that they have a fixed meaning in themselves.

Different propositions can be simultaneously maintained if they use different a ssociator pat-

terns. In essence, the associator pattern, X or whatever, used in a particular proposition can be

regarded as temporarily standing for the proposition as a whole. The propositions can share rela-

tionships or arguments --- say JOHN -- since the JOHN pattern can be simultaneously inslantiated

in several different Information parts.

In more sophisticated versions of the PSA idea, the required similarity of associator patterns

would not have to be equality. One might even seek to encode strength of tenlporary association

in the degree of similarity of associator patterns. One does not need to assume that a given part
of a component subnetwork always has to hold associator patterns: for instance, it could hoht

assoeiator patterns on some occasions and information patterns on others. More radically, we

might be able to get away from the idea of having separate parts in the component subnetworks,

and have a more distributed representation within each subnetwork. There would be a single

pattern in each subnetwork, and association would be incorporated into the notion of similarity
among such patterns. Consider the propositions "John is hungry" and 'gohn loves Mary". For

the former, an h subnetwork and a jl subnetwork would contain patterns that are similar in some

way' which we can call X, whereas for the latter proposition an/, a 3"-_,and an m subnetwork would
contain patterns that are similar in some way Y. Further, the jl and j_ patterns would be similar

in yet a third way we can call .JOHN, and also in a fourth way that we can call "'first argument".

That is, the associator, information and role patterns that we had originally have been replaced

by' respects in which relatively monolithic patterns are similar. However, we have not investigated

this possibility in detail.

Dependencies between RPE and PSA

In a PSA scheme in which component subnetworks have separate parts, the parts within a

given component subnetwork need not in principle be physically arranged in any particul_tr way

(given that the svstem has a physical embodiment in the first place). For instance, they need

not occupy separate spatial regions of the subnetwork -- they merely need to have disjoint sets of

nodes. Of course, it is still open to us to regard the parts in the subnetwork as being notiormlly

a,'ranged in some way that we think of as spatial -- e.g. as a linear sequence. (Also, a notional

spatial arrangement may be reflected in the structure of interconnections anaong the parts.) Now,

whether or not we think of the parts as being spatially arranged, there is a sense in which a relative

positional tectmique is in play. This is because the significance of a part P of some component
subnetwork N at any moment is best taken as a function of which set of nodes P is withi_ some

component subnetwork N, and of the significance of N.

Thus, there is a sense in which a local type of RPE is in operation within each component

subnetwork. This is analogous to the point that typical uses of associative addressing in computers

exploit the relative positional arrangements within concrete records.

Conversely, there are opportunities for RPE to be partially dependent on PSA. The reader
may have wondered how the described simple form of RPE using a discrete 2D array could deal with

propositions that have more than eight arguments, since the component subnetwork representing

14

the relationshipaspectof tile propositionmust be adjacentto the subnetworksrepresentingthe
arguments.A possiblesolutionis to divide tile propositionup into twoor moresubconfigurations,
and to include ill eachone a componentsubnetworkthat (temporarily) acts as an Associator
subnetwork.Each of these temporary Associator subnetworks would contain the same main activity

pattern X. and their Role parts would contain an activity pattern saying that they arc Associator
subnetw°rks' In this way, different groups of arguments of a single propositioa could be realized

in different subconfigurations.

An interesting aspect of a scheme of this sort is that, viewed from the PSA perspectivc_, the

component subnetworks are subconfigurations of the components of the array, and these subcon-
figurations only have a temporary e_stence; moreover, an Associator part is designated as such

by virtue ofaspecial subpatternin an arraycolnponent. Thus, the form of PSA ia use is mot(?

labile and sophisticated than the basic sort described in the previous subsection. We also observe

that each "'component subnetwork" from the PSA perspective uses a straightforward form of I{PE

internally. As we are about to see in the next section, Conposit rests on such a mixture of RPI:2

and PSA.

We close this section hy observing that, although RPE and PSA have been presented as

if the component subnetworks are localized, separate subnetworks, they could in principle have a
more distributed nature, in the sense that their node sets could overlap to significant degrees.

5. CONPOSIT

Conposit is a connectionist rule-based system that e_sts in several different simulated ver-
sions. It rests on a particular, intimate mixture of simple forms of Relative-Position Encoding and

Pattern-Similarity Association, similar but not identical to the forms used for illustr_tion in the

previous section. Our focus will be on Conposit's use of RPE and PSA, and the reader sho_tld refe,'

to Barnden (1988, 1989, 1990) for the fine detail of other aspects of Conposit. Conposit's forms
of RPE and PSA give it the same sort of data structuring power and tte_bility that sequential

allocation, pointers and associative addressing confer on e_sting computers.

The overall structure of simulated versions of Conposit is shown in Fig. 4, the main tlow o1'

information being indicated by the arrows.

FIGURE 4 ABOUT ItERE

The simulated versions of Conposit are entirely concerned with short-term data. structures and

manipulations. There is no long-term memory of data, except insofar as the production rules can
be viewed as holding long-term information. Equally, the versions perform no learning, and involve

no weight changing. The structure of the system a.s implemented as a connectionist network is

completely and intricately hand-crafted.

The productions or rules are shown in the figure as being split into condition parts, bundled

up in the Subconfiguration Detection Module, and action parts, bundled up in another connec-
tio1List subnetwork called the Rule Action Parts Module. Through the Subconiiguration Detection

Module, the rules detect relevant forms of short-term data structure held in the short-term memory

(working memory). This memory consists of a two-dimensional array of component subnetworks.
to use the terminology of the section above on relative-position encoding. In Conposit, the compo-
nent subnetworks are called _'(active) registers" and the array is called the "Configuration _Iatrix"

(CM).

1.5

The rules are hardwired as i)ermanent subnetworks of the system. The system opel'ares in

a cvclic way. In each cycle, the presence of data structures in the working Inemory causes ol_e rule

to fire, changing the contents of working memory. Then another cycle starts. A typical rule is one

that can be paraphrased as: "if A loves B and B loves C, where C is trot A. then assert tlLat :\ is

jealous of C". Note that this involves three variables that must be bound on any give [iriIlt4 of the

rule, and that the condition part of the rule imposes more than one constraint on each variable.

(Conposit's variable-binding facility is only partiall.v described below, but more fully itl Ilarnden

1990.) Complex rules are "also to be found in a version of Conposit (Barnden 1989) that t)erl'orm_

syllogistic reasoning on the basis of Johnson-Laird's mental-model theory (Johnson-Laird t9_3).

A rule's action part effects a series of actions, generated by' a flowchart-like subnetwork

that can include branching and loops. An action can be, effectively', the calling of another such

subnetwork as a routine. However, such calling cannot be directly or mutually recursive. This

is not a restriction on the logical power of the system, since, if necessary, the stacks necessary to

get tire effect of recursion could be implemented in working memory. As regards the traversal of

recursive data structures such as trees in working memory, this can be readily achieved in Conposit.

In fact, such traversM is aided by the bidirectionaKitv of RPE-based and PSA-based linkages. This

is similar to the advantage conferred by bidirectionMity of linkage in BoltzCONS, namely that the

use of explicit stacks for traversM housekeeping is avoided. One version of Conposit does the same

type of natural language parse tree manipulations that Touretzky (1956) reports BoltzCONS as

doing.

The rules change the contents of the CM by sending "command signals" to it. These a r_' mod-

erately complex messages, each one consisting of a vector whose components are either bi_al'V or

ternary valued. The vector travels over a "cable" of connections from some node within a rule sub-

network to the CM. For reasons of space, we omit any further description of the Subconiiguration-

Detection and Action-Parts modules, although they do throw further light on the natulx, of RPE

and PSA in Conposit (Barnden 1988, 1990).

Two deficiencies of Conposit are the massive size of the Subconfiguration Detectioll .klodule.

which contains numerous subcomponents each isomorphic to the Configuration Matrix, and the

sequentiality of the rule-based processing (although, as pointed out in Barnden 1990, Conposit

provides opportunities for limited within-rule parallelism). These and other drawbacks are being

corrected in the development of a case-based reasoning (or anMogy-based reasoning) version of

Conposit, a preliminary version of which is described in Barnden & Srinivas (to appear). However,

the new version uses forms of RPE and PSA almost identical to those used in the rule-based

versions.

Much of the interest of Conposit lies at an intermediate, "register-machine" level of descrip-

tion that will be adopted in most of this section. The mapping to the lower, connectionist network

level is for the most part straightforward. As for the one respect in which it is not straightforward

(a so-caLled "temporal-winner-take-all" selection mechanism sketched below), the details are not

highly germane to the present paper, and can be found in Barnden, Srinivas & I)harmavaratha

(1990).

The Configuration Matrix: Register-Machine Level

The CM is a two-dimensional (32 x 32) array of "active registers" (playing the role o["'com-

ponent subnetworks" in the general description of RPE). Each register is connected to ;dl its

neighbors, and also to a module called the CM's "Parallel Distributor". One of the purposes el

the parallel distributor is to allow indirect communication between any two registers, llowever.

no register knows the identity of arty other register except for its neighbors: and non-neighborly

16

communication is based purely oil tile broadcasting of register states to all other registers via the

parallel distributor.

The state of a. register at any moment has two parts, called its current "sylnl)ol" and its

current "highlighting state". At the register-machine level, a symbol is a member of a large set of

symbols, which are just unanalyzed, atomic objects of some sort. The highlighting state, at the

register-machine level, is a. collection of ON or OFF values, one for each of a set of "highlighting

flags". We refer to the flags by names of various sorts, which we introduce below as needed.
Any combination of ON or OFF values is allowable across the highlighting flags of a register. All

registers have the same, fixed set of highlighting flags, though of course they generally differ on the

ON/OFF values they have for them. Different versions of Conposit have had different numbers

of highlighting flags, up to a ma.ximum of 21. One of the uses of highlighting -- to a(:_ as the

role-specifiers needed by RPE -- will be detailed in a later subsection. For now we concentrate on

the symbols.

Any symbol can be placed in any register, by the action era rule or as part of the initia.Iization

of a run of the system. Many symbols have a specific, constant representational fllltcLiolt. Sucli

as denoting a. particular person (e.g. John), or a particular set of situations (e.g. the sel el
conceivable situations in which someone is hungry, or the set of conceivable situations in w[li('h one.'

person loves another). The symbols are very much like the individual constants it_ a logic-bas*_d

representation scheme that has a situation-based ontology'. There is also a "nu]_l" symbol that does

not denote anything, and a set of "unassigned" symbols that are very like the variables in a logic-

based representation scheme. The unassigned symbols are what play the part of the "associator

patterns" in Conposit's version of PSA.

If a register contains a constant, non-null symbol s at some moment, then the register is

deemed to be denoting at that moment whatever it is that the symbol denotes. Thus, we say that

a register containing the JOHN symbol denotes a particular person John (temporarily). As for

a register containing an unassigned symbol, it acquires a temporary denotation by virtue of the

symbols and highlighting in adjacent registers. We may also view the unassigned symbol itself as

temporarily picking up that denotation, if we wish. We defer the details for a little while.

Configuration Matrix: Connectionist Network Level

Each register in the CM is implemented as a small connectionist subnetwork, and each o[
these subnetworks is connected to each of its neighboring subnetworks (eight of them, except at

the edges). As subnetworks, the registers are all isomorphic to each other, except for difference_

occurring at the edges. A sylnbol is implemented as an activation pattern that can be imposed ol_
a certain subnetwork in any register. In the current version of the connectionist implementation,

the activation pattern for a symbol takes the simple form of a vector of on/of[values on a set of
units. The size of this vector is a parameter of the model, but we typically, take it to be ten. The

arbitrary positioning of symbols within the CM is possible because of the network isomorphism

between registers. The highlighting flags are represented in each register by means of a tuple of
units, each of which can sustain either one level of activity called OFF or another level called ON.

As well as the circuitry for merely holding the register state, a register also contains cir-

cuitry for interpreting command signals received from the action parts of rules. The interpretation

typically involves the register sensing its own highlighting state and the highlighting states of its

neighbors, and broadcasting its symbol to all registers, via the parallel distributor.

Traditional Symbolic Data Structures in the CM

17

Conpositis an exerciseill "implementationalconnectionism"-- connectionismusedasan
imi_lenlentationtool for the manipulationof complexsymbolicdatastructuresverysimilar to those
usedin traditional AI programs.Ourjustificationsfor consideringimptenlentationalconnectionism
to bea validresearchstrategyarebeyondthescopeof this paper,but aresetout in Barnden(i988,
1990).Weshouldemphasizethat thepotentialusefuhlessofRPEandPSAis notconfinedto system
developedaccordingto the strategy.

The wayConpositrealizescomplexsymbolicstructuresis illustrated1)yFig. 5. The figure
showsa possiblestateof an 8x 8 regionwithin the CM, containinga realizationof a traditional
symbolicrepresentationof the propositionthat Bill hopes that John loves Mar?y.

FIGURE .5 ABOUT HERE

Each square in the figure illustrates a register. The following shows what tile various items in a

square in tile Figure signify' as regards the current state of the register illustrated by the square:

capitalized word or letter : occurrence of a (non-null) sylnbOl
V : ON value of "white" highlighting flag

• : ON value of "black" highlighting flag

r, 9 : ON value of "red", "green" flags resp.

A square not showing any' symbol illustrates a register containing a special "nul]" swnbol. If a
square does not show an ON value for a highlighting flag, then that flag is OFF in the register.

When, say', the black highlighting flag is ON in a register, we say tilat the register is highlighted

in black, or simply that it is black.

The constant symbol LOVES permanently denotes the class of all conceivable situations in

which one person loves another. Now, any white-highlighted register adjacent to a black-highlighted

register containing a symbol denoting a class of things is deemed to denote, temporarily, a member
of the class. Thus, in the example, the white register next to the black register containing the

LOVES symbol denotes some loving situation or other, currently. Further, any red register _djacent

to a white register denoting a loving situation is deemed to denote the agent of the loving; similarly

for green highlighting and the object of the loving. Thus, the top-right "subconfiguration" of

register states centered on the mentioned white register encodes the proposition that John loves

Mary. \Ve call the white register the "'head" register of the proposition. The encoding of the

structure of the John-loves-Mary proposition in the Figure relies only on the ,mdirected adjacen<q

relationsltips between registers in the CM, as refined by the use of highlighting of registers to

differentiate their roles with respect to one another.

We see here that a crucial form of temporary abstract structuring ill Conposit is realized

through RPE. In tile terms of our general description of this technique in Section -i, the registers
are the "component subnetworks", the symbol in a register is the content of the register's "main

part", and the higldighting state is the content of its "Role part".

The other subconfiguration in tile Figure can be interpreted in a way anMogous to the first

one. The white register ill it denotes some hoping situation, with agent Bill. The object (patient)

of the hoping is denoted by the green register adjacent to the white register. This register contains

the "unassigned" symbol X, which also appears in the white register denoting the situation of John

loving Mary. Because X appears in the latter register, we deem it to be tempora,'ily representing

that loving situation. We ,also deem a_zg register containing X to be temporarily denoting whatever
it is that X denotes. Hence. the green register in the "hopes" subconfiguration denotes the situation

of John loving Mary, and altogether we have an encoding of BiU's hoping that John loves Mary.

18

Clearly, what we have here is a version of the PSA technique, since the hoping subconfigul'a-
tion is associated with the love subconfiguration through tile use of a. shared, unassign,:'d >vltl})ol X,

and a svmt)ol is an activity pattern. The unassigned symbol is acting ;_s tho "'asso{:ialov'" I)ai tel'l,.

Tile type of similarity required for an association to be deemed to be i>resent is e(luality (1o wilhiIt

the resolution of whi'ch activity-pattern comparators are capable), lit the terms o{" {}ur geliei'al de-

scription of PSA, the simplest view is to take tile association to be between two individual registers

(tile ones containing X), in which case the "component subnetworks" from the l>oint of view of

PSA are just the registers. However, it is often intuitively reasonable to take the association to

be between tile temporary subconfigurations in which those registers lie, in which case the "com-

ponent subnetworks" Doln tile point of view of PSA are the subconfigurations. \Ve met this idea

of component subnetworks being subconfigurations in Section 4, although the subconIigurations

in Conposit differ in detail from the ones assumed in that earlier discussion. The love-proposition

subconfiguration, for instance, is best regarded as having sever_ hlformation parts, namely the

registers other than tile one containing X. That register is of course tile Associator 1}art. There

is no separate role part. Rather, the significance of tile subconfiguration with resl)ec_ to others

is implicit in the local structure within each of those subconfigurations. That local stvuclu,'e i>

encoded bv means of RPE.

Conposit's PSA can also be deployed to encode propositions thai have more than seve,_

participants (a white register denoting a situation as ill Fig. 5 can only have seven neighbors other

than the black, class-denoting one.) The sharing of unassigned synlbols can be used to split up

the representation of a single simple proposition (situation) into several subconfigurations. Fol

the sake of illustration, a split up of a loving situation is shown ill Fig. 5. although norlnally a

proposition with fewer than seven arguments would be represented in Conposit b v means of single

subconfiguration. A rule that creates such a proposition would only split it up if forced to })y' _h('

absence of enough contiguous fl'ee space ill the CM for a single subconfiguratiol_ t(_ be used.

FIGURE 6 ABOUT ItERE

.just as before, tile white register containing X temporarily denotes the loving situation; and then

so does every other register containing X, by the symbol-sharing semantic rule. The interpretation

of the red and green registers is then emactl 9 as it was in the case of the loving situation in Fig..5.

\Vith the split up as shown, we have a mixture of RPE and PSA much like that discussed at

the end of Section 4. Each subconfiguration, or "component subnetwork" from the point of view

of tile PSA in this mixture, is a pair of registers. The one containing X is again tile Associator

part. The Information part, from the point of view of Section 4, is the the svmbol part of the other

register. There is also a Role part consisting of the highlighting part of that register.

It should be clear that Conposit can encode more deeply' nested propositions, such a.s that

Tom believes that Bill hopes that .John loves Mary. Tile only limitations are ones of resou_ces: the

size of the CM and the number of unassigned symbols available (current simulations pt'ovide for

thirty). Also, tile techniques presented can also be used to realize tile equivalent of logical formulae

involving connectives and quantifiers. This matter is detailed in Barnden (1988, 1990).

\Vhen a rule creates a new data structure in the CM, it must find enough "free space" for

it. If there is not enough space, tile rule simply fails to do what it should be doing. Conposit

as it currently stands does not try to avoid such failures or take special action when they occur.

This is one respect ill which the system lacks qualities of graceful degradation. It should be note(l_

however, that one could design enhanced versions of the system that would contain multiple "back

up" CMs that would hold data structures not currently in the focus of attention alld fc)t' whi(:h
there is no room ill the main CM. Indeed, the new version of Conposit that performs massively

19

parallelcase-basedreasoningdoeshavemultiple CMs. and data structure processingoccursin
manyCMssimultaneously.

An ideaof the capacityof a CM can be gained from considering the ma.vinmm number of

two-argument propositions it could conceivably hold. A two-argument proposition requires four

registers, and (in the current Conposit) none of the registers is allowed to touch any of the registers

for another proposition. The propositions can be packed most tightly if each one has its registers

configured as a square group, where groups must be separated by at least one register width of

free space. In this way each proposition effectively consumes a square of nine registers, so that the

a2 × a2 CM can in principle hold up to 100 two-argument propositions. However, Conposit does

not currently seek to pack each proposition into a four-register square, but instead arranges the

relationship and argument registers in a random way around the head register. This makes the

capacity difficult to analvze exactly, but a crude lower bound of 64 for the ma_mum number of

propositions results front assuming each one consumes a sixteen-register square including separating

space.

Although Conposit. as we have just implied, does not seek to minimize the space each

proposition consumes, it does seek to pack them tightly, ill the sense that a new proposition is

placed as close as possible to existing data structures. This placing can easily be achieved by simple

highlighting manipulations. _

On the Use of a 2D Register Array

Our decision to make Conposit's array be two dimensional, and iudeed the decision to use

and arrag at a]], have sometimes been questioned. The two-dimensionality is relatively insignificant

from some points of view: given that we wanted an array, we had to choose some dimensionality,

and two was a good choice both from the point of view of graphical presentation and directness of

simulation on present-day array processors (Conposit has been simulated on the Massively Parallel

Processor and the Connection Machine, both of which have two-dimensionM arrays of processors).

We do have two more substantive motivations, though. One is that we are interested in the

applicability of Conposit to spatial reasoning by using the CM to represent a 2D projection of a

region of space (see Section 6 for more on this), and it is simpler to confine attention initially to two

dimension_ spatial reasoning. The other motivation was that we are interested in the possibility

that a Conposit-like system (but not Conposit as it currently stands) could be the basis of a theory

of high-level cognition in the brain, by taking the 2D matrices to be idealizations of regions of
cerebral cortex.

As regards having an array at all, that simply reflects our desire to incorporate as concep-

tually simple as possible a version of RPE, in order to investigate the potential of that technique.

Some commentators have asked why we do not simply have an unstructured collection of wha.t we

may call "big registers", each of which consists essentially of two of our actual registers. Essentially,

the proposal is to do away' with RPE and to treat the big registers as component subnetworks in

a PSA scheme. _. One of the registers in a big register would be tile Associator part and would

contain an unassigned symbol, while tile other would be the Information part and would in simple

s The free-space grabbing mechanism in current Conposit simulations is an advance over that reported
in other papers, such as Barnden (1988, 1990). Conposit as described there did not try to place new
propositions near to old structures, and always split a new proposition with at least one argument up into
two-register subgroups in the wa.v described above (although rules always had the ability to detect and
process existing non-split propositions). Nevertheless, the special highlighting manipulations used to effect
free-space grabbing are similar in kind and complexity to those reported before.

6 Though, in line with a point made in Section 4, there is still a limited form of RPE within individual

component subnetworks.

2O

casescontaina constantsy,mbol. This is cert_nlv a logicallypossibletechnique,but weseethe
followingadvantagesin includingthe presentarray-basedRPE.

First, weagainhavethe pohlt that weareinterestedin usingall array-structuredCM asa
spatialanalogue.Second,the inclusionof array-basedRPE makesfor moreefficientpi'ocessing,
ill that it leadsto PSA-basedlinks beingprocessedlessoften,both in data structure detection
durhlg rule-enablingand in data structuremodificationin rule-execution.For instance,without
RPE it would be more time consumingto find tile agentof a loveproposition,given accessto
the "big register" L acting as tile head of tile proposition. This is because we would need both

a broadcast of the associator symbol in L (combined with a highlighting check) to get ro the

Associator part of the big register A encoding the agent of the loving, a_d a move of at_eution

from the Associator pa.rl of A part to its Infornlation part. On the other hand. to find the agent

of an RPE-encoded proposition merely requires a nlove of attention from the propositiol_'s white

head register to the neighboring red register. Worse, symbol broadcasts in tile service of I)SA -

based association-following have to be seri_dized on padn of getting the symbols mixed up_ whereas

RPE-based associations can be followed in parallel.

Moreover, if Conposit as it stands had a physical realization in which the CM was imple-

mented as a physical array, then inoves of attention to neighbors would be over a much shorter

distance on average than moves between different "registers" in a RPE-free version. Although

Conposit itself does not have a physical realization, other Conposit-like svstems might.

Since data structures can appear anywhere in the CM, and the subconfiguration for a given

data structure could have any one of possibly many different shapes, tile Subconfiguration Detec-

tion Module is faced with a "pattern invariance" problem. However, as the details in Barnden

(1988, 1990) show, there is no particular difficulty in solving the problem. In fact, the "'spatial"

regularity of Conposit's arrays actually give it an advantage, in simplifying and regularizing tile

circuitry needed. Tile Subconfiguration Detection Module is an acyclic graph of matrices isomor-

phic to'the CM and connected to each other and/or the CM in a simple, near-topographical way.

More important, analogous pattern-invariance problems will arise ill any system that call recruit

components for temporary representational purposes, no matter how unlike Conposit it is in other

respects: the system must have the ability to process a given information structure no m;ttter

where and exactly how it might be realized within the network on any given occasion.

(Non-)Synchrony, and Time-Based Selection

A command signal sent by a rule actually goes to the CM's parallel distributor, whereby

it is identically distributed to all the registers. Each register decides for itself whether and how

to react to the signal, and the reacting registers proceed more or less simultaneously and more
or less at the same rate. However, we assume that in a physical realization there are likely' to be

randoln variations (between registers, and between different occasions for a given register) in the

speeds of reaction and the times at which reaction steps occur. Also, we assume that the copies of

the command signal distributed to the register may take different times to reach their destination

registers (allowing both for systematic biases and random effects). Therefore, although at the

register-machine level of description the system is best thought of as synchronous, with registers

reacting literally simultaneously, at the detailed level of connectionist circuitry there is no strict

synchrony assumption.

hldeed, the lack of strict synchrony is exploited in an important, and apparently novel, way

in Conposit. A comn_and signal often needs to cause just one, arbitraw register, out of the set

satisfying a highlighting condition transmitted ill tile signal, to react. This arbitrary selection of a

register is achieved through a "temporal-winner-take-all" (TWTA) selection mechanism. \\:hen a

21

register detects that it satisfies the signal's highlighting condition, it transmits an announcement

to tile parallel distributor. Because of the types of asynchrony noted (plus variation in the time

taken to decide to send announcements), the announcements are spread out ill time, and the parMle]

distributor tries to select the register sending the earliest arriving announcement. Itowever, because
of delays within the parallel distributor itself, this cannot always be done unambiguous!y, so that a

further round of announcement may well be necessary (with a reduced set of registers), and so on.

The TWTA mechanism is further described and analyzed in Barnden, Srinivas & Dharmavaratha
(1990). It turns out that the number of rounds of announcements is roughly logarithmic in the

number of registers initiMly sending announcements.

Variable Binding in Conposit

I/PE and PSA allow arbitrary temporary associations among information items to e_st

within the CM. In particular, the examples of the use of PSA and unassigned symbols ill Section :3

show that PSA/RPE-based associations provide a sort of variable binding: if an unassigned symbol
is regarded as a variable, then placing it, say, at the head register of a love proposition "binds" it

to that proposition. Another particular effect of RPE and PSA is to Mlow role-filling: tbr example.

the agent of a love proposition is represented by whatever red-highlighted register is adjacent to

the proposition's head register or to a register linked to that head register by PSA. We could, if

we wanted to, regard role-filling as a type of variable binding, because a role could be viewed as a
sort of variable.

So, Conposit achieves a type of variable-binding (and role-filling) u,ithi** the CM. But there is

also the question of the variable-binding performed in the process of firing and executing hardwired
rules: this is a type of binding operating between the CM and mechanisms ot, tside the CM. Barnden

(1990) looks at how Conposit achieves variable-binding for rules. Overall. Conposit's variable-

binding facility is fully general, although special types of variable binding are effected particularly

quickly by the Subconfiguration Detection Module, the remaining types being a.chievable only by
the execution of rule action parts. We will confine attention in the present paper to the aspects of

rule variable binding that can be described by reference oMy to the CM.

One version of Conposit contains a rule that can be paraphrased as "It" a man 31 loves a

woman then M is hungry." In the sense that the action part of the rule, when it acts upon a

particular detected love situation, is able to access the register representing the man, we can say

that Conposit is binding the variables M to that man. The action part of the rule sends a couple

of command signals that have the effect of switching on a certain highlighting flag I at the agent

register of an arbitrary one of the love propositions detected by' the Subconfiguration Detection

Module. Note that it is I highlighting that identifies the agent for the purposes of building the

hungriness proposition. The installation of the register clump for that proposition copies u,hc,tever"

symbol is in the/-highlighted register. The marking of a register with I highlighting can theretbre
be viewed a.s binding the variable M in the rule paraphrase. Since bindings are represented by

highlighting, sooner or later, and since highlighting is an intrinsic part of the encoding scheme

within the CM, the usage of bindings is just a speciM case of the way CM data structures arc

manipulated by command signals.

It is also important to observe that the variable binding achieved through highlighting is

most simply viewed as a binding of rule variables to CM registers rather than either to the entities

denoted by those registers or to the symbols in those registers. If we wish to view bindings as
reaching out to the symbols (or denoted entities), as is often convenient, we must note the crucial

played by the fact that a register can have different values at different times. That is, the system's

capability to bind rule variables to different symbols (or denoted entities) on different occasions

depends both upon the fact that the rule is able to iinpose appropriate highlighting (by l in our

22

example) on selected registers and on the fact that a given register can have differenl v_lucs _

different times.

In fact, variable-binding as construed as binding to registers is an example el wh_ was

called ';processing-locus identification" in Barnden (1984b), in that highlighting is being used _o

identify CM registers as loci of processing. Variable-binding-to-symbols/entities can therefole be

regarded as a combination of processing-locus identification and value settings of registers. The

splitting of the issue into two parts is useful, because the same proposition can be realized in a

large number of different ways within the CM (for instance, it can appear in different places in the

CM): therefore, tile same variable-binding (to a symbol/entity) can requh'e d(/'f_.reTzt processing-
locus identifications in different cases. The splitting of the issue would also be useful in discussing

any other connectionist svstem in which the same piece of information can be represented in mol'e

than way. Most discussioils of variable binding in connectionism fail to take proper accou,l of' thi>.

6. DIS(,I£ SSION

In this section we discuss some relationships that RPE and PSA bear to the coltnectionis_

information-structuring techniques reviewed in Section 2. This gives us tile opportunity :_lso to

examine the relationships between the various connectionist techniques, and between, connect ionis;

techniques and the methods reviewed in Section 3 for information stHlcturing in computvls. Ii_

discussing RPE and PSA we intend our comments to provide insight into these l.echttiqltcs ill

general, not just into the specific versions of them to be found in Conposit. tlowever, we will oft<',

draw ut)on tile Conposit versions in order to make a point clearer or more precise, in the hope tltat

the observations call be carried over in some form to other versions.

RPE and Sequential Allocation

RPE is a natural extrapolation from the sequential allocation technique in computers. In

particular, Conposit's version of RPE is a particularly simple extrapolation. Importantly, it pre-

serves tile bidirectionality of association that sequential allocation provides: in Conposit it is jus_

as easy to go from tile agent register of a LOVES proposition to the head register as it is is to go in

the opposite direction. This bidirectionality can be expected also to appear in more sophislicated

versions of RPE.

One aspect of sequential allocation that we normally expect RPE to abandon is the giobai

naming scheme for memory ceils. In computers, one goes from a cell R to a neighboring one

by taking tile address of R, adding 1 or -1 to it, and then passing the new address through tile

memory-addressing circuit of the computer. However, in connectionist RPE we make no general

assumption that the "component subnetworks" -- the objects corresponding to memor.v cetls -

have names (addresses) in any interesting sense, let alone ones that can be computed frotl_ ethel

names.

Instead, we make a more basic assumption, namely that there is some ma.chinery whereb3

the svstem can (a) "transfer attention" efficiently from one component subnetwork C to oth<

"related" ones, and/or (b) ensure that the changes at a given component subnetwork can depend

on information in "related" registers. What the phrases "transfer attention" and "l'elated'" Incat_

here depends on the particular fornl of RPE in question. Thus, in Conposit as described in Section

.5. "related" merely means "adjacent", and to "transfer attention" is to cause certain high[ightiug

changes at tile destination component subnetwork (i.e. register) and at C. The niachinety whereby

23

(a) and (b) are achieved ill Conposit relies on connections between adjacent registers, allowillg the

highlighting state of a register to be sensed by any neighboring register.

No direct register-register connections other than the neighbor-neighbor ones are n¢,c,ded in

Conposit as presented in this paper, because its RPE exploits only immediate-adjacency r,qatioI_-

ships within the CM. Sequential allocation in computers, however, may involve concrete recolds of

any length, so that the ability to make large hops between memory cells is desirable. Therefore, it

is beneficial to have a way of computing an address within a concrete record by adding a (possibly

large) hop amount to another address within the record. In principle it would be sufficient (fi'om

the point of view of moving about within a concrete record) to have direct connections between

memory cells, but these would lead to major inefficiencies in dealing with large records. Also, of

course, tile machinery for accessing cells by global addresses is used to support pointers between

cells. Conposit lacks pointers in the usual sense -- and so might other RPE-based systems -- so

that one reason for having global addresses disapi)ears.

The direct neighbor-neighbor connections in Conposit can be viewed as a. way in which

any given register R "'knows which registers are its neighbors". Notice, however, that th_re is no

need for t{ to be able to distinguish its neighbors fi'om each other, because a command signal

only ever directs a register to consider whether all or some of its neighbors obey some Imrticular

highlighting condition. Conposit's indistinguishability of neighbors is to be contrasted with lh(,

distinguishability of the two neighbor cells of any cell in a computer memory. Versions of I(PE ilt

systems other than Conposit as described here could, nevertheless, have some ability to distinguish

neighbors fi'om each other.

Indeed, Barnden (1987) proposes a version of Conposit in which neighbors need to be dis-

tinguished by direction. In this version, the 2D space of registers in the CM is used as an a_aloguc

representation of a plane ill real space. Th system is for emulating the type of spatial reasoldng _o

which part of Johnson-Laird's mental-model theory is directed (Johnson-Laird 198:3). The focu>

of his discussion is on inferring the relative spatial positions (left-of, above.) of some objects in a

planar configuration, given some information about relative spatial positions of some of the objects.

In this context, it is desirable to be able to perform operations like the following:

IS-RIGHT?:

given that two registers are highlighted using some special fla_ f, where the registers
. " _ ' '_ ofrnav be widely separated in the CM, determine whether one of t-hem is to the rlgqlt

the other (assuming that some fLxed direction in the CM corresponds to the direction

"right" in the real spatial plane being represented).

Currently, the way we propose that this operation be carried out is that the system make one of

the registers send out a highlighting "wave" in a rightwards direction (using a flag ,L:), alLd then

wait to see if some register becomes highlighted in both w and f. The wave spreads by meat> of a

series of steps, at each of which any register more or less to the right of a register highlighted in u'

becomes highlighted in w. By "more or less to the right" we mean the register whose position is

one further along in one dimension of the CM and possibly one further along or back in tile other

dimension, so that each non-edge register has three registers more or less to the right of it. Clearly.

the process can only be done if registers have some ability to distinguish among their neighbors on

the basis of direction.

Notice also that in this version of Conposit it is no longer the case that only short-range

relative position relationships are important. The question therefore arises of whether something

akin to the global numerical addressing in a computer memory should be added in order to speed

24

up tile implementationof tile operationjust discussed.Weobserveheretile obviousbut important
fact that arbitrarily long-rangerelative-positionrelationshipscan be discoveredin a computer
memorymerely by numericMlycomparingaddresses(assuming,crucially,that wealreadyknow
what the relevantceils' addressesare -- if wedid not, wemight needto engageill a very time
consumingsearchprocess).Nevertheless,wehaveresistedthe temptationof addingsomesort of
numericaladdressingto speedup tile spatial-analogueversionof Conposit. TILe reason is that the

CM is assumed to contain far fewer locations than an ordinary computer memory does; hence, tile

iterative "wave" process described is not too time-consuming.

These allusions to spa.tiM analogue representations should remind us that sequential alloca-

tion is the standard tool for implementing arrays, of any dimension, in a computer memory. The

use of a CM to support a spatial analogue rel)resentation is no more radical than the very ('OlillllOl/

practice, in scientific programming for instance, of using a conventionally-implemented array itl

a computer memory as an isomorph of some arrav of points in real space. Notice also that the

spatial-analogue use of a CM can be temporary,, just as the use of a particular region of computer

memory to support an array representation can be temporary. At other times, the CNI might be

used in the way described earlier in this paper. Indeed, there is no reason why both stylc's of

repl'eseatation should not be mixed together simultaneously in a CM, as is suggested in Barnden

(1985, 1987).

RPE in CONPARSE

As we pointed out earlier, the CONPARSE system of Cha.rniak &: Santos (1987) uses a form of

RPE. This form is again a simple extrapolation from sequential allocation, though different in detail

from Conposit's RPE. The model's use of RPE makes it Conposit's closest neighbor in the space ol'

e_sting connectionist systems, r CONPARSE's RPE is less uniform than that of Conposit, in that
different directions in CONPARSE's array have different representational significance. Recall that

only the up-down dimension is for representing constituency relationships, whereas the left-right

dimension, with tile aid of the "binding units", is for representing identity of constituents.

It is probably best to regard a CONPARSE binding unit as a sort of pointer, since a "binding

unit" in the connectionist field is generally a unit that, when active, is taken to bind two fixed

portions of the network, rather than a unit that is able to bind different things together at different

times. The interesting thing about the binding units in CONPARSE is that they are a. hybrid of

RPE and the usual notion of pointer: a CONPARSE "pointer" from a register in a given column

is not a global address, but rather an address within the column immediately to the right of C'.

However, we also pointed out in Section 2 that each CONPARSE binding unit could be replaced

by (or implemented as) r binding nodes of the more conventional sort, where r is the number o[

rows in the array.

RPE and Absolute-Positional Techniques

We turn now to the relationship between RPE and "absolute-positional" techniques, as

defined in Section 2. To take an example mentioned there, suppose there is a letter unit T_

that represents the presence of the letter 'T' in position 1, and a letter unit H: that represents

the presence of the letter 'It' in the next position, 2. Then we may certainly abstract from

this description and say tliat tile simultaneous activity of Tt and H., represents the presence of

r Conposit was developed independently of the Charniak & Santos system -- an early version, using
much the same type of RPE (and PSA) as current versions do, was presented in Barnden (1985). \\;e should
also emphasize that Conposit bears very little relationship to tile memory-field proposal of hiohonen, Oja &
Lehti5 (1989). A similarity between memory fields and Conposit's CM has sometimes been claimed, but in
fact the form,.'r make no use of RPE or PSA.

25

a 'T' and and 'H' togetherwith the fact the 'H' followsthe 'T' in the word viewed, tIence,
a contiguityrelationship(a type of "abstract association")in a word is representedby making
particularchoices of the units for representing the two letters. This brings out a loose similarity

to RPE: an RPE-based representation of an abstract association rests oll particular choices of

component subnetworks with which to represent the things associated.

\Ve can make this point more precise by regarding the set of letter units for _Lnv given

position i as forming a component subnetwork, called Ci say. Furthermore. we regard the C) for

increasing i as forming a linear array of component subnetworks. In a proper representation of a

word, any given component subnetwork has at most one of its units on. So. the activity pattern in

a component subnetwork consists either of OFF values at all umts or of an ON vMue at .itl._t oue

unit. To represent two contiguous letters we turn on the appropriate letter units in C, a,M C',+_

for some i. We have now described a situation that fits roughly in the general description of RPE

in Section 4.

Of course, what we have suppressed here is the fact that we are not Mlowed to choose any

i: the i must be 1 if the earlier of the two letters is at position 1 and so on. Therefore, we have an

extra restriction -- reflecting the use of an absolute positional encoding -- that we did not include

in the general description of RPE. This is not to say that we are necessarily violating RPE --

we could instead say that we have a very special, or perhaps degenerate, case of it. A modified

form of the scheme that would be RPE in a more typical sense is as follows. Suppose we have

a linear array of component subnetworks G of the form just mentioned, but no longer taken to

correspond to particular positions in words. Let us introduce an extra unit in each C,, with the

intention that if the unit is on then the Ci is currently taken to correspond to the first position in

the word, so that only one Ci will have the unit on at any time. (In essence, the extra unit is like a

Conposit highlighting mtit.) Let it still be the case that if a Q and Cj+l have letter units on then

they represent contiguous letters, somewhere, in the word being viewed. Then, to a represent a

word of length N, any contiguous series of N C/ subnetworks could be used. The absolute positions

in the array are no longer important. We are not saying that this modified, RP£-based scheme

is better than the original, absolute-positional version. We are simply making a point about the

relationships of techniques.

As might be expected, there are intermediate possibilities between a truly absolute positional

scheme and a fully relative positional scheme. The dimension of variation in between is that o[

the extent to which one is forced to choose particular component subnetworks (as opposed to

choosing a particular relative "position" of those subnetworks), just for the sake of illustration,

one intermediate possibility would be a Conposit-like scheme in which different portions of the CM

would be dedicated to particular representational purposes. For example, personal relationships

would have to be represented in one particular region, physical position relationships in another,

and so on. Further, we assume that the system's interpretation of a subconfiguration would depend

on which region it was in. Then, although the usual RPE (and PSA) would reign in each portion,

and indeed PSA linking might be able to cross between portions at will, the relative-position

encoding would be "less relative" than in Conposit as it stands.

Absolute-Positional Encoding and Binder Nodes

Consider the following variant scheme for representing a word, based on binding nodes. It

again uses a set of component subnetworks, each of which represents (at most) one letter at any

time. However, the subnetworks are not organized into an array, and no subnetwork corresponds to

any speciftc position. Instead, for each pair ofsubnetworks (C, D) there is a binding node connected

to C and D. When the binding node is active, C and D are taken to correspond to contiguous

positions in the word. (We defer until later the issue of specifying whether it is the C position that

26

follows tile D position or the other way round.) There is also some meaus, porhal)S a high ghting

node again, for specifying which conlponent subnetwork corresponds currently to tile first position
in the word.

Now, in the absolute-positional scheme, contiguity was represented by means of the activalion

of particular units (letter units). And, in the present binding-node scheme, contiguity is still

represented by means of the activation of particular units: in this case, a coordinated choice of

letter units and binding nodes, tlence, simply saying that particular units are activated does not

distinguish the schemes. The obvious next step is to say that the critical difference t'rom the
absolute-positional scheme is that nodes other than the letter units are involved. Itowever. matters
are not as clearcut as they seem, since if one considers extra machinery that might be presenl in a

system using the absolute-positional scheme, we are likely to find things similar _o bindiltg 1Lodes
eisewhere in tile system. To takea simple instance of this, suppose there is a single OUtl_lt node

OrnE that represents the word 'TtIE' and which therefore lights up when 7i (i.e. 1he "T" utlit

in C1) is on, H2 is on, Ea is on, and no other letter unit is on. Then, Or_1L" can. if we wish. be

considered as a sort of binding node, since it connects some component subnctworks and is active

just when they are to be taken as being "bound together" -- in a rather specific way. A less

extreme example of the same point call be made by considering possible digram units. ()_ _*}ler

subword units such as the triple units in Section 2, that might be present.

An important difference from the binding nodes postulated at tile beginning of this subsection

is perhaps that nodes like OruE become active as a result of activity in a self.su._TeieJ_Z lower level

representation, in this case the letter-level representation of the word 'TIIE'. Unit OTnz; cc, dd

be turned off without destroying our ability to say that the system is encoding this word. By

contrast, the earlier binding nodes' activity was an essential part of tile representation of the word
-- they could not be turned off without destroying our view of the system as encoding "Till';'.

Notice_that the distinction holds even if Orl4E dvnamicall9 contributes, by top-dou,_ fe_z(Ib(_clc, to

the establishment, a_M ever_ the maintenance, of the letter-level representation. For, we can fall

back on the following counterfactual statement: if it were possible to turn off Or,tE without turning

anything at there letter level on or off, then the system could still be seen as representing 'TILE'.

The moral from this is that the description of a given system as using a given encoding

technique can depend very much on one's view of the system and of the allowable variation in

the technique -- on the level of description, on how one parcels up the parts of the system as to

function (representation and recognition, for example), and, in our case, on what one is prepared

to accept as a "binding node".

RPE and Binder Nodes

Having seen that absolute-positional techniques can implicitly bring ill binding nodes, we
should ask whether RPE can do so. We answer this by looking, for definiteness, at Conposit's

version of RPE. Barnden (1990) shows that Conposit's RPE as manifested in the required circuitry

in the Subconfiguration Detection Module brings in binding nodes in a somewhat straightforward

way. The nodes temporarily bind nodes in the rule action parts to CM registers.

If, however, we look at Conposit's RPE as manifested in the role it plays in the CM, we

find that it can again be seen as bringing binding nodes in, but only in a rather complex, forced
and artificial sense. We observe first that an adjacency relationship within the CM is construed as

representing a temporary association only if the registers concerned have suitable highlighting. For

example, a register A adjacent to a register S that represents a love situation is only construed as

representing the agent if it (A) is highlighted in red. Consider what happens if a rule wants to find

the agent register A. on tile assumption that S is ah'eady marked with "detecled" highl/hling.

27

say. I,et us say that tile rule must mark A with highlighting l. Then what tile rule does is to set_d

a command signal to the CM, telling every red register adjacent to a "'detected" register to turn

highlighting I on. Some component signal in this command signal must therefore bring into play

some sort of connection path P from S's "detected" higlLlighting ftag to A's / highlightit_g flag.

Thus, ONness at A's red flag acts as temporary facilitation of some connection path that can be

traced through the register-internal logic of A aim S and the connections between A and S. Ih this

sense we might be tempted to say that A's red highlighting unit is acting (for the moment_ as a

binding node between A and S.

IIowever, the red highlighting unit in a given register A is not preferentially connected into

any one of the neighboring registers, whereas a binding node normally does lnediate betw+,elL two

particular nodes or sets of nodes. We must pursue the above account in a little more detail,

referring to Fig. 7. The figure shows register A and three of its neighbors, including S. The :mall

boxes illustrate highlighting flags, with r standing for red, d for "detected". n for '_neighborly".

aim Is for "locally-satisfying". If a small box has a double wall then the flag is ON.

FIGURE 7 ABOUT HERE

The command signal mentioned actually causes every register with "detected" fighl g tti,t_ _)it to

turn its so-c,'_ed "neighborly" highlighting flag on, and every red register to turn its "'h,calJv-

satisfying" flag on. These effects are illustr_ted by the lines joining the d aud ,' bo×,,s lo the ,_

and l.s boxes respectively. (These lines do not stand for direct connections.) In A (as i, ,ev<v

register) there is a unit that does an OR operation on the "neighborly" highlighting units of _tll of

A's neighbors. The result of this OR is then ANDed with the value of A's "'tocally-satisfyitLg'" flag.

If the AND result is ON, then A is a register that performs the state change (namely, the switching

on of I highlighting) dictated by the command signal. Altogether, then, the binding of A and S is

not actually encoded by activity at A's red highlighting unit alone, but actually by the co_nbi_+,tio_,

of activity at A's red highlighting unit and activity at S's "detected" highlighting unit. Thus. we

should really say that it is this pair of units that together act as a binding node. Moreover. A's

red highlighting unit is only connected in an elaborately indirect way to S's "detected" unit.

Highlighting has uses other than specifying roles in propositions. For example, we have seen

that I highlighti,lg marks registers that are to be worked on by a rule. Therefore, the binding-node

view of some highlighting flags at some occasions during processing is a relatively superficia] aspect
of a more fundamental matter.

Although we have concentrated on Conposit in this subsection, it is to be expected that

other versions of RPE are likely' to be amenable to a similar analysis.

RPE and Time Phases

The reader will no doubt have noticed the space/time duality' between RPE and the _im_>

phase method mentioned in Section 2. The latter uses relative "position" in time (actually..,i-

mtdtaneity of periodic pulses) to encode associations, as opposed to relative position in network

"space" (CM space in the case of Conposit). We find, however, the time-phase method has a more

substantive relationship to PSA than to RPE. We look at the relationship to PSA below.

RPE and the Typing/Orienting of Associations

Clearly, the highlighting combinations involved in Conposit's RPE-based associations serve

to "type" the associations and to specify their "directions" or "orientations". For example, a red

register adjacent to a white register denoting a love-situation denotes the agent of the situation.

whereas a green register adjacent to the situation register denotes the object. The importance of

this association typing and "orienting" facility shouhl not be underestimated: it is evidently a very

28

important capability, but is one that is not trivial to realize in connectionist systelns, especiaUy
those that seek to encode associations as facilitated connection paths, whether the facilitation is

by weight-enhancement or activity at binding nodes.

In a binding node scheme, there are dimculties enough just in orienting, and we will comment

only on this point here. For definiteness, we can go back to our hypothetical introduction of binding
no(ies into a word-reI)resenting system. One solution might be to have, for each subnetwork-pair

C, D, two binding nodes, connected in exactly the same way as each other to C' and D, but having

different interactions with the the rest of the system, so that is is up to rest of the system as a.

whole to "know" the differing significance of each of the binding nodes. A further possibility is

to have two binding nodes, but connect them differently to C and D; for instance, one binding

node couht have a. stronger connection to C than to D, vice versa for the other binding node. This

aswnmetrv might in principle be a suitable basis on which the rest of the system ca_t proceed.

(T'he obv(ous idea. of using different directions for the connections is problemalic, because the
orientation of a binding has nothing to do with the directions in which the system might have to
/ravcr._c it.) Another proposal is as follows. There is a binding node b is connected to l>,)lh (' alL(1

D, and in the same way to each. Another node bc is connected to C and b, in the sa.me way _o

each. Similarly, a third node , bo, is connected to D and b. Node b is on if C and D represent

contiguous positions, either way round. When the C position is meant to be the earlier on,', node
bc is also on; and similarly for D. This scheme is an implementation of the standard set-theor_'tical

device for representing ordered pairs by means of unordered sets: represent the pah" ((*, I)) as the

set {C, {C,D}} and the pair (D,C) as the set {D,{C, D}}.

We do not dwell further on these possible solutions, which all involve a considerable increase

in the elaborateness of the whole svstem.

the role-distinguishing highlighting flags in Conposit can be seen as binding nodes, as dis-

cussed a moment ago. The orientation problem is solved by the fact that a highlighting unit's

relationship to the rest of the circuitry in its own register is different to that to the circuitry in

adjacent registers. To put it another way' no register confuses any neighbor's highlightil_g state

with its own.

The orienting issue for binding nodes has received very little attention in the connectionist
literature. There is an interesting reason for this: proposals generally confine binding nodes to

mediate between subnetworks of markedly different types or which have clearly' different roles the

distinction between which is hardwired into the rest of the system. For instance, in Smolensky's

tensor-based system (applied as presented in Section 2) a binding node sits between a frame-role
subnetwork and a filler subnetwork. There is an assumption that the system already knows, so to

speak, which subnetwork constitutes the role or rule and which the filler. Similarly, in DCP$ (see

Section 2) a binding node can be viewed as binding something in one clause space to something in
another. Again, there is an assumption that the system already knows which clause space is which

-- they permanently play different roles in the whole system. Thus in both systems the required

asymmetry is built-in, tt_owever, there is no such built-in asymmetry in the case of the component
subnetworks in the word-representation example.

PSA and Associative Addressing

Association bv symbol sharing, which is Conposit's version of PSA, is a simple extrapolation

from associative addressing in computers: clumps of CM registers linked by PSA are like concrete

records linked by associative addressing. In fact, Conposit's PSA is probably more like associative

addressing than its RPE is like sequential allocation in computers. Conposit's PSA obviously

preserves the bidirectionality of association that is provided by (the simpler forms of) associative

29

addressing in computers, and more advanced versions of PSA can be expected to preserve it as
well.

Ill a more complex version of PSA, we might still have separate Associator, Information. and

other parts hi component subnetworks, but the required similarity associator patterns might be a

looser relation than strict equality. Indeed, in the new, case-based reasoning version of Conposit

being developed (Barnden & Srinivas, to appear), head registers of propositions contain unassigned

symbols in the form of activity patterns that are automatically computed on the fly by the systen,.

The computation is includes a hashing transformation applied to the symbols and highlightitlg

states in the registers representing the relationship and the arguments. The computation of the

unassigned symbols also involves the addition of a small random perturbation to each component

of the activity pattern, in order to prevent unwanted symbol-sharing relationships (i.e ul_wanted

PSA). PSA no longer requires strict equality of sylnbols as activity patterns, but hlslead allows

small differences at each component of the pattern.

PSA and Binder Nodes

Earlier we saw that there was a rather strained sense in which RPE can be viewed as

bringing in binding nodes (at least in Conposit's version, and quite probably it, other versions).

An analogous observation can be made about PSA, except that the view is even more strained.

Suppose several CM registers in Conposit contain the same unassigned symbol X. The way

this association would actually be used within the CM is for a command signal to cause a symbol

to be broadcast from one of the registers, and subsequently some change to take place in the othe1'

registers, bv virtue of their noticing that their own symbols are equal to the one just broadcast. The

broadcast goes through the CM's parallel distributor. The circuitry in each register R contains a

subnetwork S/_ whose activity pattern constitutes the symbol in the register. The symbol-broadcast

machinery therefore involves indirect connection paths joining each SR to every other .9_,, through

the parallel distributor. Let S be the total subnetwork formed by the SR networks for all the

registers R in some set mutuaJly associated by symbol sharing.

A sharing of a symbol X bv the registers in the set in question is equivalent to the presence

of a particular activation pattern over S. For every other unassigned symbol Y, anothel' activation

state of S is similarly deemed to define a Y-based temporary association among the same registers.

Assume that such an activation state of S is binary' (ON/OFF) at each unit, so that we can identify

the state by the portion of S that is ON. Then we can say that each such portion is a complex,

distributed binding "node" which binds the registers in question.

Clearly, this view of Conposit's PSA as involving binding nodes is a highly complex one, at

best. However, connectionist research has countenanced quite complex binding node arrangements,

witness Smolenky's and Touretzky & Hinton's distributed binding node schemes reviewed in Section

2. The view of PSA as involving binding nodes is merely at an extreme point on the same path of

increasing elaborateness.

There is nothing very special to Conposit in the above argument, since any system using

PSA is going to need circuitry directly or indirectly allowing associator patterns to be transmitted

among component networks.

PSA and Signatures

It should be clear that a "signatures" technique such as that used in the ROBIN system

reviewed in Section 2 is a special case of PSA, if we assume that a signature is implemented as

some sort of activity pattern, be it as simple as an activity value at a single node. A signature is

an associator pattern in our terms. A special feature of ROBIN's PSA is that the signature node

30

for a concept(onetype of componentsubnetwork)containsa consta_tsignature (i.e. associator

pattern), whereas the binding node for a role of a fl'ame (another type of component subnetwork)

can contain any signature. Also, in this view, a component subnetwork (either (a) a concept

node plus associated sigllature node, or (by a frame subnetwork together wi*h bind nodes) has a

semantics that is wholly or tm.rtialIy fixed, whereas generally in PSA there is no a.ssump_ion that

a component subnetwork is semantically fixed at. a]l.

Each slot part of a ROBIN frame counts as a distinct associator part. The possibility of a

component subnetwork containing several associator parts was countenanced in Section -1. No_ _

also that Conposit has a. similar feature, since several registers in a register clump can col_tain

unassigned symbols, linking the clumt_ to various other clumps.

Since the signa.ture in a concept subnetwork is constant, and different from _he siat_nlllr_'-:

for other concepts, a. signature actu_y identifies a pa.cticuIar, con._'trml .s_lbl_etu,ol"k. as well as

identifying, at a higher level of description, a particular concept. Hence. a signature is somewhat

like at; address or pointer as well as being like an associative a.ddr_ssing key. Certainly. the

machinery used in a signature-based system for using a system to access a concept subneIwork
mav be different in detail from the address-decoding machinery used in a computer. Itowever, the'

notion of an address or pointer is not tied to any particular mechanism for using a giw_u address

or pointer to access wl,at it identifies.

In order to buttress their inclusion of signatures, Lange & Dyer (1989) note that signa-

tul'es lnight conceivably appear in the brain as phase-locked patterns of oscillation produced by

pacemaker neuron assemblies and central pattern generators. We may _dso note that Eckhora.

Reitboeck, Arndt & Dicke (1989) have proposed that observed phase-locking of oscillations]n po.s-

siblv widely separated parts of visual cortex (in the cat) might be used to transiently link together
information extracted fl'om different parts of an image. This fits in well with the PSA id¢,a, slut>

similarity of oscillation frequency and phase can be taken as a valid notion of associator pattern

similarity.

PSA, the Time Phase Technique, and RPE/PSA Duality

In Section 2 we looked at a connectionist information-structuring technique based ol_ lime

phases. The last paragraph of the previous subsection leads us to the observation that the time-

phase technique is a PS'k technique in which every associator pattern is p¢_rel!j temporal in naluic.
and where, furthermore, the temporal quality is purely a matter of phase. The pulsations of activity

at different nodes in the system of Shastri & Ajjanagadde (1989) are all at the same frequency, but

possibly at different phases. A node's pulsation at a given phase serves as an associator pattern

that links the node to other nodes pulsing at the same phase.

In this view of diversely phased pulsations as providing a form of PSA we get away froln

the idea in ROBIN of using an associator pattern (signature) as an address of a particular, fixed

subnetwork, so that the time-phase technique is more typical as a PSA technique than the signature

technique is. Now, we remarked earlier that the time-phase technique is a temporal dual of I{PE.
We can now observe that this is just a special case of the fact that RPE in general and PSA in

gener_d are dual to each other in the following sense. RPE exploits similarity of spatial positio_

of activity patterns (the similarity consisting in adjacency', in the case of Conposit) but not their

similarity as patterns, whereas PSA exploits similarity of pattern but not similarit.v ot spat.ial

position.

The negations here should be ta.ken as being partial, so that the duality is only approxi-

mate. For instance, it. is possible to imagine a PSA-based system in which different modules used

independent PSA-based representations, so that the presence of the same associator I)atlcrn in

31

component subnetworks ill two different modules did not constitute a cross-module association. In
this case. the PSA in the system as a whole involves a crude type of simih_rit.v of" spatial position,

in the sense that an association requires the associator pattern instances to be in the same module

and thereby to be in "similar" positions. Conversely, one could imagine a form of llPE in which

two adjacent component subnetworks were only taken as being associated if they were in similar

states in some sense -- for example, if they both had a certain highlighting flag on, if the system

were somewhat Conposit-like. (We should recall that in Conposit adjacency only signifies associa-

tion if the adjacent registers are in suitable highlighting states. However, it is difficult to see this

dependence on lfighlighting as a type of pattern similarity.)

PSA and BoltzCONS

At a high level of description based on symbol triples, BoltzCONS uses an associative ad-

dressing scheme. Given that PSA is also associative, the question arises of what relationship the

BoltzCONS technique bears to PSA.

An active triple (a.b,c) in a space called Cons Memory is considered to be linked by its

CAR field (its second component) to the (assumed unique) active triple having l)in its TAG (i.e.

first) field, and similarly by its (:DR field (its third component) to the active triple having c in its
TAG field (assuming there are such triples, i.e. that b and c are not just "'basic" symbols denoting

objects ill the domain of discourse).

However, triples are not implemented by separate comt)onent subnetworks as would be re-

quired for a simple view of BoltzCONS as using PSA. Each triple is represented by about "28 units
in Cons Memory, and the unit-sets for different triples can overlap. Therefore, the question arises

of whether one can discern a form of PSA using distributed component subnetworks (= triple rep-
resentations), a possibility mentioned in Section 4. The simple answer is that we cannot: Cons

Memory is simply an unstructured set of units, and the 28 or so units representing (a,I),c) _ecd

have no overlap with the set of 28 or so units representing the triple starting with b. We fail to

see any useful sense in which activity over the former set is similar to activity over the second, in

general.

On the other hand, there does remain a sense in which BoltzCONS can be seen as using

PSA. The way a triple in Cons Memory is actually used in processing is for it to be converted to

patterns of activity over the so-called TAG, CAR and CDR spaces. See Fig. 8.

FIGURE 8 ABOUT HERE

The triple (a,b,c) is converted into the pattern in the TAG space representing the symbol a,

the pattern in the CAR space representing the symbol b, and the pattern in the C1)R space

representing the symbol c. Similarly, on a different occasion the triple (b,d, e) could 10t collverted
into the b, d and e patterns over the TAG, CAR and CDR spaces respectively. Now. as far as

we can determine fl'om Touretzky (1986), the TAG, CAR and CDR spaces are isomorphic, with

one-to-one connectivity between corresponding units, in order to support the simple copying of

symbol-representing patterns between the spaces. Under this assumption, the (a, b, c) and (b, d. e)

triples lead to the same symbol pattern (for b) being present, only the pattern is instantiated in

the CAR space in the case of the former triple and in the TAG space in the case of the latter.

A typical operation in BoltzCONS is to convert (a,b,c) in Cons Memory into the representation

over the TAG/CAR/CDR spaces, copy the b pattern from the CAR space into the TAG space, set
the other spaces to zero activity, use the TAG space to cause stimulation of the representation of

(b, d, e) in Cons Memory, and then convert this representation into the corresponding representation

over the TAG/CelR/CDR spaces.

32

The upshotof this is that the combinedTAG/CAR/CDR spacecanbe regardedas_I single

component s,bnetwork that represents different triples at different times, where triples appear

dyi_amically through an operation based on pattern similarity. Thus, we might call this scheme a
"diachronic" PSA scheme, where, instead of having several component subnetworks simultaneously

present and containing triples synchronically inter-linked by pattern similarity, there is a *ingl(
component subnetwork containing triples diachronically inter-linked by pattern similarity. Clearly,
these are extreme ends of a spectrum, and we could presumably design schemes that intermix

synchronic and diachronic PSA.

Suppose now that the TAG and CAR spaces are not isomorphic, and there is no obvious
sense in which the pattern representing b in TAG space is similar to the pattern representing b in

CAR space• Rather, there is some more or less complex arrangement of connections joining the two

spaces, such that the presence of the b pattern in one space can be used to cause the preseace of tile

b pattern in the other space• Can we still say we have a diachronic PSA scheme? Our inclil_atioa
is to say yes, regarding the b patterns in the two spaces as being similar in an advanced seuse.
IIowever, for the reader who objects to this liberal view of similarity we suggest that IIoltzCONS

can be viewed as using a diachronic, "pattern-relationship association (PRA) _echnique. PIIA is

just a simple generalization of PSA:

Pattern-Relationship Association

PRA is defined by modifying the general presentation of.PSA i,)Sectioa-1 as t(_}!,_,,i_[
An a.ssociator paitern X in one component subnetworK is collsl(lere(l uo ;_ssoc_t_? L,_

patterns XX in other component subnetworks that are related to it in some specified
way. rather than similar to it.

Then, PSA is simply an especially important species of PRA. We will in any case be bringing in

PRA for other reasons in a moment.

PRA, Reduced Descriptions, and PSA

In our description of the reduced descriptions technique (RDT) in Section 2, we talked as

if the activity patterns D and DD must sit in distinct subnetworks. Although this is not in fact

a necessary aspect of RDT, we will assume it to be the case for simplicity. Then, if we call these
subnetworks component subnetworks, it should be clear that RDT fails clearly' under the notion of

pattern-relationship association (PRA) described at the end of the previous subsection• In RDT, a

pattern is "related" to another if it is a reduced version of the other or vice versa, reduction being
defined as the transformation effected by T. (Of course, we need to know which way round the

reduction is going here, but that is no problem in the systems cited, since the set. of component

subnetworks is non-homogeneous).

In this way, RDT and PSA can be viewed as sibling techniques, with PRA as their parent.

Notice also that a new version of Conposit (Barnden & Srinivas, to appear) re%rred to earlier

can be viewed as using a version of RDT that includes PSA as a subcomponent. In Fig. 5 (for "'Bill

hopes that John loves Mary") the unassigned symbol X in the new version would be computed from
the states of the registers holding the LOVES, JOHN and MARY symbols. The combined state

of those registers can be taken as the activity pattern D in the previous paragraph. X is therefore

the corresponding reduced representation d for "John loves Mary"• The register clump for the

"Bill hopes" aspect of Fig..5 uses the reduced representation X (i.e. d). The symbol/highlighting

activity pattern over this clump can be taken as the pattern DD. The reduction mechanism T is

the subsysteln for computing unassigned symbols from states of appropriate registers. The inverse

33

mechanism t is less obviously isolatable, but can be taken as the collection of lnechanisnls that

takes an unassigned symbol X, broadcasts it to "a_ registers, and is able to switch the system's

attention (e.g. by highlighting changes) to neighbors of registers tha.t contain X. Undel' Ibis RDT

view, tile PSA arising from the sharing of X can be seen as a part of t.

Reduced Descriptions and Hashing

Earlier we said that the transformation performed by T in the new Conposit was a type of

"hashing". \Ve have also just said that this transformation can be regarded as the reduction trans-

formation in an application of RDT. This is just a special case of the fact theft RDT and hashing

in computers are strongly related. Surprisiugly, there has been little attention bv conncctionists

to this strong relationship, despite the important role that hastfing plays in computer science and

artificial intelligence. We bring out the similarity of RDT and hashing as follows.

In hashing, a hashing function T maps data structures D to integer hash keys d that are used

as the positions of entries in a hash table HT. The hash key d is usually a much smaller datum

than I) itself. The entry that d indexes in HT typically contains D itself in fu]l form. toge_ her with

extra information associated with D. Therefore the table can be regarded as a mechanism t that

(among other effects) delivers D on presentation with d. There can, however, be _'collisions", when

several different D map to the same d. This complicates the picture, but does not significantly

weaken the relationship to RDT, since the latter also can have several or many D mapped to the

same d. (We suppressed this complication in our description of RDT, and will continue to suppress

c_nsideration of collisions in our comments on RDT and hashing, in the interests of abbreviating

the discussion.)

There are certainly some differences between hashing and RDT, but they are relatively

superficial First, hashing is predonfinantly used merely as affording a mode of data structure

storage: unlike RDT, hashing is not gener,_lly used as a way of building data structures, llowever.

there is nothing in the hashing technique that prevents it being used for this purpose.

The second difference one might point to between RDT and hashing is ti_at the values

d produced by the hashing function T are normally addresses of storage locations, in essence,

whereas in RDT the values d produced by T are associative addressing keys of a sort (in that they

allow access via the expansion mechanism t to the patterns D from which they came). However,

the fact that hash keys are normally location addresses (in essence) merely reflects the fact th_tt

hashing occurs mainly in ordinary computer memories, rather than in associative memories. After

all, ordinary memories are much more common than associative ones. However, in a computer

with an associative memory, d can indeed be used as an associative addressing key rather than as

a. table-entry address, making the d values in hashing look much more like the d values in RDT.

This method is used in the "set-associative" scheme for cache memory in the Vax 11/780 computer

(see Stallings 1987, p.114): a subsequence d of a bit-string D is used as an associative addressing

key for accessing information related to D. (The D bit-strings are in fact addresses of blocks in

main memory, but that does not disturb our point.)

A third difference is that it can be desirable for the reduction mechanism T to preserve

pattern similarity, so that the reduced descriptions can take part in associative operations that

reflect associative operations that could be effected more elaborately and accurately on the full

representations (Hinton 1988). On the other hand, in hashing, one often tries hard to ensure that

similar data structures hash to markedly dissimilar hash keys, in order to minimize the probability

of collisions. Ilowever, this feature of hashing is really driven by special considerations to do with

the types of task to which hashing tends to be applied, and has nothing to do with the esseuce of

the technique. For instance, in the typical case when the hashed data structures zLre progra,nming

34

language symbols, symbols which are simi]ar as strings of characters usually have no s_,manlic
relationship whicll ti_e language processor is expected to respect, so that there is no reason ii)l

wanting them to hash to the same or similar keys. IIowever, such collisions or near-coUisiol_s could
be desirable if they result from meaniTz_jful similarities among the hash<'d da_a structures, l.'or

instance, if the data. structures are board positions in a game, the preservatioa of board >imilarits

bv the hashing function could enable positions similar to a given one, P, to be found ellicielttly by

looking at the positions indexed bv hashing function values appro_mately equal to the hashiag
function value for P.

I[ashing is used in computers precisely because it is a way of avoidir_g .sequcl_tial _(:(ll'(:/z to

a large extent. On average, it allows very fast retrieval, with ahnost no search of inemory, sinc_
(ideally) the value d gives immediate access to D. (The possibility of search arises because o[

collisions, but with the right parameters and inethods the effect of collisions can be made _malI

on average.) 'l'his point is highly significant from the point of view of seeing how comtcctiouism

relates to other areas of computation science. It is too often a.ssumed that one sharp contrast
between connectionist systems and standard symbolic systems is that the former substitutes l'ast

(parallel) memory access mechanisms for slow (sequential) memory-search mechanisms. Altho_lgh

there is a significant amount of truth in this, it greatly oversimplifies the true situation.

Finally. we observe that the new Conposit's hashing is appreciably" more l_ike conveational

hashing in computers than prototypical RDT is. This is because we can regard the whole CX[it.sell
as the analogue of a hash table. Going back to the example we used in Fig. .5, the unassigned

symbol (hash key) X provides access to the "hash table entry" consistiug of tke regist.cr cl_mi_>_ that
itlvolve X. In RDT as found in the systems cited, there is no such clear an_dog_le of a. hash table.

Indeed, in those systems the mechanism t is not a straightforward acce.s.s mechanism as it is i_t th,'

new Conposit an/1 in computer hashing, but is more straightforwardly speaking a _.ecoz_.,_t_,cti,J,

mechanism. Having said this, it would be difficult to draw a sharp [ia(_ betw_'en the ltoliolls o1
access and reconstruction.

Pointers and Associative Addressing

Many people probably think of associative addressing and pointers in computers as very
different techniques. However, they are more similar, both at a conceptual level and at the hardware
level, than is usually observed. In discussing this issue briefly it will become apparent that the

notion of pointers is less antithetical to connectionism than is often assumed.

To take the conceptual level first, we view an instantaneous state of a computer memory
as a function _r from the set ;I of memory cells to the set B of bit-strings of the right length.

Now, a function from ?,I to B is mathematically just a special type of relation from M to B: al_d
a relation from M to B is in turn just some set of ordered pairs (re, b) witere m is in :X/ and b is

in B. Also, there is a one-to-one correspondence between M and the set .4 of bit-strings that can

be interpreted as addresses of memory ceils. (A is a subset of B.) Therefore, we may conceptt_atlv

recast a memory state _r as a set of ordered pairs (a,b) where a is in .4 and b in B. \Ve may further

recast by replacing each ordered pair (a,b) by the concatenation ab of the strings a and b. \Ve have
therefore recast a memory state _ as an unordered set of bit-strings. Hence, the following of a

pointer p held in a memory cell is to be recast as finding the unique bit-string of the form pb (for

some b) in the current (recast) memory state. Viewed this way, pointer following is just a type ot'
associative addressing. It is, of course, a very special type, in that the set of possible as._ocia.tive

tags p is regarded as a set of consecutive integers in some range, a.1]owing arithmetical Ol_erations

on the tags (and therefore, for instance, allowing the sequential allocation technique to be tlsed as

well).

35

Our suspicion is that this rational reconstruction of pointers as associative addressing will

strike many readers as being contorted. If it does, it should bring home the extent to which our

norinal views of such notions as pointers are heavily loaded with assumptions about the specific

sort of low-level architecture used to implement the notions. We do not think of pointer_ just as

tags of some sort, but actu'ally as names of small, localized parts of the system, tlowevcr, if we

are in the business of comparing/contrasting connectionism with computers, and in particular in

seeing in what way pointers (etc.) might or might not carry over to connectionism, we are forced

to cut loose from ordinary architectural assumptions. But if we do that, we must then be much

more explicit and careful about what we mean by "pointing" etc. If we stick to an abstract view

such as used in Section 3 and exploited in the previous paragraph, we may conclude that as far

as connectionism is concerned there is not much difference between pointers and. say. associative

addressing, and then, given that associative recM] is meant to be something connectionism is good

at and that it is siinilar to associative addressing, pointing just becomes a qlfite natural special

case of a familiar connectionist feature. If, on tile other hand. we wish to include l¢_ss abaci'act

qualities in our view of pointing, we may conle to a different conclusion.

The question then is. what low level aspects of computer pointing, if any. might w(, <,xTl'atl)-

elate to a pointing notion that is relevant to connectionism? The most radioed thing to do is to

extrapolate ttle notion of a computer memory cell as small, localized part of the computer. \\;e

then get the notion of a connectionist pointer as being a value (whether a spa.tiM pattern, temporal

signal, or spatiotemporal pattern) that identifies a small, localized part - a single unit perhaps

in the connectionist network. There is already a difficulty here, in that if the identified place is not

just a single unit, we may be tempted to assume it is a group of units in a "localized region" of

the network. But what can a "localized region" be, unless we are imagining the network as having

some ph_dsical realization'? We note, however, that most connectio,fist research is presented with

no commitments to any particular physical layout (in the form, say, of a VLSI circuit or biological

neural net). But if we then mean "localized" in some abstract sense, we are in danger of losing

sight of any useful intuitive sense at all. For instance, we might say that tim part pointed to must

be a group of tightly inter-related units -- but without further assumptions about tile size of such

a group and what "tightly inter-related" means, it could be an arbitrarily large subset of the set
of units in the whole network.

Because of these conceptual difficulties, it seems to us best to say that in general a connec-

tionist pointer would be a value that identifies some subnetwork, of whatever sort and however

large, of the total connectionist system. But this does not mean that in partic,dar sy.,,tem.5 there

cannot be a tighter but still natural notion of pointer. One example is provided by the signatures

in ROBIN. To take just one other possible instance, in a Conposit-like system a pointer could 1)e

a value that identifies a particular register in a CM. If there were more than one C._I, a different

type of pointer could be a value that identifies a particular, whole CYl. Many other conncc_ionist

systems, completely unlike Conposit, might also allow of natural notions of pointer. The moral

is, however, that the notion of pointer (when not just the very general notion of a subnetwork-

identifying value) is system relative. Therefore, it is dangerous to discuss the role of pointers in

connectionism without making the discussion relative to specific systems or classes of svstenl.

Finally, it is worth observing that the address-decoding circuitry used to effect pointer]bllou'-

ing in computers is hardly ever taken into account in connectionism/computer discussions. This

circuitry is a network of logic gates, operating in a highly parallel way, that can be conceptually de-

scribed as converting a binary vector (the address as a bit-string) into another binary vector. The

latter vector has N elements, N being the number of memory cells, and obeys the strong cohstraint

that only one of its elements is 1. The position of this 1 identifies the addressed cell. In other

words, without any conceptual contortions, we may view the address decoder as a col_._z_-ctionist

36

reco(ling network. It follows that a connectionist could without embarrassment include in a system

an address decoder, and therefore implement something directly analogous to computer pointing.

Part of the reason why points such as these are usually not lnade in comparisons between

connectionism and computers is that the comparisons are usually "skewed" as to levels of descrip-

tion. VV'hen considering a connectionist system explicitly as a network of interacting units (rather

than at some more abstract or functional level of description) a proper colnparison with computers

would be with them as nctu'orks of logic gates and other fundamental units, not as more abstractly

described systelns of unanalyzed cells having unanalyzed addresses (integers in a certain range)

and containing unanMyzed values (e.g. addresses or floating point numbers). But it is the latter

view that is usually used in comparisons.

7. CONCLUSION

We have put forward the relative-position encoding (RPE) and pattern-sire ilaritv associa* i_.)'._

(PSA) techniques as a possible basis for short-term information structure manipulation in hiy-l,-lev('[

cognitive processing by connectionist systems. As all earnest of their usefulness we have detailed
the form they take in a connectionist rule-based system, Conposit, which can manip_llale COlllplex

short-term information structures. We have also discussed connections, of varying strengths, tidal

the techniques have both to techniques proposed by other connectionists and to methods used

in computers. In doing this we have also dwelt upon the rich inter-relationships of dLese other

connectionist and computer techniques. Although we have often pointed out similarities rather

than contrasts, and certainly our discussion brings out the point that tile distinctions between

different information-structuring techniques are often far less clearcut than is normally assumed.

our aim has been to provide a. basis for an increased understanding of the rich space of diffe,'ent

techniques and how one can set about representing short-term information in connectionist systems.

The matter of descriptive level is very important in this area. We have seen that when one

looks at the low level circuitry need to support a given technique one sees signs of other methods.

For instance, in the case of RPE one sees a type of binding-node technique, albeit an a_ypical

one. The lesson here is not that one should focus on the low-level details, but rather the reverse:

the interesting properties of RPE in Conposit, and the most fruitful insights about how to achiew'

information structuring with it, sit at the register-array level of description we used, not at tl_e level

at which it begins to look like a binding node technique. The general moral -- a corn,not@ace ii_

computer science -- is that it is often very useful to place one or more intermediate, mechanistically

detailed levels of description between the high-level task and the low-level circuitry. This is _.ot

to say, though, that one can have a proper, full appreciation of what goes on at a given level

without considering other levels, nor does it in any sense negate the possibility that the nature o1

the low-level circuitry places important constraints on what is practical at the higher levels.

A part or corollary of this moral is that a given technique can live at, different levels of"

description. For instance, one could imagine RPE within anotionM register array that was much

more distant from, and bore a much more complex realization in, connectionist circuitry than is

the case with Conposit's register array'. However, many important issues would slav the same.

notably the question of how to use the register array to support high-level cognitive processing.

Some important things would change too, such as how the data structuring scheme is integrated

with other parts of the total cognitive system.

In the Introduction we raised the central issues of unanticipatedness, arbitrariness, and

variability of complexity. RPE and PSA decouple association itself from what is associated, in

37

tile sensethat tile RPE/PSA-basedlinkages operate in the first instance between component

subnetworks as such, as opposed to whatever information those subnetworks currently contain.

Ilence, RPE and PSA are very good at dealing with the three issues in fact they are roughly

as good at dealing with them as are the computer methods which exhibit the same dissociation

effect. We remind the reader that PSA and RPE as such are not to be hehl reslmnsible ibr the

rule-based Conposit's excessive sequentiality and rigidity -- witness the new massively parallel,

case-based reasoning version (mentioned at the beginning of Section 5) that uses straightforward

RPE and pattern-similarity association much as in the rule-based Conposit, but which escapes the

sequcntiality and rigidity.

Similarly, the signature and time phase techniques are potentially good on the issues, because

they are forms of PSA. However, it should be remembered that the signatures in the fol'Jner are

identifiers of specific, constant concepts (a major departure fi'om prototypical associator patterns

in PSA). And, in the time-phase technique, there is an apparent problem that will get in the

way of storing short-term structures into long-term memory: whereas Barnden & Srinivas (to

al_pear) describes a silnple way of recoding Conposit CM states into connection weight settings for

the purpose of long-term memory, it is more difficult to see how this could be done in a system

where the PSA associator patterns have a temporal aspect. The BoltzCONS lfigh-level associative

technique is a good approach to a_ three issues, provided that systems with much larger symbol

vocabularies are still capable of representing all or most triples defined over the vocabulary.

Absolute-positionaJ techtfiques are usually poor on all three issues, precisely because of the

techniques' defining feature of having associations wired in in a direct sense. It is dif[icult to ,_ee

how to extrapolate the techniques used in our hypothetical, absolute-positional word-recognition

system to deal with the representation of the meaning of complex natural language sente_ices, fol
instance.

The reduced-descriptions technique can be a useful component in a package of information-

structuring techniques, as it allows the variability of complexity to be tfidden. Also, the idea tends

to lead to at least a limited use of register-like subnetworks and therefore tends to lead to good

performance on unanticipatedness and arbitrariness.

Path-marking techniques (weight-change and binding-node techniques) are good at variabil-

ity of comple_ty, provided that it is possible to dynamically recruit nodes to stand temporarily

for complex information structures. (We include in this notion of recruitment the possibility of

recruitinga register-like subnetwork by loading into it some pattern representing a complex informa-

tion structure.) Path-marking techniques can also be good at unanticipatedness and arbitrariness,

if the subnetworks bound together do not have constant representational significance, but instead

can be recruited ones. Tlfis is because a binding facility needs to cope not only with binding to

basic, already e.xisting representational items (e.g. ordinary concepts of particular people), but

must also with complex, dynamically constructed representational structures, such as the person-

description "the person down the road who always trips over her cat when coming back from

work".

ACKNOWLEDGMENTS

We are grateful to two anonymous reviewers for suggestions leading to improvements in this

paper. We also benefited fi'om commuuication with Venkat Ajjanagadde and Trent Lange.

38

REFERENCES

Barnde.n, J.A. (1984a). Pattern-recognition in a pattern-based neuroph.vsiological model (_1sltort-

term information-processing. Ill Procs. 6th European Conj'_rel_(:e o_z Al'llificial Int, lliFe_ce.

Pisa, Italy.

Barnden, J.A. (19841)). On short-tertn information processing in connect ionisl theories. (',(j_vilic)l_

and Brain Theo W. 7 (1), 2,5 .59.

Barnden, J.A. (1985). Diagrammatic short-term information processing by ueuL'al mechai_isms.

Cognitiol, and t_rain Theo W, 7 (3&:4), 28.5-328.

Barnden, J.A. (1987). Simulation of an array-based neural net modal. In l)_'o,(:edi_zg. _ '4 */" l:'i>_t

,99mposiu m on the Frontier's oJ"Massively Parallel 5'cientiJic C'om I)_tatio a. N A S :\ Con ['_,re_Lce
Publication 2478.

Barnden, J.A. (1988). Conposit, a neural net system for high-level symbolic processing: overview
of research and description of I-egister-maeliine level. 3lemoranda in Comp,ter a_zd (2'og_iti_,_:-

ScieTzce, No. MCCS-88-14.5, Computing Research Laboratory, New Me_ico State University,

Barnden, J.A. (1989). Neural-net implementation of complex symbol-processing in a mental model

approacl{ to syllogistic reasoning. In Procs. iIth Int. Jobzt Conf. on Artificial [nlc'llige_,ce.

San Mateo, CA: .hlorgan Kaufmann.

Barnden, J.A. (1990). Encoding conlplex symbolic data structures with some tutusual conn('ct ionist

techniques. In J.A. Barnden _c J.B. Pollack (Eds.), AdvaTtces in Co_z_ectioni.sl and .\'et_r,/

Computation Theor'g, Vol. I. Norwood, N.J.: Ablex Publishing Corp.

Barnden, J.A. & Srinivas, K. (to appear). Overcoming rule-based rigidity and connecti_ai.,l limi-

tations through massively-parallel case-based reasoning. To appear in I_tt..]. 3[a_>.ll,,:lzi,,

Systems.

Barnden, J.A., Srinivas, K. & Dharmavaratha, D. (1990). Winner-take-all networks: tinlc-l)ased
versus activation-based mechanisms for various selection goals. In P_'ocs. IEEE]lZtCvt*reZiOl_,/

SYmi)osi_m on Circuits and Sgstems, New Orleans, May 1990.

Charniak, E. & Santos, E. (1987). A connectionist context-free parser which is not contex;.-frce, but

then it is not really' connectionist either. In Procs. 9th Annual Co_@re_ee of the (',:,9_ziti_,,

Science Societ 9. tIillsdale, N.J.: Lawrence Erlbaum. A revised version appears in J.A.
Barnden & J.B. Pollack (Eds.), Advances in Connectionist and Neural Compz_tation Theow,

Vol. 1. Norwood, N.J.: Ablex Publishing Corp.

Closslnan, G. (1987). A model of categorization and learning in a connectionist broadcast-system.
Ph.D. Thesis, Computer Science Dept., Indiana University, Bloomington, IN.

Eckhorn, R., Reitboeck, It.J., Arndt, M. & Dicke, P. (1989). Feature linking via stimulus-evoked

oscillations: experimental results from eat visual cortex and functional implications from a
network model. In Procs. Ist Int. Joint Conf. on Neural Nettvort's, 1.'51. L IEEE.

Feldman, J.A. (1982). Dynamic connections in neural networks. Biological C'gber_elic.s, 46, pp.

27-.39.

Fodor, J.A. & Pylyshyn, Z.W. (1988). Connectionism and cognitive architecture: a critical :_na.lvsis.

In S. Pinker k J. Mehler (Eds.), Connections and symbols, Cambridge, Mass.: _[IT Press,

and Amsterdam: Elsevier. (Reprinted from Cognition, 28, 1988.)

39

Go(l(laM,G.V. (1980). Componentpropertiesof the memorymachiue:llebt) revisil('d. [ILI'.\V.
.Jusczyk_ R.M. Klein (Eds). The Nature of Thought: E.,s¢19._ i, lion,or ,2]" l). U. ll_bb.
tlitlsdale, N.J.: Lawrence Erlbaum.

IIend]er, J.A. (1989). Marker-passing over microfeatures: towards a hybrid symbofic/couu_.,tiollis_

model. Cognitive Science, i3, pp. 79-106.

l-linton, G.E. (1981). A parallel computation that assigns canonical object-based frames of refer-
ence. In Procs. 7th Int. Joint Conf. on Artificial Intelligence, Vancouver, British Columbia.

Hinton, G.E. (19881). Representing part-whole hierarchies in connectionist networks. In t)roe._.

lOlh Annual Conf. of the Cognitive Science Societp. Hiltsdale, N.J.: La.wrence Erlbauln.

ttiuton, G.E. Ok:Plaut, D.C. (1987). Using fast weights to debtnr old memories. In Frocs. 9th

Annual Colq" of the Cognitive Science Society. tIillsdMe, N.J.: Lawrence Erlbaum.

Hwang, K. _ Briggs, F.A. (1984). Computer architecture and par(did processin 9. New "fork:
McGraw-tliLl.

.Jeusen, K. & Wirth, N. (1974). PASC\4L user manual and report. 2rid. ed. New York: Springer-

Verlag.

Johnson-Laird, P.N. (1983). Mental models, tlarvard University Press: Cambridge.._la_.

Kohonen, T., Oja, E. & LehtiiS, P. (1989). Storage and processing ofinformatioll in distril)_lted

associative memory systems. In G.E. Hinton & J.A. Anderson (Eds), Pa,",llcI ._l,,hl._ ,q
Associatirc :lfemory, Updated Ed. Hillsdale, N.J.: Lawrence F:rlbaum.

Lange, T.E. & Dyer, M.G. (1989). Dynamic, non-local role bindings and inferenciug iu a localis_

network for natural language understanding. In D.S. Touretzky (Ed.), Advanee.s iJ_ .\:(:?lva!

Information Processing Systems I. San Mateo, CA: Morgan Kaufmann, pp. 5-15 552.

Lange, T.E. & Dyer, M.G. (in press). High-level inferencing in a connectionist network. Co_cction

Science, i (2).

Lehnert, W.G. (1990). Symbolic/subsymbolic sentence analysis: exploiting the best of two worlds.
In J.A. Barnden & J.B. Pollack (Eds.), Advances in Connectionist and Neural Computation

Theory, Vol. 1. Norwood, N.J.: Ablex Publishing Corp.

McClelland, J.L. (1986). The programmable blackboard model of reading. In J.L.._IcClelland,

D.E. Rumelhart and the PDP Research Group, Parallel Distributed Processincj, l.%l. 2.

Cambridge, Mass.: MIT Press.

McClelland, J.L. & Rumelhart, D.E. (1981). An interactive activation model of context effects in

letter perception: Part 1. Psychological Review, 88, pp. 375-407.

Pinker, S. & Prince, A. (1988). On language and connectionism: analysis of a paratlel distributed
processing model of language acquisition. In S. Pinker & J. Mehler (Eds.), (',)l_J_c_t_io_._

and symbols, Cambridge, Mass.: MIT Press, and Amsterdam: Elsevier. (Reprinted from

Cognition, 28, 1988.)

Pollack, J.B. (1987). Cascaded back-propagation on dynamic connectionist networks. I_, Proc.,.
9th Annual Conf. of the Cognitive Science Soc. tlillsdMe, N.J.: Lawrence Edbaum.

Pollack, J.B. (1988). Recursive auto-associative memory: devising compositionaJ distributed l'ep-

resent_tions. In Procs. lOth Annual Co@ of the Cognitive Science Soc. tlillsdale, .N.J.:
Lawrence Erlt)aum.

Rumelha, rt, D.E. & McClelland, J.L. (1982). An interactive activation model of context effects in

letter perception: Part 2. Psychological Review, 89, pp. 60-94.

4O

l{umelhart, D.E. _ .hlcClelland,J.L. (1986).On learningthepast ten._csot"15ng]}:l_v<ub>.IlL.J.l..
McClelland,D.E. l{ulnelhart andthe PDPResearch Group, Partfllcl Di._t,ibut<_d P_.,,._..,._il_[].

I')Jl. 2. Cambridge, Mass.: MIT Press.

$itastri, L. _'k:Ajjanagadde, V. (1989). A connectionist system for rule-based reasoning wil:h multi-

place predicates and variables. Tech. llep. MS-CIS-8905, Computer and hfformation Sciettc_'

Dept., University of Pennsylvania, Philadelphia, PA 19104.

Smolenskv. P. (1987). On variable binding and the representation of symbolic structures in con-
nectionist systems. Tech. tlep. CU-CS-355-87, Dept. of Computer Science and Institute of

Cognitive Science. University of Colorado, Boulder, CO.

Stal]ings, W. (1987). Comp_tter organization and architecture. New York: XIacmill:m.

Standish, T.A. (1980). Data structure techniques. Reading, Mass.: Addison-\Vesley.

Sulnida, R.A. & Dyer, M.G. (1989). Storing and generalizing multiple instances while mai,_laini_lg

knowledge-level paralJelism. In Procs. ilth Int. Joi_t Co@ o_z :lrliJTcial lnlclli9(:_:_. Sail

.Marco, CA: ._Iorgan Kauflnann.

Touretzky, D.S. (1986). Representing and transforming recursive objects in a neural Ii_twork. ,_t
"Trees Do Grow on Boltzmana Machines". In Procs. IEEE Co@ o_ .__'9._t_:,_...... 11,:_ ,_,/

@berr, etie._.

Touretzky, D.S. & Gcva, S. (1987). A distributed connectionist representation for cotLc_:'t>lsl rut-
tures. In Procs. 9th Annual Co@ of the Cognitive Science Society. llillsd_lc. N.J.:

Lawrence Erlbaum.

Touretzky, D.S. & IIinton, G.E. (1988). A distributed connectionist production system. Cog_itic_

Science, 12 (3), 423-466.

Weber, S.}t. (1989). A structured eonnectionist approach to direct inferences and figurative

adjective-noun combinations. Tech. Rep. 289 (Ph.D. Thesis), Computer Science Dept..

University of Rochester, NY, May 1989.

Wickelgren, W.A. (1969). Context-sensitive coding, associative memory, and serial order in (speech)

behavior. Psychological Review, 76, pp. 1-15.

Wirth, N. (1985). Programming in MODULA-2. 3rd, corrected ed. New York: Springer-V(,rlag.

FIGURECAPTIONS

Fig. 1: Representation of a parse in CONPARSE's array.

(Derived from Fig. 6 in Charniak & Santos, 1990).

Fig. 2: Basic illustration of Relative-Position Encoding.

Fig. 3: Basic il]ustration of Pattern-Similarity Association.

Fi 9. ,_: Overall structure of simulated versions of rule-based Conposit.

Fig. 5: CM subconfigurations for "Bill hopes that John loves Mary".

Fi 9. 6: Split-up subconfigurations for a loving situation.

Fig. 7: Some within-register detail.

Fig. 8: A simplified view of part of BoltzCONS.

J

S S

J

NP VP

S S

VP VP

NP NP

noun verb det noun

Figure 1

H b,",'G RY

JOHN

Figure 2

"_j'Information Part

j: Associator Part

h: Information Part

h: Associator Part

Figure 3

CONFIGURATION M ATRIX

(CM)

the working memory:

d

inmand sisals

/

a 2D register array holding

short-term data structures

"detected'

highligh) lg
\,,

.4

fas.t.'_arallel system

..'for detecting data-structure fragments

SUBCONFIGURATION

DETECTION MODULE

that are important in rule firing

"ect
roland signals

g

flowcharts whose nodes send

"command signals"

RULES' ACTION PARTS

to the Configuration Matrix

Figure 4

C

_Z

X

09

<3
X

t_
0

X

<
X

l.J.
O_
C:

(I)

O'x X

register A _(_,_

register S

U] /%

Figure 7

O_

O0

©

