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ABSTRACT

This paper examines (linear) secondary instabilities in compressible boundary layers at

Mach numbers Moo = 0, 0.8, 1.6 and 4.5. We find that there is a broad-band of highly

unstable 3-d secondary disturbances whose growth rates increase with increasing primary

wave amplitude. At Moo _< 1.6, fundamental resonance dominates at relatively high (2-d)

primary disturbance amplitude, while subharmonic resonance is characterized by a low (2-d)

primary amplitude. At Moo =: 4.5, the subharmonic instability which arises from the second

mode disturbance is the strongest type of secondary instability.

The influence of the inclination, 0, of the primary wave with respect to the mean flow

direction on secondary instability is investigated at Moo = 1.6 for small to moderate values

of 0. It is found that the strongest fundamental instability occurs when the primary wave

is inclined at 10 ° to the mean flow direction, although a 2-d primary mode yields the most

amplified subharmonic. The subharmonic instability at a high value of 0 (namely, 0 = 45 °)

is also discussed.

Finally, a subset of the secondary instability results are compared against direct numerical

simulations.

* Research supported by the National Aeronautics and Space Administration under con-

tract No. NAS1-18605 while resident at the Institute for Computer Applications in Science

and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.





I. Introduction

In view of the renewed interest in high speed technology such as the National Aero-

Space Plane project, a good understanding of boundary-layer transition in supersonic and

hypersonic flows is crucial to the design of efficient aerodynamic vehicles. For example, an

accurate estimate of aerodynamic drag and surface heating for supersonic aircraft requires

a good knowledge of transition physics.

Although little is known, either experimentally or theoretically, on the paths to tran-

sition in compressible boundary layers, it is well known that the early stages of transition

in incompressible boundary layers often occur via (i) primary and (ii) secondary instabil-

ity mechanisms. Typically, when the amplitude of the primary wave (or interchangeahly,

TS wave) becomes sufficiently large (as it propagates downstream), the flow becomes very

unstable to three-dimensional (3-d) secondary disturbances. These 3-d disturbances are re-

sponsible for three known laminar-turbulent transition routes. The first is the fundamental

(K) type breakdown in which the lambda-shaped vortices are aligned along their peaks in

the streamwise direction, repeating every TS wavelength. The second is called the subhar-

monic (H) type breakdown: the lambda vortices are staggered, repeating at a streamwise

distance equal to twice the TS wavelength. The third type of breakdown is called detuned:

the spacing of the lambda vortices lies between that of the K type and the H type. The K

type breakdown often occurs at a higher TS amplitude than does the H-type. Herbert et. al.

[7] have shown that the paths to these breakdowns can be modeled by a secondary stability

theory (which studies the stability of a spatially periodic base flow); the K, H, and detuned

types are initiated respectively from the 3-d fundamental modes, the 3-d subharmonic modes,

and the combination modes.

The question we address :is whether the path to transition via the sequence (i) primary

and (ii) secondary instability mechanisms for compressible flows is viable. We attempt to

answer this question, at least partially, by a parametric study of compressible secondary

instability mechanisms.

Recently, El-hady (1989) [6] and Nayfeh (1989) [ii] investigated the subharmonic sec-

ondary instability of compressible boundary layers for spatially developing disturbances.

While El-hady studied the effect of compressibility from M_ = 0 to M_ = 2.2, Nayfeh ex-

tended the Mach number range to 4.5. El-hady found that the local effect of compressibility

at a fixed Reynolds number and frequency is either stabilizing or destabilizing, depending

on the amplitude of the primary wave and on the spanwise wavenumber of the secondary

disturbance. However, when the primary growth and the diffusive growth of the mean flow

are taken into account, he found that compressibility has an overall stabilizing influence on

the subharmonic instability modes. Nayfeh found that increasing Mach number stabilizes

the most unstable subharmonic wave. It should be pointed out that their analysis is based

on a 2-d primary wave, although for compressible flows, the most unstable primary wave can

be 2-d or oblique (i.e., the propagation direction of the primary wave phase fronts is inclined

to the mean flow direction). In fact, for supersonic Mach numbers less than 3.0, the most



unstablemode is alwaysoblique. Clearly, for theseMach numbers,the effectof the primary
wavevectorangleon secondaryinstability mechanismsrequiresfurther study. In this paper,
results are presentedfor both 2-d and oblique primary waves.

In addition to providing physical insight into the physicsof the transition process,sec-
ondary instability theory has severalpotential practical objectives. The first is to refine
the so-callede N method, which is the most common and useful engineering tool used for

transition prediction. The current eN method is based on the primary disturbance which

has the largest total streamwise growth from the lower branch neutral point to the location

for the onset of transition. Bushnell [1] pointed out that a more refined eN method should

incorporate disturbances from primary, secondary and possibly other higher instability the-
ories.

The eN method has been quite successful for transition prediction in incompressible

flows because of the following two reasons. First, the region from the incipient growth of TS

disturbance to the onset of transition is dominated by the TS disturbance. Secondly, the

primary disturbance which has the largest integrated growth leads to an explosive growth of

3-d disturbances which very rapidly yields to transition. However, whether the current eN

method will work in compressible flows remain uncertain. Secondary instability theory can
shed light on this uncertainty.

Secondary instability theory also provides a much cheaper avenue for exploratory studies

than do experiments or direct numerical simulations (DNS). Further, it provides a means

to validate DNS (and vice versa). Relevant parameters (e.g. wavenumbers, frequencies,

Re, etc) and the disturbance structure obtained from the theory can be used as the initial

conditions for DNS, which can substantially reduce the computer time required to simulate
strongly nonlinear phenomena.

Finally, if compressible secondary instability can indeed predict the correct space and

time scales and the structures of the flow in the early stages of transition, then it can shed

some light on the modeling of compressible transition. Since no compressible data (from

experiments or DNS) for transitional Reynolds stresses is available, this work may provide
a blueprint for future studies and experiments.

The paper is organized as follows. Section 2 contains the governing equations. The

primary instability for compressible boundary layers is briefly reviewed in section 3. The

secondary instability theory and its simplifying assumptions are formulated in section 4, and

in section 5, the numerical methods are outlined. Section 6 contains the secondary instability

results and the comparisons with direct numerical simulations. Finally, some conclusions are
drawn in section 7.



II. Governing Equations

A schematic of the boundary layer flows is sketched in Fig. 1. In the chosen coordinate

system, x, y and z denote the distance in the streamwise, spanwise and normal directions,

respectively. We denote density, temperature and pressure respectively by p, T and p, and

the velocity vector by u. Lengths are non-dimensionalized with respect to the displacement

thickness 6". The velocity, temperature, viscosity, and density are normalized with respect

to their free-stream values (indicated by a subscript oo). Pressure is normalized with respect

to -* -'2 The equations governing the flow of a viscous compressible ideal gas are the
p_ "u,oo.

compressible Navier-Stokes equations and the thermodynamic equation of state. With the

aforementioned normalizations, these equations in dimensionless form are

Op
0--/+ V.(pu) = 0

o(p.) v.(puu)  v.o_-_ + =

Op 1 V.(#VT) + ('Y - 1)
c9---£-t- u • Vp Jr _lpV'u - RePrM_ Re

"yM_p = pT,

(1)

(2)

(3)

(4)

where

is the viscous stress and
1

= 2(Vu + Vu r) :¢

is the viscous dissipation function.

(s)

(6)

We assume a calorically perfect gas with the ratio of specific heats 7(= Cp/C_) = 1.4.

The Prandtl number Pr = 0.70, the Reynolds number Re is based on _*, and Sutherland's

law is prescribed for the viscosity/_.

III. Primary Instability Theory

In this section, we consider the stability of an infinitesimally small primary disturbance

superimposed on a steady, laminar mean flow. The mean profiles are the similarity solution of

the 2-d compressible boundary layer equations applied to a semi-infinite, adiabatic flat plate.

They are numerically computed using a spectral technique described in $treett, Zang and

Hussaini [15]. The stability of high Mach number flows is found to be very sensitive to the

mean flow. This implies that highly accurate mean flow profiles are required for meaningful

stability calculations of high speed flows. Fig. 2a shows the mean velocity profiles versus

y. Note that in terms of dimensionless y the boundary layer thickness mildly decreases



with increasingMoo, although, of course, the dimensional boundary layer thickness becomes

significantly larger for higher free stream Mach numbers. Fig. 2b shows that for Moo = 4.5,

there is a substantial variation of the mean temperature profile across the boundary layer,

and that the maximum value of the temperature profile is about 4.5 times that of the mean

velocity profile. The marked change in the temperature profiles can affect the stability

behavior of boundary layers. The wall is adiabatic, as evidenced by the zero slope of the
temperature profile.

Although the mean flow is in general a function of the z and y coordinates, we invoke,

in the stability calculations, the classical parallel flow approximation where the streamwise

variation of the mean flow is assumed negligible compared to its variation in the normal

direction. Consequently the primary disturbance can be written in the modal form

where

ql = ch(Y) exp [i(°':_+_'-''t)] +c.c.

q=[u,v,w,T,p], (8)

and the subscript 1 refers to the primary wave. a and t5 are respectively the wavenumbers

in the streamwise and the spanwise directions, w is the temporal frequency, Oh(Y) is the

complex amplitude function which determines the transverse structure of the disturbance,

and c.c. denotes the complex conjugate of the preceding term.

Two classess of theories are prevalent in the study of the stability characteristics of a

small disturbance. In spatial theories, w is real while a and fl are complex. The real part

of a is the streamwise wavenumber, while the imaginary part of a is the spatial growth

rate. In temporal theories, a and fl are real while w is complex. The real and imaginary

components of w respectively determine the real frequency and the temporal growth rate of

the wave. Eq. 7 then defines a wave with a real total wavenumber & = x/a 2 + fl_ propagating

with a complex phase velocity _ = w/& in the direction 0 = tan -lfl/a. Temporal and

spatial theories give identical results on the neutral curve only -- where a, fl and w are all

purely real and the growth rate is zero. When the growth rates are sufficiently small, an

approximate relationship between the temporal and the spatial growth rate is given by the

Gaster transformation [5]. In the present analysis, only temporally growing disturbances are
considered.

Lees and Lins [8] pioneered the theoretical investigation of the linear stability of in-

viscid compressible flows. They found that a sufficient condition for the existence of a

neutral subsonic disturbance (a neutral subsonic disturbance decays monotonically in the

free-stream with increasing y) is the presence of an inflection point (which is the point where
d , du0_
_t, P0 au ) = 0; P0 and u0 are the mean density and the mean velocity). A comprehensive

study of the linear stability of compressible flows is found in Mack [10]. More recent re-

sults on the stability of compressible boundary layers have been obtained by Malik [9]. For

convenience, some of the relevant results are restated here. By solving the full disturbance

equations (including the viscous and conductivity terms) numerically, Mack discovered that

several unstable modes may coexist in a high Mach number compressible boundary layer.

4



The first mode is the compressibleextension of the TS mode found in the incompress-
ible boundary layer. At low Mach numbers, this mode is primarily viscous(the maximum
amplification rate increases with decreasing Reynolds number). It is known that compress-

ible boundary layers on insulated flat plates have a generalized inflection point. At higher

Mach numbers, inflectional instabilities become important because the generalized inflection

point is located farther away from the wall. Therefore, as the Mach number increases, the

instability mechanism progressively switches from the viscous to the inviscid type (where

amplification rate increases with increasing Re), although compressibility has in general a

stabilizing influence. In fact, when Moo approaches about 2.2, the viscosity is stabilizing for

all Reynolds numbers, and inviscid instability modes are the most unstable. In contrast to

subsonic flows, the most unstable first mode is oblique for supersonic flows.

Higher instability modes exist when the free stream Mach number becomes larger than

2.2. These modes do not require a generalized inflection point, and they are characterized

by phase velocities close to unity and high frequencies (or wavenumbers). The higher modes

depend on the existence of a region where the local Mach number of the mean flow (relative

to the phase velocity _) is supersonic. The first of the higher modes is called the second

mode. It first appears when Moo is approximately 2.2, but is not dominant until Moo reaches

about 3.7. The second mode reaches a peak amplification rate when M_o m 4.5. It is the

most unstable of the higher modes, and is most unstable when it propagates in the mean

flow direction.

The influence of Moo on the eigenfunctions of the first mode primary wave is illustrated in

Fig. 3 which shows that at Moo = 4.5, the maximum value of the temperature perturbation

is about 15 times larger than the corresponding velocity fluctuation. This is in contrast to

subsonic flows where the streamwise velocity perturbation is the dominant one. A side by

side comparison between typical eigenfunctions of the first and second modes at Moo = 4.5

is shown in Fig. 4. We note that although the vertical velocity perturbation for the first

mode is negligible, it is not insignificant for the second mode. Another feature of note is

that the second mode disturbance decays much faster in the freestream than does the first

mode wave.

IV. Secondary Instability Theory

The instability of a base flow consisting of a small amplitude primary disturbance super-

imposed on a parallel mean flow is called secondary instability. We begin with a physical

description of how a small monochromatic primary disturbance propagates downstream in a

boundary layer. As the disturbance crosses the lower branch of the neutral stability curve,

its amplitude begins to grow exponentially according to linear (primary) spatial instability

theory. Assuming nonlinear effects remain negligible, the disturbance continues to amplify

linearly until it reaches the upper branch (also known as branch two) where its local ampli-

fication rate is again zero and its amplitude reaches a maximum value. Farther downstream,



the disturbance begins to decay.When nonlineareffectsare negligible, it is physically real-
istic to usea primary disturbance which is located nearbranch two asinput to a secondary
instability theory (sincethe stability characteristicsof a linear spatial instability wave,which
achievesits maximum amplitude at branch two, can be accurately representedby a linear
temporal wavein the neighborhoodof the neutral point).

The flow in the presenceof the primary disturbanceisperiodic in the streamwisedirection,
and henceits stability is governedby Floquet theory. For incompressibleflows, it is known
that the periodic baseflow is very unstable to 3-d secondarydisturbances[7].

We now apply Herbert's approachto compressibleflows with an oblique primary wave.
When the primary waveis oblique, it is appropriate to usea new-axis,$1, which is alignedin
the propagationdirection of the primary wave.The Zx axis is perpendicular to the wavevector

of the primary wave and is in the plane of the plate. Only when the primary wave is two

dimensional is the z.1 axis oriented in the spanwise direction

Specifically, in the (_a, Ya = y, _1) coordinate system (Fig. 1), the mean velocity profile
becomes

Uo = (Uo cos O, O,-u0 sin0) (9)

and the primary velocity disturbance takes the form

Ul : (_1, Vl, Wl) ei&(_l-_:t) -tt- C.C. (10)

where

ul = Ua cos O + z_l sin 0 (11)

Vl = _1 (12)

Wl = _51 cos0 - ul sin0. (13)

The tilde refers to a quantity in the new coordinate system, the hat corresponds to a quantity

in the old system, and c.c. denotes the complex conjugate of the preceding term. Note

that there are two effects associated with an oblique primary wave. First, there is a mean

velocity component in the zl direction. Second, the effective free stream Mach number in

the propagation direction of the primary wave is reduced to M_ cos 0 from M_.

For a small primary amplitude, A, the base flow, say, for instance, the base temperature
Tb, can formally be expanded as

lbb(fh, y, t)= {Ir'o(y) + A2TI(y)} + A {T_(y) + A:T_(y)} e'a_ + {A'_#}e 2'a_' +O(A 4) (14)

where T01,T_,Sh_ are the corrections due to the nonlinear self-interaction of the primary

wave. Similar expansions apply for other variables. When the primary wave saturates, its

amplitude can in principle be obtained from a nonlinear analysis or from direct numerical

simulations [12]. Following Herbert's analysis of incompressible wall boundary layers, we

assume that:

6



.

.

The nonlinear self-interaction of the primary wave does not significantly distort the

shape of the mean flow and of the primary wave. For incompressible flows, it is found

that this distortion is minimal even for streamwise velocity disturbances of up to 10%

(see Santos [14],page II).

The amplitude of the primary wave remains constant during the evolution of the sec-

ondary disturbance. In other words, the growth ofthe primary wave isfrozenby setting

the imaginary part of _,ci,to zero. The primary merely acts as a catalyst which feeds

energy from the mean flow to the (secondary) disturbance. This assumption can be

justifieda posterioriby accepting only those secondary disturbances which have growth

rates much largerthan _hat of the primary wave. Consequently, this assumption also

forbids the construction of neutral curves for the secondary disturbance.

. The amplitude, s, of the secondary disturbance is assumed sufficiently small to ensure

that linearization of the governing equations with respect to e is permissible. A con-

sequence of this assumption is that the feedback from the secondary disturbance to

the primary wave is neglected. A complete analysis of this feedback mechanism for

incompressible flows is detailed in Crouch [2].

With these assumptions, the dependent variable, q, is decomposed according to

q = ctb + eq2 (15)

where

qb = _t,,(Y) + A{Sil(Y) eia(_l-a'O + c.c} + O(A2),

i_10= [Uo cos 0, 0, -u0 sin 0, To, p0] T,

is the real part of _, and the subscript b indicates a base flow quantity.

(16)

(i7)

(is)

The viscosity,

assumed a function of the temperature alone, is Taylor expanded according to

#(T) = #o + tFo(ATx + eT2) + #o'(TxT2Ae) + O(A2, e2), (19)

where the primes denote differentiation with respect to the mean temperature.

Since eli is an eigenfunction, the amplitude of the primary disturbance is not uniquely

defined from a linear stability analysis. In the (linear) secondary instability analysis of E1-

Hady [6] and Nayfeh [11], the eigenfunction is normalized so that A corresponds directly

to the maximum r.m.s, value of the streamwise velocity perturbation, which is the domi-

nant perturbation in subsonic flows. For Mach numbers that are less than 2.0, the same

normalization is used here, i.e.,

max la (y)12= 1/2 (20)
O<_y<oo



We caution the reader that the above normalization may invalidate the use of the shape

assumption in the supersonic and hypersonic regimes. For example, at M. = 4.5, the

maximum temperature perturbation is an order of magnitude larger than the corresponding

maximum velocity fluctuation. This means that if A is defined in terms of the velocity

perturbation, the total magnitude of the temperature perturbation AT1 may no longer be

smaller than that of the mean temperature To, and consequently the neglect of terms of

O(A _) and higher in the construction of the base flow (16) would not be justified. In order

to avoid this possible inconsistency, we define A, for Mach numbers > 2, so that it is the

maximum r.m.s, value of the largest perturbation (which happens to be the temperature

perturbation in all cases described here) i.e.,

max t61(y)r = 1/2
0_<11<¢¢ (21)

The above normalization ensures that when A is small, the rms of all primary variables are

also small. We note in passing that a normalization which is less sensitive to the location of

the grid points is by normalizing the primary eigenfunction so that its magnitudes have a
specific area, for example,

--/_* fT_(y)l _ = 1/2dy.
Jo

We introduce a new coordinate system $ = xl - 5_t, _ = y, $ = £'1 which moves with the

phase velocity, _, of the primary wave. In this moving frame of reference, the coefficients

of the secondary disturbance equations, which depend only on the periodic base flow, are

independent of both _ and t. Thus, we can assume a normal mode representation in _ and
t for the secondary disturbance and write

q2 : Cl_(X, _J)e ate i&_ (22)

where D2 is the wavenumber in the $ direction. When c is sufficiently small, the stability

of the secondary disturbance is governed by a system of linear partial differential equations.

These equations are obtained by substituting Eqs. 15-19 into Eqs. 1-3, and keeping only

terms linear in e. Apart from a complicated _ dependence, these equations are of the

classical Floquet type because the coefficients are periodic in $. Accordingly, the structure

of the secondary disturbance in the $ direction has the following general Floquet form (in
terms of a Fourier series):

where 7 is the characteristic exponent, eh is a parameter whose value distinguishes the various

types of secondary instabilities, q2,j is the shape function of a mode whose wavenumber in

the $ direction is given by as = eh&/2 + 7 + J&. The fundamental resonance is associated

with the harmonic series (eh = 0) whose period equals the primary wavelength (i.e.,

while the subharmonic resonance is determined by the subharmonic series (eh = 1) whose

period is twice the primary wavelength. When 0 < lehl < 1, the secondary waves are called



combination resonance modes (or detuned modes). They can have an arbitrary wavenumber

in the _ direction, depending on the value of eh.

We consider only temporal theory, which implies that 7 = 0 and that g :}t 0 is the complex

eigenvalue to be found. The real part of a, at, is the growth rate, and the imaginary part

of a, al, defines the frequency of the secondary disturbance in the moving coordinate frame.

Note that, for a given class of secondary waves, all the modes quj grow or decay at the same

rate and travel with the same frequency according to Eqs. 22-23. The growth rates are the

same both in the moving frame and in the laboratory frame. When a is real, the secondary

and the primary disturbances travel with the same phase velocity in the _ direction. They

are phase locked. For complex a, the phase velocities of the two disturbances are different.

Substitution of Eqs. 15, 22 and 23 into the linearized disturbance equations yields an

infinite set of ODE's governing the stability of the secondary disturbance. Because the

governing equations for compressible flows have cubic convective nonlinearities and because

the viscosity is a nonlinear function of the temperature, terms of 0(A2¢) and higher are

present. These higher order terms are neglected in the analysis because the base flow is only

approximated to O(A), as are the base flows of Herbert [7], E1 hady [6], and nayfeh [11].

These secondary disturbance equations form a generalized complex eigenvalue problem

(AiD _ + A2DI+ A3)¢ = aA,¢, (24)

where D J' indicates a p-fold differentiation with respect to Y. The A's, which are function

of the base flow alone, are complex, and ¢ is the vector of the unknown q2,i. Since ¢ is an

eigenfunction, its amplitude is determined only up to an arbitrary complex constant.

A numerical solution to Eq. 24 requires the truncation of the Fourier series (Eq. 23).

For an N mode truncation, the size of the A's is 5N x 5N. When N is an odd integer, the

secondary disturbance takes the form

/V'--I
T

Z: (25)
N'--I

J= 2

For an even N, the secondary disturbance is represented by

N--2
T

(2S)
• N

J---T

Accordingly, to lowest order, the fundamental and the detuned disturbances can be repre-

sented by 3 Fourier modes (N = 3) according to

....... ia_, (27)q2 = eateS_ie(*eha/2)X(q2,-ie-_ax + q2,0 -_- q2,1 e )

and the subharmonic disturbance by 2 Fourier modes (N = 2) according to

_*_#2 _/- o-,:(a/2)_ " " "q2 = = = k'-L2,-i_ -F q2,0 e'(=/2)*) (28)

9



For incompressibleflows, the aperiodic q_,oterm in Eq. 27 is known to give rise to both a
mean flow distortion and a spanwiseperiodic longitudinal vortex structure associatedwith
the peak-valley splitting in a K type breakdownprocess. It turns out (see section 6) that

when the primary wave is 2-d, the truncation levels defined by Eqs. 27-28 are usually

sufficient to resolve the streamwise structure of the secondary disturbance, whether the flow

is compressible or not. However, when the primary wavevector is inclined at a significant

angle to the mean flow direction, higher Fourier modes are required.

The stability calculations for compressible flows are substantially more computer inten-

sive those of incompressible flows because all the dependent variables are now coupled and

the number of grid points required generally increases with increasing Moo. A spectral repre-

sentation (see next section) of Eq. 24 leads to a generalized matrix eigenvalue problem whose

eigenvalues require 0(5 x N x No) 2 storage and 0(5 x N × No) 2 operations -- where Nc is

the number of grid points. When the structure of the compressible secondary disturbance in

the $ direction is represented by more than three Fourier modes, it becomes impractical to

compute these eigenvalues (using a global method) in a parametric study, especially for the

higher Mach number flows. Therefore, our computations are done using Eqs. 27-28, unless

otherwise indicated. The effect of the neglected higher Fourier modes on a is only examined

in some selected cases, although some insight into the convergence of the Fourier series can
also be obtained from DNS.

The appropriate boundary conditions for the secondary disturbances are

(u2, v_,w2,T_) = O at ._=0 (29)

0 .s -. oo (30)
The boundary conditions on the density disturbances are not explicitly imposed since they

satisfy the continuity equation. We next outline the numerical algorithm.

V. Numerical Method

The system of homogeneous equations Eq. 24 plus the homogeneous boundary conditions,
Eqs. 29-30, lead to a dispersion relation of the form

a = a(a2, fl2). (31)

The eigenvalue, a, is obtained numerically using a spectral collocation technique based on

Chebyshev polynomials. The collocation points for all the dependent variables are the Gauss-

Lobatto points. These points, which are the extrema of the highest Chebyshev polynomial

retained, are defined by

Uj = cos W j = 0, 1, ...,Af (32)

where A/" is highest order Chebyshev polynomial. In order to provide an adequate resolution

near the wall and the critical layer, the physical domain y is mapped onto the Chebyshev

domain U through two different transformations.

10



The first transformation, upon which most of the results reported in this paper are
based,mapsthe finite physical domain V E [0, Vma=] onto r/ C [--1, 1] through a combination

of hyperbolic tangent and algebraic stretchings according to

¢+t, tanh(¢_ °) _-77°A77
(33)

where

yl/2yma=(1 + ¢) (34)
Y = ym.=- ¢(ymo=- 2yl/2)

d¢
(35)

Here _ is a concentration parameter which clusters nodes about ¢0. If t, = 0, there is

no stretching due to the influence of the hyperbolic tangent term. Ay0 is the width of

the concentration region in the physical domain. The far field boundary of the discretized

physical domain is located at Y,,,_z, and half of the nodes are distributed between y -- 0

and y = Yl/2. Dirichlet conditions are imposed on both the primary and the secondary

disturbances at y = ymaz where all variables, except the density, are set to zero. The

determination of the adjustable constants y,,a_, yl/2, t_ and Ay0 is empirical; more details

are given in [4]. For Moo _< 1.6, y,,,_ = 100, yl/2 = 2, and t_ = 0. When Moo = 4.5, two

sets of parameters are used; for first mode calculations, runs are performed with ym,_ =

30, Yl/2 = 1, t_ = 0.8, y0 = /.2 and Ay0 = 0.4, while y,_ = 15, Yl/2 = 1, t_ = 0.8, y0 = 1.2

and Ay0 = 0.4 are for second mode calculations. A lower value of y,,_z for second mode

calculations reflects the faster decay of the second mode eigenfunctions in the free stream

compared to that of the first mode waves.

The second mapping transforms y E [0, oo] onto r/_ [1, 0] via

11 1 yn
_ + _ exp[--T]. (36)

2(y + I1) Z L2

When n = 1 and ll = 0, the mapping reduces to the classical exponential mapping. For

given 11 and 12, n controls the number of grid points in the neighborhood of the critical point

(near y = 1). Increasing n adds more nodal points around the critical layer region. The

parameters 12 and n redistribute some of the nodal points near y = 0 to the critical layer.

The point y = 0 is mapped onto r/= 1, while the point y = oo is mapped onto 77= 0 (not

a collocation point). All variables are expanded in odd polynomials to implicitly satisfy the

boundary conditions at y = oo. Calculations are performed with 11 = 7, l_ = 7, and n = 3.

A global method, based on a modified QZ algorithm [16], is used to obtain all the eigen-

values of the discrete system of linear equations. We then select the most unstable eigenvalue

and use it as input to a local procedure, which is based on an inverse Rayleigh solver. The

local method generates a more accurate eigenvalue and its corresponding eigenfunction. The

eigenvalues are at least accurate to 5 decimal places for primary eigenfunctions and to 4 dec-

imal places for a secondary eigenfunctions. Since the accuracy of the secondary disturbance

11



dependson the accuracy of the primary wave but not conversely,a more stringent conver-
gencecriterion is imposedon the primary waveto ensure that its derivatives are determined

with sufficient accuracy. In all cases, the ratio of the maximum of the absolute value of the

last three Chebyshev coefficients over the maximum of the absolute value of the first half

Chebyshev coefficients is always less than 10-4; this procedure should exclude any spurious

modes, unless they happen (very unlikely) to be well resolved.
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VI. Results and Comparison with Direct Numerical

Simulations

A. Code validation

In the absence of experimenta! data for compressible flows, the secondary instability code is

validated against the established incompressible results of Herbert et al [7] and against re-

sults from direct numerical simulations of the full compressible Navier-Stokes equations.

For convenience, the verification for incompressible flow is reported using the reference

length L = (u:ox*/u*oo) 1/2 instead of 6*. The parameters used (in Herbert's units) are

a = 0.20335, fl = 0, A = 1%,/32 = 0.2, Moo = 10 -8, Re = 606 and Too = 520°R. The results

are tabulated below:

Detuning

eh--1

subharmonic

mode

eh = 0.5

detuned

mode

eh ._ O

fundamental

mode

Number of

Fourier Modes

2

3

4

2

3

4

45 points

103 crr 103 cri

8.1177 (}

8.1568 0.0145

8.1958 0

6.1811 1.6457

6.4067 1.4818

6.4185 1.4711

3.6388 0

3.6498 -0.0102

55 points

10 a err 103 a,

8.1177 0

8.1568 0.0144

8.1958 0

6.1811 1.6456

6.4067 1.4816

6.4183 1.4710

-1.7356 2.0434

3.6387 0

3.6495 -0.0103

Table 1

A side by side comparison between the above table and Table 1 of Herbert et. al. [7] shows

that the eigenvalues are in agreement to at least 5 decimal places. Except for Table 1, all

computations are based on 6".

The verification for compressible flows is performed using a code described in detail in

Erlebacher and Hussaini [4]. For completeness, a brief description of the method is outlined

here. Periodic boundary conditions in _ and _ are imposed where _ is in the propagation di-

rection of the 2-d or 3-d primary wave. The computation domain has dimensions L_ = 27r/a*

and L_ = 27r/f) in the _ and _ directions respectively, where a* = & for the fundamental

instability and a* = &/2 for the subharmonic instability. In the normal direction, the finite

physical domain y E [0, y,_a_] is mapped onto 77 C [-1, 1] according to Eqs. 33-35. The

spatial discretization is based on a spectral collocation method with Fourier expansions in

the _ and _ directions, and Chebyshev expansions in the normal direction, 9 = y. Velocities

13



satisfy no-slip boundary conditions and the wall is adiabatic. Dirichlet boundary conditions

are imposed at y = ym==. Initially, the flow consists of a parallel mean flow plus the primary

and the secondary disturbances. Time marching is achieved with a third order Runge Kutta

method. The growth rate 9j1 of the disturbances is monitored through

1 dE#

gJ_ = 2E# d_ (37)

where

Ejt( ) = (luj,r + iv ,,l2+ 1  , 12)dy, (38)

uji, vjt and w_t are the Fourier coefficients of the u, v and w velocity components, respectively.

The subscripts j and I denote the Fourier components in the _ and _ direction, respectively.

Comparisons between theory and DNS are performed at Mach 1.6 (Fig. 5a) and Mach 4.5

(Fig. 5b). At Moo = 1.6, the parameters are Re = 1675, Too = 520°R, (a,0) = (0.24,10°),

/32 = 0.4, eh = 0, N = 3, A = 0.015, and e = 0.0015. The calculations at Moo = 4.5 are for

Re = 10000, and Too = 110°R, (a, 0) = (2.52,0°), /32 = 2.1, en = 1, U = 2, A = 0.06, and

e = 0.006. Here e is the initial amplitude of the secondary disturbance used in the DNS, and

time is normalized with respect to the period of the primary wave. The following two tables

represent respectively samples of each comparison at Moo = 1.6 (Table 2) and Moo = 4.5
(Table 3):

time

0.000

0.010

0.023

primary growth rate xlO 4 secondary growth rate xlO 2

theory DNS theory DNS

1.919 1.911 1.127 1.112

1.919 1.799 1.127 1.111

1.919 1.947 1.127 1.112

Table 2

time

0.000

0.640

1.022

primary growth rate ×10 3 secondary growth rate ×10 2

theory DNS theory DNS

2.867 3.023 2.506 2.500

2.867 3.014 2.506 2.504

2.867 2.873 2.506 2.492

Table 3
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Fig. 5a represents the dominant fundamental mode at Moo = 1.6 and A = 1.5%, which

arises from a primary disturbance propagates at 10 ° to the mean flow direction, while Fig. 5b

represents the most amplified subharmonic based on a 2-d, second mode primary disturbance

with A = 6%. The figures show that the theoretical growth rates of primary and secondary

disturbances compare well with the growth rates obtained by DNS. There is a small difference

between the Prandtl number used in theory (0.70) and in DNS (0.72). This difference,

although small and unintentional, may partly account for the small discrepancies between

theoretical and numerical results. For both the Mach 1.6 and Mach 4.5 cases, the secondary

disturbances are stable in the absence of the primary disturbance. However, the presence

of the finite amplitude primary disturbance triggers a strong secondary instability with the

growth rate of the secondary disturbance far exceeding that of the primary.

B. Parametric studies

The free stream Mach number Moo affects secondary instability directly through the (sec-

ondary) disturbance equations and indirectly through modification of the mean flow and

primary wave. The influence of Moo on secondary instability is studied in this section.

VI.2.1. Subsonic flows

We begin with a study of the secondary instability at Moo -- 0.8. Fig. 6 depicts the growth

rate versus the spanwise wavenumber for the three types of secondary instability waves at

Re = 1675, Too -- 520°R, a -- 0.29, fl = 0, and two primary wave amplitudes: A = 1.5%

and A = 0.5%. The parameters, Re and Too, are approximately the same as those given in

[6]. The primary wave is 2-d, slightly unstable, and is located near branch two of a neutral

curve with a growth rate of 0.0006. Although the subharmonic and the fundamental dis-

turbances travel with the phase velocity of the primary, the detuned disturbance does not.

Additionally, the following salient features may be extracted from this figure: (1) There is a

wide band of highly unstable 3-d secondary disturbances whose growth rates increase with

increasing primary wave amplitude. As/32 _ 0, the secondary disturbances rapidly become

stable. Since 2-d (i.e., & = 0) secondary disturbances are unstable in free shear layers [131,

we conclude that the presence of the wall at y = 0 can damp the secondary disturbances with

long spanwise wavelengths. (2) There is a preferred band of spanwise wavenumbers within

which the secondary growth rate has a local maximum. Increasing the primary wave ampli-

tude mildly increases the preferred spanwise wavenumber and significantly widens the range

of f12 over which a secondary disturbance is unstable. At A = 1.5%, the spanwise wavenum-

ber of the most amplified subharmonic approximately equals the streamwise wavelength of

the primary wave. As the type of instability changes from subharmonic to fundamental,

(i.e., as eh decreases from 1 to 0), the preferred spanwise wavenumber increases slightly. (3)
The subharmonic modes are the most unstable, followed by the detuned modes and then

the fundamental modes. The preceding result is consistent with the classical scenario of th_
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H-type breakdown in which the subharmonic modes dominate when the primary amplitude
is low.

The subharmonic growth rates from Fig. 6 are then compared to two sets of incompress-

ible results. Fig. 7a illustrates the first comparison using Re = 1675, Too = 520°R, a = 0.29,

and fl = 0. The primary growth rates at Moo = 0.0 and Moo = 0.8 are 0.0028 and 0.0006

respectively. For clarity, let/3,,,_x be the spanwise wavenumber of the most amplified subhar-

monic. An interesting feature is that subsonic compressibility destabilizes the subharmonic

waves with/32 _> fl,,_,. At A = 0.5%, compressibility appears to have a stabilizing influence
for the disturbances with/_ < _,_x.

The second set of calculations is performed using a = 0.29 and two different Reynolds

numbers: Re = 2700 for Moo = 0.0 and Re = 1675 for M_ = 0.8. These Reynolds numbers

are chosen to ensure that the primary growth rates at both Mach numbers are approximately

the same (wi = 0.0006). The results for the subharmonic growth rate versus the spanwise

wavenumber are plotted in Fig. 7b. In contrast to the results in Fig. 7a, compressibility now

has a stabilizing influence. Therefore, although there is a strong growth of 3-d secondary

disturbances at subsonic Mach numbers, the particular effect of compressibility on local

subharmonic growth rates is unclear (we remark that the growth rates have been scaled with

u_o/6* which changes with Moo). It can either have a stabilizing or a destabilizing influence,

depending on how the comparison with incompressible flow is made. Such a comparison is

only meaningful when the following conditions are met (i) when all quantities are expressed

in dimensional form, (ii) when the free stream disturbances are coupled with the primary

disturbances (i.e a receptivity problem), and (iii) when the total growth of the mean flow

and the primary disturbance is incorporated into the calculations. The point is that since

the primary wave amplitude (which is responsible for the onset and growth of the secondary

disturbance and which is in itself sensitive to the free-stream enviroment) cannot be uniquely

determined from stability analysis, it is meaningless to make any general conclusions on the

overall influence of compressibility on secondary instabilities. Henceforth conclusions about

the secondary instabilities in this paper are local in nature and are based on the primary

wave amplitudes (and other flow parameters) which are assumed known.

VI.2.2. Supersonic flows

The subharmonic and the fundamental growth rates at Moo = 1.6, Re = 1675, Too = 5200 R,

a = 0.24, and fl = 0 are plotted against f12 in Fig. 8 and Fig. 9 respectively. The primary

mode is slightly unstable, located near branch two of the neutral curve. There is a broad-

band of 3-d secondary disturbances whose growth rates are large (compared to the maximum

primary growth rate which approximately equals 0.003) and increase with increasing A.

The results lead us to believe that secondary instability mechanisms at M_ = 1.6 play a

significant role in the boundary-layer transition and that the process of laminar breakdown

is similar to the mechanisms found in incompressible flows. The spanwise wavelength of

the most unstable secondary disturbance is about 60% of the streamwise wavelength of the
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primary disturbance, and this wavelength is almost insensitive to the primary amplitude.

Fig. 10 shows the influence of the primary amplitude A on at. The parameters used are

identical to those of Figs. 8 and 9 when/32-- 0.4 (i.e., the spanwise wavenumber of the most

dangerous secondary disturbance). Here the fundamental instability is stronger than the

subharmonic instability when A is larger than 2.5%, while the converse is true for smaller

values of A.

Next the secondary instability is studied M_ = 4.5, T_ -- ll0°R, Re -- 10000, and two

values of a : 0.6 for a first mode calculation and 2.52 for a second mode calculation for four

primary amplitudes (A = 0%, 2%, 3%, 6%). The growth rates of the 2-d primary waves for
the first mode and the second mode calculations are 0.002087 and 0.003185, respectively.

The first mode primary wave, which is the same as that reported in [3], is the most amplified

2-d mode. The second mode primary wave is chosen so that it is located near branch two.

For these parameters, no evidence of the fundamental secondary instability can be found.

The subharmonic instability results are shown in fig. 1 la (first mode) and fig. llb (second

mode).

In Fig. lla, it is interesting to note that when the primary amplitude is non-zero, there

are two humps in the curve of ar versus f12. Hump one has a complex a whereas hump

two has a real a. The growth rates of the unstable modes whose spanwise wavelengths are

longer than the streamwise wavelength of the primary mode are marginally affected by the

primary amplitude; in other words, these waves are essentially the 3-d primary (subharmonic)

instability modes. The unstable waves on hump two are secondary instability waves. While

increasing the primary amplitude marginally stabilizes hump one, it significantly destabilizes

hump two. At A = 6%, the growth rates of the most amplified primary (subharmonic) and

secondary (subharmonic) modes are comparable.

Fig. llb demonstrates that the subharmonic instabilities which originate from the sec-

ond mode primary wave differ substantially from the corresponding first mode case. Here

a_ versus f12 curve has only one maximum. The eigtmvalue a is real for all values of f12,

and the subharmonic in the absence of the primary disturbance is stable. Increasing the

primary wave amplitude destabilizes the subharmonic and dramatically widens the range

of spanwise wavenumber over which a subharmonic is unstable. The most amplified sub-

harmonic, whose spanwise wavenumber _2 _ 2.1 is rather insensitive to A, has a spanwise

wavelength approximately equal to 80% of the streamwise wavelength of the primary. As A

changes from 2% to 6%, the growth rate of the most amplified subharmonic is increased by

135% (from 0.0075 to 0.0251). Since the maximum growth rates of both the primary and

the secondary disturbances for the second mode calculations are considerably higher than

the corresponding first mode calculations, we conjecture that boundary-layer transition at

M_ = 4.5 will occur (in al] likelihood) via second mode disturbances.

The convergence of the Fourier modes for the most unstable subharmonic mode from

Fig. llb, together with the fundamental and the detuned modes, is performed. (To the

authors best knowledge, such a convergence study has never been done for compressible
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secondaryinstability theory). As evidenced from Table 4, the streamwise structure of the

subharmonic disturbance can be accurately captured by using only two Fourier modes, just
as in incompressible flows.

Detuning

eh----1

subharmonic

mode

eh = 0.5

detuned

mode

eh=O

fundamental

mode

Number of

Fourier Modes 102 ar

65 points

102 ai

2.506

2.502

2.500

1.929

1.918

1.918

2

3

4

stable

0

0.002

0

0.618

0.618

0.617

Table 4

Fig. 12 shows ar as a function of the detuning parameter at Moo = 4.5 using 3 Fourier

modes (i.e., N = 3), a = 2.52,/3 = 0, A = 0.06, Too = ll0°R, Re = 10000, and & = 2.1.

It reveals that ar is a continuous function of e h and that there is a broad band of highly

unstable modes. The subharmonic mode has the largest growth rate, while the fundamental
mode is stable.

The corresponding influence of the detuning parameter on the frequency shift ai is illus-

trated in Fig. 13. While the subharmonic mode has real a (which implies that it travels

synchronously with the primary mode), the detuned and fundamental modes have complex
O'.

Fig. 14 shows the influence of the primary amplitude A on the subharmonic growth rate.

The parameters involved are identical to those of Fig. llb with/32 = 2.1. We note that a_

increases with A, and that the subharmonic modes are unstable only when A is larger than
1.2%

VI.2.3. Secondary Eigenfunctions

Our previous results indicate that the primary wave can trigger a strong growth of secondary

disturbances. We proceed next to examine the influence of compressibility on the secondary

eigenfunctions, which determine the structure of the secondary disturbance normal to the

plate.
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The fundamental eigenfunctionsat Moo = 1.6 associated with wavenumbers a2 = 0 and

a2 = 0.24 are displayed in Figs. 15a and 15b respectively. These eigenfunctions correspond to

the dominant fundamental instability with a 2-d primary mode at Moo = 1.6 and A = 1.5%.

The results are obtained using Re = 1675, Too = 520 ° R, a = 0.24, fl = 0, /32 = 0.4, 45

grid points and 3 Fourier modes. The two most dominant components of the secondary

eigenfunctions, in order of importance, are the streamwise velocity components u2,0 and u2,1.

Both components peak near the critical point (i.e., V _ 1.0). In contrast, at this Mach

number, the strongest primary eigenfunction is the temperature component.

Fig. 15a shows that the v-distributions of the temperature, density and spanwise velocity

eigenfunctions all have two local maxima across the boundary layer. A comparison with the

corresponding incompressible case in Fig. 16a reveals two compressibility effects. First, at

higher Moo the peaks of the eigenfunctions are pushed away (in dimensional units) from

the wall. For example, while u2,0 peaks near 7/* = 0.76" (= 7/_) at Moo = 0, it peaks

near 71" = 0.96" (= 7/_) at Moo = 1.6. Since 6* = 2.72_/v*z'/u_ at Moo = 1.6 and

6" = 1.72_/v_om*/u_, at Moo = 0, it is clear that 7/_ is about twice as large as 7/_ -- recall that
the superscript * indicates a dimensional quantity. The second effect of compressibility is to

make the spanwise velocity eigenfunction w2,0 become insignificant relative to the streamwise

velocity eigenfunction u2,0.

Fig. 15b shows that the eigenfunctions (except for u2,i) associated with a2 = 0.24 at

Moo = 1.6 are characterizedby a major peak acrossthe boundary layer.The lu2,11component

has two peaks: one very small one at 7/_ 0.01 (not clearlyshown in the figure)and the

other at 7/._0.9.

Fig. 16b shows that although the velocity eigenfunctions at Moo = 0 are qualitatively

similar to Fig. 15b, there are some noticeable differences. For example, the ratio of the

maximum value of [w2,1] to the maximum value of lu2,1[ is about 0.8 at Moo = 0, whereas

this ratio becomes 0.5 at M,_ = 1.6.

The influence of compressibility on the subharmonic eigenfunctions is examined at Mach

numbers 0, 1.6 and 4.5, and is illustrated in Figs. 17-19. These figures show that compress-

ibility introduces temperature and density fluctuations which become increasingly significant

at higher Mach numbers. Since 6"(= lO.5_/v*x*/u_o at Moo = 4.5) increases rapidly with

increasing Moo, the figures confirm that the vertical location (in dimensional unit) of the

subharmonic perturbations peaks are pushed towards the free stream by increasing Moo.

Moreover, the eigenfunctions at Moo = 4.5 (centered near the critical point) are confined

to a much narrower region than those at lower Mach numbers. Furthermore, although the

streamwise velocity perturbation is the dominant perturbation at Moo = 0 and Moo = 1.6,

the temperature perturbation becomes the largest one at Moo = 4.5.
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VI.2.4. Reynolds number effect

We determine here the Reynolds number beyond which the inviscid secondary disturbance

equations can capture the correct instability characteristics of secondary disturbances. To

this effect, we vary the Reynolds number (only) in the secondary disturbance equations. A

calculation is performed for the most amplified secondary disturbance at Moo = 4.5 and

A = 6%. The parameters are Too = 110°R,a = 2.52,fl = 0, eh = 1, N = 2, and/32 = 2.1.

The Reynolds number used for the primary mode is 1 x 104, while it ranges from 1 x 104 to

1.49 xl0 _ for the secondary mode. The results are shown in Fig. 20. We note that the second

mode subharmonic is inviscid in character in the sense that a, increases (monotonically) with

Re and asymptotes to an inviscid limit. The figure demonstrates that inviscid results can be

obtained from the viscous problem in the limit of vanishing viscosity. However, the growth

rate of the subharmonic can be obtained within 1% accuracy from inviscid calculations only

for Reynolds numbers higher than a million. For example, ar at Re = 1 x 104 is only about

45% of the inviscid growth rate.

The corresponding effects of Reynolds number on the subharmonic eigenfunctions are

depicted in Figs. 19, 21 and 22. While the viscosity minimally affects the thermodynamic

variables t2,1 and P2,1 (which are the dominant perturbations), it plays an appreciable dif-

fusive role on the streamwise velocity eigenfunction (u2,1) and the the spanwise velocity

eigenfunction (w2,1).

VI.2.5. Primary wave angle effect

Recall that the most unstable primary disturbance in supersonic and hypersonic flows can be

oblique (with respect to the mean flow direction). The influence of the primary wave angle

0 on ar is examined at Moo = 1.61 Re = 16751 Too = 520°R, ot = 0.241 and A = 1.5%. First

small to moderate values of 8 are examined for 0 = 0 °, 5 °, 10 °, 15 °. The primary modes are

slightly unstable with growth rates varying from 3.7 x 10 -s at 0 = 0 to 1.42 x 10 -3 at 0 = 45 °.

Since the secondary instabilities of a 2-d primary wave can be accurately determined using

the lowest order of approximation defined by Eqs. 27-28, we assume that this approximation

will not incur significant errors in the determination of a for the aforementioned values of 8;

consequently, the convergence of a in terms of the Fourier modes is not verified. In Figs. 23-

24, ar is plotted against 82. It is found that when 8 _ 0°, the secondary disturbances do not

travel with the phase velocity of the primary disturbance. The figures show that while the

strongest subharmonic mode occurs when the primary disturbance propagates in the mean

flow direction, the most unstable fundamental mode occurs when 8 _ 10 °. When 8 > 10 °,

there are two local maxima in the curve of a_ versus _2. Because the second maximum is

relatively smaller than the first maximum, it will probably have no significant impact on

boundary-layer transition. It is also worth noting that the growth rates of the unstable

waves with small f12 are only very weakly dependent on the orientation of the primary wave,

especially for small values of 8. Since neither the largest primary growth rate nor the largest
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fundamental growth rate corresponds to a 2-d primary, it is inappropriate to examine the

fundamental instability based on a 2-d primary wave, at least at Moo = 1.6.

It is known that at Moo = 1.6, the most unstable primary wave occurs at 0 = 45 °. Since

this value of 6 is appreciably high, it is appropriate to first perform convergence studies of

the effect of the higher fourier modes on secondary instabilities. The results, together with

the corresponding case for 8 --- 0 °, are illustrated in Table 5.

Subharmonic Number of 65 points

modes Fourier Modes 102 ar l0 s a,

:: 0 0

0 = 450

2

3

4

5

6

1.201

1.209

1.216

1.216

0.316

1.078

1.078

1.123

1.123

0

0.003

0

0

10.415

10.534

10.534

10.527

10.527

Table 5

We see that when the primary is 2-d, the first two Fourier modes can capture cr correctly to

3 decimal places. However, when 8 = 45 °, the first two Fourier modes are not sufficient to

accurately determine a. The first 3 Fourier modes determine a correctly to 2 decimal places.

The results from Table 5 can easily be explained by the corresponding eigenfunctions. The

normalized streamwise velocity eigenfunctions, which are the most dominant components,

are shown in Fig. 25 for 8 = 0 ° and Fig. 26 for 8 = 45 °. When 8 = 0 °, the eigenfunctions

associated with a2 = =t=&/2 are the most important components, while those associated with

higher values of r*s are increasingly negligible. Consequently, a can be accurately determined

by using only the first two Fourier modes. When 8 -- 45 °, the eigenfunctions associated with

c_ = &/2 and a2 = 3&/2 are respectively the two most important components. Other

eigenfunctions are relative]y insignificant. Therefore, a can be determined with sufficient

accuracy using the modes a2 = &/2 and as = 3&/2, but not using the components with

as = :k&/2. Finally, it is interesting to note that the eigenfunctions with as = -3&/2 is

practically negligible. This explains why a does not change when N is increased from N = 3

to N = 4 in Table 5. Hence, caution must be taken when performing the convergence studies

on the eigenvalue a.
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VII. Conclusions

A fully spectral code has been developed to study the linear secondary instabilities of

compressible boundary layers on insulated flat plates. This code, which allows 2-d or 3-d

primary disturbances and an arbitrary number of secondary modes of different types, has

been verified against existing data for incompressible boundary layers and against direct

numerical simulations at Moo = 1.6 and 4.5.

The influence of the (2-d) primary mode amplitude A on the secondary instability char-

acteristics has been studied at four Mach numbers: Moo = 0, 0.8, 1.6, 4.5. We found that a

small but finite primary disturbance amplitude can trigger a broad-band of highly unstable

3-d secondary disturbances whose growth rates are large and increase with increasing A.

Increasing the free stream Mach number not only pushes the disturbances away from the

wall, but also confines them to a much smaller region_ centered near the critical point.

The influence of the primary disturbance skewness 8 (with respect to the mean flow

direction) on secondary instability characteristics at Moo = 1.6 is first examined for 8 =

0°, 5°, 10 °, 15 °. The unstable subharmonic and the fundamental disturbances propagate with

the same phase velocity as the 2-d primary, whereas their phase velocities are different from

the phase velocity of the 3-d primary. For 8 = 10 ° and 8 = 15 °, there are two maxima

in the curve of the growth rate, a_, versus the wavenumber in the direction parallel to the

phase front of the primary wave (i.e., _2). The strongest subharmonic modes occur when

the primary disturbance propagates in the mean flow direction, while the most unstable

fundamental modes occur when the primary disturbance is inclined at about 10 ° to the

mean flow direction. When the subharmonic instability is examined at a relatively high

value of 8 (namely, 8 = 45°), it is found the first five Fourier modes (i.e. N = 5) are required

to capture the secondary growth rate correctly to 4 significant digits.

At Moo = 4.5, there are two types of primary instability modes: first and second mode.

At this Mach number, the subharmonic and fundamental instabilities which originate from

both the first and the second mode waves are examined. We found that the subharmonic

instabilities which arise from the second mode disturbances are the dominant instabilities.

When the primary wave amplitude increases from 2 % to 6 %, the growth rate of the most

amplified subharmonic of a second mode disturbance is augmented by about 136%.

In summary, we believe that secondary instability is a viable boundary-layer transition

mechanism at Moo = 0.8, 1.6 and 4.5. Further, the high frequency, acoustic type second

mode subharmonic (secondary) disturbances will prevail at Moo = 4.5.
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