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ABSTRACT

The optimal control of three-dimensional large-angle r_pid

m_neuvers and vlbratlons of a Shuttle-mast-reflector system is

c_nsidered. The nonlinear- equaions of motlon are formulated by

T ¢. -us[n-7 L-_gra:_.g e _ fcrmu_a, with the mast modeled as a contlntlous

beam sub]ect to three dimension_i deformatlons. The non!!neaY

terms In t_le equ_tions come from the coupling between the angular

velczities, :he modal co)ordinates, and the modal rates.

Pontryagins Ma:i_mu.m Pr±nc_ple is applied to the slewing problem,

to derive the necessary conditions for the optimal controls,

which are b<un_eJ by given saturation levels. The resulting two-

point boundary-v!_lue problem is then solved by using the

quaslllnearlzation a!gorithm and the method of particular

solutions. The numerical results for both the linearized system

and the nonlinear system are presented to compare the differences

in their tlme responses.

The study of the large-angle maneuvering of the Shuttle-

beam-refle:tor spacecraft in the plane of a clrcular earth orbit

is extended to consider the effects of the structural offset

connection, the axial shortening, and the gravitational torque on

the slewing motion. The offset effect is analyzed by changing

the attachment point of the reflector to the beam. As the

attachment point is moved away from the mass center of the

reflector, the responses of the nonlinear system deviate from

those of the linearized system. The axial geometric shortening

effect induced hy the deformation of the beam contributes to the

system equations through second order terms in the modal
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amplitudes and rates. The gravitatlonai torque effect is

relatively small,

Finally the effect of additional desigl] parameters (such as

re!_.-_e_ t_:, __.ddit_:na± payload requirement) on the LQR based

_ies_gn of ÷,n crb_-tlng :on_ri i, structural system is examl:_ed.

.=_:._.=_ed,... t .e :_t_:.d _tlon of some desired control properties t<,

[:.e ol::im_- _yst:+ i des:.ln., ::he m<:itl-objectives for the z:'_te_:t_:

.:.nt. :_l _..tr-::t_t=-! _e:mz:n {re :ef=ned as the quadratic cost

f<_..lcti__n {ild its pa[-_lai _.:.,_-fat.Ion abc!_t the red_. _iglle[

_y+met-_z-s. The .:..:n_[annts :lot c,niy l::clude the limited mas_-

a_::i cc:.:rol -_:;rc-es for ....... y_te_,: b,lt a:so _.n_lude the cqntro!

plczerties ist'_:h 5_ t _e tYan,_ert response ti,,-:e of t]-- system].

Cpt',mal multicriteri3 a::e derived f]r ml:'_LmiZt;._g the ,;cst

functlon _nd setting the variation of the cost function wit.l

respect to the design variables to zero. The simple models _f

un!fo::m solid arid tubular beams are demonstrated here with two

typical additional payload masses: (I) 3ym,_,metricaily fizstrl;:._ted

with respect to the center of the beam; (2) asymmetr_cally

distrlbuted with respect to the center of the beam, For the

solid and tubular beams, the length and material properties are

assumed equal. By considering the tr_ns!ent response of pitcL

angle and free-free beam deformatlons in the orbital plane, the

optimal outer diameter of the beam and all feedback control can

be determined by numerical analysis with this multicriteria

approach.
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I. INTRODUCTION

The present grant, NSG-1414, Suppl. 12 extends the research

initiated in May 1977 ._nd reported in Refs. 1-16" for the grant

year_= May 1977 - May i959. Th!s effort has focused _n -he

_i-oblem of shape and crientation control of large, -nkerentiy

flexible propcsed space systems. Possible applicatl:ns pr:pr.se<

f<r these large space systems (LSS) include: Eartl-)bservatloi_

and resource senslng systems; orbitaily based electronic m_il

t:-ansm:_ssi_n; la_:le s.-ale multi-beam antenna :ommuni:at-_on

tystems; as platforms for or)3ital-based telescope systems; and as

In-<rbit test mcdels designed to compare the performance of LSS

_ystems with tl',_t predicted based cn scale model Earth-based

l__:_or_=tory exper::mei_ts and/or computer simulations. In the last

several years the gr_nt research has focused on the crbital model

of the Spacecraft Control Laboratory Experiment (SCOLE).:_

The present report is divided into five chapters. Chapter

II is based on a paper presented at the 1990 international

conference on the Dynamics of Flexible Structures in Space and

describes rapid three dimensional maneuvers and vibration

suppression of the asymmetrical flexible SCOLE configuration.

Pontryagin's maximum principle is applied to both the linearized

and nonlinear system equations to develop the necessary

conditions for the optimal multi-control problem. The resulting

two point boundary value problem is then solved based on the

References cited in this report are listed separately at the end

of each chapter.
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quasilinearization aigorLthm and the method of particular

solutions. The numerical results for both the linear and

nonlinear systems are presented to compare the differences in

their t!ne responses.

Chapter III is motivated by a paper preset]ted at the 17-.h

Inte:n_tional Syn_po_ium on Space Technology and Science =n whlch

tke effects of -_he structural offset for asymmetr!ca!

coi fiTuratlor:s (such as SCCLE] , axial shortening, and

g_-avitational torque durin/ a rapid slew are evaluated. For this

study a two dime1<{ionai nodel of the SCOLE Shuttle - (flexible)

be_m-refiector ststem is considered. B<_th linear and nonlinear

system models ar_ treated.

In Chapter IV the effect of additional system design

parameters [such as those related to the placement of additional

payloads) on the LQR based design of an orbiting control/

structural system is analyzed. This multicriteria numerical

optimization approach Is considered for minimizing an LQR type

cost function where the system design parameter is the outside

diameter of a solid and/or tubular beam, subject to constraints

on the total system mass, control saturation levels, and

transient settling time. Different combinations of additional

payload masses are considered.

Finally, Ch_pter V describes the main general conclusions

together with general recommendations. The thrust of this effort

has been redirected to provide more direct support to the new

NASA Ccntrols/Structures Interaction Program (CSI) , particularly

as evidenced by Chapter IV, and our follow-on proposal, Ref. 18.
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II. OPTIMAL lARGE ANGLE MANEUVERS OF A FLEXIBLE SPACECRAFT

i. INTRODUCTION

Many authors have considered the problem of large-angle rapid maneuvers

of flexible spacecraft [1-5]. The direct solution of the open-loop two-point

boundary-value problem (TPBVP) for three-dimensional (3-D) slews of flexible

spacecraft resulted in numerical problems with rank-deficient matrices as

stated by Chun [3]. However, a different numerical method may be used to

overcome this difficulty. In this paper, the problem has been solved

successfully by using the quasilinearization algorithm and the method of

particular solutions for 3-D slews of an asymmetrical flexible spacecraft,

namely, the Spacecraft Control Labratory Experiment (SCOLE) configuration.

The open-loop slewing approach has several obvious distinct properties.

First, the control law is easy to implement in practice for both ground tests

and space flight tests. Second, the open-loop solution may serve as a good

reference for the feedback control law design, as proposed by Chun [3], and

Meirovitch [4], in which the open-loop solution for a rigid (instead of a

flexible) spacecraft is used as the nominal reference trajectory. As an

extension to Refs. [3] and [4], it may be helpful if the open-loop solution

for the 3-D slew of a flexible spacecraft system could also be used as a

nominal reference solution. In addition, through the present study, we can

also see how different are the responses of the nonlinear system from those of

the linearized system, and the differences between the flexible and rigidized

systems.

2. FORMULATION OF THE STATE EQUATIONS

2.1 System Configuration

As shown in Fig. I, the orbiting SCOLE configuration [6] is composed of a

Shuttle, a flexible mast, and a reflector antenna. Both the Shuttle and the

reflector are considered to be rigid bodies. One end of the mast is fixed to

2.1



the Shuttle at its mass center, o , while the other end is firmly connected to
8

the reflector at an offset point, a
r

Three coordinate systems, (5 cj k ), (5 _j k ), and (5 cj k ),
O O O g 8 8 r r r

representing the orbit's local vertical/horizontal reference system, the

Shuttle body axis coordinates, and the reflector axes, respectively, are

adopted in Figure I The mass center of the reflector, o , is located at (x ,
• r r

y ) in the reflector axis system. Three Euler angles (e 1, e 2, e 3) or four
r

quaternions (q0 ql q2 q3 ) are used to describe the attitude of the Shuttle

with respect to the orbiting reference system.

The undeformed mast is assumed to be oriented along the z axis of the

Shuttle coordinate system. The 3-D deformation of the mast consists of two

bending deflections U(z,t) and V(z,t) in the x-z and y-z planes, respectively,

and torsion _(z,t) about the z axis. It is assumed that these deformations are

small as compared with the length of the mast and can be expressed by the

following modal superposition formula [7]:

U=_i(z)ai(t), V=_i(z)ai(t), _:_i(z)ai (t)'
(1)

where _i' Hi' and _i are modal shape function vector components normalized by

a common factor, and _ is a scaled modal amplitude associated with the ith
i

mode. The free vibration of this structure can be considered as a space

free-free beam vibration problem with boundary conditions including the masses

and moments of inertia of the Shuttle and the reflector. The partial

differential equation formulation for this problem [6,7] can be solved by

using the separation of variables method. The first five natural frequencies

and mode shapes have been obtained by Robertson [7], and will be used in this

paper.

2.2 Kinetic Energy

The kinetic energy of the system about the mass center of the system, c,

can be expressed as

2.2



rl2d=--- l ld
m

s b t b

r

Is t1 -" 2 I rdm •
_ r _

m m

t r t b r

=T +T +T -T
s b r c

(2)

where r is the position vector from o to an arbitrary mass element in the
g

system and m is the total mass of the system. The integration subscripts,
t

tv tv i! _! v!
"s , b , and r , mean that the corresponding integration is throughout the

Shuttle, the beam, and the reflector, respectively.

Kinetic Energy of the Shuttle The first term

rotational kinetic energy of the Shuttle about o
8

in Equation (2) is the

T = _Tj _0 (3)
e 2 8

where o is the matrix describing the angular velocity vector of the Shuttle,

_, and J is the inertia matrix of the Shuttle.
8

Kinetic EnerRy of the Mast As Shown in Figure 2, the position vector of an

element dm and its velocity are, respectively,

r=b+p, b=Ui +_ +zk (4)
8 8 8

D

+ 0 (z)x p (5)
r=vb b

where p is a vector within the cross section of the beam and

; :01 *_] +_x ; (6)
b s 8

Ob(Z) is the angular velocity of the element,

-=b(Z)=_ *$ , y • • • (7)

where @ :-(c3V/c3z), @ _3U/Oz, and _ =_.
X y Z
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During the integration process of equation (2), one needs to do the

following calculations,

(8)

where eb is the matrix representation of _b and E is an identity matrix. For

the circular cross section of the beam assumed here, the inner integration in

Equation (8) turns out, in the local beam coordinates, to be,

E }o o

(pTpE-pp'r) = Ip _ 0 =

A 0 0 1

(9)

where l is the polar moment of inertia of the beam. Due to the small
p

deformation of the beam, the local beam axes is assumed to be related to the

Shuttle axes by a transformation matrix,

Rtrm

1 "¢z ¢y
1 --¢_bz x

-¢ _ 1
y x

(10)

Therefore, j(r] in Equation (9) can be transformed to the Shuttle axes by the

following similarity transformation:

j(')= R=rj(r)(R'r) v (11)

After substituting all related terms into the second term of Equation (2), and

neglecting all the third and higher order terms in the modal amplltude vector,

a, the modal rate vector, a, and their coupling, one can arrive at

I"T °

Tb_l__TJ2 bO + _ Iba +_Thb (12)

where I is a constant mtrix. The elements of emtrix J
b b

have the following forms,

and the vector h
b

(jb) ij=ci jdh0tVmij4XXTMIj(x (hb) i "T .T, =(X EI4XX Giu (13)

2.4



where c lj, m lj, gi' Mtj' and G i

matrices, respectively.

Kinetic EnerRy of the Reflector

that for the mast, one can obtain,

are constants, constant vectors, and constant

After using a development process similar to

T __Tj _ + _T I & _*h (14)
r 2 r 2 r r

Here the inertia matrix of the reflector needs to be considered in the

development process.

The Coupling Term in Equation (2) can also be written in the form of Equation

(12) for consistence,

z __Tj _ + _T I & +_Th (15)
c 2 c 2 c c

After substituting Equations (12,14,15) into Equation (2), one obtains,

T: !_)T{ J +J +J ) e +_TI a _T{ hl+h2)2 - 0 1 2 2
(16)

are 3xl vectors, I is an nxn

T

(J2)i j=a Mija

where J0' J1' J2 are 3x3 matrices, h I, h2

constant matrix, and

, -v_Tm i(Jo)lj :cOnstant (J1)lj j'

(hl) i = dTgi , (h2) i = dTGi a

where m tJ , gl ' Ml J ' and G l are constant vectors and mtrices.

(1?)

(18)

Potential gnerey

The elastic potential energy of the flexible part is

V _l__ffLElf_)2q2 L _)2 2 L 2dz _ I Tdz+_ Elf_q dz+_ GI f--_1 =_x I_
ZLJo Lazzj Jo tazW J0 Ptaz) J

where El is the be_i_ stiffness and G is the modul_ of rigidity of the

beu.
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Generalized Forces

The virtual work down by the controls is

4

._+j - . - (19)8 w:_I =z2.j 6 rj

where _ is a variation vector which has the direction of an axis of rotation

of the Shuttle and the magnitude of the rotation angle about this axis, _ J

are the virtual displacements of the position vector r at the location of the

controls, NI is the control torque vector on the Shuttle, and Nj are the

control force vectors on the beam and the reflector. The shift of the center

of mass of the system is also considered in this development. After expanding

these terms by using the associated relations and the transformation matrix

(10), dropping all third and higher order terms in a, one can get,

4 4

w=_ov[f1+jEzrjf j ]+ _Yj_2_jfj
(20)

where fl=[flx fly flz]r' fj=[fjx fjy]r' are control variables; the elements of

matrices rj and Vj have the similar form as those in Equation (17), and up to

the first order terms in a have been retained for later use. Then, the

generalized forces are,

4 4
(21)

%-f_+jz/jfj, Q.= j.Ezvjf j

Dynamical Equations

After constructing the Lagrangian, L=T-V, and using

~ aL
d fSL)_I_)=Qo d [aL]_

(22)

one can get the following equations by discarding second order terms in a, _,

and their coupling, and retaining a constant mass mtrlx represented by the

coefficients for _ and a,

J0_ +[xl g2 z3]'& =[;_(a)_ +i(&_ +%
(23)

(24)
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where

=_ (02 2 (03 (02(03 (03(01(0-_ 1 (02 2

After finding the inverse of the mass matrix,

(23) and (24) can be obtained as,

(01(0z]T (25)

a state form of Equations

(26)

where iO'_, Bot=[BI a i B2a i'''i B6(x], co=tClfl C2fl i C30], and F(x=[F1a i F2a

I'''i Fsa], with A, Bi, C I, D, E, F i being constant matrices; and u=[flx fly

f _f f !f f if f ]x. For the purpose of comparison, the dynamical
lz" 2x 2y' 3x 3y' 4x 4y

equations for the rigldized (rigid) spacecraft can he obtained by deleting all

terms related to a and 8, this is,

: X _ + E u (27)

where A and E are 3x6 and 3x9 constant matrxces, respectively. A linearized

form of Equation (27) can also be obtained by deleting all nonlinear terms,

= !_ + Eu (28)

The kinematic equations for the quaternions are

= _ _ q, where _ = (29)

where q is the 4xl quaternion vector.
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3. DERIVATION OF THE OPTIMAL CONTROL PROBLBIq

Necessary Conditions

A quadratic cost function is used,

I t

d=!_0f(arQ1(x _TQ2t_ +fJVQ3[3 +uTRu)dt
(30)

where QI' and R are weighting matrices, tr

magnitudes of the controls, u, are bounded,

is the given slewing time. The

[Uil( Ulb, i=1, .-. , 9. (31)

The following technique is used to solve this problem [8]. First, the

necessary conditions based on Equations (26, 29, 30) are derived. Then, the

constraints (31) are imposed on these necessary conditions to modify the

controls.

The Hamiltonian of the system is,

ff__(arQl a _t_rQ2 e _TQ3 _ +uTRu +pr_q) _Tv_

(32)

where p, 7, and X=[X 1 xz]T are the costate vectors associated with q, a, _,

and _, respectively. By using the Maximum Principle, the necessary conditions

for the unrestricted optlmal control problem are the dynamical equations (26,

29) plus the following differential equations for the costates,

- aq - _ _e p (33)

(34)

(3S)

i2=-_= -Q3F -7-(_x)_ (36)

2.8



and the optimal control,

=o :--> (37)_u t

The control resulting from Equation (37) is then modified by the

following saturation considerations,

-U b' if Uic_ -Utb _ otherwise,u - t l =-[R'I(_+Fa)TX
, Ui :Ui c

i Uib, if Uio_ Uib I=1, ..., 9.

(38)

By substituting the control expressions into Equations (26) and (34), one can

obtain a set of 4(n+3)+2 dlfferentlal equations for the states and the

costates. To obtain the control, u, one needs to solve these equations with

the given conditions: q(0), a(O), e(0), _(0), and q(tf), a(tf), e(tf), _(tf).

4. Two-Point Boundary-Value Problam (TP_)

One way of obtaining the optim-I control law is to transform the above

necessary conditions into the following TPBVP. Let x represent the state

vector, and k represent the costate vector. After substituting the control

expressions (38) into equations (26) and (34), one can obtain two sets of

ordinary differential equations for the states and the costates,

x=f1(x, X){7+2n)x I (39a)

i=fz(x, X)CV+Zn_xl (39b)

with the following boundary conditions,

x(O) and x(tf) prescribed, X(O) and X(tf) unknown. (40)

Due to the known boundary conditions being specified at the two ends of the

slewing t£me, this problem is usually called the tw0-polnt boundary-value

problem. This kind of split boundary conditions usually result from the

large-angle maneuver requirements, in which the initial (t=O) and final (t=tf)

2.9



states of the system are specified. By solving this problem, we can obtain the

optimal control (based on the necessary conditions). The often used solution

strategy is to change the boundary value problem to the initial value problem,

i.e., find k(O), the m/ssing initial costates. Once k(0) is obtained, one can

solve the equations (39) as an initial value problem by using any numerical

integration method. However, owing to the nonlinearity of the equations, there

is generally no analytical solution to this problem or simple numerical method

to obtain the solution except for some very simple cases such as the linear

time-invariant case. The numerical iteration method is the general approach to

the this problem.

To start an iteration process, one usually needs an initial guess of

k(°)(0). Then, equations (39) or their equivalent form (the linearized version

of (39)) are solved and a x(°)(tf) is obtained. Based on the difference

Ax(tf)=x (O}(tf)-x(t)f , the correction to k(O), A_(O), is obtained. This gives

us a new initial value of k(0), k(l)(0). Hence, the next iteration begins. The

iteration process can be terminated when [X(k+l)(0)-k(k)(O)l is less than a

given error limit. One can see immediately that if the beginning guess _(°)(0)

is close to the true value (converged value) of h(0), the solution will

converge and less iterations are needed. However, a "good" guess of k(0) is

often difficult to obtain for the general nonlinear problems.

Therefore, the effort for solving the TPBVP is two fold. The first is try

to establish a good iteration (correction) method with a wide convergence

interval so that it can guarantee convergence even for a "poor" initial guess.

The other is try to find a "good" initial guess based on the characteristics

of the practical problem and using some simplified mathematical models. In

this report, we use the quasilinearizatlon method. We also use the solution of

k(O) from the simplified linear, tima-invariant model of the system as the

initial guess for starting the iteration process.

4.1 Linear and Time-Invarlant TPBVP

For linear, time-invariant versions of equations (39) (refs. I-2),

z=Xz, where zT=[x v, k T]

its transition matrix (constant exponential matrix),

(41)

2 .I0



e

can be used to obtain the initial costates (closed form solution):

k(0)=A_12[x(tf)-A11x(0 ) ] (42)

4.2 Nonlinear TPBVP

The continuation (relaxation) process (to increase the participation of

the nonlinearity in the solution) and the differential correction (for

determination of the initial costate variables) have been used in references

1-2 for the 2-D slewing problem. However, as stated in ref. 3, the extension

of these techniques to the 3-D slewing problem has encountered a numerical

problem: rank deficiency.

In refs. 5, 10, and 11, the quasilinearization method has been

successfully used. In this method, one needs to linearize the differential

equations (39),

z=8(z), where z'r=[x'r, )'r], s'r =[fl'r, f'r]2 (43)

about an approximate solution of this equation in the following form (a series

of linearized, time-variant, nonhomogeneous equations):

_(k+l)=(aS/ag)z(kvl) + h(g (k)) (44)

where z (k) is the kth solution of the same linearized equation. It is also the

kth approximate solution of the original nonlinear equations (43). Here, the

boundary conditions, (40), are naturally adopted as the boundary conditions of

the linearized equations, (44). The control expressions, (37), also need to be

lineariznd (ref. 8):

U(k+I)=u(k}--_'I[F(_Q{)]T_(k)--e-1[E÷F(_(k))]T_t. (45)

where _(X=c((k+1)"(X (k) and ___,_(k+l)_Ck) By assuming that
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ok)_ R-1[E,_(a(k))]TXCk) (46)U __m

for the unbounded control case, equation (45) can be rewritten as,

(k+l):_R-1 (k) )u [_(t_X)]Vt _R-l[E+_(a(k) ]VX(k+l) (47)

However, in the bounded control case, equations (38) are considered, that is,

[

(k)l -Uib or Uib

U i

-(R-1[E+_(a_k))lTxtk))i

Accordingly, at the (k+l)st step, u (k+l) can be determined by

(48)

I --Ulb or Uib , if I(R-I[E_(a(k))]Tx(k))|I _ Uib

(k÷l)= (49)
u i

m{R-I[F(Aa)ITx(t)-R-I[E+F(a(t))lrxtk+I))I

So far, an iteration process is formed. In each iteration, only a linear TPBVP

is solved. It is this property that gives this approach the name

quasilinearization method.

The linear TPBVP can be solved by many ready-made methods. One of the

frequently used algorithms is the method of particular solutions (ref. 9).

Let m represent the number of the states (also the costates). Equations (44)

can also be rewritten in the following form,

_(t):G(t)x(t)÷H(t)t(t), i(t):I(t)x(t)+J(t)t(t) (50a,b)

From the theorem of the linear system, any solution equation (50a) can be

expressed as the linear combination of its m+l particular solutions, i.e.,

where c
i

m÷l m÷l

x(t)= _ c xi(t), as long as _ ci=l (51)

are constants and xi(t) are the ith particular solution vectors. The
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method begins by integrating equations (50a, b) forward m+l times, with the

initial conditions,

"x(0) x(0)"
1 0

0 1
I

' i o Z(o)= o z'(o)=z (o)= : , : .... ,

x(0)
0

0

, and z'*a(O) =

x(0)-
0

0

0

0

0 0 1 0 -

This gives us m+l particular solutions, xl(t), x2(t), .'', xm+1(t).

Substituting these solutions into equations (51), and setting t=tf, we have

m+l m+l

I_1 clxi(tr):X(tr)' i_l ci=l (52)

This is a set of m+l algebra equations for m+l unknown constants, ci . By

assuming the existence of inverse of the coefficient matrix, we can obtain the

solution, c=[c c .-- c ]T and c . By doing the following manipulation,
1 2 m m+l

m+i

z(O)=l_ l Cl_l(O)=

m+I

i=ZlClXi(O)

C
1

c

.2

c
IB

x(0)

c
I

C
2

C
m

one immediately realizes that c--Ik(0), the missing initial costates.

4.3 Transformation of Attitude States and Costates

The following procedure is designed to obtain the solution of the

nonlinear TI_BVP. First, the linear TPBVP based on equation (28) is solved and

a nominal trajectory is produced, in which the control is unbounded and the

initial costates are calculated by using the transition matrix method. Then, a

converged solution for the linear TPBVP with bounded controls is obtained by

iterations starting from the previously obtained trajectory. Note that the

Euler angles are used in all the above computations.
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Next, to obtain the starting solution for the nonlinear TPBVP, the 3

Euler angles and the 3 associated costates are transformed to the 4

quaternlons and their 4 costates (from t=O to t=tf). Refs. 10-11 provides us

the following relationship between the quaternions, q(t) and their costates,

p(t):

I Po

Pl

P2

P3

i do _dl _dz _d3 1

d I d o -d 3 d z

d 2 d 3 d O -d 1

d 3 -d 2 d I d O

q°1ql

q2

q3

(53)

where d i are constants. For the case q(0)=[1 0 0 O] T we can choose P0(O)=O

d =0. Then,
o

[Pl(O) p2(O ) P3(O)]=[d I d 2 d3]:dT (54)

The vector d can be determined by

d= 2 [initial Ruler angle costate vector] (55)

This result can be proved if one compares the related state and costate

equations for both linear and nonlinear TPBVPs (for the case e(O)=O). After

finding the q(t) by using a nonsingular transformation between q(t) and the

Euler angles, el(t), e2(t), and 03(t), one can use equations (53-55) to obtain

p(t).

Finally, the nonlinear TPBVP is solved through the quasilinearization

process and the method of particular solutions [9].

5. NtND_CAL ltl_l_l_

The following par_mters of the orbiting SCOLB are used in this paper

[6]. The inertia matrices of the Shuttle and the reflector, about the mass

center, o and o , respectively, are (slug-ft2):
• r
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905_43 0 1453936789100 0

[145393 0 7086601

00 4969. 594

0 0 9921.96

The material properties of the mast are: EI=GI =4E+7 lb-ft 2, pA=0.09554
p

slug/it, pI =.9089 slug-it, and L=130 ft. The masses of the Shuttle, the mast,
p

and the reflector are (slug): 6366.46, 12.42, and 12.42, respectively. The

location of the mass center of the reflector is x =18.75 it, and y =32.5 ft.
r r

The control saturation levels are: If l=lf,yl=lfl,l lZ+4 ft-lb,

If2 l=lf2,1=lf3=l=lf3yl • lO lb, If=l=lf° l • lb. The first five natural

frequencies are (hz): .2740493, .3229025, .7487723, 1.244013, 2.051804.

The numerical tests based on the previously described method have been

performed for the roll-axls slews, pltch-axis slews, as well as arbltrary-axls

slews. All these tests are rest-to-rest slews and the iteration process is

terminated after the initial costates are reached within five digit accuracy.

The following procedure is designed to obtain the solution of the

nonlinear TPBVP. First, the linear TPBVP based on Equation (28) is solved and

a nominal trajectory is produced, in which the control is unbounded and the

initial costates are calculated by using the transition matrix method. Then, a

converged solution for the linear TPBVP with bounded controls is obtained by

iterations starting from the previously obtained trajectory. Note that the

Euler angles are used in all above computations. Next, the Euler angles and

the associated costates are transformed to the quaternions and their costates

[10, 11], to obtain the starting solution for the nonlinear TPBVP. Finally,

the nonlinear TPBVP is solved through the quasilinearization process and the

method of particular solutions.

Case 1 is a 90 des slew about the roll(x) axis with only three torques on the

flx iT The weightings for the state,Shuttle as the control, i.e., u=[ fit flz "

Q1' Qz' and Q3 are chosen to be zero matrices, with the consideration that a

non-zero choice will improve the responses [5]. The control weighting is

selected as R=Diag[1E-6, IE-6, 1E-6] v, since the small values here imply the

small costates (which is advantageous for the numerical convergence) for the

same control (see Equation (37)). The slewing time, tt=28 sec, makes the slew

near the minimum-time-slew as used in [5] for the planar SCOLE configuration.
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The results for this slew are shown in Figs. 3, in which the solid lines

represent the responses of the linearized system (27), while the dotted lines

stand for those of the nonlinear system. The three attitude angles are plotted

in Figs. 3a-c. The roU angle, 01 , for both systems is almost the same, but

the pitch (y) and yaw (z) angles are different although the magnitudes are

quite small. Associated with these differences are the differences in the

and f , shown in Figs. 3j-k. The roll-axis torque, f (Fig.
controls fly Iz Ix'

3i) is near the bang-bang type. There are little differences in the first

three modal amplitudes (Figs. 3d-f) between the two system, but the 4th and

the 5th modal amplitudes (Figs. 3g-h) present larger relative differences.

Since the second mode describes malnly the deformation of the mast in the y-z

plane, which is perpendicular to the slew (x) axis, the second modal amplitude

has the largest peak value among all the five modes.

Case 2 is a 90 des slew about the x axis, but using all 9 controls. Qi=O,

i=1,2,3, and R=Diag[1E-6, IE-6, 1E-6, 8E-2, 2E-2, 9E-2, 4E-2, 8E-4, 3E-4] T.

Due to the increase in the control effort, the slewing tim can be shortened.

t =12 sec is selected numerically by the judgment that the maximum
f

displacement of the mast at the reflector end is less than 10Z of its total

length, to be consistent with the small deformation assumption. To make a

comparison, the slewing results for the rigid spacecraft model (gquation (27))

are also obtained by using the same Qi's and R. Figs. 4 give the results for

the present slew, where the dashed lines represent the time histories of the

rigid nonlinear system.

The three systems have less differences in 01 (Fig. 4a). 0 z and e 3 (Figs.

4b-c) are still very small, but the peak values are several times larger than

those in Figs. 3b-c. The differences between the flexible and rigid nonlinear

system are small, but the differences between the flexible nonlinear and the

the flexible linear systems are relatively large. The reason is that the

quadratic terms of the angular velocity of the Shuttle, e, (Equation (25)),

have been used both in the rigid and flexible nonlinear systems, but do not

appear in the flexible linearized system. Therefore, these quadratic terms

play an important role the 3-D large-angle rapid slewing problem6. The similar

differences in the three systems are also reflected in the control histories

(Figs. 4i-p). The smell differences between the flexible and rigid nonlinear

systems are caused by the deformation of the flexible mast. For the rapid
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slews with large control torques and forces, the deformation will further

increase, and so will the differences between these two system.

The five modal responses are quite different from those in Case 1. Some

of the peak values increase about 30 times, and the response phases change.

For example, before t=tf/2, a 2 is mostly positive in Case 1, but negative in

Case 2, and this change reverses after t=tf/2. This change is caused by the

controls at the reflector [5].

In the present slew, e I is the Bin attitude angle and mode 2 has the

largest deformation in the y-z plane among all the five modes (Figs. 4d-h).

Within Figs. 4, after comparing the responses of the llnearized system with

those of the nonlinear system, we see that there are less relative

differences in e 1 and az than in e z (0 z) and other modes. These results imply,

for the slew considered here, the major modes (rigid e I and flexible a z) have

the largest overall displacements but the smallest relative differences

between the linear and nonlinear system. On the other hand, the secondary

modes (8 2 , 8 3 , a 1, a 3, a 4, a s ) have smaller overall displacements but larger

relative differences. As a consequence, the major controls (f4y) (Figs. 4q)

and all the remaining secondary controls (Figs. 4J-p), as well as the major

deformation V(z,t) and secondary deformations U(z,t) and @(z,t) (Figs. 4r-t)

also yield the same results. These results may lead to the following

conclusion: the linearized equations can represent very well the nonlinear

equations for the major slewing motion even for large displacements, but not

so well for the secondary motions, even for smell displacements. The

explanation for this fact might be that the magnitudes of the nonlinear terms

have a certain level which is less than that of the linear terms

representative of the major motions, but is great enough to compete with that

of the linear terms for the secondary motions.

It should be mentioned that these facts can not be observed in the planar

slewing problems studied by many authors (for example, Refs. 1, 2, and 5). In

those researches, the differences between the linearized system and the

nonlinear system are very small because all the modes are planar modes and,

hence, the first several modes are all major modes.
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Case 3 Figs. 5 show the results for a simultaneous three-axis slew (01:60,

02=30 , 03=45 deg). The weightings for the states are QI=Q2=Q3=O. In this case,

The Shuttle torques (flx' fly' and flz ) and the reflector forces (f4x' and

f ) are used. The associated weighting for the control is R=DIAG(IE-4, 1E-4,
4y

1E-4, 0.6, 1.4-3). The slewing time, tf, is 40 sec. The solid lines in the

figures 5a-h responses of the rigidized nonlinear system, equation (27), while

the dotted lines represent the slew results for the flexible nonlinear system.

6. CONCLUSIONS

The application of Pontryagin's Maximum Principle to the large angle

slewing maneuver problem has been extended to the slewing of a 3-D flexible

spacecraft (SCOLE). A numerical simulation procedure based on the

quasilinearization algoritlm for solving the resulting nonlinear TPBVP has

been established and tested successfully for several examples. The general

nonlinear dynamical equations developed here contain all the quadratic terms

of the angular velocity of the main body and their coupling with the first

order modal amplitudes and modal rates. It is suggested that higher order

terms be included if a further analysis is conducted. The numerical results

show an important fact that the linearized system can represent the nonlinear

system adequately for predicting the major motions but not as well for the

secondary motions. The quadratic terms (nonlinear) of the angular velocity of

the main body (Shuttle) cannot be neglected for large-angle rapid maneuvers.

The differences between the responses of the rigid and flexible nonlinear

systems are small because the deformation of the flexible part (mast) is

small. For further research, it is recommended that the applicability of this

method to more complicated systems be established.
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III. EFFECT OF STRU_ OFFSET AXIAL SHORTENING, AND

GRAVITATIONAL TORQUE ON THE SLEWING OF A FLEXIBLE SPACECRAFT

1. Introduction

The direct application of Pontryagin's Maximum Principle to the attitude

maneuvers of spacecraft has been conducted by many authors (Refs. 1-2).

Recently, some effort has been made to utilize this principle to more

complicated structures (Refs. 3-4). In Ref. 3, the rapid slewing of a

2-dimensional flexible orbiting spacecraft, a Shuttle-beam-reflector system,

has been considered. It is observed (Ref. 3) that the time response history of

the nonlinear system has a shift from that of the linearlzed system, but the

reason for this was not clear. In continuation of this study, the present

paper will first answer this question by examining the equations of motion and

by presenting more numerical examples.

The so called axial shortening effect of a beam induced by its transverse

displacement has been brought to attention by some authors (Refs. 1-2, 5).

Although the shortening terms have been included in the equations (itef6. 1-2),

their effect on the slew lacked quantitative analysis; specifically, the

numerical examples with and without these terms were not provided. On the

other hand, a numerical example in Ref. 5 shows that large differences do

result between models with and without the shortening effect. But the

numerical example is only for an uncontrolled dyn_aical response case and the

main body's motion is prescribed. In the present paper, therefore, the

shortening terms are considered in the formulation of the equations of motion

and numerical examples both with and without these terms are presented to

compare the difference between them.

Finally, the gravitational torque terms are modeled and included in the

equations to show their effect on the slewing motion.
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2. Dynamical Equations

System Configuration

The spacecraft model used here (see Fig. 1) is composed of two rigid

bodies, representing the Shuttle and a reflector (Refs. 3-4, 6), connected by

a flexible beam through fixed joints, in the plane of the Earth orbit. One end

of the beam is assumed to be connected to the mass center of the Shuttle,

while the other end is, in general, not connected to the mass center of the

reflector. This offset is represented by x in the , direction of the
r r

reflector°s coordinate system, (i , k ). It is this offset parameter that will
r r

be examined in this paper. 0 is the rotation angle of the Shuttle fixed

coordinate system, (i , k ), with respect to the orbital coordinate system,
• 8

(_ , k ). u(z,t) and ¢(z,t):<gu/az describe the transverse displacement of the
0 0

beam and the rotation angle of its cross section from its undeformed position,

respectively. Both u and @ are assumed small and can be expressed by the modal

superposltion formula u=_i(z)al(t), @=_(z)al(t);__. where _i is the ith modal

function, ai is the ith scaled modal amplitude, and _=d_l/dz'l-

The effect of the offset on the slewing is analyzed by clmnging the value

of x . Towards this purpose, the partial differential equation for the free

vibration of this structure has been solved by using the separation of

variable method. The natural frequencies and modal shape functions have been

obtained (the assumed mode method was used in Refs. 1-2, 5), for different

value of x . It is observed that the natural frequencies decrease as the
r

offset distance increases.

Kinetic Energy

The kinetic energy of the system about the mess center of the system, c,

can be expressed as T=T +(Tb+Tr)-T , or
O

T= _=[r[Zdm + _[_b+rJrJZdm - --lint[_bJ rJdm} 2--lint [;r [rJdm]_

mt b r
(1)

3.2



where _ is the position vector from o (Shuttle mass center) to an arbitrary
8

mass element in the system and m t is the total mass of the system. The

%. - ,,integration subscripts, "s", , and r , mean that the corresponding

integration is throughout the Shuttle, the beam, and the reflector,

respectively. T in Eq. (1) represents the kinetic energy of the Shuttle about

o, T : _I b_,'where Ot:_+e0, e0 is the orbital rate and I. is the moment of

inertia of the Shuttle.

Two assumptions for the deformation of the beam have been made: (I) The

length of the beam does not change; (2) The rotary inertia and the shearing

force are neglected. Consider now an element dm on the beam (see Fig. 1),

which has a coordinate, z, before deformation and, z-Az, after deformation

along the k axis, where Az is the "shortening" amount due to the deformation
i

and can be determined by solving the following functional,

_z-Az/l+_au_ z _Z:Io/ or approximately,
_,.-A. 11"a,.421

where small (au/az) is assumed. Then,

j _l" a." i "-tl'fa'4"d,tiz_

By dropping the second term, which is a higher order term, we have

b_Ir zf#u_Zdz

This indicates that bz is a function of z and u(z,t) (a function). Also,

Az is is a second order term in the modal amplitude, a. Equivalent

developments for the shortening effect are also presented in Refs. 1 and 5.

The position and velocity vectors of a mass element dm on the beam and the

reflector are, respectively,
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_: (Ur +x)_+(L-AL-x_ r )k; and r=[_ t (L-AL-x@ r )+u r ]_-[_t (Ur ÷x)÷AiJ÷x_r ]k

where L is the length of the beam. Tb, Tr, and Tc

by using the following equations:

in Eq. (1) can be obtained

_bZAZdm_ 1 l.pX z z au 2'-,_.to d"]
I zz_z an z t _tz 2fau_z _ 2d'lo-'r:t J-' "' " °''

, "_,LJoL_J YJo-JoL_J J"au a. :Afo<L-z)F---'Iuko=Jd_

After dropping third and higher order terms in modal amplitudes, a, we obtain

2 3

where I, • ,
m

respectively.

m2, M2, M4, and M3 are constants, vectors, and matrices,

Potential Ener2v

The gravitational energy and the elastic energy of the beam are

_I'_BzI'-a_-_i 3 _ ko"j" _v.,vo=_o I_-_J2d"* _'o o

=_vl_ x + 3 2 3sin20 )_0(J11 sin2e +J33 c°s2e -J1

where k =-isirJ9 + kcos0, EI is the constant flexural rigidity of the cross
o

section of the beam, and J is the inertia tensor of the system, with J being
tJ

the functions of the modal amplitudes, a.
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Generalized Forces

The shortening effect is also considered in developing the virtual work

of the controls and the associated generalized forces, QO and Qa" For example,

the force arm for a control force is affected by the shortening effect.

Dynamical Equations

By using the Lagrangian equations, we can obtain the dynamical equations

of the system in the following matrix form

i

I+2aVm _aT_a ] (m +Ma) T
a 2 i 2 4

m +M_x i M
2 4 ! 3

&

:[ (2)

where M4=M•+Ms. m•, M• and Ms are linear functions of xr. MZ' MS contain the

components of the shortening terms. From these equations, we see that the

terms containing m and M are nonlinear terms of first order in a or &,

while the terms containing M2, M4 and MS are of second order. Therefore, for

moderate nonzero values of x , the influence of the structural offset can be
r

greater than the shortening effect. The linearized equations can be obtained

by neglecting all nonlinear terms,

.......8---.-.2. = - 4- (3)

where "LIN" means constant and linear terms. Note that on the right side of

Eq. (3), the structural offset and the shortening terms disappear.
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3. _timlCont_l

The optimal control for the slew problem is derived by using the

techniques similar to those used in Ref. 3 and will not be repeated here. The

controllers are provided by one control torquer on the Shuttle (ul), one

control force on the reflector (u4)• and two force actuators on the beam (u2

at L/3 and u at 2L/3). Each of the controls has its own upper and lower
3 4.T

saturation levels. The cost functional, J_oUTRu dr, is used in the present

paper, where u is the control vector, R is the control weighting matrix, and T

is the slewing tim. The resulting two-point boundary-value problem is solved

by using the quasilinearizatlon algorithm.

4. _merical Results

The parameters of the orbiting SCOLE (Ref. 6) (Spacecraft Control

Laboratory Experiment) are: BI=4R7 lb-ft 2 pA=0.09554 slug/ft L=130 ft

m =6366.46 slug, m =12.42 slug, I =12.42 slug-ft 2 I =4881.375 slug-ft z
s r s r

eo=O.O01 (rad/s) (orbital altitude h_981 km). The natural frequencies (hz) for

x =0 and x =32.5 (ft) are: 0.3365257, 2.062547, 5.316669; and 0.3199540,
r r

1.287843, 4.800169, respectively. All numerical simulations are 90 degree

rest-to-rest slews and can be represented by:

Case I x =0, -- R=IE-6, T=27.6 (s)
r U-U1 '

Case 2 x =0, u=[u I u u u ]r R=DIAG(1E-6, .15, .21, 1R-4), 1"=-8.196 (s)r 2 3 4

Case 3 x =32.5 (ft), _=u I, R=IE-6, T=-27.6 (s)
r

Case 4 x =32.5 (ft), u=[u I uz ua u4]V, R=DIAG(IE -6, .15, .21, 1R-4),
r

T=8.196 (s)

Figs. 2a-g display the tim histories of O(t), u(L,t), @(L,t), _(t) for

Case 4. Clearly, the response of e(t) for both linear and nonlinear systems

are very close. However, there exist some differences between the two systems

in u(L,t), @(L,t) and the controls, u. The difference is primarily due to the

offset x (here• x =32.5 ft). When x =0, this difference can be reduced
r r r

markedly, regardless of whether the shortening effect and gravitation are

considered. It is also interesting to know that the controls have large

differences only around the mid-slew-time.
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LO

Case 1

x =0, _=u
r 1
T=27.6 s

Case 2

X =0, U=U
r

T=8.196 s

Case 3

x #0, _=u
r 1

T=27.6 s

Case 4

x _0, u:u
r

T=8.196 s

Table I Tip Displacement and Tip Angle

Linearized

AL=0, e :0

AL_0, _°-0

AL#0, _°¢0

Linearized

AL=0, e =0
AL_0, e°=O

AL_0, e_#0

Linearized

AL=0, e =0
AL#0, _°:0

AL_O, _o°¢0

Linearized

AL=0, _ =0

AL_O, _°=0

AL_0, e_¢0

Max-Disp

(ft)

0.37727

0.37727

0.37727

0.37728

13.072

13.186

13.154

13.153

0.38812

0.38590

0.38600

0.38586

12.191

12.734

12.796

12.795

Min-Disp

(ft)

-0.37727

-0.37727

-0.37727

-0.37728

-13.072

-13.186

-13.154

-13.154

-0.38812

Max-Ang

(deg)

0.27402

0.27403

0.27402

0.27403

9.6216

9.7050

9.6847

9.6842

0.30342

Min-Ang

(deg)

-0.27404

-0.27404

-0.27404

-0.27405

-9.6216

-9.7050

-9.6847

-9.6845

-0.30340

-0.40802

-0.40732

-0.40803

-12.191

-12.061

-12.052

-12.054

0.29110

0.29118

0.29094

9.1082

9.4541

9.5067

9.5052

-0.33940

-0.33884

-0.33981

-9.1082

-9.1299

-9.2030

-9.2061

e-Disp

m

0.0%

0.0Z

0.0Z

m

0.87%

0.63%

0.62%

5.13Z

4.95%

5.13%

m

4.45%

4.96%

4.95%



Table 1 lists the maximum (minimum) values for the displacement, u(L,t),

and allele, _(L,t), of the beam during the associated slews for all cases. The

first llne in each case lists the results for the linearized system, while all

remaining lines represent those for the nonlinear system with different

considerations. For example, AL=0 means the shortening effect is not

considered. The last column gives the largest relative displacement error,

with respect to the linear results, based on

Ceo,. I/I i'l'<X<,,I, I m, m ,,i/IMIs ,,I 1

lon)_near System vs, Linearized System First, let us examine line 1 and line

2 in each case. In Case 1, since no offset, the differences between the two

lines are very small. In Case 2, where more controllers are used and the

slewing time is shortened, the differences increase sy_etrically

(IMAXI=IMINI) in spite of x =0. Case 3 uses the same slewing conditions as
e r

used in Case 1, except x =32.5 ft. This offset shifts the envelop of the
r

response downwards and results in a larger relative displacement error than

that in Case 2. Case 4 is the combination of Cases 2 and 3. The shift now is

upwards which is due to the inclusion of more controllers. When more

controllers are used (Ref. 3), the phase of the response reverses, so do the

maximum (minimum) amplitudes.

ShorteninR Effect By comparing line 2 and line 3 in each case, we can see

that the shortening terms (1) reduce the amplitude (Cases 2 and 3); (2)

increase the amplitude (Case 4); and shift the response upwards (cases 3 and

4). These observations coincide with the fact that Az is only a second order

effect compared with the offset effect.

_avitational Effect By observing lines 3 and 4, we can conclude that the

addition of the gravitational torques into the equations of motion has a very

small effect on the slew, although they shift the response downwards. This is

because the orbital rate is much smaller than the slewing rate and the

magnitude of the gravitational torque term is much smeller than that of the

active control torque term.
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5. Conclusion

Generally, the linearized system can predict the system dynamics very

well in the slow slewing case. However, in the rapid large-angle slewing

problem, the responses of the system deviate noticeably from those described

by the linearized equations if the effects of structural offset and axial

shortening are included in the simulations. The structural offset (if any)

results in a first order nonlinear effect. The shortening effect causes only a

second order nonlinear effect and may not be considered, in the controlled

simulatlons, unless the deformation is out of the linear range. The

gravitational effect can be safely neglected in the slew motions considered

here.
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IV. THEEFFECTOFADDITIONALDESIGNPARAMETERSONTHE

LQRBASEDDESIGNOFA CONTROL/STRU6XURALSYSTN_

I. Introduction

Sorne of tile difficulties encountered in controlling large space structural sys

terns are attributed I.o their inherent fexibility. As the size of the_e %,stcm_ increases,

due to payload limitations, the total mass cannot be significantly increasecl. Ill the

evolution of sl_ch ,_ystems, it often becomes necessary to include aclditional ele-

ments into the design such as those resulting from additional actuators, sensors, or

experimental mode, lies I

Sometimes the resulting control may be optimal only for a prescribed _truc-

rural design. But iI we try to later change some o[ the structural design parameters

-- even h\, a smal! amount -- then the previously designed control may no longer

he able to satisfy the mission specifications. If we try to change _ome of the struclur-

al design parameters, perhaps the control system performance will be better than

before in some sense -- i.e. more robust, better transient time constant, reduction

of initial overshoot amplitudes, etc. On the other hand, a change of some other

structural system parameters ,nay improve tile structural design, l_tlt at the expense

of control system performance.

In Ref. 2, a combined structural and control optimization problem was for-

mulated using an optimality criteria approach for the orientation and shape control

of a free-free beam in orbit. The combined cost function included a form of the

regulator cost, augmented with the (constrained) weight of the whole structure

together with the appropriate Lagrange multiplier. Optimality criteria were derived

[or minimizing the combined cost function and tile configuration of the structure

4.1 :S
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obtainedwasusedfor thesynthesisof control laws usinglinear quadratic regulator

theory. The configurationsobtained by the combined approachrequired lesscon-
(rol effort for shapeand orientation control of the orbiting beams than that asso-

ciatecl with the separately designed structure and LQR-based control systems.

Fear the large scale space structural design, it is important to reduce the mass

cq the structural vvstem. The satisfaction of the control requirements during the

combined control/structural design is also important. The multicriteria optimiza-

tion approach wil! be needed for use in the field of structural redesign, which

should allow a large amount of freedom and variety in selecting the potentially

large number of design variables. In this study, we try to use thc quadratic cost

function and the "_'ontrol properties, such as the transient response time of the

system attitude, as design criteria. The maximum allowable values of the structural

mass anti the saturation levels of the forces and torques provided by the control

actuators are used as the system constraints. A free-free orbiting uniform beam

with an articulated payload will be considered here as a simple model. The addi-

tional design of the beam diameter is based on LQR techniques using multicriteria

which include the cost function and the transient response time of the attitude

motion of the beam, subjected to the limited mass of the structure and the satura-

tion levels of the actuators. The numerical optimization procedure and simulation

is clone using the IBM mainframe computer system.

II, Equations of Motion

The clynamics of a long flexible beam in the plane of the assumed circular

2
orbit can be expressed (after neglecting the second order effect) as

.- 2 /0 + 300 9 = Tp J (1)
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• ' {2_
M Y + K Y = V V

Equati{m {11 (lescril_es tile pitch motion of beam type satellites (rigid hoctv motion)

and equation (2) gives the vit,ratory motion of tile same t_eam withottt clampin_

where

0 is tile pitch angle

Tp i_ the pitch torque

t,){) is the orl',ital frequency

.I is the transverse moment of inertia

M is the n x n positive definite mass matrix

K i,_ the n x n positive definite stiffness matrix

F is the n x p input ¢tistril_ution matrix

"t is the n x 1 displacement vector

X' is tile p × 1 vector of force inputs

Here the unitorm beam with two additional masses in a circular orbit is

considered ( Fig. 1). D and d stand for the outer diameter and the inner diameter

of the beam, respectively. Based on the finite element method -_, lhe beam is as-

sumed to he divided into four elements with each element having the same geomet-

rical size and material properties. Five force actuators and one torq_m acluator are

assumed to he added to each of the five joints and at ioint 3, respectively. The force

actuators are assumed to produce forces parallel to the positive Y direction, where-

as the torque is ass_lmed to act about the Z axis. The two additional masses, m_,and

m_. are assumed t,} he attached to tile ioints 2 and 4, respectively. The mass matrix

can bc expressed by the ,_tlm of the heam mass matrix and the attached mass

matrix, that is

M = M S + _'I A
(3)

The beam mass matrix is represented by 3 .
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M
I, a ncl M R =

O ('_ fl 0

AIs() the stiffnes_ matrix of the heam can he expres_ect hv _

_ (1) fl)

K l_ K t2 0 0 0

tl_ (1_ (21 (2)

K2_ K::+ K22 K2_ 0 0

(2) f2) (3_ (3)

0 K_2 K3_+ K33 K34 0

0 0 K

0

(3) (3) (4) (4)
a_ Kay+ K44 K45

(4) f4)

0 0 K 54 K 55 -

(6)

where

(k_ (k)

K K,. ]

tl tl E I

(k (k) 3

K i_ K ii /

12 61 -12 61

2 2

6 I 4 I -6/ 2 1

-12 -6/ 12 --61

2 2

6 / 2 / -61 4 1

7he joint between two elements i, j is referred by (ij) and the element number varies

as k=1,2,3,4; / is Ihe length of each element of the heam; p is the mass density; and

E is Young's modulus. A0 and I are section area and section moment of inertia of

the beam, respectively, which are dependent on the beam diameters, D anti d.

Equations (I) and (2) can be written in state variable form as:

X = AX + B U (7)
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where the 2(t0+1)_:1 veCml_. X. X. and the 6×1 vector, I__. arc' oiven Dr:

[ '..... ,],X = O Y O Y

I y I] lX = 0 "_ 0

i, = [ Tp \.' V 2 \/V. _ \,' ]r

The qatc matrix, A, and the control matrix, B, are given hv

A=

0 I

( lxlll (llxtl)

-3_, _ 0
0

0 -A._ K (IIxlll

n

0

[llx6t

]

J 0

-1

_ 0 M F

(9)

III. Additional Design Based on LQR

Based on LQR theory 4, in general, the quadratic cost function is defined by
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,..oo T [

.I = ,.l (x Q x + u n U) dt (lo)

suhiect to the state equation of the system from equation (7)

X = AX + B U

The cost [unction, t, is minimizecl under tile optimal feedback control given by

II = - R BPX

where P is the positive clefinite solution of the sleady-state Riccati equation, which

is

I -I I

P A + A P- P B R B P + Q = 0 (12)

From cqualions (4) and (5), we find the control system properties not only

depend on the weighting matrices, Q and R, but also depend on the parameters of

the structure and the actuator locations. If the structural parameters are fixed, the

regulative range may be very limited for control design. It is possible that the

change of structural design parameters could extend the regulative range and make

113c control and strt_ctural design satisfy the mission requiremenls.

Now we consider a class of additional design parameters, Z, which could be

varied while we design the control system. This means the control, U, is now a

function of Q, R, Z and t. So the cost function, J, also is a function of Q, R and Z.

LIsing the extremum principle, assuming that Z* results in an extremum of the

system, we have as a necessary condition for the minimization of J

_j ( O, R Z)

_3z
z=z

= o (13)

#
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subject to some special control properties

_(X, Z. t )= gn (14)

where _ n is given from tile design (mission) rcquircrnents.

From equati,m (1 3), Z* is obtained, for special cases analytically, or, more

generally, bv numerical means. The extremum point, Z *, may be not unique: thus,

all extrernum points must be compared in order to find the point at which the

slr_Jetural performance is optimal, such as the minimization nf the total mass of the

structure. Then, the optimal value of the structural design parameters ma,,, be in-

corporated into the control design to obtain the optimal control.

In the given simple model (Fig. 1), for example, we may select the _ection

cliameter_, D and d, as the redesigned system variables and fix the transient re-

sponse time of the pitch motion of the beam. Using the feasible directions of the

search approach, the optimal values for the diameters would he obtained for the

given system moclcl and other parameters. For a different given model or parame-

ter values, the optimization solution would be expected to yield different results.

IV. Design Multicriteria

In the LQR process, the assignment of Q and R values normally results from

a step by step numerical search procedure. For actual LSS design, the interesting

properties are the required mass of the structure, the system response time for

clamping rigid motions, and suppressing vibration, as well as the maximum values

for the actuator Iorces, etc. A knowledge of the possible expected range of the

I_oundary conditions will be helpful in selecting the weighting matrices. Q and R.

For the combined control/structural optimal design, some design variables for both

the structure and actuators should be considered. According to these, the control/

structural design multicriteria for the system with additional design parameters, Z,

o8 ''



could be expressed by

,! (QR, Z) = _00 I"I x(z,t) QX_Z,_) +

!

U(Z,t) R IL!(Z,t) 1 dt (15)

(3,1 ( Q, R, Z)

/3Z
Z=Z

= O (16)

subject to

x(z,t) = ,_x(z) x(z,t) +B(Z) U(Z,t) (17)

_,g( X. Z, t ) = g o (l_q)

M(Z) < _1 max

lu z,t) l <_t,.,ox

flq)

(20)

where g n is a design requirement

M.,:,,< is tim limited mass of the structure

U,,,_>< is the vector of maximum actuator force

Z is a vector of time-invarient design parameters

When g 0' M.,.-)x, Um_,,<and the structural configuration arc given, we can

design the optimal structure, Z . and optimal control, ILl , using the additional

design formulation based on LQR techniques

4.9
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V. Numerical Analysis

\\"c have analxzccl and dcsignecl an orbiting free-free beam using this tech-

nique, with pitch and other in-plane flexible modes included as ctegrees of free-

dora (see Fig. 1). Here we consiclered two cases. Case 1 is a uniform solid beam

(inner diameter d=0). Case 2 is a uniform tubular beam whose wall thickness is

assumect constant (l)-d=0.0'4 ft). The material density of 200 lb/ft -_ , Young's

mochllu_ of 6E+g Ib/ft _ length of the beam of t30 ft and six actuator locations

are assumed equal for both cases. Also tile initial pitch angle, _, is assumed 6

clcttrces (0. 105 rad_ and the other initial state components and rates are assumed

zero. \Vithout losin_ general meaning, the weighting matrix, Q, is assunled coll-

gant _ and a cliag_mal matrix, that is

Q = trace [ 1000 ..... 1000, 100 ..... 100 ]
I v I I v )

11 11

and the weighting matrix, R, is assumed a unitary matrix multiplied by a variable

coefficient. By regulating the weighting matrix, R, the response time for the rota-

tional motion of the beam will satisfy the design requirement (here assumed ten

seconds}. Then the cost function values which depend on the diameter of the beam

can be calculated I_y the multicriteria given by equations (15")-(20).

First, we suppose the additional payload mass to be 100 lb and to be added

symmetrically to the beam at joints 2 and 4. Tile variation of the cost function with

the outer cliameter for the two cases is shown in Figs. 2 and 3. The first cost

function exlremum points for case 1 and case 2 are determined as D=0.'J,5 ft and

D=0.32 ft, respeclively. If the beam diameters at these points satisfy the mission

requirements, tile qructural design is optimal and so is the corresponding LQR

based control design. Otherwise, the structural configuration, actuator locations or

material properties should be changed. Comparing the two cases, we find the extre-

mum points to be different, such that the op-timal diameter for the solid beam is

larger than that of the tubular beam. In this situation, the solid beam is heavier than
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the tubular beam for the same required response time. According to the rninirnum

mass requirement for large space structural design, tile tubular beam may be much

better because its mass i_ rnuch less than that of the solid beam. From Fig. 2, we

also can imply that the system may contain an additional extremum point for the

cost function and its value rnay he less than the first extremum. If thi_ happens, the

first extrcmum point value of the diameter of the beam shoulcl be selected as the

optimal solution.

Second, we try to increase additional payload mass up to 1,000 Ib and still

maintain symmetry. There also exist extremum points (see Figs. 4 and 5), but the

diameter values c_rresponding to the extremum points differ from those when the

payload mass is 100 lb. Comparing Figs. 2 and 4, or Figs. 3 and 4, we find the

optimal diameter of the beam increases when the additional payload mass in-

creases. This result indicates that the optimal values of the structural parameters are

dependent on the payload added. Table 1 lists the optimal diameter values and

their payload ratio for the uniform solid and tubular beams with three different

payloacls: 100 lb. 200 Ib and 1,000 lb. It is clear that tile payload ratio of tile

tuhular beam is greater than that of the solid beam for the same control require-

ment (ten seconds of the transient response time). The payload ratio of the solid

beam decreases when the payload increases, but the payload ratio of the tubular

beam increases.

When additional payload masses are added asymmetrically with respect to

the center of the beam, there are no big differences between the cost functions for

the symmetric and asymmetric payloads (see Table 2). This may be explained by

tile fact that the incremental moment of inertia about the Z axis due to the payloacl

masses is designed to be the same for both the symmetrical and asymmetrical clistri-

bution of the additional payload. Thus for practical system design i( is probably

useful to emphasize the symmetrical distribution of the additional payload wherev-

er possible.

Figs. 6-9 provide the transient responses of pitch angle, two deformations,

and corresponding control torque and forces for the nearly optimized uniform

tubular beam (Fizz. 3). Here the outer diameter of the beam is 0.3 ft which is near

the optimal value The wall thickness is still maintained at 0,02 ft. The transient

4.11
(,_-:::"'_?:j.L ','/'.t;_E IS

OF F;3GR Q UALIT_/



response time of pitch anglc and all deformations are about ten seconds. Since the

additional payload masses on thc heam arc symmetrically distribulcd, the deforma-

tions at joints 4 and 5 are the same as the deformations at joints 2 and 1, respective-

Iv, hut their directions are opposite to each other. The maximum mrquerequired is

less than 5,0O0 ft-lb. All actuator forces are small and do not exceed 2,5 lb. If the

solid beam is used instead of the tubular beam, for optimization, the control system

requires 6,905 ft-lb maximum torque and 133 Ib maximum force, which are

lar_er than those for the tubular beam.

VI. Conclusion

This paper reviews the effect of additional design parameters on the LQR

based optimal design of space structural system. A multi-objective cost function

which includes a form of the standard LQR regulator cost and its partial variation

with respect to the additional design parameters is considered. The constraints are

extended to the desired control properties. The optimal multicriteria are derived by

minimizing the cost function and setting the variation of the cost function with

respect to Ihe design variables to zero. This approach is used to determine the

optimum cliameter of an orbiting free-free uniform beam with additional payload

masses added. From the numerical results for two design models--a uniform solid

beam and a uniform tubular beam, with two typical additional payloads added

symmetrically and asymmetrically about the center of the beam, it is found that the

optimal diameter occurs at the first extremum point of the variation of the cost

function with respect to the diameter. It is also found that the tubular beam is

superior to the solid beam for meeting both minimum mass requirements as well as

desired transient and control requirements. The study proves that the multicriteria

• _design approach should give better results from both the structural designer, and

the control designer's points of view.
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Table I' Comparison of Optimal Diameter and Payload Ratio of Uniform Solid

and Tubular Beams for Payloads: 100, 200 and 1,000 lb

Payloacl Diameter (ft) Payloacl Ratio

(Ib) Solid Tubular Solid Tubt_lar

lO0 0.45 0.32 2.4% 22%

20() 0.75 0.,.12 2.0% 3ct%

1,000 1.60 1.50 1.9% 30%

Table 2' Comparison of Cost Function Value Varied with Diameter, D, for Sym-

metric and Asymmetric Payloads (500 & 500 113;900 & 100 lb) for the Uniform

Solid and Tubular Beams

Diameter Solid Beam Tubular Beam

[') Jsym Jasyrn J_ym Jasym

1 3 30.025 30 02a 34.437 34,530

14 28.902 28 901 33.939 33.937

15 27.525 27 524 33.845 33.843

16 26.505 26 504 33.856 33.853

17 27.942 27 941 33,865 33.863

18 29.152 29 151 33.875 33.873

19 30.778 30.777 33.885 33.883
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V. CONCLUSIONS AND RECOMMENDATIONS

Pcntryagin's maximum p:-inclple has been applied to study the

Yapid _lewing of the SCOLE orbltal configuration in three

dlnensi:,n£. The quasil,nearlzatlcn technique for solving the

resul-ing noriinear two poLnt boundary v_lue problem, has been

suc_:e_fully use_: for _eve1al different examples. The L-esults

=ndlca[e chat the linearized system n_odel c_n represent the

nonlinear system adequately for simulatlng the major motions, but

not as well for :he sec>ndary motions. The nonline__c quadratlc

celms ._f the m_i< body (Shuttle) angular velocity can not be

negie_,_ted for ia/ge-ampiitude rapid maneuvers. The differen_ces

heCween -_he L-lClJ a_d flexible nonlinear system responses are

sma!_ because the fiex_ble vibrazions are successfully suppressed

during the maneuvers simular_ed here.

In addition it is seen that the structural offset of the

SCOLE mast attachment to the reflector is associated with a first

order nonlinear effect. The mast shortening is associated with

c_._ly { second ]rder nonlinear effect and should be considered

when the mast deformations are outside of the lienar range.

Gravitatlonal-gradient effects may be safely neglected for all

rapid slew maneuvers considered.

For further research it is recommended to e×tend the

applic_tion of the maximum principle and the two point boundary

value problem to more complicated systems proposed for the future

CSI program.

A multi-ob3ective cost function which includes a form of the

standard LQ_ regulator cost and its partial variation with
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respect to additional design parameters is s.'.udied here. Thls

approach can be employed to determzne the optimal diameter of a

free-fzee orb_tlng uniform beam wzth additional payload ma_ses

added when c:,nstca__n_s are placed on the maximum total mass,

::ontroi satur_tz>n levels, and transient settllng times. Th_

st'Lldy p_-oves tha-: the multicrzteria design approach should

prod[ice supe,_ior results as compared with combinations of

{epaYate structu,:al and control system design approaches.

E:<tensicns are r_commended to ::Insider more complex systems

represe1:tat_ve 7_f proposed candzdate CSI systems.

The current _1990-?I) grant work has been redirected to lend

greate: _ support _:o the C3ntrols/Structures Interaction (CSI)

program and focuses on specific CSI evolutionary config_rations.
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