HIGH VARIABLE MIXTURE RATIO* OXYGEN/HYDROGEN ENGINE

C. M. Erickson, W. H. Tu, A. H. Weiss Rockwell International/Rocketdyne Division Canoga Park, California 91303

ABSTRACT

The ability of an $0_2/H_2$ engine to operate over a range of high-propellant mixture ratios previously has been shown to be advantageous in single stage to orbit (SSTO) vehicles. This paper presents the results of the analysis of high-performance engine power cycles operating over propellant mixture ratio ranges of 12 to 6 and 9 to 6. A requirement to throttle to 60% of nominal thrust was superimposed as a typical throttle range to limit vehicle acceleration as propellant is expended. The object of the analysis was to determine areas of concern relative to component and engine operability or potential hazards resulting from the unique operating requirements and ranges of conditions that derive from the overall engine requirements.

The SSTO mission necessitates a high-performance, lightweight engine. Therefore, staged combustion power cycles employing either dual fuel-rich preburners or dual mixed (fuel-rich and oxygen-rich) preburners were examined.

Engine mass flow and power balances were made and major component operating ranges were defined. Component size and arrangement were determined through engine layouts for one of the configurations evaluated. Each component is being examined to determine if there are areas of concern with respect to component efficiency, operability, reliability, or hazard. The effects of reducing the maximum chamber pressure were investigated for one of the cycles.

INTRODUCTION

The approach taken in this effort was to first select two highperforming engine cycles potentially capable of meeting SSIO mission requirements. The configurations selected for analyses were both LOX/ LH2 staged combustion cycle engines. A dual fuel-rich preburner engine and a dual mixed (fuel-rich and oxygen-rich) preburner were evaluated.

After selection of the cycles to be analyzed, operating ranges were defined and technology ground rules and limits established. In all cases studied, the on-design vacuum thrust at maximum mixture ratio (MR) was set at 580 Klbf and off-design vacuum thrust at 348 Klbf

471

^{*}Work reported herein was sponsored by NASA MSFC under Contract NAS8-36869.

(60% NPL). Dual-bell or two-position extendable nozzles were assumed in all cases in order to provide high-vacuum and sea-level performances. Nozzle expansion ratios for altitude operation were established for each engine by fixing the one-dimensional exit (ODE) pressure at 1.33 psia. This value is equal to the ground rule which was in effect for the Space Transportation Main Engine (STME) at the initiation of this study. Current technology limits were adopted and are summarized in Table 1.

The first step in the analysis of each of the cycles was to generate an on-design engine balance at the high mixture ratio maximum thrust condition. This was done by exercising Rocketdyne's Booster Engine Optimization and Design computer program. Outputs from this code provide a power and mass balance within the allowable ground rules and technology limits for a given engine as described in an input file. In addition to top level data such as performance, envelope, and weight, this code provides a description of the engine in sufficient detail (combustor geometry, turbopump speeds and dimensions, etc.) to allow individual component analyses.

After generating the on-design engine balances for the candidate configurations, operation at the reduced MR and thrust conditions was then determined through the use of Rocketdyne's Booster Engine Off-Design Engine Model. The output from the on-design optimization code is used as an input to the off-design model. The off-design model then calculates the various system resistances for the propellant lines, coolant circuits, etc. and generates performance maps for the pumps and turbines. Then, by varying the engine control valve positions/resistances, the off-design code balances the engine at the requested operating condition, if a balance is achievable. As with the on-design code the off-design model output provides detailed information such as turbopump speeds and efficiencies. In addition, the main combustion chamber (MCC) and preburner injection pressure drops are calculated.

	· · · · · · · · · · · · · · · · · · ·
Turbine Inlet Temperature, R	1600
Bearing DN, MM*RPM	No Limit (Hydrostatic)
Turbine Annulus Area*N**2 [(IN*RPM)**2]	8.0 E10
Turbine Pitch-Line Velocity, ft/sec	1600
Maximum Number of Pump Stages	4
Minimum Injection Pressure Drop, %	10% of Pc (P/B or MCC)

Table 1. Ground Rules and Technology Limits

In many instances, an iterative approach was required in that off-design operation predicted injector pressure drops that were too low for combustion stability requirements. In these cases, it was necessary to go back to the on-design model and start over again. By increasing the injection pressure drops at full-thrust/high-mixture ratio operation, sufficient delta p (ΔP) at off-design operation was attained for combustion stability.

DUAL FUEL-RICH PREBURNER CYCLE

The first cycle analyzed was the dual fuel-rich preburner configuration with an on-design vacuum thrust of 580 Klbf and mixture ratio of 12.0. A schematic of this engine is provided in Figure 1. This engine incorporated a LOX boost pump to minimize the LOX main pump size and a LOX kick pump to raise the preburner LOX to the elevated pressures required. The use of the kick pump conserves turbine power requirements by taking advantage of the two pressure levels occurring on the LOX side of the cycle and ultimately increases achievable chamber pressure and performance. A four-stage fuel pump, single-stage LOX pump, and two-stage turbines are used. Six valves are incorporated in this configuration of which four are employed as control elements. Parallel flow hydrogen cooling circuits were used to provide optimum thrust chamber assembly cooling.

Figure 1. Dual Fuel-Rich Preburner Cycle

Results of the iterative on-design, off-design, on-design procedure described above provide an engine with a chamber pressure of 2590 psia and nozzle expansion ratio of 170, delivering a vacuum specific impulse of 415.1 sec. A regeneratively cooled nozzle configuration to an epsilon of 55 with a dump-cooled extension to 170 and a 300-lb extension mechanism were incorporated. This resulted in an overall engine weight of 7210 lb. The engine length is 254 in. with a nozzle exit diameter of 151 in. A side view and top view of the engine layout for this configuration is provided in Figures 2 and 3, respectively.

Figure 2. Dual Fuel-Rich Preburner Engine Layout, Side View

Figure 3. Dual Fuel-Rich Preburner Engine Layout, Top View

T

Off-design balances were generated for this engine at 348-Klbf (60% nominal) thrust at mixture ratios of 12.0, 10.0, 8.0, and 6.0. Critical parameters for these balances including injection pressure drops are summarized in Table 2. At the end point with MR = 6.0, the chamber pressure is down to 1767 psia, but vacuum Isp up to 462.5 sec due to the more optimal MR.

Table 2. Dual Fuel-Rich Preburner Engine

F _{vac} = 580 Klbf,	Operating Parameters , Length = 254 in., Diameter = 151 in., Weight = 7210 lb				
	F = 580	F = 348	F = 348	F = 348	F = 348
	MR = 12	MR = 12	MR = 10	MR ≠ 8	MR = 6
	on	off	off	off	off
	Design	Design	Design	Design	Design
Pc, psia	2590	1554	1625	1696	1767
Isp (VAC) $\epsilon = 170$ sec	415.1	410.9	429.9	447.1	462.5
Isp (SL) $\epsilon = 55$ sec	294.8	291.6	309.4	326.5	341.2
PNOZ exit, psia	1.32	0.79	0.72	Q.64	0.55
M PROP, 1b/sec	1397.4	847.0	809.6	778.4	752.4
M H ₂ , 1b/sec	1289.9	781.8	736.1	691.9	644.9
M O ₂ , 1b/sec	107.5	65.2	73.6	86.5	107.5
M COMB COOL, 1b/sec	53.7	32.6	36.8	43.2	53.8
P COMB COOL IN, psia	8121	4268	4783	5507	6408
Q COMB, Btu/sec	59317	38767	44394	48034	49687
T COMB OUT, °R	419	403	411	396	403
ΔP COMB, psid	678	391	467	560	670
M̂ _{NOZ} COOL, 1b/sec	53.7	32.6	36.8	43.2	53.8
PNOZ COOL IN, 1b/sec	7511	4298	4810	5522	6409
QNOZ, Btu/sec	102134	66729	76554	82878	85701
TNOZ OUT, °R	641	632	644	608	628
ΔPNOZ, psid	68	42	49	58	67
MCC H ₂ ΔPinj/Pc % MCC HOT GAS ΔPinj/Pc % MCC O ₂ ΔPinj/Pc % FPB H ₂ ΔPinj/Ppb % FPB O ₂ ΔPinj/Ppb % OPB H ₂ ΔPinj/Ppb %	10.0 34.5 10.0 40.8 10.0 40.8	7.9 10.0 22.0 12.2 12.2 13.5 9.8	8.9 10.0 18.5 12.1 15.1 17.7 5.2	10.2 10.0 15.6 11.4 19.5 23.3 1.5	12.0 10.0 13.1 10.4 24.4 45.3 DNA

Dxygen flow is down to half of on-design while the hydrogen flow is the same due to the competing effects of decreased thrust and decreased MR. Combustor and nozzle heat loads are down considerably due to the lower Pc, while coolant pressure drops are relatively unchanged due to the equal coolant flow rates. In order to maintain acceptable injection pressure drops $(\Delta P_{inj} > 10\% P_c)$ at the off-design condition, relatively high oxidizer injection pressure drops were required at on-design operation. These stability-dictated requirements result in high pump exit pressures for a moderate chamber pressure. Without a more complex system such as multiple parallel preburners or variable geometry injection orifices, these pressure drops are a necessity.

As mentioned above, four control valves were required to transition from on-design operation to the MR = 6.0 and low thrust. The main fuel valve (MFV) and fuel preburner fuel valve (FPBFV) are simply on/off valves. At the reduced thrust level and lowest MR of 6.0, the oxidizer flow and pump exit pressure are so drastically reduced, relative to on-design, that the oxidizer turbine power requirement is low enough to run in an expander mode. At this operating condition, the oxidizer preburner valve (OPBOY) is closed completely and the coolant hydrogen heated to 515°R in the coolant circuits powers the oxidizer turbine without supplemental combustion in the preburner.

In addition, to obtain a power balance at MR = 6.0, the fuel preburner oxidizer valve (FPBOV) and oxidizer preburner valve (OPBFV) positions are opened and the main oxidizer valve (MOV) closed down. A summary of the valve pressure drops, resistances, and normalized resistances (relative to on-design) is provided in Table 3.

	F = 580 K	F = 348 K			
	MR = 12	MR = 12	MR = 10	MR = 8	MR = 6
	ON-D	OFF-D	OFF-D	OFF-D	OFF-D
- MEV ΔP psid MEV RES sec2/in.5 MEV R/RDES	259 0.2531 E-03 1.0	100 0.2531 E-03 1.0	126 0.2531 E-03 1.0	172 0.2531 E-03 1.0	238 0.2531 E-03 1.0
MOV ΔP psid	259	99	87	76	485
MOV RES sec2/in.5	0.7112 E-05	0.7112 E-05	0.7112 E-05	0.7112 E-05	5.250 E-05
MOV R/RDES	1.0	1.0	1.0	1.0	7.4
FPBFV ΔP psid	599	363	404	442	479
FPBFV RES sec2/in.5	0.1484 E-03				
FPBFV R/RDES	1.0	1.0	1.0	1.0	1.0
FPBOV ΔP psid	1197	1592	1113	326	50
FPBOV RES sec2/in.5	0.2873 E-01	0.2585	0.1293	0.2520 E-01	6.191 E-04
FPBOV R/RDES	1.0	9.0	4.5	0.88	2.15 E-02
OPBFV ∆P psid	599	391	535	737	277
OPBFV RES sec2/in.5	0.8178 E-03	0.8178 E-03	0.8178 E-03	0.8178 E-03	1.510 E-04
OPBFV R/RDES	1.0	1.0	1.0	1.0	0.18
OPBOV AP psid	1197	1737	1780	1754	DNA
OPBOV RES sec2/in.5	0.1584	0.1979 E-01	0.3642 E-01	0.1214 E-02	CLOSE
OPBOV R/RDES	1.0	12.5	23.0	76.6	∞

Table 3. Dual Fuel-Rich Preburner Engine Valve Parameters

Details of the turbine and pump operations are provided in Table 4. In comparing the two end points, the hydrogen turbomachinery is not extremely far off-design during MR = 6.0 operation, whereas the oxygen turbopumps operate far from on-design. Pump performance maps in the form of head versus flow plots are provided in Figures 4 through 6. Lines of constant pump speeds and efficiencies are cross plotted. The on-design and off-design operating points are plotted on these maps. The fuel main pump does not experience overly demanding off-design operation, particularly if only the end points are considered. Even the oxygen main pump does not pose an excessively demanding operating range in that it is throttling over a reasonable Q/RPM range. However the oxygen kick pump may experience stability problems during off-design operation since it is required to operate in the "positive slope" region of the performance map. A possible solution to this situation is recirculation of a portion of the LOX. In this manner, the operating point is shifted to the right on the map and into the stable negative slope region. The details are being investigated through an in-depth component analysis.

Figure 5. Variable MR Ox. Main Pump Map

Figure 6. Variable MR Ox. Kick Pump Map

ORIGINAL PAGE IS OF POOR QUALITY

	F = 580 MR = 12 ON-D	F = 348 MR = 12 OFF-D	F = 348 MR = 10 OFF-D	F = 348 MR = 8 OFF-D	F = 348 MR = 6 OFF-D
H ₂ Turbine					
Power, hp	74976	23493	30189	41440	60208
N, rpm	33780	23575	25411	27866	30850
ņ	70.2	65.5	65.6	66.2	67.8
M, 1b/sec	107.3	56.7	63.4	/3.4	85.5
Cp, Btu∕lb T:. °R	2.386 1600	2.651 1210	2.497 1217	2.475 1316	2.585 1327
ייחרי י	1 378	1.374	1.391	1.390	1.390
1 P R	2,101	1.734	1.868	2.076	2.358
Pin, psia	5987	2964	333 9	3875	4572
Pout, psia	2849	1710	1788	1866	1944
02 Turbine					
Power, hp	27692	8214	8260	8054	9372
N, rpm	19100	13054	13169	13128	14000
ή	60.9	58.6	59.9	61.1	62.3
Å, 1b∕sec	45.7	24.1	26.5	30.4	39.9
Cp, Btu/lb	2.386	2.750	3.001	3.266	3.646
¹ in, ^{°R}	1600	1113	907	685	515
Y	1.378	1.378	1.385	1.390	1.402
PR	2.101	1.695	1.688	1.692	1.705
P _{in} , psia	5987	2897	3018	3157	3314
Pout, psia	2849	1710	1788	1866	1944
H ₂ Pump			00107	43.400	60000
Power, hp	74976	23493	30187	4 4 4 3 8	60208
ກ ສຳນະ (ກາງ	/1.2	70.0	/0.0	/1.2	11.0
M, ID/Sec	107.5	6255	73.0	00.5 9794	107.5
V, gpm R. psia	24 5	24 5	24 5	24 5	24 5
^r in, ^{psia}	24.5	4622	5200	6116	7120
Pout, psia	00/0	4332	J200	0110	1123
LOX Main Pump	24740	7526	7541	7316	8455
rower, np	80 7	79.7	78.3	76.8	72.0
M lh/sec	1290	782	736	692	645
	8128	4927	4637	4360	4064
P:, psia	47	47	47	47	47
Pout, psia	4261	2136	2230	2257	2615
LOX/Kick Pump					
Power, hp	2943	685	719	743	917
η	39.5	31.7	32.7	34.5	35.5
Å, lb∕sec	56.2	21.4	22.7	22.9	27.8
Q, gpm	354	135	143	144	175
P _{in} , psia	4261	2136	2230	2257	2615
Pout, psia	9886	4960	5007	4993	5800

Table 4.	Dual	Euel-Rich	Preburner	Engine	Turbomachiner	/ Parameters
----------	------	-----------	-----------	--------	---------------	--------------

The relatively high pump exit pressures experienced in this engine may adversely affect reliability and life of the turbopumps. Lower chamber pressures can alleviate this potential problem. In order to quantitatively establish the effect of chamber pressure upon pump exit pressures, a parametric scan was generated for on-design Pc's ranging from 2590 down to 1700 psia. Results of this effort are presented in Figures 7 through 10. By decreasing the on-design Pc from 2590 to 2300 psia, the vacuum Isp drops only 3 sec while the LOX kick pump exit pressure drops from 9890 to 6680 psia and the LH2 main pump exit pressure drops from 8900 to only 6250 psia.

Figure 7. STME Variable MR Isp vs. Pc

ORIGINAL PAGE IS OF POOR QUALITY The operating parameters of the preburners are summarized in Table 5. Comparing the end points reveals that the fuel preburner does not operate extremely far from on-design. In the oxidizer preburner, however, the oxygen flow is completely shut off at the extreme end point and simply provides a flow path for the heated hydrogen into the oxidizer turbine. As with the turbomachinery, detailed components analyses are being conducted for the combustion devices.

	F = 580 MR = 12 ON-D	F = 348 MR = 12 OFF-D	F = 348 MR = 10 OFF-D	F = 348 MR = 8 OFF-D	F = 3 48 MR = 6 OFF-D
Fuel Preburner PRES, psia MTO1, lb/sec MO2, lb/sec MH2, lb/sec MR IEMP, °R	5987 107.3 39.4 67.9 0.581 1600	2964 56.7 15.5 41.2 0.376 1210	3339 63.4 18.3 45.1 0.407 1277	3875 73.4 22.5 50.9 0.442 1316	4572 85.5 27.8 57.7 0.481 1327
Ox. Preburner PRES, psia MTOI, 1b/sec MO2, 1b/sec MH2, 1b/sec MR TEMP, °R	5987 45.7 16.8 28.9 0.581 1600	2897 24.1 5.9 18.2 0.321 1113	3018 26.5 4.4 22.1 0.198 907	3157 30.4 2.4 28.0 0.080 685	3314 39.9 0 39.0 0 515

Table 5. Dual Fuel-Rich Preburner Engine Preburner Parameters

MIXED PREBURNER CYCLE

Similar analyses were conducted for the dual mixed preburner cycle. A schematic of this cycle is presented in Figure 11. In this configuration the hydrogen turbine is driven by fuel-rich combustion gas but the oxidizer turbine is powered by oxygen-rich combustion gas from an oxidizer-rich preburner. The advantage of this approach is that more total drive gas is available to the turbines than in the dual fuel-rich preburner cycle. With more mass flow to power the turbines, lower pressure ratios are required enabling higher chamber pressures and performance. In addition, the oxidizer-rich gas obviates the need for an inter-propellant seal on the oxidizer turbopump.

The combustor is cooled with hydrogen as in the dual fuel-rich cycle, but, for this configuration, the nozzle is oxygen cooled. The heating of the oxygen in the nozzle cooling circuit minimizes the hydrogen required in the oxidizer-rich preburner. Due to the low heat capacity of the oxygen, this configuration was unable to operate in an expander mode on the oxidizer side of the cycle at low thrust and mixture ratio. Therefore, combustion in the oxidizer preburner is still required at the off-design end point. Since nearly all the propellants are pumped up to the high pressure required in the preburners, there is no advantage to a kick pump in this cycle.

L

Figure 11. Mixed PBs Staged Combustion Cycle

The on-design engine balance for the mixed preburner cycle achieved a chamber pressure of 2815 psia. The delivered vacuum impulse was 417.1 sec at 580 Klbf thrust and MR of 12 with a nozzle expansion ratio of 180. As explained above, the mixed preburners allowed an increase in Pc (+225 psid) and performance (+2.0 sec) over the dual fuel-rich preburner configuration. The off-design end point at MR = 6 and 348-Klbf thrust also reflects this advantage providing 2.4 sec more vacuum Isp at a Pc 145 psid higher than the dual fuelrich preburner engine.

Four control valves are required to execute the transition down in thrust and MR. The resistance ranges required of these control elements are all within acceptable ranges.

A summary of all the pertinent engine parameters is provided for both the on-design and end point off-design operating conditions in Table 6. In addition, the pump performance maps for the main pumps are presented in Figures 12 and 13. As with the dual fuel-rich preburner cycle, detailed component analyses are being conducted to verify the feasibility of operating over this range.

The effect of reducing the range over which the MR is required to shift was also investigated for the dual mixed preburner cycle. In this effort, the range was reduced to 9.0 to 6.0. The same thrust reduction as in the previous engines was retained, however. The major impact of this change was an increase in the vacuum Isp at the on-design operation with MR = 9.0. An increase of 25.1 sec relative to the dual fuel-rich preburner case was observed, primarily due to the more advantageous MR. The engine operating parameters are provided in Table 7 and pump performance maps in Figures 14 and 15.

Table 6. LOX/H₂ Mixed PBS SC Engine Parametrics (12.0 > MR > 6.0)

	1 01	I OFF	I ENGINE PARAMETER DESCRIPTION	1 08	0.57
ENGINE PARAMETER DESCRIPTION	DESIGN	DESIGN		DESIGN	DESIGN
		140.00	**************************************		
ENGINE VACUUM THRUST (KLB)	504.76	262.05	HIGH PRESSURE OXID TURBINE (CONTINUED)		
THE THE VERY LEVEL THRUST (RED)	417.11	464.89			
ENGINE SEA LEVEL ISP (EPS=55) (SEC)	363.00	350.07	SHAFT SPEED (RPH)	13739.	15398.
CHAMBER PRESSURE (PSIA)	2815.16	1911.84	FLOWRATE (LB/SEC)	914 74	82.01 497 15
ENGINE MIXTURE RATIO (0/F)	12.00	6.000	PRESSURE RATIO (NONE)	1.659	2.570
ENGINE FUEL FLOWRATE (LB/SEC)	1281.57	641.63	PITCH LINE VELOCITY (FT/SEC)	1172.6	1314.2
ENGINE OXIDIZER FLOWRRIZ (LD) DEC.			PITCH DIAMETER (IN)	19.55	19.55
COMBUSTOR COOLANT FLOWRATE (LB/SEC)	106.96	106.94	INLET TEMPERATURE (DEG-R)	1600.00	1598.35
COMBUSTOR COOLANT DELTA-P (PSID)	823.27	771.70	OUTLET TEMPERATURE (DEG-R)	1456.02	1332.03
COMBUSTOR HEAT INPUT (BTU/SEC) 58827.	46904.	INLET PRESSURE (PSIA)	5136.76	5405.38
COMBUSTOR JACKET OUTLET PRESSURE (PSIA)	284.72	263.01	GAS SPECIFIC REAT (BTU/LB-R)	0.278	0.300
CORBUSION SACKET COLLET TELET. (DEC 14)			GAS SPECIFIC HEAT RATIO (NONE)	1.312	1.312
NOZZLE COOLANT FLOWRATE (LB/SEC)	1283.57	641.63	GAS MOLECULAR WEIGHT (LB/LB-MOLE)	30.14	30.141
NOZZLE COOLANT DELTA-P (PSID)	387.76	87.800			
NOZZLE HEAT INPUT (BTU/SEC	103152	82368.	FUEL PREBURNER		
NOZZLE JACKET DUTLET PRESSURE (PSIA)	463 80	184.96	PRESSURE (PSIA)	5136.76	4355.61
NUZZLE JACKET OUTLET TELFT. (DEG K)	103.00		GAS TEMPERATURE (DEG-R)	1600.0	1070.48
MAIN FUEL INJECTOR DELTA-P (PSID/% P) 282/10	291/15.2	GAS FLOWRATE (LB/SEC)	139.20	121.09
MAIN GAS INJECTOR DELTA-P (PSID/% P	282/10	191/10	FUEL FLOWRATE (LB/SEC)	87.99	91.372
MAIN OXIDIZER INJECTOR DELTA-P (PSID/* P	1 1284/25	1300/30	CAS MIXTURE RATIO (NONE)	0 582	0 375
FUEL PS FUEL-INJECTOR DELTA-P (PSID/ P)	2096/41	640/14.7			0.525
OXID PB FUEL-INJECTOR DELTA-P (PSID/1 P) 1284/25	328/6.1	OXID PREBURNER		
OXID PE OXID-INJECTOR DELTA-P (PSID/% P	2096/41	518/9.6			
	1		PRESSURE (PSIA)	5136.76	5405.38
HIGH PRESSURE FUEL PUMP	1	1	GAS TEMPERATORE (DEG-R)	934 74	487.351
I OF STACKS (NDNE)	4		FUEL FLOWRATE (LB/SEC)	8.34	4.347
PUMP SPEED (RPS)	33822.	32513.	OXIDIZER FLOWRATE (LB/SEC)	926.40	483.007
PUMP INLET PRESSURE (PSIA)	24.50	24.50	GAS MIXTURE RATIO (NONE)	111.012	111.120
PUMP DISCHARGE PRESSURE (PSIA)	8884.	8082.4		1	
PUMP FLOW RATE (LB/SEC	106.96	106.94	CONTROL VALVE	1	
PUMP EFFICIENCE (FERCEN	74502.	67858.	MAIN OXIDIZER VALVE		
PORP HORSEFORER (III)				1	
NIGH PRESSURE OXID PUMP		1	DELTA-P (PSID)	4130.5	10522.2
		1	FLOW RESISTANCES (SEC**2/IN**5)	117E-2	1.87E-2
OF STAGES (NONE)	2	2	FFECTIVE FLOW AREA (IN+2)	1 05285	263212
PUMP SPEED (RPM)	13739.	15398.	EFF. FLOW AREA RATIO (A-ON/A) (NONE)	1.0	4.00
PUMP DISCHARGE PRESSURE (PSIA)	8929.	12818.			
PUMP FLOW RATE (LB/SEC	1283.57	641.63			
PUMP EFFICIENCY (PERCEN	79.20	54.89	FUEL PREBURNER OXIDIZER VALVE		
PUMP HORSEPOWER (HP)	52911.	54866.			
NICH PRESSURE FUEL TURBINE			DELTA-P (PSID)	1027.3	7649.0
			FLOW RESISTANCES (SECTO2/INTO)	1.0	24.4
TYPE (NONE)	REACTION	REACTION	EFFECTIVE FLOW AREA (IN**2)	.35154	.071167
OF STACES (NONE)	1	2	EFF. FLOW AREA RATIO (A-ON/A) (NONE)	1.0	4.94
KORSEPOWER (NP)	/4502.	6/858.			
EFFICIENCY (NONE)	76.91	74.59	OXIDIZER PREBURNER FUEL VALVE	1	
FLOWRATE (LB/SEC	139.20	121.09	DELTA-P (PSID)	513.7	655.6
PRESSURE RATIO (NONE)	1.659	2.071	FLOW RESISTANCES (SEC**2/IN**5	.1292-1	.645E-1
PITCH LINE VELOCITY (FT/SEC	1649.7	1585.9	RESISTANCES RATIO (R/R-ON) (NONE)	1.0	5.00
TNLFT TEMPERATURE (DEG-RI	1600.00	1070.48	EFFECTIVE FLOW AREA (IN**2)	. 316467	.1412.9
OUTLET TEMPERATURE (DEG-R)	1441.04	926.02	EFF. FLOW AREA RATIO (A-ON/A) (NONE)	1.0	4.24
INLET PRESSURE (PSIA)	5136.76	4355.61	OXIDIZER PREBURNER OXIDIZER VALVE	1	
OUTLET PRESSURE (PSIA)	3096.68	2103.01			
GAS SPECIFIC HEAT (BTU/LB-R	2.381	2.743	DELTA-P (PSID)	1027.0	6720.4
GAS MOLECULAR WEIGHT (LR/LR-MO	E) 3-188	2.672	FLOW RESISTANCES (SEC**2/IN**5)	1.0	26.5
			FFFECTIVE FLOW AREA (IN**2)	6.3526	1.23408
HIGH PPESSURE OXID TURBINE	1	1	EFF. FLOW AREA RATIO (A-ON/A) (NONE)	1.0	5.15
TYPE	BELOWIAN	BELCHTON			
I OF STAGES (NONE)	2	2	11	1	
NORSEPOWER (HP)	52911.	54868.			
		L		1	0.4050.40

C4859-16

OF PRER QUALITY

1

Table 7. LOX/H₂ Mixed PBS SC Engine Parametrics (9.0 > MR > 6.0)

ENGINE PARAMETER DESCRIPTION		ON DESIGN	OFT DESIGN	ENGINE PARAMETER DESCRIPTION		ON DESIGN	OFF DESIGN
					- <u>-</u>		
ENGINE VACUUM THRUST ENGINE SEA LEVEL THRUST	(KLB) (KLB)	580.00 500.39	348.00 259.35	BIGR PRESSURE OXID TURBINE (CONTINUED)		
ENGINE VACUUM ISP (EPS=156) ENGINE SEA LEVEL ISP (EPS=55)	(SEC)	380.00	344.36	SHAFT SPEED	(RPM)	12607.	11983.
CHAMBER PRESSURE	(PSIA)	2856.70	1814.29	EFFICIENCY	(NONE)	79.96	82.04
ENGINE MIXTURE RATIO	(0/F)	9.000	6.000	FLOWRATE	(LB/SEC)	902.68	488.215
ENGINE FUEL FLOWRATE	(LB/SEC)	131.68	107.59	PRESSURE RATIO	(NONE)	1.630	1.741
ENGINE OXIDIZER FLOWRATE	(LB/SEC)	1185.12	645.54	PITCH LINE VELOCITY	(17)	20,491	20.493
COMBUSTOR COOLANT FLOWRATE	(LB/SEC)	131.68	107-59	TNLET TEMPERATURE	(DEG-R)	1600.00	1597.27
COMBUSTOR COOLANT DELTA-P	(PSID)	852.52	519.00	OUTLET TEMPERATURE	(DEG-R)	1459.88	1435.43
COMBUSTOR HEAT INPUT	(BTU/SEC)	58742.	39209.	INLET PRESSURE	(PSIA)	5120.91	3475.40
COMBUSTOR JACKET OUTLET PRESSUR	E (PSIA)	7198.9	4576.0	OUTLET PRESSURE	(PSIA)	3142.37	1995.74
COMBUSTOR JACKET OUTLET TEMP.	(DEG-R)	257.72	229.65	GAS SPECIFIC HEAT	(BTU/L8-R)	0.2/8	1 112
NOTTLE CONTANT FLOWBATE	(TR/SEC)	1185 12	645 54	GAS MOLECULAR WEIGHT	(LB/LB~MOLE)	30.140	30.143
NOZZLE COOLANT DELTA-P	(PSID)	400.81	99.500		·		
NOZZLE HEAT INPUT	(BTU/SEC)	103334.	68914.	FUEL PREBURNER			
NOZZLE JACKET OUTLET PRESSURE	(PSIA)	8234.42	8843.0				
NOZZLE JACKET OUTLET TEMP.	(DEG-R)	482.57	369.36	PRESSURE	(PSIA)	3600 0	1077 84
MATH THEY INTEGTOD DELTA-D	(DSTD/B Pc)	286/10	182/10	GAS FLOWRATE	(LB/SEC)	179.67	123.952
MAIN FUEL INJECTOR DELIA-F	(PSID/1 Pc)	286/10	181/10	FUEL FLOWRATE	(LB/SEC)	110.43	92.215
MAIN OXIDIZER INJECTOR DELTA-P	(PSID/% Pc)	286/10	281/15.5	OXIDIZER FLOWRATE	(LB/SEC)	69.24	31.737
FUEL PB FUEL-INJECTOR DELTA-P	(PSID/1 PB)	1280/25	814/25.	GAS MIXTURE RATIO	(NONE)	0.627	0.344
FUEL PB OXID-INJECTOR DELTA-P	(PSID/1 PB)	2089/41	367/11.3				
OXID PB FUEL-INJECTOR DELTA-P	(PSID/% PB)	1280/25	341/9.8	OXID PREBURNER			
OXID PB OXID-INJECTOR DELTA-P	(PSID) (PD)	2089/11	511/18	PRESSURF	(PSIA)	5120.91	3475.40
HIGH PRESSURE FUEL PUMP				GAS TEMPERATURE	(DEG-R)	1600.0	1597.27
				GAS FLOWRATE	(LB/SEC)	902.68	488.215
# OF STAGES	(NONE)	4	4	FUEL FLOWRATE	(LB/SEC)	8.059	4.351
PUMP SPEED	(RPM)	30501.	24458.	OXIDIZER FLOWRATE	(LB/SEC)	111.012	111.204
PUMP INLET PRESSURE	(PSIA)	24.50	6405 77	GAS FIATORE RATIO	(110112)		
PUMP DISCHARGE PRESSURE	(LB/SEC)	131.68	107.59	CONTROL VALVE			
PUMP EFFICIENCY	(PERCENT)	71.10	71.07				
PUMP HORSEPCWER	(HP)	92042.	48025.	MAIN OXIDIZER VALVE			
				55173 B	(PCTD)	4107.1	6666.7
HIGH PRESSURE OXID PUMP				DELTA-P TION DESISTANCES	(SFC++2/IN++5)	.211E-2	1.20E-2
4	()(0)(T)			RESISTANCES RATIO (R/R-ON)	(NONE)	1.0	5.70
POP STAGES	(NUNE)	12607	11983	EFFECTIVE FLOW AREA	(IN++2)	.782818	. 327836
PUMP INLET PRESSURE	(PSLA)	47.00	47.00	EFF. FLOW AREA RATIO (A-ON/	A) (HONE)	1.0	2.39
PUMP DISCHARGE PRESSURE	(PSIA)	8920.90	9029.21				
PUMP FLOW RATE	(LB/SEC)	1185.12	645.54	FUEL PREBURNER OXIDIZER VAL	Æ		
PUMP EFFICIENCY	(PERCENT)	77.70	63.54				
PUMP HORSEPOWER	(HP)	49725.	31920.	DELTA-P	(PSID)	1024.0	5220.9
HIGH PRESSURE FUEL TURBINE				FLOW RESISTANCES	(SEC=2/1N=5) (NONE)	1.0	29.0
			1	EFFECTIVE FLOW AREA	(IN**2)	.487335	.090496
TYPE	(NONE)	REACTION	REACTION	EFF. FLOW AREA RATIO (A-ON/	A) (NONE)	1.0	5.39
I OF STAGES	(NONE)	1 2047	49034				
SHAFT SPEED	(RPH)	30501.	24458.	OXIDIZER PREBURNER FUEL VAL	VE.		-
EFFICIENCY	(NONE)	77.85	74.95	DELTA-D	(PSID)	512.1	683.0
FLOWRATE	(LB/SEC)	179.67	123.952	FLOW RESISTANCES	(SEC+2/IN++5)	.146E-1	.732E-1
PRESSURE RATIO	(NONE)	1.630	1.631	RESISTANCES RATIO (R/R-ON)	(NONE)	1.0	5.00
PITCH LINE VELOCITY	(FT/SEC)	1648.76	1322.14	EFFECTIVE FLOW AREA	(IN**2)	. 297437	.113018
PITCH DIAMETER	(050-9)	1600 00	1077 44	EFF. FLOW AREA RATIO (A-ON/	A) (NONE)	1.0	2.24
AUTIET TEMPERATURE	(DEG-R)	1444.92	976.68		TTA 1 175		
INLET PRESSURE	(PSIA)	\$120.91	3254.80	UXIDIZER PREBURNER OXIDIZER	17215		
OUTLET PRESSURE	(PSIA)	3142.37	1995.74	DELTA-P	(PSID)	1024.0	4854.5
GAS SPECIFIC HEAT	(BTU/LB-R)	2.335	2.708	FLOW RESISTANCES	(SEC**2/IN**5)	.328E-4	6.33E-4
GAS SPECIFIC HEAT RATIO	(NONE)	1.374	1.376	RESISTANCES RATIO (R/R-ON)	(NONE)	1.0	19.3
GAS MOLECULAR WEIGHT		3.281	4.710	EFFECTIVE FLOW AREA	(1N**2)	6.28597	4.39
HICH PRESSURE OXID TURBINE		I		EFF. FLOW AREA RATIO (A-ON/.	n) (NONC)	1.0	4.55
		1				1 1	
TYPE	(NONE)	REACTION	PEACTION				
V OF STAGES	(NONE)	49725	33526.				
BURSLEUWER	,	L		ll			
						С	4859-17

OF POOR QUALITY

Finally, the effect of reducing the oxidizer rich preburner temperature from 1600 to 1000 R was investigated for the mixed preburner cycle at MR = 9.0. This reduction in operating temperature may alleviate potential materials problems encountered in the oxidizer rich environment. The net effect of the decrease was a reduction in chamber pressure of 262 psia and a loss of 1.8 sec of vacuum Is. A summary of the top-level engine data for the two temperature conditions is provided in Table 8.

('vac	- 300 KTTB, PK - 3	.0)
	OPB Temperature 1600°R	OPB Temperature 1000°R
Is vac, sec	440.5	438.7
Is SL (E = 55), sec	380.0	372.2
Pc, psia	2857	2595
E	156	146
Weight, lb	7637	7707
Length, in.	223	226
Diameter, in.	140	142

Table 8. Effect of Lowered Oxidizer Preburner Temperature in Dual Mixed Preburner Cycle (Fvar = 580 Klfb, MR = 9.0)

CONCLUSIONS

The major conclusions arrived at in this study are:

- 1. System level analysis indicates the ranges of operation examined are feasible
- 2. Four control valves are required for both the dual fuel-rich preburner cycle and the mixed preburner cycle
- 3. All control valve resistance ranges required are reasonable
- 4. Transition to an expander cycle drive on the LOX side of the cycle at low MR operation in the dual fuel-rich preburner engine is observed
- 5. Further components analysis is required to verify feasibility.

5319e/slw