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ABSTRACT

OBJECT LOCALIZATION AND ITS APPLICATIONS

IN TELE-AUTONOMOUS SYSTEMS

by

Lejun Shao

Chairman: Richard A. Volz, Michael W. Walker

Object localization and its applications in tele-autonomous systems are studied in this

thesis.

The thesis first gives a thorough investigation of the object localization problem and

then presents two object localization algorithms together with the methods of extracting

several important types of object features. The first algorithm is based on line-segment to

line-segment matching. Line range sensors are used to extract line-segment features from

an object, the features may be boundary edges of planar surfaces, the axes of cylindrical

surfaces, conic surfaces, or other types of surfaces of revolution. The extracted features

are matched to corresponding model features to compute the location of the object. The

second algorithm is more general. The inputs of the algorithm are not limited only to



the line features. Featuredpoints (point-to-pointmatching)and featuredunit direction

vectors(vector-to-vectormatching)canalsobeusedasthe inputs of the algorithm,and

thereis noupper limit on the numberof the featuresinputed. The algorithmwill allow

theuseof redundantfeatures to find a better solution. The algorithm uses dual number

quaternions to represent the position and orientation of an object and uses the least

squares optimization method to find an optimal solution for the object's location. The

advantage of using this representation is that the method solves for the location estimation

by minimizing a single cost function associated with the sum of the orientation and position

errors and thus has a better performance on the estimation, both in accuracy and in speed,

than that of other similar algorithms.

The thesis discusses the difficulties when an operator is controlling a remote robot

to perform manipulation tasks. The main problems facing the operator are time-delays

on the signal transmission and the uncertainties of the remote environment. How object

localization techniques can be used together with other techniques such as predictor display

and time desynchronization to help to overcome these difficulties are then discussed. The

thesis discusses two cases where object localization can help: 1) the case where direct

manual control is used to perform a tele-manipulation task; 2) the case where the remote

system has certain degree of automation ability.
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CHAPTER 1

Introduction

1.1 Background

Until now, direct manual control or teleoperation has been the dominant technique to tele-

control the operation of a remote robot, in which all the intellectual inputs are from the

human operator in a control center distant from the workspace. The techniques have been

mainly applied to underwater operations and nuclear industry in circumstances hazardous

to human beings. There are many remote manipulators being used in nuclear industry

today [41].

Recently, research scientists have put great efforts to develop telerobotic technology for

space applications. NASA, in particular, has carried out considerable work in developing

telerobotic systems over recent years [4] [55], [65], [67l, [Sl]. The direct motivations have

been the Congress's legislation on the construction of a permanent Space Station which is

scheduled to be put into orbit in the middle of the 1990's; and the legislation that no less

than ten percent of the total Space Station costs must be used in developing automation

and robotics technology [27]. For this purpose, [84] has described an early view of NASA's

automation and robotics technology development program. The objective of the program

is to improve the productivity, capability, autonomy, and safety of future space missions.



Otherfactorsalsocontributed to the increasing research activity in this area such as the

strong desire to replace humans for the performance of hazardous, strenuous, or repetitive

tasks and so on. Several important types of tasks have been identified as the candidates

for telerobot applications, including: Space Station construction, maintenance on the

Space Station, remote satellite servicing etc. [84]. To achieve success in all the work just

mentioned, however, the present technology must be evolved from the current level to a

much higher level. According to Iyengar and Kashyap [60] the evolution of autonomy can

be described as the following four different levels with increasing intelligence and difficulty:

• teleoperation - direct manual control of the remote manipulator;

• telesensing, or telepresence - human operator will feel physically present at the remote site

by receiving remote sensing information.

• telerobotics, or supervisory control - the human operator acts merely as a supervisor, in-

termittently communicating to the remote system, giving suggestions, changing orders and

e_c.

• intelligent autonomous robots - the human operator supplies a single high-level command,

in response to which the robot does all the necessary tasks.

The technologies needed to reach the goal of intelligent autonomous robots have been

identified. Among other things, such as real-time path planning, the design of dexterous

manipulator, adaptive control, etc., the vision capability is definitely a very important one.

The research under this category includes the recognition, localization and the inspection

of objects, optimal sensor configuration, e.g., sensor mounting requirements, hierarchical

sensing with varying degree of coarseness, integration of sensing data, the development of

high-speed and high-quality sensing hardware and software, etc.. The object localization

problem is the topic of this thesis.

Object localization refers to the problem of determining the location (position and

orientation) of a known object in three dimensional space. Before a manipulator can

do any operation on an object, either grasping the object, or inserting the object into



anotherone, the manipulator must know the location of the object(s). In an industrial

environment, especially in large scale batch manufacturing environment, the manipulators

are pre-programmed. A set of fixture and jigs are provided to guarantee the exact location

of the object or to limit the uncertainty on the object's location to a tolerable degree so that

the manipulator's operations would not fail. In space applications, however, the situation

is totally different. Most of the tasks are small scale and thus require the flexibility of the

remote manipulator. One of the flexibilities the remote manipulator should have is the

ability to locate an object and adjust its position accordingly.

1.2 P_search Goal

Automatic object localization has attracted increasing attention recently in both com-

puter vision and robotics communities because researchers and scientist in these fields

have found the important role this technique will play in developing autonomous intelli-

gent machines. On the other hand, as an independent research topic, only few research

work on object localization can be found in literature. Often the object localization prob-

lem is combined into object recognition research and the emphasis of the research in most

cases is on object recognition. But object localization has many issues of its own and

the recognition-localization is only one strategy toward this problem as will be seen in

Chapter 3.

The objective of the thesis is to investigate methods of object localization, i.e., given a

known object, find its position and orientation. The methods explored are intended to be

used in tele-autonomous applications, especially in space programs such as Space Station

construction, maintenance and repairing. But, the results obtained should be applicable

to other related areas such as flexible robotic assembly, inspection and etc.. The methods



exploredin this thesisshouldmeetthe following requirements:

1. They should be fast. A complete localization process should be finished in seconds;

2. They are accurate so the results of localization can be used in following telerobotic

operations reliably;

3. They can locate most types of the industrial parts so the methods developed in this

thesis will have real practical meaning.

Based on these requirements, the thesis addresses the following problems:

1. What degree of accuracy is required in tele-manipulation tasks? Furthermore, if

the accuracy requirement for a particular tele-manipulation task is given and other

resources of potential position errors during the execution of the task can also be

identified, what degree of object localization accuracy should be provided by the

sensing system?

2. What types of range sensing techniques are good for fast localization?

3. Are there better algorithms or mathematical methods which would further increase

the speed and efficiency of the computations needed in localization process? Can the

same computation be carried out by using closed form formula instead of iterative

methods without losing accuracy?

4. Is the algorithm sensitive to noise?

Two localization algorithms are proposed in the thesis. The extraction of certain types of

features such as line-segment features is also described. All the algorithms and methods

explored are directed toward the goal of fast, accurate and robust object localization.



1.3 The Overall Organization of the Thesis

This thesis discusses the issues of object localization and its applications in a tele-autonomous

robot.

Chapter 2 gives a detailed discussion of the applications of object localization tech-

nique to tele-autonomous systems. It begins by a brief review of the development of

tele-antonomous system concepts and implementation. The difficulties in performing tele-

manipulation tasks are then described, which include time-delay problem and the various

uncertainties in the remote environment. How object localization techniques can be used

to help the successful completion of these tele-manipulation tasks are outlined. Two sit-

uations axe discussed: 1) the situations where the tele-manipulation tasks are performed

manually, e.g., local operator directly controls all the operations of a remote manipulator;

2) the situations of limited autonomous control where the remote system has a certain

degree of automation ability.

A thorough investigation of object localization problems is presented in Chapter 3.

This includes a formulation of the object localization problem; a description of the overall

organization of object localization systems; a classification of object localization strategies

and a discussion of important issues related to the quality of object location determi-

nation such as ranging techniques, speed and accuracy consideration, types of locatable

objects, mathematical formulation methods and etc. Arguments for using a line-based

range sensing system for a fast and accurate object localization are presented.

Chapters 4 and 5 present a detailed discussion of object localization techniques. Chap-

ter 4 deals with the line-segment matching based localization method. It consists of three

parts. The first part discusses the process of using line range data to extract certain types



6

of features. This includes the extraction of edge parameters from a planar surface, the

extraction of axis parameters from a surface of revolution and the extraction of the center

point from a sphere. The performance of the extraction algorithms with data corrupted

by noise are discussed. The second part presents the mathematical formulation of the

line-segment matching localization algorithm, which includes the cases that the two line-

segments are in the same plane and they are in different planes, and a discussion of the

sensitivity analysis of the algorithm.

Chapter 5 discusses a more general case where, in addition to line-segment features,

other features such as featured points, surface normals, etc. are also available and the

number of available features might be more than the minimum required. An optimal

localization algorithm using dual quaternions is presented. The advantages of using this

algorithm, compared with other similar algorithms, are its high accuracy, fast execution

speed and flexibility.

Experimental results both from computer simulation and from real range data are

provided in the last part of each of the two chapters, which confirmed these algorithms'

high-speed and high-accuracy performance.

Chapter 6 describes techniques for computing the location of a line sensor relative to its

mounting position, particularly when the sensor is mounted somewhere on a joint of a tele-

robot. This refers to the sensor calibration problem. Both internal calibration and external

calibration are discussed. For the internal calibration, we only deal with the calibration

method of the line sensor which is used in our experiments. The external calibration

methods are more general and the solutions are given for three different situations: 1)

an object used for the calibration purpose can be accurately placed in a pre-determined

position and the sensor can locate the object from a single frame of measurement; 2) the



object'sposition is unknown but the sensor is able to locate it by using a single frame of

measurement; 3) the object's location is unknown and the sensor can only locate certain

features from a single frame of measurement.

Chapter 7 contains a discussion of what additional work has to be done in order for the

technique discussed in previous chapters to be used in practical tele-autonomous systems.

The potential areas of future research are identified with a conclusion being given in the

last.
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CHAPTER 2

APPLICATIONS OF OBJECT LOCALIZATION IN

TELE-AUTONOMOUS SYSTEMS

In this chapter, we present a discussion of the problems of tele-controlling the movement

of a remote robot when the movement involves contact with objects and when the control

involves a significant time delay. We also examine how object localization techniques can

be used to overcome some of these difficulties.

2.1 Time Delay and the Tele-Autonomous System Concept

2.1.1 Time delay problem and predictor display

As described in the previous chapter, the growing demand for applying tele-manipulation

technology in space applications has resulted in considerable work in telerobotic research.

While pure teleoperation techniques have been successfully used in undersea operations

and nuclear industry for years, researchers have found them difficult to apply to the space

environment due to transmission or telemetry time delays. The signal transmission delay

affects the operator's use of the remote manipulator. When direct telecontrol is employed,

the operator's strategy of performing a given task usually consists of a sequence of open-

loop moves, e.g., each move is followed by a wait of one roundtrip delay time to check the



9

feedbacksignalwhenit arrives. In a space environment, when the control signals are from

earth, the time delay can be quite significant, making it very difficult, if not impossible,

for the operator to control the remote robot accurately and efficiently.

The time-delay problem exists not only in tele-manipulation tasks where an operator

controls a remote mechanical device or a telerobot to perform a manipulation task, but also

in many other remote control tasks, such as the tasks of guiding and controlling certain

kind of remote vehicles - spacecraft, aircraft, ships or cars. P_esearchers and scientists

have approached this problem in many ways most of which are based on some forms of

prediction with respect to the time-delayed signal.

An early attempt to deal with the time-delay problem in tele-manipulation was made

by Ferrell and Sheridan [40]. A controller was built at the local site, which had a structure

similar to the remote manipulator arm. The controller was worn by the operator on his

shoulder so that he could move it to maintain its orientation relative to the remote arm.

The operator drove the controller with no time delays present, with the control signals

being sent to the remote site as well. The local controller might be more properly called

the predictive manipulator because the local controller was used to control the future

movements of the remote manipulator.

Bernotat and Widlok described the use of prediction display to guide and control

remote vehicles [11]. In their work, the term "prediction display" was defined as

"A display which gives information about the future status of a value."

They found that predictive display of one or more system variables such as position,

speed and acceleration in the form of points, curves, etc. was very useful in permitting

the pilot to achieve smooth, stable control of the remote vehicles. Kelley used a similar

approach in submarine operation and found substantial improvement in the performance
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throughpredictiondisplay[71].

Anotheruse of predictive display was for the optimal control of launch vehicles during

boost [44]. A manual guidance system which combines the use of predictive displays

and optimal control theory enabled the operator to generate continually a predicted fuel-

optimal trajectory.

A significant progress on the time-delay problem has been achieved recently by Noyes

and Sheridan through a method called "predictor display" [89] or "forward simulation"

[28]. In this scheme the operator directly drives a local simulator of the telerobot rather

than the real telerobot with the control signals being sent, in parallel, to the simulator

and the remote robot. The graphical display of the undelayed telerobot simulator is then

overlaid onto the video pictures returning from the remote site. Obviously, the simulation

at the local site operates in a predictive fashion, or in a forward simulation mode. That

is, the simulation the operator controls is what the remote manipulator will be doing

several seconds in the future. This method allows an operator to move the manipulator

and immediately see the result of the action without waiting for the return video signals.

Experiments have shown that if high quality models are available, repositioning tasks can

be done much faster than without using forward simulation [54] [28]. An example of the

predictive display system concept is presented in Fig.2.1. The wire frame telerobot is the

forward simulation of the remote robot, which directly responds to operator control, and

the solid frame represents the time-delayed image of the real telerobot.

From above description, we know that the "predictor display" is an extension of the

predictive manipulator idea. In predictive manipulator control, the operator controls a

local manipulator which has a structure similar to the remote manipulator; in "predictor

display" the operator controls a graphical simulation of the real manipulator. Thus, the
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2

Start

control action:

Figure 2.1. An example of prediction display. The human operator is

controlling a simulated telerobot (dotted robot) while the

position of the real telerobot is displayed in shaded color.
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"predictordisplay" not only provides a method of dealing with the time-delay problem,

but also take the full advantage of computer graphics, geometrical modeling, computer

simulation and other related techniques to greatly increase the operator's control ability.

When discussing the "predictor display" method, we should note the difference between

the concepts of "predictor display" and "prediction display". While "predictor display"

presents a simulation of the tele-manipulator (a 3-D object) on a graphical screen and the

operator is able to control the movement of the simulator in real time, the "prediction

display" only displays current and predicted values of vaxiables in the form of curves or

pointers.

2.1.2 Time and position desynchronization

Conway, Volz and Walker [28], [29], [30] have further developed the concept of predictor

display by breaking the synchronization between the simulated time frame and that of the

remote robot. They introduced time clutch and position clutch control modes to allow the

operator to desynchronize the time and position frames, respectively, of the simulation

and the remote robot.

Time desynchronization control enables the operator to disengage the "direct-gearing"

of simulated-time and real-time and move the simulator as fast as skill and judgement

will allow. Their hypothesis is based on the assumption that the human operator can

often think of and generate a path segment more quickly than the telerobot can follow

it. This assumption is particularly valid for large space telerobots such as the R.emote

Manipulator System [87]. As a result, such a generated path segment can be followed

by the telerobot at nearly its maximum speed. Experiments have shown that when the

time clutch is used to perform the task of touching a series of boxes, the performance is
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better than the performance with no time clutch even in the case of no time delay [31].

In the position desynchronization mode the operator moves the simulated robot without

sending any control signal to the remote site. This allows the operator to carry out dimcult

maneuvers on the simulator and allows the real robot to move directly to the end result

(when the position clutch is released) without following all of the operator's false moves.

Thus, these control modes provide much greater control capability than previous methods.

2.1.3 Basic tele-autonomous architecture

The control modes mentioned above together with other control mechanisms such as the

time brake, time ratio logic, task handoff and rendezvous constitute the basic frame of

a tele-autonomous system. One such an experimental system has been implemented at

University of Michigan. A detailed description of its implementation can be found in [30].

The basic system architecture is given in Fig.2.2.

At the loc_! control site a force-sensing joystick is used as an input device for the

human operator to control the simulation of the telerobot. The input signal to the joystick

is sampled and sent to an input transducer, where the positional signa_ is generated based

on this sample. The input is then sent to a path history buffer (PHB) which is controlled by

the PHB controller. A manipulator geometrical model, models of the remote environment

and a path history animator (MGA) are built into the system in order to simulate the

remote site. Other control mechanisms such as a time clutch, position clutch, time brake,

etc. can also be found in the di_ram.

The system at the remote site consists of a remote manipulation controller (RMC)

which can faithfully follow new position commands, a remote control queue (RCQ) that

can hold command values sent from the local site and its associated queue controller (QC).
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The detailed structure and functions are described in [30].

2.2 Imperfect Simulation Problems

As can be seen above, predictor display and other control modes have been introduced

to defeat time delay problems. The fundamental principle behind these methods is the

direct control of a simulation of the telerobot rather than direct control of the actual

robot. Because simulation is used, the quality of the model will be an important factor in

determining the quality of results produced. One problem will arise: Can we build a high

quality model? The building of a rather precise geometrical model for each individual

component and even the remote environment is not totally impossible. In most cases, the

telerobot and key components of a space station, shuttle, satellite, etc., are designed and

built on earth. The environment in which the telerobot will work is also rather structured.

All of these will allow us to build a quite good computer model. But in practice various

uncertainties still exist and these uncertainties will result in imperfect simulation. These

uncertainties include the following:

. Imperfect simulation of the remote robot -- The human operator moves the sim-

ulated robot and assumes that the remote robot will reach the same position and

orientation several seconds later. The remote robot, however, will in general reach

a different position even though the error may be small.

• Imperfect simulation of the remote environment -- The object's location is not

exactly the same as anticipated even if an accurate object model is known.

• Imperfect part model -- Usually the part tolerances are not built into the model,

which will result in geometric uncertainties.
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What are the possibleproblemsthe imperfectsimulationwill cause during the imple-

mentation of a tele-manipulation task?

Consider now, in a more detailed way, what is involved in a tele-manipulation task.

The process of implementing a tele-manipulation task, no matter how complex, involves

repeated performance of the following sequence of activities:

1. move the end-effecter of the tele-robot from the current position to a new one;

2. grasp an object;

3. move the object to another location;

4. manipulate the object.

We call steps 1 and 3 global motion activities and steps 2 and 4 fine motion activity.

Table 2.1 gives a list of tele-manipulation tasks specified by RATS (Robotic Assessment

Task Set). The operations of all the tasks follow this pattern.

During global motion activities, one of the main concerns is collision avoidance. It

is obvious that contact could be avoided in this stage. Also, as long as the collision

avoidance requirement can be met, the path along which the robot's end-effecter moves

from the initial position to the goal position usually need not be very accurate. Therefore,

the existence of imperfect simulation is not a crucial factor to the success of global motion.

We anticipate that in the near future the implementation of global motions will still be

under direct manual control. The state of the art is not yet good enough to do global

motion planning automatically in real time. Yet, as has been demonstrated [29], tele-

autonomous control is capable of doing all of the global motion tasks. During the fine

motion stage (including grasping), however, contact is inevitable and will cause difficulties

during the execution of the tele-manipulation tasks.

Consider now what might happen in the following scenarios, where the remote ma-
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Assembly

- TrussAssembly

- Utility Line Connection

- StationInterfaceAdapter(SIA) to TrussConnection

- SolarDynamicArray Assembly

Maintenance& Servicing

- SolarPowerConverterORU Changeout

- HRSOFile CanisterChangeout

- SMM MEB Replacement

- ElectricalConnectorInspection

- GRO Refueling

Table 2.1. A Partial List of Robotic Assessment Test Set (RATS)

nipulator's movement involves contact with other objects. If the above described tele-

autonomous system structure is used but only straightforward teleoperations are applied

and the simulation is not quite perfect (as will always be the case), then the following

scenarios occur:

_eenario I: Move and Place

A path that places an object on a surface in the simulation might actually

extend into the surface in the corresponding real situation. Thus, when the

real robot reaches the surface, it will continue to try to move through the

surface, creating large forces unless there is compliance in the system. Large

forces could either damage the parts or the robot or cause misaiignments that

would prevent success in further robot operations.
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Scenario 2: peft-in-ltole

Let the remote robot be compliant so that large forces do not build up. Now,

suppose that the operator successfully places a peg in a hole in the simulation

and the real robot tries to follow this action. Because of various uncertainties,

the part held in the hand of the real robot might hit the edge of the hole. While

large forces will not build up, the operator does not know that the operation

was not successfully completed, and the remote robot does not know what

path to follow to successfully complete the motion. Indeed, the remote robot

does not have a concept of what success would mean for the operation, except

to have matched the commanded position, which it cannot do.

In both cases, the imperfect simulation has resulted in the failure of the operation.

In summary, the fundamental problem facing telemanipulation is the time-delay prob-

lem. Predictor display and forward simulation provide one means to cope with this prob-

lem. In this case the local operator is driving a simulator of the tele-manipulator instead of

the real one, with the control signal being sent to the remote site in parallel. But imperfect

simulation and uncertainty of the remote environment makes simple direct teleoperation

difficult to apply in situations where the movement of the remote manipulator involves

contact with objects.

One solution is to develop a highly intelligent remote manipulator so the local operator

needs only to give a high level instruction to the remote site and let the remote manipulator

decide how to act. While a highly intelligent remote manipulator is what the people

have hoped for and recent advances in artificial intelligence, human cognitive modeling,

and computer vision indeed have provided us a greater opportunity than ever to build

very powerful remote manipulation systems, they are still not powerful enough for full

automation.

As an alternative, human-guided control can offer an attractive possibility. That is.
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the remote site has only limited intelligence and is still able to finish quite sophisticated

tasks with the help from the human operator. As the technology evolves, the remote site

will gradually take more responsibility until full automation can be achieved. This, in

fact, is the core idea behind the tele-autonomous system concept.

The uncertainty problem usually can be approached from two different objectives: 1)

develop techniques that help avoid the uncertainty; and 2) techniques that help the system

adapt to the problems. Several possible approaches have been suggested in [130], such

as simultaneous force and compliance control [801 [95] [126] [1281 [136], force/torque and

contact constraint reflection [35] [83], dynamic replanning [7] [34] [131] [132] [133], etc..

and there has been some success with these approaches. Their applications, however, are

very limited. This is because either their methods can be only applied under very special

conditions, or the experimental results are not very persuasive [56] [74].

In the next section we will describe how object localization technique can provide the

necessary intelligence in the remote site to overcome some of the uncertainty problems.

2.5 Applications of Object Localization

The tele-autonomous system is designed to allow many different levels of control to be

carried out in order to achieve maximum flexibility and efficiency. Although there is

no general agreement on how to divide these levels and how to name them, one thing is

certain: the classification of control modes is based on the degrees of operator involvement

in telemanipulation, the ways in which the operator interacts with the remote system and

the levels of intelligence in the remote system.

In this section, we discuss two situations where a low level of intelligence introduced

through object localization could help the execution of telemanipulation tasks.
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Situation 1: Direct manual control is used to perform a telemanipulation task. That is,

all the remote manipulator's operations such as positioning, grasping and manipu-

lating follow the local operator's instructions.

Situation 2: Limited autonomous control where the remote system has a certain degree

of automation ability. The operator needs only to send high level commands to the

remote site and lets the remote site perform a task (or subtask) automatically.

The tele-manipulation tasks that fit into the first situation include the tasks which

will be performed only "once in a life time" or performed infrequently. For these tasks,

automation is very expensive; or very difficult to implement. Many operations such as

infrequent maintenazlce operations or actions reacting to unforeseen events are examples

of the first type of tasks.

The tele-manipulation tasks that fit into the second situation include the tasks which

will be performed repeatedly with no unforeseen events likely to happen during execution,

'or tasks which are very easy to automate even they may only be executed infrequently.

Many Space Station Construction tasks such as "Truss Assembly" and "Solar Dynamic

Array Assembly", as listed in Table 2.1, are examples of the second category of tasks.

2.3.1 Basic assumptions and the concept of relative move

Our approach to solving the uncertainty problems under direct manual control is to com-

bine the use of object localization's technique in the remote site and the use of relative

move mode of operation. This approach is based upon several reasonable assumptions:

• The local simulation contains correct models of all the objects in the workspace and

the locations of these objects is approximately known before any telemanipulation
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canbe applied on the objects. The approximate location of an object can either

be modeled beforehand or be established through remote sensors. In the later case,

we assume that TV pictures of the remote site can be viewed by the local operator.

Whenever the operator finds an object from the TV pictures in which he/she is inter-

ested and the location of which is not modeled in the local world modeling system,

he/she can send a command to ask the remote sensors to provide this information

to the local site.

• Remote sensors can accurately locate objects in the workspace in real-time; they

just cannot send the information to the local controller in a timely manner.

• The objects to be manipulated and the simulations of the objects in the actual

and simulated workspaces, respectively, are sufficiently close to each other that the

differences will not lead to a singularity or violation of workspace problems.

With these assumptions the basic idea of this approach is for the operator to control

the simulated robot exactly as described earlier for tele-autonomous operation. However,

instead of sending the absolute position commands to the telerobot, the positions are

first converted to being relative to the object being manipulated, and the relative position

transmitted. The remote robot, by assumption, is capable of sensing the position of the

object to be manipulated in real-time. It then uses the sensed position of the object

to transform the received relative commands into absolute position commands and then

proceeds to follow the commanded positions. If the system is sufficiently accurate, as

described above, the commands should succeed.



22

s[et] < obj >: Set reference frame to obj frame.

By default, the reference frame is the world frame or robot base frame. The reference

frame could be set into any other object frames which must have been modeled in

the world modeling system.

m[ove] < pos >: Move the telerobot's end-effecter to next position pos.

The position has six parameters: three for translation, three for rotation. The

position specification is relative to the current reference frame set by the latest s

< obj > command.

l[ocate] < po8 >: Locate object.

Determine the location of the object set by the latest s < obj > command. In order

to provide assistance to the remote system and speed up the localization process,

the command has an optional parameter pos that tells the remote system which part

of the object will be sensed by the remote sensors.

g[rasp]: Grasp the object.

r[un] < prog >: Begin to run a program named prog.

2.3.2

Table 2.2. A list of the Basic Commands to Implement Relative Move

Implementation of relative move

To implement the new control mode, in addition to simply sending a sequence of servoing

positions to the remote site, the local site needs also to send other necessary commands

to the remote site to guide the operations of the remote manipulator. A list of the basic

commands are described in Table 2.2.

Let us take a closer look at how to use the relative mode and object localization

technique to control the telemanipulator. For purposes of illustration, a simple move-
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then-grasp operation is to be performed by using the directcontinuous teleoperation

controlmethod.

Assume that the operatorwilluse a force-sensingjoystickto directlycontrolthe move-

ment of the simulationof the telemanipulator.The followingsymbols willbe used to

expresspositioninput and timingof the operationsin the localsite(see[31]):

• Ts: The simulation sample period, at each interval of which the input signal from

the joystick will be sampled.

• F(i): The input sampled at time i • Ts.

• P(i): The position of the tele-manipulator's end-effecter calculated from the sample

F(i).

P(i) and F(1) are each six-dimentional vectors where F(i) is a vector of the force and

torques measured at the joystick and P(i) is a vector of three-translational and three-

rotational coordinates. P(i) is calculated as:

P(1) = P(i - 1) + hP(i),
(2.1)

where AP(i) is a function of F(()i) and other related variables. In a simplified case, AP(i)

can be expressed as

AP(i) = I¢(i) * F(i) (2.2)

and K(i) is the gain parameter.

By default, the world frame is initially set to the reference frame and the calculated

position P(i) will be with respect to the world frame. If the reference frame is set to an

object frame, as is needed to implement the relative move, the calculated P(i) has to be

transformed into the position vector which specifies the position of the tele-manipulator's



24

end-effecterwith respectto the object frame before its value can be stored into its ded-

icated local output buffer. There is no problem for the transformation, because by as-

sumption the relative location between the world frame and the simulated reference object

frame must have been established in the world modeling system. The formula of the trans-

formation is

where

P(i)_

O •

p(i)o = T_P(I)_

is the position value of the simulated end-effecter calculated from the

(2.3)

joystick's reading with respect to the world frame;

P(i)o is the transformed position value of the simulated end-effecter with re-

spect to the reference object frame;

T ° is the simulated transformation matrix between the world frame and the

reference object frame.

The position value P(i)o will then be put into the output buffer each time it is calculated.

During each sample period Ts, the P(i) value in the output buffer, no matter which

reference frame it uses, is transmitted to the queue in the remote system, and then the

new value of the position P(i + 1) is put into a local output buffer to be sent during the

next sample circle.

The control sequence in the local site is first to "move" the simulated telerobot close

to the simulated object, then to "set" a new reference object frame, followed by sending a

"locate" command; and then continuously "move" the simulated telerobot, still in absolute

mode, with the position values being constantly transformed into the ones relative to the

reference object frame and then executed; and finally grasp the object.

If the operator feels that it is more convenient to graphically control the movement of

the simulation of the telerobot relative to the reference object frame, he can do so without
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anydifficulty. The sampleddata from the joystick canbe set to representposition and

orientation values relative to the reference frame instead absolute values (in this case, the

transformation process of using Eq.(2.3) is no longer needed). The computer graphics

techniques enable the operator to view the simulation with great flexibility - in any angle,

in any size, focus on any part of the environment, etc.. All these abilities make the relative

move mode technically feasible.

Now, let us look at how the remote system will execute the commands from the lo-

cal site. These commands are held by a remote control queue (RCQ). Because in tele-

autonomous system the time can be de-synchronized, there is no fixed relationship between

the position of any entry in the queue and the time at which the entry will be processed

by the remote manipulation controller, though the relative time ordering between entries

will be preserved.

When the reference frame is the world frame, the position value in the queue can be

used directly to control the manipulator. If it is not, the position value which specifies the

relative position between the end-effecter and the reference frame has to be transformed

into the value which specifies the relative position between the end-effecter and the world

frame. The task facing the RMC when it finds a locate command is to find the relative

transformation between the referenced object frame and the world frame in real-time.

Once the transformation relationship has been found, the remote controller will continue

executing position commands in the RCQ. But the position value has to be transformed

so that it is the value of the end-effecter with respect to world frame

P(i)_ = T_P(i)o (2.4)

and the derived position value will be used by the RMC to move the telerobot.

Table 2.3 shows the timing of the operations on both the local site and remote site.
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Table 2.3. Timing of Move-Grasp Operations on Both Sites

The key to the success of the relative move mode is the concept of time-desynchronization

such that the timing in the remote site does not have to follow the timing in the local site.

Thus, the position commands generated at a constant rate (1 command per Ts unit) at

the local site are performed by the remote controller at varying times: T1,T2,'" ,Tj+,_.
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2.3.2.1

model

Signal feedback - a method of improving the perfection of local

We have mentioned that imperfect simulation, especially imperfect simulation of object

locations, will cause many problems during a tele-manipulation task and that object lo-

calization can be used to cope with this problem. In this section we will show that the use

of object localization can improve the results of imperfect simulation of object locations.

Usually, only position values of the remote manipulator's joints axe sent back to update

the local model each time immediately after the tele-manipulator is moved to a new

position. Now, if after each "locate" operation, the position values of the referenced object

frame axe also sent back simultaneously with the telerobot's position values to update the

modeled location of that object frame, the updated model object location in the local site

will become much more accurate than before, provided that the following conditions are

met:

1. The sensing system in the remote site can provide accurate measurement;

2. The telerobot position values provided by the RMC are quite accurate;

3. The sensing system in the remote system is well calibrated such that the relative

location between the telerobot and the sensor is known accurately.

4. The model object has not been moved by the operator at the time when the updated

object location values are sent back;

Let us assume that the sensor is mounted somewhere on the telerobot's gripper. Let T_

represent a transformation matrix between coordinate frame a and coordinate frame b,

symbols g, o, s represent, respectively, the gripper frame, the referenced object frame and

the sensing frame in the remote site, and rag, too, w represent, respectively, the modeled

gripper frame, modeled referenced object frame and the world frame in the local model.
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After a "locate"operation,the sensingsystemcan provide an accurate measurement

of T_ (condition 1). From condition 3, a transformation matrix Tgo will also be available

accurately from the formula:

= TsT og • (2.5)

The values of the transformation matrix together with the position values of the telerobot's

gripper will be sent back to the local site simultaneously. The same values will be treated

as the position values of corresponding modeled coordinate frames, e.g., the position values

mg
of gripper frame will be thought as of T,_ 9 and T_ will be treated as Tmo. Condition 2

guarantees the accuracy of matrix T,_,g. Therefore, the transformation matrix

_' = T _'T"_g (2.6)
Tmo --rng--mo

will become quite reliable and can be used to update the modeled location of the reference

object. The time-delay has no influence on the result of updating because the object's

position is fixed during this period of time from condition 4.

Once the object location model has been updated with high accuracy, the operator

will have greater confidence in controlling the simulation of the telemanipulator. If the

modeled object location is not very distant from the true location, the operator might

even feel that nothing has been happened during his continuous tele-manipulation.

2.3.3 Object localization used in autonomous operations

The Object localization technique can also be used in situations where the remote

system operates in autonomous mode. The operations usually go through the following

sequence: The operator moves the simulated tele-manipulator to a pre-specified position

and then sends a command to the remote system to activate a pre-programmed routine
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locate SDAP

move (Pll," "", Pl, )

move (P21,""", P2e)

.oo

Figure 2.3. A Simple Routine With Relative Position Specifications

for the tele-manipulator to execute. The routine is coded in such a way that the position

path is specified relative to a reference object frame instead of the absolute value. Before

the execution of the routine, the remote system has to first "locate" the reference object

and then convert the specified positions path to the position path of the tele-manipulator's

end-effecter.

For example, if a task of cleaning the surface of a Solar Dynamic Array Plate (SDAP)

is to be performed by the tele-manipulator, the cleaning tool which is attached on the

tele-manipulator's end-effecter will move along the surface of SDAP following a certain

path. The path of the cleaning tool is specified in a routine by a series of positions, all

are specified with respect to the SDAP coordinate frame - another form of relative move

(see Figure 2.3).

Each time, before the telerobot executes the routine, it first locates the SDAP. The

real path of the end-effecter with respect to the world frame can then be calculated by

using the formula shown in Eq.2.4. Thus, the routine outlined above gives the telerobot

the flexibility to adapt to various locations of the SDAP.
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METHODS AND STRATEGIES OF OBJECT LOCALIZATION

In the last chapter we have discussed the importance of object localization techniques

in tele-autonomous systems applications. Indeed, the availability of efficient means of

locating objects is one of the key factors to the success of developing such systems. In

addition, object localization techniques have also found many applications in other areas of

technology, specially in robotic manufacturing such as automatic assembly, part inspection

and so on.

Object localization has long been defined as a part of the object recognition process in

computer vision research [12]. But in most instances the emphasis of the research has been

on object recognition. Object localization is only a by-product. In robotic applications,

however, object localization usually is the ultimate goal. It has many of its own problems

to be solved, such as real-time considerations, accuracy issues, types of locatable objects,

working conditions, etc., which object recognition research generally does not address.

In some telerobot systems "locate" has been defined as one of the basic independent

operations the system is to perform [96]. As a result, the object localization problem, as

an independent research topic, has attracted increasing attention recently.

This chapter will give an overview of the three-dimensional object localization problem.

First, it provides a closer examination of the problem and then describes general object

localization system structure. This is followed by a discussion of some important issues

3O
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of objectlocalization. Current availableobject localization algorithms and systems are

surveyed in the last section. These algorithms are characterized by their feature and

matching strategies, the range-finding methods, the types of locatable objects and the

mathematical formulating methods.

3.1 The Object Localization Problem

Object localization is the determination of the location of stationary and moving ob-

jects. What must be solved when a robot vision system is trying to locate an object? As

Gunnarsson pointed out [49]:

Localizing a part means being able to answer the following question: " In a

given frame of reference, what are the Cartesian coordinates of any specified

point on the part's surface."

In practice, it is both impossible and unnecessary to take real measurements on every

point of the object's surface in order to locate it. Instead, in a model-based system where

the shapes of the objects in the scene are known and a complete geometric database

description of each object with respect to that object's coordinate frame is available,

the localization problem is solved by identifying the location relationship between two

coordinate frames: the reference frame and the object coordinate frame. Once the location

relationship between these two coordinate frames is determined, the Cartesian coordinates

of any point on the object surface with respect to the reference frame can be obtained by

a simple transformation process.

To locate an unknown object, the best way is to first explore the object and try to

establish a model description for that object before any localization process is carried out.

Recently, researchers have begun working on this object exploration problem and have

achievedsome preliminaryresults[33][104].
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Thus, a necessarycomponent ofevery objectlocalizationsystem isthe world modeling

system which stores,among other things,the descriptionsof allthe object geometrical

shapes and a definitionof the sensingcoordinatesystem. Each object must have a cor-

respondingcoordinateframe associatedwith itin order forthe objectto be describedin

the world modeling system; the coordinateframe might be specifiedeitherimplicitlyor

explicitly.

The relativelocationbetween two coordinateframes can be specifiedinany one ofthe

followingways:

1. Position and orientation:

The position is usually specified by a 3 x 1 position vector p = (Px,Pv,Pz). There

are three different representations of orientation:

• Represented by three rotation angles: this could be Eulax angles a,/3,7, or the

rotation angles about the coordinate axes.

• Represented by a unit vector r and an angle 0.

• Represented by a quaternion or its variation [64] [70] [94].

In practice, the terms of "rotation" and "translation" are also frequently used to

represent the relationship between two coordinate systems. They have the same

meanings as "position" and "orientation". Both terms are used in our discussion.

2. A 4 x 4 homogeneous transformation matrix.

3. Dual number quaternion: [121]

This is an extension of quaternion representation in which each quantity is changed

to a dual quantity [26]. The dual quaternion has a similar interpretation as the real
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quaternion:
sin(_/2)_

9=
cos( /2)

where the vector fi is a unit line vector about which the coordinate system has been

rotated and translated and _ is the dual angle of rotation and translation.

The objective of the object localization algorithm is to determine the parameters which

specify the corresponding representation.

Which representation method is the best one to choose in real application? It depends

on many factors. But among other things, how this localization problem is formulated in

mathematical terms and which mathematical tool is used to carry out the computation

are definitely the main factors in the selection.

For instance, if geometrical analysis is used to derive the location relationship between

two coordinate frames, vector algebra is the right tool during the derivation. The relative

location between these two frames is best expressed by the vector representation method

- a position vector and a rotation direction vector together with a rotation angle. In

many cases, the localization problem can be formulated as an optimization problem using

a least-squares minimization to solve the problem,. The quaternion representation is a

better choice here because it does not involve a_y trigonometric computation and the

number of unknowns to be optimized are nearly the minimum.

In some applications the localization problem ca_ be simplified due to extra constraints

imposed on the object. For example, if an object is so constrained that a planar surface

of the object is always lying on another planar surface, there are only three degrees of

freedom for the object: one degree of rotation and two degrees of translation.

How does one solve for these position/orientation parameters if sensor data and object
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modelsaregiven?Usually the computation is carried out by a matching process. That is,

the object localization algorithm will try to find a "best" transformation which will put

sensed features into its corresponding model features. The matching feature pairs may

be of the same type or may be from different types; they may be 2-D features or 3-D

feature. But all the features are of geometric types, e.g., those that specify position and

orientation, such as points, edges, surfaces and etc.. Table 3.1 shows some known feature

matchings which have been used in the hterature to derive the location of an object.

Sometimes, a combination of feature matchings is necessary to completely specify a rigid

transformation. The geometric features to be extracted and matched can be classified

as low-level features and high-level features. Possible low-level features include points,

vectors, line segments, axes, surface patches, edges, boundaries, etc.. Possible high-level

features include straight dihedrals, circular dihedrals [18], principle directions of surface

curves, minimum, maximum and mean curvatures of surfaces, Gaussian curvatures, etc..

Usually the lower the level of features, the greater the number of features to be extracted.

From the above description, it is not difficult to imagine that a general object local-

ization system should contain the following components: (1) sensing system: to provide

necessary measurements; (2) world model: to give a geometrical description of all the

objects in the environment including robot, sensors and their relationships; (3) feature

extraction: to retrieve geometrical features which are to be used in the matching process;

(4) matching: to try to pair the sensed features with corresponding model features; and

(5) computing: to calculate the transformation parameters.

A general configuration is shown in Fig. 3.1. However, many variations could exist in

real applications.

Take the sensing system as an example. The task of the sensing system is to provide
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Table3.1.

Measuredfeatures Matchedto

Point

Surfacenormal

Linesegment

Edge

Planarsurface

Quadricsurface

Gaussiancurvature

Point

Planarsurface

Surfacepatch

Surfacenormal

Linesegment

Planarsurface

Surfacepatch

Edge

Planarsurface

Quadricsurface

Gaussiancurvature

KnownMatchingStrategiesin ObjectLocalization

enoughdata for the featureextractionunit. If a singlemeasurementtakenby thesensing

systemcanprovideenoughsenseddata, the connection between these two units is a one

way relation. Sometimes, the sensing system has to make a series of measurements in

order to meet the needs of the feature extraction unit, such as the case where a spot-range

sensor is used. In this situation, the whole feature extraction might go through a repeated

sensing-extraction process, and a scheduling algorithm may be necessary to guide the

sensing-extraction process. The function of the scheduling algorithm is to find an optimal

measurement path in order to reduce the measurement times. [102], [103] have described

such an algorithm.

Another example is the matching unit. The matching process is the process of finding
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Figure 3.1. Object localization system organization

the pairings of sensed features and model features. Depending on the intelligent level of

the system, the matching could be performed differently. On the lowest level, the system

has no matching ability at all. That is, there is no matching unit in the system. Such

systems can often find applications in highly-structured environment in which the relative

locations of all the objects axe approximately known a prior. Thus, the system knows

where to make necessary measurements in order to locate the objects, what features are

expected to be extracted from the measurements and what matching modeled features

correspond to the sensed feature. No matching process is needed in this situation. The

matching process could also be provided manually. On telerobotics systems, for example,

the teleoperator might interactively assist the model matching by indicating with a light

pen which features in the image (e.g. edges, corners) correspond to those in a stored model
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[3]. If none of these conditions axe met, the system has to have its own matching unit to

pair the features automatically. This requires systems with higher levels of intelligence.

There is no common solution for the implementation of the object localization mech-

anism we have just shown. System structure may have different configurations. Each

component in the system could be implemented in various ways, too.

3.2 Some Issues

We have just shown that a general structure for object localization systems. In practice,

there axe some important issues which must be considered when a real localization system

is to be designed. Among them, the important ones are the speed and accuracy require-

ments of localization, the types of locatable objects, sensing methods, sensor installation,

etc..

3.2.1 ILeal-time execution

A Hierarchical control structure has been defined as a standard telerobot control archi-

tecture [3] and has been adopted by researchers to develop individual telerobot systems,

such as systems developed at Goddaxd [96], the University of Michigan [120], etc.. As

the functions of vision systems are different at each level, so are the requirements for the

object localization algorithms. Usually the higher the level, the slower the completion

rate. See Table 3.2 for typical completion rates at each level of telerobot control.

At the object task planning level, for example, one of the functions of the vision system

is to recognize the environment. The object localization system, as a part of the vision

system, is used to give approximate measurements of the locations of the objects in the
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Averagerateof Average Planning

change in output replanning interval horizon

Servo 1 KHz 1 millisec. 15 msec.

Primitive 62Hz 16 miUisec. 300 msec.

E-Move 8Hz 128 miUisec. 2 sec.

Object/task 1 Hz 1 second 30 sec.

Service Bay .1 Hz 10 second > 10 min.

Mission 0.01 Hz 1.7 minutes > 1 hour

Table 3.2. The rate of subtask completion at each level of hierarchy.

([3])

environment. The execution time is in the minute range. At the E-move level, however,

the rate of completion is in the range of seconds. If a visual-feedback control strategy is

used here, the localization system has to generate updated measurements for the control

system to adjust the robot's movement in the same time frame. Real-time issues will

become important. Based on different timing requirements, the strategies of localization

might be also different.

3.2.2 Accuracy

Accuracy is another important issue in object localization. There are two concepts about

accuracy, e.g., absolute accuracy e and relative accuracy Ae.

• Absolute accuracy is defined as the difference between a measured value m and the

"true" value s. That is, e = m - s.
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• Relative accuracy is defined as the difference between a measured difference Ap and

it's actual difference Ap'. That is Ae = Ap - Ap'. For example, if a point is moved

Ax units along z axis and we measure the change of the movement as Am, the

relative accuracy of the measurement is Ae = Am - Ax.

Different types of telerobotics tasks require different accuracy. High accuracy requirement

occurs primarily in assembly types of tasks. According to our survey of eight telerobotics

tasks [96], for move-pickup-put types of tasks the accuracy requirement is 0.1 - 1 inches

(2.54- 25.4mm) in translation and 2 - 10 degrees in rotation; for assembly types of

tasks, especially for insertion, the accuracy is much higher: 0.03 - 0.0625 inches (0.762 -

1.587mm) in translation and about 1 degree in rotation.

Another study on the accuracy issue of sensor-driven robotic assembly tasks is done

by [47]. According to the author's analysis on a typical peg-in-hole assembly task -

the most frequent assembly operation [72, 88], if a 1.75 inches (44.5mm) square x l0

inches (254mm) length oblong peg is to be inserted in a hole with a clearance of 0.004

inches (0.1ram) on each side, and we do not want the insertion to fail because of various

misalignments (translational, rotational etc.) on the position between the peg and hole,

the maximum allowable misalignments are 0.02 inches (0.5mm) in translation and 0.5

degree in rotation by using [127]'s formula. These two figures are quite consistent.

[47] has further analyzed the accuracy requirement for the sensor. He concludes that if

a 98.8 percent chance of successful assembly is assumed and the errors from other resources

such as robot positioning error, robot kinematics error, sensor-robot coordinate alignment

error etc. axe also considered, the sensor should provide localization accuracy up to 0.0055

inches (0.14ram) in translation and 0.14 degree in rotation.

The accuracy requirement in an assembly task is in fact based on the relative accuracy
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most of the time, not the absolute accuracy. This is because during an assembly the

system only needs to know the relative location between the two relevant objects.

Absolute accuracy to a large extent depends on the accuracy of the sensing system.

The achievement of high relative accuracy, on the other hand, does not necessarily mean

the use of highly accurate sensors. The achievement of high relative accuracy usually

requires a good design for the object localization algorithm.

Therefore, when designing an algorithm, one must evaluate its performance according

to both it's absolute accuracy and relative accuracy and the emphasis should be on the

relative accuracy. This is because: 1) the tasks which require high accuracy are that of

assembly types in most cases, and 2) performing an assembly task mainly requires relative

accuracy.

3.2.3 The types of locatable objects

It is best if the system can locate arbitrary-shaped objects, as long as the shapes are

describable. For an arbitrary-shaped surface, the surface curvature properties such as

Gaussian curvature, minimum, maximum and mean curvatures are often used as the

features to match in order to locate the object. The problem of using these features is

the high-sensitivity associated with either measurement errors or slight distortions of the

object surfaces [49].

In industrial environments a more practical requirement for the sensing system is the

location of man-made objects. The shapes of most of these industrial parts are not very

complex. Their surfaces contain only one or a combination of a few simple and well-known

types of surfaces, e.g., planar surfaces and quadric surfaces (cylinders, cones, spheres,

etc.) [14]. If a localization system is able to locate objects having such types of surfaces
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reliably,it will work for most of the time. How to deal with complicated objects? Instead

of developing a universal localization algorithm, a simple alternative solution is to make

special marks on the object so that the localization system has no problem detecting these

marks and uses these detected marks as the matching features to compute the localization

parameters of that object.

Therefore, among other things, localizability should also be a consideration during

the design stage of an industrial part. Some guidelines should be given to meet the

localizability requirement. Sometimes, very simple modifications made on the part design

can greatly ease the part-localization process.

3.2.4 Sensing system

What types of sensing techniques should be used in a localization system? Where should

the sensors be installed? How should the basic sensor requirements be determined in

specific applications? These are just some of the issues in the design of a sensing system.

3.2.4.1 tLanging methods

Jarvis [63] has presented an early overview of range finding techniques. The range-finding

methods can be classified, based on the types of illumination, into two categories: passive

methods and active methods.

Passive methods use normal, unstructured or natural illumination to acquire simple

images from 2-D cameras, then process these images to obtain distance information. Oc-

clusion cues [97], texture gradients [125], shape from shading [93], depth from focusing

[58] [62], stereo disparity [24] [57] [61] [1291, range from motion [119] [123], moir_ fringe
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contours[59]areall examplesof passive techniques. Because range information is extracted

from intensity images, it requires extensive effort to process images and is thus difficult to

be used to solve the real-time object localization problem.

Active methods use controlled energy beams, such as ultrasonic, radio, white light, or

laser beams, to acquire range information through the detection of the reflected energy.

Because of the obvious advantages of laser beams over other energy sources, most sensors

use lasers as the energy source. Based on their range finding principles, the active range

measuring techniques can be divided into the time-of-flight method, triangulation method

and striped lighting method.

The principle of the time-of-flight method is very simple. The distance of an object

is determined by measuring the time it takes for the controlled laser beam to travel from

the source to the object and back. In time-of-flight methods, the lasers can be used

as pulsed-mode or modulated continuous-wave mode. In the pulsed-mode method, the

time is measured by counting the number of pulses a laser beam takes to go from the

source, bounce off a target point and return coaxially to a detector. To achieve high

resolution, the electronic circuit must have fast response and high time resolution in order

to detect and process returning signals. Modulated continuous-wave laser range-finders

determine distance by measuring the phase between the received wave and a reference

signal. For this type of laser range sensor, the depth resolution will depend on the waveform

frequencies used by the sensors. The higher the frequency, the better the depth resolution

will be. A range sensor built at the Toshiba Corporation, Heavy Apparatus Engineering

Laboratory, using the phase-shift measurement technique has been reported [82]. It has a

field of view of 28 × 28 degrees and has a dynamic measurement range from 0.2m - 1.4m

(7.87 - 55.12inches). By using a laser beam modulated at dual frequency of 1 GItz, the
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Figure 3.2. Triangulation-based laser range sensor.

sensor can achieve depth resolution of O.075mm (O.O0295inches).

Triangulation-based laser range-finders use geometric principles to obtain range infor-

mation. The sensors project a beam of light with a known shape (point, line) onto the

object to be measured. The reflected light is picked up by detector array. Trigonometry

is used to compute the distance of the projected spot (or line) from the sensor head. No

image analysis is required during range acquisition (see Fig. 3.2). This type of sensor is

mostly suitable for short range measurement. This is because longer measurement distance

requires a larger baseline distance between the laser source and the detector array, and,

as a result, a larger sensor . The advantages of this type of sensor are fast response time

and accurate measurement. The disadvantage is the unavoidable "missing part" problem

caused by occlusion. The sensors can be made in different shapes. A spot range sensor can

only measure the distance of one point at a time; line range sensor can measure distance

along a line on the surface of an object_ a multi-spot sensor can measure many points in

a special pattern at a time (see Fig. 3.3) [66].
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Figure 3.3. Configuration of the Multi-Spot Source Proximity Sensor

[66].

The striped lighting method is perhaps the most frequently used range finding method

for locating object distance. In its simplest form, a single slit of light is projected onto

the scene and the scene is viewed by an offset camera. If the light strikes an object, the

reflected fight will be imaged on the camera's two-dimensional image plane. A one-to-one

correspondence exists between all the points shown on the image and the points lying

along the slit of fight. The 3-D coordinates of each point which the slit of light projects on

the object surfaces can be obtained from the corresponding 2-D coordinates in the image

plane by optical triangulation computation. The striped lighting method in fact also

belongs to the triangulation range sensing category. But it needs to process the image in

order to extract the reflected light features. Because an image reflected from the surfaces

of an object by a slit of light consists of straight fines and curves, it takes much less effort

to extract these line or curve features than the effort in processing a general range image.

The latter usually has to go through several processing steps such as segmentation, feature



45

I'V CANI_^

IIIAGI_

Z .,,. ,,, DEVICE

SLITI_AGELIGIIT_//_//!_SI'J"ffl(I

f_##/ __

Y _IT LIGIIT

I_I_ _IT

l'V CJ..llf_

Y

jl,--- I

_IIlI)INAtE ,011.1_1_I IItG I'i_

UNIT CI]IJKDINAITI

I _iNXTE 1--I _ 13l'lilO(ltit_ llt[""

_INI I.,i I IJ_ TAHII. t.,ti,I

CIRCUIT ] fl TAOI_Z 111

JnfOlOlNX_ H l H
_-rr.'L-ri _ I" / II

cilcliit ] i.__._.] H

I'IIO,J_"IED liT IIlsi.iT uiarr s_,'clzll I
LIGIIT INIITI I'_XND I UP lltlbEl' _

_'Flllil; Clill_ll"t ISili't'Tl_ Cllil_l'ill I
H

li
LIGIIT III'I'T)ISll TM ) I I

BE'IIL'T1_1_ CltlClJlT] t!tT I

04_

Figure 3.4. A striped light range sensor

grouping and etc., before the needed features can be extracted. Fig. 3.4 shows an example

of this kind of sensor and its characteristics developed by Toyota Central Research and

Development Labs [91].

Based on the same principle, many advanced striped lighting laser range sensing sys-

tems have been developed recently, which exhibit greatly improved speed, accuracy, size

and other sensor performance measures. [92] has reported a cross-slit lighting sensor. It

is very compact: 140turn × ll0mm × 47ram (5.51 × 4.33 × 1.85inches) in size and 800g in

weight. It has a standoff distance of lOOmm(Z) (3.93inches) with TOrero(X) x 70mm(Y) x

50ram(Z) (2.755 × 2.755 × 1.968inches) of measuring area and 0.25ram (O.O0987nches) of

accuracy. It can measure 242 points on each slit and 6 frames per second.

To speed up the ranging process, multiple beams of light can be projected onto the

area of a scene. The key to the success in using the multi-slit method is the determination

of the matching between a detected stripe and its original position in the projection grid.

Once the mapping is established, the range of each projected light stripe imaged by the

OF =,..,;'.;" IS
t _'c._ QUALITy
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camera can be calculated by triangulation. The matching problem can be solved by either

sequential scan projection [90], or simultaneous projection with special pattern [124] such

as color-encoded projection [22], random dotted pattern projection [79], gray-code pattern

projection [100] [101] and so on. Because each slit of light can be matched, the slits can

be processed independently, which leads to the potential of parallel processing and thus

real-time sensing.

3.2.4.2 Sensor Installation

Range sensor installation is also an important issue. The task of a sensing system is

to provide object location information timely and accurately during the execution of a

telerobotics task. For accuracy consideration, the sensors should be placed close to the

object, such as on the robot's end-effecter. Here the problem is how to determine the

exact position between the object and the gripper after the gripper picked up that object.

There are several possible solutions:

1. Have a special fixture attached on the telerobot's gripper so that whenever the

gripper picks up an object, the object will always be "locked" in a pre-determined

position. This method is feasible from a technology point of view, but not very

flexible in practice.

2. If the telerobot has two arms, each end-effecter can install one range sensor. The

object's position with respect to one gripper after the object is grasped by that

gripper can be accurately measured by the range sensor on another arm. If needed,

that arm can move toward this arm closely enough to make accurate measurement.

3. In addition to the range sensor placed at the robot's end-effecter, a global range
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Figure 3.5. Rockwell Telepresence kit. [23]

sensor can be installed at a global position, like the position of human eyes as we

have seen in the design of some space telerobots (see Fig. 3.5).

3.3 Feature Extraction & Matching Strategies

As we have said, the object localization process basically is a feature matching process,

that is, finding a best estimate of transformation parameters which will align some modeled

object features with certain (perhaps different types of) measured object features. Based

on how feature matching is realized, the object localization algorithms can be broadly

divided into two categories: the algorithms which do not involve any recognition process,

and those which have more or less a recognition process involved. We call these two

types of algorithms direct-localization algorithms and recognition-localization algorithms,

respectively.

Obviously, the second type of algorithm has a higher intelligence level than the first.

Even within the second type of algorithms, the intelligence levels can be different. Some
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of themcanestablishmatcheswithin oneobject, some of them can do it within a group

of the same type of objects, others can match the features within a group of different

types of objects. At the highest level, the algorithm could locate unmodeled objects. To

do this, a set of primitive features should be specified in a database, which will form the

basic frames of any object to be constructed. Before localizing the unknown object, the

algorithm must explore the object and establish a model for the object using the set of

primitives.

Each type of _lgorithm can be further classified according to its sensing methods,

the types of features used for matching, mathematical formulation methods, the types of

locatable objects and so on.

3.3.1 Direct-Localization

Direct-localization algorithms are primarily used in the situations where either the

working environment is highly-structured, the position relationships among the objects

in the environment have previously been established approximately, or human beings can

provide assistance in defining the required measurements. The telerobotics applications

in most space programs meet these requirements.

Because no recognition is involved, the localization process is quite simple. The ex-

tracted features and model features can be used as inputs for direct computation. The

time of localization depends on the time spent on measurements and feature extraction

computation.

One method proposed by Gunnarsson and Prinz [49, 50] is based on their observation

that if a set of points are measured and these measurements are distributed on the object

surfaces, the best transformation is the one which will make the sum of distances between
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eachmeasuredpoint and it's corresponding transformed surface minimal. Their idea

leads to a POINT-TO-SURFACE matching strategy. Their algorithm, when formulated in

mathematical terms, becomes a least squares minimization problem and can be used

to locate arbitrarily-shaped objects. Usually an iterative numerical procedure is needed

to solve for the problem. The numerical procedure they used is a modified Lagrange

multiplier and Newton-Raphson method. Because a good initial guess can be provided due

to the fact that the object's approximate location is assumed to be known, the convergence

of the algorithm is guaranteed in most cases.

Gordon and Seering [48] developed a system which uses striped-light and camera sens-

ing to gather necessary range data. The system can only locate planar objects. LINE-TO-

SURFACE matching is used in their algorithm. The striped-light, when projected on the

planar surfaces of the object, generates straight-line segments. The scene is then viewed

by a camera. The equation of each line segment can be obtained by analyzing the cor-

responding image of that fine segment as viewed by the camera. Three independent line

segments are needed to compute the rotation and translation parameters. The fact that

the line vector is perpendicular to the rotated model surface normal vector can be used

to derive the rotation. The algorithm uses quaternions to represent rotation and uses a

numerical method to compute it. They also give a closed-form solution for the rotation

when three mutually perpendicular surfaces are sensed. The calculated rotation is then

used to compute the translation.

The same striped-fight and camera sensing system is also used by Rutkowski, Benton

et al. [10, 98]. But their matching strategy is POINT-TO-SURFACE matching. In their

algorithm, the measured points are from extracted line-segments, either straight or curved.

Their method imposes no particular constraints on the shapes of the object surfaces, as
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longasthe object surfaces can be partitioned into a collection of primitive surfaces, such

as planes, cylinders, or spheres. The computation is carried out by a repeated location

adjustment. The location adjustment is expressed by three quantities: the rotation center,

rotation axis and translation vector. To guarantee a fast convergence of their algorithm,

the center of mass data point is chosen as the rotation center instead of the origin of the

model's coordinate system.

When comparing these methods, we find that all of them have very high measurement

accuracy and fast execution speed. For example, Gordon's system can locate an object

in about 2.5 seconds, including the times spent on image acquisition, image processing

and computation, and can achieve a relative accuracy of 0.002 inches in translation and

0.1 degrees in rotation when a two-inch cube is being located. It is capable of reliably

assembling components with little clearance without using force controlled motion. In

Gunnarsson's algorithm the measurement error is the same order of magnitude as the

sensor error. These algorithms also have some problems. The problem associated with

stripped-light sensing is that it requires an extra light source with a special pattern, which

sometimes is inconvenient. The use of a spot sensor or line sensor has the problem of

multi-measurement, e.g., the sensor has to be installed on the robot's moving part and be

moved together with the robot in order to take multi-measurement. This will slow down

the localization process.

High-level features can also be used to locate objects. For example, Thorne and et

al. [115] describe an algorithm which uses features such as the radii or curvatures of a

space curve along the surface to locate an object. The curvatures k or radii p of a space

curve can be expressed as a function of the length s of the curve, e.g., k = _(s) (or

p = p(s)), which is independent of the coordinates of the curve and is thus invariant under
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rotation and translation. The algorithm assumes that there exists a particular feature

line or fingerprint for each object. The feature line could be a certain portion of the

curved edge(s) of the object or a curve on the object surface. A curvature plot along the

feature line can be drawn. In the database, the feature line is specified by a set of discrete

points. Associated with each point is information about its coordinate (x, y, z), radius of

curvature, curvature, delta length, and total length. The total length is zero for the first

point. The localization is proceeded through POINT-TO-POINT matching. The method

first measures a set of discrete points along the feature line and then finds a corresponding

point for each measured point. A least squares optimization algorithm is used to find the

location parameters. A similar algorithm which uses Iso-Gaussian (a curve connecting

points of constant Gaussian curvature) matching to localize an object has been described

by Gunnaxsson [49].

3.3.2 Recognition-Localization

In many applications the objects can be placed anywhere in the environment. There-

fore, if a measurement is made and some sensed features are extracted, the localization

system has no prior knowledge about which object or which part of the object the sensed

features belong to. In this case, in order to compute the location of an object, a recogni-

tion process is needed, which will establish the matches between a set of sensed features

and the model features.

There are two popular matching strategies: tree searching and clustering.

In the tree searching strategy, if there are k sensed features Si, i = 1 • • • k and l,n model

features Mj,j = 1...l,n for object O,_,rn = 1 ...w, a searching tree can be constructed

for each known object 0,_ such that the tree has lm levels, and each intermediate node
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hask branches. Each path from root to leaf represents a potential matching. The total

number of possible matchings, or the searching space for object O,_ is I_, which is very

huge. To reduce the searching space, several methods have been proposed.

One algorithm proposed by Grimson, Lozano-Perez et al. [43] [45] is to use local

geometric constraints such as distance constraint, angle constraint, direction constraint,

triple-product constraint and so on to reduce the searching space. Beginning from the

root of the tree down, at each node, a local constraint test is made to see if the sensed

features up to that level are consistent with these constraints. If not, the entire subtree is

discarded from consideration.

A similar tree searching method is used in Fangeras and Hebert's work [37, 38, 39].

Instead of local constraints, rigidity is used as the basic constraint during the tree search

process. Every path from the root to an intermediate node (level k for instance) represents

a partial matching. The algorithm computes a best rigid transformation Tk up to that

level (k). Then Tk is applied to the next unmatched model primitive Mk+l and only those

sensed primitives that are sufficiently close to TkMk+l are considered. The computations

are carried out by least squares optimization techniques. As each new pair of primitives

adds to the partial matching list, the new estimation of transformation has to be started

over again. The algorithm's underlying paradigm is "locating while recognizing" which is

different from the paradigm of "locating after recognizing" used in the Grimson et. al.

algorithm.

Reducing the number of sensed and model features is another important method to

speed up the tree searching process. The use of higher level features can effectively reduce

the size of the searching tree because fewer features are usually adequate. The system

developed by Bolles, IIoraud et. aI. [18, 19] is such an example. Three different types of
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edgesareusedas the primitive features. They axe: straight dihedrals, circular dihedrals,

and straight tangentials. They axe higher level features: one pair of matched features can

determine all but one of the object's six degrees of freedom.

Clustering is another technique used in recognition-localization algorithms. The prin-

ciple of clustering is very simple:

For each element in the sensed feature list

for each element in the model feature list

if they axe compatible, compute a transformation candidate

put it into cluster space.

The cells with the largest counts are expected to represent the location.

While the principle is simple, the implementation is not so easy. The high dimensions

(six) and huge space of clustering are just two difficulties. Different methods have been

proposed to accommodate these problems. Three dimensional clustering, the use of proper

size of cells and hierarchical clustering are some of them [6]. Several systems have been

proposed using the clustering technique. Linnainmaa et. al. [76, 77, 78], Silberberg,

Haxwood, et. al. [110], and Stockman et. al. [112, 113, 114] are typical examples. One

property of clustering is the algorithm's parallel structure, which will have an important

impact on the future development of object localization algorithms.

In most algorithms, the least squares optimization is the mathematical tool to estimate

the best transformation if many feature-pairs are found. During the optimization process,

bad data can influence the accuracy of computation. Therefore, a filtering process usually

is needed to detect and remote bad data points. Another mathematical tool is based on the

use of probability theory. Bolle and Cooper [13] [15, 16, 17] have presented a statistics ap-

proach of combining pieces of information to estimate 3-D complex-object position. They
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formulatethe optimal object localizationas a Bayesianprobability estimationproblem.

Theobjectiveis to find the mostlikely transformationT that mapsthe modelprimitives

ontothe measuredrangedata. Thelikelihoodp(YIT) should be maximized with respect

to T, where Y is the measurement data. If _ primitives have been extracted from range

data and matched to model primitives, then p(Y[T) = H_=x p(Yk[T). That means that

to arrive at a global optimal solution, the maximum likelihood estimation has to be ap-

plied locally. Based on this analysis, they derived a different formula for minimizing the

estimation error from the traditional least squares optimization formula. To arrive at an

optimal solution, a thorough analysis of measurement errors and a good error model are

needed.

3.4 Summary of the Chapter

We have discussed general object localization problems and localization strategies. Dif-

ferent levels of telerobot control have different requirements on the localization system,

such as speed, accuracy, the level of intelligence, etc.. At the low level, the consideration

of real-time execution and high accuracy is important. At the high level, the use of AI

(artificial intelligence) technology becomes crucial.



CHAPTER 4

3-D OBJECT LOCALIZATION USING LINE-SEGMENT

MATCHING

4.1 Introduction

Two important factors which will influence the applicability of object localization tech-

niques in tele-manipalation tasks involving contact with objects are speed and accuracy.

Gordon and Seering have demonstrated that the successful applications of high-speed and

accurate localization system in certain automatic assembly tasks can avoid using tradi-

tional force-controlled motion or precise part fixturing assembly method and therefore will

simplify robotic operations and improve the flexibility and reliability of performing these

tasks [47]. Many recognition-localization based object localization algorithms such as [39]

[45] [76] [112] described in Chapter 3, though having higher levels of intelligence, are not

suitable for these applications. To achieve high-speed localization, the efforts should focus

on the following aspects:

1. Develop fast sensing techniques.

2. Reduce the overhead for processing sensed data.

3. Develop fast algorithms to compute the location parameters. Use closed-form for-

mulas whenever possible.

55
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For the purposeof high-speed and accurate object localization, laser range sensing

systems are the natural choice over other types of range sensors and intensity-image based

sensors.

Bastuscheck [8] has discussed the techniques which can lead to the generation of range

data in real-time. Assuming that a range image is the result of sensor measurement, the

image consists of 500 x 500 elements and the sensor's standoff (working area) is about

40 - 80 inches (1 - 2 m) with 20 inches (0.5 m) depth (working) range, he concluded that

time-of-flight laser range sensors might be able to generate range images at video rate

(30 frames of a second). He also found that ratio image range sensors and slit-of-light

(or multi-slit of light) range sensors, both of which are based on triangulation techniques,

have the potential to produce 5 to 10 frames of range images per second, l_ange sensors

which are based upon either the time-of-flight or triangulation principles and are able to

generate 5-10 frames of range data per second have been reported recently [82, 91, 92],

although the number of range readings per frame are all less than 500 x 500.

The real-time range data generation is only the first step toward high-speed local-

ization. It has to be followed by a fast data pre-processing step and a fast location

computation process in order to achieve real-time localization. The task of range data

processing is to provide necessary parameters for location computation. If the range data

is from a range image, to extract these parameters the system has to go through a series of

pre-processing steps which include image-segmentation, region-grouping, feature extrac-

tion and feature matching. The pre-processing is usually time-consuming. To deal with

this problem, we can take the following measures:

• Using a priori knowledges about object location

Because the high-speed and high-accuracy requirements of locating an object are
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neededin mostcasesonly whenthe robot is quite closeto that object and is going

to perform manipulations on it, it is reasonable to assume that a priori knowledge

about the object position is known approximately before the sensing system takes

precise measurements on the object. Thus, the direct-localization strategy can be

employed and the feature matching process is no longer necessary.

• Using suitable sensing strategy

Usually only a few features need to be extracted in order to locate an object. For

example, the extraction of any one of the following groups of matching features is

enough to derive location (transformation) parameters:

- Three pairs of independent matching points;

- Two pairs of independent matching line-segments;

- One pair of matching fine-segment and one pair of matching point;

- Three line-segments matched on three independent planer surfaces;

- Six points matched on three independent planar surfaces;

- Three pairs of matching planar surfaces;

As a consequence, we do not have to use general range image(s) to obtain needed

features; certain forms of sparse range data can also be used to provide us enough

information. Take axis extraction as an example. If the axis of a cylinder surface is

to be extracted from a range image, the usual steps are first to segment the range

image into different regions each of which contains only one type of surface, find

the region corresponding to the cylinder surface, then extract the cylinder's surface

parameters from the region, and finally compute the axis of the cylinder surface from

the surface parameters.

The same task can also be completed by using a line range sensor. The sensor first
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projectsa planeofa laserbeamon thecylindersurfaceandthentakesrangereadings

along the intersection of the laser beam and the surface. Finally, the system uses the

information to compute the cylinder axis directly from these range data. Obviously,

the second method is much faster than the first one because image-segmentation,

region-grouping processes are not necessary in the second method.

Up to now, only limited research directed at fast and accurate object location deter-

ruination has been reported in the literature.

The algorithm presented by Gunnarsson and Prinz [49, 50] uses spot range data which

is obtained by using spot sensors to make measurements on the surfaces of an object to

locate that object. In their algorithm for locating a planar object the measured points

have to be distributed on at least three surfaces; the measured points on each surface

should be distributed over as much of the surface area as possible in order to get accurate

estimation. If a single spot range sensor is used, the sensor has to be moved many times to

gather necessary data. Even if a multi-spot range sensor is used, it is most likely that the

sensor will still need to move several times to face different surfaces in order to complete

the required measurements. While feature extraction and computation are fast, the overall

localization process is slowed down by the time needed to move the sensor.

The system developed by Gordon and Seering [48] uses a striped-light and camera

sensing technique to locate an object. They only studied the case when the object is

polygon. Again, at least three independent surfaces need to be accessed to obtain enough

range data.

In this chapter, a fast and efficient localization algorithm is presented, which is based

on LINE-TO-LINE matching. Any sensors which are able to make range measurements

along a line or lines on the object's surfaces can be used as the sensing device in the
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algorithm. Such sensors include a line range sensor, a plane of light and camera ranging

system, or a multi-plane of light and camera ranging system. The measured range data

will be used to extract line features, which could be boundary edges for planar surfaces or

axes for surfaces of revolution. The line features are matched to corresponding modeled

line features. Closed form formulas are used to carry out most computations throughout

the localization process to speed up the whole localization process. The algorithm requires

a highly constrained environment. That is, either the environment is a highly-structured,

or the position relationships among the objects in the environment have previously been

established approximately. With this assumption, fairly fast and reliable measurements

can be taken, which in turn will lead to a fast and accurate localization.

In the next chapter an optimal localization algorithm will be presented. The inputs of

the algorithm are not limited only to the line features. Featured points (POINT-TO-POINT

matching), featured unit direction vectors (VECTOR-TO-VECTOR, matching), etc. can also

be used as the inputs to the algorithm, and there is no upper limit on the number of the

features inputed. The algorithm will allow the use of redundant features to find a better

solution. As will be seen, the optimal algorithm is both fast and accurate compared with

current available algorithms.
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Measurementrate:

The numberof pixels:

Depthresolution:

Lateralresolution:

Standoff:

Depth range:

Line length:

5frames/second

63

10micrometer

30micrometer

30mm

4mm

2 mm

Table4.1. A triangulationbasedline range sensor specifications

4.2 Sensing System

4.2.1 Sensor requirements

What characteristics should an ideal range sensing system have? In our previous

analysis, we have discussed certain important requirements a range sensor should possess

in order to perform tele-manipulation tasks. We have mentioned that at E-move level

the localization system should be able to generate an updated measurement in about

a second. We have investigated the accuracy requirement of performing candidate tele-

manipulation tasks and concluded that the ranging system should be able to provide

measurement accuracy up to about 0.01 inches (0.254 mm) in translation and 0.2 degree

in rotation [96]. We have also listed the advantages of using a line range sensor or a

plane of fight and camera ranging system in reducing the overhead of extracting needed

geometrical features from sensed data. These discussions should give a good reference for

design of a range sensing systems. In addition, other factors should also be considered in
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selectingsensordesignparameters,suchaseaseof use,etc.. Based on the above discussion,

a list of important performance parameters for an ideal range sensor is given as follows:

• Measurement dynamic range: 8 to 80 inches (0.2 to 2.0 m)

• Measurement rate: 5-10 frames per second.

• Measurement depth resolution: 0.005 inches (0.01 mm).

• Varying field of view: 35 to 10 degree.

• Use multi-line range sensor or multi-plane of light and camera ranging system.

• Compact size and light weight.

Though we have not found any range sensor in the market which meets all the above

requirements, some sensors with specifications which are quite close to these requirements

have been reported recently.

A line-range sensor manufactured by CyberOptics Corp. was selected as a prototype

sensor in our experiments to test the performance of the algorithm. This sensor is a

triangulation-based laser range sensor and its specifications are given in Table 4.1: [32]

4.2.2 3-D range sensing fundamentals

The triangulation based range-finding technique uses a known geometric structure

between the source of laser beam and the detectors to determine the distance. Figure

4.1 shows the geometry of such sensors when making a spot measurement. Any position

along the laser source beam or range can be determined from the position image on the

detector by using the relationship:

Zr = h. tan[tan-l(_ -) + tan-l(_P )] (see[69]) (4.1)
d cosB ""
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Figure 4.1. Geometry of a Laser Based Triangulation Sensor. ([69])

The line-range sensor uses the same principle. If we assign a right-hand coordinate

system to the sensor (see Fig.4.2), the coordinates of points of the object in 3-D space

lying on the projected line may be derived as a function of the readings of the sensor

detector array.-Let 0 be the angle of field of view, k the number of pixels of the detector

array, and ei the range reading of pixel i, where 1 < i < k. Then the coordinates of the

point v_ in space corresponding to pixel { are given by

!._ e (tan
(4.2)vi = 0

ei

This information wiU be used in the next section as the input to extract Une-segment

parazneters.

4.3 Line-Segment Feature Extraction

The object localization process basically consists of two steps: 1) line-segment parameter
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y ei

X

Figure 4.2. Line range sensor configuration

extraction from sensed range data and 2) location parameter determination. Two types

of line-segment axe considered in the feature extraction step:

1. The line-segment to be extracted is a boundary edge of a planar surface;

2. The line-segment to be extracted is an axis of a surface of revolution.

Before describing the extraction process, we give a brief discussion on the geometrical 3-D

feature representation.

4.3.1 Geometrical representation of 3-D features

3-D feature representation is a basic problem in object localization. Usually one feature

can be represented in several different, though equivalent, ways. But usually we will select

the one which is best for certain applications in terms of efficiency, less calculation error,

easy computation as the representation of that feature. In the following, we will describe

the representation schemes of those 3-D features that will be used in our object localization
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t
Figure 4.3. The representation of a planar surface

algorithm.

_]nit direction vectou A unit direction vector is a 3 × 1 vector with its magnitude equals

to one. That is, if N is a unit direction vector, we have

N_

N = Ny

Nz

(4.3)

and

NTN = 1 (4.4)

The unit direction vectors can be used to represent surface normals and the directions of

line-segments such as the direction of an axis, the direction of a boundary edge and so on.

Planar surface: A planar surface in our applications is represented in either one of the

following ways:

• A plane can be thought of as a set of points that satisfies

n. x = d (4.5)
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(a)

n

(b)

Figure 4.4. Representation of a line: (a). vector form; (b). the intersec-

tion of two planes

where x = (x, y,z) is any point on a surface, n is the surface normal and d is the

distance of the plane to the origin.

• An equivalent form of Eq.(4.5) is

Ax + By + Cz + D = 0 (4.6)

where A,B,C are directional parameters and at least one of them is a non-zero

number.

Line: A line in our applications is represented in one of the following two ways:

• A line is represented by a pair (10, n), e.g., the line has the characteristics that it_

passes through a point lo and is parallel to n. The formula to represent the line is

l=lo+vn -oo<v<oo (4.7)

where 1 is any point on the line.
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Figure4.5. Therepresentationof a cylindricalsurface

• A line is thoughtof asthe intersectionof two planes:

L : I Alx + Bly + Clz + D1 = 0 (4.8)
A2x + B2y + C2z + D2 = O

Cylindrical surface: A circular cylinder is a cylinder with a circular cross section and can

be specified by a triple (n, xo, r), where n specifies the direction of the axis, x0 is the

translation vector of the axis from the origin and r represents the radius of the cylinder.

There are other types of cylinders such as elliptic cylinders, hyperbolic cylinders, etc..

In our study, we mainly deal with circular cylinders and will call cylinders. A point

x = (z, y, z) is on the surface of a cylinder if and only if the distance between the point

and the axis of the cylinder is equal to r. Therefore, the general form of a cylindrical

surface can be expressed as

Ix - xo - ((x - ,,0)" n)nL= r (4.9)

Conic surface: To define a cone, we need to specify a point v to be the vertex of the cone,

a unit vector n to define the direction of the axis of the cone, and an angle 0 to be the half
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n

Figure 4.6. A conic surface is specified by a triple (v, n, A)

angle of the cone. A point x = (z, y, z) is on the cone if and only if the vector v. x makes

the angle O with n or -n. The general form of a circular cone can therefore be expressed

as"

where

I(x- v). nl = ),Ix - vl. Inl (4.10)

A = cos 8, and 8 is the half angle of the cone;

v = (vl, v2,v3) is the vertex of the cone;

n = (nl, n2, n3) is the unit direction vector of the axis;

x is any point on the cone.

The absolute value on (x - v). n is needed to give us both sides of the cone. That is, any

circular cone can be specified by a triple (v, n, A).

Spherical surface: A spherical surface can be determined by the center c of the sphere and

its radius r. That is, if a point x is on the surface, it will meet the equation:

Ix- c I = r (4.11)
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f

4.3.2

Figure 4.7. The representation of a spherical surface

Boundary edge parameter extraction

4.3.2.1 Boundary edge representation

A boundary edge of a polygon is usually considered as an intersection of two planar

surfaces. If the shape of two planar surfaces in the polygon is concave, the boundary

edge is an internal boundary edge. If the shape of the two planar surfaces is convex, it is

an external boundary edge. In real applications such as in industry, the boundary edges

of most parts are rounded. That is, the two planar surfaces are not directly connected.

Instead, they are connected through a piece of cylindrical surface having certain radius.

Therefore, we will deal with two types of boundary edges: rounded edges and sharp edges

and they axe modeled in computer as follows:
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type_of_edge= (rounded, sharp);

boundary-edge = record of

plane 1,

plane2 : plane;

edge: type_of_edge;

radius: real;

end;

In most cases, when the object is to be displayed on screen in either wire frame form or

in shaded colors, the rounded-edge feature is not displayed. It is a very useful feature,

however, in our object localization process. Fig.4.8 gives an example of two different types

of boundary edges. Fig. 4.8.(a) shows an object with a sharp edge. Fig. 4.8.(b) is its

range image when the line range sensor is toward the edge of the object. Fig. 4.8.(c) and

(d) shows an object with rounded edges and a slice of its corresponding range image taken

toward the edge of the object.

4.3.2.2 Boundary edge feature extraction

The objective of boundary edge extraction is to find the parameters of the intersection

of the two planar surfaces which compose the boundary edge. The process of boundary

edge feature extraction is first to make a multi-slice of measurements using the line range

sensor along the boundary edge and then to compute the parameters from these measured

data. Based upon the sensor's accessibility on the object's surfaces, there exist two sensing

patterns: 1) the sensor can access only one surface of the boundary edge (see pattern (a)

in Fig.4.9), and 2) the sensor can only access both surfaces of the boundary edge (see

pattern (b) and (c)in Fig.4.9).
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Figure 4.9. The boundary edge sensing patterns

For the sharp-type edge, the boundary edge extraction is quite easy. If the sensing

pattern is (a), e.g., the sensor can only access one surface of the boundary edge, the system

needs only to detect the boundary edge point from each slice of range readings. This can

be done by examining the sensor detector's readings and distinguishing the part of sensor

cells which has no output from another part of sensor cells which do exist readings. Usually

the separation point is the corner point and the error is about one pixel.

If both surfaces are accessible, the sensing system will try to divide each slice of range

data into two parts based on the changes in slope from their readings. The two parts

of range data from all slices will then be used to derive two planar equations. The line-

segment equation is the combination of the two equations. The derivation is a two-pass

process. During the first pass, all the range data will be used to derive an approximate

plane equation. A least squares fitting can be used for the purpose.

Suppose the equation of the planar surface to be determined is ax + by + z = d. We

need to find the a,b and d from a set of k readings (z_,y_,z_), where i = 1,...,k and
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k > 3. The following equation can be obtained:

zl yl 1

x2 Y2 1

xk

]

I
I
J

--z 1

--z 2

--zk

The equation can be solved by a closed form formula and have the following solution:

= W _ yiz_ I

I
zl ]

a

b

(4.12)

(4.13)

where d = r/_/a 2 + b2 + 1 and

W _.

-1

I 1E zi EziY_ Ez_

E _Y_ Ey_ Ey,

E z_ E y_ k ]

(4.14)

See Appendix A for the derivation of the solution.

The approximate planar equation will then be used to reject bad or unreliable data.

The system will compute the distance between each measured point and the hypothesized

plane• A maximum acceptable threshold value must be provided. Data having distance

value exceeding the threshold will be discarded• The remained range data will be used to

carry out the planar surface parameter computation again using the same formula.

For a rounded edge, if both surfaces are accessible, the basic strategy is to try to

separate measured points on each slice which belong to either one of the planar surfaces

from those points which belong to the rounded part of the boundary edge. The separation

is still based on the change of slopes• Fig.4.11 shows a part of a slice range data measured

on a rounded edge when both sides of the surfaces are accessible•
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Figure 4.10. A part of a slice range data measured on a rounded edge.

If only one surface is accessible, the derivation process is not as easy as in the sharp-

type edge case. But by using the geometric property of the boundary edge, this task can

still be accomplished. The procedure is first to divide the range data of each slice into

two groups, one belongs to the surface, another belongs to the rounded edge and then to

compute the surface parameters from the two groups of range data. A planar equation

can be found from the first group of range data. The second group of range data can be

used to find the axis parameters of the rounded edge (cylindrical surface). Usually, the

intersection of the plane of a laser beam and a cylindrical surface is an ellipse. The axis

parameter determination can be done by using one of the methods given in Section 4.3.3.
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Figure 4.11. The range data where only one planar surface is accessible.

Now, we have computed one surface equation and the location of the axis of the

rounded edge. From the modeled description of the boundary edge, we know the radius of

the rounded edge and the angle between the two surfaces. These conditions are sufficient

to derive the location of the boundary edge.

Fig.4.10 gives an example of the range image where only one planar surface of the

boundary edge is accessible. By using the prior knowledge about the boundary edge, we

are still able to extract the corner point from the data.

4.3.2.3 Plane parameter error estimation

The estimation is made by deriving the standard deviations of the parameters of the planar
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surface.The standarddeviationfor a set of measured range data zi, i = 1... k is

where _fzi -" zi - _ and _ is the most probable value of zi's and is equal to

1 k

= _ _.__z_ (4.16)

According to the error theory [9], if a variable v is derived from a set of variables

ui i = 1,-. •, k and has the function relationship

, = y(_x,.-., uk) (4.17)

then, the propagation of error from ui i = 1,...,k to v is expressed by the following

forinula:

where Pui_

k k _ OV OV

_.ov,_ 2 2_( )( )p_,_,_,
(4.18)

is the correlation coefficient of variables ui and ui and is determined by the

formula:

k

1 _(_,_uj) (4.19)
P_'_" = (k - 1)a_,,a_,j i=l

If all the variables are independent and uncorrelated, the equation (4.18) will be sire-

plified as

2 2..,( w_ ) ,_, (4.20)
O'v ---- i=1 Otti

In our case, because variables a,b and d are dependent on zl,i = 1,... ,k and their

relationships are determined by the equation (A.7), the standard deviation for parameters

a, b and r can be explicitly expressed. Using (A.7), the variable a is expressed as

= y(Zl,...,zk) (4.21)
k

= E(WllXiZi + W12YiZi-t- W13zi) (4.22)
i=1
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If zi's are independent, e.g., pz_z_ = 0, then

2
O"a

_=10zl / zi

k

W '2a2

i=1

(4.23)

(4.24)

Furthermore, if all zi's have the same distribution property, we have

k

o_(_(wllx/+ wl_y_+ w13)_)O"a -_.

i=1

(4.25)

The expression (4.25) can be further simplified.

k k

2 2

i=1 i=1

k
2 2 2__(W?x_/+ w_y/+ w?_+(7"z

i----1

2Wll W12xiYi + 2Wlx W13xi + 2W12W13Yi)

3 3

2
= a_ _-"_Wu(_',W, jMji)

i=1 j=l

Because the matrix W is the inverse of M, e.g., MW = I.

(4.26)

(4.27)

(4.28)

(4.29)

Using the property of

inverse matrix, we have WM = I. That is

ZW_jMj/ =
j=l 0

ifi=j

ifi¢j

(4.30)

Therefore

2 2
O"a = o'zWll

(4.31)

a 2 a 2 be derived:Similarly, b, -d can

a2_

(4.32)

(4.33)
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It shouldbenotedthat during theabovederivationprocess,wedonot makeanyassump-

tion aboutthe typesof the distributionof the rangedata. That means,theresult canbe

usednomatter howthe measuredrangedata aredistributed,Gaussianor non-Gaussian,

aslongasall the measuredpointshave the same distribution.

The standard deviation of surface normal n and distance d can also be derived from

equations (A.8) to (A.11) and (4.20). That is,

2

a2 1 2 a 2
nz -- 82 o.a -at- 3"_ as

2 2
a 2 Jr n_Us

-- 82

Similarly,

2 2

a_ + nva, (4.34)
a 2

nv -- 82

2 2
nza, (4.35)

0.2
nz -- 82

or2 + d 2a_ (4.36)
0"2 -- ,_2

In matrix form, they can be expresses as

1

100

0 1 0 n 2

0 0 0

o o I d2

And finally, from s = v/a 2 + b2 + 1, we have

2 a20"2 + b2a_

0.' - a 2 + b2 + 1

2
O"a

2
0"r

IT s !

(4.37)

(4.38)
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4.3.3
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Figure 4.12. The intersection of a plane and a cylinder is an ellipse

Axis parameter extraction of a cylindrical surface

The most frequently seen surfaces of revolution in industry include cylindrical surfaces,

conic surfaces and spherical surfaces. The extraction of cylinder parameters is the one

most studied by researchers. The cylinder parameters can be extracted from range images

[53], intensity images [25], or fine-range finders [20, 46]. Basically, there are two methods

of extracting cylinder parameters by using line range sensors, which are called one-scan

and two-scan methods, respectively, depending on how many line(s) of range data axe used

to do the extraction.

4.3.3.1 One scan method

When a laser line beam is projected on the surface of a cylinder, the intersection of the

projection plane and the cylindrical surface is an ellipse. The range data obtained from

the projection can be used to derive the ellipse parameters. There are several algorithms
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Figure4.13. Theextractionof axis from two scans([46])

whichcando ellipsefitting [21,86,85, 99]. Oncethe ellipseis fitted to a setof range

data, thecylinderaxiscanbefoundveryeasilybecauseof the well knowncharacteristics

of theellipse(seeFig. 4.12): 1) Its centerlieson the axisof the cylinder;2) Its conjugate

dimensionisequalto theradiusof thecylinder;and3)Theratio of its principaldimension

to its conjugatedimensionis the cosineof the anglebetweenthe axisof thecylinderand

the projectionplane.

Thus,only onescanof the line rangesensoron the cylindersurfaceis enoughto solve

for cylinderaxisparameters.Theaccuracywill beimprovedif multiplescansareused.In

thiscase,thefinal resultis obtainedby averagingall the resultscalculatedfromeachscan.

Thismethodalsohasits problem.Mostalgorithmswhichhavebeenusedto deriveellipse

parametersareiterative or recursiveandthereforenot efficientand sometimesconverge

veryslowly[2,21,85,86,99,118].
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4.3.3.2 Two scan method

In the two-scan method [1, 46], two scans on the cylindrical surface are needed to

extract axis parameters. The extraction consists of two steps. The first step is to use

the two scans to compute the direction of the axis of the cylinder; the second step is to

compute the position of the axis.

Step 1. Find the Direction of the Axis:

This method uses the geometric properties of a cylinder. That is, given two scans A

and B on a cylinder, select the pairs al,bl,a2,b2 so that line segments albl and a2b2 are

parallel (see Fig. 4.13). Then the line segments might either be parallel to the cylinder

axis, or they might not. If they are not parallel to the axis, the four points al,bl,a2,b2

are the only points that the two line segments albl, a2b2 intersect with the surface of the

cylinder. Therefore a third scan C can be used to test the parallelism of the two lines and

the cylindrical axis. This can be done by extending one of the two parallel lines until it

intersects with the plane of a the third scan and testing whether the intersection point is

on the ellipse defined by that scan. If it is, the two lines are also parallel to the cylindrical

axis. Otherwise, they are not. [1, 46] have given detailed discussions about the validity

of the argument. [46] has described an algorithm. The basic idea of the algorithm is as

follows:

Pick two points on one scan, ai(i = 1,2); the points should be widely separated

on the scan. Try to select two points bi(i = 1,2) on the second scan so that

the dot product of the two unit vectors vi.i, (i = 1,2) from ai pointing to bi is

close to 1. Store the two pair of points.

Find several pairs of points by repeated executing the procedure.

The above procedure will be performed on two other scans. If all the vectors give
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Z

Figure 4.14. Projection of a circular cylindrical surface

roughly the same direction and are parallel to the axis of the cylinder, then the axis

direction will be the average values over all the vectors.

Step 2. Find the Axis Displacement:

The axis displacement can be obtained by using a projection method. Once the axis direc-

tion is known, all the range data will be projected to a plane which is perpendicular to the

axis. The projection matrix is made in such a way that the z axis in the coordinate system

is rotated to the direction of the normal vector n of the plane. All the range data will

then be projected on the plane by multiplying M with these data points and taking only

x and y components of the multiplication. If the axis direction of the cylindrical surface

is correct, the projected data to the plane will form an arc (see Fig 4.14). The rotation

matrix has the property that it is an orthonormal matrix and that Mn = (0 0 1) T. The
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Figure 4.15. The error between the area of a circle and the measured area

of the circle

matrix is not unique. One of them has the form:

M

ny _ha L
g g

g g

n x fly

0

-g

}2z

(4.39)

where g = _/n_ + n2y.

The arc will then be fitted in a circle. During the process, the circle's center and radius

will be calculated. In fact, we are only interested in the circle's center.

Traditional methods use either iterative method [75] or nonlinear optimization methods

[53] to derive the circle parameters. While the accuracy of these methods is promising,

the execution speed will be slowed down quite markedly as the number of measured points

increases. To speed up the circle parameter calculation, a closed form formula is used.

The formula is based on least squares optimization, which tries to minimize the squares

of the errors between the area of the circle and the area of the circle defined by the center
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of the circle and the measured point.

Suppose that the projected range data are expressed as

{S = (zi,yi)li = 1,...,k,k > 2}

and the desired circle is located at c = (xo, yo) with radius r, The measured area from the

measured point (xi, Yi) is 7r((xi - xo) 2 + (Yi - Y0) 2) and the area of the circle will be rr 2.

The error between the two areas is (see Fig. 4.15)

= - 2 + - yo)2) - (4.40)

The traditional least squares optimization can be used to minimize the error function:

k

E= (4.41)
i--1

and the circle parameters can be solved from it by a closed form formula. See Appendix

B for the detailed derivation.

The two dimensional coordinates of the center will then be back-projected in the

original 3-D coordinate system and be used as the displacement of the axis.

The efficiency of the closed form formula can be clearly seen in Fig. 4.16, where the

execution speed of the closed form algorithm for different number of sampled points is

plotted against the execution speed of the iterative algorithm described in [75]. The

comparison of the two algorithms was carried out on a SUN-3/50 computer without using

math-coprocessor. The chart shows the following facts:

1. The closed formula algorithm is about 10 times faster than the iterative algorithm.

When the number of sample points are 100, their execution times are 0.2 and 2.1

seconds, respectively, when the iterative error = 0.001. Their execution times in-

crease to 0.84 and 8.01 seconds, respectively, as the number of sample points reach

400.
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Execution Times of Two Algorithms
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Figure 4.16. A comparison of the execution speeds of the two algorithms

2. The execution time for the iterative algorithm will increase considerably when higher

accuracy is required. But the execution speed of the closed formula algorithm is less

influenced by the accuracy requirement. This is because higher-accuracy means

more loops for the iterative algorithm. The average execution time will increase

about 20% when the error bound changes from 0.001 to 0.0001 and increase another

10% when the error bound becomes 0.00001.

Experiments have shown that the two algorithms basically have the same level of

localization accuracy. See section 4.5 of this chapter for more detailed demonstration.
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Figure 4.17. The intersection of a plane and a cone: (a) general cases; (b)

ellipse and its axis

4.3.4 Axis parameter extraction of a conic surface

In contrast to the study on cylinder parameter extraction, very little research work on

conic parameter extraction could be found in literature. In the following, we will discuss

how the two methods described in the last section can be extended to the case of extracting

conic parameters.

4.3.4.1 One scan method

In general, the intersection of a conic surface and a line of laser beam produces a

quadratic curve. The shape of the curve could be a hyperbola, a parabola, an ellipse, a
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circle,or a straight line depending on the relative position between the light plane and

the cone (see Fig. 4.17(a)). In most cases, the shape of the curve is an ellipse. If the

intersection curve is an ellipse, it has the following important property:

The intersection point between the axis of a cone and the light plane is always

on the principal axis of the ellipse (see Fig. 4.17(b)).

Section C.1 of Appendix C gives the detailed discussion about this property.

Now, suppose a conic surface is sensed by a laser line range sensor. Because the

approximate position of the cone is known, it should be no difficulty in controlling the

sensor's position so that the intersection of the laser beam plane and the conic section is

an ellipse curve. The ellipse parameters can be extracted from the range readings along

the curve by using the algorithms discussed in the previous section. Now we have the

following question:

Can we extract the conic axis parameters by measuring only one slice of line-

segment along the conic surface?

The answer is YES, if we know the half angle 0 of the cone and know that the intersection

curve is an ellipse. Section C.2 of Appendix C gives the formula of carrying out the required

computation and describes the derivation of the formula. Again, multiple measurements

will improve the accuracy of the axis extraction.

4.3.4.2 Three scan method

The three-scan method we use for axis parameter extraction is based on the following

observation:

Given three scans on a conic surfaces, which axe obtained as the intersections

of three different laser beam planes with the conic surface, we select any two

scans from them. If a pair of points on these two scans have the property
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Figure 4.18. Three scan method to extract the axis of a conic surface.

that the line formed by connecting the two points passes through the vertex

of the cone, then the line must intersect with the third scan. We call this line

a generator of the cone.

The extraction process, like the two-scan method for cylinder axis extraction, again con-

sists of two steps: axis direction extraction and axis position extraction.

Step I. Find the Direction of the Azis:

The extraction of axis direction uses the geometric property of a cone that the angle

between the axis of the cone and any generator of the cone is always the same. That is,

suppose nl and If2 represent the unit direction vectors of two generators of the cone and

n represent the the unit direction vector of the axis of the cone, we have

Il I • n -- n2 • n
(4.42)

e,_,_

n. (nl - n2) = 0 (4.43)
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Input: Sets of measured points taken from three scans on a conic surface

A = {ai = (ai=,%,ai,)li = 1,...,ml};

B = {bl = (bi,,biy,bi.)li = 1,...,m2};

c = {c_ = (_.,%,c.)1i = 1,...,m3};

Output: A pair of points (al,bk).

Begin

01 Find a best-fit plane ( from the set of measured points ci;

02 Select an arbitrary point on scan A, al;

03 Fori:= ltom2do

04 Compute the intersection point Pi between the line alb--'_and the plane (;

05 Find the distance di between Pi and scan C and store the value;

{, After steps 03-06, a distance curve about di is obtained *}

06 Smooth the distance curve ;

07 Find the point bk on the the curve with minimum the distance to Scan C;

End

Figure 4.19. Three scan algorithm to find a generator of a cone.

This means that the vector n is perpendicular to vector nt - n2. Given three different

generators ni, i = 1,2,3, we can derive the the axis direction vector by the formula:

n --

(nt - n2) X (n= X n3)

I(nl - n2) X (n2 X na)l
(4.44)

and it is unique.

The algorithm for finding a generator of a cone can be described as follows:

Three consecutive scans are taken on a conic surface and they are named A, B
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and C from the bottom scan to the top scan respectively (see Fig. 4.18). Pick

a point on scan A, al. Try to select a point bi on scan B so that the line

formed by (al,b_) is close to scan C (see Fig4.19 and 4.20 for algorithms).

One potential problem in using the above algorithm is that the existence of noise can

lead to a false local minimum distance value between the line and the scan. The real

implementation of the algorithm actually computes more points. The distance values

should tend to approach minimum and then start increasing. The algorithm will smooth

the distance curve and find the minimum point from the smoothed curve and take this

point as the required b_.

An implementation of the algorithm is described in Fig. 4.19. In that algorithm, the

step 05 - "find the distance d/ between pi and scan C" may require significant time to

compute. We can do better if the three scan lines are parallel. In real applications, when

a multiple-scan sensor is used, the scan lines are usually parallel. Even if only a single

scanner is used, to make parallel scans is not very difficult. In this case, if we use same

sensor coordinate frame described in Fig.4.2, then the three scan planes have the equations

y = w_,i = 1,2,3. For convenience, the scan plane A can be assigned to y = 0. After

such art assignment, the step 01 of the algorithm in Fig.4.19 is unnecessary. In addition,

if the x values are used to represent the sensor cell's positions, their values are integers

which will further simplify the implementation of the algorithm. A revised version of the

algorithm is shown in Fig. 4.20.

Among these three scans, we can arbitrarily assign any scan as scan A, scan B or scan

C. But in practice, we usually select the scan which is closest to the bottom of the cone

as scan A, the middle scan as scan B and the scan which is closest to the vertex of the

cone as scan C. There are two obvious advantages of doing such kind of assignment:
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Input: Sets of measured points taken from three parallel scans on a conic surface

A = (a_ = (a_,O,a_,)[i = 1,..-,rnl);

B -- {bl = (bi,,w_,bi,)[ i = 1,...,rn2};

C = {ei = (c_,,w3,ci,)[i = 1,..-,m3};

Output: A pair of point (al,bk).

Begin

01 Select a point on scan A, al;

02 Fori:= 1 tom2do

03 Compute the intersection point Pi between the line albi and the plane y = w3;

04 If a measured point c_ on C scan can be found so that ci z is equal

to round(piz), go step 06;

05 Go to next loop;

06 Find the difference Azi between Pit and ci, and store the value;

07 Go to next loop;

08 Smooth the Azi's data;

09 Find a point (xl, Azk) on the the smoothed curve, which is the extreme

point of the curve;

10 Find the point bo corresponding to that point;

End

Figure 4.20. Revised three-scan algorithm: all scans are parallel.
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1. By using such an assignment, a little change on bl will result in big change in Azi.

As a result, the distance curve will have a sharper shape and it is easier to find the

required point;

2. Relatively few intersection points Pk computed from step 03 have corresponding e

points. As a result, relatively few Az_ values will be stored and less effort will be

spent on processing it.

A computer simulation was performed to compare the performance of two different

types of assignments. A cone having a half angle of 30 ° is placed at a position with

respect to the sensor frame such that the vertex's position is (15, 15, 15) and the axis

direction vector of the cone is (2,3,4). Three scan planes are y = 0, y = 2 and y = 5,

respectively. All the units are in centimeters. Each scan has 255 measurement points,

which have covered about one third of the intersection ellipse. Fig.4.21 shows the distance

curve using our preferred scan assignment. Fig.4.22 shows the resulting curve of using

different assignment, where the scan B is assigned to the scan closest to the vertex of

the cone and the scan C is assigned to the middle scan. The measurement noise has a

normal distribution with a standard deviation of 0.3. In Fig.4.21, only about one half of

the intersection points have their correspondence. On the contrary, all the intersection

points can find their correspondence in Fig.4.22. The difference in the sharpness of the

resulting curves is also obvious.

Two methods have been tested for Azi data smoothing. One method is called curve

fitting. In this method, all the measured data are used to fit into a single quadric curve

in the form of z = a + bz + c=c2. In the second method we do not try to use only one curve

to fit all the data. Instead, each portion of data will be fitted into a quadric curve, with

each quadric curve having different parameters. The new curve as a whole is smoothed.
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Figure 4.21. Distance curve using the preferred scan assignment.

We will take the extreme point of the smoothed curve as the required point. Appendix D

gives the detailed description of the two methods for smoothing. The two methods give

similax results. No matter which method is used, one thing should keep in mind, namely,

the objective of data smoothing is to determine the point which will let us find a generator

of the cone. Therefore, it is important to observe the shape of the curve as whole through

smoothing, not to find the exact value at each point.

The algorithm just described is quite insensitive to sensor measurement noise and

roughness of the object surface. This is because the point which will lead us to find a

generator of the cone is obtained by observing the tendency of the distance curve instead

of simply computing a minimum or maximum point from the data set.

To derive the axis direction, at least three generators are needed. In real applications,
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Figure 4.22. Distance curve using a different scan assignment.

we usually compute more than that and average the results to obtain a better approxima-

tion.

Step 2. Find the Axis Displacement:

The axis displacement computation procedure for a conic surface is the same as the pro-

cedure for computing the axis displacement of a cylindrical surface. Once the conic axis

direction is derived, the projection plane and projection matrix can be found. Instead of

projecting range data, all the generators will be projected onto that plane. The result

of the projections is a set of two-dimensional straight lines. Usually, these lines are not

parallel. Thus, each pair of lines will have a cross point. If n(n > 3) lines are projected,

the number of cross points is n_-(_2-1 • These cross points are distributed on a very small

circle area. The center of the area can be derived from these cross points by using the
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closed-formulacircleparameterestimationalgorithmdescribedin last section.

4.3.5 Axis parameter extraction of other surface of revolution

The three-scan method can in fact be used for any cylindrical type of surfaces, such as a

circular cylinder, elliptic cylinder, hyperbolic cylinder and so on. The axis direction vector

can be determined in the manner described in Fig. 4.20. All the measured points will then

be projected onto a projection plane in order to find the axis displacement. Except for

the case of a circular cylinder where a closed form formula is available to find the center

of the projected arc, an optimal quaxiric curve fitting is needed to find the quadric curve

parameters. For other types of surfaces of revolution, we have to analyze the geometrical

properties in order to apply proper methods.

4.4 Location Determination

Suppose two non-parallel line-segments, [I, i = 1,2 , either boundary edges or axes or a

combination of them, have been extracted, and are expressed as

i_: i_=lo,+Vhi i=1,2
-oo < v < +o0 (4.45)

Here 10_ are the vectors from the origin of the sensing coordinate system perpendicular to

and intersecting the lines the line-segments lie on, and fii are the unit direction vectors

of the line-segments viewed from the sensing coordinate system.

line-segments li in object model are expressed as

Their corresponding

li : 1; = lo, + vnl i = 1,2 - 0o < v < +oc (4.46)
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where 10_ are the vectors from the origin of the object coordinate system perpendicular

to and intersecting the lines on which the line-segments lie, and ni are the unit direction

vector of the line-segments. If the two pairs of measured line-segments (11,12) and modeled

line-segments (11,12) have the same angle and the same distance, a unique transformation

matrix can be derived from them, which will transform the modeled line-segments to their

corresponding measured line-segments.

transformation matrix T such that

That is, the location determination is to find a

ii = Tll i = 1,2 (4.47)

In the case where they are not wen matched, more matching pairs must be found in order

to derive an optimal solution, which is the task of Chapter 5.

4.4.0.1 Determining the Rotation Parameters

The rotation can be represented in several ways. In our case, because two pairs of match-

ing vectors are given, it is natural to use the properties of vector algebra to derive the

rotation parameters. Thus the best way of representing the rotation is to use the axis-

angle representation method. The rotation axis r can be easily derived by using the fact

that the rotation axis should be perpendicular to both (nl-fil) and (n2-fi2) and has the

following form:

(nl - ill) × (n2 - fi2)

r -" [l(n ' _ ill) x (n2 - _.2)ll
(4.48)

to within an ambiguity of r radian.

Once the rotation axis r has been computed, the rotation angle can be determined by

ni • fii - (r. fii) 2 (4.49)

using the following formula:

COS _
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Figure 4.23. Two line-segments are in the same plane

Given values for r and a, the rotation submatrix of the transformation matrix can be

determined. For a detailed derivation, see Appendix E.

4.4.0.2 Determining the Translation

When considering the determination of the displacement, we have to deal with two possible

cases: 1) the two line-segments are located in the same plane; and 2) they are in different

planes.

In the first case (see Fig 4.23), the intrinsic geometric properties of the line-segments

are used to derive the formulas. From the given conditions, the intersection point p of

the two lines emanating from the line-segments and the parameters (as,d) of the plane

determined by the two line-segments, all expressed in the object coordinate system, can

be calculated. Also from Fig.4.23, we have the following equation:

o = p + an1 + bn2 - dn, (4.50)
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Figure 4.24. The cross point of two line-segments

The parameters a and b can be derived by using the properties of vector algebra:

a = ((dn,-p)- bn2)'nl

(dn,- p)" n2 - ((dns - p)" nl)(nl" n2)

b = 1-(nl"n2) 2

Using the constants d,a,b and the extracted line-segment parameters, the translation

vector t is given by

t = _ + afit + bfi2 - dfi_ (4.51)

where the parameters ill, fi2, fi,, and 15 are the same parameters corresponding to

Eq.(4.50) but are observed from sensing coordinate frame, and can be computed from

the the extracted line-segment. The correctness of the Eq.(4.51) is based on the fact that

during any transformation, the relative position and orientation of vectors p, nl, n2 and

n, are unchanged.

For the second case where two line-segments are in different planes, we can first find

the two cross points of a line which is perpendicular to both of the two line-segments and
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hasthe shortest distance. See Fig.4.24. Once the cross points have been found, we can

use the properties of vector algebra to compute the displacement vector, going through

the same procedure as described in the the first case.

If the modeled line-segments are given as Eq. (4.46), the coordinates of cross points Pl

and P2 can be derived by computing the corresponding v values of each of the line-segments

represented by Eq. (4.46). Thus,

(lo_ - 1o_). nl - (nl. n2)(lol - Io2) •n2 (4.52)
vl = (nl'n2)2- i

and

-(lot - lo2). n_ + (nl" n_)(101 - 10_) • nl (4.53)
v2= (n1"n2)2- I

Because the two line-segmentsare non-parallel,(n1"n2)2- I willnot be equal to zeroand

thereforewe do not need to considerthe overflowproblem here.

The coordinatesof the same two crosspointswhich, however, are observed from the

sensingsystem-1 and I_2can be derivedby using the same forms of Eq.(4.52)and (4.53).

What we need to do isto change allthe vectornotationfrom modeled notationintotilde

notation.

4.5 Experiment Results

4.5.1 Accuracy Performance on the Circular Arc Parameter Estimation

Computer simulations have been carried out on a SUN computer to compare the accuracy

performance of the circular arc parameter estimation between the closed formula method

and the iterative method [75]. After each simulation process, the estimated circular center
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andradius are calculated. Because we are only interested in the the circular center, the

results of circular radius estimation are not shown here. In fact, only the estimations of

center's x-coordinate are demonstrated in the following figures.

The simulation results are presented in Fig. 4.25 and Fig. 4.26. In Fig. 4.25, all the

data points are evenly taken from an arc of 180 ° and radius 20.0 units, and the center of

the arc is placed at the origin (0.0,0.0) of the 2-D coordinate system. The data points

are corrupted with a normal distribution along both X and Z axes. Three different levels

of corruptions are used in the simulation, e.g., with a standard deviation of 0.1, 1.0 and

2.0 respectively. The number of measured data points range from a minimum of 3 points

to a maximum of 400 points. For each given set of data points and each corruption level

setting, 25 trials are performed for both of the two algorithms. The results are then used

to compute the standard deviations on the center's location. The computed standard

deviations are drawn on the figure. Fig. 4.26 shows the simulation results performed on

an arc of 60 ° .

From the two figures, we have the following observations:

• When the input noise is small, the iterative method provides a better estimation.

• As the input noise increases, the difference on accuracy performance of the two

algorithms becomes smaller. They have the same level of accuracy performance

when the input noise reaches to the level of standard deviation 1.0.

• If the input noise increases further, the closed formula gives a better result.

• In any case, the output error level is much less than the input noise level. For

example, when the input has a noise level of standard deviation 1.0 and contains a

total number of 100 measured data points on an arc of 180 °, the output error only

has a standard deviation of 0.07 for both of the algorithms.
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In practice,the selectionof a bestalgorithm is dependedon many factorssuchasthe

requiredexecutionspeed,the roughnessof object surfaces,sensorquality, the numberof

measuredpointsetc..

4.5.2 The Accuracy Issues of the Revised Three-Scan Algorithm

The key step of the cone parameter extraction is the extraction of a cone's generator.

We have proposed a three-scan algorithm in Section 4.3.4.2 for this purpose. A revised

three-scan algorithm in which all three scans are parallel was illustrated in Fig. 4.20. In

this section, computer simulations are set to further demonstrate the performance of the

algorithm under different conditions. The cone we used in the simulations has the same

parameters: a half angle of 30°, a vertex position of (15, 15, 15). The scan A and C are in

planes Y = 0 and Y = 5, respectively. The simulation process is as follows:

For each scan B position and each simulated measurement noise level, 30 trials

are performed. During each trial, the simulation program first produces a set

of normal-distributed measurement data, and then runs the revised three-scan

algorithm. The output of the algorithm is a point b_ on scan B such that the

line alb--'_ represents a generator of the cone. Suppose the ideal point is bo, the

erroron pixel will be _ei = li -- ol- After the 30 trials, the average error on

pixel position is computed and stored in the table.

Table 4.2 shows the accuracy performance of the algorithm with different measurement

noise levels and different scan B positions. The cone direction vector is (2, 3, 4). Each scan

covers about one third of the intersection ellipse and consists of 250 pixels. The first column

of the Table 4.2 lists the simulated measurement noise levels; the next three columns give

the average computed pixel position errors with the scan B being positioned at planes

Y = 1, Y = 2 and Y = 3, respectively. The table clearly tells us that the noise levels
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have no influence on the output accuracy, e.g., the algorithm is noise-insensitive. In fact,

the table even shows a slight improvement on the output accuracy when the measurement

noise is increased from Sd = 2.5 level to Sd = 5.0 level. The table also shows that the

pixel position errors become smaller as the middle scan B moves closer to the bottom

scan A. If the pixel position errors are converted into corresponding generator's direction

errors, the actual average angular errors on the generator's direction are 0.369 ° , 0.386 °

and 0.513 ° for scan B at planes Y = 1, Y = 2 and Y = 3, respectively.

Table 4.3 shows the accuracy performance when all the scans are perpendicular to

the axis of the cone, e.g., the cone direction vector equals to (0, 1,0). The algorithm's

noise-insensitive property is also demonstrated in the table. The table also shows that the

accuracy becomes worse as the middle scan B moves closer to the bottom scan A.

Table 4.4 and Fig. 4.27 present the detailed simulation results taken from a set of

randomly produced data points. Table 4.3 lists the cone and scan parameter settings

and gives a partial listing of the X values corresponding to the pixels on scan B and

C, their corresponding theoretical Z values and the corrupted Z values. A pixel on scan

A (ellipse 1) is selected as the al in the three-scan algorithm. Fig. 4.27(a) shows the

theoretical distance curve and the distance points computed from corrupted Z values; and

(b) shows the smoothed distance curve after the three-scan algorithm is implemented. In

this simulation, the final selected pixel is coincident with the ideal pixel, e.g., no error.

Fig. 4.28 presents the simulation result taken from another random set of measured

data when the scans are perpendicular to the axis of the cone. After the execution of

the algorithm, the output (the final selected pixel position) is three pixels away from the

ideal pixel position. In the figure, the pixel positions are converted into corresponding x

coordinates. Thus, it is hard to see the exact pixel position error directly from the figure.
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].J.b|e 4.2.

Cone direction vector: (2, 3, 4)

Scan A : Y=0, Scan C: Y=5

Input

Sd

0.1

0.5

1.0

2.5

5.0

Average Errors on PixeI Position

Y= l

3.0000

2.7667

2.8667

3.2000

t.3667

Y=2

6.0000

5.9333

5.8333

5.4667

4.7667

Y=3

10.4000

10.5000

10.5333

t0.4333

9.9333

Accuracy performance of the three-scan algorithm with cone

direction vector (2,3,4)
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Table4.3.

Conedirectionvector:(0, 1, 0)

ScanA : Y=0, ScanC: Y=5

Input

Sd

0.1

0.5

1.0

2.5

5.0
I

Average Errors on Pixel Position

Y=I

2.7333

7.9667

4.5000

5.3000

5.9000

Y--2

5.9667

4.6667

5.2000

5.6667

5.7333

Y=3

5.7000

5.8333

2.6667

4.9667

4.6667

Accuracy performance of the three-scan algorithm with cone

direction vector = (0, 1, 0)
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standard deviation: 1.0

noise factor: 0.i

ellipse 2 plane: Y-I

ellipse 3 plane: Y-5

number of points: 250

start angle :35

ending angle: 160

cone:

vertex: 15 15 15

direction vector: 2 3 4

half angle: 30

ellipse 2 data: (pixel 108-157)

x model z measured z

108 -9.577

109 -9.870

ii0 -10.164

Iii -10.458

112 -10.752

113 -11.045

114 -11.339

115 -11.633

116 -11.927

117 -12.220

118 -12.514

119 -12.808

120 -13.101

121 -13.395

122 -13.689

123 -13.983

124 -14.276

125 -14.570

126 -14.864

127 -15.158

128 -15.451

129 -15.745

130 -16.039

131 -16.333

132 -16.626

133 -16.920

134 -17.214

135 -17.508

136 -17.801

137 -18.095

139 -18.389

139 -18.682

140 -19.976

141 -19.270

142 -19.564

143 -19.857

144 -20.151

145 -20.445

146 -20.739

147 -21.032

148 -21.326

149 -21.620

150 -21.914

151 -22.207

152 -22.501

153 -22.795

!54 -23.089

155 -23.382

156 -23.676

157 -23.970

0.984

0.734

0.482

0.228

-0 030

-0 289

-0 551

-0 815

-I 082

-! 351

-i 622

-i 896

-2 172

-2 450

-2 731

-3 013

-3 298

-3 586

-3 875

-4 167

-4 460

-4 756

-5 054

-5 354

-5 657

-5 961

-6 268

-6 576

-6 887

-7 199

-7 514

-7 831

-8 150

-8 470

-8 793

-9 118

-9 445

-9 773

-10 104

-I0 437

-10.771

-11.108

-i1.446

-11.787

-12.129

-12.473

-12.819

-13.167

-13.517

-13.869

1 895

0 885

-0 344

0 789

-0 197

0 669

-I 194

-0 190

-2 471

0.766

-0.932

-0.064

-3.174

-2.309

-2.413

-2.312

-3.069

-4.905

-3.365

-3.888

-3.410

-6.137

-4.768

-5.084

-6.384

-5.691

-7.767

-6.029

-8.497

-8.500

-7.346

-6.269

-6.549

-11.643

-9.322

-9.334

-9.840

-10.132

-9.314

-11.406

-10.565

-12.740

-12.740

-ii.421

-12.939

-12.848

-12.366

-14.125

-13.553

-12.334

ellipse 1 data:

x model z

-20.302 -8.617

ellipse 3 data:

measured z

-6.491

(pixel 108-157)

x model z measured z

-4.863 2 932

-5.072 2 734

-5.282 2 536

-5.492 2 335

-5. 702 2 133

-5. 912 1 930

-6.122 1 725

-6.331 1 518

-6.541 1 310

-6.751 1 100

-6.961 0 888

-7.171 0 676

-7.380 0 461

-7.590 0 245

-7.800 0 028

-8.010 -0 191

-8.220 -0 412

-8.429 -0 633

-8.639 -0 857

-8.849 -1 082

-9.059 -i 308

-9.269 -1 535

-9.479 -i 765

-9.688 -i 995

-9.898 -2 227

-10.108 -2 461

-10.318 -2 695

-10.528 -2 932

-10.737 -3 169

-10.947 -3 408

-11.157 -3 649

-11.367 -3 890

-11.577 -4 133

-11.786 -4 378

-11.996 -4 624

-12.206 -4 871

-12.416 -5 120

-12.626 -5 369

-12.836 -5 621

-13.045 -5 873

-13.255 -6 127

-13.465 -6 383

-13.675 -6 639

-13.885 -6 897

-14.094 -7 156

-14.304 -7 417

-14.514 -7 679

-14.724 -7 942

-14.934 -8 207

-15.143 -8 472

1.372

5.160

2.465

1 543

2 537

3 019

2 882

1 iii

-0 004

I 205

i 500

i 920

1 870

1 283

0 221

-0 444

0 391

-0 807

-0 964

0 218

-1.868

-1.539

-2.378

-3.032

-2.364

-i 190

-3 601

-2 719

-3 826

-3 755

-3 614

-4 978

-2 961

-5 399

-5 273

-3 103

-5 650

-5 609

-3 )14

-6 682

-6 652

-4 972

-6 847

-5 504

-6 539

-6 676

-6 620

-6 748

-i0 205

-7 180

Table 4.4. A listing of simulation data
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CHAPTER, 5

AN OPTIMAL SOLUTION FOR OBJECT LOCALIZATION

As we have mentioned, two pairs of non-parallel matching line-segments are sufficient to

completely specify a transformation matrix. In practice, however, it is often the case

that more than the minimum number of required features can be extracted from sensed

range data. For example, three or more line-segments may be extracted from sensed range

data either by using multiple line sensors or by using multiple measurements with each

measurement displaced slightly. Point features such as the corner points (vertices) of an

object, masked points, or the center of a sphere may also be extracted from sensed range

data.

Techniques which combine redundant sensed features, whether or not they are of the

same type, to determine the object location can improve the accuracy of localization.

Least squares optimization techniques are frequently used to find the best estimate of

the transformation matrix from those redundant features. Two approaches for using

optimization techniques to find the best estimate of the transformation matrix have been

introduced [5, 49, 37]. In one method, an optimal orientation of the object is determined

first, which is then used as a basis to find the position of the object. That is, the translation

vector is a function of an optimal rotation matrix R and other measured quantities. Many

object localization algorithms use this method [5, 45, 48, 49, 78, 98]. The problem with

this approach is the possibility of the existence of the accumulated errors in calculating

109
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the translation vector due to the errors from previous calculations and measurements. For

example, in [5]'s SVD algorithm the translation vector t is computed from R,_i,p_, e.g.,

t = f(R, f_i, Pi) where Pi and Pi are sets of measured points and corresponding modeled

points in 3-D space respectively. Because both 15i and R have errors, the error of the

resulting translation vector will be compounded due to error propagation. The second

approach is to compute two optimal solutions separately, one for the orientation and the

another for the position [37], which is not very efficient. The common characteristics of

these two methods are that both approach the problem of determination of orientation

and position separately. That is not surprising, because the transformation matrix itself

can be easily decomposed into two parts: a rotation submatrix and a position vector.

The difference between these two approaches lies in the way the optimization is done: the

first only optimizes the rotational part of the homogeneous transformation matrix and

the translational part is then derived from it, while the second method optimizes both

rotational and translational parts separately.

In this chapter, we present an efficient aJgorithm which is based on the use of dual

number quaternions [26]. The method solves for the orientation and the position of an

object by minimizing a single cost function associated with the sum of the orientation and

position errors. The performance, both in accuracy and in speed, compared with that

of the previous methods will be discussed. The required input data for the algorithm is

a combination of measured points on the surfaces of an object, measured unit direction

vectors from that object and their corresponding modeled features. Examples of point

features might be any combinations of those which we have mentioned at the beginning of

this chapter. Exaraples of unit vector features include the surface normals, edge direction

vectors, or axis direction vectors.
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A brief description of the concept and properties of dual numbers is given in Appendix

F. More detailed discussion can be found in [105] and [134]. In the following sections, we

begin with the introduction of the definition of dual number quaternions. We show how

they are used to represent object location, why they axe a valid representation of location

and their correspondence with the more familiar homogeneous transforms. Then we give

a brief description of the important properties of the dual number quaternions. Next,

we formulate the object localization problem as a dual number quaternion optimization

problem and an algorithm is derived to solve the problem. Simulation results are shown

in section 5.3.

5.1 Dual Number Quaternions

This section begins with the definition of dual number quaternions, their properties,

and their physical interpretation. It concludes by showing how to convert back and forth

from the dual number quaternion representation of location to the homogeneous transfor-

mation representation.

5.1.1 Properties of dual number quaternions

Quaternions axe four element vectors,

vector component and a scalar component. For example the quaternion q is:

ql

q-. --

q3 q4

q4

which are thought of as consisting of a 3 x 1

(5.1)
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Symbol(s) Description

0 0 -
Quaternion: q, e, a, b, r, s, t,n, p, n/, Pi, hi, Pi, hi, 13t

e unit quaternion

t translation quaternion

r real part of a dual quaternion

s dual part of a dual quaternion

n directionquaternion

p position quaternion

n o modeled direction quaternion

pl° modeled position quaternion

ni transformed model direction quaternion

Pi transformed model position quaternion

_i measured direction quaternion

/3i measured position quaternion

Vector: t, q, a, n, p, r, Pi, p0, _i, n o

t translation vector

n rotation axisunit directionvector

p position vector

pi ° modeled position vector

13i measured position vector

pl transformed model position vector

0 modeled direction vector
n i

4 x 4 matrix: T, I, A, Cl, C2, C3, Q, W

T homogeneous transformation matrix

Q W quaternion matrices

3 x 3 matrix: R, K

/'£ rotation matrix

K skew-symmetric matrix

Scalar: 8, d, e, A1, A2, a/, _i

8 rotation angle

d distance between two vectors

e errors from least squares optimization

Al, A_ Lagrange multipliers

a/, fli weighting factors

Dual quantities: 4, el, h,

dual quaternion

r5 dual vector of rotation

dual angle of rotation

Table 5.1. A list of symbols appeared in this chapter
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n
Z 1

Z2
Y2

Figure 5.1. Illustration of rotation for a real quaternion

In our notation, each quaternion is represented with a boldface script character, such as

q; and each 3 x 1 vector is represented with a boldface Roman character, such as q.

quaternions have been used extensively as a method of parameterizing orientation

[52, 68, 941.

In this application, the components of the quaternion have the following interpretation.

sin(O/2)n
q = (5.2)

cos(O�2)

The components of this quaternion are called the Euler Symmetric Parameters. As

illustrated in Figure (5.1), the vector n is the unit vector about which the coordinate

system has rotated and 0 is the amount of rotation about n. The corresponding rotation

matrix R can be expressed as

R = (q42 - qTq)i + 2qq T + 2q4K(q) (5.3)
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whereK is the skew-symmetric matrix

K(q) =

0 --q3 q2

q3 0 --ql

--q2 ql 0

(5.4)

The extension of this equation to include the representation of position and orientation

is made by simply changing all of the quantities in the equation to dual quantities [26].

42

#3

q4

(5.5)

Note that whether an item is a 3 × 1 vector or a quaternion, if it's components are

dual numbers, it is signified by placing a hat over it as in the above example. A brief

description of the concept of dual numbers and their important properties can be found

in Section F.1 of Appendix F.

There are two parts of a dual quaternion.

-r+es (5.6)

where r and s are both real quaternions and are called the real part and dual part,

respectively.

The dual quaternions have a similar interpretation as the real quaternion.

cos( /2)

(5.7)

where the dual vector fi represents a line in 3-D space about which the coordinate system

has rotated and translated and t_ is the dual angle of rotation and translation. The dual
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Figure 5.2. Illustration of rotation and translation for a dual quaternion

vector fi and dual angle 0 are

fi=n+_p×n (5.8)

and

= 0 + ed (5.9)

where n is a unit vector which specifies the direction of the rotation axis and also the

direction of translation; the rotation is about the line having direction n passing through

the point p with a rotation angle of O; and d is the distance of translation along the

direction specified by n (see Appendix F for the discussion of n and p). The geometrical

interpretation of the representation can be explained as follows:

TraditionaLly, the transformation of a coordinate frame is specified by a trans-

lation vector t, a rotation axis n and a rotation angle 0. A new coordinate
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frame is formed by first translating the original coordinate flame along t and

then rotating it with respect to n by an angle O. Of course, the sequence of

translation and rotation can be reversed.

With dual quaternion representation, the same transformation can be formed

by first translating the original coordinate frame along the direction of n by a

distance of d and then rotating it by an angle of 0 with respect to a llne having

a unit vector n as its direction and passing through a point p.

See Figure 5.2 for an illustration of the interpretation. It can be proven that for each

(n,p,d,0) transformation representation, we can always find a unique corresponding

(t,n,0). On the other hand, for each (t,n,0) transformation representation, there ex-

ists a set of corresponding (n, p,d, 0)'s. (See section 5.1.2 and appendix F for a detailed

description).

If we place Eq.(5.8) and (5.9), e.g, expressions for h and 0, into Eq.(5.7), expand and

simplify that equation by using the properties of dual numbers, and compare the results

with Eq.(5.6), we have the following equations:

and

I sin(0/2)n
cos(O/2)

(5.10)

s = d/2 cos(O/2)n + sin(0/2)(p x n) (5.11)

-d/2sin(O/2)

A dual quaternion has eight elements whereas the minimum number of independent

variables to represent a 3-D object transformation is six, which means that two of the

eight elements in dual quaternion representation are not independent. In fact, it can be

shown from Eq. (5.10) and (5.11) that the components of any dual quaternion, if they are
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Q(a)TQ(a) = Q(a)Q(a) T = aTaI

w(a)rw(a) = W(a)W(a) r = _r_X

Q(a)b = W(b)a

Q(_)T_ = W(_)ra = (_r_)e

Q(Q(a)b) = Q(a)Q(b)

w(w(_)b) = W(_)W(b)

Q(a)W(b) T = W(b)TQ(a)

a and b are arbitrary quaternions

e is the unit quaternion = [0001] T

Table 5.2. Properties of quaternion matrices

defined by Eq. (5.7)-(5.9), satisfy the following two constraints

rTr = 1 (5.12)

rT s -- 0 (5.13)

Two important matrix functions of quaternions are the matrices Q(r) and W(r) which

are defined as:

q(r) =
r4I + K(r) r

_ r T r 4

(5.14)

w(r) =
r4I- K(r) r

-r T r4

(5.15)
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where K(r) is the skew-symmetric matrix as was defined in Eg. (5.4).

Useful properties of the Q and W matrices which axe utilized in the derivation of the

localization algorithm are given in Table (5.2). All these properties can easily be verified

by direct substitutions.

5.1.2 P_elation to homogeneous transforms

A common method of representing the position and orientation of a coordinate system is

with homogeneous transforms. Since homogeneous transforms axe more common in use

than dual number quaternions, the following is provided as a reference to show how to

convert from. one to the other.

5.1.2.1 Computing the homogeneous transform given the dual quaternion

Eq.(5.10) shows that the real part r of the dual quaternion has exactly the same form

as that defined in Eq.(5.2). As a result, the rotation matrix R can be written in terms of

the components of the dual quaternion in the following familiar way.

R = (T] - rrr)x + 2r_r + 2T4K(r) (5.16)

or

R 0
= W(r)TQ(r) (5.17)

0T 1

The position vector can be written in terms of the components of the dual quaternion

in the following way (see section F.2 of Appendix F for the detailed derivation).

t =W(,)rs (5.1S)
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where t is the translation quaternion for the translation vector t and is defined as

t

t = 1/2
0

(5.19)

5.1.2.2 Computing the dual quaternion given the homogeneous transform

Given a homogeneous transform T specified by a rotation matrix R and a translation

vector t, one can compute the corresponding r and s as follows:

r4 = 1�2x/R11 + R22 + R33 + 1

where Rq denotes the ij - th element of the matrix R.

represents a rotation of 180 degrees. If r4 is not zero, then:

R32 - Rz3

1

r = _ R13 - R31

R21 - R12

(5.20)

A value of r4 equal to zero

If r4 iS zero, then:

rr T = 1/2(R + I)

So r can be determined from any nonzero column of 1/2(R + I), call it a. Thus,

(5.21)

(5.22)

a (5.23)
r -- :1:[-_

Either sign will work since the rotation angle is 180 degrees,

Having determined r, the value of s can be computed from Eq. (5.18)

8 = w(r)t (5.24)

Thus a homogeneous transformation matrix and a corresponding dual quaternion can

be converted from one to another.
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5.2 Problem Formulation and Solution

This section begins with the formulation of the problem as an optimization problem. The

following section presents the solution to the problem.

5.2.1 Problem formulation

As we have mentioned, two types of sensor measurements are considered: the position

of points on an object and the unit vector on the object such as the unit normal, edge

direction vector, etc.. To facilitate the analysis we define quaternion representations of

these quantities. Let p be the position vector of a point on the object surface. We define

the position quaternion as

p = i/2 (5.25)
0

Let n be a unit vector extracted from the object. We define the direction quaternion as

n = n (5.26)

0

To determine the position and orientation of an object, we make measurements of k unit

vectors for which we have a correspondence to the models and store them in the direction

quaternions, hi. The tilde denotes measured values. Similarly, we make measurements of

I points on the object and store them in the position quaternions, ]bi.

Corresponding to each measured point 15i, there is a database description of that point

p0 which is described with respect to the object coordinate system. If t and R are the

translational and rotational parts of the transformation matrix which is to be determined,

the modeled point will be transformed into position pl

p, = t + Rp ° (5.27)
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If thesemodeledpointsarerepresentedby positionquaternionspO and Pi and a dual

quaternion is used to represent the transformation parameters, from Eq. (5.17) and (5.18),

Eq. (5.27) will become the following:

Pi = W(r) Ts + W(r)TQ(r)P ° (5.28)

For the same reason, for the modeled direction quaternion ni and n °, we have the relation:

ni = W(r)TQ(r) n° (5.29)

The approach for computing the position and orientation of the object is to determine

r and s which minimizes the error between the 1_i and Pi and the 6i and ni. That is, we

select the r and s to minimize the following error function:

k l

E = Z _'("' - '_')_+ _,(v, - _,)_ (5.30)
i----1 i----1

where the a{ and Hi are constant positive weighting factors.

We consider each of these terms individually.

(ni - hi) _ = 2(1- rTQ(hi)TW(n°)r) (5.31)

(Pi - Pi) 2 = sT s + 2sT(W(P °) - Q(/_i))r

OTO
--2rTQ(pi)Tw(p°) r + ((Pi) Pi + PTPi) (5.32)

Thus, the error function can be written as a quadratic function of r and s.

E = rTCl r J¢-sTC2s + sTc3 r + constant (5.33)

where

k 1

- T W oc, =-2_,O(,_,)rw(,_°) -2_z,Q(v,) (v,)
i=1 i=1

1

(5.34)

i=1

C2 =(_'__,6i)I (5.35)
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l

c3 = 2 _] _,(w(p °) - Q(_)) (5.36)
i=1

k l
0T 0

constant = 2 _ ai + _]_i((Pi) Pi + lbTlbi) (5.37)
i----1 i=1

We compute r and s to minimize this error function subject to the constraints:

rrr = l (5.38)

srp = 0 (5.39)

5.2.2 Problem solution

The optimal dual number location quaternion is obtained by adjoining the constraint

equations to the error equation and then minimizing the resulting function without con-

straints.

k -- rTc1 r -b sTC2s Jr sTc3 r "Jrconstant

+ A1(rr_- i)+ A_(sr_)

where AI and A2 are Lagrange multipliers. Taking the partial derivatives gives:

a_ (c, + cT). + crs + 2_,_ + _s = o (5.40)
Or

ok (c2 + cr2)_ + c3,. + ;_2," 0 (5.41)
Os

Thus, the solution of equations (5.38), (5.39), (5.40), and (5.41), for r and s gives the

optimal solution for the position and orientation of the object.

To solve these equations, we begin by solving for A2. Multiplying equation (5.41) by r

and solving for A2 gives:

A2 _--_rTC3r (5.42)
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Since C3 is skew symmetric:

)_2=0

We can now solve for s as a function of r from Eg. (5.41),

s = -(C2 + C_)-1C3 r

Substituting equations (5.43) and (5.44) into Eg. (5.40) gives:

Ar = _lr

(5.43)

(5.44)

(5.45)

where

A = _(C_(C2 + c_)-_C3 - c, - c_) (5.45)

Thus, the quaternion r is an eigenvector of the matrix A and At is the corresponding

eigenvalue. In general there will be four solutions to this equation. Since A is real

and symmetric, all of the eigenvalues and eigenvectors are real and the eigenvectors will

be orthogonal. The desired solution is identified by referring back to the original error

equation (5.33).

Multiplying Eg. (5.40) by r T gives:

rTC,r = 1/2rY(C1 + C1Y)r = -1/2sTC3r - A1
(5.47)

Multiplying Eg. (5.41) by s T gives:

sTC2s = 1�2sT(C2 + cT)s = -1/2sTC3r
(5.4s)

Substituting these into Eg. (5.33) gives:

E = constant - A1 (5.49)

Thus, the error is minimized if we select the eigenvector corresponding to the largest

positive eigenvalue.
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Havingcomputedr, wecannowsubstitutebackinto Eg. (5.44)to obtains to complete

the solution for the position and orientation of the object.

To give a dearer picture of the above derivation process, in the following the optimal

dual number quaternion localization algorithm, (DQ algorithm), will be summarized.

From the algorithm we can see that the execution times for steps 2 - 4 are basically

constant and the execution time for step 1 has a linear relationship to the number of

measured vectors. Therefore, the algorithm is an O(n) algorithm in time complexity.
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DQ Localization Algorithm:

Inputs: a set of k measured points - o - o. the corresponding modeledp_, I measured unit vectors n i ,

points p_ and vectors n_'; as well as weighting factors a_ and _ chosen heuristically

to reflect the reliability of the data points.

Output: an estimation of transformation matrix T.

Step 1. Compute matrices el, C2 and C3:

k l

Cl - --2 E aiQ(ni)rw(n°) - 2 E_iQ(p,)Tw(p °)
i=1 i=1

c= = (_,)x
i=1

l

c_ = 2_ _(w(p °) - 0(_))
i----1

Step 2. Compute the 4 x 4 symmetric matrix A:

A = 1/2(CT3(C2 + cT)-'C3-C,-C T)

Step 3. Compute the eigenvector r corresponding to the largest positive eigenvalue of matrix

A and derive s from r.

Step 4. Compute the matrix T from s and r.
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5.3

Figure 5.3. The object "Feeder".

Simulation Results

To examine the performance ofthe DQ algorithm- the accuracy and the speed,computer

simulationshave been carriedout on a Compaq 386/20 with an 80387-20 math-processor.

The simulationdata are from a modeled "Feeder" (seeFig.5.3)which has 32 vertices,50

surfacesand 48 edges.The sizeofthe "Feeder" is322 x 84 x 151 units.The SVD algorithm

isselectedas a sample algorithmto compare the accuracy and performance with our DQ

algorithm.

Because the SVD algorithmonly accepts3-D pointsas itsinputs,the soleinputsfor

the two algorithms are the sampled pointsin order to have a faircomparison of their

accuracy.The algorithmswere testedusing 5, 10, 20 and 30 pointsas input data. Each

of thesetestswas repeatedfor25 differentchoicesof points,e.g.,25 differentsetsof 5,10,

20 and 30 pointswere run, and each of thesewas run 20 times with random errors(see

discussionbelow) added to the sample values. In our simulation,the required number
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Number of Point

Correspondences

5

10

20

30

SVD

x Y z

1.434 3.013 1.190

1.133 2.373 0.843

0.296 0.607 0.254

0.171 0.246 0.125

Method Used

X

0.147 0.461

0.046 0.133

0.040 0.102

0.037 0.115

Dual Number

y Z

0.277 0.509 0.147

0.215 0.169 0.046

0.187 0.108 0.040

0.115 0.087 0.037

Table 5.3. Comparison of Standard Deviation of Transformation Param-

eters

of 3-D points p0 are randomly selected from a "Feeder"'s vertices at the beginning of

each trial. The corresponding measured points ]bi are then generated by first rotating an

angle of 36° around an axis through the origin with direction vector (3.0,4.0,6.0) followed

by a translation of (7,8,13), and finally by adding to each coordinates of the resulting

points Gaussian random noise with mean zero and standard deviation of 0.5. These

measured data and modeled data are used to compute the estimated orientation and

translation parameters. To simplify the simulation, all the weighting factors a{ and Bi are

set to 1. The standard deviations for the resulting orientation and translation parameters

are calculated from these twenty trials. Table (5.3) lists the simulation results. All the

algorithms are written in Turbo Pascal. Mathpak 87 subroutine package from Precision

Plus Software was used to carry out all the matrix computation, as well as SVD and

eigenvalue calculations.

From Table (5.3) we see that the two algorithms produce the same rotation errors

no matter how many points are used during the simulations, which is expected. For the
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Figure 5.4. Solution times for the DQ algorithm on a Compaq 386/20

computer.

translation errors, the DQ algorithm exhibits better performance than the SVD algorithm

in all the cases. Even in the case of 30 points, which is supposed to provide a good

estimation, the DQ algorithm provides average accuracy improvement of 40% for the

translation parameter calculation compared with the SVD algorithm.

Figure (5.4) shows the solution times. Except for the case of three samples, which

uses three points - the minimum number of required points, all the samples consist of an

equal number of points and vectors. From this figure we see that the computation time is
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approximatinglinear in the number of samples taken, which confirmed our analysis about

the algorithm's time complexity. The computation time increases at about a rate of 1.0

millisecond/sample when a math-processer is used.

During simulation, we also find that the SVD algorithm has many crashes. Table 5.4

provides a partial listing of data sets taken from the vertex set of the "Feeder", in which

the SVD algorithm crashes. We have never encountered a crash from DQ algorithm.

Fig. 5.5, 5.6 and Fig. 5.7 give more complete simulation results for the two algorithms.

All the simulation processes are exactly the same as that we have described in the begining

of this section except more noise levels are tested (seven levels in fact), from Sd=0.1 to

Sd=5.0. In Fig. 5.5, only points are used as the input of the DQ algorithm. Fig. 5.6

shows the simulation results when the input consists of equal numbers of sample points

and direction vectors. The purpose of this simulation is to see if there is any improvement

on the localization accuracy when direction vectors are added as the input to the DQ

algorithm. Comparing these two figures, we find that when the number of sample points

is small (below 10 points), adding direction vectors as additional input to the DQ algorithm

indeed improves the output accuracy; if more that 10 points are used as the input, adding

direction vectors has no influence on the accuracy of the computation. Fig. 5.7 shows the

simulation results of the SVD algorithm. Compared with Fig. 5.5, we find that, in most

cases, DQ algorithm gives better estimation than the SVD algorithm.
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Begin the execusion of the algorithm: input date SD - 1.5

SVD algorithm crashed on the followinq data set: (loop 41

l: i -152.400 -42.862 9,525

I: 2 -152.400 -11.225 127.475

i: 3 -152.400 0,000 89.237

SVD algorithm crashed on the following date set: (loop 51

i: 1 -161.925 42.862 127.475

i: 2 161.925 -42.862 142.875

i: 3 161.925 -42.862 -%.525

SVD alqorithm crashed on the following data set: (loop _}

i: 1 152.400 42.862 142.875

I: 2 161.%25 -42.862 142.875

i: 3 -152.400 42.862 -9.525

SVD algorithm crashed on the following data set: (lc:7

i: 1 152.400 0.000 87.568

i: 2 152.400 -24.696 85.318

i: 3 -152.400 42.862 -9.525

5VD algorithm crashed on the following data set: (loop 9)

i: I 152.400 42.862 -9.525

i: 2 -161.925 42.862 -9.525

i: 3 -152.400 0.000 116.229

5VD algorithm crashed on the following data set:

i: 1 152.400 42.862 -9.525

i: 2 152.400 24.696 85.318

• : 3 -152.400 -42,862 -9.525

5VD algorl_hm crashed on the following data set: (loop 15)

i: 1 -152.400 42.862 9,525

:: 2 -152.400 42.862 127.475

_: 3 -152.400 11.225 127.475

5VD algorlthm crashed on the following data set:

1: 1 152.400 24.696 85.318

i: 2 152.400 -42.862 -9.525

i: 3 161.925 42.862 142.875

5VD algorlthm Crashed on the following data set:

i: 1 152.400 42.862 142.875

i: 2 -152.400 -42.862 -9.525

i: 3 152.400 0.000 87.568

SVD algorithm crashed on the _ollowlng data let:

i: 1 161.925 -42.862 -9.525

z: 2 -152.400 -42.862 -9.525

i: 3 152.400 11.225 98.814

SVD algorith_ crashed on the following data set:

i: 1 -152.400 0.000 116.229

i: 2 -152.400 -11.225 127.475

I: 3 152.400 -42.862 -9.525

5V0 algorithm crashed on the following data set:

i: 1 152.400 -11.225 98.814

I: 2 -152.400 -II.225 127.475

i: 3 -152.400 -24.696 113.979

Begin the eeeculion of the al_zlthm

SVD algorithm crashod on _he folloving

_ta set (id - 1.5|:

i: 1 -152.400 -42.862 127.475

1:2 152.400 11.225 98.814

i: 3 161.925 -42.862 -9.525

i: 4 -161.825 -42.862 127.475

I: 5 152.400 11.225 9d.814

Printing the results:

3_ al;orlthm

lOOp OX oy OZ others
2 -4.487 -11.891 -17.168 -1.09_

SVD alqor_t_

(loop 12) I oxl oll ::1 otne_.-

I 0._33 : _=: 3._00

(loop 19)

(loop 20)

(loop 21)

{loop 23)"

(loop 24)

5VD algorithm crashed on the following data |e_: (loop 25)

i: 1 -152.400 -42.862 -9.525

i: 2 152.400 -42.862 9.525

_: 3 152.400 42.862 9.525

printing the results:

DQ algorithm SVD algorithm

oxl oyl ozl othetal

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0,000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0.000 0.000 0.000 O.O00

0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000

0,000 0.000 0.000 0.000

IOOp OX Oy Or others

4 -21.136 3.421 -11.936 5.752

5 -7.199 -4.964 -13.358 0.421

7 -7.547 -8.093 -13.406 0.122

8 -5.363 -11.756 -11.740 -2.014

9 -6.722 -9.025 -12.312 -0.129

12 -8.418 -7.235 -11.562 -0.20_

15 -8.144 -0.614 -10.902 1.700

19 -3.042 -9.142 -11.998 0.360

20 -5.523 -6.858 -13.750 0.195

21 -6.173 -8.294 -13,271 -0.048

23 -6.231 -13.926 -15.750 0.855

24 -4.194 -11.968 -13.139 -0.477

25 -7.790 -7.691 -13.198 -0.135

Table 5.4. Data sets taken from the vertex set of the "Feeder" in which

SVD algorithm crashes

_._:,...,,_';..,- PAGE IS

OF POCR QUALITY
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DQ Algorithm Accuracy (Point Input)

O sd,,0.1 A Sd-0.2 O sd-0.5
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Figure 5.5. DQ Algorithm Accuracy Testing Result - Point Input
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DQ Algorithm Accuracy (Mixed Input)

O sd=0.1 rl sd=0.2 A Sd-0.5 O sd-l.0

÷ sd-2.0 W sd-3.0 • sd=5.0

2.5

1.751

o \]5

= _i

0 25, _,
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- 25 I
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.91
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O

_'_ 2,

o o 1
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Number of Samples

9O

Figure 5.6. DQ Algorithm Accuracy Testing Result - Mixed Input
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SVD Algorithm Accuracy

O sdi0.1 [] sd-0.3 A sd-0.5
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Figure 5.7. SVD Algorithm Accuracy Testing Result



CHAPTER6

LINE RANGE SENSOR CALIBRATION

6.1 Internal parameter calibration

Sensor internal parameter calibration is the process of identifying parameter values as-

sociated with sensor internal structure. More specifically, the internal calibration is to

determine the transformation matrix which describes the relationship between the 3-D

sensor coordinate frame and the 2-D coordinate frame of the image plane. That is, for

each readings in a sensor array, different sensor structures require different internal pa-

rameter specifications.

The triangulation-based point range sensor which is described in Chapter 4 uses

Eq.(4.1) to calculate the depth value at each position. Therefore, the focal distance d,

the source receiver separation value h and the twist angle B between the lens and the de-

tector array are the internal parameters that must be carefully calibrated in order to get

an accurate measurement. For the line range sensor, because Eq.(4.2) is used to establish

the relationship between the 3-D coordinates in the sensor frame and their corresponding

sensor array readings, the angle 0 of field of view and the correct e_ value for each pixel i

are the parameters which need to be calibrated. In our experiments, because a commercial

product is used, it is reasonable to assume that the internal calibration has been completed

134
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Figure6.1. X-Y-Z Positionerused forsensorcalibrationtest

beforethe sensor isdeUvered and the sensorspecificationscan be used as the reference

for meaningful range measurements. During the experiments, however, we noticedthat

the sensorreadingsdo not agree with what the sensorspecifications.Therefore,a simple

testwas arranged to testthe internalsensorparameters,e.g.,the fieldof view (or the line

length)and the coei_cientsof the linearrelationshipbetween the sensor detectorarray

readingsand truedistances.

6.1.1 Test equipment

The equipment used to perform the testsincluded an X-Y-Z manual positionerwhich

provide translationalmovement in three degreesof freedom with a positionaccuracy of

0.01ram alongeach direction(seeFigure6.1)and a special-shapedtestobject. The object

- _
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Figure 6.2. Calibratesensor'sangleof fieldof view and e_readings

ismade of a prism and a cylinder.The cylinderportionofthe calibrationobjectistightly

mounted on the movable head of the positionerso that the axisofthe objectiscoincident

with the Z axisof the positioner.The positionofthe objectisso adjusted that the sharp

edge of the prism of the objectisparallelto Y axisof the positioner

6.1.2 The e_ readings

Experiments have shown that the relationship between the sensor readings and the real

distance is a linear one. That is, if elk represents the kth readings from the detector cell i,

zi_ is its corresponding true depth data and a total number of n readings are taken from

OF POOR QL_ALiTY
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Figure 6.3. A frame of range image to compute the angle of field of view.

different distances, we have the following set of linear equations for each i E [1,63]

zik = aieik + bl l < k < n.
(6.1)

A least squares fit can be used to compute each ai and bi.

In real experiments, the sensor is placed in such a way that its yz plane is coincident

with the yz plane of the positioner and the x axes of the two coordinate systems are

parallel. The prism mounted on the positioner is moved along the z direction (see Fig.6.2).

As the prism moves, the readings and its corresponding distance values are recorded and

Eq.(6.1) is used to compute the coefficients.

6.1.3 The angle of field of view

The same experimental set-up can also be used to estimate the line length. The line

length can be calculated by using the properties of trigonometric functions. Fig.6.3 is a
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frame of range image obtained during the measurement process as described in section

6.1.2. The line length zi can be derived by using the following formula:

xi = 2 * tan 30 ° * Azi (6.2)

where i represents the ith frame of measurement and

AZ i -- Zli -- Z32i -" (alel, + bl) -- (a32e32, "_ b32)
(6.3)

The final value of line length can be computed by averaging all the xi's. Using the simple

test procedure, the computed line length is 1.722mm, which is quite different from the

specification (2.0ram). The corresponding angles of field of view are 3°17 ' and 3049 '. This

modified value has been used in feature extraction experiments and the correctness of the

result has been confirmed from these experiments.

6.2 External Parameter Calibration

Usually range sensors are mounted somewhere on the robot to make measurements of

the surrounding objects. To make sensor information useful for the robot, the relative

position between the sensor coordinate frame and the coordinate frame of the robot must

be calibrated, which is called the external calibration problem.

6.2.1 Related coordinate frames and transformation matrices

In order to describe various calibration procedures, in the following a list of definitions

of useful coordinate frames and transformation matrices is given:

W : The world coordinate frame. Usually it is assumed to be attached to the base of the

robot, and is always fixed no matter how the robot arm moves.
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S : The line sensor coordinate frame. By convention, the z axis coincides with the optical

axis of the sensor and the x axis is parallel to the detector array.

O : The calibration object coordinate frame. This coordinate frame is used to give a

complete geometric specification of the object so that the coordinates of every point

on the object surface are known a priori relative to this frame.

G : The Gripper coordinate frame. Usually the gripper is installed on the last link of the

robot arm.

T w : The transformation matrix from O to W. Its rotation submatrix and translation

vector are R W and pW respectively.

Tsa : The transformation matrix from S to G. Its rotation submatrix and translation

vector are Rsa and psa respectively.

TGW : The transformation matrix from gripper frame Gi to W. Its rotation submatrix

and translation vector are RaW and paW respectively.

Tsj : The transformation matrix from O to sensor frame Si. Its rotation submatrix and

translation vector are R s' and pSj respectively.

T G,
G: : The transformation matrix of the gripper frame Gj to gripper frame G,. Its rotation

submatrix and translation vector are RG'G, and paa_ respectively.

Ts.
si : The transformation matrix of the sensor frame Sj to sensor frame Si. Its rotation

S,
submatrix and translation vector are RS's, and Ps, respectively.
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Figure 6.4. Illustration of the relationships among coordinate frames dur-

ing calibration

Basic relationships among coordinate frames

As illustrated in Fig.(6.4), the W, G, S and O frames have the following relationships:

1. Fixed transformation matrices:

The relative positions between the pair W and O as well as the pair G and S are

fixed during calibration process. Therefore, the transformation matrices ToW and

Ts° do not change. The objective of the external calibration is to determine Ts°,

e.g., the transformation matrix of the sensor coordinate frame with respect to the

gripper coordinate frame.

2. Computable transformation matrices:
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The transformation matrices (TaW)'s are computable matrices during calibration.

The transformation matrix T TMc. can be obtained by the robot controller from the

readings of the joint encoder values and the computation of a chain of forward

kinematic transformations along these joints. The matrices of (T &)'s will also be

available, if the line sensor can determine the location of the object with respect to

the sensor frame by using only one frame of measurement, such as is the case when

the line sensor uses a grid of lines, or multiple fines to make a measurement a_d two

line-segments features can be extracted from a single frame of line range image.

3. Derivable transformation matrices:

The transformation matrices T c' and T s'
aj s_

vations at two different locations

can be directly derived from the obser-

Taa_ w-I w-- [TG,] TG,

and

TSi Si S_ _ 1
s, = TO [To ]

(6.4)

(6.5)

4. The basic transformation equation:

As the robot arm moves from one position to another, the following transformation

chain holds and is the basis to compute TsC:

Two (6.6).L G i at S .L 0

As we will see, to accomplish external calibration, the sensor has to take necessary

measurements on a calibration object and make corresponding computation. The degree

of difficulty in solving this problem will be different if external conditions are varying. In

the following, we will discuss calibration procedures for three different situations:
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1. The object is placedin a pre-determinedposition and the sensorcan locate the

object from a singleframeof measurement;

2. The object locationis unknownand the sensoris still able to locate the object by

usinga singleframeof measurement;

3. Theobject locationisunknownandthe sensorcanonly locatecertainfeaturesfrom

asingleframeof measurement,forexamplelocatea positionvectorfrom that object

The calibrationis quite trivial in thefirst casein whichthe relativelocationbetweenthe

worldcoordinateframeandtheobjectframe,ToW , is precisely known. This condition can

be met if it is possible to place the object accurately in a pre-determined location. In this

case, the transformation matrix can be easily derived from Eq.(6.6) 1

[Ta,] To [To]T G = W -1 W Si -1 (6.7)

Although this method is very straightforward and requires little computation, it is rarely

seen in real application because finding the accurate location between the world frame W

and the object frame O is not easy.

6.2.3 The calibration algorithms with ToW unknown

In this section, we describe the calibration procedures for a more general case in which

(1) there are no constraints on the relative location between the object frame and the

world frame, and (2) the line range sensor is able to locate the calibration object each

1 An implicit assumption has been made here that the matrices TGW are available, as it

is the case in general when the matrix can be obtained from the readings of robot controller's

decoder
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time the robot moves to a particular position, e.g, TSo_ is known at location/. In this case

the calibration of the sensor's position with respect to robot gripper frame is computed

by displacing the robot and observing the changes in the sensor frame using the sensing

system.

Suppose the robot arm moves from position 1 to position 2 (see Figure 6.4). We will

have two transformation equations, e.g., Eq.(6.6) for i = 1, 2. Because the object is fixed

during the calibration, the following equation can be obtained

TW ,.r, Gq.,S, rlvW ,-r,GTS2
GI-L S'L O = --G2 at S 0

(6.8)

Except for singular points, the transformation matrices are invertible and Eq.(6.8) can be

changed into the following form

AT_ = TGSB (6.9)

from Eq.(6.8), where

w-I w G2 (6.10)A : [TG2] TG, =TG,

,.,.,S2r,-,,s,]-1S2 (6.11)
B : .L 0 pL 0 j : TS 1

Because A and B are known matrices, the calibration problem can be thought of as a

problem of solving a homogeneous transformation equation of the form AX = XB [109].

Finding the general solutions for the matrix equations of the form AX = XB is not

an unsolvable problem and it has long been discussed in linear algebra theory [51]. [109]

also has given a solution for this equation. However, in our application, because rotation

is involved in the computation which enables us to use many important properties of

rotation, we can expect to derive a much simpler solution.

In order to explore the properties of the rotation matrix, we decompose Eq.(6.9) into
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thefollowingform

I PAllI P IIPBI0 1 0 1 0 1 0 1

This equation can further be expressed as the following two equations:

RAR_= R_RB

[RA-/]Ps c = RGsPB - PA

(6.12)

where

I is the 3 x 3 identity matrix;

G2"
W -1 W Rails the rotation submatrix of A;Ra=[Ra_] RG,=

= _s_[r_sl]-I s2 is the rotation submatrix of B;RB *"0 L**'O J -" Rs*

PA and Ps are the translation parts of A and B.

From Eq.(6.13) and (6.14), we can observe the following

1. RsG is dependent only on rotational matrices RA and Rs. That is, it can be solved

independently without the knowledge of the translational components of those ho-

mogeneous transformation matrices.

2. psG is dependent on RsG. That is, psc can be solved only after R G is solved.

3. The key for the sensor calibration is to solve for Eq.(6.13).

In next section, two algorithms are given to solve for the rotation matrix R_. Both

algorithms use the properties of the rotation matrix to make the computation both simple

and accurate.



145

6.2.3.1 Solving for the rotation matrix R G

Before solving for the rotation matrix R G, we first explore the geometrical interpretations

of Eq.(6.13). To make our analysis clearer, we rewrite the Eq.(6.13) in a more general

form RA R = RRB.

Lemma 6.1 The eigenvalues of a rotation matrix are 1 and cos 6 4- i sin 6 where 6 is as

gives below. Let A1 = cos 6 + i sin 6 and A2 = cos 6 - i sin 6; then 6 can be calculated by

6 = arctan (IRe(St - $2)[,$1 + $2)

where Re(At - _2) is the real part of At - )_2.

(6.15)

P___: From given condition that RAR = R_:IB, we have

RAR nB = RRBnB (6.16)

Because a rotation matrix always rotates its axis into itself, the right side of Eq.(6.16)

can be simplified

RAR nB = R nz (6.17)

P.._: See page 412 of [73].

Lemma 6.2 Rotation matrices RA and RB have the same angle of rotation.

p._: Because a rotation matrix is always invertible, we have RA = RRBR -1. So RA

and RB are similar. Similar matrices have the same eigenvalues and thus have the same

angle of rotation from Lemma 6.1. #

Lemma 6.3 Let nA be the rotation axis of RA and nB the rotation axis of RB. For any

matrix R, if RAR = RRB, then na = RnB.
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Figure 6.5. Geometrical interpretation of the rotation axis

Now suppose R nB= nk, then Eq.(6.17) becomes

RAn k -. n k (6.18)

Eq.(6.18) means that the vector nk is an eigenvector of RA with the corresponding

eigenvalue equal to 1. But only the rotation axis of that rotation matrix has this

property. Therefore nk = nA. That is

RAR n8 = RAnk = nA (6.19)

Substituting the result of Eq.(6.19) into the left side of Eq.(6.17), we have the required

equation:

nA = R ns (6.20)

#
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The geometrical interpretation of Lemma 6.3 is that the rotation axis of rotation matrix

R will rotate nB into nA. Because a rotation preserves the angle between the transformed

vector and the rotation axis, and if we define n as the rotation axis of R, we will have the

following relationship:

n.nB = n'nA
(6.21)

That is, n •(nB - nA) = 0, which means that the rotation axis of R is perpendicular to

(nB- hA). In fact, we have the following Lemma:

Lemma 6.4 If n 2_ (nB - nA) then vector n x (nB+ hA) is parallel to (nB - hA).

Proof: Because

(riB -- hA)" (rib + hA) = riB.riB + nB'nA -- NA.NB -- nAnA

= 0

We can conclude that the vector nB -- nA is perpendicular to both the rotation axis n

and the vector nB + hA. On the other hand, n x (nB + hA) is also perpendicular to both

of these two vectors. Therefore, n x (ns + hA) is parallel to (ns - nA).

Based on the above geometrical analysis, it is not difficult to show that the rotation

axis always lies in a plane which

1. is perpendicular to the vector (ns - hA), and

2. intersects (riB -- nA) at its midpoint.

E.g., the rotation axis has one degree of rotation freedom (nB can be rotated into nA

about any line in that plane that also goes through the intersection of nA and nB - see

Figure6.5). That is, one pair of RA and RB defines a plane in which the rotation axis
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must lie in. As a consequence, at least two distinct pairs of RA and RB matrices are

needed to determine R; and Eq.(4.48), (4.49) and (E.18) will be used to compute the

rotation matrix.

From above analysis, two pairs of RA'S and Rs's are the minimum requirement to

compute the rotation matrix (in the next section, we will show that this is also the min-

imum requirement to compute the translation vector). That is, the robot arm has to

move at least twice from position wo to wl and then to w2 to compute the calibration

parameters. Between w0 and wl, matrices TA, and TB, are obtained; so are TA2 and

TB2 between wl and w2.

To get more accurate calibration results, we usually move the robot arm though a

series of positions. The final results of the rotation axis and the rotation angle axe the

average values of these observations [45].

Suppose the robot moves m times, e.g., from position w0 to wl, then from Wl to w2 etc.,

until from w,_-i to w,_. The observed matrices are TA,'S and TB_'s where i = 1,...m.

Because two pairs of R_4s and RB are needed to derive one rotation parameters, a total

number of of m - 1 rotation parameters can be derived from m pairs of RAS and RB's.

1 m--1

.- - n, (6.22)m 1
t----1

The final rotation parameters will be

and

M-1 Oi (6.23)
O= _ M-1

i=l

where ni and 0_ are the rotation axis and rotation angle which are derived from the pairs

of RA,, RB, and RAi+I , RBi+l matrices. Let ni = [n=_, ny,, nz,]T, the standard deviations
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Input: matrices RGW and R_ _, i := 1-..m;

Output: calibration rotation matrix R_.

Begin

Fori:= ltomtodo

Compute matrices RA_ and RB_

w -_R w.where RA, = [RG,-1] Gi'

Re, =

Extract (nA,,OA_) and (nB_,0B_) from RA_ and RB.;

For i := 1 to m-1 do

Use Eq. (4.48) (4.49) and (E.18) to compute ni and Oi;

Compute final n and 0 by using Eq. (6.23) and (6.22).

i End.

Figure 6.6. The calibration of rotation parameters: Algorithm 1.

are

\[_l (n_, - n_) 2 (6.24)O,n," = O_ _ x_y,z.

i=t m- 1

and

\[_' (0{- 0) 2 (6.25)(7 0 --

'_i=l m- I

Figure 6.2.3.1 shows the algorithm to derive the rotation parameters of the matrix Rsc

using rotation axis-angle representation (n, 0).

Another algorithm which uses quaternions to represent rotation to compute rotation

parameters is described in [116] [117]. In addition to the above-mentioned rotation prop-

erties, one more theorem is derived and enables the algorithm to use the least squares
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optimization method to compute required parameters.

Lernrna 6.5 If q is the quaternion representation of a rotation, then q has the following

relationship with qA and qB

1

(qB + qA) X _q = qB -- qA (6.26)

P_f: See [117].

The corresponding algorithm is described in Figure 6.7.

The first algorithm has the advantage of "recursive" computation. That is, each time

if we take one more observation, the only computation we need is to compute one more

estimated rotation parameters and average the new estimated results with the old ones.

All the old results are useful and can be saved for later use. But, this method involves

trigonometric calculation, which is not very efficient.

The second algorithm, on the contrary, uses quaternion representation and as a con-

sequence, trigonometric computation is avoided during the derivation process. Thus, the

algorithm is very simple and accurate. Least Squares Optimization can be used to solve

for a system of linear equations as shown in Figure 6.7. The disadvantage of the algorithm

is its non-"recursive" nature. At each time when a new observation is made, the whole

computation has to start over again. The old results have no use here.

6.2.3.2 Solving for the translation vector pG

Once the rotation matrix is obtained, Eq.(6.14) can be used to solve for the translation

vector psG. Again, at least two pairs of equations are needed in order to solve uniquely for

psG. This fact is based on the following Lemma.
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Input: matrices RG_ and Rsj, i :- l.--m;

Output: calibration rotation matrix Rsa.

Begin

01 Fori:-- itomtodo

02 Compute matrices RA_ and RB,

w -I w.
03 where RA, = [RG,_I] RG,,

04 =

05 Extract qA, and qs_ from RA, and RB,;

06 Solve for a system of linear equations K(qB_ + qAi) q'• = qB,

07 Compute 0:

08 Compute q:

by using linear least squares technique

0 = 2tan -1 lq'l;

q = q'/_/1 + Iq'12;

09 Compute q from q and 0;

10 Derive rotation matrix R from quaternion q.

End.

- qA_

notice:

1. K(r) in line 06 is the screw-symmetric matrix

2. The formula in line 06 uses the fact that K(r) - n = r x n

Figure 6.7. The calibration of rotation parameters: Algorithm 2. [116]
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Lemma 6.6 The rank of matrix [R - I] is 2.

Proof: Because R has three different eigenvalues (see Lemma 6.1), it is diagonalizable.

From the theory of linear algebra [42], there exists a 3 × 3 matrix E such that

1 0

R =E-1 0 )_1

0 0

0

0 E

A2

(6.27)

where the jth column of the matrix E is the eigenvector ej(j = 1, 2, 3) of corresponding

R-I = E -l

eigenvalue. Therefore,

- EIE (6.2S)

E (6.29)._ E-I

E.g, R- I is similar to

0 0

Matrix 0 A1 - 1

0

same rank.

0

0

0

0

0

0 A2 - 1

0 0

Al - 1 0

0 A2 - 1

, however, has a rank of 2 and similar matrices have the

Therefore, the rank of matrix//- I is 2.
#

The number of unknowns of Eq.(6.14) is 3 whereas the rank of matrix [RA - I] is 2. Thus,

at least two pairs of independent observations are needed to solve for psc.
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If moreobservationsareavailable,a linear least squares optimization equations can be

set up.

6.2.4 External calibration of a line range sensor

Up to now all the calibration algorithms are under the assumption that the sensor is

able to determine the location of the object by using only one frame of measurement. In

real applications, this is not always the case. For example, a spot sensor can only give a

depth reading of a single point at each position. To locate a polyhedral object, at least six

points on three different surfaces have to be measured in order to determine the location

of the object [49]. A line range sensor emitting a single striped laser light can only give

the depth information along a line on the object surface. To locate an object, two line-

segments have to be extracted. Because such kind of sensors provides less information

than those we have described earlier, more constraints on the shape of the calibration

object and on the movement of the robot are expected in order to calibrate such sensors.

In this section we will introduce an algorithm to calibrate a line range sensor. As we

described in the previous chapter, a line sensor can extract the parameters of a cone with

only one measurement along a line on the surface of the cone if the half angle of the cone is

known and the intersection curve between the line and the surface is an ellipse. It means

that the position of the cone vertex can be located from a single frame of measurement.

This important property will be used in the cahbration process.

If we make a series of measurements on the cone and the parameters of the cone can

be extracted after each measurement, we will have the following equation

P°W ,.,w_-G s, (6.30)= 3. G,I sPo
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! %

Figure 6.8. Calibration of a line range sensor

where poW is the quaternion representation of the position of the cone vertex with respect

to the world frame, and p_ is the quaternion representation of the position of the cone

vertex with respect to the sensor frame.

Because the poW is a constant during calibration, we have

Tw mG si ,.,.,W TG_Sj
G,ISPO = .LG_ $1"0

(6.31)

Again, Eq.(6.31) can be expressed as

= Po

0 1 0 1 0 1 0 1

and has the following form

RWoG_S, W G W ,-,W RG_ s, + p_ps G + p_V (6.33)
G,._SPO + RG, Ps + PG, = XtGj SL'O

If we restrictthe robot arm to translational movement during calibration,the rotation

matrix RGw, is constant

RaW : RGW : RW (6.34)
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Eq.(6.33)canbesimplified

RW DG_S, W _W RG Sj p WjG *'_SPO + PGi = 2£G sPo +
(6.35)

where R W is a constant rotation matrix.

Eq.(6.35) can be further rewritten in the form

.RG, S, 8_ = ,RW,-I, W Ws(Po -Po) [ a) [PGi--PG,)

s, Gi W - 1 W have
Let p§_ = psi _ Po and PG, = (RG ) (PG, --PGW) 'we

RG Si G.
S PSj= PGj

(6.36)

(6.37)

The Eq.(6.37) can be interpreted as the following:

Si Gi
The rotation matrix R G rotates the vector Psj into the vvector PG,"

Therefore, all the analysis from lastsection can be applied here and can be used to derive

the desired transformation matrix. Again, at least two pairs of observations are needed

to specify the transformation matrix. Thus, the calibration procedure to calibrate a line

range sensor is basically the same as the general calibration procedures with two more

constraints (see Figure 6.8):

1. Constraint on the shape of the object: the object is a cone with a known half angle;

2. Constraint on the movement of the robot: only translational movement is allowed

during calibration.



CHAPTER 7

SUMMARY AND FUTURE WORK

7.1 Summary

7.1.1 Object location determination

Real-time and high-accuracy axe the two primary concerns in many object localization

applications. To achieve real-time localization, the efforts should focus on the following:

1) Developing fast sensing techniques.

2) Reducing the overhead for processing sensed data.

3) Developing fast algorithms to compute the location parameters.

To achieve high-accuracy, in addition to developing high quality range sensors, developing

robust or noise-insensitive localization algorithms is equally important.

The thesis has discussed different methods and strategies for object localization and

important issues for fast and accurate localization. The thesis has presented two ob-

ject localization algorithms and examined the applications of these algorithms in tele-

manipulation tasks and other manufacturing operations. Both algorithms are fast and

noise-insensitive.

156
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The first algorithm is based on line-segment to line-segment matching, e.g, matching

modeled fine-segment features to the fine-segment features extracted from the range data

which axe taken on the surfaces of an object. The line-segment features may be boundary

edges of a polygon or the intersection of two planar surfaces of an object; or an axis of

the surface of revolution of an object. The thesis has provided a detailed description

of the whole localization process including line-segment feature extraction and location

computation. The emphasis is on the extraction of two types of boundary edges: sharp-

type edges and rounded-type edges, and the extraction of the axis of a cylindrical surface or

a conic surface. The feature extraction was performed both on real line range data and the

simulation of noisy range data. Two sources of noise hve been considered, e.g., the sensor

measurement noise and the roughness of the object surfaces. During simulation, the sensor

noise is assumed to have a normal distribution and the roughness of the object surfaces is

assumed to be uniformly distributed. The feature extraction, particularly axis extraction,

performed equally well with different noise levels. To reduce the overhead for processing

sensed range data, the thesis has made every effort to try to develop non-iterative methods

to solve the computation problems needed during the localization process and has achieved

some success. Closed form solutions are used to carry out most of computations during

the localization process.

The second algorithm is more general. The inputs to the algorithm are not limited

only to line features. Featured points (point-to-point matching) and featured unit direction

vectors (vector-to-vector matching) can also be used as the inputs of the algorithm and

there is no upper limit on the number of the features inputed. The algorithm will allow

the use of redundant features to find a better solution. The algorithm uses dual number

quaternions to represent the position and orientation of an object and uses the least
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squares optimization method to find an optimal solution for the object location. The

advantage of using this representation is that the method solves for the location estimation

by minimizing a single cost function associated with the sum of the orientation and position

errors. Thus it provides better estimation performance, both in accuracy and in speed,

compared with other similar algorithms. Because the thesis does not deal with the problem

of how point features and vector features are extracted from range data, only computer

simulation is used to test the performance of the algorithm. The experimental results

have indeed displayed a significant improvement in localization accuracy over other similar

algorithms.

7.1.2 Object localization technique in tele-autonomous system

When controlling a remote robot to perform manipulation tasks, an operator has to face

two problems: time-delays on the signal transmission and the uncertainties of the remote

environment.

Prediction display and forward simulation constitute a good method to overcome the

time-delay problem. In this approach the operator controls a simulation of the remote

robot without time-delay, with the control signals sent in parallel to the remote system.

The introduction of time and position desynchronization has further developed the concept

of predictor display, which allows the operator to desynchronize the time and position

frames, respectively, of the simulation and the remote robot and further enhance the

operator's control ability and flexibility.

The uncertainty problem usually can be approached from two different objectives: 1)

developing techniques that help avoid the uncertainty; and 2) developing techniques that

help the system adapt to the uncertainty. The use of object localization techniques in
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a remote system to overcome the uncertainty problem is based on the measurement and

error-removal strategy and thus belongs to the first category.

The thesis has discussed two cases where the object localization could help. The first

case is the situation where direct manual control is used to perform a tele-manipulation

task. The second case is the situation where the remote system has certain degree of

automation ability.

To handle both cases, a relative move mode is proposed in order for the remote system

to use the localization ability to perform tele-manipulation tasks. The basic idea of this

approach is that the operator will control the simulated robot as usual, but the position

signals, before being sent to the remote site, are converted to positions relative to the

object to be manipulated and then transmitted. The remote system is capable of sensing

the relative position of the object to be manipulated in real-time. It uses this sensed

information to transform the received relative commands into absolute position commands

and then proceed to follow the commanded positions. One of the essential prerequisites

to implement the above control sequence is the separation of the time frames between the

local operations and remote system commands. The time-desynchronization has played

an important rule again.

7.2 Future Work

7.2.1 Feature Extraction and Localization Algorithms

This thesis addressed only limited types of feature extraction problems. Even these prob-

lems have not been solved completely. The followings are some of the interesting topics

which are worthy of further research:
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1. Developmentof efficientandreliable algorithms to do either elliptical curve or general

quadric curve fitting from a set of measured range data. Investigation of how the

shapes of the resulting curve are influenced by the patterns of measurement noises.

2. Extending the multi-scan axis extraction method to the axis extraction of other

types of surfaces of revolution or a generalized cylinder.

3. Study of the method of extracting other types of features, such as point features,

vector features, curvature features or features which can be used to describe irregular

surfaces. One example is to find an efficient algorithm to do extraction of sphere

parameters (the radius and the center of the sphere).

The two object localization algorithms need to be further studied. In the line-segment

matching algorithm, a closed form formula is used to compute the rotation and translation.

In deriving these formulas, it is assumed that the two pairs of line-segments are perfectly

aligned. In fact, because of various errors, they are not. Therefore, studying the effects of

their mis-alignment is another research topic.

In the DQ algorithm, the thesis has not discussed the selection of the weighting factors.

Intuitively, the weighting factors are closely related to the reliability of corresponding

matching features. Let us take the extraction of two surface normals as an example. The

two surface normals extracted from two planar surfaces are used as part of the algorithm's

inputs. If one surface is toward the sensor, another surface is near parallel to the sensor's

optical axis, it is obvious that the extracted surface normal obtained from the first one

is more reliable than that of the second one. A quantitative analysis is needed and will

certainly further improve the accuracy of the algorithm.
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7.2.2 Object localization in tele-autonomous systems

The thesis has discussed two situations in which the object localization technique can help

the completion of tele-manipulation tasks. Because of the lack of adequate sensing devices,

only a small part of the testing is performed on real data. Simulation testing, however, has

shown that the technique performs well. The sensor the author used is indeed one with

a very high resolution, but its line length is too short to collect enough line range data

in just one frame of measurement. We have found from the literature that some recently

developed range sensors have characteristics which are very close to our requirements, but

we have not had time to acquire and use such sensors.

The thesis has explored only a small number of tele-autonomous system problems.

Many problems in areas such as part design, part grasping and multi-sensor feedback have

to be further investigated and resolved, and their solutions have to be applied to tele-

autonomous systems together with the object localization technique before an efficient

and workable strategy can be used to implement tele-manipulation tasks.
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APPENDIX A

THE FORMULAS USED TO FIND THE PLANAR EQUATIONS

Suppose the equation of the planar surface to be determined is ax + by + z = r. We

need to find the a,b and r from a set of k readings (x{,y{,z{), where i = 1,... ,k and k > 3.

We have the following equation:

zl Yl

z2 Y2

xk yk

1

1I °
b

l --r

1

--Zl

--z 2

--z k

(A.1)

Because the range data axe obtained by a line range sensor (or a range image), it

is reasonable to assume that xi and y{ are independent variables with no error and zi

is the dependent variable which does contain error. Then for each pair of (xi,yi), the

corresponding z value should be

z = axi + byi - r (A.2)

However, the measured z value is zi. The error in the ith measurement is then

el = (axi + byi - r) - zi (A.3)

By using the least squares method, the parameters a,b, and d are to be chosen so that
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the following sum of squares is to be minimized:

k 2

= _ = _(a_ + by_- _ - z,)_ (A.4)E 2 _ ei
/=1 i----I

Taking derivatives of E 2 with respect to a, b and d and set each of the derivatives equal

to zero, we have the following three equations:

OE 2

Oa

OE 2

Ob

OE 2

Or

k

2 Z(axi + byi - r - zi)xi - 0
i=1

k

2 Z(ax_ q- byi - r - zi)yi = 0
i----1

k

-2 Z(ax_ + byi - r - zi) - 0
i=1

In matrix form, they can be expressed as

xi _ Yi k -d E zi

where the summation is from i = 1 to k, or can be expressed as

(X.5)

M

a

b

-r

XiZi

E y_zi

zi

(A.6)

for simplicity.

If the matrix M has an inverse, say W, the solution can be expressed as

a

b

--r

=W

xizi

yizi

zi

(A.7)
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If the surface normal is represented by n = (n_,n_, nz), then

n_ = a/s (A.8)

nv = b/s (A.9)

nz = i/s (A.10)

d = r/s (A.11)

where s = _/a 2 + b2 + 1.

The plane equation, when expressed by surface normal and distance parameters, will

be in the following equivalent form:

n_x + nyy + n,z = d (A.12)

or

n.x = d (A.13)
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APPENDIX B

CIRCLE PARAMETER DETERMINATION USING LEAST

SQUARES OPTIMIZATION

Suppose that the 3-D range data are projected on the plane which is perpendicular to

the axis of the cylinder and axe expressed as S = {(x{, yi)l{ = 1,..., k, k > 2}. Assume also

that the desired circle is located at c = (xo, yo) with radius r, The area of the circle will be

_'r 2 and the measuredarea from the measured point (x{, y{) is _r((x{ - xo) 2 + (y{ - yo)2) •

The error between the two areas is

e_= _((_ - _o)2 + (y_- yo)_) - _r2

and the error function to be minimized is

k

E = _ e_ (B.1)

Differentiating Eq.(B.1) with respect to r, xo and yo and setting the derivatives equal to

zero results in
k

0._EE= _-'_[((x, - xo) 2 + (y{ - Yo)2) - r2] r = 0 (B.2)
Or

{=1

k

0E = _[((__ xo)_+ (y__ yo)_)_ r:](x__ xo) = 0
(_X0 i----I

(B.3)

and
k

0E = _[((__ xo)_ + (y__ yo)_)_ r:](y_ _ yo) = 0
Oyo =1

(B.4)
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respectively. Eq.(B.2) is equivalent to

k

_((x_- xo)_+ (y_- yo)_) = k,:
i=l

Replacing Eq.(B.5) into Eq.(B.3), we have

k

_[((x,_ _o)_+ (y_- yo)_) - ,_1_ = 0
i=l

(B.5)

(B.6)

Therefore,
k k

_((z, - zo) 2 + (Yi - Yo)2)zi = (_ zi) "2 (B.7)
i=l i=l

For the same reason, replacing Eq.(B.5) into Eq.(B.4) yields

k k

_((xi - xo) 2 + (yi - Yo)2)Yi = (}-'_ Yi)r_ (B.8)
i=l /=1

To eliminate the r 2 term from Eq.(B.7), we multiply both side of Eq. (B.5) by _i_t zi

and subtract both side of Eq.(B.7), which is multiplied by k:

k k k

_((_ _ _o)2+ (_ _ _o)_)(_ _) - k_((_ - _o)_+ (y, - yo)_)_= 0
/=1 i=l i=1

(B.9)

Similarly, to eliminate the r2 term from Eq.(B.8), we multiply both side of Eq. (B.5) by

k_i=1 Yi and subtract both side of Eq.(B.8) which is multiplied by k:

k k k

_((x__ _o)_+ (__ yo)_)(_ _)- k_((_ - _o)_+ (y, - yo)_)y,= o
i=1 i=1 i=1

(B.10)

Next we use the following simplified notation:

k k k

EX = ZXi _z = Zyi

i=1 i=1

xz = Z xiYi

i=1

k k k

_-- 2

i=1 /=1 i=1

k k k

= 3 Z 3

i=1 i=1 i=1
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APPENDIX C

CONIC AXIS PARAMETER EXTRACTION

C.1 The Intersection Point of the Axis of a Cone and a Plane

As we have discussed in Chapter 4, a conic surface can be specified by a triple (v, n,)Q,

where v is the vertex of the cone, n is a unit vector which defines the direction of the axis

of the cone, and )_ = cosO where 8 is the half angle of the cone. A point x = (x, y, z) is on

the conic surface if and only if the vector v • x makes the angle 0 with n or - n. We have

the following general form of a conic equation:

I(x- v). nl = _lx- vl" Inl

The above can be written as

[.l(X - Vl) + -_(y - ,_) + _3(z - _3)]2 = _[(x - vl)_+ (y - v:)_ + (z - v3)_] (c.1)

The line equation which is coincident with the axis of the cone can be expressed as

x-v1 ____n_l.

_-_2 _ (C.2)

y--v2 n2

Without losing generality, the plane y = 0 is selected as the intersection plane in order

to simplify the discussion. The intersection of the cone with the plane will produce the
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following quadratic equation:

[11:(x- 13_)- 112v2+ n3(z - 133)]5 = _5[(x- 131)2 + 132+ (z - v3)_] (C.3)

which has a general form

Az 2 + Bxz + Cz 2 + Dx + Ez + F = 0 (cA)

The coordinates of the intersection point of the axis line of the cone with the plane

y = 0 are

y = 0

z v3 -- 132 na
n2

(c.5)

are substituted into Eq.(C.3), the equation of the conic becomes

(_2 _ ._)_2 _ 2 [v_(_2_ ._) _ _,11_13_]_+ _z:

.= 2//11151311) 2 _ /)_(/_2 _ _)_ V2(_2 _ 7t2).

(c.o)

Prom Eq.(C.3) and Eq.(C.5) we can make the following observations:

• The changes of vl and v3 merely translate the conic section on the plane.

• The effect of changing 111 and n3 on the conic section will be a rotation in the

zz-plane.

• As we change vl,v3, nl and n3, the position of the intersection point of the cone

with the plane will also change.

In summary, the changes of parameters vt, v3, nl and n3 will only affect the position

and orientation of the intersection curve and will have no affect on the shape of the

quadratic curve (conic section) intersected by the plane.

Now let us set v3 = 0 and n3 = 0. This corresponds to assuming that the vertex of the

cone is in the yz-plane and the axis of the cone is in the plane also. When these values
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and the position of the intersection point of the axis with the plane will then become

ix/iv1/_2

y = 0

z 0

(c.7)

From this equation we can conclude that if the quadratic intersection curve is an ellipse,

the intersection point of the axis of a conic surface with the plane is always on the principal

axis of the ellipse.

We can further simplify Eq.(C.6) by properly translating the conic section along the

z axis. To do that, we can set _u2 = X2 - n_ and vl = nln2v2/# 2. The resulting conic

equation then reduces to

#2z= + ,X2z= = k2 (C.8)

in the case0< X=-n_ <X 2.

That is, the right-hand side of the Eq.(C.6) reduces to a positive constant k 2. To see

that this is correct we only need to observe that the left-hand side of Eq.(C.6) reduces to

the left-hand side of Eq.(C.8), which is positive for any (x, z). Hence the right-hand side

of Eq.(C.6) must be a positive constant.

After simple arithmetic manipulation, the expression for x in Eq.(C.7) can be simplified

as

x -- V2nl(1 -- _2) (C.9)

which will not be equal to zero because the half angle 8 of a cone can never be zero.

Eq.(C.9) tells us that if the curve of the intersection between a plane and a cone is an

ellipse, the intersection point of the axis of a cone and a plane can never be coincident

with the center of the ellipse. Eq.(C.9) also gives us the amount of translation from the

center of the ellipse along the principal axis of the ellipse.
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Y

Sensor

X Z

=0 ptane

C.2

Figure C.1. Cone Axis Parameter Extraction from a Line Sensing System

The Cone Axis Parameter Extraction

The discussion in last section will be very helpful in solving the axis parameter extrac-

tion problem. Suppose a cone is sensed by a laser line range sensor. The sensor coordinate

system is shown in Fig. C.1. The measurements are made along the X axis of the coor-

dinate system. The depth data are expressed as Z values. That is, the measurements are

taken in the y = 0 plane. After the measurements, ellipse parameters can be extracted

and the ellipse can be expressed as

Az 2 + Bzz + Cz 2 + Dz + Ez + F = 0 (C.10)

On the other hand, the intersection of a cone with the y = 0 plane is given in Eq.(C.3).

Comparing the corresponding terms of the above two equations, we have a set of six
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equations with six unknown:

I A - n_ = A

-2nln3 = B

,X_ - n_ = C

2nl(n2v2 + n3v3)- 2viA = D

2n3(n2v2 + nxvl) - 2v3C = E

_,_(,,_+ ,,_+ ,,_)- (n,,,, + n,,,_+ .3,,3)_= F

(c.11)

The n can be solved from equations for A, B and C. If B _ 0, both nx and n3 must

be non-zero. In this case, we can derive nl from the equation for A:

n, = -l-_/(A - A2) (C.12)

and then derive n3 from the equation for B:

n3--
B (C.13)

2n_

n2 can be derived from nl and n3:

.5 = +_/(1- ._- ._) (C.14)

Once the cone's axis direction is found, the location of the cone's vertex can be found too

from the remained equations for D, E and F. From equations of D and E, we have

2nln3v3 -- 2Ava = D - 2nln2v2 (c.15)

and

- 2Cv3 - 2n,n3vl = E - 2n2n3v2 (C.16)
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Therefore

V3 ---_

D - 2nln2v2 -2A

E- 2n2n3v2 -2nln3

2nln3 -2A

-2C -2nln3

= fv3(v2) = a3v2 + b3 (c.17)

2nxn3 D- 2nxn2v2

-2C E- 2n2n3v2
vl = = f_,(v2) = a,v2 + bl (C.18)

2nln3 -2A

--2C -2nln3

where coefficients al, a3 and bl, b3 are now known quantities.

Substituting Eqs.(C.17) and (C.18) into the equation for F, we can solve for v2 with

two solutions. The vl and v3 can then be solved by substituting v2 back to Eq.(C.17) and

(C.18).

From above discussion we know that there are usually eight possible solutions for the

location of the cone from a given ellipse equation. But only one is correct. The correct

one can be identified by two methods:

• Take more measurements. Each additional measurement can give us one more so-

lution set. We can compare these different solution sets and find the one which is

common or close to common among all the solutions.

• The approximate location of the cone is supposely known. We can compare the set

of solution with the supposed location of the cone's axis and take the one which is

closest to the supposed solution as the correct one.

In fact, in practice, the two methods should be combined to find the correct answer.
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APPENDIX D

DATA SMOOTHING METHODS

D.1 Quadric Curve Fitting

The measurement data are a set of discrete points on a coordinate plane, which can be

expressed as

5'={(zi,zi)l i=l,.-',k}

where in some cases, xi's are integers. In order to obtain a smoothed curve from these

measured data, we first make observations on the data to see what kind of curve is a

best fit. We then try to find the parameters which define that curve to give a better

approximation. Usually, a least squares optimization is employed, which minimizes the

sum of the squares of the difference between each measured value and the corresponding

value from the smoothed curve.

If a quadric curve is a suitable approximation to the set of measurement data, the

curve can be expressed as

z = a + bx + cx 2 (D.1)

We will minimize the following error function

k

E = E(zi -(a + bxi + cx_)) 2
i=1

(D.2)
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DifferentiatingEq.(D.2)with respect to a, b and c, and setting them to zero, we obtain a

system of three linear equations with three unknown:

E,=, z, o+ -1 x,) + 1kl_ k-1 ____

"-" Ei=l
_-2 k-2 k-2 k-2

A closed form formula can be found for the solution of these equations.

(D.3)

The extreme

value for z and its corresponding position x can be obtained from the resulting quadric

equation.

D.2 Data Smoothing

It may be difficult to use only one curve, whether a quadric or a polynomial of higher

order, to fit the entire set of measured data. An alternative method is to use piece-wise

smoothing. In this method the smoothed value 5i at position xi is dependent only upon

its surrounding z values. If the 5i value depends on z values at positions i - 2, i - 1, i,

i + 1 and i + 2, it is called five-point smoothing. If the _i value depends on z values at

positions from i - 3 to i + 3, it is called seven-point smoothing.

Now, suppose we have the following set of measured data:

x xo xl =xo+AX ... xi=xo+iAx ... x,_=xo+mAx

z Yo Yl "'" Yi .. • Yrn



177

If we let t = _ the above table becomes
Ax

t -i -(i-l) .... 1 0 1 ... (m-i-l) m-i

Yi+t YO Yl • "" Yi-1 Yi Yi+l • "" Ym-I Ym

If a quadric curve is used to fit each section of piece-wise data, the smoothed z value

at position i + t is

fi+t = a + bt + ct 2 (D.4)

where coefficients a, b, c should make

__.,((a + bt + ct 2) - zi+t) 2 minimum (D.5)
t

The sum is over (2n - 1) of z values with the t's being closest to i within the interval of

[0, m]. If n = 2, it is five-point smoothing; if n = 3, it is seven-point smoothing.

When i - n >_ 0 and i + n <_ rn axe satisfied at the same time, the a,b and c can be

solved using the following system of equations:

n 3 n 2 r_

+ 1). + + + = EL-.

,)_,0 . ,_2 . '_b- v-n tz (D.6)
kkY -'- "T -1-"g} --Z.,i=-,L i+t

(3 + -7" + _)a + 2(-_- + "5- + 3 - 5"6)c = Et=-,_ nt2zi+t

For n = 2 we have the following solutions:

5i = 1[-3(zi-2 + zi+2) + 12(zi-1 + zi+,) + 17zd (i = 2,3,...,m- 2)

zo = _(31z0 + 9zl - 3z2 - 5z3 + 3z4)

z-1 = _(9z0 + 13zl + 12z2 + 6z3 - 5z4)

f,,_-I = _(-5z,,_-4 + 6zm-3 + 12zm-2 + 13zm-1 + 9z,,_)

fro-2 = _(3z,_-4 - 5zm-3 - 3zm-2 + 9zm-l + 31zm)

(D.7)
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If n = 3, the value 2i at position i will depend on the values of the seven positions nearest

to i. The formula can be obtained from the same system of equations in Eq.(D.6).
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APPENDIX E

ROTATION PARAMETER DETERMINATION

E.1 About Eq. 4.48

The derivationof Eq.(4.48) is based on the fact that any rotation will preserve the

angle between the transformed vector and the rotation axis (see Fig. E.l.(a)). That is, if

vector fii is rotated into vector ni and r is the rotation axis, we have

r. ni = r. fi_ (E.1)

or, equivalently,

r. (n_- _,) = 0 (E.2)

That is, r is perpendicular to (n_ - fii) both for i = 1 and i = 2. Hence r is given by

r --*

(nl - ill) x (n2 - fi2)

II(n, - _',) x (n2 - _2)11
(S.3)

to within an ambiguity of degree of 7r.
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(a) (b)

Figure E.1. (a). vector fii rotates with respect to vector r into vector ni;

(b). the vectors projected on the circle plane.

E.2 About the angle of rotation

Consider the unit vector fii rotated by an angle _ into the vector n/; the rotation takes

place along the arc of a circle in the plane perpendicular to r (see Fig. E.1). Let a be the

projection vector from fii onto r, We have

a= r)r (E.4)

with b and c as vectors in the circle plane designed in such a way that

ni = a + b + c (E.5)

If a is the angle between r and fii then the radius h of the circle is given by

h=sinalfi, l-lrxfi'l =Irx_,l, (Irl=l). (E.6)
Irl
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Furthermore

b=(fii-r)cos0 and c = (r x fii)sinO

We obtain the following

ni = a + cos 0(fii - a) + c

= cos0fii+(1-cos0)a+sin0rx fil

= cosOfii + (1 - cosO)(r, fii)r+ sinOr x fii

Now, "'fii" the two sides of Eq.(E.8), we have

ni • fii = cos#hi, fii + (1 - cosS)(r.fii)r'fii + sin6(r x fii)" fii

Eq.(E.9) can be reduced to

ni. fii = cos8 + (1- cosS)(r, fii)r" fii

= cos8 + (1 - cosS)(r, fal)2

(E.T)

(E.8)

(E.9)

(E.IO)

Hence

cos 8 = hi. fil - (r. hi)2 (E.11)
1 - (r. fi_)2

From cos 8,

sides of Eq.(E.8), we have

ni .ni = cos 0fi_ • ni + (1 - cos 0)(r. fii)r • ni + sin 0(r x fii) • ni

Because r. fii = r. ni, Eq. (E.12) becomes

1 = cos 0fii • ni + (1 - cos 0)(r • fii)2 + sin0(r x ill)" ni

Combining the terms for cos 0, we obtain the new equation

1 - (r. fii) 2 = cos0(fii" ni - (r. fii)2) + sin0(r x fii)" ni

we can derive sinS. Using the similar procedure, e.g., first ".ni" the two

(E.12)

(E.13)

(E.14)
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If fi_ is not parallel to r, then

1= cos0 fii" n_ - (r. fii)2 + sin0(r X fii). nl (E.15)
1 - (r. fi_)2 1 - (r. fi_)2

Substituting Eq.(4.49) into Eq.(E.15), we obtain

1 = cos0 2 + sin0 (r x fi_). ni
1 - (r.

(E.16)

That is

Therefore

sin2 0 = sin0(r x fi_).nl (E.17)
1 - (r. 6_) 2

sin0 - (r x fi{). n; (E.18)
1 - (r. fii) 2

E.3 About the rotation matrix

If we define a rotation operator R(r, 0), Eq.(E.8) can be rewritten in the following form:

n_ = R(r,0)fi_ (E.19)

Because (r. fi;)r = (rrT)fil and r x fi; = K(r)fi_, the operator will have the following

form:

R(r, 0) = cos OI 4- (1 - cos 0)rr T + sin 0K(r) (E.20)

Let r = (rx, rv, rz), Then

R -- COS 0

1 0

0 1

0 0

0

0 +(1-cos0)

1

2
r x rzry rxrz

ry rx r 2 ry r z

2
rz rx rz ry r z

+ sin 0

0 --r z ry

r z 0 -- rx

-- ry rz 0
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APPENDIX F

DUAL QUATERNIONS AND THEIR APPLICATIONS IN

REPRESENTING POSITION AND ORIENTATION

F.1 The concept and properties of dual numbers

A dual number h = a + eb can be defined as a combination of two ordered real numbers a

and b with a special multiplication rule for e given by e2 = 0. The two real numbers a and

b can be said to belong to the real part and the dual part of the dual number, respectively.

Addition, subtraction, and multiplication of dual numbers are defined by the formulae:

(a + eb) + (c + ed) = (a + c) + e(b + d)

(a + eb) - (c + ed) = (a- c) + e(b- d) (F.1)

(a + eb)(c + ed) = ac + E(ad + bc)

Dual numbers were first considered by the famous German geometer E. Study (1862

1930) in the beginning of this century [105]. In his study he used the dual number to

represent the dual angle which measures the relative position of two skew lines in space.

That is, a dual angle was defined as

= 0 + ed (F.2)
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where the d is a distance between two lines in three-dimensional space and the 0 is the

angle between their directions.

Some important properties of dual numbers are

1. The product of a dual number ti and its conjugate [z = a - eb is

ah = a 2 (F.3)

2. The modulus of a dual number

Ihl = a (F.4)

which can be negative.

3. Due to the fact that E2 = 0, the dual number function has a very simple form of

Taylor series expansion:

f(a + eb) = f(a) + ebf'(a) (F.5)

4. For the dual angle 0, we have

(F.6)sin(0) = sin(e + ed) = sin(e) + ed cos(e)

and

cos(0) =cos(O + ed) = cos(e) - edsin(O) (F.7)

In the above, the properties (F.3) and (F.4) can be derived directly from the definition

of multiplication of two dual numbers. To show property (F.5), we only need to know that

a function of a dual number f(a + eb), like the usual functions over the field of complex

numbers, can be expanded into a formal Taylor series. That is, according to the theorem

of Taylor series expansion, ifa function f(_,) is analytic within a circle Ih-cl < R (R > 0)
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where c is the center of the circle, then f(5) can be expended into a Taylor series within

that circle

where u_ =

will have the form

f(a) = - c)" (F.S)
"a.-_-O

and the series is unique. If we expend f(5) at point a, the Taylor series
n!

f(a --beb) = f(a) + Ebf'(a) + E2_f"(a) -'b"" (F.9)

Because e2 = 0, all the terms with the power of e greater than one in the Taylor series will

be zero. To get the last property, we simply expand sin(0) and cos(0) into its corresponding

Taylor series at 0.

The idea of dual quantities can be extended to define dual vectors, dual quaternions,

and dual matrices. These dual quantities enable two different quantities to be combined

into one in many ways. For example, a dual vector can be defined to form any line in 3-D

space. The direction and position of the line can be specified as follows:

ft = n + ep x n (F.10)

where n is a unit direction vector of the line and p is a position vector of any point

on the line. As an another example, a dual quaternion can be defined to represent any

transformation between two coordinate frames which has been shown in Eq.(5.7).
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F.2 Position vector expressed in terms of the components of the dual

quaternion

The derivation of Eq. (5.18) t -- W(r)T$

Consider an object coordinate system which is transformed into a new location, where

the transformation is done by first translating the coordinate system in the direction of

the unit vector n by a distance d (Fig.F.1 (a)) and then rotating it by an angle 0 with

respect to a line having a unit vector n as its direction and passing through a point p

t

(Fig.F.1). The position vector p as shown in Fig.F.1 will be transformed into vector p .

The translation vector t can thus be expressed as

t = p+dn- p'

= p + dn - Rp

= (I- R)p+dn (F.11)

The rotation matrix R, when defined by a rotation angle 8 and a rotation a_s n, has

the form (see Eq.(E.20):

R = cosSI + (1 - cosS)nn T + sinOK(n)

where the K(n) is the often mentioned skew-symmetric matrix.

Because nn T = I + K(n)K(n), Eq. (F.12) can be changed into

R = cosSI + (1 - cosS)(I + K(n)K(n)) + sinOK(n)

= I+ (1 - cosO)K(n)K(n) + sinSK(n)

= I + 2sin 2 (O/2)g(n)K(n) + sinSg(n)

(F.12)

(F.13)
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Figure F.1. Illustration of the transformation of an object coordinate sys-

tem

Replacing Eq. (F.13) into Eq. (F.11), we have

t = (-2sin 2(0/2)K(n)g(n)p-sin0g(n))p +dn

= 2sin 2(0/2)n x (p x n) + sin0(p x n) + dn

On the other hand, from Eq. (5.10) and (5.11) we have

r4s -- s4r : (d/2)n + sin (8/2) cos (0/2)p x n

= (dn + sin0p x n)/2

and

rxs = [sin (0/2)n1 x [d/2 cos (0/2)n + sin (0/2)p x n]

= sin 2 (8/2)n x (p x n)

because n x n = O. Therefore

(F.14)

(F.15)

(F.16)

t -- 2(r4s - s4r-t- r X s). (F.17)
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On the other hand,

W(r)T s

r4I+ K(r) -r

r T r4

s

$4

(r4I + K(r))s -- s4r

rTs

I r4s - s4r + K(r)s0

1/2t

0

If we define the translation quaternion t for the translation vector t as

t
t= 1/2

0

then we have the formula

(F.18)

t- W(r)Ts (F.19)

F.3 Finding a transformation tuple (n, 0, d, p) from a given dual quaternion

Given a dual quaternion, the rotation submatrix ca_ be derived as previously described,

and the rotation axis n and angle 8 can be extracted from the matrix. The translation

distance d can be derived from Eq.(5.11)

d - 284 (F.20)
sin(0/2)

Eq.(5.11) can also be used to derive p. From Eq.(5.11) we have

s = dl2cos(O/2)n + sin (0/2)(p x n) (F.21)

This equation can be written as

s - d/2cos(O/2)n

p x n = sin(0/2) (F.22)
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Becausep x n = g(-n)p, we have

K(-n)p =

where the only unknown is p.

s - dl2 cos (0/2)n

sin(0/e)
(F.23)

The rank of matrix K(-n) is 2 and thus the dimension of null space of the matrix is

1. Eq.(F.23) has the a general solution in the following form:

P = Po + an (F.24)

where Po is any vector in null space.

That is, the solution for p is not unique. Usually, we select one of the vectors which

are perpendicular to n as the desired solution.

One possible solution is

[0]P = -- --n3
nl

n2

(F.25)

where nl # 0.
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