
N90-29042

Approximation Algorithms for Planning and Control

Mark Boddy and Thomas Dean I

Department of Computer Science

Brown University

Box 1910, Providence, RI 02912

Abstract

A control system operating in s complex en-
vironment will encounter a variety of different

situations, with varying amounts of time avail-
able to respond to critical events. Ideally, such
a control system will do the best possible with
the time available. In other words, its responses
should approximate those that would result
from having unlimited time for computation,
where the degree of the approximation depends
on the amount of time it actually has. There

exist approximation algorithms for a wide vari-
ety of problems. Unfortunately, the solution to
any reasonably complex control problem will re-
quite solving several computationally intensive
problems. Algorithms for successive approxi-
mation are a subclass of the class of anytime
algorithms, algorithms that return answers for
any amount of computation time, where the an-
swers improve as more time is allotted. In this
paper, we describe an architecture for sllocst-
ing computation time to a set of anytime al-
gorithms, based on expectations regarding the
value of the answers they return. The archi-
tecture we describe is quite general, producing

optimal schedules for a set of algorithms under
widely varying conditions.

1 Introduction

In the best of all worlds, there are infinite computing

resources. Unfortunately, this is not the best of all

worlds, and, while computing resources are steadily
becoming cheaper, there are problems that occur rou-

tinely in robotics and process planning that will ex-
haust any resources that we might plausibly bring to
bear. We refer to the class of NP-hard problems that,

1This work was supported in past by the National Science
Foundation under grant IRI-S612044 and by the Advanced Re-
search Projects Agency of the Department of Defense and was
monitored by the Air Force Oi_ice of Scientific Research under
Contract No. F49620-88-C-0132.

so far, have eluded the best efforts of algorithm de-

signers to provide efficient solutions, and will likely
continue eluding them.

Of course, the NP-hard problems are not the

only obstacle to designing effective control algo-
rithms. There are plenty of problems (e.g., var-

ious shortest-path problems) for which there exist

polynomial-time solutions that run too slowly on ex-

isting machines to support real-time control. In some

cases, we can compensate by caching results in ta-
bles and computing the answers to problems in real

time by table lookup. This approach has its own
drawbacks, however, as tables require storage and for

many problems the required storage is more than is

practical. In addition, as our notion of control ex-
panda to encompass more and more complicated sorts
of behavior, the number of functions that we would
have to tabulate becomes quite large, making the idea

impractical.

One conclusion to be drawn from the above is

that for some problems we cannot expect the best

possible answers; if we want to tackle certain prob-
Ictus, we will have to satisfy ourselves with approxi-
mate solutions. Computer science in general and ar-

tificial intelligence in particular has been concerned
for some time with approximate solutions, and as a

consequence many algorithms exist for well-known

problems. We can't, however, apply such algorithms
directly since these well-known problems are just sub-

problems of the complex sort of control problems en-
countered in robotics and process planning. What is

needed is a method for integrating solutions to these

simpler well-known problems so as to provide reason-

able performance for the more complex problems.

In this paper, we present an approach to dealing

with problems in real-time planning and control. Our

approach involves using a particular sort of algorithm
called an anytime algorithm. An anytime algorithm

can be interrupted at any point during its execution
to return an answer whose utility or expected value

457

is a monotonic increasing function of the time spent
computing. The more time available the better the

answer returned. A set of such algorithms can be
orchestrated to provide solutions to various sorts of

control problems that are in some well-defined sense

optimal. Our techniques are particularly suited to
applications in which the response time for certain

critical events is subject to wide variation, and appli-

cations that require the solution to several indepen-

dent subproblems each of which is compute intensive.

Such applications are referred to as time dependent.
We begin our discussion with an introduction to the

class of anytime algorithms.

2 Anytime Algorithms

Almost any algorithm can be trivially turned into

an anytime algorithm by embedding it in a second

algorithm that runs the original algorithm as an in-

ferior process. At any point when the parent process

is interrupted and asked for an answer, it checks to

see if the inferior process has terminated; if so it re-

turns the answer generated by the inferior process,
and otherwise it returns some default answer. The

utility of the answers returned by the parent process
is a trivial monotonic increasing function of the time

spent computing: a step function with a single step.
In most cases, however, we can provide a more useful

anytime algorithm (i.e., one which produces a suc-

cession of increasingly useful results). For instance,
many search algorithms employ some sort of a metric

for determining if one answer is better than another.

At all times, the algorithm keeps track of the best

answer computed so far. Such an algorithm could
easily be designed to return its current best answer

at any point in the computation.

For certain problems in the complexity clam/VP,

while there are no known efficient algorithms that

compute the exact answers in polynomial time, there
exist approximation algorithms that can be shown

empirically to provide good answers in a small num-

ber of steps. Rather than use complicated methods

for choosing the best of some possibly exponential

number of alternatives to explore, these algorithms

flip coins to determine where to search next. A good

example of this sort of algorithm is a probabilistic

algorithm for testing primality [Harel, 1987]. This
algorithm makes use of the fact that with probability

approximately ½, any of the numbers less than the
number being tested can serve as a witness to its be-

ing composite. Finding a witness establishes that the

number is not prime. That a number chosen at ran-

dom is not a witness increases the probability that

the number being tested is prime. The time neces-

sary to run this algorithm depends on the probability

bound required; the more points tested, the smaller

the probability that we will falsely identify a num-

ber as a prime. An anytime algorithm for primality

testing using this approach would continue choosing
numbers at random and testing them as witnesses un-
til it was interrupted (or determined that the number

was composite), and then return the probability that
the number was in fact a prime.

Another approach to combinatoric problems is to
use approximation algorithms which search a smaller

space (they are Uapproximate" because the optimal

answer may not be in the reduced solution space).
An example of this type of algorithm is the 2-OPT

algorithm used for generating approximations to in-

stances of the traveling salesman problem (TSP). 2-
OPT begins with a cheaply generated tour that in-

cludes each city specified in the TSP instance. It then

chooses two arcs in the tour, removes them, and re-

connects the disconnected cities to form a new tour

of smaller cost. In the standard approach, this cy-
cle is repeated until there is no pair which can be

exchanged to improve the tour. It has been shown

empirically that running 2-OPT to completion pro-
duces tours which average within about 8% of the

cost of the optimal tour. There are more compli-

cated edge-exchange algorithms that do better [Lin

and Kernighan, 1973]. An anytime algorithm imple-
mented using 2-OPT will exchange pairs of arcs until

it is interrupted and asked for an answer, at which
point it returns the current tour.

In any interesting control problem, there are lots

of different things that must be computed. We may

have anytime algorithms for each individual problem,

but what we need is some way of coordinating their
behavior to produce a composite solution that makes

optimal use of the available processor time. In order

to engineer such coordination, we need two things:

reasonably accurate expectations regarding the util-
ity of the results returned by anytime algorithms as a

function of computation time, and some strategy for
using these expectations to allocate processor time.

The first is relatively easy if we have the luxury of

testing our algorithms on real or simulated data; we

simply run the anytime algorithms repeatedly and
gather statistics on the accuracy of the results ob-

tained as a function of computation time. The sec-

ond requirement can be more difficult to satisfy, and
we devote the following sections to its discussion.

3 Scheduling Anytime Algorithms

The processes that we seek to control generally can-
not be halted to wait for the controller to com-

pute a response. However, we often have some idea

of how much time is available for computing a re-

458

_" I I v

01 E1

Figure 1: Predicting critical events

type

time time .--_

sponse. There are a significant number of control

problems that can be viewed in terms of reacting to

predicted events, employing some model to predict
critical events and computing functions to determine

how best to respond to those critical events. Figure 1

depicts a tlme-line showing an observation O1 which
can be used to predict the occurrence of a critical

event El. In this simple example, the time between

the observation and the predicted occurrence of the
event is the time available to compute a response. In

tracking a ping-pong ball, for instance, one can pre-
dict the time until impact and, hence, the time avail-

able to think about how to orient the paddle and take

whatever steps are required move it into that orien-
tation. In the traditional approach to control, a dis-

crete control algorithm samples the data at regular

intervals, computes a control action, and then exe-
cures that action. The control algorithm has a fixed

response time. If the sampling interval changes, then
the algorithm has to be changed. In many control

problems encountered in robotics, sample rates will

depend on how quickly a robot can position a sensor,
take a reading, and interpret the results. Ideally, the

sampling interval will not matter; the controller will
do the best it can with the time available.

The robot control problem is complicated by the

fact that there may be more than one process to be
controlled at the same time. Many problems in con-

trol involve coordinating multiple processes. In guid-

ing a mobile robot, the process of avoiding obstacles
has to be coordinated with the process of navigating

through doorways. Some processes must be moni-
toted and adjusted frequently. In other cases, such

as coordinating an assembly process with a parts in-

ventory control process, there is more time between
critical events but the parameter adjustments also
take more time. Given the problem of coordinat-

ing the process of planning a route with the process
of driving a car, the two processes have very differ-
ent utilities; taking a little more time to get there is

worth avoiding an accident. Resources such as pro-
cessor time and access to sensors will need to be allo-

cated to competing controllers. This should happen

in a principled way, i.e., so that the resources avail-
able are used to produce the best aggregate response

Figure 2: Performance profiles

01 02 E1 E2

Figure 3: Deliberation scheduling

for all of the processes being controlled.

In [Dean and Boddy, 1988], we define a frame-
work for constructing solutions to time-dependent

planning and control problems called e_ec_a_ioa-
deiven i_er_ive refiaemenL A solution to a time-

dependent problem using expectation-driven iters.
rive refinement will consist of a set of anytime

algorithms and a delibe_ion-schedulin_algorithm
that allocates computational resources to the set

of anytime algorithms based on expectations re-

garding their performance. An optimoJ delibera-
tion schedule for a given situation is a delibers.
tion schedule that maximises the expected utility of

the robot's performance in that situation. An op-
ritual deliberation-scheduling algorithm always gem

crates the optimal schedule for the current situs-
tion. An optimal deliberation-scheduling algorithm

thus provides the _principled way" of allocating re-
sources that is needed. The basic idea is akin to

using a domain-independent planning algorithm cou-

pled with a domain-specific library of plans to gener-
ate sequences of actions in novel situations.

The expected utility of the anytime algorithms

to be scheduled are represented by performance p_-

files that indicate how the expected utility of the an-
swers returned by a given anytime algorithm changes
with the amount of time allocated. Figure 2 shows

performance profiles for two different algorithms, one

for problems of type s, the other for problems of type

b. Figure 3 shows two observations and the corre-
sponding predicted events. In this case, all of the
time between F1 and F2 can be used in computing a

response for F2. If the expected utility of deliberat-

459

J U L-II.--J U U I.__j L_.I U L._
3 rnr-nr--nnO F--1F-_ nr-

]OE]FgOOEE3E30F-
3OOOOOP---3OOr--

]OE]O00 i(100
3012][2100012]or-

7n r-'lr--'lnnr--in nr--

Figure 4: A city map for the robot-courier problem

ing further about E2 is higher than for spending time
on El, then time before El may be allocated to E2

as well. If E1 is of type s and E2 is of type b, then

deliberation time will be allocated as shown by the
shaded areas in Figure 3.

In the next section, we sketch an example of the
application of expectation-driven iterative refinement
to a robot-planning problem.

4 The Robot Courier

Suppose that we are in charge of designing the control

program for a robot courier for a delivery service in a

large city. The function of these couriers is to pick up
small parcels and deliver them to specified locations.

We assume that the city streets are arranged in an

irregularly-spaced grid, and that the robot has a map

of the city (see Figure 4) to assist in path planning.
The robot is also capable of finding its way from one

point to another without a planned path by keeping

track of the heading of the destination as it performs

a form of obstacle avoidance. Path planning helps be-

cause a planned path may be more direct. The utility
of the robot's performance we define in terms of the

time required to complete the entire set of deliveries.
The robot must plan a tour that visits all of the

locations on its current list of deliveries. We refer to

this as tour improeement planning. Once the robot

has an ordering for the locations, it may spend time
determining how to get from one to another of them.

We refer to this as p=fft planning. We assume that

path planning is accomplished by constructing an or-
dered set of tlefet points between the two locations.

Arguably, controlling the robot in navigating between

target points will not normally affect the expected
utility of tour improvement or path planning. To

simplify our discussion, we will concentrate on just
these two types of planning and their role in control-

ling the behavior of the robot. Deliberation schedul-

ing for the robot courier then consists of allocating
time to algorithms for tour improvement and path

planning baaed on the expected improvement in the
robot's performance.

I. M

tim .--_ liras --._

Figure 5: Performance profiles for the robot courier

r
l_%\%\\\\\%\'_1 I
I_%%%%" _%%%%"_."_NJ I V

Figure 6: Path planning for a single path

In order to use expectation-driven iterative re-

finement, it is necessary that we have some expec-
tations regarding the performance of our control al-

gorithms. In the case of the robot-courier prob-
lem these expectations can be obtained by perform-

ing trial runs to gather the statistics necessary to

construct performance profiles for the anytime algo-
rithms for tour improvement and path planning. The

tour-improvement algorithm we use is an adaptation
of 2-OPT, and has s performance profile of the form

shown in Figure 5-i. The path-planning algorithm we
employ is a heuristic search algorithm of the sort de-

scribed by Korf [Korf, 1987], and has a performance

profile of the form shown in Figure 5-ii.

Consider the problem of scheduling just the
path-planning algorithm for a tour whose order is al-

ready fixed. Since the utility of the robot's response
is maximised by minimising the time expended in

traversing the tour, the deliberation-scheduling algo-
rithm should minimise the sum of planning and travel

time required. Figure 6 shows a tour of two points
(i.e., one path to plan for). The robot plans from

to to ti, and then spends from tt to ti traversing the

path. The expected value of the distance from ti to t2

will depend on how long the robot plans (i.e., ti-to).
The distance from to to ti is the quantity to be min-

imized in order to produce an optimal deliberation

schedule. The problem is slightly more complicated
for a tour of n points. Figure 7 depicts the problem

of deliberation scheduling for several points. There

460

JVI_Ps. i
[fffff

_ 5 5 r,.z ,.

Figure 7: Path planning for several paths

are gaps where no planning is done, because all of the

paths left to traverse have already been allocated the
maximum useful deliberation time. The quantity to

be minimized in this example is _-_=1 (tl - ti-1). For
the robot courier, this problem can be solved analyt-

ically; an optimal deliberation-schedullng algorithm

appears in [Boddy and Dean, 1989].

Adding tour improvement complicates the prob-
lem. Since the path-planning algorithm requires a

particular ordering of the points on the tour, the tour-
improvement algorithm must be run first. Since the

expected savings in time from path planning depends
on the distance between locations, the expected util-

ity of scheduling path planning depends on the ex-

pected length of the improved tour. In this case, the
results of the two algorithms combine by composi-

tion: the expected utility of the final result involves
the sum of the time spent on tour improvement and

the time required to plan for and traverse the im-

proved tour, which is a function of the time spent

on tour improvement. It will probably help to go

through this in a little more detail.

Figure 8 show a series of five snapshots illustrat-

ing the robot in various states of planning and de-

liberation scheduling. In each of the five snapshots,
a "*" indicates the time at which the snapshot is

taken, to to tl is the time spent path planning before

starting to travel to the first location in the current
tour, and t_ to tk+l (for 1 < k < r_- 1) is the time

spent traveling from the k-th to the k 4- 1-st loca-

tion. Figure 8-i depicts the situation in which the
robot has some randomly-generated initial tour and

Ai is the expected time to traverse that tour. At

this point the robot has to determine how to allocate
time to tour improvement and path planning. The

deliberation scheduling required to make this deter-

mination can be done very quickly using an algorithm

discussed in [Boddy and Dean, 1089]. Here we as-
sume that the time required for this type of delib-

eration scheduling is e. The current framework for

expectation-driven refinement requires that the time

required for deliberation scheduling be negligible. In

practice, the deliberation-scheduling algorithms we
have implemented have been fast enough that this is
a reasonable assumption.

Figure 8-ii shows the robot's expectations af-
ter the first bit of deliberation scheduling. The in-

terval labeled 6 is the amount of time allocated to

tour improvement based on expectations concerning
both the tour-improvement algorithm and the path-

planning algorithm. Expectations regarding the path
planner's performance are based on a tour in which
the distance between any two adjacent locations is

the same. The expected time spent in path planning

and path traversal look something like Aii. Figure 8-

iii shows the robot's expectations after actually per-

forming tour improvement. At this point, the robot
knows the exact order of the improved tour, and is no

longer assuming that the distances are all the same.
The interval labeled A,i is meant to indicate the ex-

pected time needed to traverse the tour with no path

planning (Lo is identical to tt).
Now the robot must determine how to allocate

time to planning each individual leg of the improved
tour. This is deliberation scheduling of the sort de-

picted in Figure 7, in which the robot decides how

long to apply the path planning algorithm to plan-

ning the route between each pair of adjacent locations
in the tour. Figure 8-iv shows the resulting delibera-
tion schedule after spending e on this type of deliber-

ation scheduling. The interval labeled Ai, indicates

the expected time for carrying out both path plan-

ning and path traversal. Finally, Figure 8-v shows the
actual schedule and elapsed time A_ resulting when
the robot traverses the tour. Of course, the actual

tour may take more or less time than the robot's ini-

tial expectations.
The robot-courier example illustrates both kinds

of deliberation-scheduling interactions discussed ear-

lier. Solving the problem as a whole requires solving
two subproblerns that compete for resources: tour

improvement and path planning. Path planning for
a tour requires dealing with multiple processes: plan-

ning the individual routes for each pair of adjacent
locations in the tour.

5 Conclusion

The control of complex processes demands that we

coordinate our computational and control processes

to keep up with the processes that we seek to con-

461

f

b _ _ S to. 1
t
11

6

II
II

6

III. _" I I l
II

I

I

5

I

I

// ,
H '

Ili

I
n

v

v.

Figure 8: Combining tour improvement and path planning

trol. The traditional approach has been to try to

make our computational processes so fast that we
can keep pace with any process we are interested in

controlling. However, as we tackle more and more

complicated control problems, computational com-
plexity limits our ability to reduce computing time.

One way to deal with complexity is to use approxima-

tion schemes, sacrificing accuracy for speed. In situ-

ations in which the control processes provide varying
amounts of time to respond, sticking to an approx-
imation scheme with a fixed run time can result in

a severe loss in performance. In this paper, we sug-

gest a disciplined approach to using approximation

algorithms to cope with processes whose critical or
time-dependent events can be predicted with reason-

able accuracy. Our approach enables us to allocate

processor time to a set of approximation algorithms

in order to optimize the performance of a complex

control system. The framework of expectation-driven

refinement described in this paper provides the basis
for solving a wide variety of problems in control and

process planning.

References

[Boddy and Dean, 1989] Mark Boddy and Thomas

Dean. Solving time-dependent planning problems,
1989.

[Dean and Boddy, 1988] Thomas Dean and Mark

Boddy. An analysis of time-dependent planning.
In Proceedings AAAI-88, pages 49-54. AAAI,
1988.

[Harel, 1987] David Hard. AI, GORITHMICS: The
Spirit of Computing. Addison-Wesley, 1987.

[Korf, 1987] Richard g. Korf. Real-time path plan-

ning. In Proceedings DARPA Knowledge-Based
Planning Workshop, 1987.

[Lin and Kernighan, 1973] S. Lin and
B. W. Kernighan. An effective heuristic for the

travelling salesman problem. Operations Research,
21:498-516, 1973.

462

