

NASA Contractor Report 4317

Model Authoring System

for Fail Safe Analysis

Scott E. Sikora

Charles Stark Draper Laboratory, Inc.

Cambridge, Massachusetts

Prepared for

Ames Research Center

Dryden Flight Research Facility

under Contract NAS2-12451

NASA
National Aeronautics and
Space Administration

Office of Management

Scientific and Technica,
Information Division

1990

Table of Contents

Chapter I"

I.I.

1.2.

Chapter 2"

2.1.

2,3.

Chapter 3"

3.1.

3,2.

3.3,

.4,

Chapter 4:

4.1.

4.2.

4.3.

4.4.

Chapter 5"

System ... 39
5.1.

5.2.

5.3.

Chapter 6:

6.1.

Introduction to the Model Authoring System I

Syste m Overview .. 2

Organization ... 4

Background .. 2

Fail Safe Analysis ... 2

2.1.1. Failure Mode and Effects Analysis (FMEA) 3

2.1.2. Fault Tree Analysis (FTA) ... 4

The KEE Expert System Environment .. 4

2.2.1. The Knowledge Base .. 5

2.2.2. The Inference Engine .. 5

2.2.3. The User Interface ... 6

Other Research in This Field .. 6

Model Authoring System Overview .. I

Structure Modeling .. 1

3.1.1. Internal Representation ... 1

3.1.2. Schemati¢ Capture .. 1

Behavior Modeling ... 1

3.2.1. Rule Capture .. 1

Fail Safe Analyses Generation ... 2

3.3.1. Failure Mode and Effects Analysis 2

3.3.2. Fault Tree Analysis .. 2

Conclusion .. 2

Library Objects and Their Role in MAS 3

Directionality .. 3

Failure Modes ... 3

The Library Objects ... 3

4.3.1. Battery ... 33

4.3.2. Terminal Strip .. 34

"t.3.3. Wire .. 35

4.3.4. Relay .. 35

4.3.5. Ground ... 37

Conclusion .. 38

A Fault Tree Analysis on an Emergency Hydraulic

The Circuit Schematic ... 39

The Fault Tree Analysis ... 40

Conclusion .. 42

Results and Conclusions ... 52

The Basic System Requirements, Revisited 52

3

3

3

6

9

9

3

3

4

7

I

2

2

3

6.2o

6,3.

6.1.1.

6.1.2.

6.1.3.

6.1.4.

Ease of Use ... 52

Automation .. 53

Bottom Up Approach •.. 54

Output .. 54

6. 1.5. Documentation ... 55

Other Disadvantages and Possible Improvements 55

6.2.1. Scaling .. 55

6.2.2. Accuracy ... 56

6.2.3. Failure Likelihood .. 57

6.2.4. Spatial Interactions 57

The Inherent Strengths of MAS .. 58

-ii-

Chapter 1"

Introduction to the Modeling Authoring System

Before any type of life-critical equipment can be certified, it must

undergo an extensive type of reliability testing called fail safe

analysis. In this type of examination, the equipment design plans

are exhaustively checked for critical elements whose error will cause

a catastrophic system failure. However, this type of safety analysis

is very expensive, and often done only on early design iterations.

Thus, design errors introduced through subsequent design

improvements may remain undetected, and thereby present serious

hazards to life and equipment. However, if the safety analysis

procedure could be performed more quickly, more easily and more

often, the number of design errors that would reachthe final design

stage could be significantly reduced. Exploring this automation of fail

safe analysis is the focus of the Model Authoring System (MAS).

....

MAS is a prototype software application that allows a safety engineer

to model circuit designs quickly and easily. From these models, MAS

can automatically generateeither a Fault Tree Analysis (FTA)or a

Failure Modes and Effects Analysis (FMEA) for any component in the

system. _By taking the burden of producing the analysis off the

engineer, MAS allows system designers to spend more of their time

designingand inspecting the safety analyses, and less time in actual

analysis generation.

Before continuing, it is useful to note the basic requirements that a

reliability tool should meet. These requirements are listed as
follows"

• MAS must be easy enough to use so that it can be utilized on many

design iterations with many types of designs.

............... •........ _ _ : _::il < _:k< _:_:ii_<:;i_!_:_i:<_ii<_̧i<ii_<i<_i_iiiii_+i_i_ii_iiiiiii_i_iiiiiii%iiiiiiiiiiiii_!iii_iiiii_ii_iii_ii_iii!_i_iii_iiiiii_

-Introduction to the Model Authoring System-

• MAS must automate the laborious accounting _nvotved in tracing

the causes and effects of component failures, while allowing the

safety engineer to effectively employ his own knowledge and
experience.

• Because the FTA and FMEA techniques are used on existing designs

to analyze modifications and improvements, MAS should utilize a

bottom-up approach to knowledge capture.

• MAS must output the type of graphical representations and

worksheets familiar to safety engineers.

• Because the information entered and created in an analysis is often

very useful as reference data, MAS must organize and retain this

information for documentation purposes.

This list outlines most of the requirements of an application system

that would be ready for immediate, real world use. However, since

MAS has been fabricated only as a prototype, many of the goals have

been satisfied only in part. By analyzing the strengths and

weaknesses of the prototype version of MAS, as will be done in the

following chapters, it will be shown that a system fulfilling all of the

above requirements could be designed. Many of the problems such a

production system will .encounter have been addressed by MAS.

1.1. System Overview

The Model Authoring System is a software system utilizing

established artificial intelligence and expert system techniques to

analyze circuit designs. The engineer generates analyses by first

entering a circuit in a graphical format. Next, the behavior of each

circuit object is defined, and finally, the particular component to

beanalyzed is specified. Thus, there are three separate parts to the

system; schematic capture, behavior definition�library objects, and

analyses generation. Each of these parts will be briefly outlined

below, and then discussed more completely in following chapters.

MAS allows an engineer to enter the circuit design as a frame-based

knowledge base in an expert system shell. Each circuit component

becomes an object in a knowledge base, which brings the power of

object oriented programming and inheritance to the knowledge

representation. The circuit is entered with a technique called

-Introduction to the Model Authoring System-

schematic capture The system begins with a simple bitmap picture

of the circuit schematic. The engineer then captures the information

from the schematic by using a mouse and menu interface to draw

boxes around the circuit components. These boxes then represent a

circuit object, which is entered into the knowledge base. The boxes

are mouse sensitive, which allows the user to directly manipulate the

objects in the knowledge base.

From this point, MAS utilizes a method called behavior definition. In

order to generate the fail safe analyses the behavior for each object

must be known. MAS relies on modeling component behavior in the

form of IF-THEN rules. Again, MAS utilizes a mouse and menu

interface in guiding the user towards writing these rules. For

example, a rule defining the behavior of a wire might be written to

the effect of,

IF THE STATUS OF WIRE.A IS FAILED

THEN THE STATUS OF S_TCH IS NO-SIGNAL.

For some objects, MAS requires that the engineer write his own

behavior definition rules. However, there exists a feature within

MAS that automatically defines the behavior for many types of

components. These objects, called library objects, consist of wires,

grounds, batteries, relays, and terminal strips. Since these objects

are relatively common in the type of circuit diagrams that will be

analyzed, having their behavior defined automatically can greatly

reduce the modeling time.

Another feature that exists in MAS is an abstraction technique.

Circuit components are entered on the hardware level, but this level

of detail in a model is often prohibitively complicated. MAS allows

an engineer to group objects into a new parent object, which

incorporates the behavior of all the original objects. By defining

different levels of a model, all of which have the capability to

generate a fail safe analysis, MAS can allow the engineer great

flexibility in the types of analyses he can create.

Once the circuit is fully modeled, fail safe analyses can be generated

literally at the touch of a button. Because of the knowledge

representation chosen, an inference engine can be utilized to easily

produce the fail safe analyses. Simply by selecting the object and the

failure mode, either a Fault Tree Analysis or a Failure Mode and

-Introduction to the Model Authoring System-

Effects Analysis can be graphically produced, which the engineer can
then inspect for design flaws.

1.2. Organization

This document is organized in six chapters, including this short

introduction. Chapter 2 consists of research and background, both on

the techniques of traditional fail safe analysis, and of previous work

on testing systems. Chapter 3 consists of a detailed overview of the

MAS system, specifically describing schematic capture and .behavior

definition, along with how the fail safe analyses are generated.

Chapter 4 presents the theory behind library objects and default

behavior in detail. Chapter 5 represents MAS analyses on a

simplified real world example. A .section of the Emergency Hydraulic

System in an experimental F-18 has been isolated, and using MAS

the system was modeled and a Fault Tree Analyses was generated
with the system. Finally, Chapter 6 presents the results and

conclusions of experiences in building ..and running MAS. It is hoped

that the experiences gained from creating this system will provide a

proof-of-concept that this type of system could be a useful tool for

reliability engineering.

Chapter 2:

Background

Before continuing with an in depth analysis of the Model Authoring

System (MAS), it is necessary to take a closer look at a few of the

issues involved. This chapter is divided into three separate parts, all

of which are vital to the development of MAS. The first is a brief

overview of the methodology of fail safe analysis, particularly Fault

Tree Analysis and Failure Mode and Effects Analysis. The second

section examines the KEE expert system environment on which MAS

is based. Finally, the third and final section will be a brief overview

of past research in this field, and its relevance to MAS. This

background work should give a clearer understanding of the goals

and limitations of MAS, which will become evident in later chapters.

2.1. Fail $_lf¢ Analysis

In most engineering applications, especially those which are life

critical, system safety is of great importance. Therefore, a large

methodology has been developed to review safety in all phases of

the project life cycle, starting with concept and design. The discipline

of system safety analysis has been developed in order to verify the

safety of large, complex, redundant systems. Usually, standard

reliability testing on the system level is almost impossible, due to the

complex nature of the system. Often accidents occur because of

complicated interconnection of environmental conditions, component

behavior and human error.

Thus, in order to analyze how failures are likely to occur in such a

situation, a number of safety techniques have been developed. The

list of possible techniques for the evaluation of system safety is quite

large and includes, but is not limited to, such techniques as

...... • ' •.... : • _:: : _:, _ < : ;< ii: <: ?<<:_i: ::_: _:. <_ :i: i:iiiii :,>ii_̧ iiiiiiii!ii_iillii_iii__:i_iii!i_Aiiii_i_:iiii<iiiii!i:iiiiiiiiii:iii_i

-Background-

Preliminary Hazard Analysis, Fault Hazard Analysis, Failure Mode

and Effects Analysis, Fault Tree Analysis, Common Cause Failure

Analysis, Sneak Circuit Analysis, Software Hazard Analysis, Operating

and Support Hazard Analysis, and Management Oversight Risk Trees.

All of these techniques demand a thorough understanding of the

functioning of the system and an intimate knowledge of possible

failures. In the next two sections, two of these analyses are detailed,

namely Fault Tree Analysis (FTA) and Failure Mode and Effects

Analysis (FMEA). Both of these analyses are widely used, and

represent two sides of the analysis scale. The FTA can be considered

a deductive analysis, which attempts to explain the causes of system
failures. On the other hand, the FMEA is more of an inductive

approach, and asks the type of "What if...?" questions vital to

engineering design.

2.1.1. Failure Mode and Effects Analysis (FMEA)

The Failure Mode and Effects Analysis is one of the most widely

employed techniques for system safety analysis. Basically, the FMEA

enumerates possible failure modes for system components, and then

traces through the characteristics and consequences of these failures.

The FMEA is usually very qualitative, however certain quantitative
techniques can be employed.

Most of the major features of a FMEA are illustrated in Figure 2-1.

In the first column, the system component is enumerated. In the

second column, the possible failure modes for this component are

listed. This is followed by the possible causes of failure in the third

column and the possible effects of these failures in the fourth. The

next column then details the probability of occurrence, followed by

the criticality, which tells how vital the component is to system

safety and performance. Finally, the last column lists possible

actions to reduce the probability of occurrence. Note, in preparing
the FMEA, the safety engineer must be very familiar with the

workings of the system, as well as with the detailed performance of
each of the components.

Obviously, the basic FMEA can be improved on in many ways.

Notably, more columns can be added to the table, which could specify

such features as possible symptoms and methods of detection for

various failure modes. However, this type of analysis is best left to

the next section, in which Fault Tree Analysis is described.

-Background-

2.1.2. Fault Tree Analysis (FTA)
r

The Fault Tree Analysis is a graphical, deductive, analytical

technique for rigorously examining the causes of component _failure.

The output of a fault tree analysis is a logic tree of the type shown in

Figure 2-3. FTA's can be used for either qualitatively studying

hazards, or when failure probabilities exist, quantitatively
determining risk assessment.

As you can see in Figure 2-3, the Fault Tree is often done on a

relatively significant event in system performance. Then, the event

is broken down into a number of preceding events, which are

organized with logic gates. Because of this organization, the Fault

Tree Analysis works best on systems that can be broken down in this
logical manner.

The basic principles of Fault Tree Analyses can be shown in a simple

example. A sample FTA for a circuit schematic is shown in Figure 2-

3, while the circuit this analysis is based on appears in Figure 2-2.

The first event is the fault that the motor does not work. The causes

of this event can be either a primary motor failure, or a secondary
failure, which is no current to the motor. Notice the differences

between primary failures and secondary failures. Primary failures,

represented by circles, represent independent failures, while

secondary failures, represented by rectangles, have underlying

causes. The rest of the fault tree is constructed in this way, with

each secondary failure requiring more expansion. The remaining

part of the tree is fairly self-explanatory, and the table in Figure 2-4

shows some of the more common fault tree symbols and their

meanings.

When completed, the Fault Tree Analysis can be an extremely useful

safety aid. Not only does it help engineers find trouble spots within

the design, but it also all provides exact causes and combinations of

these trouble spots. This is why the fault tree is recognized as one of

the most useful quantitative and qualitative system analysis aids.

2.2. The KEE Expert System Environment

The purpose of this section is to give a background to the

terminology and concepts behind the Expert System Building Tool

(ESBT) that was used in this project. In general, ESBT's have three

-Background-

major parts, the knowledge base, the inference engine, and the user

interface. The ESBT that was chosen in this project was the

Knowledge Engineering Environment (KEE), because of strengths in

all three of these areas. The following sections are devoted to

explaining each of these three areas.

2.2.1. The Knowledge Base

The knowledge base within KEE is dedicated to representing

modeling knowledge, and consists of two separate aspects, object

descriptions and rules. The object descriptions are achieved through

the use of frames. Frames are tabular data structures which contain

slots which are filled with data which describes the particular object.

In KEE, frames have inheritance, which allows a frame to inherit slots

and their values from parent frames. Special types of frames, called

instances can have no children, and are used to represent specific

objects. Normal frames are used to describe classes of objects.

The second type of knowledge representation used within KEE are

rules. Rules are used to change a situation and/or modify the

frames, and are represented by IF-THEN statements. W-THEN

statements have a list of antecedents, which make up the IF part of

the rule, and a list of conclusions, which make up. the THEN part of

the rule. These rules are then utilized by the inference engine to

modify frames in a useful way.

2.2.2. The Inference Engine

The inference engine has two main techniques to support reasoning,

backward chaining and forward chaining Backward chaining starts

with a hypothesized conclusion and determines if there is enough

knowledge, both in frames and in rules, to determine if the

conclusion is true, or solved. This is performed by searching through

all the rules which have the hypothesized conclusion as their

conclusion. Then, the antecedents for the matching rules become the

new hypothesized conclusions, and the process continues until there

are no more matching rules or until a given set of conclusions is

matched by the data already present in the frame. This type of goal-

driven technique was popularized by the original MYCIN expert

system.

-B a c k g r o u rid-

The second technique for inference is forward chaining. In forward

chaining, a given fact is added to the knowledge base. Then, the

conclusions of the rules which have been newly satisfied are entered

into the knowledge base through frame slots. This process continues
until all of the conclusions have been traced.

_!!ii_i_ _

2.2.3. The User Interface

.... i¸iii¸<ii__

One of the greatest strengths of KEE is the user interface. KEE has a

wide variety of graphic interfaces available to the developer,

including menus, windows, figures, bitmaps, active images, etc
• : ,

These graphical capabilities make the system particularly.well, suited

for the types of graphical safety analysis the Model Authoring

System is attempting to develop.

KEE offers a large number of other capabilities, including

sophisticated framing and inheritance, hypothetical reasoning,

object-oriented programming, predicate-logic language, demons, and

support for user defined methods, inheritance roles, logic operators,

functions and graphics. However, the Model Authoring System deals

only with the basic issues described above. Further development of

MAS would certainly take advantage of many of the other

capabilities, but as the system now stands, the basic systemsuffices.

2.3. Other Research in This Field

There is a large body of research devoted to the development of

analyzing, .testing and diagnosing systems..: One realm of research

that is particularly relevant to MAS is a technique called model

based reasoning. Model based reasoning concerns itself with the

basic task of determining which component failures could result in a

discrepancy between actual behavior and predicted behavior. For

example, if a circuit should output a voltage of X and actually has a

voltage of Y, what failures in the circuit components would cause the

observed output? This has been called model based reasoning

because it is based on knowledge of the circuits' structure and

behavior, as well as on _observations.

The basic technique for model based reasoning is well established,

despite a number of different approaches. When troubleshooting a

system, the approach can be broken down into three sections,

.Background-

hypothesis generation, hypothesis testing, and hypothesis
discrimination.

Hypothesis generation deals with generating a list of possible failures

that could cause the observed outcome. Generating the list could be

as simple as an exhaustive enumeration, or could utilize sophisticated

observations about behavior and causality. Most modern day

approaches use a technique which, involves recordingjustifications

along with values during the simulation, then using the justification

premises as possible candidates.

The next phase, hypothesis testing, attempts to verify that a
generated hypothesis can indeed cause the observed behavior.

Again, there are many solutions to this problem. _One simple '

approach is to enumerate all the failure modes of an object, and then

use simulation to test all of the possible outcomes. However this has

the disadvantage of requiring that the actual failure consist of one--of

the modeled failure modes. " More sophisticated .techniques, such as

constraint suspension or generate and test integratioh have also been

used. Constraint suspension involves modeling the system with

constraints, and then testing suspects by determining if all other

components other than the suspect is working properly. On the other

hand, the generate and test systems involve integrating testing

knowledge into hypothesis generation.

The final task is hypothesis discrimination, which involves

distinguishing between two hypotheses which both cause the

predicted output. Again, there are a variety of techniques which

have been used. Namely, more information must be gathered, in

order to uniquely isolate a hypothesis. This can be done in either of

two ways, probing, which probes the circuit for additional

information, or testing, which applies new inputs to the circuit. In

both of these cases, the goal is to obtain the correct hypothesis with
the minimum of cost.

This three part structure of generation, testing and discrimination

matches a large number of troubleshooting systems, including INTER

[1976], WATSON [1976], ABEL [1981], SOPHIE [1982], HT [1982],

LOCALIZE [1982], IDS [1984], DART [1984], LES/LOX [1985], GDE

[1987], DEDALE [1987]. It is important to understand this is a well

established technology which is almost ready for application.

-Background-

However, the Model Authoring System attempts to provide a solution
to a related, but different problem The systems described above
attempt to troubleshoot the circuit, while MAS deals strictly with

analysis. While many of the same techniques are applicable, the

problem is posed in a slightly different way. While the elements of

hypothesis generation, testing and determination are still present,

they are quite different.

First, note that instead of asking for the exact cause of an actual

problem, MAS is asking for all the causes of a potential problem.

Thus, the problem of hypothesis generation and testing become

integrated, since MAS must generate all the correct hypotheses that

will cause a specified output. The task of hypothesis determination

then becomes a non-problem, since the safety engineer is actually

concerned with all of the possible hypotheses that are generated,

rather than isolating one in particular.

In conclusion, it seems that MAS is addressing a new kind of problem

altogether. Although many of the techniques of past research are

applicable, namely those of hypothesis generation_ and testing, MAS

organizes them in a different way. It is exactly this new twist to an

old problem that makes the problem of automating fail safe analysis

so interesting.

-11-

!

b.)
!

ITEM

Propellent

grin

Liner

FAILURE MODES

a. Cracking
b. Voids
c. B<__

a. Separation from
mot_ case

b. Scpe_fionfrom
molor grain or
insulation

CAUSE OF FAILURE

a. Poor Wo_manship
b. Defective materials
c. _e duringtramlxa'tatio.
d. Damage duringhandling
¢. Ov_on

a. Almonmal _ from cure
b. Excessively low temperatures
c. Ageing effects

a.Imdulmteckming of motor case

b.Use ofunsuitablebonding
material

c,Failuretocontrolbondingprocess

POSSIBLE EFi-)_CIS

Destruction of missile

Excessive burningrate;
ovation;
_ ca_ rulxUrc
O.rmgoU_'wi_rMxma_

Excc_ve bundngrate

Case _ during
opera_n

Figure 2-1: A Sample FMEA for a

PROB. '_CAL
TY "

0.0006 Critical

o.ooo c.ti

O.O001 Critical

FAILURE RA_ OR EFFECTS

C_ control of manufacturing
sses to enst that
w_ship _ ixescribed
standards. Rigid quality __1 of
basic materials to eliminate
defectives.In__ andpnmure
te_ng of compl_ _.

_vision of sUitable packaging to
_t mouxdng _ti(xt
_tully con__ Wodaction.
Stage and _fi_ only within
_ribed te.m_t.re limits.
S.itmc fo,m,_o. toresistenec,
ofaging.

strict _ance _ _ c__
Woccdun_:, S_t i_tion at'tea
clwing of m_ caseto cn.mueIJ_
all_co.tara_ts _ve been nemovM.

Rocket Subsystem

g_

0_

g::

!

oo

::%,

.......... : - ::_ _ _ _ i _: : : _: _i:_,::_::<_<i_:_:ii_:i _i::__< ._i<_i_<:_ii<_iiiii_<_i_iiiii_i_<i_!<iiii_i_i_!_!<_iiii!i_!iiiiiiiiiiii_iiii_ii_ii_ii_iiiii_ii_iiiiii!iiiii_i_i_i¸

-Background-

Power

Supply

Switch

Wire

Fuse

Motor

Figure 2-2" Electrical Motor Circuit

-Background-

I' 1Motor does not

operate

]

No Current to_Motor

!

Switch Open 1

,.

Sw

Failure r

Primary
Wire

Failure

Fuse Fails

Open

i Secondary Fuse]
F_lure

J

Overload in 1Circuit

Figure 2-3" Fault Tree for Electrical Motor Circuit

-Background-

I

I

Fault event; it is usually the result of the

logical combination of other events.

Independent primary fault event.

Fault event not fully developed, for its

causes are not known; it is only an assumed
primary fault event.

Normally occuring basic event; it is not a
fault event.

The union operation of events; i.e., the

output event occurs if one or more of the

inputs occur.

The intersection operation of events; i.e.,

the output event occurs if and only if all the
inputs occur.

Output exists when X exists and condition A
is present.

Triangle s_bols provide a tool to avoid
repeating sections of a fault tree or to

transfer the tree construction from one

sheet to the next. The triangle-in appears
at the bottom of a tree and represents the

branch of the tree shown somplaee else.

The triangle out appears at the top of a tree

and denotes that the tree is a subtree shown
someplace else.

Figure 2-4- Commonly Used Fault Tree Symbols

i

................................ r.........................<:_:<:_.:_.__<__:__<<::.i<:_<::<_-_:<%_i_i:__i_<i_ii_!_i_i_i_i/:!_/i_iii_!!ii_iiii_i_ii_ii_i_!iii_iiii_ii_iiii_iiii_iiiiiiii_iiiiiiii_iiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiii_ii¸_

Chapter 3"

Model Authoring System Overview

It is useful to think of the Model Authoring System (MAS) as

consisting of four distinct aspects" schematic capture, behavior

definition, library objects and analyses generation. It is best to deal

with these issues one at a time, illustrating the concepts with a

relatively simple example. In this way, the the system can be

presented in a logical and orderly way. This chapter deals with three

of these issues, namely schematic capture, behavior definition and

analyses generation. The next chapter is devoted to the definition

and specification of the library objects.

3.1. Structure Modelinp

For the engineer, the starting point in circuit safety analysis is the

standard engineering circuit diagrams. The information contained in

these circuit diagrams is complete enough to allow a safety engineer

to perform many types of analyses, including the Fault Tree Analyses

and the Failure Mode and Effects Analyses generated by MAS. The

first challenge to MAS is to represent the information found in the

schematic in a format that is suited to the problem.

3.1.1. Internal Representation

Since MAS is designed as a rule-based deduction system, two things

are needed to develop a useful model, rules and objects. In MAS,

rules are used to define the behavior of the model, and therefore

generate the actual fail safe analysis. However, rules refer to the

state of data structures, or objects, that must already exist. Thus, the

-Model Authoring System Overview-

first step in building an expert system is to define a knowledge base

containing the objects to which the rules will refer. .The nextstep is

to write the rules which define the way theobjects behave. Finally,

the rules will be searched in a particular way in order to generate

..,. ,..u.,._,'_,n,'_-_on_ a r,,',',_,,.,,,,......the oh;,_ct__J_ _. :_

In MAS, the knowledge base objects represent circuit components,

the rules describe the behavior foe these objects, andsearching these

rules generates the fail safe analyses. Capturing _e circuit object

information and placing itinto the knowledge baseis the first step in
i , i

generatingan analysis. inMAS, thisdefinition step is referr_ to..... as

schematic capture, since the information is entered directly from_ the

circuit schematic
.... i

In order best to understand schematic capture, it is necessary first to

understand the target knowledge representation. Because of the

original design decision to use the Knowledge Engineering

Environment (KEE)expert System tool., thechoiceofrepresentation

has actually already been_ decided, As described in the previous

chapter, KEE stores objects as object-oriented frames with

inheritance. More specifically, KEE uses data units, each containing a

collection of slots, which are characteristics which may be inherited

from the object's parent unit, orare local to the data unit. Figure 3-1

shows a group of sample _E units, along with their inheritance roles

and some of their slots. Also, certainty_s of units may be instances

of a parent unit;as also illustrated in the figure,: Instances are

specific realizations of a particular unit which contain all of the unit

slots.. Many specific instances of a parent unit can be specified, each

inheriting the slots of the parent unit. These instances are unique

however, in thatthey can not spawn children.

Some of the slots that are common to all data units are"

• composite-objects - If this object is an abstraction object appearing

on a higher level, then the grouped components it represents are

stored in this slot.

• levels This slot contains all of the abstraction levels which

contain this object.

• failure-modes - This slot contains the failure modes of the object.

.... _: <_<:........ /_ < :: :,: <: : _+ i:_< <<:_>:_i:_k_i_._iiiiii/iii_i_ii/_iiii_i_ii!_iiiiiiiiiii_iiii_iiii_i_ii_i_i<_i_i_i_i_i_iiiiiiiiiiiiiiiiiii¸

-Model Authoring System Overview-

• hotspots - This slot contains the highlighted schematic box

associated with the object.

• my-images - This slot contains the abstract images that represent
this object in abstraction levels.

• status This is the current status of the object, either OK or one of
the failure modes.

• connections - This object contains the data unitsconnected to this

object.

• rules - This slot contains the rules associated with that object.

• type - This slot contains the object type. Currently, the type may

be one of generic, terminal strip, battery, ground, wire or relay.

Generic Object

- failure mode
-inputs
- outputs
- components

I

RLY-31
I

I
- failure mode ,
-inputs
- outputs l

I

- components ,
I

- contol signal i
- paths

I

Figure 3-1" Example KEE data units with instances

-Model Authoring System Overview-

MAS contains a library of these KEE data structures, which consists of

wires, relays, grounds, batteries, terminal strips and generic objects.

These library objects act as parents for each individual instance of

circuit data units. These data units correspond one to one for each

circuit component in the design and thus, make up the knowledge

base. Once the circuit knowledge base has been defined by

representing components as data units, rules can be written which

allow the behavior of the component to be represented.

3.1.2. Schematic Capture

Now that the knowledge representation is established, the next step

is to transform the raw bitmap circuit schematics into that

representation. In MAS, this is performed through a simple, intuitive

mouse and menu technique, which is designed for rapid modeling.

The circuit schematic is first called to the screen by opening the

corresponding bitmap file. Next, the user uses the mouse to draw a

highlighted box around a particular component on the circuit

diagram. This component is then modeled as a KEE unit. The system

then asks the user to name and identify the component, which MAS
will. use to transform the information into an instance unit in the

circuit knowledge base. This process is continued until all the

relevant components on the schematic have been modeled. Note,

once the user has highlighted an appropriate area onthe diagram,

the schematic then becomes "smart", in the sense that the highlighted

box is mouse sensitive, allowing the corresponding KEE instance unit

to be manipulated by the user.

Once the objects are defined on the schematic, the next step for the

user is to specify the connections between the components. Again,

this is performed with mouse and menu techniques, which utilize the

"smart" spots defined on the schematic. The user first selects a

"smart" spot (which corresponds to a component) that must have a

connection. Then, according to the component type, the system then

guides the user to selecting other "smart" spots (or components) to

connect. For example, if the object to be connected is a battery, MAS

asks the user to first identify the positive connections, and then the

negative connections. In this way, not only the connection

information but also certain component specific information is

captured into the KEE unit.

-Model Authoring System Overview-

As an example, this process can be detailed with a very, simple

circuit. The schematic for the circuit is shown in Figure 3-2. When

the schematic is first entered into MAS, the system knows nothing

about the circuit or the types of components it contains. However,

once objects have been defined by the user, the knowledge base

contains a detailed picture of the structure of the schematic. Figure
3-3 shows the circuit after the user has defined all of the circuit

components. Each highlighted box is now mouse sensitive, allowing

the box to be directly correlated to the KEE unit in the knowledge

base. With the circuit shown, the knowledge base contains six KEE

units" battery of type battery, wire-a, wire-b and wire-c 'of type

wire, and finally, switch and motor of type generic.

Wire A _ WireB

S witch

i Battery

Wire C

l Motor

I
Figure 3-2: A sample circuit schematic

W ireA _i!!i_i[i_!_ili!i W ireB
::

 !iii! ili!iiiii!i!!ii!iiiii !i
Wire C

=.. ".=.....v.-.-.v= ==.-..=........==....=.-.-...v.v.. =...-=...-.....-...-..=..,.,.,- -.....,................. <..............................

!!i_'__"'_iti:_i:_{:i:i:i_;_i_i!!i_iiii!i!:

i_!!i{i!i!i!iiiii!iiiiiiiiiiiii

i!iii!i!ii!!iii!iiii!!!!!!i ii!!ii!!iil

Figure 3-3- "I'he sample circuit defined with "smart" spots

There is one final aspect to schematic capture that should be noted.

Once the diagram and the connections have been defined, an abstract

view can be engaged. Figure 3-4 shows the example circuit in the

-Model Authoring System Overview.

abstract view. The abstract view of the circuit replaces the

schematic highlighted boxes with generic rectangles that represent

the circuit components and connections contained, in the knowledge

base. Lines represent KEE units of type wire., and the connections are

those specified during schematic capture.

Once in abstract view, the user has the option to implement a specific

abstraction technique. With this feature, the user can copy the
abstract view onto a new "level". Once the new level has been

created, objects can be collected into groups which form new data

objects. These new data objects can then have their behavior

defined with rules, and a completely new FTA or FMEA can be

performed in the new level. In turn, this procedure can be repeated

many different times creating different abstract levels of the circuit.

This feature can be utilized to hide many levels of detail that are not

critical to an analysis. Thus, the safety engineer can perform fail safe

analysis on the circuit on any level of detail, simply by selecting an

appropriate abstraction level. For example, figure 3-5 shows the

sample circuit on a new abstraction level. Note, the switch and the

battery have been compressed into a new "power" component, which

hides some of the details of the original circuit.

Sw tch

Wire A

Battery

Wire C

Wire B

Motor

Figure 3-4: Abstract representation of the simple circuit

Power

Wire B

Wire C
l i

Motor

Figure 3-5- Abstract representation of the simple circuit on
a new level.

-Model Authoring System Overview-

3.2. Bt_havior Modelin_

Once the objects and connections have been defined and stored in the

circuit knowledge base, there remains one more step until Fail Safe

Analyses can be performed. Namely, the behavior of each circuit

component must be defined. In MAS, the behavior is defined in

terms of rules. More specifically, for each object a series of IF-THEN

rules is written, which describe _e consequences and conditions of

each of the failure modes of the object. Writing these rules

completes the circuit model specification.

3.2.1. Rule Capture

!:

Just as MAS guides the user through defining objects and

connections, the system, also guides the user through rule definitions.

Two types of behavior rules are utilized by MAS, single premise

rules .and multiple premise rules.- Single premise rules describe the

behavior of the object during a single failure. For example, if a wire

is failed, one consequence might be no signal through the wire. Thus,

a single premise rule might be"

IF THE STATUS OF WIRE.A IS FAILED

THEN THE STATUS OF WIRE.A IS NO-SIGNAL

Multiple premise rules, on the other hand, describe the behavior of

the system if multiple failures are present. Thus, these rules have

multiple IF statements, which match each failure. This type of rule is

necessary when describing the behavior of a redundant object that

might only fail if multiple failures are present. For example, if a

motor could operate under any of three power supplies, a rule for

the motor failure might be"

IF THE STATUS OF WIRE.A IS NO-SIGNAL

THE STATUS OF WIRE.B IS NO-SIGNAL

THE STATUS OF WIRE.C IS NO-SIGNAL

THEN THE STATUS OF MOTOR IS FAILED

This rule makes the simplifying assumption, that if no current is

supplied to the motor, the motor will no longer work.

The two types of rules, multiple and single premise, are used to

define the behavior of each of the circuit components. Each

J 111__ii_ii¸_i!!iiiii_ii!_ii̧ ,!iii_ilii_i__ i̧ i_' iiii_i!ii!ili¸ii¸¸¸_!¸!¸_ii_!i_,
_ i!iii_!_!i!ii!!_ii!ii_iiiiii!il¸ ii_i _!ii !!i _ !

-Model Authoring System Overview-

component has a group of rules specifying both the causes of each

component failure mode and the effects of each component failure

mode. In this way, the behavior of the component is specified for all

conditions.

MAS is designed to allow both single and multiple premise rules to

be written for each component. By exploiting one simple fact about

the type of rules that must be defined, MAS can use a mouse and

menu technique to write rules. This one consistency is simply that

for each statement in the rule, (either the premise or the conclusion)

only two things must be known, the name of the object to which the

statement refers and the failure mode of the object. Thus, when

specifying the rule premises and conclusions, the system only needs

to know the object and failure mode. These two bits of data lend

themselves well to a mouse and menu interface specification.

Namely, the object can be chosen by selecting the appropriate

"smart" spot, and the failure mode can then be selected from a menu.

For example, to define a single premise rule MAS first needs to know

the object for which the rule is being defined. This type of rule is

written by the system in the following way. For each object, there is

a menu option called Define Behavior. This option guides the user

through defining the behavior of the object using the mouse and

menu techniques. Basically, the system loops through all of the

failure modes of the object. For each failure mode, the premise of

the rule is already written, since the current failure mode and the

object are known. Thus the premise of the rule takes on the form IF
.... _ . .

THE STATUS OF object IS failure mode. Now, the conclusions of the

rule must be specified. In order to get the conclusions, the user

clicks on the objects that are affected by this type of failure. For

each object the user clicks on, a menu is brought up displaying all of

the failure modes of the object. From that point, the user needs only

to click on the appropriate failure mode, and the rule conclusion is

fully specified. This is performed for all the objects that are affected

by the particular failure until the entire rule is written. In this way,

the behavior for each component is captured in rules.

MAS defines multiple premise rules in much the same way. First,

the user clicks on an option to Define Multiple Premise Rule. Next,

the rule premises are written by clicking on the appropriate objects

and selecting the appropriate failure modes. Once all of the premises

are finished, then the conclusions for the rule are defined in exactly

-Model Authoring System Overview-

the same way" i.e. clicking on the object and selecting the failure
mode.

The advantages of this technique are quite obvious. First, although
the explanation is a bit complicated, the ease of use of the mouse and

menu interface is quite friendly, and allows rapid modeling. Second,

by avoiding having the user's typing the _ rules himself, a much more

rigorous and intuitive error control system can be utilized. Finally,

the user needs to know very little about expert systems and rule

writing. Instead, he simply defines the behavior for each individual

object by selecting the components and failure modes which that

object affects.

As an illustration, the behavior rules for the simple circuit of Figure

3-2 should be examined. This will serve to clarify how behavior is

modeled for each individual component. To keep the example

simple, the failure modes for each component have been limited to

two, namely no-signal and failed. While this limitation does remove

some of the validity of the model, the basic concepts remain the
same.

In the circuit, the first component to be modeled is the Battery. The

data unit that represents the battery contains all of the information

that is needed to write the behavior. The first failure mode for the

battery is the primary failure mode, failed. If the battery is failed,

then the current, or signal, on Wire A would disappear, while the

status of Wire C would remain unaffected. Thus, the first rule

describing the battery behavior would be,

IF THE STATUS OF BAI'IERY IS FAILED

THEN THE STATUS OF WIRE.A IS NO-SIGNAL

The second failure mode for the battery is no-signal. Since we have

made the limiting statement that all components have two failure

modes, some compromises in the modeling process must be made.

The case of a battery suffering a failure mode of no-signal, does not

quite make sense, so this case is ignored.

The second component to be examined is Wire A. Again, Wire A

has two failure modes, failed and no-signal. If the status of Wire A

is failed, it is assumed that the wire has broken, therefore no current

would reach the switch. Thus, the rule associated with a Wire A

failure is,

-Model Authoring System Overview-

IF THE STATUS OF WIRE.A IS FAILED

THEN THE STATUS OF SWITCH IS NO-SIGNAL

If Wire A suffers a no-signal failure, then obviously the switch will

also have no current. Therefore, the rule describing the behavior of

Wire A with a no-signal failure mode is, .

IF "IT-tE STATUS OF WIRE.A IS NO-SIGNAL

THEN THE STATUS OF SWITCH IS NO-SIGNAL

J[Failed : ._. No-Si_al
B a tte ry]1IF THE STATUS OF BATTERY IS FAIL"_D

Wire A IF THE STATUS OF WlRE.A IS FAI_D IF THE STATUS OF WlRE.A IS NO-
THEN THE STATUS OF SWITCH IS NO, SIGNAL TH_ _E STAT_ OF SWITCH

.........................._:_-:_-.......................______SI__...................!S..NO-S!.GNAL_!:_..............
Switc h i. IF THE STATUS OF.SWITCH IS,FAILED IF THE STATUS OF SWITCH IS NO-

THEN THE STATUS OF WlRE.B ISNO- SIGNALTH_ THE S OF WlRE.B
...SIGNAL IS NO-SIGNAL

Wire B IF THE STATUS OF WlRE:B--is--i=_,iLE0.............J-FTHE S;F-ATUS:o-F-Wi-RE_,-B-iS-N-(:),-.......
THEN THE STATUS OF MOTOR IS NO- SI_ _EN _E STATUS OF MOTOR

..........................:......:........... "_-__:.................................._. IS..N_SIGNAL
M o t o r IF THE STATUS OF MOTOR IS bK:)-

Si_ _:_ _E STATUSOF MOTOR
i

......................_--iF!-TH-ESTATt:ISOF:Wi :iS ---:....---..........:-:-:-:-:........Wire C RE:c- FAi:_ I:) :: :-:----:- iSFAILED

_EN_E STAT_ _ MOTOR IS
FAIl I:=DAND THE STATUS OF E_TTERY

IS FAILED
i

Table 3-1: 'Rules for the simple circuit example

The process of analyzing each component failure mode continues for

every component in the system. The end result is a group of rules as

illustrated in Table 3-1. This group of rules, along with the KEE data

units entered into the knowledge base, complete the construction of

the model. This new model can now be used to generate Fault Tree

Analyses and Failure Mode and Effects Analyses, as is described in
the next section.

-Model Authoring System Overview-

3.3. Fail Safe Analyses Generation

Now that the objects have been captured from the schematic, the

connections between objects specified, and the behavior for each

individual object defined, it is finally time to see how a Fault Tree

Analysis (FTA) and Failure Mode and Effects Analysis (FMEA)can be

generated from the model. Recall, that an FTA is a graphical

representation of all of the reasons a particular component can fail,

while a FMEA is an examination of all the consequences of a

component failure.

3.3.1. Failure Mode and Effects Analysis

The Failure Mode and Effects Analysis is generated through a

technique called forward chaining. Forward chaining adds a fact to a

database, such as THE STATUS OF WIRE.1 IS FAILED, and analyzes all

the consequences of that fact. This is achieved by matching the fact

to the premises of the rules in the knowledge base. If a premise of a

rule is matched, then the conclusion of the rule is added to the

knowledge base, and the system starts the search all over again. The

result can be represented as a graphical tree representing all of the

facts that have been added to the knowledge base during the

forward chain. However, this tree can also be interpreted in a

different way. Since the rules actually represent the behavior of the

system in response to different failure modes, the _ee also

represents a fail safe analysis. The tree is not only a map of how

facts are added to the knowledge base, but is also representation of

how the system would behave if the original condition was met. In

other words the system has generated a FMEA.

To better understand this concept, refer once again to the simple
circuit that has been modeled. If a sample fact such as THE STATUS

OF B ATI'ERY IS FAILED, then the system forward chains to examine

all of the consequences. In this case, the graphical tree produced is

represented in Figure 3-6. With the initial fact added to the

database, MAS examines all of the rule premises which are now true.
In this, case the first rule to be matched is"

IF THE STATUS OF B ATI'ERY IS FAILED

THEN THE STATUS OF WIRE.A IS NO-SIGNAL

-Model Authoring System Overview-

Therefore, the fact THE STATUS OF WIRE.A IS NO-SIGNAL is added.

This fact in turn matches the rule,

IF THE STATUS OF WIRE.A IS NO-SIGNAL

THEN _ STA_S OF S_TCH IS NO-SIGNAL.

Which adds another fact to the database. This process continues,

until the final event, which is motor failure. Thus, the system has

generated a FMEA using the behavior m_eled in _e rules.

THE STATUS OF
BATTERY IS

FAILED

I

THE STATUS OF

WlRE.A IS
N(_SIGNAL

1

THE STATUS OF
SWITCH IS
N0-SIGNAL

THE STATUS OF
WIR E.B IS
N_SIGNAL

THE STATUS OF
MOTOR IS

NO-SIGNAL

THESTATUSOF
MOTOR IS

FAILED

Figure 3-6: FMEA produced for the simple circuit

3.3.2. Fault Tree Analysis

The fault tree analysis is generated in almost exactly the same way

as the FMEA. However, to generate the FTA, MAS uses backward

chaining. For example, the system takes a fact, and searches for all

the rules whose conclusion matches the fact. For each of those rules,

-Model Authoring System Overview-

the premises are then added to the knowledge base. Then the

system backward chains off of the new facts. Again, the output can

be represented as a graphical tree, and again the tree is not just a

map of how facts were added to the knowledge base, Rather, the

tree shows all of the facts that might lead to the truth of the original

fact. In other words, the system has generated a Fault Tree Analysis.

Again, by referring to the example circuit, an actual FTA is illustrated

in Figure 3-7. This time, the fact T_ STA_S OF MOTOR IS FAILED

was added to the database. This particular fact matches the
conclusion of two rules"

IF THE STATUS OF WIRE.C IS FAILED

THEN THE STATUS OF MOTOR IS FAILED

THE STATUS OF BATTERY IS FAILED

IF THE STATUS OF MOTOR,IS NO-SIGNAL

THEN THE STATUS OF MOTOR IS FAILED

Notice, either of the two conditions could have caused the fact to be

added to the knowledge base. This is represented in the FTA by the
use of an OR logical gate, From this point, MAS backward chains

from the facts that have just been added to the database. Since there

is no rule conclusion which matches the fact THE STATUS OF WIRE C

IS FAILED, the end of this line of reasoning has been reached.

However, there are two rules which have the conclusion, THE STATUS

OF MOTOR IS NO-SIGNAL. They are"

IF THE STATUS OF WlRE.B IS FAILED

"/'HEN THE STATUS OF MOTOR IS NO-SIGNAL

IF THE STATUS OF WIRE.B IS NO-SIGNAL

THEN THE STATUS OF MOTOR IS NO-SIGNAL.

Hence, the system continues backward chaining. This process

continues until all lines of reasoning are exhausted. Therefore, the

Fault Tree Analysis is created in much the same way as the Failure
Mode and Effects Analysis.

-Model Authoring System Overview-

THE STATUS OF
MOTOR kS

FAILED
I

THE STATUS OF
WIRE.C IS

FAILED

THE STATUS OF
WIRE.B IS

FAILED

Figure 3-7" FTA

THE STATL_ OF
MOTOR IS

NO-SIGNAL

THE STATUS OF
WlRE.B IS
N(_SIGNAL

THE STATUS OF THE STATUS OF
SWITCH IS SWITCH IS

FAILED NO-SIGNAL

I THE STATUS OF
i WIRE_, IS

| NO-SIGNAL

THE STATUS OF
WlRE.A IS

FAILED

produced for the

!

THE STATUS OF
BATTERY IS

FAILED

I

I THE STATUS OF
i WIRE.3 IS

FAILED

simple circuit

• : • • _ , I i •...... _ •.... i, _ __<_!_ '_iiiil :_:< :i i i_i i_<iii< !_iil_iii<<i!i:_>i_iii!i:iiiiii!ii!iiiiiiiiiiiiiiii!_ii!iiiiiiiiiii!iii!

-Model Authoring System Overview-

3.4. Conclusion

Throughout this chapter, a simple circuit has been used to illustrate

the modeling and fail safe analysis concepts behind MAS. In fact, it

almost seems to be a waste of time to use MAS on this type of

example, since it would certainly be easier to perform the fail safe

analysis by hand. However, when circuit designs become

complicated, the value of using the MAS system becomes much more

clear. Once the model has been defined with schematic capture and

behavior definition, then the fail safe analyses can be performed on

any component and failure mode in the system. Thus, the fail safe

analysis can be performed much more quickly and consistently,

allowing the safety engineer to locate faults within the design. This

goal, above all others is the driving reason behind this prototype.

Chapter 4:

Library Objects and Their Role in MAS

Now that the basic operation of the system has been laid out, it is

time to point out one important feature that has been ignored up to

this point. As the system has just been described, rules have to be

defined for every system component. However, writing detailed

rules for every component is usually not necessary. Certain common

objects can be given default behaviors which will greatly simplify

the modeling process. For example, the behavior of a wire usually

does not change, even when it is connected to non-standard

components. Therefore, when defining one of the commonly used

components, or library objects, the user only has to supply the

component type and connections, and the behavior rules will be

automatically written. Non-standard objects, called generic objects,

can be defined, but their behavior rules must be specifically written.

As the library objects are defined now, there are a number of

assumptions made about their behavior. These assumptions have

been made in order to both simplify the modeling process and tailor

it towards fail safe analysis. Currently, MAS supports five library

objects; wires, batteries, terminal strips relays and grounds. These

objects have been chosen to satisfy the requirements of typical real

world circuit, which is described in Chapter 5. The rest of this

chapter is dedicated to describing the modeled behavior of the five

library objects that exist in MAS.

-Library Objects and Their Role in MAS-

4.1. Directionality

Perhaps the most important behavior idea that has been introduced

by defining the library functions is one of directionality. In order to

model the behavior of the library objects, the concept of input and

output connections has been introduced. By defining each object's

connection as either an input or output, the model captures a sense

of electrical directionality.

Directionality is particularly useful in fail safe analysis, because for

any component failure, the failure will affect the outputs of the

object, rather than the inputs. While this is not obviously true all of

the time, this idea does make a good simplifying assumption. For

example, if a relay fails open, the failure does not affect the input

wires but does have an effect on the output wires. In this case,

directionality accurately models real world behavior. However, if the

relay were to short, it could have some effect not only on the input

wires, but also on other aspects of the system. In MAS, the types of

failures that affect both the input and output connections of the

component were ignored, and a very simple set of failure modes that

affect only the outputs of an object were utilized.

'_'iiiii

....!iii_

....

......_iiiii_i

4_,2. Failure MoOes

As described before, each object has a number of different failure

modes. Failure modes exist as a way of categorizing the ways in

which a particular circuit component can fail, and the type of failure

mode suffered by an objects has direct bearing on other objects. As

a result, many types of failure modes were utilized throughout the

definition of both library and generic objects. However, the failure

modes that were chosen are a small subset of the number of possible

modes. For example, genetic objects have only two failure modes, ok

and no-signal. Library objects have only a few more. Obviously,

realistic modeling with such a limited number of failure modes is not

possible, and the failure modes chosen have quite a broad definition.

Nevertheless, the modes chosen for the modeling serve the proof-of-

concept nature of this thesis.

-Library Objects and Their Role in MAS-

4.3. The Library Obiects

The following section describes in detail each of the library objects in

MAS. In general, it is .assumed that each .object has been. defined

with both input and output connections. The failure of a library

object then affects these connections in some way. The behaviors are
defined, as always, with IF-THEN rules.

4.3.1. Battery

The battery's output connections have been defined as the wires

connected to the positive terminal. If the battery were to fail, then

these wires would be affected, since there would be no voltage, or

signal on the wires. On the other hand, the input connections have

been defined as the ground wires. Following the same line of

reasoning, if the wires that are connected to the negative terminal

fail, then the battery would fail. Thus, since ground connection

failure affects the battery while a battery failure does not affect the

ground wires' behavior, the ground wires become the inputs to the

battery. In short, the default behavior of the battery has been
defined as follows.

IF THE STATUS OF negative-wire-1 IS NO-GROU_

THE STATUS OF negative-wire-n IS NO-GROUND

THE STATUS OF battery IS FAILED

IF THE STATUS OF battery IS FA_ED

THEN THE STATUS OF positive-wire-1 IS NO-SIGNAL

ooe

THE STATUS OF positive-wire-n IS NO-SIGNAL

EMERGENCY

HYDRAULIC #I

Output
Output
Output

Input
Input
Input

Figure 4-1" Circuit Schematic of a Battery

....... < _ : _.......... _ Ȩ¸¸ _: _ _ : <:_: ::_:i:: i+i: :ill:: _<<i:ii_:< i_ii:<:ii!L:ii!;i_i!!iiiiiiiiiii_iiiii!<iiii_i_iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

-Library Objects and Their Role in MAS-

4,3.2_ Terminal Strip

For a terminal strip, certain assumptions are made to simplify the

model. It is assumed for a terminal s_ip that the inputs .and outputs

of the component are dependent on whether the terminal strip is

either the input or the output device for the object connected to each

wire. Thus, the terminal strip essentially translates faults from input

wires to output wires. If the terminal strip itself is failed, the

assumption is made that all the connections are invalid, therefore a

fault is propagated to all output wires.

Thus, the default behavior of the terminal strip is as follows.

For each input wire, the following rules are defined"

IF THE STATUS OF input-wire IS NO-SIGNAL

THE STATUS OF output-wire IS NO-SIGNAL

IF THE STATUS OF input-wire IS NO-GROUND

THEN THE STATUS OF output-wire IS NO-GROUND

Finally, for each output wire, the following rule is written"

IF THE STATUS OF terminal-strip IS FAILED

THEN THE STATUS OF output-wire IS NO-SIGNAL

TS-M274876

Output ---
Input ---
Input ---

Output .---
nput

Output ---

B 1 .---Input
1

'-,, -- 9utput
D t output

H31 Input
Output

K ! Input

Figure 4-2- Circuit Schematic of a Terminal Strip

-Library Objects and Their Role in MAS-

4.3 3. _'ire

The wire is by far the most common type of component encountered

in theschematic. Therefore, the behavior for the wire must be

entirely genetic, and depend in no way on other aspects of the

objects connected to it. To enforce this type of behavior, the failure

modes for the wire have been kept quite simple. Basically, there are

three failure modesdefined for a wire, no-signal no,ground and

failed. The no-signal failure mode is a gener_ way of stating that

there is no current through the wire. In the case of motor, the

failure mode of no-signal on the inputwires would be cause for the

motor not to run. The second:failure mode, no-ground, occurs when

components must be properly grounded in order to run. For

example, if a battery :_is not grounded properly, then the battery

would fail, which would:then cause a no-signal on the output wires.

However, both these behaviors are dependent on the type of object

connected to the wire. Since there is no way of telling to what object

a wire will be connected, the behavior is defined for .only one failure

mode, failed. The default behavior of a wire is defined as

IF THE STATUS OF wire IS FAILED

THEN THE STATUS OF wire IS NO-SIGNAL

IF THE STATUS OF wire IS FAILED

THE STATUS OFwire IS NO-GROL_D

The default behavior assumes that if a wire undergoes a primary

failure, then the wire will be incapable of either a proper grounding

or of carrying a current.

4.3.4. Relay

In MAS, the behavior of a relay is assumed to be much the same as a

terminal strip, in that input wires are matched to output wires.

However, the relay has one major difference, notably that it acts as a

switch. For each relay, there are two failure modes that are defined;

failed-open and failed-closed. In the interest of simplicity, for each

failure mode, the same default behavior is defined, namely that the

no-signal fault will transfer to the output wires of the relay. Note, in

this case the no-signal fault acts like a generic, propagating fault,

rather than an actual lack of voltage on the wire.

-Library Objects and Their Role in MAS-

The behavior for a normal relay must also be described, since faults

are propagated from input wires to output wires in much the same

way as the terminal strip. Finally, it is assumed that relays are

normally closed. More specifically, if the control wire has no-signal
then the relay is assumed to be failed-closed.

Thus, the default behavior can be captured with the following rules.

As described above, the failed-open and failed-closed faults lead to
no-signal faults on the output wires

IF THE STATUS OF relay IS FAILED-OPEN

THEN THE STATUS OF output-wire IS NO-SIGNAL

IF THE STATUS OFrelay IS FAILED-CLOSED

THEN THE STATUS OF output-wire IS NO-SIGNAL

The control wire behavior is defined with the following rule-

IF THE STATUS OF control-wire IS NO-SIGNAL

THEN THE STATUS OF relay IS FAILED-CLOSED

Since faults are assumed to transfer through the relay, the following
rules are also added for each input/output wire pair.

IF THE STATUS OF input-wire IS NO-SIGNAL

THEN THE STATUS OF output-wire IS NO-SIGNAL

IF THE STATUS OF input-wire IS NO-GROUND

THE STATUS OF output-wire IS NO-GROUND

-Library Objects and Their Role in MAS-

Closed Wire

Pairs

Figure 4-3" Circuit Schematic of a Relay

4.3.5. Ground

The ground is a component that has been modeled with a slightly

different behavior than the rest of the library objects, ln_ MAS it is

assumed that ifa ground fails then all of the wires connected to the

ground are affected. For MAS modelling purposes, the ground is

modeled with only one failure mode, failed. If a ground fails, then

the fault no-ground is transferred to all of the connecting wires.

Note, since the specification of input and output wires is dependent

on which connections the failure of the object affects, the ground has

only outputs as its connections.

°

The previous behavior description is captured in the following rule:

IF THE STATUS OF ground IS FAILED

THEN THE STATUS OF output-wire IS NO-GROUND

c_

%

F.,

_3

to
qu

_3

!

oo

o'3
!

Chapter 5:

A Fault Tree Analysis on an Emergency Hydraulic
System

In this chapter a simplified version of the Emergency Hydraulic

System (EHS) for a Navy F-18 fighter is modeled using MAS. This

application of MAS was selected to further explore the capabilities

and limitations of MAS on a simple and real life-critical circuit

design. The example differs from the motor control example

explained earlier in two respects. First, the EHS is made significantly

more complex than the first example by introducing redundancy.

Second, the EHS example makes extensive use of the library objects

discussed in Chapter 4. These factors combine to. make this system

an interesting example.

5.1. The Circuit Schematic

Figure 5-1 shows the schematic of the circuit that is modeled. Since

the circuit is part of the emergency system for an F-I8, the emphasis

is on reliability. For example, the pump contractor is powered by

three .alternate power sources, battery 3, battery 5 and battery 6.

Throughout the example, numerous wires provide a number of

different paths, providing many layers of redundancy.

While the circuit itself is fairly self explanatory, there are a few

features that should be noted. In general, there are three main

power sources which can supply power to the the hydraulic pump,

battery 3, battery 5 and battery 6. The power from these batteries

is controlled by a relay, which in turn is controlled by a switch in the

cockpit. Once this switch is thrown and the pump is activated, a

signal is sent to the instrument bay which activates the appropriate
lights.

0
!

L_

w

"n

-H

rn
L_
t%

t_

n:
"-d

C_

!

-A Fault Tree Analysis onan Emergency Hydraulic System-

FTA 2 details the conditions necessary for the pump relay to have no

signal. Three conditions could cause this failure- the control wire "

could be failed, the control wire could have no signal present, or the

power lines do not have any current. The conditions that could cause

the control wire to have no signal are threefold. If the terminal strip
is failed, then the control wire will have no current. !f the

connection wire pair to the control wire is failed or has no current,

then the control wire will also have no current. Finally, there are a

few reasons why the connection wire will have no current. The no-

signal failure mode will occur if the connection wire is failed, if the

instrumentation component is failed, or the instrumentation

component is not producing- a signal..

One of the reasons the pump relay might have no signal is if all

seven of the power lines have no-signal. The first three FTA's are

similar, and appear in FTA-3, FTA-4 and FTA-5. In order for one of

these three power lines to have no signal, one of three conditions

must b.e met. Namely, if the terminal strip is failed, the connecting
power line has no signal or if the power line itself is failed. The

connecting power line follows the same fault tree pattern, and would

have no signal is the terminal strip is failed, the wire is failed or the

wire connection the battery to the terminal strip has no signal.

Finally, the wire connecting the battery to the terminal strip would

have no signal for one of two reasons, either the wire is failed, or the
battery is failed.

The Fault Tree Analysis for battery 3 failure is shown in FTA-12.

The battery would fail if the ground wire is not properly grounded.

The ground wire would not be properly grounded if either the wire

was failed, or the connecting wire was improperly grounded. That

wire would be improperly grounded if it was failed or its connecting

wire was ungrounded. That wire would be improperly grounded if

the wire was failed, or if the ground was failed.

Returning back to to FTA-2, there are still four reasons that would

lead the pump relay to have no signal. Again, these four FTA's are

similar and appear in FTA-6, FTA-7, FTA-8, and FTA-9. These wires

would fail either if the wire failed or if the battery failed. The FTA's

for battery 5 and battery 6 failure are outlined in FTA-10 and FTA-

11. These batteries would fail if the ground wire was improperly

grounded, which would occur if the wire is failed or if the ground
was failed.

-A Fault Tree Analysis on an Emergency Hydraulic System-

5.3. Conflusion

From this example, it is evident that even a simple circuit can

produce a relatively complicated fault tree. Dealing with this

complexity is the main advantage in using MAS. A safety engineer

might miss a crucial step in the fault tree analysis and unknowingly
invalidate the entire tree.

However, there is one more important conclusion that can be drawn

from this example. MAS is useful only as a tool, and like many tools,

it is only as useful as the skill of the engineer. The results of a safety

analysis must be reviewed with two thoughts in mind. First, the

validity of the analysis is dependent on the modeling process.

Creating a poor circuit model will certainly not yield accurate

analyses. Second, MAS is not a circuit verification tool. The actual

verification must be done by the engineer. MAS only produces

useful information towards the verification process and in no way

does actual verification. Despite these constraints, in the hands of a

safety engineer, MAS can contribute significantly to the verification

process.

• .,,,,_

B
ua

• ,,_,I,

r.,..j

r.,t,.,

ii

_!--, I
u (_3 (..)

t a,.--4 CNI

k,D kid I,,D

,--4 r-4 r--'l

O O O

:nl :3c: :3:

_F ' il-l
+. -.,,

c_ c_ Z Z Z

I I I ,r-+ ,--I ,--4

,----+ C",,,l _ I I I

I I / _ I:_ 13_
u") u") u') r--.- I_" f'_

_D _D kid kid kiD

,,---+ ,-.l ,---+ r-4 11,--4 i-4

0 0 0 0 0 0

"" ! 1 1 I lu++__: [....... :::i:<:<<::::::_ ---,--z:2_1_a .
I

..... , • l I I _- -- TI

"_ "-+ ¢""_I I_l: CNI

I I I _ ,,---I r--4 ,

_, , _,u'_ c- r--
r_

0 0 0 0 0 0

+-+ ,--+ ,-I

If i+iii+-

kID kID kID

[-+ [-'+ E-_

+-4 t-4 r-I

0 0 0

e_

E

OC)

|

(Y3

',<I"
I

-A Fault Tree Analysis on an Emergency Hydraulic System-

i _F. sTxrvs o
i PMP- 1 IS

[FAII _r_

qMwE STRATUS OF

101T74-2-2N

mNO-CROUND

THE STATUS OF

FTA-0

v

THE STATUS OF

PMP-RLY IS

F_

W 101T36-2.2A I

IS NO-SIGNAL]
I

ETA- THE STATUS OF
W101T36-2-2A

IS FAK.I_

THE STATUS OF]

WI01T36-1-2A |

IS baD-SIGNAL |

THE STA_ATU S OF

FTA-I

............. • • '........ _ -_: ,:: '_ _ :-_< :: _: <<_Ȩ_ _::_ <,. : i i_. :<_:i:.:ii_</: _.<i< :_:<i:_i_i_iii_!:ii_iiiii ii%i:i:i!iii_ili_iiii:iiiiiiiii_ii!iiiiiiiiiiiiiiiiiiii!¸iiiiiiiiiiiiiii!iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii!iiiii!i!iiiiil

-A Fault Tree Analysis on an Emergency Hydraulic System-

i ,_q-IE S-q'ATUS OF
PMP-RLY- 1 IS

NO-SIGNAL

_TUS OF

W101T25F-20 IS [] ' W101T25F-20 IS

FAn,:- . l_

FTA-3

A STATUS OF] / THE STATUS OF A STATUS OF

W101T25F-20 IS] [W101T25F-F20A TS-PTO6 ISFAII-EI') ISNO-SIGNAL FAIl F.D

FTA-9 FTA-8

THE STATUS OF] [

W 101T25-F20A

IS FAILED

A

THE STATUS OF THE STATUS OF

INSTRUMENT IS INSTRUMENT IS

NO-SIGNAL FAII _D

FTA-2

-A Fault ,;cec A n_,_i_sis on an Emergency Hydraulic System-

" II
THE STATUS OF THE STATUS OF] THE STATUS OF

TS-MS27 IS W101T65-1-12,A W101T65-1-12B

F_ IS NO-SIGNAL IS FAILED

THE STATUSOF FTA- 12
W101T65-1-12A

IS FAILED

FTA-3

-A Fault Tree.Analysis on an Emergency Hydraulic System-

THE STATUS OF 1

W101T65-2-12C

IS NO-SIGNAL

TS-MS28 IS i

FAnm'_]

THE STATUS OF]

TS-MS27 IS

FArl ._r')

.....A.STATUS OF
Wi01T65-2-12B

IS NO_IGNAL

!

THE STATUS OF

W101T65-2-12A

IS NO-SIGNAL

THE STATUS OF

W101T65-2-12A

IS FAILED

S OF :

WI01T65,2-12C

IS FA_ _D

THE STATUS OF

WI01T65-2-12B

IS FAILED

FI"A- 12

.... FTA-4

.......... • _ • :_ _. : < i_: ¸ :/: ._ :::::_.:<i:>: ..: %i<::¸<!¸<:_iiiii:_/_i_4_ii<i_!._iii_i_i_i<_i_i_i_[iiiiiii_ii_i_iii:i_i!i_iii_i_i!i_i_iii_ii_

-A Fault Tree Analysis on an Emergency Hydraulic System-

.... , , , , ,, ,,

"rile s-i-a_sOF]
W101T65-3-12C

IS NO-SIGNAL

"THE STATUS OF] A STATUS OF I _ STATUS OF I
TS-MS28 IS ! W101T65-3.12B ! W101T65.3.12C

..... FAIl m ! ISNO-SIGNAL i IS FAIl ED

1

¢)

11 --1l
THE STATUS OF THE STATUS OF THE STATUS OF

TS-MS27 IS W101T65-3-12A W101T65-3-12B

FAIl .ED IS NO-SIGNAL IS FAILED

THE STATUSOF FTA- 12]
W101T65-3-12A l

IS FAILED

FTA-5

THE STATUS OF

W101T65--4-10A

IS NO-SIGNAL

THE STATUS OF FTA- 10
W101T65-4-10A

IS FAILED

FTA-6

-A Fault Tree Analysis on an Emergency Hydraulic System-

THE STATUS OF

W101T65-5-10A

IS NO-SIGNAL

THE STATUSOF 1 FTA- 10
W101T65-5-10A

IS FAILED

: F T A - 7

THE STATUS OF]

!W101T65-6-10A

IS NO-SIGNAL

THE STATUS OF FTA- 11
W101T65-6-10A

IS FAILED

FTA-8

THE STATUS OF
i. W101T65-7-10A

IS NO-SIGNAL

THE STATUS OF] FTA- 11
W101T65-7-10A 1

IS FAILED

FTA-9

-A Fault Tree Analysis on an Emergency Hydraulic System-

THEs'T/'rvs OF
BATTERY-5 IS

FAIl FI)

!
THE STATUS OF

W101T66-4N IS

FAIl/:/_

THE STATUS OF THE STATUS OF

GROUND-2 IS W101T66--4N IS

FAILED FArl

FTA-10

THE STATUS OF

BATI'ERY-6 IS

FAIl _FJ3

I
THE STATUS OF

W101T64-4N IS

FAn FJ3

THE STATUS OF

GROUND-4 IS

FAn ._')

THE STATUS OF

W101T64-4N IS

FAIl FI')

FTA 11

_A Fault Tree Analysis on an Emergency Hydraulic System-

THE STATUS OF

BATI'ERY-3 IS

FAIl .FD

1
THE STATUS OF

W101T67-12N IS

NO-GROUND

THE STATUS OF

W101T67-12N IS

FMI._D THE STATUS OF

W101T67B-12N

IS NO-GROUND

THE STATUS OF THE STATUS OF

W101T67B-12N W101T67C-12N

IS FAILED IS NO.GROUND

I

i THE STATUS OF THE STATUS OF

W101T67C. 12N GROUND- 1 IS

IS FAILED FAll b"D

FTA-12

Chapter 6:

Results and Conclusions

Now that MAS has been detailed and a simple example has been

worked, it is time to evaluate the effectiveness of the system. This

chapter has been divided into three parts. First, initial system
requirements are reviewed in light of final results. Second, other

disadvantages and possible improvements are discussed. MAS is still

a prototype, and many more features need to be implemented before

a reasonable application can be written. In the final section, the
inherent strengths of MAS will be reviewed. MAS has served as a

proof-of-concept, and it is important to evaluate the things the
system inherently does well. Finally, the last section concludes with

a look to the future in automating reliability engineering.

6.1, The Basic System Reouirements. Revisited

The best place to start with an overall system critique is a discussion

of the initial requirements, and the success experienced in matching

these requirements. Throughout this section, many possible
improvements are outlined.

6.1.1. Ease of Use

• MAS must be easy enough to use so that it can be utilized on many
design iterations with many types of designs.

The first requirement was that MAS must be easy enough to use so

that many design iterations and design types could be analyzed. This

requirement was satisfied to a degree, but not quite as completely as

,Results and Conclusions-

possible. First, MAS can onlybe used on one type of design, circuit

schematics. While the techniqueis certainly generalizable to any

type of design, it has only been implemented with :circuits Since the

behavior of most physical components can be modeled by writing the

appropriate rules many different physical systems could be

modeled. Thus, one future expansion might _ to expand MAS to

other system types,such as hydraulic systems.

The second part of the first requirement was ease of use. When

evaluating MAS, it is safe to say thesystem has satisfied that goal.

The user interface, is not perfect, but does rely onanintuitive mouse

and menu graphical technique'which communicatesideas readily to

the user. Certain details and implementations

but the overall user interface concept is qu_te strong.

6.1.2. Automation

• MAS must automate the laborious accounting involved tn tracing

the causes and effects of component failures, while allowing the

safety engineer to effectively employ his own knowledge and

experience.

The second goal required MAS to automate the laborious accounting

involved in tracing the causes and effects of component failures.

This requirement has certainly been met by MAS The rule based

paradigm effectively accounts for the causes and effects of

component failure by keeping track of every component in the

system. Thus MAS effectively relieves this bookkeeping

requirement, while allowing the engineer to concentrate on higher
level tasks. '

MAS also allows an engineer to employ his own knowledge and

experience, thus satisfying the rest of the second goal. However, this

feature can be regarded both as:anadvantage and as a disadvantage.

MAS allows the engineer to tailor the model by using the abstraction

features to obtain the proper level of complexity, which can be

potentially very useful. However, MAS allows almost too much

freedom in the modeling process. It is currently very easy to define

a model in a way that will lead to erroneous or incomplete results.

More constraints need to be implemented in the modeling procedure

so that the engineer needs to know very little about the expert

system mechanics that make MAS work. An interesting problem

H

-Results and Conclusions-

would be to explore just how transparent the underlying expert

system could become, while still generating useful analyses.

6.1.3. Bottom Up Approach

• Because the FTA and FMEA techniques are used on existing designs

to analyze modifications and improvements, MAS should utilize a

bottom-up approach to knowledge capture

The third requirement for MAS was that the system provide for a

bottom-up approach. This requirement was explicitly built into the

system design, so that the requirement is satisfied by the very

nature of the tool. MAS is a tool for reliability analysis on existing

systems, it is assumed that these systems are already designed. If

MAS used a top down approach to design reliability, the system

would become more of a design tool, rather than a verification tool.

Thus, this last requirement exists as a defining part of the system.

6.1.4. Output

• MAS must output the type of graphical representations and

worksheets familiar to safety engineers.

The fourth requirement is that MAS should output the type of

graphical representations and worksheets familiar to safety

engineers. The figures throughout this document show the graphical

output of the system, and it is obvious that there is room for

improvement. For Fault Tree Analysis, the system outputs only

three symbols, the and-gate, or-gate and box. In a true FTA there

are many types of objects that are used to designate primary

failures, secondary failures, outside conditions etc. A logical

extension to MAS should be the exploration of using the full range of

FTA symbols to convey the maximum possible information.

For the Failure Mode and effects Analysis, the graphical output

differs from the traditional worksheet style. While all the

information is present, it is presented in a graphical tree-like form.

In order to make the FMEA similar to familiar styles, the tree would

have to parsed into a worksheet form, as described in the Chapter 2.

While this improvement would merely be cosmetic and no change

-Results and Conclusions-

the overall system design, it would have a great deal to do with the

usability of the system.

6.1.5. Documentation

• Because the information entered and created in an analysis is often

very useful as reference data, MAS must organize and retain this

information for documentation purposes.

The last requirement MAS must fulfill involves storing information.

The information entered _d created in an analysis c_ be a very

valuable reference tool. As it exists, MAS saves the hier_chical and

behavioral definition of the models: While the information is

designed to provide reliability analysis, the structure of the

information could be a very valuable documentation tool. The end

result of the bottom up design is a top down hierarchy of system

components. This hierarchy, once created, could be used as a

supplement for, or with certain extensions, a replacement for existing

documentation. MAS could be expanded to provide documentation

"hooks" into the abstraction modules, which would provide a very

valuable reference tool. Thus, MAS would not only _ a tool for

reliability analysis, but also a documentation tool. MAS currently

provides the graphical and _ informational hierarchy, but expanding
the system into a documentation tool would require additional

development.

6.2. Other Disadvantages and Possible Imvrovements

In almost any scientific or technical endeavor, attempting to solve

one problem leads to the discovery of two more. _erefore, this

section will be larger than anticipated, only because there is somuch
work that could be done.

6.2.1. Scaling

In addition to the ways in which MAS fulfills the basic requirements,

there are some more issues that must be discussed. First, there is a

question about how well the system will scale up to real world

models. Experience with expert systems seems to be that large

groups of unclassified rules make the rule system unstable. The

-Results and Conclusions-

problem lies in the fact that there is no inherent way to order the

assertions that rules add. Therefore, a rule that has added a fact

may invalidate another fact. When there are large groups of rules,

the inter-relations between the rules become very complicated. The

result could lead to an unstable system that may provide erroneous

output.

Thus, how does MAS scale? The question is left unanswered due to

time and resource constraints. However, some guesses might be

proposed. First, the scaling problem with large groups of rules seems

only to be a problem when rules have cause interactions between a

large group of objects. In MAS, behavior rules are ve_ well defined,

and affect only a small group of connected objects. Therefore, the

interconnection problem and invalidation problem is reduced:. This

local rule behavior could avoid the large rule number scaling
problem.

6.2.2. Accuracy

The second issue is one of accuracy. Notably, the system is forced to

make numerous approximations and simplifications in order to

model the design. The question then becomes, are these assumptions

enough to invalidate the model? With MAS.as it exists.now, the

design is simplified enough to make the analysis :barely accurate.

Thus, the question is actually, is the accuracy problem an inherent

part of the system design, or can it be improved? By examining the

system, it seems there is nothing inherently wrong with the design.

Improving the accuracy of the model can be achieved simply by

modeling the behavior of the system more realistically. For example,

the failure modes for objects are currently very simplistic. One

extension that would improve the accuracy of the .model would be to

expand upon the number of failure modes for objects. More failure

modes would model the system more realistically, and thus make the

results much more meaningful.

However, the level of detail in the modeling process is only one

aspect of the accuracy problem. As mentioned before, real world

FTA's require much more information than simply or and and gates.

However, improving the detail of the modeling will also help improve

the detail of these FTA's. By defining the behavior for a wide variety

of faults, the FTA's will reflect the increase in information. Thus, the

accuracy problem seems to be only in the implementation of the

..................................._ _::....... << :i <i: :i:̧ _::_:<H _:_ <!i ii¢_: i_::i:ii i: ii_:_i!_i:_!i_ii_:_ii!ili::<i_ii_i_iiii_iii_iiii_!i_<iii_i<<_iii_iii!iiiiiiiiiii_i_ii_!iiiiiiiii_iiiiiiiiiiii_ii_iiii_i_iiiiii_iiiiiiiiii_iiii!i_

-Results and Conclusions-

modeling, not the system design. In order for MAS to be transferred

into a working application, the modeling process must be greatly _

expanded. However, as explained here, the problem seems to have a

workablesolution. But exactly how the modeling process and

consequentanalysis is to be expanded is.one of the major open

problems, in MAS..More work is required to discover if MAS_ can

gracefully transfer into a second stage and handle the increased

complexity of a detailed failure mode implementation.

6.2.3. Failure Likelihood

Whenever reliability of designs is discussed, the issue of probability

always arises Calculating the failure likelihood of components is an

integral, part of reliability analysis, and no reliability tool would be

complete without, this capability. Unfortunately, MAS is not complete
and the capability does not exist. However, the issue of failure

likelihood calculations has been part of the basic design and its

addition to the system would be a logical extension. By assigning

each object with a failure likelihood, the system should be able to

calculate the critical path from either a Fault Tree Analysis or a

Failure Mode and Effects Analysis. Failure likelihood was just one of

the many features that should be implemented, but. for which time
and resources do not allow.

6.2.4. Spatial Interactions

There is one more feature that should be placed on the wish list of

improvements. MAS as it exists now.only deals _with the effects of

objects physically..connected to one another. However many system

faults have nothing to do with objects that are connected to each

other, but with objects that are located physically next to each other.

For example, a.capacitor might explode, affecting not just its

connection objects but objects that are located near the capacitor. If

many redundant paths are in close physical proximity, a particular

fault may affect them all, and have disastrous effects on the system.

If this type of connectivity could also be included in the reliability of

the system, the overall accuracy of the analysis would be greatly

improved.. Note, this capability could be implemented by expanding

the behavior of the rules, so that a failure mode might be able to

affect not just connection objects, but other objects as well. The

resulting system would be considerably more _complicated, but .also

-Results and Conclusions-

extremely more illuminating. Just how this could be implemented

would be an interesting and fruitful area of research.

Thus, this concludes an outline of the major improvements and

disadvantages of MAS. While this is certainly not an exhaustive list,

it does serve as a good guide to the major areas of improvement and

interest that the MAS implementation has encountered.

6.3, The Inherent Streneths of MAS

It is useful to summarize the results of MAS. First, the system really
does save the reliability engineer an enormous amount of time.

Although the initial modeling costs are quite high, a major advantage

of the system is the fact that this initial definition only has to be

performed once. Once the system is modeled, Fault Tree Analyses

and Failure Mode and Effects Analyses can be generated literally at

the click of a button. Thus, an entire system can be analyzed at a

level that was never before possible. It should also be noted that the

initial modeling costs can be greatly reduced by the use of library

objects. This feature can save an engineer a great deal of otherwise
redundant work.

Another strength of MAS lies in the graphical interface. When

thinking about abstract ideas such as design, it is useful to present

these ideas in the form of pictures. MAS allows the engineer to

operate in these graphical terms, which results in increasing the

effectiveness of the program. In fact, MAS is so completely

graphically interfaced that it is hard to think about defining a system

in non-graphical terms. The interface is as much an important part

of the system as the rule-based paradigm, and the overall viability of

the system improves as a result.

One of the interesting features of MAS is the use of local behavior to

get results on a global scale. Objects are only defined in a purely
local sense, that is, how their failure will affect their immediate

connections. It is exactly this local behavior definition that supports

the use of library objects, which are very important features of MAS.

Finally, it is important to think about the next phase of MAS, and

about the role of automating reliability engineering in the future. In

the second phase of MAS, the system should exist in two levels.

First, the system should operate at a level completely transparent to

.................................... •... •......................• i:_:_+::!,_<: _:_........... :_' _ <_<, ii_ <<:<:_i :;_:_<:_+i: <_i_:i_%:i:i_i_iiii_:ii_ii_i_ii_:_<_iiiiiiii_i_ii_iiii_i<iiiii_:_iiii_i_ii_i!iii_i_i<_i!iii_iiiii!i!ii!_iiiiiiii!iii_i_iiiiiii!_iiii_i_iiii_iiiiiiiii_iiii_iii_iiiiiiii_ii!iiiiiiiiii_ii!iii¸¸

-Results and Conclusions-

the design engineer. MAS could operate directly from a Computer

Aided Design (CAD) system which contains the system design. Each
of the CAD objects and their connection information could be

automatically transformed into the MAS system. MAS would then

model each of the objects from an extensive list of library objects.

Thus, the MAS would be able to .essentially .model .itself, with the goal

of requiring no human intervention. Thus, once the model is built by

MAS, the engineer could request at any point in the design either a

Fault Tree Analysis or a Failure Mode and Effects Analysis. In the

second level, once the base system is modified, the engineer should

be able to organize groups of objects into abstract design blocks.

MAS should, be intelligent enough to distill the behavlor of the group

objects from the underlying behavior, and leave just the system

breakdown to the engineer. Thus, the designer could produce much

more lucid high level analysis, and get a much more comprehensive

view of the reliability of the system. This information would then, in

turn, affect the system design, which MAS would then model again.

This recursive design process would produce final designs that are

tailored exactly to the application's reliability needs.

This scenario might seem an impossible dream, but the beginning

foundation has been laid in this work. While there is still much more

work to be done, MAS has proven the viability ofthebasic solution.

However, the step from prototype to application is always a rather

large one, and it will be interesting to see the state of the_art in the
next decade.

REFERENCES

Davis Randall, and Hamscher, Walter Model.l_ased Reasoninz-

Troubleshooting.. Exploring .Artificial Intelligence, Morgan

Kaufmann Publishers, Inc., San Mateo, CA, 1988

Gevarter, William B., The N_ture and Evaluation of Expert System

Building Tools, pg 24-41 Computer, May 1987

Hamscher, Walter C. Model Based Trouble Shooting of Digital Systems.

Technical Report 1074, MIT Artificial Intelligence-Laboratory,
August, 1988

Lewis, E. E., Introduction to Reliability Engineering, John Wiley and
Sons, New York, 1987.

Allen, James G., A Knowledge-Based System Design/Information Tool

for Flight Control Systems AIAA Computers in Aerospace VII,
Paper #89-2978, October, 1989

NASA Safety Handbook, NHB 1700.1(V7), April 10, 1985

Williams, Brian C., Qualitative Analysis of MOS Circuit_, Technical

Report 767, MIT Artificial Intelligence Laboratory, July 1984

....... • :: ,_ _ _ :<#: ;_,:_: • :-:::_:: !_:i̧ ;_:.... _: _i_::_:.:_::_.ii_i̧,i;_::i_iii:i_:::ili/iii_:;;iiiiiiiiiiii_i:i:_ii?i_iiiiiiiiiiiiiiiiii_iiiiiiiiiiiiii!iiiiiiiiiiiiii

National Aeronautics and

Space Adm iDistratJon

1. Report No.

NASA CR-4317

Report Documentation Page

4. Title and Subtitle

Model Authoring System for Fail Safe Analysis

7. Author(s)

Scott E. Sikora

(Charles Stark Draper Laboratory, Inc.)

9. Performing Organization Name and Address

Charles Stark Draper Laboratory, Inc.

555 Technology Square

Cambridge, MA 02139

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, DC 20546-3191

15. Supplementary Notes

3. Recipient's Catalog No.

5. Report Date

August 1990

6. Performing Organization Code

8. Performing Organization Report No.

H- 1620

10. Work Unit No.

RTOP 505-68-27

11. Contract or Grant No.

NAS2-12451

13. Type of Report and PeriodCovered

Contractor Report

14. Sponsoring Agency Code

NASA Technical Monitor: Dale A. Mackall, NASA Ames Research Center, Dryden Flight Research
Facility, Edwards, CA 93523-0273.

16. Abstract

..............i::::,The Model Authoring System is a prototype software application for generating Fault Tree Analyses

and Failure Mode ancl Effects Analyses for circuit designs. Utilizing established artificial intelligence and

expert system techniques, the circuits are modeled as a frame-based knowledge base in an expert system
shell, which allows the use of object oriented programming and an inference engine. The behavior of the

circuit is then captured through IF-THEN rules, which then are searched to generate either a graphicalFault....

:_TreeAnalysis or:Failure Modes andEffects Analysis. Sophisticated authoring techniques allow the circuit

to be easily modeled, permit its behavior to be quickly defined, and provide abstraction features to deal
with complexity

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Artificial intelligence Unclassified-Unlimited

Flight control

Knowledge base

Structured analysis Subject category 66

19. Security Classif. (of this report) 20. Security Classif. (of this page)] 21. No. of Pages 2r_ Price

Unclassified Unclassified / 66 ___ A04
NASA FORM 1626 _tional Technical Information Serwce, Springfield, Virginia 22161-2171

NASA-Langley, 1990

