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Abstract

This paper introduces a layered-abduction model of perception which unifies bottom-up and top-down

processing in a single logical and information-processing framework. The process of interpreting the in-

put from each sense is broken down into discrete layers of interpretation, where at each layer a "best

explanation" hypothesis is formed of the data presented by the layer or layers below, with the help of

information available lateraUy and from above. The formation of this hypothesis is treated as a problem

of abductive inference, similar to diagnosis and theory formation. Thus this model brings a knowledge-

based problem-solving approach to the analysis of perception, treating perception as a kind of "compiled"

cognition.

The bottom-up passing of information from layer to layer defines channels of information flow, which

separate and converge in a specific way for any specific sense modality. Multi-modal perception occurs

where channels converge from more than one sense.

This model has not yet been implemented, though it is based on systems which have been successful

in medical and mechanical diagnosis and medical test interpretation.

Introduction

Computational models of information processing for both vision and spoken language recognition have com-

monly supposed an orderly progression of layers, beginning near the retina or auditory periphery, where

hypotheses are formed about "low-level" features, e.g., edges (in vision) or bursts (in speech perception), and

proceeding by stages to higher-level hypotheses. These higher-level hypotheses typically depend largely on

hypotheses formed at lower levels, but are also subject to influence from above.

Models intended to be comprehensive often suppose 3 or more major layers, often with sublayers, and

sometimes with parallel channels which separate and combine to support higher-layer hypotheses (e.g., shad-

ing discontinuities and color contrasts separately supporting hypotheses about object boundary) [31, 28, 29].
Audition, Phonetics, grammar, and semantics have been proposed as layers of interpretation for speech com-

prehension. Recent work on primate vision appears to show the existence of separate channels for information
about shading, texture, and color, not all supplying information to the same layers of interpretation [29].

In both vision and speech understanding most of the processing of information is presumably bottom-

up, from information produced by the sensory organ, through intermediate representations, to the abstract
cognitive categories that are required for reasoning. Yet top-down processing is significant, as higher-level

information is brought to bear to help with identification and disambiguation. Both vision and speech recog-

nition can thus be thought of as "layered interpretation" tasks whereby the output from one layer becomes data

to be "interpreted" at the next. Layered interpretation models for non-perceptual interpretive process make
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sense too, for example medical diagnosis can be thought of as an inference which proceeds from symptoms,

to pathophysiological states, to diseases, to etiologies. It is reasonable to expect that perceptual processes

have been optimized over evolutionary time, and that the specific layers and hypotheses, especially at lower

levels, have been compiled into special-purpose mechanisms. Perceptual learning provides another source of
compilation and optimization. Nevertheless, these layered interpretation models all seem to share certain
functional similarities.

In particular, it appears that at each layer of interpretation the information processing task is the same:

that of forming a coherent, composite (multi-part) "best explanation" of the data from the previous layer.

That is, the task is one of performing an inference to the best ezplartation, in other words, an abductive
inference.

Moreover, it appears that similar types of hypotheses-hypothesis interactions appear in vision, speech
understanding, and diagnosis. Here are three important ones:

1. Two hypotheses might partially overlap in what they can account for, but otherwise be compatible (e.g.
an edge might be a boundary for two different objects, the/s/sound acoustically in the middle of "six

stones" belongs to both words, the high white blood count is a result of two different infections),

2. Hypotheses might be pair-wise incompatible (e.g. patch X is either part of the figure or part of the
background),

3. Hypotheses might be supportive in an associative way, the presence of one giving some evidence for the

presence of the other. (Associative support presumably represents the net impact of several distinct
types of evidential relationships.)

The functional similarities suggests the posibility of a generic mechanism, and just such a generic mechanism

is proposed here. It is hypothesized that that the processing that occurs in vision, hearing, understanding

spoken language, and in interpreting information from other senses (natural and robotic) can all be usefully

thought of as variations, incomplete realizations, or compilations (domain-specific optimizations) of this one

basic computational mechanism, which we may call the layered abduction model of perception.

There is a long tradition of belief that perception involves some form of inference [27] [17] [2]. Several

researchers have in fact proposed that perception, or at least language understanding, involves some form of
abduction or best-explanation inference [10, p.557] [9] [11] [37] [21, pp.87-94] [14, pp.88,104]. Abduction is

often thought of as being logically similar to theory formation in science [17] [46] [14, p.104] and to diagnostic
reasoning.

Abduction

The logician and philosopher Charles Sanders Peirce introduced the term "abduction" to refer to a kind of

plausible inference, which he took to be logically distinct from both induction and deduction [36]. An abduction
passes from a body of data, to a hypothesis that ezplains or accounts for that data. Thus abduction is a kind

of theory-forming or interpretive inference. In fact Peirce says in one place, "Abductive inference shades into

perceptual judgment without any sharp line of demarcation between them." [37, p.304].

In their popular AI textbook Charniak and McDermott characterize abduction variously as modus ponens

turned backwards, inferring the causal reasons behind something, generation of explanations for what we see

around us, and inference to the best explanation [10]. They write that medical diagnosis, story understanding,
vision, and understanding natural language are all abductive processes, and they speculate as to whether there

might be possible a "'unified theory' of abduction" which will link all of these processes together [10, p.557].

Other AI practitioners have given similar characterization of abduction [26] [38] [391 [40], some have

proposed or built systems using similar ideas without actually using the term "abduction" in describing their
work [3] [33] [12] [35] [41] [34]. Some attempts have been made to cast the natural language understanding

problem explicitly as abduction [11] [9]. Philosophers have written of "inference to the best explanation" [19]
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[13][21]and"the explanatory inference" [30]. Related philosophical traditions are the "hypothetico-deductive"
model of the scientific method, and accounts of "the logic of discovery" [18]. Recently Paul Thagard has given

abduction an important role in his analysis of the logic of scientific theory formation [46].

We may characterize Abduetion as a form of inference that follows a pattern like this:

D is a collection of data (facts, observations, givens),

H explains D (would, if true, explain D),

No other hypothesis explains D as well as H does.

Therefore, H is probably true.

The confidence in the conclusion should (and typically does) depend on these factors:

• how decisively H surpasses the alternatives,

• how good H is by itself, independently of considering the alternatives (e.g. we will be cautious about

accepting a hypothesis, even if it is clearly the best one we have, if it is not sufficiently plausible in

itself),

• how thorough the search was for alternative explanations, and

• pragmatic considerations, including

- the costs of being wrong and the benefits of being right,

- how strong the need is to come to a conclusion at all, especially considering the possibility of seeking

further evidence before deciding.

I hope my reader recognizes this form of inference as being common in ordinary life, and a part of the

"scientific method". What I am proposing here is that it also occurs on many levels in perception.

In general, as Marr pointed out, it is important to distinguish the goal of a computation; from the logic

of the strategy by which that goal can be achieved, from the specific representations and algorithms used
to describe a specific strategy, and from implementations of those representations and algorithms [31, p.25].

Describing a layer of interpretive inference as "abduction" describes the goals of the inference, and suggests

strategies to achieve them, as I hope will become clear in what follows. The discussion here will not directly

address representation, algorithm, or implementation.

The Layered Abduction Model

t

Each layer of interpretation, or more precisely, each locus of hypothesis formation (leaving open the possibility

of more than one per layer) I call an agora after the meeting place where the ancient Greeks would gather

for dialog and debate. The picture is that an agora is a place where hypotheses of a certain type gather

and contend and where under good conditions a consensus hypothesis emerges. In typical cases the emerging
interpretive hypothesis will be a composite hypothesis, coherent in itself, and with different sub-hypotheses

accounting for different portions of the data. For example in vision the edge agora can be thought of as the

location where a set of edge hypotheses are formed and accepted, each specific edge hypothesis accounting for

certain specific data from lower-level agoras.

Our model calls for the information processing at each agora to be decomposed into three functionally

distinct types of activity, which we can call evocation of hypotheses, instantiation of hypotheses, and composition

of hypotheses.

Evocation can occur bottom-up, a hypothesis being stimulated for consideration by the data presented

at the layer below. In diagnosis we would say that the presence of a certain finding suggests that certain
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hypothesesareappropriateto consider.Morethanonehypothesismaybesuggestedby a given datum.

Evocation can also occur top-down, either as the result of priming (an expectation from the level above), or as
a consequence of data-seeking activity from above, which can arise from the need for evaluation. Evocations

can in general be performed in parallel, and need not be synchronized.

Ir_stantiation occurs when each stimulated hypothesis is independently scored for confidence (evaluation),

and a determination is made of what part or aspect of the data the hypothesis can account for (determination

of ezplanatory scope). This process is in general top-down, and in order to instantiate itself a hypothesis may
seek data which was not part of its original stimulus t. The data which are accounted for may or may not be

identical to the data upon which the hypothesis was scored, or the data which did the evoking.

In the course of instantiation the hypothesis set may be expanded by including subtypes and supertypes

of high-confidence hypotheses 2. Instantiation is typically based on matching against prestored patterns of

features, but instantiating "by synthesis" is also possible whereby the features to match are generated at run

time. The result of a wave of hypothesis instantiation is a set of hypotheses, each with some measure of

confidence, and each offering to account for some portion of the data. Usually many of the evoked hypotheses

can be ruled out, and will not form part of the result. Since in a wave of instantiation hypotheses are considered

independently of each other, this too can go on in parallel.

Composition occurs when the instantiated hypotheses interact with each other and (under good conditions)
a coherent best interpretation emerges. Note that, as this stage begins, each hypothesis has both a confidence

value, and a body of data that it can account for. In the end some hypotheses will have been incorporated
into the composite hypotheses, some will have been excluded, and perhaps some will be in limbo as a result

of some remaining ambiguity of interpretation.

Strategy for Composition of Hypotheses

For hypothesis composition an overall abduction problem has been set up: to account for all of the (reliable
and important) data presented by the agora(s) immediately below. A series of small abduction problems is

also set up: to account for each particular datum. A basic strategy is to try to solve the overall abduction

problem by solving a sufficient number of smaller and easier abduction problems. We begin by solving the

easiest small abduction problems, the ones in which we can have the most confidence. If a certain hypothesis is

the only plausible ezplanation for some finding (it accounts for the finding and its local-match confidence value

is not too low), then it is entitled to high confidence, and entitled to be accepted into the overall composite

hypothesis that represents the solution to the overall abductive problem.

Let us call a hypothesis "BELIEVED" when it has been accepted as the correct interpretation for the
data it offers to account for. Data accounted for by BELIEVED hypotheses are "ACCOUNTED-FOR"

and are considered to be successfully interpreted. Let us call a hypothesis "ESSENTIAL" if it is the only

plausible explanation for some reliable datum (which is typically a hypothesis at the next lowest level that

is BELIEVED). Thus an ESSENTIAL hypothesis scores positively and accounts for data items for which
there are no other good interpretatiohs. ESSENTIAL hypotheses are BELIEVED. Information about the

explanatory relationships is thus used to increase the confidence in certain hypotheses.

If not all of the data are yet accounted for, the next step is to propagate the consequences of the initial set of
BELIEVED hypotheses. These consequences arise as the result of causal and statistical relationships between

hypotheses typically stored as compiled knowledge in advance of processing. There are several kinds of these

relationships--I describe them here just briefly. Hypotheses at the same level (in the same agora) can have

relationships of compatibility, entailment, or incompatibility, which can be a matter of degree. Propagating

the consequences of BELIEVED hypotheses by taking account of these relations requires the appropriate

adjustment of scores for related viable hypotheses outside of the BELIEVED set, or other appropriate actions.

For example a hypotheses incompatible with a BELIEVED hypotheses can be rejected categorically, and

removed from further consideration. Another kind of relationship is where a hypotheses "EXPECTS" the

1Under certain data-driven circumstances it isgood enough just to score on the basis of voting by the stimulating data from

below, and then no top-down processing need occur, at least for scoring.

2[n general the space of potential hypotheses can be assumed to be hierarchicallyorganized by levelof specificity.
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presence of data items at the next lower level (this too can come in degrees). Propagating such an expectation

requires evoking the hypothesis corresponding to the expectation (priming) if it has not already been evoked.

If it has, it can be given an extra measure of confidence. If a strong expectation is contradicted by the data,

an anomaly has occurred, and special handling is appropriate. 3

A hypothesis is a "CLEAR-BEST" if it is the distinctly best explanation (by confidence level) of some

data item. CLEAR-BEST hypotheses are BELIEVED too. Note that an ESSENTIAL or CLEAR-BEST

hypothesis is the uniquely best explanation for some data items--it is a local abductive conclusion. If not
all of the data has been accounted for, the consequences of CLEAR-BESTs are propagated similarly to the

ESSENTIAL hypotheses. Note that this propagation can result in more hypotheses becoming CLEAR-BESTs,

e.g., if high-scoring explanatory competitors are removed from consideration, or if propagating consequences

readjusts hypothesis scores so that a clear winner emerges.

If the ESSENTIAL hypotheses together with the CLEAR-BESTs do not account for everything, we have

done all we can do on the current evidence without resorting to guessing. Generally our best strategy under

these circumstances would be to go back for more data. In fact we are in a position to guide the data gathering

by focusing on the problem of discriminating between alternative good explanations for significant data items.
This is a form of top-down processing we may call "focused disambiguation'. Sometimes, however, we have all

of the relevant data we are going to get, for example we may be unable to ask the speaker to repeat. Under these

circumstances we still have the means available to do some clever guessing. We can begin to include hypotheses

which are best explanations for certain findings, but which are not far enough ahead of the alternatives, or not

of high enough local-match confidence, to enable them to be accepted confidently. These WEAKLY-BESTs
constitute the best guesses we can make under the circumstances. Actually some of them can be accepted

with a fairly high degree of confidence. A finding can be made to vote for the hypotheses which best explain it

(with voting strength in proportion to the measure by which the hypothesis beats its nearest competitor). The
idea is that two different findings, both pointing to the same hypotheses as the best explanation constitute

(apparently) independent sources of evidence for the hypothesis, i.e., constitute converging lines of inference
for the hypothesis. Hypotheses with more votes can be accepted more confidently than hypotheses with fewer

votes, and perhaps enough can be confidently accepted to complete the explanation.

Now in general relationships (spatial, grammatical, etc.) between the parts of a hypothesis are significant

and need to be maintained. Some of these relationships can be seen as the filling of related roles in higher-layer

interpretive hypotheses, for example a diagnostic hypothesis of a flow going on between A and B would bind
A-related and B-related data together into relationships. But some other relationships (e.g. spatial in low level

vision) are presumably compiled into the hardware, so that the appropriate constraints are applied between

neighboring hypotheses as an automatic result of the operation of the machinery. Still and all, the net impact
on hypothesis composition of these relationships can probably be captured by basic relationships of mutual

sympathy and antipathy.

At the end of a wave of composition activity certain hypotheses have been accepted as BELIEVED. These

constitute a confident best explanation for a portion of the data. Often there will also remain a set of

unexplained data, and a set of viable hypotheses which, at various levels of confidence, offer to explain that
data, but for which no clear solution is apparent. Nevertheless the BELIEVED hypotheses may be enough

data for the next higher layer to do its business; resolving the remaining ambiguities may be unimportant in

the context. Alternatively, remaining ambiguities may get resolved later as a result of further processing at

that layer stimulated by downward-flowing expectations.

Downward-Flowlng Processing

We may distinguish at least four sources or functions of top-down processin5. One is that the data-seeking
needs of hypothesis evaluation can provoke computation of the data (top-down evocation and evaluation of

a hypothesis) as was discussed above. Another that was mentioned is _hat expectations based on firmly

established hypotheses at one layer can prime certain data items (i.e. evo:_', consideration of them and bias

_Throughout the processing various kinds of anomalies can occur. Anomalies are detected and recorded, and typically stimulate

special handling; from here on I describe the course of processing only for when everything goes smoothly.
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theirscoreupwards).A thirdwayis thathypothesesthatareuninterpretableasdataat thehigherlevel(no
explanationcanbefound)canbe"doubted"andreconsiderationofthemprovoked.Finallydatapairsthatare
jointlyuninterpretable,asforexampletwowords,theco-occurrenceofwhichcannotbereconciledsyntactically
orsemantically,canbeconsideredto beincompatible(tosomedegreeofstrength)andrecomputationofthe
compositehypothesiscanbeprovokedfromabove.In thesewayshigher-levelinterpretationscanexerta
stronginfluenceontheformationofhypothesesat lowerlevels,andlayer-layerharmonyisatwowaystreet.

Recoveringfrom Mistakes

Mistakesin Initial Hypothesization and Scoring

• Hypothesis suggestions come from above as well as below, thus hypotheses which would be missed on

bottom-up processing can still be considered.

If suggestions are inadequate, e.g. no hypotheses are evoked covering a segment of data, or all suggestions

score low, exhaustive search (though hierarchically organized for efficiency) is undertaken to broaden the
hypotheses being considered, thus hypotheses that are missed on suggestion-based stimulation can still
be considered.

Hypothesis evaluation is augmented by encouragement and discouragement (resulting from positive

associations and incompatibilities) from other hypotheses in the same agora. Thus the local-match
confidence score is improved by contextual information.

Hypotheses evaluation is augmented by encouragement and discouragement based on expectations de-

rived from confident higher-level hypotheses. This constitutes another kind of context-based improve-
ment and check on the the confidence score.

The acceptance of a hypothesis is based on how well it surpasses explanatory alternatives, thus after

recognition-based scoring, a significant additional uncertainty-reducing operation is performed before
acceptance.

• Strength of confidence is supported by "the consilience of inductions" whereby converging lines of infer-
ence all support the same hypotheses. Thus system performance should be robust.

• Acceptance, when it finally occurs, is still tentative and liable to be overthrown by relationships to the
mass of other confident hypotheses.

Mistakes in Choice of Initial Islands of Confidence

• Actually the islands are very strong. They are never based only on a hypothesis having high initial

confidence; it is at least required to also be a distinctly best explanation for some datum.

• Inconsistencies lead to detected anomalies, which lead to special strategies that weigh alternative courses

of action. Originally accepted hypotheses can collide with others and subsequently called into question.

Inconsistency collisions can occur laterally, or from above (violation of expectation, or from below (vi-

olation of expectation), and can come in degrees of strength. In effect there is broad cross checking of
accepted hypotheses.

An inexplicable datum should be doubted and called into question--it may not really be there. If

after re-evaluation the datum remains strong despite the doubt, then the system can detect that it has

encountered the limits of its knowledge, and is positioned to learn a new hypothesis category.

Sometimes two parts of a compound hypothesis are inconsistent in context, where the judgment of higher
levels is that they cannot both occur, based upon the inability to form a consistent hypothesis at the

next highest level. (It seems that this can account for unstable perceptual objects like the Necker cube.)
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Summary of the Control Strategy

We may summarize the control strategy by saying that it employs multi-level and multiple intra-level island-

driven processing. Islands of relative certainty are seeded by local abductions and propagate laterally (incom-

patibilities, positive associations), downwards (expectations), and upwards (firm items of data to be accounted

for). Processing occurs concurrently and in a distributed fashion. Higher levels provide soft constraints through
the impact of expectations on hypothesis evocation and scoring, but do not strictly limit the hypothesis space.

Extension of the Model to Multi-Modal Perception

The basic idea in extending the model to multi-modal perception, i.e. perception that combines the information

from more than a single sense, is that combining information from different senses is functionally no different

than combining information from different channels within one sense modality. Different channels within the

visual system deliver up the data useful at a certain level to form hypotheses about the locations of 3-d objects

within the visual space; similarly, different senses deliver up the data useful for forming hypotheses about, say,

object identity.

One special processing problem for multi-sense integration is the problem of identifying a "That" delivered

up by one sense, with a "That" delivered up by another. Which person is the one that is speaking? Is it
the same object being seen in the infrared as that being seen in x-rays? Logically, it should be possible for

information derived from one sense to help with resolving distinct objects within the other sense. There is

actually some evidence that vision can help hearing to separate distinct streams of tones [32, p.83] and hear

the tone stream as two distinct auditory objects.

One useful computational support for cross modal perception is provided by correlated spatial representa-

tions, as our visual maps are correlated with our auditory maps of the space surrounding us. Thus, for example,

a robot should bring together separate channels of information from its senses of "sight" and "touch" into

a unified spatial representation of its immediate surroundings. Moreover this "hot map" of its surroundings
should be maintained continually, and updated and revised as new information arrives and is interpreted. This

hot map, with its symbols on it, can be viewed as the resulting composite hypothesis formed at "the agora of

objects in the immediate surroundings" by a process of abductive interpretation.

Yet some senses are not particularly spatial (e.g. smell). We can envision computational support for

cross-modal perception in the form of pattern-based recognition knowledge, where the compiled recognition

patterns for an object category rely on features from more than one sense. This is very analogous to medical

diagnosis where a disease is recognized from evidence from such disparate sources as lab tests, x-rays, and

patient history. Such recognition knowledge can be used to support an "agora of the patient's disease" in much
the same manner as the robot mentioned above maintaines its map of objects in its surroundings. Somewhat

further along we can envision a robot that maintains an "agora of understanding" whereby it monitors some

complex device and continually maintains a causal understanding of it . Much much further along we can

imagine building a robot scientist wh_, maintains an "agora of theoretical understanding" whereby its best

understanding of the world is maintained.

Summary: Perception as Compiled Cognition

The formation ofa composite best-explanationhypothesisat any levelin perceptionistreatedas a problem

of abductive inference,similarto diagnosisand theory formation.Thus thismodel bringsa knowledge-based

problem-solvingapproach to the analysisofperception,treatingperceptionas a kind of "compiled" cognition.
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