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Abstract

This paper presents a unified approach to solv-

ing free-floating space robot manipulator end-

point control problems using a control formulation

based on an extension of computed torque. Once

the desired endpoint accelerations have been spec-

ified, the kinematic equations are used with mo-

mentum conservation equations to solve for the

joint accelerations in any of the robot's possi-

ble configurations: fixed base or free-flying with

open/closed chain grasp. The joint accelerations
can then be used to calculate the arm control

torques and internal forces using a recursive or-

der n algorithm. Initial experimental verifica-

tion of these techniques has been performed us-

ing our laboratory model of a two-armed space

robot. This fully autonomous spacecraft system

experiences the drag-free, zero-g characteristics of

space in two dimensions through the use of an air

cushion support system. Results of these initial

experiments are included which validate the cor-

rectness of the proposed methodology. The final

section addresses the further problem of control

in the large where not only the manipulator tip

positions but the entire system consisting of base

and arms must be controlled. The availablity of

a physical testbed has brought many benefits to

this work--particularly a keener insight into the

subtleties of the problem at hand.

1 Introduction

To achieve fast, precise control of a physical system,

accurate dynamical modelling is required. Dynamical
modelling quickly becomes complex and cumbersome

for human derivation as controlled systems become

more and more complex. This section will formalize

*Work performed under NASA contract NCC-2-333

the process of computed torque control specification

for robotic manipulator dynamical systems, intro-

ducing terms easily generated by algorithmic means

and suitable for computer implementation. The con-

trol technique will also present extensions and for-

malisms for dealing with free-flying and closed chain

rigid body manipulator systems, all of which share

the characteristic of being easily machine generated.

The basic premise for this technique is derived from

the computed torque control technique.ill. This tech-

nique uses kinematics for determining joint accelera-

tion inverse dynamics for obtaining the correspond-

ing joint torques. Specification of desired controls in

operational or cartesian space[2] requires that the in-

verse and derivative of the system's Jacobian J be

used. The Jacobian is expressed by

vendp °int .: Jq

where v is a vector of the speeds of the manipula-

tor endpoints, measured in some coordinate system

and _ are the derivatives of the joint angles. Re-

search by Alexander[3] into the control of free-flying
robots first showed that the Jacobian was non-square.

Subsequently, Umetani and Yoshida[4] demonstrated
that the system Jacobian could be augmented by mo-

mentum equations to enable solving for joint accel-
erations. Independent investigation has led to the

formalization of the structure of the Jacobian Matrix,

using Kane's [5] notational convention, and augment-
ing a system's Jacobian to include both momentum

relations and kinematic constraints implied by closed

chains. The procedure presented here for Jacobian

generation makes it possible to solve for actuator joint
torques without determining reduced order equations

of motion. Instead, it is possible to solve for these

torques directly with a simple recursive order n pro-
cedure.
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1.1 Concepts used in Analysis

This theory for serial chain manipulators is derived

using Kane's dynamical analysis techniques. The

analysis that follows assumes that the velocities v of

points and angular velocities w of bodies in the sys-

tem under consideration can be expressed in a New-
tonian reference frame as follows:

P

V i -- E viers

P

01 i = EO,)IUs

where the generalized speeds ul..n are linear combi-

nations of the derivatives of the generalized coordi-

nates ql..n. The partial angular velocities of bodies,

and partial velocities of points, as defined by Kane[5],
can be shown to be:

0
V r _ --V

aur

0

('*Jr -- _U r OJ

2 Jacobian Structure

2.1 Desired Accelerations

First, a method will be demonstrated which formu-

lates the system Jacobian using partial velocities.

The desired endpoint accelerations will then be ex-

pressed using these partial velocities and their deriva-

tives, which is the basis for the computed torque

method. The Jacobian, expressed using generalized

speeds 1 , is used as follows:

V endp°int --_ Ju

The endpoint acceleration can then be expressed

as:

a endp°int : JU -_- ,]U

and the joint accelerations can be solved for by rear-

ranging these equations:

---- J-l(aendp°int -- .J U)

A
1 If one chooses u = _ then this is the standard Jacobian.

If not, it becomes a more generalized Jacobian. The theory is

valid for either case.

The Jacobian matrix's components are dependent

upon the partial velocities and partial angular veloc-

ities of the endpoint of the manipulator(s) in the sys-

tem. An endpoint velocity can be expressed in terms

of its partials as:

n

vendpoint _ vendpoint _,
_ v r _r

r=l

and therefore 3D endpoint velocity can be expressed

in terms of speeds along some established inertial

x,y and z directions, for example, along unit vectors

which we define as x, y and z:

n

vendp oint . _: _ _ vendp °int. _ Ur
r

r=l

n

vendp °int . _r UrV endp°int • _r --_ _ r

n

vendp °int. _ Ur
vendp°int " Z --_ _ r

r=l

the elements of the Jacobian due to an endpoint's

velocity is therefore:

Jlr _ Vr ¢ndp°int " :_

J2r : vendp°int"

J3r = vendp°int " _

As shown above, desired endpoint accelerations can

be expressed in terms of the Jacobian, its derivative,

and the generalized speeds and their derivatives. The
derivatives of the elements of the Jacobian can also

be determined from the partial velocities:

31r • endpoint :_V r

J2r • endpoint= v; .:9

J3r • endpointV r

where the derivatives, taken in a Newtonian reference

frame, of the partial velocities are

• endpoint A d N
V r ---- .._.vendp °int

which can be calculated very easily given the angular

velocity of the body that the partial velocity vectors
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arebasedin. Thiscompletestheformaldescriptionof
the;lacobianelementsfordesiredaccelerations.Note
that desiredangularaccelerationsaretreatedin an
identicalmanner,allowingbodyangularacceleration
specification.

2.2 Momentum Conservation

In any free-flying system of bodies, the linear and an-

gular momenta vary according to the external forces

on the system. On a free-flying robot, these are the

system thrusters. If assume that these thruster set-
tings are known a priori, we are able to predict the

rate of change of the system momenta. The Jacobian

can be augmented with linear and angular momenta

equations to include these system states in the cMcu-

lation of the desired generalized accelerations. Inclu-

sion of these relations can make a ;]acobian full rank,

and suitable for application of the computed torque
method.

First, the linear momentum, then the angular mo-

mentum of the system will be examined. The linear
momentum L / of a body i in the system is

Li = miv i*
n

s=l

8=1

where the partial linear momentum of body i is de-
fined by

L_ _ miv_ *

The linear momentum L of a system of _ bodies is

the sum of the linear momenta of each body i in the

system:

s=l

where the partial linear momentum of the system

of _ bodies is defined by

v

Ls _-_ _ miv i*
_ s

i=1

The partial linear momenta of the system can be

formulated using the mass and center of mass partial

velocity of each body in the system. The process of

building an augmented Jacobian using these vector

quantities is similar to the process used for the partial

velocities discussed in the previous section, and will

be discussed after the angular momentum terms are
examined.

The angular momentum H i of each body i, about
its center of mass is:

H i : Ii/i*to i

= I i/i* _ tO_Us
s=l

-_ ",'i[ i* i-= 1 O,_sU8
$-.:1

= H,us
s=l

where the partial angular momentum H_ of each

body is defined as

H_ _ I '/'*w_

The central angular momentum H of the system

of _ bodies about the system's center of mass point,
is:

L
1/

= E Li
i=1

//

--_ E mivi*

i=1

v n

V s Us

i=1 s=l

i=1 s----1

=
i=1 s=l

H

v /1

= EH i + E(r i*- r era) × miv i*
i=1 i=1

//

= E(Ii/i*w i + (r i* - r cm) x miv i*)
i=1

= ,,,.t ¢osus + x m v s us)
i=1 s=l s=l

: E(H_us + (r I* - r _m) x L_us)
i=1 s=l

n

: _ Hsus
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where the partial angular momentum H s of the sys-
tem is defined as

v

H, _ E(H_ + (r'* - r ¢m) x L_)
i----1

A set of Jacobian augmentation equations can be

set up which describe the relation between the mo-

menta and the generalized speeds.

L = JLi/

H = JHu

The elements of the Jacobian due to the linear and

angular momenta are therefore:

JL r = L r •

and

jH = Hr •

The partial momenta can be formulated automati-

cally using the partial velocities in the system.

Expected momentum rates (due to external forces

and torques) can be expressed in terms of these Ja-
cobian augmentation equations and their derivatives

along with the generalized speeds and their deriva-
tives•

= JL/t --_ JL u

t'I = JH it q- JH u

The derivatives of the elements of the augmented

Jacobian can be determined from the partial mo-
menta:

and

where the derivatives, taken in a Newtonian reference

frame, of the partial momenta are:

Lr A dN= -_-L_

zx dN
I:Ir = -_-H r

and the rate of change of the momenta are given

by:

: E Fext

I:I = EText+E(re't-r*)×F ext

This completes the formal description of the Jaco-
bian elements for momentum conservation.

2.3 Closed Chains

In a dynamical system with nonholonomic con-

straints, the generalized speeds ul..n are not inde-

pendent, rather, one (or more) are dependent on the

rest. In the system considered, a manipulator sys-

tem, this condition can arise when two ends of a chain

touch and are held together, either by a pin joint, or

rigidly. The case of a velocity constraint on the a ma-
nipulator, a nonholonomic constraint situation, will

be analyzed, and the constraint equations will be ex-

pressed in terms of quantities used in the kinematics
derivations.

The constraint of endpoint closure is described by:

vendpointt = vendp°int2

expanding this into partial velocities,

/% n

_,endpoint i ,, _ _,endpoint2 _,

r=l r:l

defining a constraint velocity2:

C A vendpointt _ vendpoint 2

= 0

and the constraint partial velocities 3 evaluate to:

Cr : V endp°intl -- Vr endp°int2

2The concept of a constraint velocity is not dependent upon

having a free-floating base and hence works for all instances of

closed kinematic chains

3Although the constraint velocity is zero, the individual

constraint partial velocities are non-zero.
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It is evident that by dot multiplication with inertial

basis vectors, as was done with endpoint velocity, this

vector equation can be reduced to scalar equations for

incorporation into the system Jacobian.

0 = jCu

where the elements of these Jacobian augmentation
equations are:

jc = Cr •

These constraint partial velocities can be formu-

lated automatically using the partial velocities of the

endpoints of the manipulator which are touching.
Differentiating the constraint augmentation equa-

tions automatically expresses the acceleration con-
straints:

0 = jcit + jCu

The derivatives of the constraint augmentation

equations can also be determined from the partial

velocity derivatives:

where the derivatives, taken in a Newtonian reference

frame, of the constraint partial velocities are

Cr

d

= _Cr
• endpoint a • endpoint 2

Y r -- y r

This completes the formal description of the Ja-
cobian elements for closed chain constraints. Note

that angular velocity constraints can be treated in
an identical manner.

3 Joint Acceleration Solution

The full system Jacobian js can now be constructed

using the following components: A regular Jacobian

which relates the linear and angular velocities of the

manipulator endpoint(s) to the the system's general-

ized speeds. Next augmentation equations describing

the rates of change of system momenta are added.

Finally, augmentation equations which ensure that
the chain closure constraint is met are added. This

process results in a full rank Jacobian that looks like:

-- jH

jC

A corresponding set of control objectives can be
formulated:

a S =

aendpoint

F ext

T ext -b _(r ext - r*) × F ext

0

Relating these two quantities is the equation:

a S = jSu

from which we can solve for the derivatives of the

generalized speeds corresponding to this set of control

objectives:

it : J s-l (-J'su + a s )

The resulting derivatives of the generalized speeds

can then be used in an inverse dynamics routine to

obtain corresponding joint control torques.

4 Order n Inverse Dynamics

In this section a simple and straightforward algorithm

to solve the inverse dynamics equation for the control

torques along a serial chain with revolute joints will

be presented. Traditional computed torque control

schemes have used the following equation to compute

the joint torques:

Mq : V(q,q)+T

This method requires O(n 2) computations, and re-

quires that the mass matrix and non-linear terms of

the system S be computed, then desired joint ac-
celerations and known joint rates be used to gener-

ate a vector from which the control torques are eas-

ily derived. We will present an alternate method of

computing these joint torques in O(n) computations.
This method is based on the Newton-Euler method

of formulating robot equations of motion, but instead
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of generating equations symbolically, we will gener-
ate numerical values for accelerations, joint forces

and torques, and actuator torques as we traverse the

robot's chain manipulator.

As we recurse down the rigid body chain, endpoint
accelerations are used to determine the accelerations

of all the joints and each of the center of mass points

of the u bodies in the system. We can use the link
recursion relation that the acceleration at the start

of a link is related to the acceleration at the end of a

link as follows:

a start _ a end

--or link x r start to end

__link X {Mlink X r start to end

where the following components are derived as fol-
lows:

otlink i = otlink i-1 -4- qi " hi

The axis direction h i is a positive rotation, in a

right handed sense, along qi. The forces and moments

are propagated back from the end of each chain. We
assume the force and moment at the end of the chain

is a known value, typically zero. If the chain is closed,

then a desired 'squeeze' force can be assumed as a

starting internal force at the link end, and conceptu-

ally cutting the closed chain, into two.

We take moments about the joint at the start of

the link, and consider only the components along the

joint's axis h i. The moments due to the center of

mass acceleration and the link's angular acceleration

are easily evaluated given its mass properties. The

joint motor torque will be the only unknown in the

equation

T i . hi = _(Tlink end

..__rStart to end X F end

_rStart to * × miai,) . hi

Now take moments about the link start point,

which are the moments applied to the end of the next

link in. Likewise, the sum of the forces will yield the

forces applied by this link to the end of the next link
in. The focus of reference can now be shifted to the

next link in, where this process can be repeated until

all of the control torques have been determined.

The process of solving for the joint control torques

or forces is fairly straightforward, and if the robot has

two or more arms, the solution for the control values

for the various arms can he done in parallel.

5 Implementation

The J acobian formulation method introduced here

has been used to generate the joint acceleration spec-
ification matrix equation necessary in order to solve

the computed torque control problem for the general

3D case of a free-flying robot with kinematic chain

manipulators. The O(n) inverse dynamics solution

has also been derived for this general 3D case. A

specialized and partially optimized derivation for 2D
has been done to allow testing on our experimental

free-flying robot model.

The dynamical system under study, a dual arm

satellite manipulator model, is essentially a serial

chain of rigid bodies, and undergoes only minor

changes (in terms of structure) when it grasps an ob-
ject: it either becomes a longer chain, or it becomes
a closed chain. If the equations of motion of a chain

system have a certain form, then the addition of extra

links to the system should result in a small change in

the computation of the equations of motion - and not
necessitate the rederivation of the system's equations

of motion from scratch. The possibility of generat-

ing equations of motion and control algorithmically
is desirable, since this task is then no longer a manual

procedure. For our 2D robot testbed, the algorithms,

given the joint accelerations, to compute the control

torques are O(n).
Continuing work in the analysis of robot dynamics

by P_osenthal[6], Rodriguez[7] and others have shown

that robot dynamics for simulation can be solved in

O(n) computations. In the spirit of this process, we
have presented an algorithm for control which is also

o(n).

6 Experimental Hardware

We have built a laboratory model of a dual-armed

space robot which experiences in two-dimensions the

drag-free, zero-g characteristics of space. These char-

acteristics are achieved through the use of air cush-

ion technology which allows our vehicle to float on

a 9'x12 _ granite surface plate with a drag-to-weight
ratio of about 10 -4 and gravity induced accelerations

below 10-Sg--a very good approximation to the ac-

tual conditions of space. The robot is a fully self

contained spacecraft containing

• an onboard gas subsystem (used both for flota-

tion and for propulsion via thrusters)

• a complete electrical power system with plug-in

rechargeable batteries packs 4 and power condi-

4The battery packs can also be recharged while on board

the vehicle through the use of an umbilical power cord
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tioning,distribution,andmonitoringcircuitry

• a full complementof sensorsandsignalcondi-
tioningelectronics

• a high speed microprocessor based computer sys-

tem with a floating point coprocessor

• a complete set of digital and analog data acqui-
sition and control interfaces

• a fiber optic based data/communications link to
a network of off-board computers

The robot measures 50cm in diameter and stands

65cm high with a total mass of just under 50kg. In

order to simplify maintenance operations as well as

to facilitate future design modifications the robot was

designed as a series of independent modules. These

modules take the form of layers (see figure 1) which
each perform a distinct task. The layers can be easily

separated 5 when necessary for servicing or repair.

Figure 1: Stanford University Aerospace Robotics

Laboratory Dual-Arm Space Robot

Figure 2 shows the nomenclature used for model-

ing the dynamics and characterizing the mass prop-

erties of the robot. The base body has three degrees

of freedom (x, y, _) and sports eight gas jet thrusters

mounted as four ninety-degree pairs sitting at the cor-

ners of a square inscribing its outer circumference.

A pair of two-link planer arms aligned with a set of

ninety-degree separated rays are attached to the base.

5The main layers can be separated without requiring the

use of any tools.

Figure 2: Free body diagram of space robot indicat-

ing nomenclature used for dynamic modelling.

These manipulator arms are driven by a coaxial set of

limited angle DC torque motors--the shoulder joint

being driven directly while the elbow joint is driven

though a cable from the elbow motor which rides on
the shoulder link. Both joints are instrumented with

RVDTs for sensing joint angles. Analog differentia-

tors provide corresponding rate signals in hardware.
The manipulators are equipped with pneumatically

actuated grippers which possess a single degree of

freedom along the z-axis. Objects can be grasped

by lowering the gripper plungers into cup-like grasp
points mounted on the objects.

The onboard computer system runs the VxWorks 6

real time operating system. This operating system
allows us to develop code on our Sun Workstations

which can then be downloaded to the target processor

via a fiber optic Ethernet link. Since the real time OS

contains a complete implementation of TCP/IP and

NFS our target processor can access files and data on
our host server. We have configured our system with
a set of subnets so that we can communicate between

on and off board processors without incurring delays
due to traffic on our workstation LAN.

We will ultimately be adding an on-board vision

system in order to allow us to perform endpoint con-

trol. This addition will enabling us to capture and

manipulate free-floating targets.

7 Experimental Results

We have implemented the control methodology de-
scribed above on our space robot system and it works!

6VxWorksTM is a product of Wind River Systems,

Emeryville, CA
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8 Large Motion Control

In order for free flying space robots to be effective in-

struments in the space automation arsenal they must

be capable of autonomously executing large motions
which involve the coordinated motion of their base

body and their manipulators. It is for this reason

that the task of gross motion control of a space robot

poses a set of interesting and unique challenges which

differ from the typical satellite positioning/attitude

control problem or the uncontrolled free-floating base
situation presented above. In most satellite control

problems we are interested in achieving two principal

goals: 1) keeping the satellite as a whole on its proper

orbit path, and 2) keeping various sensors and/or
communications devices pointed in desired directions.

These objectives amount to requirements for holding
the center of mass of the satellite on track while ser-

voing the attitude of the main body so as to keep
the pointing actuators within their allowable ranges

of motion. As noted above, the linear and angular

momentum principles tell us that the total linear and

total angular momenta are unaffected by the internal

actuators so this problem divides nicely into three

distinct parts: 1) controlling the position of the sys-

tem center of mass, 2) controlling the attitude of the

main body, and 3) controlling the orientations of the

respective sensors. Clearly part 1 is independent of

parts 2 and 3; however part 3 acts as a disturbance

to part 2 and visa versa.

By way of contrast, in the space robot gross mo-

tion control problem we are interested in controlling

the base body position and orientation so as to place

or maintain the manipulator arm tip position(s) in

a desired workspace. Since we are interested in the

actual positions of the manipulators (as opposed to

the orientation of sensors in the case of a satellite) we

must control both the base position and orientation

rather than just the system center of mass position.

In particular, if we are operating in a densely popu-

lated workplace (e.g. in the middle of space station

construction) we must know the exact extents of our
base body and all of its appendages. There are, of

course, certain circumstances were we might be exe-

cuting a large motion slew (one which requires base

motion in order to complete) away from any poten-

tial obstacles. In this case we may not be concerned

with the manipulator tip positions or the precise base

position and thus can control the position of the sys-

tem center of mass. Therefore, a number of different

control situation may arise and enumerated below:

• The robot is in position to perform some task;

however, since their is no way for it to anchor it-

self to the environment it is working in _ we must

perform station keeping of the base position and

orientation to keep the manipulators within the

required workspace.

• The robot is executing a large motion slew along

some prescribed trajectory with a large corridor

of unobstructed space surrounding it. In this

case, we can control position of the system center

of mass without concerning ourselves with the
actual location or orientation of the base and the

manipulators.

• The robot is attempting to intercept a free float-

ing object such as a satellite and must execute

a trajectory which will rendezvous with the tar-

get in such a way as to match both its position
and velocity at the intercept point. In planning

and performing such a trajectory we must assure
that the base position and orientation allow the

manipulators sufficient freedom of reach so that

they can successfully grapple the target without
running into the limits of their workspace.

Clearly it is this last case which is the most chal-

lenging and therefore the most interesting. In or-
der to successfully capture a free floating target we

must simultaneously control our manipulator tip po-

sitions as well as the robot base position and orien-

tation. Since the corresponding states are coupled

with each other it becomes necessary to view the sys-

tem as whole rather than as decoupled parts. Simply

generating an intercept trajectory which is realizable

given the limited actuator authority available, the
ever present dynamic constraints imposed by a free

floating robot s , and any temporal constraints which

might exist(e.g, the object might float out of reach if
we do not get to it soon enough) presents a formidable

problem. Various trajectory generation, validation,

and control algorithms which address these issues will

be the focus of a future paper.
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