NASA Pocket Statistics

Distribution To NASA Installations

Following is a list of individuals who control the distribution of the NASA POCKET STATISTICS at their respective NASA Installations. Requests for additional copies should be made through the controlling office shown below.

NASA HEADQUARTERS JOHNSON SPACE CENTER Mr. H. M. Porter Ms. Juanita M. Carlton Executive Support Office, Code DA JSC WHITE SANDS TEST FACILITY AMES RESEARCH CENTER

to the Associate Director . AMES DRYDEN FLIGHT RESEARCH FACILITY

Mr. Jack D. Stanley, Staff Assistant

ATTN: Research Librarian

GODDARD INSTITUTE FOR SPACE STUDIES

Dr. James E. Hansen

GODDARD SPACE FLIGHT CENTER Ms. Kay Seidenspinner Code 200

JET PROPULSION LABORATORY Mr. B. VanBuren

Documentation Review Group

Printing Management Branch, Code JM8

Mr. Rob. R. Tillett, Manager KENNEDY SPACE CENTER and KSC/WLOD Mr. Hugh W. Harris

Public Information Branch -KSC STS RESIDENT OFFICE (Vandenberg AFB) Mr. Ted L. Oglesby, Manager

LANGLEY RESEARCH CENTER Ms. Margaret W. Hunt Mail Stop 115

LEWIS RESEARCH CENTER Mr. Americo F. Forestieri, Director External Affairs, MS 3-16

MARSHALL SPACE FLIGHT CENTER Ms. Jan Zielinski, CN24 Management Operations Office

MICHOUD ASSEMBLY FACILITY Mr. John W. Hill, Manager NASA RESIDENT OFFICE -- JPL

Mr. Fred W. Bowen, Manager

JOHN C. STENNIS SPACE CENTER Mr. Roy S. Estess. Director

SLIDELL COMPUTER COMPLEX Mr. Bobby L. German, Manager

WALLOPS FLIGHT FACILITY Mr. F. Moore, Director Management and Operations

Foreword

POCKET STATISTICS is published for the use of NASA managers and their staff. Included is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, and NASA Procurement, Financial and Manpower data.

The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free tlying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

Restriction/classification Cancelled

inibution. Requests for copies of this document should be sent

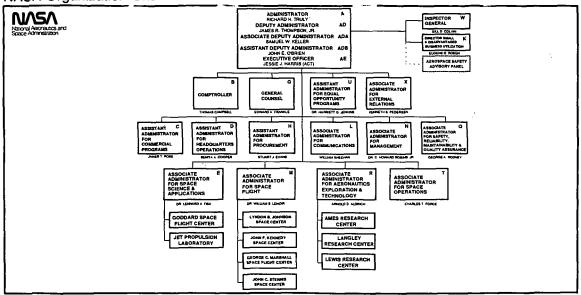
industrial readyparters, office of readyparters, operations (Code DA). Changes or deletions to the distribution list may be made by chone to (202) 453-1039.

Published and Distributed by NATIONAL AERONAUTICS AND SPACE ADMINISTRATION OFFICE OF HEADQUARTERS OPERATIONS, CODE DA Washington, DC 20546

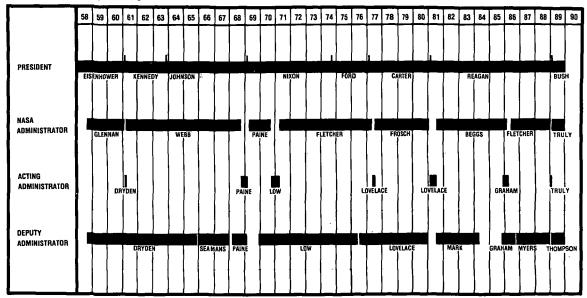
Contents

Section A - Administration and Organizati	ion	Section C - Procurement, Funding and	Manpower
NASA Organization NASA Administrators National Aeronautics and Space Act U.S. National Space Policy NASA Installations The Year in Review	A-2 A-3 A-4 A-6 A-9 A-14	Contract Awards by State Distribution of NASA Prime Contract Awards Procurement Activity Distribution of NASA Procurements Principal Contractors Educational and Nonprofit Institutions NASA's Budget Authority in 1990 Dollars Financial Summary	C-2 C-3 C-4 C-5 C-6 C-9 C-12
Section B - Space Flight Activity		R&D Funding SFC&DC Funding	C-14 C-18
NASA Launch Vehicle Performance Current Worldwide Launch Vehicles Summary of Announced Launches Summary of Announced Payloads NASA Payloads USA and Cooperative Payloads Soviet Space-craft Designations Unofficial Tabulation of USSR Payloads NASA Astronauts Shuthle Approach and Landing Tests United States Manned Space Flight Shuttle Payloads and Experiments The Planets USA Planetary Space Flights USA Planetary Space Flights USA Lunar Space Flights USA Lunar Space Flights USA Lunar Space Flights NASA Major Launch Record	B-2 B-3 B-4 B-5 B-6 B-7 B-8 B-10 B-14 B-17 B-37 B-37 B-43 B-43 B-46	C of F Funding R&PM Funding Personnel Summary Employment Summary Total NASA Workforce Minority Employees Women Employees	C-20 C-22 C-24 C-25 C-25 C-25

Section #


Section

Section (


Section A

Administration And Organization

NASA Organization Chart

NASA Administrators

Excerpts From The National Aeronautics And Space Act of 1958, As Amended

AN ACT To provide for research into problems of flight within and outside the Earth's atmosphere, and for other purposes.

DECLARATION OF POLICY AND PURPOSE

- Sec. 102 (a) The Congress hereby declares that it is the policy of the United States that activities in space should be devoted to peaceful purposes for the benefit of all mankind.
- (b) The Congress declares that the general welfare and security of the United States require that adequate provision be made for aeronautical and space activities. The Congress further declares that such activities shall be the responsibility of, and shall be directed by, a civilian agency exercising control over aeronautical and space activities sponsored by the United States, except that activities peculiar to or primarily associated with the development of weapons systems, military operations, or the defense of the United States, the constraint of the United States are the constraint of the United States and the Congression of the United States are the United States and the Congression of the United States are the United States and that determination as to which such agency has responsibility for and direction of any such activity shall be made by the President in conformity with section 201(e).
- (c) The Congress declares that the general welfare of the United States requires that the National Acronautics and Space Administration (as established by title II of this act) seek and encourse to the maximum extent possible the fullest commercial use of space.
- (d) The aeronautical and space activitsies of the United States shall be conducted so as to contribute materially to one or more of the following objectives:

- (1) The expansion of human knowledge of phenomena in the atmosphere and space;
- (2) The improvement of the usefulness, performance, speed, safety, and efficiency of aeronautical and space vehicles;
- (3) The development and operation of vehicles capable of carrying instruments, equipment, supplies, and living organisms through space;
- (4) The establishment of long-range studies of the potential benefits to be gained from, the opportunities for, and the problems involved in the utilization of aeronautical and space activities for peaceful and scientific purposes;
- (5) The preservation of the role of the United States as a loader in aeronautical and space science and technology and in the application thereof to the conduct of peaceful activities within and outside the atmosphere;
- concerned with national defense of discoveries that have military value or significance, and the furnishing by such agencies, to the civilian agency established to direct and control normilitary aeronautical and space activities, of information as to discoveries which have value or significance to that agency;
- (7) Cooperation by the United States with other nations and groups of nations in work done pursuant to this Act and in the peaceful application of the results thereof; and

Excerpts From The National Aeronautics And Space Act of 1958, As Amended

DECLARATION OF POLICY AND PURPOSE (Continued)

- (8) The most effective utilization of the scientific and engineering resources of the United States, with close cooperation among all interested agencies of the United States in order to avoid unnecessary duplication of effort, facilities, and equipment.
- (e) The Congress declares that the general welfare of the United States requires that the unique competence in scientific and engineering systems of the National Aeronautics and Space Administration also be directed toward ground propulsion systems research and development.
- (f) The Congress declares that the general welfare of the United States requires that the unique competence in scientific and engineering systems of the National Aeronautics and Space Administration also be directed toward the development of advanced automobile propulsion systems.
- (g) The Congress declares that the general welfare of the United States requires that the unique competence in scientific and engineering systems of the National Aeronautics and Space Administration also be directed to assisting in bloengineering research, development, and demonstration programs designed to alleviate and minimize the effects of disability.

FUNCTIONS OF THE ADMINISTRATION

Sec. 203. (a) The Administration, in order to carry out the purpose of this Act, shall --

- plan, direct, and conduct aeronautical and space activities;
- (2) arrange for participation by the scientific community in planning scientific measurements and observations to be made through use of aeronautical and space vehicles, and conduct or arrange for the conduct of such measurements and observations; and
- (3) provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof.
- (b) (1) The Administration shall, to the extent of appropriated funds, initiate, support, and carry out such research, development, demonstration, and other related activities in ground propulsion technologies.
- (2) The Administration shall initiate, support, and carry out such research, development, demonstration, and other related activities in solar heating and cooling technologies (to the extent that funds are appropriated therefor).

U.S. National Space Policy

On November 2, 1989, the President approved a national space policy that updates and reaffirms U.S. goals and activities in space. Areas affectd include civil and commercial remote sensing, space transportation, space debris, federal subsidies of commercial space activities, and Space Station Freedom.

Owerall, the President's newly-issued national space policy revalidates the ongoing direction of U.S. space efforts and provides a broad policy framework to guide future U.S. space activities.

The policy reaffirms the nation's commitment to the exploration and use of space in support of our national well being. United States leadership in space continues to be a fundamental objective guiding U.S. space activities. The policy recognizes that leadership requires united States preeminence in key areas of space activity critical to achieving our national security, scientific, technical, economic, and foreign policy goals. The policy also retains the long-term goal of expanding human presence and activity beyond Earth orbit into the Solar System. This goal provides the overall policy framework for the President's human space exploration initiative, announced July 20, 1989, in which the President called for completing Space Station Freedom, returning permanently to the Moon, and exploration of the planet Mars.

United States space activities are conducted by three separate and distinct sectors: two strongly interacting governmental sectors (Civil and National Security) and a separate, non-governmental Commercial Sector. Close coordination, cooperation, and technology and information exchange will be maintained among these sectors to avoid unnecessary duplication and promote attainment of United States space goals.

GOALS AND PRINCIPLES

A fundamental objective guiding United States space activities has been, and continues to be, space leadership. Leadership in an

increasingly competitive international environment does not require United States preeminence in all areas and disciplines of space enterprise. It does require United States preeminence in key areas of space activity critical to achieving our national security, scientific, technical, economic, and foreign policy goals.

The overall goals of United States space activities are: (1) to strengthen the security of the United States; (2) to obtain scientific, technological, and economic benefits for the general population and to improve the quality of life on Earth through space-related activities; (3) to encourage continuing United States private-sector investment in space and related activities; (4) to promote inhermational cooperative activities taking into account United States national security, foreign policy, scientific, and economic inherests; (5) to cooperate with other nations in maintaining the freedom of space for all activities that enhance the security and welfare of mankind; and, as a long-range goal, (6) to expand human presence and activity beyond Earth orbit into the solar system.

. United States space activities shall be conducted in accordance with the following principles:

- The United States is committed to the exploration and use of outer space by all nations for peaceful purposes and for the benefit of all mankind. "Peaceful purposes" allow for activities in pursuit of national security goals.
- The United States will pursue activities in space in support of its inherent right of self-defense and its defense commitments to its allies.
- The United States rejects any claims to sovereignty by any nation over outer space or celestial bodies, or any portion thereof, and rejects any limitations on the fundamental right of sovereign nations to acquire data from space.

U.S. National Space Policy

- The United States considers the space systems of any nation to be national property with the right of passage through and operations in space without interference. Purposeful interference with space systems shall be viewed as an infringement on sovereign rights.
- The United States shall encourage and not preclude the commercial use and exploitation of space technologies and systems for national economic benefit. These commercial activities must be consistent with national security interests, and international and domestic legal obligations.
- The United States will, as a matter of policy, pursue its Commercial space objectives without the use of direct Federal subsidies.
- The United States shall encourage other countries to engage in free and fair trade in commercial space goods and services.
- The United States will conduct international cooperative space-related activities that are expected to achieve sufficient scientific, political, economic, or national security benefits for the nation. The United States will seek mutually beneficial international participation in its space and space-related programs.

CIVIL SPACE POLICY

- The United States civil space sector activities shall contribute significantly to enhancing the Nation's science, technology, economy, pride, sense of well-being and direction, as well as United States world prestige and leadership. Civil sector activities shall comprise a balanced strategy of research, development, operations, and achnology for science, exploration, and appropriate applications.
- . The objectives of the United States civil space activities shall be (1) to expand knowledge of the Earth, its environment, the solar

system, and the universe; (2) to create new opportunities for use of the space environment through the conduct of appropriate research and experimentation in advanced technology and systems; (3) to develop space technology for civil applications and, wherever appropriate, make such technology available to the commercial sector; (4) to preserve the United States preeminence in critical aspects of space science, applications, technology, and manned space flight; (5) to establish a permanently manned presence in space; and (6) to engage in international cooperative efforts that further United States space coals.

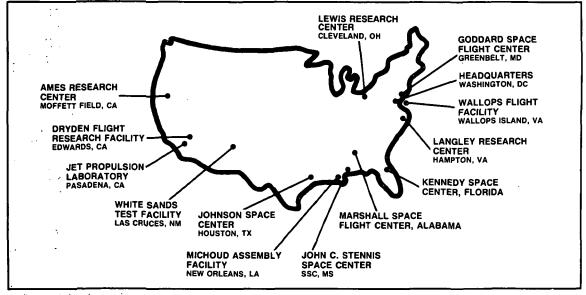
COMMERCIAL SPACE POLICY

The United States government shall not preclude or deter the continuing development of a separate, non-governmental Commercial Space Sector. Expanding private sector invostment in space by the market-driven Commercial Sector generates econonic benefits for the Nation and supports governmental Space Sectors with an increasing range of space goods and services. Governmental Space Sectors shall purchase commercially available space goods and services to the fullest extent feasible and shall not conduct activities with potential commercial applications that preclude or deter Commercial Sector space activities except for national security or public safety reasons. Commercial Sector space activities shall be supervised or regulated only to the extent required by law, national security, international obligations, and public safety.

NATIONAL SECURITY SPACE POLICY

The United States will conduct those activities in space that are necessary to national defense. Space activities will contribute to national security objectives by (1) deterring, or if necessary, defending against enemy attack; (2) assuring that forces of hostile nations cannot prevent our own use of space; (3) negating, if necessary, hostile space systems; and (4) enhancing operations of United States and Alled forces. Consistent with treaty obligations,

U.S. National Space Policy


the national security space program shall support such functions as command and control, communications, navigation, environmental monitoring, warning, surveillance and force application (including research and development programs which support these functions).

INTER-SECTOR POLICIES

This section contains policies applicable to, and binding on, the national security and civil space sectors:

- . The United States Government will maintain and coordinate separate national security and civil operational space systems where differing needs of the sectors dictate.
- . Survivability and endurance of national security space systems, including all necessary system elements, will be pursued commensurate with the planned use in crisis and conflict, with the threat, and with the availability of other assets to perform the mission.
- . Government sectors shall encourage, to the maximum extent feasible, the development and use of United States private sector space capabilities.
- . A continuing capability to remotely sense the Earth from space is important to the achievement of United States space goals. To ensure that the necessary capability exists, the United States government will: (a) ensure the continuity of LANDSAT-type remote sensing data; (b) discuss remote sensing issues and activities with foreign governments operating or regulating the private operation of remote sensing systems; (c) continue government research and development for future advanced remote sensing technologies and systems; and (d) encourage the development of commercial systems, which image the Earth from space, competitive with, or superior to foreign operated or commercial systems.

- Assured access to space, sufficient to achieve all United States space goals, is a key element of national space policy. United States space transportation systems must provide a balanced, robust, and flexible capability with sufficient resiliency to allow continued operations despite failures in any single system. The United States government will continue research and development on component technologies in support of future transportation systems. The goals of United States space transportation policy are: (1) to achieve and maintain safe and reliable access to, transportation in, and return from, space; (2) to exploit the unique attributes of manned and urmanned launch and recovery systems; (3) to encourage to the maximum extent foasible, the development and use of United States private sector space transportation capabilities; and (4) to reduce the costs of space transportation and related services.
- . Communications advancements are critical to all United States space sectors. To ensure necessary capabilities exist, the United States Government will continue research and development efforts for future advanced space communications technologies.
- The United States will consider and, as appropriate, formulate policy positions on arms control measures governing activities in space, and will conclude agreements on such measures only if they are equitable, effectively verifiable, and enhance the security of the United States and its allies.
- . All space sectors will seek to minimize the creation of space will strive to minimize or reduce accumulation of space debris consistent with mission requirements and cost effectiveness. The United States will encourage other space-faring nations to adopt policies and practices aimed at debris minimization.

NASA HEADQUARTERS Washington, DC 20546

NASA Headquarters exercises management over the space flight centers, research centers, and other installations that constitute the National Aeronautics and Space Administration.

Responsibilities of Headquarters cover the determination of programs and projects; establishment of management policies; procedures and performance criteria; evaluation of progress; and the review and analysis of all phases of the aerospace program.

Planning, direction, and management of NASA's research and development programs are the responsibility of the program offices which report to and receive overall guidance and direction from an associate or assistant administrator.

AMES RESEARCH CENTER Moffett Field, CA 94035

Ames Research Center was founded in 1940 as an aircraft research laboratory by the National Advisory Committee for Aeronautics (NACA) and named for Dr. Joseph S. Ames, Chairman of NACA from 1927 to 1939. In 1958, Ames became part of NASA, along with other NACA installations and certain Department of Defense facilities. In 1981, NASA merged Ames with the Dryden Flight Research Facility.

Ames specializes in scientific research, exploration and applications aimed toward creating new technology for the nation.

The center's major program responsibilities are concentrated in computer science and applications, computational and experimental aerodynamics, flight simulation, flight research, hypersonic aircraft, rotorcraft and powered-lift technology, aeronautical and space sciences, solar system exploration, airborne science and applications, and infrared astronomy.

HUGH L. DRYDEN FLIGHT RESEARCH FACILITY Edwards, CA 93523

Since 1947, Ames-Dryden has developed a unique and highly specialized capability for conducting flight research programs. Its test organization, consisting of pilots, scientists, engineers, technicians and mechanics, is unmatched anywhere in the world. This versatility organization has demonstrated its capability, not only with high-speed research aircraft, but also with such unusual flight vehicles as the Lunar Landing Research Vehicle and the wingless lifting bodies.

Its primary research tools are research aircraft, ranging from a B-52 carrier aircraft and high performance jet fighters to the X-29 forward swept wing aircraft. Ground-based facilities include a high temperature loads calibration laboratory that allows ground-based testing of complete aircraft and structural components under the combined effects of loads and heat; a highly developed aircraft flight instrumentation capability; a flight systems laboratory with a diversified capability for avionics system fabrication, development and operations; a flow visualization facility that allows basic flow mechanics to be seen on models or small components; a data analysis facility for processing of flight research data; a remotely piloted research vehicles facility and a test range communications and data transmission capability that links NASA's Western Aeronautical Test Range facilities at Ames-Notfert, Crows Landing and Ames-Dryden

GODDARD SPACE FLIGHT CENTER Greenbelt, MD 20771

This NASA field center has put together a multitalented spaceflight team — engineers, scientists, technicians, project managers and support personnel — which is extending the horizons of human knowledge not only about the solar system and the universe but also about our Earth and its environment.

The Goddard mission is being accomplished through scientific research centered in six space and Earth science laboratories and in the management, development and operation of several near-Earth space systems.

After being launched into space, satellites fall under the 24-hour-a-day surveillance of a worldwide ground and spaceborne communications network, the nerve center of which is located at Goddard. One of the key elements of that network is the Tracking and Data Relay Satellite System (TDRSS) with its orbiting Tracking and Data Relay Satellite and associated ground tracking stations.

JET PROPULSION LABORATORY Pasadena, CA 91109

NASA's Jet Propulsion Laboratory (JPL) is a government-comed facility staffed by the California Institute of Technology. JPL operates under a NASA contract administered by the NASA Pasadema office. In addition to the Pasadema site, JPL operates the Deep Space Communications Complex, a station of the worldwide Deep Space Network (DSN).

The laboratory is engaged in activities associated with deep space automated scientific missions — engineering subsystem and instrument development, and data reduction and analysis required by deep space flight.

The laboratory also designs and tests flight systems, including complete spacecraft, and provides technical direction to contractor organizations.

LYNDON B. JOHNSON SPACE CENTER Houston, TX 77058

Johnson Space Center was established in September 1961 as NASA's primary center for design, development and testing of spacecraft and associated systems for manned flight; selection and training of astronauts; planning and conducting manned missions; and extensive participation in the medical engineering and scientific experiments carried aboard space flights.

Johnson has program management responsibility for the Space Shuttle program, the nation's current manned space flight program. Johnson also has a major responsibility for the development of the Space Station, a permanently manned, Earth-orbiting facility to be constructed in space and operable within a decade. The center will be responsible for the interfaces between the Space Station and the Space Shuttle.

JOHN F. KENNEDY SPACE CENTER Kennedy Space Center, Pt. 32899

Kennedy Space Center (KSC) was created in the early 1960s to serve as the launch site for the Apollo lunar landing missions. After the Apollo program ended in 1972, Kennedy's Complex 39 was used for the launch of the Skylab spacecraft, and later, the Apollo spacecraft for the Apollo Soyuz Test Project.

Kennedy Space Center serves as the primary center within NASA for the test, checkout and launch of space vehicles. This presently includes launch of manned and urmanned vehicles at Kennedy, the adjacent Cape Canaveral Air Force Station, and at Vandenberg Air Force Base in California.

The center is responsible for the assembly, checkout and launch of Space Shuttle vehicles and their payloads, landing operations and the turn-around of Space Shuttle orbiters between missions, as well as preparation launch of urmanned vehicles.

LANGLEY RESEARCH CENTER Hamoton, VA 23665-5225

Langley's primary mission is the research and development of advanced concepts and technology for future aircraft and spacecraft systems, with particular emphasis on environmental effects, performance, range, safety and economy. Examples of this research are projects involving flight simulation, composite structural materials and automatic flight control systems.

Work continues in the development of technology for avionic systems for reliable operation in terminal areas of the future. Efforts continue to improve supersonic flight capabilities for both transport and military aircraft. The center works with the general aviation industry to help solve problems concerning aircraft design and load requirements and to improve flight operations.

Langley's newest major project is developing technology for the National Aero-Space Plane.

LEWIS RESEARCH CENTER Cleveland, OH 44135

Lowis Research Center was established in 1941 by the National Advisory Committee for Aeronautics (NACA). Named for George W. Lowis, NACA's Director of Research from 1924 to 1947, the center developed an international reputation for its research on jet propulsion systems.

Lewis is NASA's lead center for research, technology and development in aircraft propulsion, space propulsion, space power and satellite communication.

Aircraft propulsion activities in the early days of the jet age were to develop aircraft which would fly higher, faster and farther. Today's goals are fuel conservation, quieter flight and cleaner exhaust. Lewis has responsibility for developing the largest space power system ever designed to provide the electrical power necessary to accommodate the life support systems and research experiments to be conducted aboard the Space Station. In addition, the center will support the Station in other major areas such as auxiliary propulsion systems and communications.

Lewis was selected by the Office of Management and Budget (OMB) as a Quality Improvement Prototype, which is one of the highest honors a federal government facility can achieve for quality and productivity. The award is part of the Presidents Productivity Improvement Program, which is administered by OMB and is the second year a national award was prosented.

MARSHALL SPACE FLIGHT CENTER Marshall Space Plight Center, AL 35812

George C. Marshall Space Flight Center (MSFC) was formed on July 1, 1960, by the transfer to NASA of buildings and personnel comprising part of the U.S. Army Ballistic Missile Agency. Named for the famous soldier and statesman, General of the Army George C. Marshall, it was officially dedicated by President Dwight D. Eisenhower on September 8, 1960.

Marshall is a multiproject management, scientific and engineering establishment, with much emphasis on projects involving scientific investigation and application of space technology to the solution of problems on Earth.

In helping to reach the nation's goals in space, the center is working on many projects. Marshall had a significant role in the development of the Space Shuttle. It provides the orbiter's engines, the external tank that carries liquid hydrogen and liquid oxygen for those engines, and the solid rocket boosters that assist in lifting the Shuttle orbiter from the launch pad.

The center also plays a key role in the development of psyloads to be flown aboard the Shuttle. One such psyload is Spacelab, a reusable, modular scientific research facility carried in the Shuttle's cargo bay.

Marshall also is committed to the investigation of materials processing in space, which —— in a gravity-free environment —— promises to provide opportunities for understanding and improving Earth-based processes and for the formulation of space-unique materials. Exciting new techniques in materials processing have already been demonstrated in past Spacelab missions, such as the formation of alloys from normally immiscible products, and the growth of near-perfect large crystals impossible to grow on Earth.

MICHOUD ASSEMBLY FACILITY Hew Orleans, LA 70189

The primary mission of The Michoud Assembly Facility is the systems engineering, engineering design, manufacture, fabrication, assembly and related work for the Space Shuttle external tank.

Marshall Space Flight Center exercises overall management control of the facility.

NATIONAL SPACE TECHNOLOGY LABORATORIES NSTL, NS 39529

The NASA National Space Technology Laboratories (NSTL) scientific community is actively engaged in several research and development programs involving space, oceans and Earth.

The complex includes industrial, laboratory and specialized engineering facilities to support the testing of large rocket propulsion systems.

The main mission of NSTL is support of Space Shuttle main engine and main orbiter propulsion system testing. Shuttle main engine testing has been under way at NSTL since 1975.

Formerly designated the Mississippi Test Facility, NSTL was given full field installation status by NNSA in 1974 because of its significant achievements and unique capabilities in space applications and Earth resources activities.

WALLOPS PLICET PACILITY Wallons Island, VA 23337

Established in 1945, Wallops Flight Facility, a part of the Goddard Space Flight Center, is one of the oldest launch sites in the world.

Wallops manages and implements NASA's sounding rocket projects which use suborbital rocket vehicles to accommodate approximately 50 scientific missions each year.

Wallops manages and coordinates NASA's Scientific Balloon Projects using thin film, helium filled balloons to provide approximately 45 scientific missions each year.

SOLAR SYSTEM

Planetary science spearheaded accomplishments in 1989 with Voyager 2's exploration of Planet Neptune and departure from the solar systems and the launch of two probes.

NASA scientists discovered last spring that on March 23 an asteroid a half-mile or more in diameter passed within 500,000 miles of Earth, about twice the distance between the Earth and the Moon. In the fall, another asteroid passed within 2.5 million mile of the Earth.

ASTROPHYSICS

In November, NASA launched the Cosmic Background Explorer, an unmanned observer that will measure the cosmic radiation remaining from the "Big Bang" in hopes of developing a clearer picture of the early history of the universe.

Astronomers at the Space Telescope Science Institute, reported unanticipated gas emissions from a "white dwart" star. White dwarves had been thought to mark the end of some stars' lifespans, precluding such emissions. NASA and science institute scientists are continuing preparations for the Shuttle development in March 1990 of the Hubble Space Telescope, which many astronomers believe will open a new era for the field.

EARTH SCIENCES

In February, NASA announced the selection of scientific instrument investigations for the proposed Earth Observing System, for launch in late 1997. EOS would be an interdisciplinary program conducted with the European and Japanese space agencies using four platforms in polar orbits to examine Earth on a global scale. It would be one of the largest science missions ever undertaken, providing 15 years of comprehensive data on Earth's atmosphere, oceans and land.

This year a NASA satellite gathered further evidence of humans' effect on their environment as the Total Ozone Mapping Spectrometer showed the ozone levels over Antarctica between August and October were as low in 1989 as the record low levels measured in 1987.

Scientists from the Soviet Union, Canada, the United Kingdom and France joined NASA in Kansas over the summer to continue the first field experiment for the International Satellite Land Surface Climatology Project. The experiment investigated the role of biological processes in controlling atmosphere-vegetation interactions and investigated the use of satellite and airborne observations to infer how land-surface conditions affect climate.

SPACE PHYSICS

NASA signed a memorandum of understanding with the European Space Agency to conduct a series of missions as part of the International Solar Terrestrial Physics Programme, which will track solar energy from is source, through space and as it reaches and passes the Earth.

NASA launched four suborbital rockets over Canada to measure Earth's electric fields aligned with its magnetic field and possible explain how aurora are created.

NASA has provided a payload instrument (PEGSAT) for flight aboard the experimental air-launched vehicle Pegasus now undergoing flight tests with an anticipated launch date of late January 1990. The instrument will conduct studies of the Earth's magnetic field and ionosphere.

LIFE SCIENCES

U.S. and Soviet scientist confirmed the adverse physiological and biomedical effects of prolonged space flight after analyzing data from the cooperative life sciences experiments flown aboard an unmanned Soviet satellite.

SPACE FLIGHT

In 1989, 25 astronauts orbited the Earth aboard Space Shuttles Discovery, Atlantis and Columbia. As a result, sophisticated interplanetary spacecraft, Magellan and Galileo, are speeding toward orbital encounters with Venus and Jupiter, a new Tracking and Data Relay Satellite has been deployed and experiment data have been sent to investigators nationwide.

Expendable Launch Vehicles (ELVs) were emptied in 1989 with the successful launches of the Atlas-Centaur/FLTSATCOM and Delta/Cosmic Background Explorer missions.

.Among Space Flight highlights, 1989 are:

- January 20: Sixth and final full-scale static test firing of NASA's redesigned Space Shuttle solid rocket motor took place successfully.
- March 13: Space Shuttle Discovery was faunched with STS-29 Astronauts Coats.
 Blaha, Buchli, Springer and Bagian on board to deploy a new Tracking and Data Relay
 Satellite. Landing was March 18.
- May 4: Space Shuttle Atlantis was launched with STS-30 Astronauts Walker, Grabe, Thagard, Cleave and Lee on board to deploy the Magellan spacecraft on a mission toward Venus. Landing was May 8.
- August 8: Space Shuttle Columbia was launched with STS-28 Astronauts Shaw, Richards, Leetsma, Adamson and Brown on board this dedicated DOD mission. Landing was August 13.
- September 25: NASA successfully launched its final Atlas/Centaur launch vehicle from Cape Canaveral Air Force Station. The payload was a FLTSATCOM Navy communications satellite.
- October 18: Space Shuttle Atlantis was launched with STS-34 Astronauts Williams, McCulley, Baker, Chang-Diaz and Lucid on board to deploy Galileo spacecraft on a mission toward Jupiter. Landing was October 23.
- November 18: NASA successfully launched its Cosmic Background Explorer spacecraft from Vandenberg Air Force Base, Calif., aboard the final NASA-owned Delta launch vehicle.
- November 22: Space Shuttle Discovery was launched with STS-33 Astronauts Gregory, Blaha, Musgrave, Thomton and Carter on board this dedicated DOD mission. Landing was November 27.

SPACE STATION FREEDOM

Major changes in the organization and management of the Space Station Freedom program occurred 1989, as well as a consolidation of the Space Station and Space Flight offices. A major review of the Space Station Freedom project, resulted in modifications to the project and a revised timetable for its development and deployment.

The final agreement between NASA and its international partners, was signed March 14 as the former NASA Administrator James Fletcher and Japanese ambassador to the U.S. H. E. Nobuo Matsunapa signed a memorandum of understanding on cooperation in the detailed design, development, operation and utilization of the space station. Similar agreements with the European Space Apency and Canada were stoned in September 1988.

EXPLORATION

On July 20, 1989 President Bush announced a national commitment to an evolutionary program to complete Space Station Freedom, establish a manner lunar outpost, begin the exploration of Mars and eventually to move beyond.

In 1989, the Office of Exploration also initiated a variety of activities to better understand technology needs and science opportunities involved in expanding the human presence beyond Earth orbit. The office continued to develop multiple options for human exploration through the case study framework.

Three case studies were evaluated in 1989: Lunar Evolution, Mars Evolution and Mars Expedition. These case studies refined NASA's understanding and broadened its knowledge of human exploration options, the investments required to support them and the scientific and technological capabilities and benefits they would spawn.

Other key developments in 1989 included:

- Formation of a NASA Advisory Council Exploration Task Force to provide independent advice to NASA and the Office of Exploration.
- Support of and participation in preparation of NASA's "Report of the 90-Day Study on Human Exploration of the Moon and Mars".

Initiation of an Innovative Studies program designed to encourage innovative concepts
and support independent studies that may offer unique capabilities for human
exploration. The 20 proposals selected for funding came from groups located in 12
states and included five industry-related firms, two space support-related organizations
and 13 universities.

AERONAUTICS AND SPACE TECHNOLOGY

The National Aero-Space Plane (NASP) program, a joint NASA/Department of Defense program, continued technology development that could lead to a unique flight research vehicle, called the X-30, capable of taking off horizontally, accelerate into Earth orbit and returning through the atmosphere to land on a conventional runway.

NASA's Lewis Research Center, Cleveland is leading an effort to develop "slush" hydrogen as a high-energy NASP propellant. Lewis also tested a Mach 5 engine inlet to verify computer codes used in analysis of the inlet's performance.

Langley Research Center, Hampton, VA., has wind-tunnel tested the performance characteristics of NASP advanced engine concepts at 4 and 8 times the speed of sound.

NASA's high-performance aircraft based at Ames-Dryden Flight Research Facility, Edwards, Callf., made important contributions to the agency's aeronautics research program. The F/A-18 high-Alpha Research Vehicle completed the first phase of a three-part program to validate computer codes and wind tunnel predictions of airflow during high angle-of-attack flight.

The first experimental tonward-swept-wing X-29 aircraft wratped up a highly successful test program after 242 flights that demonstrated its unique wing configuration is practical. The second X-29, modified to fly safely at angels-of-attack up to 70 degrees, also made its first research flight. As part of the NASA/DOD Self-Repairing Flight Control Program, computers aboard Ames-Dryden's F-15 research aircraft correctly identified and isolated a simulated failure in the flight control system.

NASA also continued efforts to enhance the efficiency of commercial air travel. The program was the end result of a major NASA-industry-university effort to develop the

aerodynamic, structural, mechanical and acoustical technologies needed to verify the performance of such unique, fuel-efficient propellers.

At NASA's Langley Research Center, scientists and engineers conducted a series of highspeed ground tests to study the effect of heavy rain on the performance of alicraft wings. Initial results tend to confirm wind tunnel data that there is a loss of wing lift at extremely high rainfall rates.

Langley officials also announced development of the Takeoff Performance Monitoring System, an innovative new tool to help pilots make the critical go/abort decision during the takeoff role.

Recognizing that U.S. leadership in the production and sale of commercial airliners is being challenged, NASA greatly expanded its research into advanced "composite" structures made from epoxy-type resins and high-strength carbon fiber. Use of such materials in the wings and fuselages of future transport aircraft could significantly reduce their weight, improve their fuel efficiency and reliability.

The Civil Space Technology Initiative addresses near-Earth orbital requirements in areas such as automation and robotics, space power and information technology. Space systems of the next decade will use these technologies for cost-effective and reliable operations in Earth orbit. The Pathfinder program focuses on technology research for future solar system voyages in four broad areas: surface exploration, in-space operations, transfer vehicles and humans in space.

In May, NASA's Ames Research Center, successfully demonstrated a low-cost, parallelprocessing computer that potentially rivals today's most advanced supercomputers. The research program may allow applications such as structural analysis, artificial intelligence and computational electro-mechanics to run on smaller, more easilyaffordable computers.

Scientists at Lewis reached a milestone in the application of high-temperature superconductors in July, when they produced the first electronic circuit able to operate at 33-37 Gigahertz — three times higher than frequencies previously obtainable.

Voyager 2's encounter with Neptune gave researchers at the Jet Propulsion Laboratory an opportunity to demonstrate a new "artificial intelligence" computer program to detect and analyze spacecraft and ground data system anomalies. The Spacecraft Health Automated Reasoning Prototype helped to Identify a problem in the science data streaming down from Voyager prior to, its Neptune fly-by.

NASA is preparing Shuttle Mission 32 to retrieve the Long Duration Exposure Facility that has carried 57 science, technology and applications experiments in Earth orbit since April 1984.

SPACE OPERATIONS

The Tracking and Data Relay Satellite (TDRS-4) was successfully deployed in March from the Shuttle Discovery, marking completion of the TDRS system covers at least 85 percent of each low-Earth-orbiting spacecraft's orbital period and facilitates a much higher information flow rate between these spacecraft and the ground. NASA concluded an agreement with INTELSTAT, Washington, D.C., for the use of the C-Band capacity on two Tracking and Data Relay Satellites for international telecommunications purposes.

SAFETY, RELIABILITY, MAINTAINABILITY AND QUALITY ASSURANCE

Lockeed Engineering and Science Co., Houston, was named recipient of the NASA 1988-89 Excellence Award for Quality and Productivity.

To encourage more small businesses to improve their quality and productivity processes, NASA established a separate small business category for the 1989-90 Excellence Award program.

The Aerospace Safety Advisory Panel (ASAP) released its annual report in March praising NASA for its work on return-to-flight. The main focus of the ASAP was monitoring and advising NASA and its contractors on the STS recovery program. The report stated that efforts restored the flight program with better management, safety and quality assurance organizations and management communications.

INTERNATIONAL AFFAIRS

NASA's international cooperative activities in 1989 included:

- In October 1989, the Galileo spacecraft to Jupiter was successfully launched. Galileo is an international cooperative project with the Federal Republic of Germany, which provided the orbiter's retropropulsion module to perform mission maneuvers and permit insertion of the spacecraft into Jovian orbit.
- NASA signed a memorandum of understanding with the government of Japan in March, completing the international agreements for the construction and use of Space Station Freedom. Under the agreement, Japan willi provide the Japanese Experiment Module consisting of a pressurized laboratory and an exposed facility. The European Space Agency and Canada had signed agreements for their participation in the project in September 1988.
- In July, NASA and the German Minister for Research and Technology signed a memorandum of understanding to launch German Spacelab payloads on the Space Shuttle.
- In September, the U.S. government and the government of Japan exchanged diplomatic notes approving cooperation on the Geotail Mission. Geotail is a Japanese-built spacecraft which will make solar-terretrial physics measurements using Japanese and U.S. science instruments. NASA will launch the spacecraft in 1992.
- In December, NASA and the European Space Agency concluded an agreement for cooperation in the joint Solar Terrestrial Science Programme. This program consists of two missions, the Solar Heliospheric Observatory (SOHO) and Cluster (four spacecrafts that will fly in formation to observe the Earth's plasma environment). Under this agreement, ESA will develop the spacecraft for SOHO and Cluster. NASA will launch and operate SOHO and ESA will launch and operate Cluster. Experiments on the spacecraft will be provided by the U.S. and European scientists.
- Cooperation with the Soviet Union continued to progress under the U.S./USSA Joint Working Groups on Space Biology and Medicine; Solar System Exploration; Space Astronomy and Astrophysics; Solar-Terrestrial Physics and Earth Sciences. Key activities included; a telemedicine spacebridge for Armenia, linking U.S. and Soviet

hospitals; twenty-nine NASA science experiments flown on the September Soviet Blosat mission and two U.S. instruments for flight on the Soviet Spectrum-X astrophysics mission.

- Planning accelerated in 1989 for NASA's Earth Observing System (EOS), the cornerstone of the Mission to Planet Earth. A group of 41 instruments from the U.S., Canada, Japan and Europe was selected this year for flight on EOS and over 500 scientists from 13 countrieshave been identified to participate in the program.
- In February, NASA convened a panel of experts on Earth science and technology, which
 met in Abingdon, England, and generated 10 projects in the Earth sciences which will be
 implemented internationally in observance of International Space Year (ISY) in 1992.

COMMERCIAL PROGRAMS

Significant progress was made in 1989 by NASA's Office of Commercial Programs (OCP) in defining an overall program of commercial space development.

The Commercial Programs Advisory Committee conducted a thorough review of commercial space issues and formulated a series of key recommendations for consideration by the nation's leaders.

The document, "Issues in Strategic Planning for Commercial Space Growth," representing inputs from more than 90 industry representatives, addresses overall goals and objectives, the scope of commercial space activities and the role industry, academia and government, explores issues and barriers and suggests federal actions and policy changes.

In 1989, OCP sponsored commercial development payloads on three shuttle missions and funded the first U.S. Commercial taunch of a materials science payload. Commercial experiments flown on the shuttle included:

*Protein Crystal Growth, an experiment package flown by the NASA-sponsored Center for Macromolecular Crystallography located at the University of Alabama in Birmingham, was carried aboard STS-29 and will be flown on the STS-32.

*Fluids Experiment Apparatus, flown on STS-30, is scheduled to fly on STS-32. The FEA, a modular microgravity chemistry and physics laboratory, is being flown under a NASA-Rockwell International Corp. joint endeavor agreement (JEA) in the field of floating zone crystal growth and purification research.

*Polymer Morphology, a 3M-developed organic materials processing experiment, was designed to explore the effects of microgravity on polymeric materials as they are processed in space. The experimentwas conducted on STS-34 in October.

NASA in 1989, initiated a grant funding for a commercial sounding rocket program. Consort 1, a package of materials science investigations launched successfully on March 29 atop the commercially provided Starfire rocket at White Sands Missile Range, N.M., was the first flight conducted under this effort.

Consort 2, taunched Nov. 15 at White Sands, was only a partial success due to a malfunction in the rocket's guidance package, resulting in termination of the mission as the rocket strayed off course. However, the experiments payload parachuted safely to Earth ans suffered only minor damage. Important payload data was recorded during the brief flight and indicated that the experiment equipment performed flawlessty. The payload will be launched again at a later date.

Other key OCP activities in 1989 included:

*Announcement of new digital, visual-filtering technology, developed by a researcher at NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif., to aid sufferers (mostly elderly) from maculopathy or central spot blindness.

Introduction of an implantable, rechargeable physiologic sensor to monitor glucose marked a major advance for insulin-dependent diabetics. The sensor is now being developed in a collaborative effort among the Johns Hopkins University Applied Physics Laboratory, Laurel, Md.; the University of New Mexico, Albuquerque; and NASA's Goddard Space Flight Center.

"The collaboration of the Center for Commercial Development of Space Power, Auburn University, Ala., and Maxwell Laboratories, San Diego, to develop a stronger, more efficient power supply for tasers, x-rays, spacecraft and other users. The advance, which will result in commercial uses of the technology on Earth, represents the first

technology spinoff from NASA/industry-supported research at NASA's 16 Centers for Commercial Development of Space.

*NASA's Ames Research Center, Genentech Inc., South San Francisco, Calif.; and Penn State's Center for Cell Research, announced collaboration on a groundbased and Space Shuttle experiment program to increase medical knowledge to treat human bone diseases, organ regeneration and transplantation, and immune and skeletal muscle cell definiciency.

EDUCATIONAL AFFAIRS

The first 17 Designated Space Grant Colleges/Consortia were selected on Aug. 31, 1989, Initiating NASA's National Space Grant College and Fellowship Program. These designated cotleges/consortia, will receive up to \$225,000 in grants and \$100,000 in fellowships, beginning in Fiscal Year 1990 for 5 years. The program is designed to create a network of universities capable of contributing to aerospace science and technology and training a highly skilled workforce.

President Bush selected "Endeavour" as the name for the replacement Space Shuttle orbiter on March 20, 1989. The name resulted from a nationwide competition supported by educational projects created by student teams in elementary and secondary schools.

NASA announced the opportunity for educators to participate in the first experiment ever to study the effects of long-term space exposure on living tissue. With the return of the Long Duration Exposure Facility, deployed in Earth orbit in April 1984, 12.5 million tomato seeds, packaged in kits, will be available to teachers in grades 5 through university.

Through a pilot program, NASA Marshall Space Flight Center, has opened its computerized science data bases to the nation's universities to stimulate "cottage industry" space research by professors and entice more students into science and engineering studies.

Three student experiments, selected under the Space Shuttle Student Involvement Program, flew aboard the Space Shuttle in 1989.

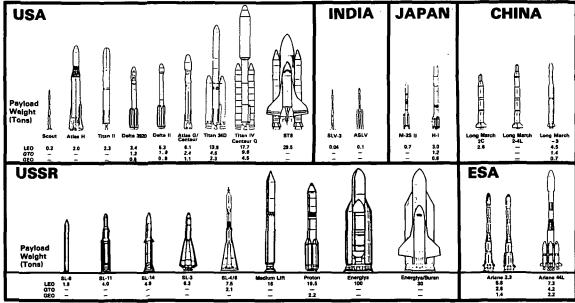
In its 8th year, the Space Science Student Involvement Program selected eight national winners in the Space Station category. Top honors, plus a \$3,000 scholarship and a computer went to Diane Fogel, Landsdale, Pa., for her proposed experiment to test remedies for bone loss during space flight.

The Aerospace Education Services Project continues to be one of NASA's most popular education programs. Over 1.2 million students and 28,000 teachers participated in school visits, classroom lectures and teacher workshops.

During the summer, over 200 educators spent 2 weeks at one of NASA's nine field centers learning the latest in aerospace science, working with educational specialists to fit materials into classroom curriculum.

Over \$8 million was awarded to 496 students at 110 universities for advanced study in engineering and space, physical, life and environmental sciences under NASA's Graduate Student Researcher's Program.

In the University Advanced Design Program, 36 universities received 3-year grants to study topics in space and aeronautical missions in the post-Space Station era, such as manned Mars alicraft and delivery systems, long-term space habitat, lunar launch and landing facilities and high-speed civil transport.


Section B

Space Flight Activity

NASA Launch Vehicle Performance

										s	umm	ary	of	NA	SA	Lau	nche	es l	γ \	/ehi	cle	(Orl	bital)										
	1957	1958	1959	1960	1961	1962	1963	1964	1965										-			-			1981	1982	1983	1984	1985	1986	1987	1988	1989	TOTAL
Atlas					2	3	1	Ö	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7
Atias Agens					2	4	0	5	2	9	8	1	0	0	0	0	0	D	0	D	0	0	0	0	Ð	0	0	0	0	0	٥	0	0	29
Atlas E/F	•••				••	• •			••			• •			• •	••		••	••		••	2	1	1	1	0	1	- 1	0	- 1	0	1	0	9
Atlas Centsur	•	• • •		• • •	••		1	1	1	4	4	3	3	0	3	4	3	1	2	3	2	7	2	3	4	2	1	1	3	1	0	0	1	60
Delta			• •		••	••	1	4	7	8	12	7	10	7	5	7	5	7	12	9		10	3	3	5	7	7	4	0	1	2	1	1	154
June 1		1	. 2	1	1	٥	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5
Seturn I		•••	•		••	••		3	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	0	0	٥	0	6
Seturn IB	• • •	•••		••	••	••	• •	••		1	0	2	0	0	0	0	3	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	٥	7
Saturn V		•••	• •		•••	••	••	•••	••	••	1	2	4	- 1	2	2	1	0	0	0	c	0	0	0	0	0	0	0	0	0	0	0	0	13
Scout		•••			2	1	2	6	4	1	2	4	2	2	5	5	1	6	2	2	1	1	3	0	- 1	0	1	- 1	2	1	1	4	٥	63
Shuttle		• • •	• •	• • • •	••	••		•-	••	••	•-	••		••	••			••	••		••		••	••	2	3	4	5	•	1	0	2	5	31
Thor Able			1	2	0	0	0	0		0	D		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٥		0	0	0	0	4
Thor Agens			• •	• • • • • • • • • • • • • • • • • • • •	•	1	0	2	2	2	. 1	0	2	2	٥	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	٥	12
Thor Delta		•••	• • •	. 2	3	8	- 5		0	0	0	0	0	0	0	0		0	0	0	0		0	0	0	0	- 1	0	0	0	0	0	0	21
17tan II		•••	• • •	•••	•••			1	5	5	0	0	0	0	0	Q	Đ	0	0	٥	0	0	0	0	0	0	0	0	0	0	0	0	0	11
Titan Centaur			:		-:-			-:-	•••	•:		•••			-:	•••	•••	2	2	1	2		0	0	0	0	0	0	0		0	0	0	7
Vanguard	••		. 2	0	U	U	0	۰	U	0		0	U	0	0	Ū	0	0	U	0		U	0	U	0	Ū	0	0	0	0	0	Ü	U	2
TOTAL .		2	5	5	10	18	11	22	24	31	26	19	21	12	15	18	13	16	19	15	14	20	9	7	13	12	15	12	14	5	3	8	7	441
										Su	mma	ry	of I	NAS	ΑL	aun	ches	s by	, Ve	hic	le (Sub	orbi	tal)										
*	1957	1958	1959	1960	1961	1962	1963	1964	1965			-													1981	1982	1983	1984	1985	1986	1987	1988	1989	TOTAL
						_					_		_	_		_	_	_	_	_	_	_		_	_	_	_	_	_		_		_	
Atlas	•••		,	q	١,	Q	0	- 1	1	9	0	a	· ·	0	Q	ų.	a	o	Q.	0	0	0	0	q	g.	0	q	a	ā	a	g	Q.	0	4
Atlas Centaur Little Joe	••	• • •	٠.:	•		•••	•			0	0	0	0	0	0			0	0	0			0		۰	0	0	0	0	0	0	0	0	1
Redstone	•••				- 3		1	2	٠	1	0	0	0		0			0	0			0		0			0	•	0				0	5
Seturn I	••		•••	1	٠.			0			0	U	٠	0	0	0		0	Ü	0	0		ò		Č	0	Ů	0		ů			0	4
Saturn IB	••		• • • • • • • • • • • • • • • • • • • •	•••	1	•	,	٠	U		ŭ	0	ŭ	٠	Ų		Ü	v		٠	Ÿ	٠	U	Ų	,	٠	0	ů	ů	ŭ	v	ŭ	0	
Scout	••	• • •	• • •			•	-:			- 2	٠	2	0	٠	2	۰	0	0	v			v			٠	0	0			0	0	0	0	2 16
Thor	•••		• • • • • • • • • • • • • • • • • • • •		'		,	,	,	,	'n	0		,	2			٠	,	1				Č	Ň	v	0							2
Titan II		-:				٠.			1	0	ů	9	0	Q	0	ă	Q	Q	Q	ā	ū	Q	٥	Q	q	9	a	Q	Q	Q	o	ů	0	1
TOTAL															í								٠		í	,								
TOTAL	••		• •	•		5	3		2			2	0	1	2	٥	3	0	٥	<u> </u>	0	8	0	0	<u> </u>	٥	_ 0	٥		<u> </u>	8	٥	٥	44

Current Worldwide Launch Vehicles

Summary of Announced Launches

·												Sui	nma	iry	of \	Vorl	dwi	de I	aur	iche	s													
	1957	1958	1959	1960	1961	1952	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	TOTAL
Australia			.,								1	0	٥	0	٥	0	0	0	0	٥	0	0	0	0	0	0	0	0	0	0	0	0	0	1
DOD		5	6	11	19	34	27	35	39	42	32	26	19	17	17	13	10		9	11	10	12	7	6	5	6	7	10	3	1	5	4	10	465
ESA			• •	• • •	••		••	••	••	• •	••	••		••		••	••	••	••	••		•	1	٥	2	0	2	4	3	2	2	7	7	30
France	••					••	••		1	1	2	0	0	2	1	0	0	0	3	•	0	. 0	0	0	0	0	0	0	0	٥	0	0	0	10
India						••	••	••		••	••	••	• •		••	••		••	••	••	••	••	••	1	1	0	1	0	0	0	0	0	0	3
Isreal	••	• •		• •			••	••	••		••	••	• •	••		••	••	••			••	••	••			• •	••	••	••	••	••	1	0	1
Japan	••		.,				••	••	• •		••	••	••	1	2	1	0	1	2	1	2	3	2	2	3	1	3	3	2	2	3	2	2	38
MDAC							••	••	••	••	••		••	••	••		••	••	••		•-					••	••	••	••	• •		. • •	1	1
NASA	• • •	2	5	5	10	18	11	22	24	31	26	19	21	12	15	18	13	16	19	15	14	20		7	13	12	15	12	14	5	3	8	7	441
PRC				• •		••		••	••	••	• •	••	• •	1	1	0	0	0	3	2	0	1	0	C	1	1	1	3	1	2	2	4	0	23
United Kingdom	••	• •	• •	• •	••		••	••	••	••	••		••	••	1	0	0	0	0	9	0	0	Q	Q	0	Q	0	٥	0	0	0	Q	Q	1
USSR	2	1	3	3	6	20	17	30	48	4 4	66	74	70	81	63	74	86	61	89	99	98	88	87	89	98	101	98	97	97	91	95	90	74	2180
TOTAL	2	8	14	19	35	72	55	87	112	118	128	119	110	114	120	106	109	106	125	128	124	124	106	105	123	121	127	129	120	103	110	116	101	3195
												8	um	mar	y 0	N/	ASA	La	unct	105														
	1957	1958	1959	1960	1961	1962	1953	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1985	1987	1988	1989	TOTAL
NASA		2	: 5		10	15	9	20	21	26	18	12	13	6	6	9	9	2	10	. 1	3	8	3	1	4	4	4	6	9	1	0	2	6	250
Cooperative		-				. 2	0	2	2	0	2	3	2	0	5	1	0	5	1	2	1	2	0	0	0	0	1	0	0	0	0	1	0	32
DOD		-					1	0	0	1	0	0	0	0	0	1	1	0	1	2	1	1	2	2	2	0	1	1	2	3	1	4	1	28
USA		-				. 1	1	0	1	4	6	3	4	4	3	3	2	4	4	8	2	4	3	4	7	6	8	4	3	1	1	1	0	92
Foreign		-	,				••					1	2	2	1	4	1	5	3	2	7	5	1	0	0	2	1	1	0	0	1	0	0	39
TOTAL		2	: 5		10	18	11	22	24	31	26	19	21	12	15	18	13	18	19	15	14	20	9	7	13	12	15	12	14	5	3	8	7	441
Suborbital (Includes 3 Coope	 erative/R	dmie	4 Irsable	Launo	hes)	5	3	7	2	4	1	2	. 0	1	2	٥	0	0	٥	1	0	0	0	0	0	۰	0	0	0	0	٥	. 0	0	. 440

Summary of Worldwide Payloads

DTAL		1957 1	958	1959 1	960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971 1	972 1	973	1974 1	975 1	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	TO
3 AMSAT		-	-	-	-	-	-	-	-	-	_	-	-	_	_	-	1		1				1						0						
5 ATAT		~	-	-	÷	-	- 1	2	1	0	٥	۰	0	٥		٥	ò	ō	ò	ō	ō	ŏ	ò	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ĭ	ŏ	ŏ	ŏ	ŏ	
1 ASC		-	-	-	_	-	-	-	-	-	-	-	`-	-	_	-	_	-	-	-		_	_	_	_	· -	_		-	1	ŏ	ŏ	ŏ	ă	
2 ASCO		-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	_	_	-	_	_	-	_	2	ŏ	ŏ	ō	õ	
5 Australia		-	-	-	-	-	-	-	-	-			0	۰	1	0	٥	0	0	٥	0	0	0	0	0		0	0	0	2	ŏ	- 7	ŏ	ŏ	
2 Brazil		-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	_	_	ū	-	-	-	-	-	-	-	_	-	1	ĭ	à	ŏ	ŏ	
9 Canada		-	-	-	_	-	-	-	_	-	-	-	-	_	-	-	1	1	0	1	٥	٥	1	0	٥	0	2	1	1	1	ó	ă	ō	ā	
5 NASA/Cana	da	-	-	-	-	-	1	۰	0	1	٥	۰	۰	1	٥	1	ò	۰	0	0	1	ō		- 6	ō	ŏ	ō	ò	Ó	ò	ō	ŏ	ō	ō	
45 COMSAT		-	-	-	-	-	-	-	-	1	1	3	1	3	3	2	2	1	1	2	6	i	3	ō	ň	ã	5	ž	,	3	ŏ	ň	1	- 1	
2 Czechoslova	et in	-	-	-	-	-	-	_	-	-	-	_	-	_	_	-	-	_	_	-	-		1	ō	Ó	ñ	- 5	õ	- 5	ā	ō	ň	ò	i	
674 DOD		-	5	6	12	23	. 39	44	50	66	71	57	43	32	18	24	14	11	a	10	18	12	14	11	Ă	7	Ă	ă	12	11	š	ă	ă	12	
6 NASA/ESA		-	-	-	-	-	-	_	-	-	_	_	2	0	ō	0	0	0	ŏ	ā	ā	2	2	a	ŏ	ė	ō	ă	ā	ò	ă	ő	ō	ō	
25 ESA		-	-	-	_	-	-	-	-	-	-	-	1	1	ò	ō	3	ò	ō	1	ŏ	2	2	i	ō	4	Ď	2	2	i	ŏ	ī	5	,	
19 France		-	-	-	_	-	-	-	-	1	t	2	0	Ó	ź	1	ī	0	ó	5	ō	ī	õ	ó	ő	ó	ő	ō	ī	í	ĭ	ò	ī	ĩ	
6 NASA/Franc		-	_	-	-	-	-	-	-	1	o	ő	0	Ó	ő	2	ó	1	ō	ō	ō	ò	ő	ő	ã	1	ő	í	ó	ó	ó	ŏ	ò	ò	
2 France/Gern	папу	-	-	-	-	-	-	-	-	_	-	-	-	_	_	-	-	_	1	1	ō	ō	ō	ō	ŏ	ó	ō	ó	ŏ	ō	ŏ	ŏ	ŏ	ō	
9 Germany		-	-	-	-	-	-	-	-	-	-	-	-	٠.	1	0	0	0	1	0		ò	ō	ō	ō	ō	ō	2	1	ō	ă	1	1	2	
4 NASA/Germ	any .	-	-	-	-	-	-	-	-	_	-	-	-	1	۰	ò	1	•	1	ō	1	ō	ó	ō	ō	ō	ō	ō	0	ō	ō	ò	ó	ō	
6 GTE		-	-	-	-	_	-	-	-	-	-	-	-	_	-	_	_	-	_				_	_	_	_	-	-	2	1	ĭ	ŏ	2	ō	
7 Hughes		-	-	-	-	-	-	-	-	_	-	-	_	-	-	-	-	-	_	-	-	_	~	_	_	-	-	2	3	2	ò	ŏ	ō	õ	
11 India		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	0	0	0	1	1	3	1	ž	ō	ō	ŏ	ŏ	2	ŏ	
5 indonesia		-	-	-	-	-	-	-	-	_	-	-	-	-	-	_		-	_	_	ī	ī	ō	ò	ò	ŏ	ò	ī	ī	ŏ	ō	ĭ	ō	ŏ	
1 Isrezi			-	-	-	-	-	-	-	-	-	-	-	٠.	_	_	-	_	-	_	_	-	_	_	_	_	_	_	_	-	-	_	1	ō	
1 italy		~	-	-	-	-	-	-	-	~	-	-	-	_		-	_	-	-	_	-	1	0	0	۰	٥	0	٥	0	٥	٥	0	ó	Ď	
5 NASA/taly		-	-	-	-	-	-	-	1	0	0	1	0	a	0	1	0	0	1	٥	0	ó	ó	ō	ō	ŏ	ō	ō	ō	ó	ŏ	ō	i	ŏ	
44 Japan		-	-	-	-	-	•	-	-	_	-	-	-	-	1	2	. i	o	1	2	i	4	4	2	2	3	1	3	3	2	3	3	2	4	
2 Maxico		-	-	-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>	-	-	-	-	-	-	-	_	_	-	-	_	-	2	ō	ō	ō	0	
278 NASA		٠ -	2	5	5	13	13	. 8	. 21	21	27	15	17	15	8	9	10	9	2	12	1	3	10	3	1	5	4	6		12	- 1	ō	2	9	
6 NATO		-	'-'	-	-	-	-	-	_	-	-	٠	-	-	1	1	0	0	0	٥	1	1	1	ó	Ó	ō	1	ō	ō	ō	ò	ō	ō	ō	
2 NASA/Nethe	rlands	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	٥	٥	0	0	0	ò	ò	0	1	ò	0	ō	ă	ō	ō	
30 NOAA		-	-	-	-	-	-	-	-	-	3	3	2	1	1	1	1	1	1	1	1	1	1	1	2	2	ō	2	2	0	ĩ	ī	1	ō	
2 NASA/NOA/	Α .	-	-	-	-	-	-	-		-	-	-	-	-	-	_	-	-	1	1	0	0	o	0	0	٥	۰	0	0	٥	0	0	0	0	
3 NASA/NRL		-	-	-	-	-	-	-	-	1	0	0	1	0	0	1	0	٥	٥	o	. 0	ō	ō	ō	ō	ō	ō	ō	ō	ō	õ	ŏ	ō	ō	
1 N. Utah Univ		-	-	-	-	-	-	-	-	-	-	-	-	~	-	-	-	_	_	-	-	_	-	_	_	-	_	-	-	1	ō	ò	0	o	
1 PanAmSat		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	~	-	_	-	-	_	-	_	_	-	_	-	-	1	ō	
24 PRC		-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	0	0	0	3	2	0	1	0	۰	3	1	1	3	1	3	1	3	ō	
10 RCA		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	_	1	ī	ō	0	1	ò	1	2	2	ō	1	ī	ó	ō	ō	
4 S6S		-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	_	-	-	_	1	1	ĩ	ō	ī	o	ò	ŏ	ō	ō	
1 NASA/Spain	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	٥	0	0	0	0	ò	ò	ò	ō	ó	ō	ō	ŏ	ŏ	ō	
2 Sweden		-	-	-	•	-	-	-	-	-	-	-		-	-	_	-	-	-	_	_	-	-	_	-	-	-	-	_	_	1	ō	0	ī	
11 United Kingo	som .	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1	0	0	3	٥	0	0	0	1	0	,	0	0	2	٥	ó	ŏ	ō	i	
5 NASA/UK		-	-	-	-	-	1	0	1	0	٥	1	٥	0	0	1	ó	0	1	o	ò	ō	ò	ó	ō	ó	õ	ő	ō	ò	ō	ō	ō	ò	
564 USSR		2	1	3	3	4	20	17	35	66	44	66	74	70	88	96	68	106	95 1	109	121	104	119	101	110	123	119	115	115	118	114	116	107	95	2
8 WU		-	-	-	-	-	-	-	_	_	-	-	-	-	_	-	-	_	2	0		0	0	1	0		2	0	1	0			0	0	-
858 TOTAL		2	8	14	20	40	75	71	109	158	147	149	141	125	126	144	123		122 1			400							:				136		31

B-5

Summary of NASA Payloads

												Su	mma	ary	of I	NAS	A O	rbit	al P	aylo	oads	;												
	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973 1	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	TO
nned Flight		••			5	1	0	4	4	12	1	4	4	1	2	2	4	0	1	0	٥	0	٥	٥	2	3	4	5	9	1	0	2	5	
arned					3	1	0	0	4	6	1	4	4	1	2	2	3	Ď	1	0	ō	ō	ō	ò	2	3	4	5	9	1	0	2	5	
manned	• •				2	0	0	4	0	6	0	0	0	0	0	0	1	0	0	0	ō	ō	Ó	0	0	Ó	0	0	0	0	0	0	0	
lcations				••				••		2	2	2	1	0	0	0	0	1	1	1	Ó	2	2	0	0	0	0	1	0	0	0	0	0	
munications				1	0	1	2	3	0	0	0	0	0	0	0	0	0	0	0	0	Ó	0	ō	0	0	0	0	0	0	0	0	0	0	
Obs.			••	2	- 1	3	2	1	2	1	0	0	1	2	0	2	0	0	2	0	0	3	0	0	0	1	0	0	0	0	0	0	0	
dence	••	•-			••					1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
r/Planetary	• •	2	1	1	2	4	0	4	3	5	5	5	3	0	3	2	2	0	4	0	2	2	0	0	0	0	0	0	0	0	0	0	0	
ics/Astron.	••	••	4	1	4	3	3	7	6	4	5	5	4	1	3	3	3	1	4	0	1	2	1	1	3	0	0	1	2	0	0	0	2	
levelop.							1	1	2	2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
e Tech.	••		••	••	1	1	0	1	3	0	0	0	0	2	0	1	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	- 0	0	
dng									1	0	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	1	1	
AL		2	5	5	13	13	8	21	21	27	15	17	15	8	9	10	9	2	12	1	3	10	3	1	5	4	6	9	12	1	0	3	9	
											S	umn	nary	of	NA	\SA	Sub	orb	ital	Pay	load	ds												
	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966			-				Sub			•			1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	TC
	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966			-							•			1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	TC
ned		1958	1959 4	2	7 2	2	3	2	1965 1 0	3	1967 0 0	1968 0 0	1969						1975 0 0	1976	1977	1978	1979 0 0	1980 0 0	1981 0 0	1982 0 0	1983 0 0	1984 0 0	1985 0 0	1986	1987 0 0	1988 0 0		TC
ned named			1959 4 4	1960 2 2	7	2 0 2	3 0 3	2 0 2	1 0 1	3 0 3	1967 0 0	1968 0 0	1969	1970 0 0 0	1971 0 0 0	1972 0 0 0	1973 1 0 0 0	1974 0 0	1975 0 0	1976 0 0	1977 0 0 0	1978 0 0 0	0	0	0	0	0	0	0	0	٥	0	0	TC
ned nanned munications			1959 4 4	2	7 2 5	2 0 2 2	3 0 3	2 0 2 0	1 0 1	3 0 3 0	1967 0 0 0	1968 0 0 0	1969 0 0 0	1970 0 0 0	1971 0 0 0 0	1972 0 0 0 0	1973 1 0 0 0 0	1974 0 0 0	1975 0 0 0	1976 0 0 0	1977 0 0 0	1978 0 0 0	0 0	0 0 0	0	0 0	0 0 0	0 0	0 0 0	0	0	0 0	0	TC
ned named munications ics/Astron.	::		1959 4 4 	2 2 	7 2 5 	2 0 2 2	3 0 3 0	2 0 2	1 0 1 0	3 0 3 0	1967 0 0 0 0	1968 0 0 0	1969 0 0 0	1970 0 0 0 0	1971 0 0 0 0	1972 0 0 0 0	1973 1 0 0 0 0	0 0 0 0	1975 0 0 0 0	1976 0 0 0	1977 0 0 0 0	1978 0 0 0 0	0 0 0 0	0 0 0	0 0 0	0	0 0 0	0 0 0	0 0 0	0 0	0 0	0 0	0	TC
ned Flight ned named munications ics/Astron. Develop.			1959	2 2	7 2 5	2 0 2 2	3 0 3	2 0 2 0	1 0 1	3 0 3 0	1967 0 0 0	0 0 0 0 0	1969 0 0 0	1970 0 0 0	1971 0 0 0 0	1972 0 0 0 0	1973 1 0 0 0 0	1974 0 0 0 0	0 0 0 0 0	1976 0 0 0 0	1977 0 0 0	1978 0 0 0 0 0	0 0	0 0 0	0	0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0	0 0	TC
ned named munications sics/Astron.	:-		4	2 2 	7 2 5 	2 0 2 2	3 0 3 0	2 0 2 0	1 0 1 0	3 0 3 0	1967 0 0 0 0	1968 0 0 0	1969 0 0 0	1970 0 0 0 0	1971 0 0 0 0	1972 0 0 0 0	1973 1 0 0 0 0	0 0 0 0	1975 0 0 0 0	1976 0 0 0	1977 0 0 0 0	1978 0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0	0 0	0 0	0 0 0	TC

Successful USA And Cooperative Payloads

														Sı	ımn	ary	of	US	A P	ayl	oad	ls														
	1957	1958	1955	1960	19	61 1	962	1963	1964	1965	1965	1967	1968	1969	1970	1971	1972	197	3 1974	19	75 19	76	1977	1978	1979	1980	1981	1982	1983	1984	1985	1985	1987	1988	1989	TOTAL
AMSAT		•-																	, .	,	n	n	0	1	٥	•	•	٥	•			٠		•	•	. 3
ATAT		• •					1	2	1	0		0	0	0	0	0	0)	ŏ	ō	ă	ò	ă	ň	ň	ō	ŏ	ň	- 1	ň	ň	ň	ŏ	5
ASC	• •	• •	-			••																									- i	ŏ	Ö	ŏ	ō	1
COMSAT		••								1	1	3	1	3	3	2	2	2	1 .	ı	2	6	1	3	0	1	3	,	,	,		ō	ň	•	•	45
DOD	••	5	6	12	: :	23	39	44	50	66	71	57	43	32	18	24	14	1	1 1		10	18	12	14	11	ė	7	-	Ā	12	11	š	ă	10	12	675
GTE		••																												- '-	- ";	- 1	ĭ			6
Hughes	••																													7		à	ĕ			7
NASA		2	5	5		13	13	8	21	21	27	15	17	15	8	9	10	, ,	9 2	,	12	1	3	10	3	1	5	4	ē	ă	12	1	ŏ	ä	ă	279
NOAA	••							••			3	3	2	1	1	1	1			i	1	i	· 1	1	,	,	ž	ō	,	•		- ;	٠	- 1	ň	30
N. Utah Univ.																								.:		•				•	ĭ	ċ	'n	'n	ō	1
PanAmSat	••																														:			- 1	ŏ	i
RCA																					1	•	٥	0	1	•	1	,	2		1	٠.		·	ň	10
SBS	••																								- :	ĭ	- 1	•		٠,	ď	ď	ŏ	ă	ň	4
WU			•				••			••	••		• •						- :	2	0	0	0	0	1	ó	ò	2	ō	i	ŏ	ŏ	ŏ	ő	Ď	6
TOTAL		7	11	17	';	36	53	54	72	88	102		63 nma	51 ry (30 of N	38 AS						27 3 y l	17 oad:	29 S	17	13	19	17	20	32	33	9	9	18	22	1073
	1957	1958	195	9 196	0 19	961	1962	1963	1964	1965	1966	1967	1968	1969	1970	197	1 197	2 197	73 197	4 19	975 1	976	1977	1978	1979	1980	1981	1982	2 1983	1984	1985	1986	1987	1988	1989	TOTAL
Canada						••	1	0	0	1			0		, ,		1	0	0	0	٥	1	0	0	0	0	0	0		0		0	0	0	0	. 5
ESA	••	•		٠.	-			••	• •		-		. 2) ()	0	0	0	0	0	2	2	. 0	0	0	0	0			0		0	0	6
France							••			1		0	0			1 2	2	0	1	0	0	0	0	0	0	0	1	0	1	Ó		0		0	0	6
Germany)	1	0	1	0	1	0	0	0	Ö	0	Ċ	0	ā		ō	. 0	0	0	4
Italy	••	-			-				1	0) 1	0				1	٥	0	1	0	0	ò	0	ō	ō	ō	0	0	à	ı ö	ō	. 0	1	o	5
Netherlands	••																			,	D	ō	ō	٥	ō	٥	ō	0) 1	ō	Ď	ō	٥	Ó	ō	2
NOAA		-																		1	1	ō	ó	ó	ŏ		ŏ	Ď		ŏ	Ď	ŏ	ŏ	ō	ŏ	2
Naval Res. Leb.										1			1				1	0	٥	0	ò	0	ő	ō	ŏ	ŏ	ŏ	ō		ŏ	ă	ŏ	ŏ	ō	ā	3
Spein													:					. ,		1	ō	ŏ	ō	ă	ŏ	ŏ	ŏ			ŏ	ă	ŏ	ă	ŏ	ă	
United Kingdom	••	•			-		1	0	1	0		1	0			1	1	0	0	1	ō	ō	ō	ō	ō	ō	ō	ō	i	ò	ō	ō	ō	ō	ō	
TOTAL		•					2	0	2	3		2	3			•	3	1	1	6	1	2	2	2	0	0	1	٥	2	٥	. 0	0	0	1	0	39

Soviet Spacecraft Designations

ASTRON: Ultraviolet telescope jointly designed by the USSR and France. BURAN (Snowstorm): Reusable orbital space shuttle. COSMOS: Designation given to many different activities in space. COSPAS/SARSAT: International search and rescue satellite system. EKRAN (Screen): Geosynchronous comsat for TV services. ELEKTRON: Dual satellites to study the radiation belts. FOTON: Scientific satellite to continue space materials studies. GORIZONT (Horizon): Geosynchronous comsat for international relay. GRANAT: Astrophysical orbital observatory INTERCOSMOS: "International" scientific satellite. ISKRA: Amateur radio satellite. KVANT: MIR space station astrophysics module. LUNA: Lunar exploration spacecraft. MARS: Spacecraft to explore the planet Mars. METEOR: Polar orbiting meteorological satellite. MIR (Peace): Advanced manned scientific space station in Earth orbit.

MOLNIYA (Lightning): Part of domestic communications satellite system.

OKRAN: Oceanographic satellite to monitor ice conditions. ORBOL: Joint Soviet/French scientific satellite. PHOBOS: International project to study Mars and its moon Phobos. POLYOT: Maneuverable satellite capable of changing orbits. PROGNOZ (Forecast): Scientific interplanetary satellite. PROGRESS: Unmanned cargo flight to resupply manned space stations. PROTON: donestic TV.

Scientific satellite to investigate the nature of Cosmic Rays. RADIO: Small radio relay satellite for use by amateurs. RADUGA (Rainbow): Geosynchronous comsat for telephone, telegraph, and RESURS: Earth resources satellite. SOYUZ (Union): Manned spacecraft for flight in Earth orbit. SALYUT: Manned scientific space station in Earth orbit. Early series of satellites to develop manned spaceflight. VENERA: Spacecraft to explore the planet Venus. VOSKHOD: Modified Vostok capsule for two and three Cosmonauts. VOSTOK (East): First manned capsule; placed six Cosmonauts in orbit. Automatic spacecraft development tests. Zond 5 was the first spacecraft to make a circumlunar flight and return safely to Earth.

NADEZHDA: Navigation satellite.

Unofficial Tabulation of USSR Payloads

DATO	1957	1958	195	9 19	960	1961	1962	1963	1964	1965	1956	1967	1968	1969	1970	1971	1972	1973	1974	975	1976	1977	1978	1979 1	1980	1961	1982	1983	1984	1985	1986	1987	1988	1989	TOTA
1 Buran																																	1	0	
2054 Cosmos							12	12	27	52	34	61	64	55	72	81	72	85	74	85	101	86	96	79	88	94	97	94	94	99	96	97	79	68	205
19 Ekran																		•••			1	1	٥	2	2	1	2	2	2	1	1	2	2	0	
4 Electron		٠							4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2 Foton																		••													••		1	1	
19 Gortzont																							- 1	2	1	0	2	2	2	1	2	1	2	3	
1 Granat														••										••										- 1	
23 Intercosmos														2	2	1	3	2	2	2	2	1	1	2	0	2	0	0	0	0	0	0	0	1	
3 iskra																										1	2	0	0	0	0	0	0	0	
2 Kvant								••	••						••								••	••	••	••	• •	••	••	••	••	1	0	1	
2.4 Luna				3	0	٥	٥	1	0	4	5	0	1	- 1	2	2	1	1	2	0	1	0	0	0	. 0	0	0	0	0	0	0	0	0	0	
7 Mars							- 1	0	0	0	0	0	0	0	0	2	0	4	0	0	O	0	0	0	0	0	0	0	0	0	0	0	0	0	
52 Meteor								••	••				••	2	4	4	3	2	5	4	3	4	0	3	2	2	2	1	1	3	1	2	2	2	
1 Mir								••	••	••				.,	••	••	••	••						••	••	••	••	••	• •	••	1	0	0	0	
130 Molniya										2	2	3	3	2	5	3	6	8	7	10	7	6	6	5	4	8	5	7	4	8	7	- 1	7	4	
1 Nadezhda					••							••	••						••	••	••	••							••					1	
1 Okran					••			••	••	• •			••	••		••	••	••	••	••		• •		••	••	••	••			••	•-	••	1	0	
2 Phobos									••	••			••	••	••		••	••	••	• •	••	• •		••		••	• •	••	• •				2	0	
2 Polyol					••			1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٥	0	0	
10 Prognoz					••		. •		••					••	••	• •	2	1	0	1	1	1	- 1	0	1	0	0	1	0	1	0	0	0	0	
43 Progress	••	٠.									••	••	• •							••	• • •	••	4	3	4	1	4	2	5	1	2	7	6	4	
4 Proton		• •								2	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
8 Radio								••	••	••	••		• •	••	••	• •	••		••	••	••	• •	2	0	0	6	0	0	0	0	0	0	0	0	
25 Raduga					••	••	• •	• •						• •	••	••		••	••	1	1	1	- 1	1	2	3	1	2	2	2	2	2	1	3	
5 Resurs	••	••									••	••	• •					••	• •	• •	• •	• •		••				• •	••	••		••	••	5	
7 Salyut		• •			• •					••	••	••	••	••		1	0	1	2	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	
63 Soyuz					• •	••		••	••			1	2	5	1	2	0	2	3	4	3	3	5	4	6	3	3	2	3	2	2	3	3	1	
12 Sputnik	2	1		0	3	4	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2 Vega					••	••	••	••	••	••				••	• • •	••	••	••	••	••	••	••	••			••	••	••	2	0	0	0	0	0	
15 Venera						••	••	. ••	• •	2	0	1	0	2	1	0	1	0	0	2	0	0	2	0	0	2	0	2	0	0	۰	0	0	0	
4 Vostok					••		2	2	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2 Voskhod	••	••				••	••	••	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
10 Zond								••	2	3	0	0	3	,	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
6 No Designation	••	••				••	3	1	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٥	0	0	0	0	
2564 TOTAL	2			3	3	4	20	17	35	56	44	66	74	70	88	96	88	106	95	109	121	104	119	101	110	123	119	115	115	118	114	116	107	95	25

NASA Astronauts

Of the 172 astronauts selected in 12 groups from 1959 to 1989, 122 have flown on 63 manned missions; 85 have flown on 32 Shuttle flights: 10 female astronauts have flown on 12 Shuttle flights. * = Female NAME FLIGHT FLIGHT NAME ADAMSON, James C. STS 28 STS 51-1. STS-26 COVEY, Richard O. ALDRIN, Edwin E., Jr. Gemini XII, Apollo 11 CREIGHTON. John O. STS 51-G ALLEN, Joseph P. STS 5. STS 51-A CRIPPEN, Robert L. STS 1, STS 7, STS 41-C, STS 41-G ANDERS, William A. Apollo 8 CINNINCHAM, Walter Apollo 7 ARMSTRONG, Neil Gemini VIII, Apollo 11 DUKE, Charles M. Apollo 16 BAGIAN, James P. *DUNBAR, Bonnie STS 61-A STS 33, STS 29 *BAKER, Ellen STS 34 BEAN, Alan F. Apollo 12, Skylab 3 EISELE, Donn F. Apollo 7 BLAHA, John E. STS 33. STS 29 ENGLAND, Anthony W. STS 51-F BLUFORD, Guion S., Jr. STS 2, STS 51-I STS 8, STS 61-A ENGLE. Joe Henry BORKO, Karol J. STS 6, STS 51-D, STS 51-J EVANS, Ronald R. Apollo 17 BOLDEN, C. F., Jr. STS 61 C BORMAN, Frank Gemini VII, Apollo 8 PARIAN, John M. STS 7, STS 51-G BRAND, Vance DeVoe STS 5, STS 41-B, Apollo Sovuz FULLERION, Charles G. STS-3, STS 51-F BRANDENSTEIN, Daniel C. STS 8. STS 51-G *FISHER. Anna L. STS 51-A BRIDGES, Roy D. STS 51-F FISHER, William F. STS 51-I BROWN, Mark N. STS 28 BUCHLI, James F. STS 51-C. STS 61-A GARDNER, Dale A. STS 8, STS 51-A STS-27 GARDNER, Guy S. CARPENTER, M. Scott Aurora 7 Skylah 3, STS 9 GARRIOTT, Owen K. CARR, Gerald P. Skylab 4 GIBSON, Edward G. Skylab 4 STS 41-B, STS 61-C, STS-27 CARTER, Lanier STS 33 GIBSON, Robert L. CERNAN, Eugene A. Gemini IXA, Apollo 10, Apollo 17 GLENN, John H., Jr. Friendship 7 CHANG-DIAZ, F. R. STS 61-C. STS 34 GORDON, Richard F., Jr. Gemini XI, Apollo 12 *CLEAVE, Mary L. STS 61-B. STS 30 STS 51-J. STS 30 GRABE, Ronald J. . . COATS, Michael L. STS 41-D. STS 29 GRECORY, F. D. STS 51-B. STS 33

GRIGGS, S. David

GRISSOM, Virgil I.

STS 51-D

Liberty Bell 7, Gemini III

COLLINS, Michael

COOPER, L. Gordon, Jr.

Gemini X. Apollo 11

Faith 7, Gemini V

NASA Astronauts

NAME	PLIGHT	NAME	FLIGHT
HAISE, Fred W.	Apollo 13 STS 41-C	NAGEL, Steven R. NELSON, George D.	STS 51-G, STS 61-A STS 41-C, STS 61-C, STS-26
HART, Terry J. HARTSFIELD, Henry W., Jr.	STS 4, STS 41-D, STS 61-A	NELSON, George D.	313 41-0, 313 01-0, 313-10
HAUCK, Frederick H.	STS 7, STS 51-A, STS-26	O'CONNOR, Bryan D.	STS 61-B
HAWLEY, Steven A.	STS 41-D, STS 61-C	ONIZUKA, Ellison S.	STS 51-C, STS 51-L
HENIZE, Karl G. HILMERS, David C.	STS 51-F STS 51-J, STS-26	OVERMYER, Robert F.	STS 5, STS 51-B
HOPFMAN, Jeffrey, A.	STS 51-D	PARKER, Robert A. R.	STS 9
		PETERSON, Donald H.	STS 6
IRWIN, James B.	Apollo 15	POGUE, William R.	Skylab 4
KERWIN, Joseph P.	Skylab 2	*RESNIK, Judith A.	STS 41-D, STS 51-L
		*RIDE, Sally K.	STS 7, STS 41-G
LEE, Mark C	STS 30	RICHARDS, Richard N.	STS 28
LEETSMA, David D.	STS 41-G, STS 28	ROOSA, Stuart A.	Apollo 14
LENOIR, William B.	STS 5	ROSS, Jerry L.	STS 61-B, STS-27
LIND, Don L.	STS 51-R	COURDS IN I AM I'M	Sigma 7, Gemini VI-A, Apollo 7
LOUNGE, John M. LOUSMA, Jack R.	STS 51-1, STS-26 Skylab 3, STS 3	SCHIRRA, Walter M., Jr. SCHMITT, Harrison H. (Jack)	Apollo 17
LOVELL, James A., Jr.	Gemini VII, Gemini XII,	SCHWEICKART, Russell	Apollo 9
LOVELL, Games A., Gr.	Apollo 8, Apollo 13	SCOREE, Francis R.	STS 41-C, STS 51-L
*LUCID, Shannon W.	STS 51-G, STS 34	SCOTT, David R.	Gemini VIII, Apollo 9, Apollo 15
	·	*SEDDON, Rhea M.	STS 51-D
MATTINGLY, Thomas K., II	Apollo 16, STS 4, STS 51-C	SHAW, Brewster W.	STS 9, STS 61-B, STS 28
McBRIDE, Jon A.	STS 41-G	SHEPARD, Alan B., Jr.	Freedom 7, Apollo 14
McCANDLESS, Bruce	STS 41-B	SHEPHERD, William M.	STS-27
McCULLEY, Michael J.	STS 34	SHRIVER, Loren J.	STS 51-C
McDIVITT, James A.	Gemini IV, Apollo 9	SLAYTON, Donald K.	Apollo Soyuz STS 51-L
McNAIR, Ronald E.	STS 41-B, STS 51-L	SMITH, Michael J.	STS 61-B
MITCHELL, Edger D. MULIANE, Richard M.	Apollo 14 STS 41-D, STS-27	SPRING, Sherwood C. SPRINGER, Robert C.	STS 29
MUSGRAVE, Story F.	STS 6, STS 51-F, STS 33	STAFFORD, Thomas P.	Gemini VI-A, Gemini IXA, Apollo
PROGRAME, OCOLY F.	313 0, 313 31 1, 313 33	SIRPORD, INCIGS F.	Soyuz, Apollo 10
1		1	

NASA Astronauts

NAME	FLIGHT	NAME	FLIGHT	
STEWART, Robert L.	STS 41-B, STS 51-J	van HOFTEN, James D.	STS 41-C, STS 51-I	
*SULLIVAN, Kathryn D.	STS 41-G	i i		
SWIGERT, John L., Jr.	Apollo 13	WALKER, David M.	STS 51-A, STS 30	
		WEITZ, Paul J.	Skylab 2, STS 6	
		WHITE, Edward H.	Gemini IV	
THAGARD, Norman E.	STS 7, STS 51-B, STS 30	WILLIAMS, Donald E.	STS 51-D, STS 34	. 5
*THORTON, Kathryn C.	STS 33	WORDEN, Alfred M.	Apollo 15	
THORNTON, William E.	STS 8, STS 51-B		•	14.5
TRULY, Richard H.	STS 2, STS 8	YOUNG, John W.	Gemini III, Gemini IX, Apollo 10 Apollo 16, STS 1, STS 9),
	Astronaut, Payload Specialists are caree			
for their	expertise in conducting a specific experi	ment or commercial venture on a Sp		
NAME	FLIGHT	NAME	<u>FLIGHT</u>	: `
				ı
ACTON, Loren W.	STS 51-F	*McAULIFFE, S. Christa	STS 51-L	
AL-SAUD, Prince Sultan Salman	STS 51-G	MERBOLD, Ulf	STS 9	:
		MESSERSCHMID, Ernst	STS 61-A	·
BARTOE, John-David	STS 51-F			
BAUDRY, Patrick	STS 51-G	NELSON, C. William	STS 61-C	
		NERI-VELA, Rudolpho	STS 61-B	
CENKER, Roberet J.	STS 61-C	· ·		
		OCKELS, Wubbo	STS 61-A	
FURRER, Reinhard	STS 61-A			
		PAILES, William A.	STS 51-J	
GARN, E. Jake	STS 51-D	PAYTON, Gary E.	STS 51-C	-
GARNEAU, Marc D.	STS 41-G	-		
		SCULLY-POWER, Paul D.	STS 41-G	
JARVIS, Gregory	STS 51-L			
		van den BERG, Lodewijk	STS 51-B	
LICHTENBERG, Byron K.	STS 9	•		
=	i	WALKER, Charles D.	STS 41-D, STS 51-D, STS 61-B	
		WANG, Taylor	STS 51-B	
<u></u>				

Shuttle Approach And Landing Tests

FLIGHT	PLIGHT DATE	WEIGHT (kg)	DESCRIPTION OF PLIGHT
Captive Inert Flight l	Feb 18, 1977	64,717.0	Unmanned inert Orbiter (Enterprise) mated to Shuttle Carrier Aircraft (SCA) to evaluate low speed performance and handling qualities of Orbiter/SCA combination. SCA Crew: Fitzhugh L. Fulton, Jr., Thomas C. McMurtry, Vic Horton, and Skip Guidry. Flight Time: 2 hours 10 minutes.
Captive Inert Flight 2	Feb 22, 1977	64,717.0	Unmanned inert Orbiter (Enterprise) mated to SCA to demonstrate flutter free envelope. SCA Crew: Fitzhugh L. Fulton, Jr., Thomas C. McMurtry, Vic Horton, and Skip Guidry. Flight Time: 3 hours 15 minutes.
Captive Inert Flight 3	Feb 25, 1977	64,717.0	Unmanned inert Orbiter (Enterprise) mated to SCA to complete flutter and stability testing. SCA Crew: Pitzhugh L. Fulton, Jr., Thomas C. McMurtry, Vic Horton, and Skip Guidry. Flight Time: 2 hours 30 minutes.
Captive Inert Flight 4	Feb 28, 1977	64,717.0	Unmanned inert Orbiter (Enterprise) mated to SCA to evaluate configuration variables. SCA Crew: Fitzhugh L. Fulton, Jr., Thomas C. McMurtry, Vic Horton, and Skip Guidry. Flight Time: 2 hours 11 minutes.
Captive Inert Flight 5	Mar 2, 1977	65,142.0	Unmanned inert Orbiter (Enterprise) mated to SCA to evaluate maneuver performance and procedures. SCA Crew: Fitzhugh L. Fulton, Jr., A. J. Roy, Vic Horton, and Skip Guidry. Flight Time: 1 hour 40 minutes.
Captive Active Flight 1A		68,462.3	First manned captive active flight with Fred W. Haise, Jr. and C. Gordon Fullerton, Jr. Manned active Orbiter (Enterprise) mated to SCA for initial performance checks of Orbiter Flight Control System. SCA Crew: Fitzhugh L. Fulton, Jr., Thomas C. McMurtry, Vic Horton, and Skip Quidry. Flight Time: 56 minutes.
Captive Active Flight 1	Jun 28, 1977	68,462.3	Manned captive active flight with Joe H. Engle and Richard H. Truly. Manned active Orbiter (Enterprise) mated to SCA to verify conditions in preparation for free flight. SCA Crew: Fitzhugh L. Fulton, Jr. and Thomas C. McMurtry. Flight Time: 1 hour 3 minutes.
Captive Active Flight 3	Jul 26, 1977	68,462.3	Manned captive active flight with Fred W. Haise, Jr. and C. Gordon Fullerton, Jr. Manned active Orbiter (Enterprise) mated to SCA to verify conditions in preparation for free flight. SCA Crew: Fitzhugh L. Fulton, Jr. and Thomas C. McMurtry. Flight Time: 59 minutes.
Free Flight 1	Aug 12, 1977		First manned free flight with Fred W. Haise, Jr. and C. Cordon Fullerton, Jr. Manned Orbiter (Enterprise) with tailcone on, released from SCA to verify handling qualities of Orbiter. SCA Crew: Fitzhugh L. Pulton, Jr. and Thomas C. McMurtry. Flight Time: 53 minutes 51 seconds.
Free Flight 2	Sep 13, 1977	68,039.6	Manned free flight with Joe H. Engle and Richard H. Truly. Manned Orbiter (Enterprise) released from SCA to verify characteristics of Orbiter. SCA Crew: Fitzhugh L. Fulton, Jr. and Thomas C. McMurtry. Flight Time: 54 minutes 55 seconds.
Free Flight 3	Sep 23, 1977	68,402.4	Nammed free flight with Fred W. Haise, Jr. and C. Gordon Fullerton. Manned Orbiter (Enterprise) released from SCA to evaluate Orbiter handling characteristics. SCA Crew: Fitzhugh L. Fulton, Jr. and Thomas C. McMurtry. Flight Time: 51 minutes 12 seconds.
Free Flight 4	Oct 12, 1977	68,817.5	Manned free flight with Joe H. Engle and Richard H. Truly. Manned Orbiter (Enterprise) with tailcone off and three simulated engine bells installed released from SCA to evaluate Orbiter handling characteristics. SCA Crew: Fitzhugh L. Fulton, Jr. and Thomas C. McMurtry. Plight Time: 1 hour 7 minutes 48 seconds.
Free Flight 5	Oct 26, 1977	68,825.2	Manned free flight with Fred W. Haise, Jr. and C. Gordon Pullerton. Manned Orbiter (Enterprise) with tail loome off released from SCA to evaluate performance of landing gear on paved runway. SCA Crow: Fitzhugh L. Fulton, Jr. and Thomas C. McMurtry. Flight Time: 54 minutes 42 seconds.

Summary Of United States Manned Space Flight

MISSION	CREW MEMBERS	MISSION DURATION	MANHOURS	MISSION	CREW MEMBERS	MISSION DURATION	MANHOURS
		HR:MIN:SEC	HR:MIN:SEC			HR:MIN:SEC	HR:MIN:SEC
MERCURY REDSTO	NE			APOLLO SATURN 1	<u>.</u>		
Freedom 7 Liberty Bell 7 Total Flight		00:15:22 00:15:37 00:30:59	00:15:22 00:15:37 00:30:59	Apollo 7 APOLLO SATURN V	Schirra, Eisele, Cunningham	260:09:03	780:27:09
MERCURY ATLAS (Orbital)				Apollo 8 Apollo 9 Apollo 10 Apollo 11	Borman, Lovell, Anders McDivitt, Scott, Schweickart Stafford, Young, Cernan Armstrong, Collins, Aldrin	147:00:42 241:00:54 192:03:23 195:18:35	441:02:06 723:02:42 576:10:09 585:55:45
Friendship 7 Aurora 7 Sigma 7	Glenn Carpenter Schirra	04:55:23 04:56:05 09:13:11	04:55:23 04:56:05 09:13:11	Apollo 12 Apollo 13 Apollo 14	Conrad, Gordon, Bean Lovell, Swigert, Haise Shepard, Roosa, Mitchell	244:36:25 142:54:41 216:01:57	733:49:15 428:44:03 648:05:51
Faith 7 Total Fligh	-	34:19:49 53:24:28	34:19:49 53:24:28	Apollo 15 Apollo 16 Apollo 17	Scott, Worden, Irwin Young, Mattingly, Duke Cernan, Evans, Schmitt	295:11:53 265:51:05 301:51:59	885:35:39 797:33:15 905:35:57
TOTAL MERCURY	- 6 Flights	53:55:27	53:55:27	Total Flight	s - 10	2241:51:34	6725:34:42
GEMINI TITAN				Total Apollo -	11	2502:00:37	7506:01:51
Gemini 3 Gemini 4	Grissom, Young McDivitt, White	04:53:00 97:56:11	09:46:00 195:52:22	SKYLAB SATURN 1	<u>.B</u>		•
Gemini 5 Gemini 7 Gemini 6A Gemini 8 Gemini 9A	Cooper, Conrad Borman, Lovell Schirra, Stafford Armstrong, Scott Stafford, Cernan	190:55:14 330:35:31 25:51:24 10:41:26 72:21:00	381:50:28 661:11:02 51:42:48 21:22:52 144:42:00	Skylab 2 Skylab 3 Skylab 4 Total Flight	Conrad, Kerwin, Weitz Bean, Garriott, Lousma Carr, Gibson, Pogue s - 3	672:49:49 1427:09:04 2017:15:32 4117:14:25	2018:29:27 4281:27:12 6051:46:36 12351:43:15
Gemini 10 Gemini 11 Gemini 12	Young, Collins Conrad, Gordon Lovell, Aldrin	70:46:39 71:17:08 94:34:31	141:33:18 142:34:16 189:09:02	APOLLO SATURN I Apollo Soyuz	EB Stafford, Brand, Slayton	217:28:23	652:25:09
Total Fligh	CS - 10	969:52:04	1939:44:08	Test Project		_	

Summary Of United States Manned Space Flight

		MISSION		I		MISSION	_
MI <u>SSI</u> ON	CREW MEMBERS	DURATION	MANHOURS	MISSION	CREW MEMBERS		MANHOURS
		HR:MIN:SEC	HR:MIN:SEC			HR:MIN:SEC	HR:MIN:SEC
SPACE TRANSPORTATION	SYSTEM			STS 51-8 - Challenger	Overmyer, Gregory, Lind, Thagard, Thornton,	168:08:47	1177:01:29
STS-l - Columbia	Young, Crippen	54:20:32	108:41:04	1	van den Berg, Wang		
STS-2 - Columbia	Engle, Truly	54:13:13	108:26:26	STS 51-G - Discovery	Brandenstein, Creighton,	169:39:00	1187:33:00
STS-3 - Columbia	Lousma, Fullerton	192:04:45	384:09:30	1	Lucid, Fabian, Nagel,		
STS-4 - Columbia	Mattingly, Hartsfield	169:04:45	338:09:30	1	Baudry, Al-Saud		
STS-5 - Columbia	Brand, Overmyer, Allen, Lenoir	122:14:26		STS 51-F - Challenger	Musgrave, England, Henize,		1335:18:02
STS-6 - Challenger	Weitz, Bobko, Peterson,	120:23:42	481:34:48		Acton, Bartoe		
	Musgrave			STS 51-I - Discovery		170:27:42	852:18:30
STS-7 - Challenger		146:23:59	731:59:55	1	Lounge, W. Fisher		
	Fabian, Thagard			STS 51-J - Atlantis	Bobko, Grabe, Hilmers,	97:14:38	486:13:10
STS-8 - Challenger	Truly, Brandenstein,	145:08:43	725:43:35	1	Stewart, Pailes		
	Gardner, Bluford, Thornton			STS 61-A - Challenger	Hartsfield, Nagel, Buchli,	168:44:51	1349:58:48
STS-9 - Columbia	Young, Shaw, Garriott, Parker, Lichtenberg,	247:47:24	1486:44:24	}	Bluford, Dunbar, Ferrer, Messerschmid, Ockels		
	Merbold			STS 61-B - Atlantis		165:04:49	1155:33:43
STS 41-B - Challenger	Brand, Gibson, McCandless, McNair, Stewart	191:15:55	956:19:35		Spring, Ross, Neri-Vela, C. Walker		
STS 41-C - Challenger	Crippen, Scobee,	167:40:07	838:20:35	STS 61-C - Columbia	Gibson, Bolden,	146:03:51	1022:27:39
	van Hoften, Nelson, Hart			1	Chang-Diaz, Hawley,		
STS 41-D - Discovery	Hartsfield, Coats, Resnik,	144:56:04	B69:36:24	1	G. Nelson, Cenker, B. Nelson		
•	Hawley, Mullane, C. Walker			STS 51-L - Challenger	Scobee, Smith, Resnik,	00:01:13	00:08:31
STS 41-G - Challenger	Crippen, McBride, Ride,	197:23:37	1381:45:19	1	Onizuka, McNair, Jarvis,		
	Sullivan, Leestma, Garneau			1	McAuliffe		
	Scully-Power			STS-26 - Discovery	Rauck, Covey, Lounge,	97:00:00	485:00:00
STS 51-A - Discovery	Hauck, D. Walker, Gardner	191:44:56	958:44:40	1	Hilmers, Nelson		
•	A. Fisher, Allen			STS-27 - Atlantis	Gibson, Gardner, Mullane,	105:06:00	525:30:00
STS \$1-C - Discovery	Mattingly, Shriver,	73:33:27	367:47:15	1	Ross, Shepherd		
, -	Onizuka, Buchli, Payton			STS-29 - Discovery		119:39:00	598:15:00
STS \$1-D - Discovery	Bohko, Williams, Seddon, Hoffman, Griggs, Walker, G		1175:18:00		Ruchi, Springer		

Summary Of United States Manned Space Flight

			MISSION		1	EXTRAVE	HICULAR ACT	IVITY (EVA) S	UMMARY	
MISSION	CREW M		DURATIO							•
STS-30 - Atlantis		Grabe, Thagard	96:57:0	484:35:00					_	
	Cleave				MISSION	ASTRONAUT	DURATION	MISSION	ASTRONAUT	DURATION
STS-28 - Columbia		Richards, Leets	a, 121:37:5	3 608:09:25			HR:MIN			HR:MIN
		n, Brown			Gemini 4	White	:23	Skylab 3	Bean	2:45
STS-34 - Atlantis	Willia	ns, McCulky, Bak	er, 119:39:00	0 607:15:00	Gemini 9	Cernan	2:08		Garriott	13:44
		Diaz, Lucid			Gemini 10	Collins	1:30		Lousma	10:59
STS-33 - Discover		/, Blaha, Musgra	ve, <u>112:06:46</u>	560:33:05	Gemini 11	Gordon	1:57	Skylab 4	Carr	15:48
		on, Carter			Gemini 12	Aldrin	5:37		Gibson	15:20
Total Flights	- 32		4214:47:30	23240:04:06	Apollo 9	Scott	1:01		Pogue	13:34
					ļ	Schweickart		STS-6	Musgrave	3:54
SUP SUP	PMARY OF UNI	ted states manne	D SPACE FLIGH	r	Apollo 11	Armstrong*	2:32		Peterson	3:54
1						Aldrin*	2:15	STS 41-B	McCandless	11:37
· ·	NUMBER OF	NUMBER OF	MISSION		Apollo 12	Conrad*	7:45		Stewart	11:37
MISSION	FLIGHTS	CREW MEMBERS	DURATION	MANHOURS		Bean*	7:45	STS 41-C	Nelson	10:06
			HR:MIN:SEC	HR:MIN:SEC	Apollo 14	Shepard*	9:23		van Hoften	10:06
Mercury Redstone	2	2	00:30:59	00:30:59	l '	Mitchell*	9:23	STS 41-G	Leestma	3:29
Mercury Atlas	4	4	53:24:28	53:24:28	Apollo 15	Worden	:39		Sullivan	3:29
Gemini Titan	10	20	969:52:04	1939:44:08		Scott*	19:08	STS 51-A	Allen	12:14
Apollo Saturn I	1	3	260:09:03	780:27:09		Irwin*	18:35		Gardner	12:14
Apollo Saturn V	10	30	2241:51:34	6725:34:42	Apollo 16	Mattingly	1:24	STS 51-D	Griggs	3:10
Skylab	3	9	4117:14:25	12351:43:15		Young*	20:14		Hof fman	3:10
ASTP	1	3	217:28:23	652:25:09		Duke*	20:14	STS 51-I	van Hoften	4:31
STS	32 63	167	4214:47:30	23240:04:06	Apollo 17	Evans	1:06		W. Fisher	4:31
US Total	63	269	12075:18:26	45091:53:56	ļ '	Cernan*	22:04	STS 61-B	Spring	12:12
						Schmitt*	22:04		Ross	12:12
	SPA	CE SHUTTLE SUPPLY	RY		Skylab 2	Conrad	5:51			
					,	Kerwin	3:30			
	NUMBER OF	NUMBER OF	MISSION			Weitz	1:44			
MISSION	FLIGHTS	CREW MEMBERS	DURATION	MANHOURS						
			HR:MIN:SEC	HR:MIN:SEC	l					
Atlantis	5	27	484:01:27	3259:16:53						
Challenger	10	60	1495:56:20	8978:10:37						
Columbia	8	30	1107:26:49	4545:45:42	* Lunar Si	ırface EVA				
Discovery	9	50	1127:22:54	6456:50:54						
	32	167	4214:47:30	23240:04:06						

FLIGHT	LAUNCH DATE	LANDING DATE	CREW		PAYLOADS AND EXPERIMENTS
STS-1 (Columbia) Mission Dura	Apr 12, 1981 (KSC) tion: 54 hrs 20	Apr 14, 1981 (DFRP)) min 32 sec	Cdr: Johr Plt: Robe	n W. Young ert L. Crippen	Development Flight Instrumentation (DFI) Passive Optical Sample Assembly (PCSA) Aerodynamic Coefficient Identification Package (ACIP)
STS-2 (Columbia) Mission Dura	Nov 12, 1981 (KSC) tion: 54 hrs 13	Nov 14, 1981 (DFR?) 3 min 13 sec		Henry Engle ward H. Truly	OSTA-1 Development Flight Instrumentation (DFI) Induced Environment Containment Monitor (IECM) Aerodynamic Coefficient Identification Package (ACIP) OEX Tile Gap Heating Effects OEX Catalytic Surface Effects OEX Catalytic Surface Effects OEX Dynamic, Acoustic, and Thermal Environment (DATE) Experiment
STS-3 (Columbia) Mission Dura	Mar 22, 1982 (KSC) tion: 192 hrs 4	Mar 30, 1982 (White Sands) 4 min 45 sec		R. Lousma les G. Pullerton	Monodisperse Latex Reactor (MIR) Experiment Electrophoresis Equip. Verification Test (EEVT) Tile Gap Heating Effects Experiment Catalytic Surface Effects Experiment Dynamic, Acoustic, and Thermal Environment (DATE) Experiment Development Flight Instrumentation (DEI) Induced Environment Containment Monitor (IEOM) Aerodynamic Coefficient Identification Package (ACIP) Get-Away Special (GAS) Test Canister Student Experiment - Insects in Flight Motion Study

FLIGHT	LAUNCH DATE	LANDING DATE	CREW	PAYLOADS AND EXPERIMENTS
STS-4 (Columbia) Mission Dura	Jun 27, 1982 (KSC) htion: 169 hrs	Jul 4, 1982 (DFRF) 4 min 45 sec	Odr: Thomas K. Mattingly II Plt: Henry W. Hartsfield, Jr.	DOD Payload - 82-1 Monodisperse Latex Reactor (MIR) Experiment - NASA Continuous Flow Electrophoresis System (CPES - NASA Tile Gap Heating Effects Experiment - NASA Catalytic Surface Effects Experiment - NASA Dynamic, Acoustic, and Thermal Environment (DATE) Exp - NASA Dynamic, Acoustic, and Thermal Environment (DATE) Exp - NASA Development Plight Instrumentation (DFI) - NASA Induced Environment Containment Monitor (IECM) - NASA Aerodynamic Coefficient Identification Package (ACIP) - NASA Gat-Away Special - Utah State University Student Experiments: Effects of Diet/Exercise/Zero Gravity on Lipoprotein Profiles Effects of Space Travel on Trivalent Chrominum in the Body
STS-5 (Columbia) Mission Dura	Nov 11, 1982 (KSC) action: 122 hrs	Nov 16, 1982 (DERF) 14 min 26 sec	Cdr: Vance DeVoe Brand Plt: Robert F. Overnyer MS: Joseph P. Allen MS: William B. Lenoir	Deployed: SBS-C - Satellite Business Systems Telesat-E -Telesat Canada, Ltd. Tile Gap Heating Effects Experiment - NASA Catalytic Surface Effects Experiment - NASA Optamic, Acoustic, and Thermal Environment (DATE) Exp - NASA Atmospheric Luminosities Investigation (Glow Experiment) - NASA Development Flight Instrumentation (DFI) - NASA Aerodynamic Coefficient Identification Package (ACIP) - NASA Get-Away Special - ERNO, West Germany Student Experiments: Formation of Crystals in Weightlesness Growth of Porifera in Zero-Gravity Convection in Zero-Gravity

FLIGHT	LAUNCH DATE	LANDING DATE	OR EW	PAYLOADS AND EXPERIMENTS
STS-6 (Challenger) Mission Durad	Apr 4, 1983 (KSC)	Apr 9, 1983 (DFRP) 23 min 42 sec	Odr: Paul J. Weitz Plt: Karol J. Bobko MS: Donald H. Peterson MS: Story Musgrave	Deployed: TRS-A/IUS - Spacecom/USAF Continuous Flow Electrophoresis System (CPES) - NASA Monodisperse Latex Reactor (MIR) - NASA Nighttime/Daytime Optical Survey of Lightning (NOSL) - NASA Aerodynamic Coefficient Identification Package (ACIP) - NASA Get-Away Specials: G-005 - Asahi Shimban, Japan G-049 - USAF Academy G-381 - Park Seed Company, South Carolina
STS-7 (Challenger) Mission Durat	Jun 18, 1983 (KSC)	Jun 24, 1983 (DFRF) 23 min 59 sec	Cdr: Robert L. Crippen Plt: Frederick H. Hauck MS: John M. Fabian MS: Sally K. Ride MS: Norman E. Thagard	Deployed: Telesat-F (ANIK C-2)/PAM-D - Telesat, Canada Palapa-Bl/PAM-D - Perustel, Indonesia Shuttle Pallet Satellite (SPAS-GI) - MBB, Germany OSTA-2 - NASA Continuous Plow Electrophoresis System (CPES) - NASA Monodisperse Latex Reactor (MIR) - NASA Get-Away Specials: G-002 - Kayser Threde, West Germany G-009 - Purdue University G-012 - RCA/Canden New Jersey Schools G-033 - California Institute of Technology G-088 - Edsyn, Inc. G-305 - USAP/RRI, G-345 - GSPC/NRI,

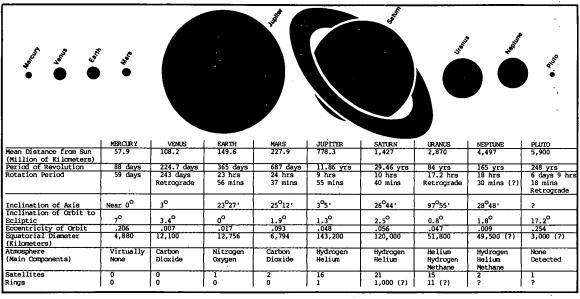
FLIGHT	LAUNCH DATE	LANDING DATE	CREW	PAYLOADS AND EXPERIMENTS
STS-8 (Challenger) Mission Durat	Aug 30, 1983 (KSC)	Sep 5, 1983 (DFRF) 8 min 43 sec	Cdr: Richard H. Truly Plt: Daniel C. Brandenstein MS: Dale A. Gardner MS: Guion S. Bluford, Jr. MS: William E. Thornton, MD	Deployed: INSAT-IB/PAM-D - India Payload Flight Test Article (PFTA) - NASA Radiation Monitoring Equipment (RME) - NASA Heat Pipe - NASA Oxy. Interaction on Materials (OIM)- NASA Investigation of STS Atmospheric Luminosities (ISAL) - NASA Animal Enclosure - NASA Continuous Plow Electrophoresis System (CPES) - NASA/MDAC Modular Auxiliary Data System (MADS) - NASA Aerodynamic Coefficient Identification Package (ACIP) - NASA Get-Away Specials: G-0346 - Cosmic Ray Upset Experiment (CRUX) - GSFC/Neupert G-0347 - Photographic Film Evaluation Exp - GSFC/Molphsen G-0475 - Asabi/Shimban, Japan Student Experiment - Biofeedback SE81-1 Other - Postal Covers
STS-9 (Columbia) Mission Durat	Nov 28, 1983 (KSC) tion: 247 hrs 4	Dec 8, 1983 (DRRF) 17 min 24 sec	Odr: John W. Young Plt: Brewster W. Shaw MS: Owen K. Garriott MS: Robert A. R. Parker FS: Byxon K. Lichtenberg PS: Ulf Merbold (ESA)	Spacelab-1 (Long Module) + Pallet - ESA/NASA Spacelab Attach Hardware, TK. set, Misc - ESA/NASA STS Operator - NASA

FLIGHT L	STAG HONOL	LANDING DATE	CREW	PAYLOADS AND EXPERIMENTS
	eb 3, 1984 (SC) h: 191 hrs	Feb 11, 1984 (KSC) 15 min 55 sec	Odr: Vance D. Brand Plt: Robert L. Gibson MS: Bruce McCandless MS: Robert L. Stewart MS: Ronald E. McNair	Deployed: Westar VI/PAM-D - Western Union Palapa-B2/PAM-D - Indonesia Integrated Rendervous Target (IRT) - NASA Acoustic Containerless Experiment System (ACES) - NASA-OSSA/JSC SPAS-O1A - MBB, Germany Isoelectric Focusing Experiment (IEF) - NASA-OSSA/MSPC Radiation Monitoring Equipment (RME) - NASA Monodisperse Latex Reactor (MUR) - NASA/OSSA Cinema 360 - Cinema 360, Inc. Manned Maneuvering Unit (MMU) - NASA Manipulation Poot Restraint (MPR) - NASA Cargo Bay Storage Assembly (CBSA) - NASA Get-Away Specials: GO04 - Utah State University/Aberdeen University GO08 - AIAA/Utah State Univ/Brighton High School GO51 - Arc Discharge Lamp Test - GTE Laboratories, Inc. G309 - CRUX - Air Force Space Test Program G349 - Goddard Space Flight Center Student Experiment - SE81-40 - Arthritis, Dan Weber - Pfizer/GD
	(SC)	Apr 13, 1984 (DERF) 41 min	Cdr: Robert L. Crippen Plt: Francis R. Scobee MS: Terry J. Hart MS: James D. Van Hoften MS: George D. Nelson	Deployed: Long Duration Exposure Facility (LDEF-1) - NASA/Langley Solar Max Mission Flight Support System - NASA/CSFC Manned Maneuvering Unit Flight Support System - NASA Manned Foot Restraint - NASA Cimema 360 - Cimema 360, Inc. IMAX - IMAX/NASA Radiation Monitoring Experiment (RME) - NASA Student Experiment - Honeycomb construction by bee colony

PLIGHT	LAUNCH DATE	LANDING DATE	CREW	PAYLOADS AND EXPERIMENTS
r GIGHT	ZHUNCH DATE	LANDING DATE	CREM	FAILUALS AND EAPERIMENTS
(Discovery)) Aug 30, 1984 (KSC) tion: 144 hrs	(EAFB)	Odr: Henry W. Hartsfield Plt: Michael L. Coats MS: Richard M. Mullane MS: Steven A. Hawley MS: Judith A. Resnik PS: Charles D. Walker	Deployed: SBS-D/PAM-D - Satellite Business Systems Syncom TV-2/Unique Upper Stage - Hughes Comm. Service, Inc. Telstar 3-C/PAM-D - ATET Co. CAST-1/MPESS - NASA CPES III (Cont. Plow Electp. Sys.) - MDAC DMAX - IMAX RME (Radiation Monitor Exp.) - NASA Clouds Photo Experiment - USAF Student Experiment - SE82-14 - Murphy/RI
STS 41-G (Challenger)	Oct 5, 1984 (KSC)	Oct 13, 1984 (RSC)	Cdr: Robert L. Crippen Plt: Jon A. McBride MS: Kathryn D. Sullivan	Deployed: Earth Radiation Budget Satellite (ERBS) - NASA OSTA-3/Pallet - NASA
Mission Dura	tion: 197 hrs	23 min 37 sec	MS: Sally K. Ride MS: David D. Leetsma PS: Marc D. Garmeau PS: Paul D. Scully-Power	COTA-Prels - NASA IMAX - IMAX RME (Radiation Monitor Exp.) - NASA APE (Auroral Photog. Exp.) - USAF TLD (Thermo. Lum. Dosimeter) - Hungary CANEX (Canadian Experiment) - Canada Get-Away Specials: GOO' - Stud. Exp., Radio Trans. Exp Ala. Space & Rocket Cntr GO13 - Ha logen Lamp Ex. (HALEX) - Kayser-Threde/ESA GO32 - Physics of Solids/Liquids - Asahi Corp., Japan GO38 - Vapor Deposition - McShane/MSFC GO74 - Puel System Test - MDAC GO36 - Trapped Ions in Space - Naval Res Lab/USNA G469 - Cosmic Ray Upset Exp NASA/GSFC/IBM G518 - Physics and Mat'l Process Utah State U.

PLICHT	LAUNCH DATE	LANDING DATE	CREW	PAYLOADS AND EXPERIMENTS
STS 51-A (Discovery) Mission Dura	Nov 8, 1984 (KSC) tion: 191 hrs	Nov 16, 1984 (KSC) 44 min 56 sec	Odr: Prederick H. Hauck Plt: David M. Walker MS: Joseph P. Allen MS: Anna L. Fisher MS: Dale A. Gardner	Deployed: Telesat-H/PAM-D - Telesat, Canada Syncom IV-1/Unique Upper Stage - Hughes Comm. Services, Inc. Satellite Retrieval Pallets (2) - NASA/MIDAC NMUJ/FSS (2) - NASA Diffuse Mixing of Organic Solids (DMOS) - 3M Co. Radiation Monitoring Equipment (RME) - NASA Man. Foot Restraint (MFR) -NASA
STS 51-C (Discovery) Mission Dura	Jan 24, 1985 (KSC) tion: 73 hrs 3	(KSC)	Cdr: Thomas K. Mattingly Plt: Loren J. Shriver MS: Ellison S. Onlzuka MS: James P. Buchli PS: Gary E. Payton	Deployed: DOD/Inertial Upper Stage - DOD Aggregation of Red Cells (ARC) Mid-deck Exp Univ. of Sydney
STS 51-D (Discovery) Mission Dura	Apr 12, 1985 (KSC) tion: 167 hrs	Apr 19, 1985 (KSC) 54 min	Cdr: Karol J. Bobko (USAF) Plt: Donald E. Williams (USN) PS: Charles D. Walker (MDAC) PS: E. J. Garm (Senator) MS: M. Rhea Seddon (MD) MS: S. David Griggs (NAR) MS: Jeffrey A. Hoffman (PhD)	Deployed: Telesat-I/PAM-D - Telesat Canada, Ltd Syncon IV-3/UUS - Hughes Corm. Services, Inc. American Flight Echocardiograph - NASA Continuous Flow Electrophoresis Sys. (CFES III) - MDAC/NASA Image Intensifier Investigation - NASA Informal Science Study (Toys in Space) - Houston Museum/Nat. Sci. Phase Partitioning Experiment (PPE) - NASA Cet Away Specials (GAS): G035 - Physics of Solids & Liquids - Asahi, Japan G471 - Cap. Pump Loop Experiment - GSFC Student Experiments: SE 82-03 - Statoliths in Corn Rt Caps - Amberg/Martin Marietta SE 83-03 - Effect of Weightlessness on Aging of Brain Cells - Pras/USC/LA Orthopaedic Hospital Other - Statute of Liberty Replicas (2)

FLIGHT	LAUNCH DATE	LANDING DATE	CREW	PAYLOADS AND EXPERIMENTS
STS 51-B (Challenger) Mission Durat	Apr 29, 1985 (KSC) :ion: 168 hrs 8	May 6, 1985 (DFRF) min 47 sec	Cdr: R. F. Overmyer (USMC) Plt: F. D. Gregory (USAF) MS: Don L. Lind (PhD) MS: Norman E. Thagard (MD) MS: Wa. E. Thornton (MD) PS: Lodewijk Vandenberg (PhD) PS: Taylor Wang (PhD)	Deployed: NUSAT - Northern Utah University Spacelab 3 (LM + MPESS) - NASA/ESA GLOWR - DOD
STS 51-G (Discovery) Mission Durat	Jun 17, 1985 (KSC) ion: 169 hrs 3	Jun 24,1985 (EDW) 9 min	Cdr: Daniel Brandenstein (USN) Plt: John O. Creighton (USN) MS: John M. Fabian (USAP) MS: Steven R. Nagel (USAF) MS: Shannon W. Lucid (PhD) PS: Patrick Baudry (France) PS: Prince Sultan Salman Al-Saud (Saudi Arabia)	Deployed: Morelos-A/PAM-D - Mexico Arabsat-A/PAM-D - ASCO Telstar 3-D/PAM-D - ATRT Spartan-J/MPESS - NNSA/SSFC/NRL Fr. Echocardiograph Exp (FEE) - CNES, France Pr. Postural Exp. (FEE) - CNES, Prance Auto. Dir. Solid. Furn (ADSP) - NASA/MSFC High-Prec. Track. Exp. (HPTE) - USAF Getaway Specials (GAS): G025 - Dyn. Behavior of Liq. Props W.Germany G027 - Silpcasting under Micro-G - W.Germany G028 - Func'l Study of MnBi - W.Germany G034 - Blo/Phys. Sci. Stud. Exp El Paso/Ysleta, TX G314 - Space Ultra. Rad. Env. (SURE) - USAF/NRL G471 - Cap. Pump Loop Exp GSFC
				·


PLIGHT	LAUNCH DATE	LANDING DATE	CREW	PAYLOADS AND EXPERIMENTS
STS 51-P (Challenger) Mission Durat	Jul 29, 1985 (KSC) tion: 190 hrs 4	Aug 6, 1985 (EDW) 35 min 26 sec	Odr: Chas. Fullerton (USAP) Plt: Roy D. Bridges (USAF) MS: F. Story Musgrave (M.D.) MS: Anthony W. England (PhD) MS: Karl G. Henize (PhD) PS: Loren W. Acton (Lockheed) PS: John-David Bartoe (USN)	Deployed: Plasma Diagnostics Package - NASA Spacelab-2 - NASA/ESA Shuttle Amateur Radio Experiment - AMSAT Space Life Sciences Training Program - NASA
STS 51-I (Discovery) Mission Durat	Aug 27, 1985 (KSC)	Sep 3, 1985 (EDW) 27 min 42 sec	Cdr: Joe H. Engle (USAF) Plt: Richard O. Covey (USAF) MS: James van Hoften (PhD) MS: John M. Lounge MS: William F. Fisher (MD)	Deployed: AUSSAT-1/PAM-D - Australia ASC-1/PAM-D - American Satellite Co- SYNCOM IV-4/LNQ - Hughes Comm Services, Inc. Physical Vapor Transport of Organic Solids (PVTOS) - 3M Corp SYNCOM IV-3 Repair Equipment - NASA/Hughes
STS 51-J (Atlantis) Mission Duran	Oct 3, 1985 (KSC) tion: 97 hrs 14	Oct 7, 1985 (EDW) 4 min 38 sec	Cdr: Karol Bobko (USAF) Plt: Ronald J. Grabe (USAF) MS: Robert C. Stewart (USA) MS: David C. Hilmers (USAC) FS: William A. Pailes (USAF)	DOD Mission
STS 61-A (Challenger) Mission Durat	Oct 30, 1985 (KSC)	Nov 6, 1985 (EDW) 14 min 51 sec	Cdr: Henry Hartsfield (USAF) Plt: Steven Nagel (USAF) MS: Bonnie Dunbar (PhD) MS: James Buchli (USMC) MS: Guion Bluford (USAF) PS: Ernst Messerschmid (PhD, General Management (PhD, General Management (PhD, General Management (PhD, Dutch)	

FLIGHT	LAUNCH DATE	LANDING DATE	CREW	PAYLOADS AND EXPERIMENTS
STS 61-B (Atlantis) Mission Dura	Nov 26, 1985 (KSC) tion: 165 hrs 4	Dec 3, 1985 (EAFB) I min 49 sec	Cdr: Brewster H. Shaw (USAF) Plt: Bryan D. O'Commor (USMC) MS: Mary L. Cleave (PhD) MS: Sherwood C. Spring (USA) MS: Jerry L. Ross (USAF) ES: Rudolfo Neri Vela (PhD) PS: Charles Walker (MDAC)	Deployed: More los-B/PAM-D - Mexico Aussat-2/PAM-D - Australia Satcom KU-2/PAM-DII - RCA OEX Target - NASA DESS/NOTESS - NASA/MIT IMAX Payload Bay Camera - IMAX/NASA Continuous Plow Electrophoresis Sys (CFES III) - MDAC/3M/NASA Diffusive Mixing of Organic Solutions (DMOS) - 3M Company More los Payload Specialist Experiments (MRSE) - Mexican Gov't Cetaway Special: G479 - Primary Surface Mirrors/Metallic Crys (Telesat, Canada)
STS 61-C (Columbia) Mission Dura	Jan 12, 1986 (KSC) tion: 146 hrs 3	Jan 18, 1986 (KSC)	Cdr: Robert L. Gibson (USN) Plt: C. F. Bolden, Jr. (USMC) MS: F R. Chang-Diaz (PhD) MS: George D. Nelson (PhD) MS: Steven A. Hawley (PhD) PS: Robert J. Cenker (RCA) PS: C. William Nelson (Cong)	Deployed: SATOCM KU-1/PAM-D2 - RCA Materials Science Lab (MSL-2) - NASA Hitchhiker G-1 (HHG-1) - NASA AS Bridge Assembly (12 GAS cans) - NASA Getaway Special (G-470) - Dept. of Agriculture Infrared Imaging Experiment (HR-IE) - NASA Initial Blood Storage Experiment (IBSE) - NASA Comet Halley Active Monitoring Program (GHAMP) - NASA Shuttle Student Involvement Program (SSIP) - NASA
STS 51-L (Challenger) Mission Dura	Jan 28, 1986 (KSC) tion: 73 sec	Jan 28, 1986	Cdr: Francis R. Scobee (USAF) Plt: Michael J. Smith (USN) MS: Judith A. Resnik (PhD) MS: Ellison S. Onicuka (USAF) MS: Ronald E. McNair (PhD) PS: Gregory Jarvis (Hughes) PS: S. Christa McAuliffe (Teacher)	TDRS-B/IUS - NASA/Spacecom Spartan-Halley/MPESS - NASA/U, of Col. Comet Halley Active Monitor Prog (CHAMP) - NASA/Lockheed/U.Col. Fluid Dynamics Experiment (FDE) - Hughes Radiation Monitoring Experiment (RME) - NASA Phase Partitioning Experiment (FPE) - NASA Teacher in Space Project (TISP) - NASA Shuttle Student Involvement Program (SSIP) - NASA

FLIGHT	LAUNCH DATE	LANDING DATE	CREW	PAYLOADS AND EXPERIMENTS
STS-26 (Discovery) Mission Dura	Sep 29, 1988 (KSC) tion 97 hrs	Oct 3, 1988 (EAFB)	Odr. Frederick H. Hauck Plt: Richard O. Covey MS: John M. Lounge MS: David C. Hilmers MS: George D. Nelson	Deployed: TDRS-C - TRW CONTEL,NASA Inertial Upper Stage (TUS) - Boeing/USAP/NASA Orbiter Exp Auto Support Ins Sys (CASIS) - Lockheed/NSAP/NASA Automated Directional Solidification Furnace (ASDP) - NASA Aggregation of Red Blood Cells (ARC) - NASA Earth Limb Radiance Experiment (EEP, NASA Isoelectric Focusing Experiment (EEP) - NASA Infeared Communication Flight Exp (TRCFE) - Wilton Ind./NASA Infeared Communication Flight Exp (TRCFE) - Wilton Ind./NASA Mesoscale Lightning Exp (MLE) - NASA Protein Crystal Growth (PCG) - U of Alabema/NASA Physical Vapor Transport of Organic Solids (PVTDS) - 3M/NASA Shuttle Student Involvement Projects: SSIP 82-4 - MIMAC/Lloyd Bruce SSIP 82-5 - Union College/R. Caboli
STS-27 (Atlantis) Mission Durat	Dec 2, 1988 (KSC)	Dec 6, 1998 (EAFE)	Cdr: Robert L. Gibson Plt: Cuy S. Gardner MS: Richard M. Mullane MS: Jerry L. Ross MS: Jerry L. Ross MS: William M. Shepherd	Deployed: DOD Payload - DOD

FLIGHT	LAUNCH DATE	LANDING DATE	CREW	PAYLOADS AND EXPERIMENTS
STS-29 (Discovey) Mission Dura	Mar 13, 1989 (KSC) ation 119 hrs 39	(EAFB)	Cdr: Michael L. Coats Plt: John E. Blaha MS: James P. Bagian Ms:James F. Buchli MS: Robert C. Springer	Deployed: TDRS-D - TRW/CONTEL/NASA Inertial Upper Stage (IUS) - Boeing/USAF/NASA Orbler Experiments Autonomous Supporting Instrumentation System (GASIS-I) - Lockheed/ISAF/NASA Space Station Heat Pipe Advanced Rediator Element (SHARE) - NASA Air Force Maui Optial System (AMOS) Calibration Test - USAF Chromosome and Plant Cell Division in Space Experiment (CHROMEX) - NASA IMAX Corporation Camera Experiment (INAX) - IMAX of Canada/NASA Protein Crystal Growth (PCG) - Univ. of Alabama/NASA Shuttle Student Involveent Project: SSIP 82-8 - Ky. Fried Chicken/John C. Vellinger SSIP-9 - Orthopaedic Hosp./USC/Andrew I. Fras
STS-30 (Atlantis) Mission Dura	May 4, 1989 (KSC)	May 8, 1989 (EAFB)	Cdr: David M. Walker Plt: Ronald J. Grabe MS: Norman E. Thagard MS: Mary L. Cleave MS: Mark C. Lee	Deployed: Magellan Spacecraft/Inertial Upper Stae (IUS) - Martin/JFL/NASA Fluid Experiment Apparatus (FEA) - Rockwell/NASA Air Force Maui Optical Site Calibration (AMOS) - USAF
STS-28 (Columbia Mission Dura	Aug 8, 1989 (KSC)	Aug 13, 1989 (EAFB) min 53 sec	Cdr: Brewster H. Shaw Plt: Richard N. Richards MS: David C. Leetsma MS: James C. Adamson MS: Mark N. Brown	Deployed: DOD Payload ~ DOD

PLIGHT	LAUNCH DATE	LANDING DATE	CREW	PAYLOADS AND EXPERIMENTS
STS-34 Atlantis Mission Dura	Oct 18, 1989 (KSC) ition 119 hrs 30	Oct 23, 2989 (EAFB) min	Cdr: Donald E. Wiliams Plt: Michael J. McCulley MS: Ellen Baker Ms. Shannon W. Lucid MS: Franklin R. Chang-Diaz	Deployed: Galileo/Inertial Upper Stage (IUS) - Hughes/JPL/AMC Roeing/USAF/NASA Shuttle Solar Backscatter Ultra-Violet Instru (SSBUV) - NASA GSPC Growth Hormone Concentration and Distribution in Plants (GHCD) - Michigan State Univ/NASA IMAX Student Experiment (SE-82-15 - Ygnacio HS/Boeing Polymer Morphology Exp (PM) - NASA Mesoscale Lightning Exp (MLE) - NASA Sensor Tech Exp (STEX) - USAF TAC Air Force Maui Optical Site (AMDS) - USAF
STS-33 Discovery Mission Dura	Nov 22, 1989 (KSC) tion 112 hrs 6 m	Nov 27, 1989 EAFB) min 46 sec	Cdr: Frederick D. Gregory Plt: John E. Blaha MS: Manley L. Carter MS: Franklin Musgrave MS: Kathryn C. Thorton	DOD Payload - DOD

During the first decade of planetary flights, NASA spacecraft were dispatched to scan the other inner planets: Mercury, Vernus, and Mars. These worlds, and our own, are known as the terrestrial planets because of their similarity to Earth's cocky composition. In 1972, NASA opened the second decade of planetary exploration with the launch of a Jupiter probe. Interest was shifting to the other planets, giant balls of dense gas quite different from the terrestrial worlds we had previously surveyed. By studying the geology of planets and moons, and comparing the differences and similarities, we are learning more about the origin and history of these worlds and the solar system as a whole.

MERCURY

Obtaining the first closeup views of Mercury was the primary objective of the Mariner 10 space probe, launched from Rennedy Space Center in November 1973. After a journey of nearly 5 months, which included a flyby of Venus, the spacecraft passed with 805 kilometers (500 miles) of the solar system's innermost planet on March 29, 1974.

Mariner 10 photographs revealed an ancient, heavily cratered surface on Mercury, and showed huge cliffs crisscrossing the planet. These apparently were created when Mercury's interior cooled and shrank, compressing the planet's crust. The cliffs are as high as 2 kilometers (1.2 miles) and as long as 1500 kilometers (932 miles).

Instruments onboard Mariner 10 discovered that the planet has a weak magnetic field and a trace of atmosphere composed chiefly of argon, neon and helium. The spacecraft reported temperatures ranging from 510 degrees Calsius (950 degrees Fahrenheit) on Mercury's sunlit side to -210 degrees Calsius (-346 degrees Fahrenheit) on the dark side.

It takes 59 Earth days for Mercury to make a single rotation. It spins at a rate of about 10 kilometers (about 6 miles) per hour, measured at the equator.

Mercury appears to have a crust of light silicate rock. Scientists believe it has a heavy iron-rich core that makes up about half of its volume.

Mariner 10 made two additional flybys of Mercury - on September 21, 1974 and March 16, 1975.

VENUS

The Mariner 2 space probe, launched August 27, 1962, was the first of more than a dozen successful American and Soviet missions to study the mysterfous planet.

Mariner 2 passed within 34,762 kilometers (21,600 miles) of Venus on December 14, 1962, and became the first spacecraft to scan another planet. Its instruments made measurements of Venus for 42 minutes. Mariner 5, launched in June 1967, flow within 4,023 kilometers (2,500 miles) of Venus. Its instruments measured the planet's magnetic field, ionosphere, radiation belts and temperatures. On its way to Mercury, Mariner 10 flew by Venus and returned ultraviolet pictures showing cloud circulation patterns in the Venusian atmosphere.

On December 4, 1978 the Pioneer Venus Orbiter became the first spacecraft placed in orbit around the planet. Five days later, the Pioneer Venus Multiprobe entered the Venusian atmosphere at different locations above the planet. Four independent probes and a main body radiced data about the planet's atmosphere during this descent toward the surface.

Approximately 97 percent of Venus' atmosphere is carbon dioxide. Venus' atmosphere acts like a greenhouse, permitting solar rediation to reach the surface but trapping the heat which would ordinarily be radiated back into space. As a result, surface temperatures are 482 degrees Celsius (900 degrees Fahrenheit), hot enough to melt lead.

Radar aboard the Pioneer Venus orbiter provided a means of seeing through Venus' dense cloud cover and determining surface features over much of the planet. Among the features determined are two continent-like highland areas, one located in the equatorial region and the other to the north.

There is evidence of two major active volcanic areas. The concentration of lightning over these two regions suggests frequent volcanic activity at both places. Discovery of active volcanism on Venus makes it the third solar system body known to be volcanically active. The others are Earth and the Jovian satellite Io.

Venus' predominant weather pattern is a highspeed circulation of clouds which are made up of sulfuric acid. These speeds reach as high as 362 kilometers (225 miles) per hour. The circulation is in the same direction - east to west - as Venus' slow retrograde rotation.

NASA's Pioneer-Venus orbiter continues to circle the planet. It is expected to send data about Venus to Earth for years to come. In May the space shuttle deployed the magellan spacecraft, which will map the surface of Venus.

EARCH

From our journeys into space, we have learned much about our home planet - Earth. The first American satellite, Explorer l, was launched from Cape Canaveral on January 31, 1958. It discovered an intense radiation zone, now called the Van Allen Radiation Region, surrounding Earth. Since then, other research satellites have revealed that our planet's magnetic field is distorted into a teardrop shape by the solar wind - the stream of charged particles continuously ejected from the Sun. Earth's magnetic field does not fade off into space but has definite boundaries. Our upper atmosphere, once space but has definite boundaries. Our upper atmosphere, once space but has definite, seethes with activity, swelling by day and contracting by night. It is affected by the changes in solar activity and contributes to weather and climate on Earth.

Satellites positioned about 35,000 kilometers (22,000 miles) out in space play a major role every day in local weather forecasting. Their watchful electronic eyes warn us of dangerous storms. Continuous global monitoring provides a vast amount of useful data, as well as contributing to a better understanding of Earth's complex weather machine. From their unique vantage point in space, spacecraft can survey the Earth's resources and monitor the planet's health.

As viewed from space, Earth's distinguishing characteristics are its blue waters and white clouds. Enveloped by an ocean of air consisting of 78 percent nitrogen and 21 percent oxygen, the planet is the only one in our solar system known to harbor life. Circling the Sun at an average distance of 199 million kilemeters (93 million miles), Earth is the third planet from the Sun and the fifth largest in the solar system.

Its rapid spin and molten nickel-iron core give rise to an extensive magnetic field, which, coupled with the atmosphere, shields us from nearly all of the hamful radiation coming from the Sun and other stars. Most meteors burn up in Earth's atmosphere before they can strike the surface. The planet's active geological processes have left no evidence of the ancient pelting it almost certainly received soon after it formed.

The Earth has a single natural satellite -- the Moon.

MOON

The Apollo program left us a large legacy of lunar materials and data. Six two-man crews landed on and explored the lunar surface between 1969 and 1972. They returned a collection of rocks and soil weighing 382 kilograms (842 pounds) and consisting of more than 2,000 separate samples. From this material and other studies, scientists have constructed a history of the Moon dating back to its infancy. Rocks collected from the lunar highlands date about 4.0 to 4.3 billion years old. It's believed that the solar system formed about 4.6 billion

Years ago. The first few million years of the Moon's existence were so violent that few traces of this period remain. As a molten outer layer gradually cooled and solidified into different kinds of rock, the Moon was bombarded by huge asteroids and smaller objects and their collisions with the Moon created huge basins hundreds of kilometers across.

This catastrophic bombardment died away about 4 billion years ago, leaving the lunar highlands cowered with huge overlapping craters and a deep layer of shattered and broken rock. Weat produced by the decay of radioactive elements began to melt the inside of the Moon at depths of about 200 kilometers (124 miles) below its surface. Then, from about 3.8 to 3.1 billion years ago, great floods of lava rose from inside the Moon and poured out over its surface, filling in the large impact basins to form the dark parts of the Moon - called maria or Seas. Explorations show that there has been no significant volcanic activity on the Moon for more than 3 billion years and, since then, the lunar surface has been altered only by the rare impacts of large meteorities and by the atomic particles from the Sun and stars.

MARS

Mariner 4, launched in late 1964, flew past Mars on July 14, 1965, to within 9,656 kilometers (6,000 miles) of the surface. Returning 22 close-up pictures, it found no evidence of artificial canals or flowing water. Mariners 6 and 7 followed during the summer of 1969, returning about 200 pictures showing a diversity of surface conditions. Earlier atmospheric data were confirmed and refined. On May 30, 1971, Mariner 9 was launched on a mission to study the Martian surface from orbit. It arrived five and a half months after liftoff, only to find Mars in the midst of a planet-wide dust storm which made surface photography impossible for several weeks. After the storm cleared, Mariner 9 began returning the first of 7,000 pictures which revealed previously unknown Martian features, including evidence that rivers, and possibly seas, could have once existed on the planet.

In August and September 1975, two Viking spacecraft, each consisting of an orbiter and a lander - were launched from Kennedy Space Center, Florida on a mission designed to answer several questions, including: is there life on Mars?

The results sent hack by the two unmanned laboratories, which soft-landed on the planet, were inconclusive. Small samples of the red Martian soil were specially treated in three different experiments designed to detect biological processes. While some of the tests indicated biological activities were occurring, the same results could be explained by the planet's soil chemistry. There was a notable absence of evidence that organic molecules exist on Mars.

Photos sent from the Plain of Chryse, where Viking 1 landed on July 20, 1976, show a bleak, rusty red landscape. A panorama returned by the robot explorer pictures a gently rolling plain, littered with rocks and graced by rippled sand dunes. Fine red dust from the Martian soil gives the sky a pinkish hue. Viking 2 landed on the Plain of Utopia, arriving several weeks after its twin. The landscape it viewed is more rolling than that seen by Viking 1, and there are no dunes visible.

Both Viking landers became weather stations, recording wind velocity and direction, temperatures, and atmospheric pressure. As days became weeks, the Martian weather changed little. The highest atmospheric temperature recorded by either lander was -21 degrees Centigrade (-17 degrees Pahrenheit) at the Viking 1 site in midsummer. The lowest temperature, -124 degrees Celsius (-19 degrees Pahrenheit), was recorded at the more northerly Viking 2 site during winter. Wind speeds near hurricane force were measured by both weather stations during global dust stooms. Viking 2 photographel light patches of frost, probably water ice, during its second winter on Mars.

The Martian atmosphere is primarily carbon dioxide. Present in small percentages are nitrogen, oxygen and argon, with trace amounts of krypton and xenon. Martian air contains only about 1/1000 as much

water as Earth's but even this small amount can condense out and form clouds which ride high in the atmosphere, or swirl around the slopes of towering Martian volcances. Local patches of early morning fog can form in valleys.

There is evidence that in the past, a denser Martian atmosphere may have allowed water to flow on the planet. Physical features closely resembling shorelines, gorges, riverbeds and islands suggest that great rivers once existed on the planet.

Mars has two small, irregularly shaped moons, Phobos and Deimos, with ancient, cratered surfaced.

All four Viking spacecraft, two orbiters and two landers, exceeded by large margins their deadgm lifetime of 90 days. The four spacecraft were launched in 1975 and began Mars operation in 1976. The first to fail was Orbiter 2 which stopped operating in July 24, 1978 when its attitude control gas was depleted because of a leak. Lander 2 operated until April 12, 1980 when it was shut down due to battery degeneration. Orbiter 1 operated until August 7, 1980, when it too used the last of its attitude control gas. Lander 1 ceased operating on November 13, 1981.

JUPITER

In March 1972, NASA dispatched the first of four space probes to survey the colossal worlds of gas and their moons of rock and ice. For each probe, Jupiter was the first port of call.

Pioneer 10, which lifted off from Kennedy Space Center March 2, 1972, was the first spacecraft to penetrate the Asteroid Belt and travel to the outer regions of the solar system. In December 1973, it returned the first closeup pictures of Jupiter as it flew within 132,252 kilometers (81,168 miles) of the planet's banded cloudtops. Pioneer 11 followed a year later. Voyagers 1 and 2 were launched in the

summer of 1977 and returned spectacular photographs of Jupiter and its 16 satellites during flybys in 1979.

During their visits these exploring spacecraft found Jupiter to be a whirling ball of liquid hydrogen, topped with a uniquely colorful atmosphere which is mostly hydrogen and helium. It contains small amounts of methane, ammonia, ethane, acetylene, phosphene, germanium tetrahydride and possibly hydrogen cyanide. Jupiter's clouds also contain ammonia and water crystals. Scientists believe it likely that between the planet's frigid cloud tops and the warmer hydrogen ocean that lies below, there are regions where methane, ammonia, water and other gases could react to form organic molecules. Because of Jupiter's atmospheric dynamics, however, these organic compounds, if they exist, are probably short lived.

The Great Rod Spot, observed for centuries through Earth-based telescopes, is a tremendous atmospheric storm, similar to Earth's hurricanes, which rotates counterclockwise.

Our space probes detected lightning in Jupiter's upper atmosphere and observed auroral emissions similar to Earth's northern lights in the Jovian polar regions.

Voyager 1 returned the first evidence of a ring encircling Jupiter-Photographs returned by the spacecraft and its companion Voyager 2 showed a narrow ring too faint to be seen by Earth's telescopes.

Largest of the solar system's planets, Jupiter rotates at a dizzying pace, once every 9 hours 55 minutes 30 seconds. It takes the massive planet almost 12 Earth years to complete a journey around the Sun. The planet is something of a mini solar system, with 16 known moons orbiting above its clouds.

One of the most remarkable findings of the Voyager mission was the discovery of active volcances on the Galilean moon Io. It was the first time volcanic eruptions were observed on a world other than

Earth. The Voyager cameras identified at least eight active volcances on the moon. Plumse extended as far as 250 kilometers (155 miles) above the moon's surface. The satellite's pizza-colored surface, rich in hues of oranges and yellow, is probably the result of sulfur-rich materials which have been brought to the surface by volcanic activity. Europa, approximately the same size as the Earth's Moon, is the brightest Galilean satellite. Its surface displays a complex array of streaks that indicate the crust has been fractured.

Like Buropa, the other two Galilean moons (Ganymede and Callisto) are frozen worlds of ice and rock. Ganymede is the largest eatellite in the solar system, larger than the planet Mercury. It is composed of about 50 percent water or ice and the rest rock. Callisto, only slightly smaller than Ganymede, has the lowest density of any Galilean satellite, implying that is has large amounts of water in its composition. In October 1989, Galileo began its round about trip to Jupiter, where it will drop a probe into the Jovian atmosphere in the first direct study of the solar system's largest planet.

SATURN

No planet in the solar system is adored like Saturn. Its exquisite ring system is unrivalled. Like Jupiter, Saturn is composed mostly of hydrogen. But in contrast to the vivid colors and wild turbulence found in Jupiter's clouds, Saturn has a more subtle, buttersootch hue and its markings are often muted by high altitude haze.

Three American spacecraft have visited Saturn. Pioneer 11 zipped by the planet and its moon Titan in 1979, returning the first closeup pictures. Voyager 1 followed in November 1980, sending back breathtaking photographs that revealed for the first time the complexities of Saturn's ring system and moons. Voyager 2 flew by the planet and its moons in August 1981.

The spacecraft discovered that there are actually thousands of ringlets encircling Saturn. These rings are composed of countless

low-density particles orbiting individually around the equator at progressive distances from the planet's cloud tops. Analysis of radio waves passing through the rings showed that the particles vary widely in size, ranging from dust to boulders. Most of the material is ice and frosted rock.

Radio emissions quite similar to the static heard on an AM car radio during an electrical storm were detected by the Voyager spacecraft. These emissions are typical of lightning but are believed to be coming from the planet's ring system rather than its atmosphere. No lightning was observed in Saturn's atmosphere. But as they had at Jupiter, the Voyager spacecraft saw a version of Earth's northern and southern lights near Saturn's poles.

The probes also studied Saturn's moon, detected undiscovered moons, found some that share the same orbit, and determined that Titan has a nitrogen-based atmosphere.

A large constituent of Titan's atmosphere is methane. The surface temperature of Titan appears to be around the "triple" point of methane, meaning methane may be present on Titan in all three states: liquid, gaseous, and solid (ice). Methane, therefore, may play the same role on Titan that Water plays on Earth.

Although the spacecraft's cameras could not peer through the dense haze that obscures the surface of Titan, measurements indicate Titan may be a place where rain or snow falls from methane clouds and rivers of methane cut through methane glaciers.

Continuing photochemistry due to solar radiation may be converting Titan's methane to ethane, acetylene, ethylene, and, in combination with nitrogen, hydrogen cyanide. The latter is a building block to amino acids. Titan's temperature is believed to be too low to permit progress beyond this stage of organic chemistry. However, this condition may be similar to that which occurred in the atmosphere of the primeval Earth between 3 and 4 billion years ago.

URANUS

Four and a half years after visiting Saturn, the Voyager 2 spacecraft completed the first close-up observation of the Uranian system.

Uranus, third largest of the planets, is the odd-ball of the solar system. Unlike the other planets, it lies tipped on its side with its north and south poles alternately facing the sun during its 84-year swing around the solar system. During Voyager's flyby, the south pole faced the sun.

Voyager found that the planet's magnetic field does not follow the usual north-south axis found on the other planets. Instead, it is tilted 60 degrees, and offset from the planet's center.

Uranus's atmosphere consists mainly of hydrogen, with about 12 per cent helium and small amounts of ammonia, methane and water vapor. Wind speeds range up to 200 meters per second (447 mph), and blow from the west instead of the east as previously expected. Temperatures near the cloudtops measure -200 degrees C. (-329 degrees F.)

The sunlit south pole is shrouded in a kind of photo-chemical "smog" believed to be a combination of acetylene, ethane and other sunlight-generated chemicals. Surrounding the planet's atmosphere and extending thousands of kilometers into space is a mysterious ultraviolet sheen called an "electroglow."

About 8,000 kilometers (5,000 miles) below Uranus's cloudtops there is thought to be a scalding ocean of water and dissolved ammonia some 10,000 kilometers (6,000 miles) deep. Beneath this ocean is an earth-sized molten core of heavier materials.

Voyager discovered 10 new moons orbiting Uranus, each about 40-170 kilometers (24-102 miles) in diameter. The planet's five known moons, Titania, Ariel, Miranda, Umbriel and Oberon, range in size from 480-1600 kilometers (300-1000 miles) across. The half-ice, half-rock

spheres are a geological showcase, featuring 12-mile-high mountains, jagged cliffs and canyons, crater-pocked plains and winding valleys possibly carved out by glaciers.

The planet was thought to have 9 dark rings; Voyager found 11. In contrast to Saturn's rings, which are composed of bright grain-sized particles, Uranus's rings are made up of boulder-sized chunks.

.NEPTUNE

Voyager 2 completed its Grand Tour of the solar system on August 25, 1989, when it swept to within about 1,280 kilometers (800 miles) of Neptune. The planet has too known moons, Nereid and Triton. Voyager 2's close up view of Neptune showed a bright blue planet with winds up to 1,500 mph and six previously unknown moons. It was disovered that Triton, the coldest known body in the solar system, is one of the geologically most active with four ice volcanoes. Neptune is the fourth largest of the planets and is believed to be a twin of Dranus, and is 2.8 billion miles from earth

PLUTO

Pluto is the most distant of the planets, yet the eccentricity of its orbit periodically carries it inside that of Neptune's. The orbit also is highly inclined, well above and below the orbital plane of the other planets.

Pluto appears to be little more than a celestial snowball. Its diameter is calculated to be between 3,000 and 3,500 kilometers (1,864 and 2,175 miles), about the same as Earth's moon. Ground-based observations indicate that its surface is covered with methane ice.

The planet has one known satellite, Charon. There are no plans to send a probe to Pluto.

USA Planetary Space Flights

SPACECRAPT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Mariner 1	Venus Flyby	Jul 22, 1962		Destroyed shortly after launch when vehicle veered off course.
Mariner 2	Venus Flyby	Aug 27, 1962	Dec 14, 1962	First successful planetary flyby. Provided instrument scanning data. Entered solar orbit.
Mariner 3	Mars Flyby	Nov 5, 1964		Shroud failed to jettison properly; Sun and Canopus not acquired; did not encounter Mars. Entered solar orbit.
Mariner 4	Mars Flyby	Nov 28, 1964	Jul 14, 1965	Provided first close-range pictures of Martian surface. Entered solar orbit.
Mariner 5	Venus Flyby	Jun 14, 1967	Oct 19, 1967	Advanced instruments returned data on Venus' surface temperature, atmosphere, and magnetic field environment. Entered solar orbit.
Mariner 6	Mars Flyby	Feb 24, 1969	Jul 31, 1969	Provided high-resolution photos of Martian surface, concentrating on equatorial region. Entered solar orbit.
Mariner 7	Mars Flyby	Mar 27, 1969	Aug 5, 1969	Provided high-resolution photos of Martian surface, concentrating on southern hemisphere. Entered solar orbit.
Mariner 8	Mars Orbiter	May 8, 1971		Centaur stage malfunctioned shortly after launch.
Mariner 9	Mars Orbiter	May 30, 1971.	Nov 18, 1971	Mapped the whole planet; provided detailed photos of Phobos and Deimos. Craft inoperable in Mars orbit.
Pioneer 10	Jupiter Flyby	Mar 2, 1972	Dec 3, 1973	First spacecraft to penetrate the Asteroid Belt. Obtained first close-up images of Jupiter, investigated its magnetosphere, atmosphere and internal structure. Still operating in the outer Solar System.
Pioneer, 11	Jupiter/Saturn Flyby	Apr 5, 1973	Dec 2, 1974 (Jupiter) Sep 1, 1979 (Saturn)	The successful encounter of Jupiter by Pioneer 10 permitted Pioneer 11 to be retargeted in flight to fly by Jupiter and encounter Saturn. Still operating in the outer Solar System.

USA Planetary Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Mariner 10	Venus/Mercury Flyby	Nov 3, 1973	Feb 5, 1974 (Venus) Mar 29, 1974 (Mercury) Sep 21, 1974 (Mercury) Mar 16, 1975 (Mercury)	First dual-planet mission. Used gravity of Venus to attain Mercury encounter. Provided first ultraviolet photographs of Venus; returned close-up photographs and detailed data of Mercury. Transmitter was turned off on March 24, 1975, when attitude control gas was depleted. Craft inoperable in solar orbit.
Viking 1	Mars Orbiter and Lander	Aug 20, 1975	Jul 19, 1976 (in orbit) Jul 20, 1976 (landed)	First U.S. attempt to soft land a spacecraft on another planet. Landed on the Plain of Chryse. Photographs showed an orange-red plain strewn with rocks and sand dunes. Orbiter 1 operated until August 7, 1980, when it used the last of its attitude control gas. Lander 1, ceased operating on November 13, 1983.
Viking 2	Mars Orbiter and Lander	Sep 9, 1975	Aug 7, 1976 (in orbit) Sep 3, 1976 (landed)	Landed on Plain of Utopia. Discovered water frost on the surface at the end of the Martian winter. Orbiter 2 stopped operating on July 24, 1978, when its attitude control qas was depleted because of a leak. Lander 2 operated until April 12, 1980, when it was shut down due to battery degeneration.
Voyager 1	Tour of Jupiter and Saturn	Sep 5, 1977	Mar 5, 1979 (Jupiter) Nov 12, 1980 (Saturn)	Investigated the Jupiter and Saturn planetary systems. Returned spectacular photographs and provided evidence of a ring encircling Jupiter. Continues to return data enroute toward interstellar space.
Voyager 2	Tour of the Outer Planets	Aug 20, 1977	Jul 9, 1979 (Jupiter) Aug 25, 1981 (Saturn) Jan 24, 1986 (Uranus) Aug 25, 1989 (Neptune)	Investigated the Jupiter, Saturn, and Uranus planetary systems. Provided first close-up photographs of Uranus and its moons. Used gravity-assist at Uranus to continue on to Neptune. Swept within 1280 km of Neptune on August 25, 1989. The spacecraft will continue into interstellar space.
Pioneer Venus 1	Venus Orbiter	May 20, 1978	Dec 4, 1978	Mapped Venus' surface by radar, imaged its cloud systems, explored its magnetic environment and observed interactions of the solar wind with a planet that has no intrinsic magnetic field. Provided radar altimetry maps for nearly all of the surface of Venus, resolving features down to about 50 miles across. Still operating in orbit around Venus.
Pioneer Venus 2	Venus Probe	Aug 8, 1978	Dec 9, 1978	Dispatched heat-resisting probes to penetrate the atmosphere at widely separated locations and measured temperature, pressure, and density down to the planet's surface. Probes impacted on the surface.

USSR Planetary Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Venera 1	Venus Probe	Feb 12, 1961		First Soviet planetary flight; launched from Sputnik 8. Radio contact lost during flight; not operating when it passed Venus.
Sputnik 19	Venus Probe	Aug 25, 1962		Unsuccessful Venus attempt.
Sputnik 20	Venus Probe	Sep 1, 1962		Unsuccessful Venus attempt.
Sputnik 21	Venus Probe	Sep 12, 1962		Unsuccessful Venus attempt.
Sputnik 22	Mars Probe	Oct 24, 1962		Spacecraft and final rocket stage blew up when accelerated to escape velocity.
Mars 1	Mars Probe	Nov 1, 1962		Contact was lost when the spacecraft antenna could no longer be pointed towards Earth. $ \label{eq:contact} % \begin{array}{ll} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} $
Sputnik 24	Mars Probe	Nov 4, 1962		Disintegrated during attempt at Mars trajectory from Earth parking orbit.
Zond 1	Venus Probe	Apr 2, 1964		Communications lost; spacecraft went into solar orbit.
Zond 2	Mars Probe	Nov 30, 1964		Passed by Mars; failed to return data; went into solar orbit.
Venera 2	Venus Probe	Nov 12, 1965	Feb 27, 1966	Passed by Venus, but failed to return data.
Venera 3	Venus Probe	Nov 16, 1965	Mar 1, 1966	Impacted on Venus, becoming the first spacecraft to reach another planet. Failed to return data.
Venera 4	Venus Probe	Jun 12, 1967	Oct 18, 1967	Descent capsule transmitted data during parachute descent. Sent measurements of pressure, density, and chemical composition of the atmosphere before transmissions ceased.
Venera 5	Venus Probe	Jan 5, 1969	Mar 16, 1969	Entry velocity was reduced by atmospheric braking before deployment of main parachute. Capsule entered the atmosphere on the planet's dark side; transmitted data for 53 minutes while traveling into the atmosphere before being crushed.

USSR Planetary Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Venera 6	Venus Probe	Jan 10, 1969	Mar 17, 1969	Descent capsule entered the atmosphere on the planet's dark side; transmitted data for 51 minutes while traveling into the atmosphere before being crushed.
Venera 7	Venus Lander	Aug 17, 1970	Dec 15, 1970	Entry velocity was reduced aerodynamically before parachute deployed. After fast descent through upper layers, the parachute canopy opened fully, slowing descent to allow fuller study of lower layers. Gradually increasing temperatures were transmitted. Returned data for 23 minutes after landing.
Cosmos 359	Venus Lander	Aug 22, 1970		Unsuccessful Venus attempt; failed to achieve escape velocity.
Cosmos 419	Mars Probe	May 10, 1971		First use of Proton launcher for a planetary mission. Placed in Earth orbit but failed to separate from fourth stage.
Mars 2	Mars Orbiter and Lander	May 19, 1971	Nov 27, 1971	Landing capsule separated from orbiter and made first, unsuccessful attempt to soft land. Lander carried USSR pennant. Orbiter continued to transmit data.
Mars 3	Mars Orbiter and Lander	May 28, 1971	Dec 2, 1971	Lander separated from parent capsule and landed in the southern hemisphere. A TV camera transmitted small panoramic view. Orbiter transmitted for 3 months.
Venera 8	Venus Lander	Mar 27, 1972	Jul 22, 1972	As the spacecraft entered the upper atmosphere, the descent module separated while the service module burned up in the atmosphere. Entry speed was reduced by aerodynamic braking before parachute deployment. During descent, a refrigeration system was used to offset high temperatures. Returned data on temperature, pressure, light levels and descent rates. Transmitted from surface for about 1 hour.
Cosmos 482	Venus Lander	Mar 31, 1972		Unsuccessful Venus probe; escape stage misfired leaving craft in Earth orbit.
Mars 4 & 5	Mars Orbiters and Landers	Jul 21, 1973 Jul 25, 1973		Pair of spacecraft launched to Mars. Mars 4 retro rockets failed to fire; as it passed the planet, it returned one swath of pictures and some radio occultation data. Mars 5 was successfully placed in orbit, but only operated only a few days. Returned photographs showing small portion of southern hemisphere.

USSR Planetary Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Mars 6 & 7	Mars Orbiters and Landers		Mar 12, 1974 Mar 9, 1974	Second pair of spacecraft launched to Mars. Mars 6 lander module transmitted measurements of the Martian atmosphere during descent. Telemetry ceased abruptly when the landing rockets were fired. Soviet report of Mars 7 said "the descent module was separated from the station because of a hitch in the operation of one of the onboard system, and passed by the planet."
Venera 9	Venus Orbiter and Lander	Jun 8, 1975	Oct 22, 1975	First spacecraft to transmit a picture from the surface of another planet. The lander's signals were transmitted to Earth via the orbiter. Utilized a new parachute system, consisting of six chutes. Signals continued from the surface for nearly 2 hours 53 minutes.
Venera 10	Venus Orbiter and Lander	Jun 14, 1975	Oct 25, 1975	During descent, atmospheric measurements and details of physical and chemical contents were transmitted via orbiter. Transmitted pictures from the surface.
Venera 11	Venus Orbiter and Lander	Sep 9, 1978	Dec 25, 1978	Arrived at Venus 4 days after Venera 12. The two landers took nine samples of the atmosphere at varying heights and confirmed the basic components. Imaging system failed; did not return photos. Operated for 95 minutes.
Venera 12	Venus Orbiter and Lander	Sep 14, 1978	Dec 21, 1978	A transit module was positioned to relay the lander's data from behind the planet. Returned data on atmospheric pressure and components. Did not return photos; imaging system failed. Operated for 110 minutes.
Venera 13	Venus Orbiter and Lander	Oct 31, 1981	Mar 1, 1982	Provided first soil analysis from Venusian surface. Transmitted eight color pictures via orbiter. Measured atmospheric chemical and isotopic composition, electric discharges, and cloud structure. Operated for 127 minutes.
Venera 14	Venus Orbiter and Lander	Nov 4, 1981	Mar 3, 1982	Transmitted details of the atmosphere and clouds during descent; soil sample taken. Operated for $57\ \mathrm{minutes}$.
Venera 15	Venus Orbiter	Jun 2, 1983	Oct 10, 1983	Obtained first high-resolution pictures of polar area. Compiled thermal map of almost entire northern hemisphere.
Venera 16	Venus Orbiter	Jun 7, 1983	Oct 16, 1983	Provided computer mosiac images of a strip of the northern continent. Soviet and U.S. geologists cooperated in studying and interpreting these images.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS	
Vega 1 & 2	Venus/Halley	Dec 15, 1984 Dec 21, 1984	Jun 11, 1985 (Venus) Mar 6, 1985 (Halley) Jun 15, 1985 (Venus) Mar 9, 1985 (Halley)	International two-spacecraft project using Venusian gravity to send halley's Comet after dropping the Venusian probes. The Venus lands the atmosphere and acquired a surface soil sample for analysis. Exceleased a helium-filled instrumented balloon to measure cloud proporther half of the Vega payloads, carrying cameras and instruments, on to encounter Comet Halley.	ers studied och lander erties. The
Phobos 1 & 2	Mars/Phobos	Jul 7, 1988 Jul 12, 1988	Jan 1989 (Mars) Jan 1989 (Mars)	International two-spacecraft project to study Mars and its mc Phobos I was disabled by a ground controller error. Phobos 2 enter orbit in January 1989 to study the Martian surface, atmosphere, a field. On March 27, 1989 communication with Phobos was lost and effect ontact the craft were discontinued.	red Mars nd magnetic

USA Lunar Space Flights

Lunar Orbit	Oct 11, 1958		
	QC 1-7 1330		Did not achieve lunar trajectory; launch vehicle second and third stages did not separate evenly. Returned data on Van Allen Belt and other phenomena before reentering on October 12, 1958.
Lunar Orbit	Nov 8, 1958		Third stage of launch vehicle failed to ignite. Returned data that indicated the Earth's equatorial region has higher flux and energy levels than previously believed. Did not achieve orbit.
Lunar Probe	Dec 6, 1958		First stage of launch vehicle cutoff prematurely; transmitted data on dual bands of radiation around Earth. Reentered December 7, 1958
Lunar Probe	Mar 3, 1959	Mar 4, 1959	Passed within 37,300 miles from the Moon; returned excellent data on radiation. Entered solar orbit.
Lunar Probe	Aug 23, 1961		flight test of lunar spacecraft carrying experiments to collect data on solar plasma, particles, magnetic fields, and cosmic rays. Launch vehicle failed to restart resulting in low Earth orbit. Reentered August 30, 1961.
Lunar Probe	Nov 18, 1961		Flight test of spacecraft systems for future lunar and interplanetary missions. Launch vehicle altitude control system failed, resulting in low Earth orbit. Reentered November 20, 1961.
Rough Landing	Jan 26, 1962		Launch vehicle malfunction resulted in spacecraft missing the Moon by 22,862 miles. Spectrometer data on radiation were received. Entered solar orbit.
Rough Landing	Apr 23, 1962	Apr 26, 1962	Pailure of central computer and sequencer system rendered experiments useless. No telemetry received. Impacted on far side of Moon.
Rough Landing	Oct 18, 1962		Power failure rendered all systems and experiments useless; 4 hours of data received from gamma ray experiment before battery depletion. Passed within 450 miles of Moon; entered solar orbit.
	Lunar Probe Lunar Probe Lunar Probe Lunar Probe Rough Landing Rough Landing	Lunar Probe Dec 6, 1958 Lunar Probe Mar 3, 1959 Lunar Probe Aug 23, 1961 Lunar Probe Nov 18, 1961 Rough Landing Jan 26, 1962 Rough Landing Apr 23, 1962	Lunar Probe Dec 6, 1958 Lunar Probe Mar 3, 1959 Mar 4, 1959 Lunar Probe Aug 23, 1961 Lunar Probe Nov 18, 1961 Rough Landing Jan 26, 1962 Rough Landing Apr 23, 1962 Apr 26, 1962

USA Lunar Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Ranger 6	Lunar Photo	Jan 30, 1964	Feb 2, 1964	TV cameras failed; no data returned. Impacted in Sea of Tranquility area.
Ranger 7	Lunar Photo	Jul 28, 1964	Jul 31, 1964	Transmitted high quality photographs, man's first close—up lunar views, before impacting in Sea of Clouds area.
Ranger 8	Lunar Photo	Feb 17, 1965	Feb 20, 1965	Transmitted high quality photographs before impacting in Sea of Tranquility area. $ \begin{tabular}{ll} \hline \end{tabular} $
Ranger 9	Lunar Photo	Mar 21, 1965	Mar 24, 1965	Transmitted high quality photographs before impacting in Crater of Alphonsus. Almost 200 pictures were shown live via commercial television in the first TV spectacular from the Moon.
Surveyor 1	Lunar Lander	May 30, 1966	Jun 2, 1966	First U.S. spacecraft to make a fully controlled soft landing on the Moon; landed in the Ocean of Storms area. Returned high quality images, from horizon views of mountains to close-ups of its own mirrors, and selenological data.
Lunar Orbiter 1	Lunar Orbiter	Aug 10, 1966	Aug 14, 1966	Photographed over 2 million square miles of the Moon's surface. Took first photo of Earth from lunar distance. Impacted on the far side of the Moon on October 29, 1966.
Surveyor 2	Lunar Lander	Sep 20, 1966	Sep 22, 1966	Spacecraft crashed onto the lunar surface southeast of crater Copernicus when one of its three vernier engines failed to ignite during a mid-course maneuver.
Lunar Orbiter 2	Lunar Orbiter	Nov 6, 1966	Nov 10, 1966	Photographed landing sites, including Ranger 8 landing point, and surface debris tossed out at impact. Impacted Moon on Oct 11, 1967.
Lunar Orbiter 3	Lunar Orbiter	Feb 4, 1967	Feb 8, 1967	Photographed lunar landing sites; provided gravitational field and lunar environment data. Impacted Moon on October 9, 1967.

USA Lunar Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Surveyor 3	Lunar Lander	Apr 17, 1967	Apr 19, 1967	Vernier engines failed to cut off as planned and the spacecraft bounced twice before landing in the Ocean of Storms. Returned images, including a picture of the Earth during lumar eclipse, and used a scoop to make the first excavation and bearing test on an extraterrestrial body. Returned data on a soil sample. Visual range of TV cameras was extended by using two flat micrors.
Lunăr Orbiter 4	Lunar Orbiter	May 4, 1967	May 8, 1967	Provided first pictures of the lunar south pole. Impacted the Moon on October 6, 1967.
Surveyor 4	Lunar Lander	Jul 14, 1967	Jul 17, 1967	Radio contact was lost $2\text{-}1/2$ minutes before touchdown when the signal was abruptly lost; impacted in Sinus Medii.
Lunar Orbiter 5	Lunar Orbiter	Aug 1, 1967	Aug 5, 1967	Increased lunar photographic coverage to better than 99%. Used in orbit as a tracking target. Impacted the Moon on January 31, 1968.
Surveyor 5	Lunar Lander	Sep 8, 1967	Sep 10, 1967	Technical problems were successfully solved by tests and maneuvers during flight. Soft-landed in the Sea of Tranquility. Returned images and obtained data on lunar surface radar and thermal reflectivity. Performed first on-site chemical soil analysis.
Surveyor 6	Lunar Lander	Nov 7, 1967	Nov 9, 1967	Soft-landed in the Sinus Medii area. Returned images of the lunar surface, Earth, Jupiter, and several stars. Spacecraft engines were restarted, lifting the spacecraft about 10 feet from the surface and landing it 8 feet from the original site.
Surveyor 7	Lunar Lander	Jan 7, 1968	Jan 9, 1968	Landed near the crater Tycho. Returned some stereo pictures of the surface and of rocks that were of special interest. Provided first observation of artificial light from Earth.

USSR Lunar Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Luna 1	Lunar Impact	Jan 2, 1959		Intended to impact on the Moon; carried instruments for measuring radiation. Passed the Moon and went into solar orbit. This was only Russia's 4th space launch.
Luna 2	Lunar Impact	Sep 12, 1959	Sep 15, 1959	First spacecraft to reach another celestial body. Impacted East of the Sea of Serenity; carried USSR pennants.
Luna 3	Lunar Probe	Oct 4, 1959		First spacecraft to pass behind the Moon and send back pictures of the far side. Equipped with a TV processing and transmission system, returned pictures of far side including a composite full view of the far side. Reentered April 29, 1960.
Sputnik 25	Lunar Probe	Jan 4, 1963		Unsuccessful lunar attempt.
Luna 4	Lunar Orbiter	Apr 2, 1963		Attempt to solve problems of soft landing instrument containers. Contact lost as it passed by the Moon. Barycentric orbit.
Luna 5	Lunar Lander	May 9, 1965	May 12, 1965	First soft landing attempt. Retrorocket malfunctioned; spacecraft impacted in Sea of Clouds.
Luna 6	Lunar Lander	Jun 8, 1965		During midcourse correction maneuver, engine failed to switch off. Spacecraft missed the Moon and went into solar orbit.
zond 3	Lunar Probe	Jul 18, 1965		Photographed lunar far side and transmitted them to Earth 9 days later. Entered solar orbit.
Lune 7	Lunar Lander	Oct 4, 1965	Oct 7, 1965	Retrorockets fired early; crashed in Ocean of Storms.
Luna 8	Lunar Lander	Dec 3, 1965	Dec 6, 1965	Retrorockets fired late; crashed in Ocean of Storms.
Luna 9	Lumar Lander	Jan 31, 1966	Feb 3, 1966	First successful soft landing; first TV transmission from the lunar surface. Three panoramas of the lunar landscape were transmitted from the eastern edge of the Ocean of Storms.
Cosmos 111	Lunar Probe	Mar 11, 1966		Unsuccessful lunar attempt. Reentered March 16, 1966.

USSR Lunar Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Luna 10	Lunar Orbiter	Mar 31, 1966		First lunar satellite. Studied lunar surface radiation and magnetic field intensity; monitored strength and variation of lunar gravitation. Selenocentric orbit.
Luna 11	Lunar Orbiter	Aug 24, 1966		Second lunar satellite. Data received during 277 orbits. Selenocentric orbit.
Luna 12	Lunar Orbiter	Oct 22, 1966		TV system transmitted large—scale pictures of Sea of Rains and Crater Aristarchus areas. Tested electric motor for Lunokhod's wheels. Selenocentric orbit.
Luna 13	Lunar Lander	Dec 21, 1966	Dec 24, 1966	Soft landed in Ocean of Storms and sent back panoramic views. Two arms were extended to measure soil density and surface radioactivity. $ \\$
Luna 14	Lunar Orbiter	Apr 7, 1968		Studied gravitational field and "stability of radio signals sent to spacecraft at different locations in respect to the Moon". Made further tests of geared electric motor for Lunokhod's wheels. Selenocentric orbit.
2ond 5	Circumlunar	Sep 15, 1968		First spacecraft to circumnavigate the Moon and return to Earth. Took photographs of the Earth. Capsule was recovered from the Indian Ocean on September 21, 1968. Russia's first sea recovery.
Zond 6	Circumlunar	Nov 10, 1968		Second spacecraft to circumnavigate the Moon and return to Earth "to perfect the automatic functioning of a manned spaceship that will be sent to the Moon". Photographed lunar far side. Reentry made by skip-glide technique; capsule was recovered on land inside the Soviet Union on November 17, 1968.
Luna 15	Lunar Sample Return	Jul 13, 1969	Jul 21, 1969	First lunar sample return attempt. Began descent maneuvers on its 52nd revolution. Spacecraft crashed at the end of a 4 minute descent in the Sea of Crises .
Zond 7	Circumlunar	Aug 7, 1969		Third circumlunar flight. Far side of Moon photographed. Color pictures of Earth and Moon brought back. Reentry by skip-glide technique on August 14, 1969.
Cosmos 300	Lunar Probe	Sep 23, 1969		Unsuccessful lunar attempt. Reentered September 27, 1969.
Cosmos 305	Lunar Probe	Oct 22, 1969		Unsuccessful lunar attempt. Reentered October 24, 1969.

USSR Lunar Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Luna 16	Lunar Sample Return	Sep 12, 1970	Sep 20, 1970	First recovery of lunar soil by an automatic spacecraft. Controlled landing achieved in Sea of Fertility; automatic drilling rig deployed; samples collected from lunar surface and returned to Earth on September 24, 1970.
Zond 8	Circumlunar	Oct 20, 1970		Fourth circumlunar flight. Color pictures taken of Earth and Moon. Russia's second sea recovery occurred on October 27, 1970, in the Indian Ocean.
Luna 17	Lunar Rover	Nov 10, 1970	Nov 17, 1970	Carrying the first Moon robot, soft landed in Sea of Rains. Lunokhod 1, driven by 5-man team on Earth, traveled over the lunar surface for 11 days and transmitted photos and analyzed soil samples.
Luna 18	Lunar Lander	Sep 2, 1971		Attempted to land in Sea of Fertility on September 11, 1971. Communications ceased shortly after command was given to start descent engine.
Luna 19	Lunar Orbiter	Sep 28, 1971		From lunar orbit, studied Moon's gravitational field; transmitted TV pictures of the surface. Selenocentric orbit,
Iuna 20	Lunar Sample Return	Feb 14, 1972		Soft landed in Sea of Crises. Used "photo-telemetric device" to relay pictures of the surface. A rotary-percussion drill was used to drill into rock; samples were lifted into a capsule on ascent stage and returned to Earth on February 25, 1972.
Luna 21	Lunar Rover	Jan 8, 1973	Jan 15, 1973	Carrying improved equipment and additional instruments, the second Lunokhod rover soft landed on the edge of the Sea of Serenity. Lunar surface pictures were transmitted and experiments performed. Ceased operating on the 5th lunar day.
Luna 22	Lunar Orbiter	May 29, 1974	Jun 2, 1974	Initially placed in circular lunar orbit; orbit was lowered to obtain TV panoramas of high quality and good resolution. Simultaneously, altimeter readings were taken and chemical rock composition determined by gamma radiation. Selenocentric orbit.
Luna 23	Lunar Sample Return	Oct 28, 1974		Landed on the southern part of the Sea of Crises on November 6, 1974. Device for taking samples damaged; no drilling or sample collection possible.
Luna 24	Lunar Sample Return	Aug 9, 1976	Aug 14, 1976	Landed in Sea of Crises on August 18, 1976. Carried larger soil carrier. Core samples were drilled and returned. U.S. and British scientists were given samples for analyses.

NASA Major Launch Record

							-	
MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PAR	AMETERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
1958								1958
Pioneer I (U)	Thor	Oct 11		DOWN	OCT 12, 195	8	34.2	Measure magnetic fields around Earth or Moon. Error in
Eta [Able I (U)							burnout velocity and angle; did not reach Moon. Returned
								43 hours of data on extent of radiation band, hydromagnetic
ľ								oscillations of magnetic field, density of micrometeors in
								interplanetary space, and interplanetary magnetic field.
Beacon I (U)	Jupiter C	Oct 23		DID N	OT ACHIEVE (ORBIT	4.2	Thin plastic sphere (12-feet in diameter after inflation)
	(U)							to study atmosphere density at various levels. Upper
								stages and payload separated prior to first-stage burnout.
Pioneer II (U)	Thor	Nov 8		DID N	OT ACHTEVE (ORBIT	39.1	Measurement of magnetic fields around Earth or Moon. Third
1	Able I (U)							stage failed to ignite. Its brief data provided evidence
ł								that equatorial region about Earth has higher flux and
								higher energy radiation than previously considered.
Pioneer III (U)	Juno II (U)	Dec 6		DOWN	DEC 7, 1958		5.9	Measurement of radiation in space. Error in burnout
Theta 1								velocity and angle; did not reach Moon. During its flight,
								discovered second radiation belt around Earth.
1959								1959
Vanguard II (U)	Vanguard	Feb 17	123.8	3140	558	32.9	9.4	Sphere (20 inches in diameter) to measure cloud cover.
Alpha 1	(SLV-4) (U)							First Earth photo from satellite. Interpretation of data
								difficult because satellite developed precessing motion.
Pioneer IV (S)	Juno II (S)	Mar 3		HELIC	CENTRIC ORB	IT	6.1	Measurement of radiation in space. Achieved Earth-Moon
Nu 1								trajectory; returned excellent radiation data. Passed
								within 37,300 miles of the Moon on Mar 4, 1959.
Vanguard (U)	Vanguard	Apr 13		DID N	OT ACHIEVE (ORBIT	10.6	Payload consisted of two independent spheres: A contained
(SLV~5) (U)								precise magnetometer to map Earth's magnetic field, B was a
								30-inch inflatable sphere for optical tracking. Second
L								stage failed because of damage at stage separation.
Vanguard (U)	Vanguard	Jun 22		DID N	OT ACHIEVE (ORBIT	9.8	Magnesium alloy sphere (20 inches in diameter), to measure
l	(SLV-6) (U)							solar-Earth heating process which generates weather.
								Faulty second-stage pressure valve caused failure.
Explorer (S-1)	Juno II (U)	Jul 16		DID N	OT ACHIEVE	ORBIT	41.5	
(U)								Safety Officer 5-1/2 seconds after liftoff; failure of
1								power supply to guidance system.

MISSION/	* * (* * * * * * * * * * * * * * * * *	1	PERIOD	O'DHOW O	007001 010111			
	LAUNCH	LAUNCH			RBITAL PARAME		WEIGHT	REMARKS
Intl Desig	VEHICLE		(Mins.)			ncl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Explorer 6 (S-2)		Aug 7		DOMN P	RIOR TO JULY	1901	64.4	Carried instruments to study particles and meteorology. It
(S)	(S)							helped in the discovery of three radiation levels, a ring
Delta 1								of electric current circling the Earth, and obtained crude
1								cloud cover images.
Beacon II (U)	Juno II (U) Aug 14		DID NO	T ACHIEVE ORB	IT	4.5	Thin plastic inflatable sphere (12-feet in diameter) to
1								study atmosphere density at various levels. Premature fuel
								depletion in first stage caused upper stage malfunction.
Big Joe (Mercury)	Atlas (S)	Sep 9		SUBCRB	ITAL FLIGHT			Suborbital test of the Mercury Capsule, Capsule recovered
(S)								successfully after reentry test.
Vanguard III (S)		Sep 18	127.6	3521	514	33.4	45.4	Solar-powered magnesium sphere with magnetometer boom;
ETA 1	(SLV-7) (S)						provided a comprehensive survey of the Earth's magnetic
								field, surveyed location of lower edge of Van Allen
1								radiation belts, and provided an accurate count of
								micrometeorite impacts. Last transmission Dec 8, 1959.
Little Joe 1	Little Joe	Oct 4		SUBORB	ITAL FLIGHT			Suborbital test of the Mercury Capsule to qualify the
(S)	(L/V #6) (S)						booster for use with the Mercury Test Program.
Explorer 7	Juno II (S	Oct 13		DOWN J	ULY 16, 1989		41.5	Provided data on energetic particles, radiation, and
(S-la) (S)								magnetic storms. Also recorded the first micrometeorite
Iota l								penetration of a sensor.
Little Joe 2	Little Joe	Nov 4		SUBORB	ITAL FLIGHT			Suborbital test of Mercury Capsule to test the escape
(S)	(L/V #1A)	(S)						system. Vehicle functioned perfectly, but escape rocket
İ								ignited several seconds too late. (WFF)
Pioneer P-3 (U)	Atlas-Able	Nov 26		DID NO	T ACHIEVE ORB	ĪT	168.7	Lunar Orbiter Probe; payload shroud broke away after 45
	(U)							seconds.
Little Joe 3 (S)	Little Joe	Dec 4		SUBORB	ITAL FLIGHT			Suborbital test of the Mercury Capsule, included escape
Į	(L/V #2) (5)						system and biomedical tests with monkey (Sam) aboard, to
1								demonstrate high altitude abort at max q. (WFF)
1960								1960
Little Joe 4 (S)	Little Joe	Jan 21		SUBORB	ITAL FLIGHT			Suborbital test of Mercury Capsule included escape system
1	(L/V #1B)(and biomedical test with monkey (Miss Sam) aboard. (WFF)
Pioneer V (P-2)	Thor-	Mar 11		HELIOC	ENTRIC ORBIT		43.0	Sphere, 26 inches in diameter, to investigate
(5)	Able IV (S	}						interplanetary space between orbits of Earth and Venus;
Alpha 1		•						test long-range communications; and determine strength of
								magnetic fields.
l								

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARA	AMETERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)		Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Explorer (S-46)	Juno II (U)	Mar 23		DID	OT ACHIEVE (RBIT	16.0	Analyze electron and proton radiation energies in a highly
(U)								elliptical orbit. Telemetry lost shortly after first
								stage burnout; one of the upper stages failed to fire.
Tiros I (S)	Thor-Able	Apr 1	98.7	717	673	48.4	122.5	First successful weather-study satellite. Demonstrated
Beta 2	(S)							that satellites can be used to survey global weather
								conditions and study other surface features from space.
<u> </u>								Transmitted 22,952 good-quality cloud-cover photographs.
Scout X (U)	Scout X (U)	Apr 18		SUBOR	BITAL FLIGHT	r		Suborbital Launch Vehicle Development Test with live first
12								and third stages. Vehicle broke up after first-stage
<u> </u>								burnout.
Echo A-10 (U)	Thor-	May 13		DID	OT ACHIEVE O	RBIT	75.3	100-foot passive reflector sphere to be used in a series of
l	Delta (U)							communications experiments. During coast period, attitude
								control jets on second stage failed.
Scout I (S)	Scout (S)	Jul 1		SUBOR	BITAL FLIGHT	Г		Launch Vehicle Development Test; first complete Scout
								vehicle. (WFF)
Mercury (MA-1)	Atlas (U)	Jul 29		DID N	OT ACHIEVE O	RBIT		Suborbital test of Mercury Capsule Reentry. The Atlas
(U)								exploded 65 seconds after launch.
Echo I (A-11)	Thor-	Aug 12		DOWN	MAY 24, 1968	3	75.3	First passive communications satellite (100-foot sphere).
(S)	Delta (S)							Reflected a pre-taped radio message from President
Iota l								Eisenhower across the Nation, demonstrating feasibility of
								global radio communications via satellite.
Pioneer (P-30)	Atlas-Able	Sep 25		DID	OT ACHIEVE O	RBIT	175.5	Highly instrumented probe, in lunar orbit, to investigate
(U) ·	(U)							the environment between the Earth and Moon. Second stage
								failed due to malfunction in oxidizer system.
Scout II (S)	Scout (5)	Oct 4		SUBOR	BITAL FLIGHT	Г		Launch Vehicle Development Test; second complete Scout
								vehicle, reached altitude of 3,500 mi. (WFF)
Explorer 8	Juno II (S)	Nov 3	106.1	1689	405	49.9	40.8	Contained instrumentation for detailed measurements of the
(S-30) (S)								ionosphere. Confirmed existence of a helium layer in the
Xi l								upper atmosphere.
Little Joe 5	Little Joe	Nov 8		SUBOR	BITAL FLIGHT	Г		Suborbital test of Mercury Capsule to quality capsule
(U) -	(L/V #5) (S)						system. Capsule did not separate from booster. (WFF)
Tiros II (S)	Thor-	Nov 23	97.2	668	583	48.5	127.0	Test of experimental television techniques and infrared
Pi 1	Delta (S)							equipment for global meteorological information system.
Explorer (S-56)	Scout (U)	Dec 4		DID N	OT ACHIEVE O	RBIT	6.4	12-foot sphere to determine density of Earth's atmosphere.
(v)								Second stage failed to ignite. (WFF)

MISSION/	LAUNCH	LAUNCH	PERIOD CURRENT ORBITAL PARAMETERS (km)	WEIGHT	RÉMARKS
Intl Desig	VEHICLE	DATE	(Mins.) Apogee Perigee Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Pioneer (P-31)	At las-	Dec 15	DID NOT ACHIEVE CRBIT	175.9	Highly instrumented probe, in lunar orbit, to investigate
(U)	Able (U)	Dec 13	DID NOT ACRIEVE CREIT	1/3.9	environment between Earth and Moon. Vehicle exploded about
(0)	WOTE (0)				70 seconds after launch due to malfunction in first stage.
Mercury (MR-1A)	Redstone	Dec 19	SUBCRBITAL PLIGHT		
(S)		Defc 13	SUBURBITAL PLIGHT		Unmanned Mercury spacecraft, in suborbital trajectory, impacted 235 miles down range after reaching an altitude of
(3)	(S)				135 miles and a speed of near 4,200 mph. Capsule recovered
					about 50 minutes after launch.
1961			····		about 50 minutes arter launch.
Mercury (MR-2)	Redstone	Jan 31	SUBORBITAL FLIGHT	1312 2	
		Jan 31	SUBURBITAL PLIGHT	1315.0	Suborbital test of Mercury Capsule; 16-minute flight
(S)	(S)	Feb 16			included biomedical test with chimpanzee (Ham) aboard.
Explorer 9 (S)	Scout (S)	Leb 10	DOWN APR 9, 1964	6.8	12-foot sphere to determine density of Earth's atmosphere.
Delta 1					First spacecraft orbited by all-solid rocket. (WFF)
Mercury (MA-2)	Atlas (5)	Feb 21	SUBORBITAL FLIGHT	1315.0	Suborbital test of Mercury Capsule; upper part of Atlas
(S)					strengthened by 8-inch wide stainless steel band. Capsule
					recovered less than 1 hour after launch.
Explorer (S-45)	Juno II (U)	Feb 24	DID NOT ACHIEVE CRBIT	33.6	Investigate the shape of the ionosphere. Malfunction
(U)					following booster separation resulted in loss of payload
\	.,,,-				telemetry and third and fourth stages failed to ignite.
Little Joe 5A	Little Joe		SUBORBITAL FLIGHT	1315.0	Suborbital test of Mercury Capsule; escape rocket motor
(U)	(L/V #5A) ((0)			fired prematurely and prior to capsule release. (WFF)
Mercury (MR-BD)	Redstone	Mar 24	SUBORBITAL FLIGHT	1315.0	Suborbital test of launch vehicle for Mercury flight to
(S)	(S)				acquire further experience with booster before manned
			·		flight was attempted.
Explorer 10 (S)	Thor-	Mar 25	DOWN JUN 1986	35.8	Injected into highly elliptical orbit. Provided
Kappa 1	Delta (S)				information on solar winds, hydromagnetic shock waves, and
					reaction of the Earth's magnetic field to solar flares.
Mercury (MA-3)	Atlas (U)	Apr 25	DID NOT ACHIEVE ORBIT	907.2	Orbital flight test of Mercury capsule. Destroyed after 40
(U)					seconds by Range Safety Officer when the inertial guidance
					system failed to pitch the vehicle over toward the horizon.
Explorer 11 (S)	Juno II (S)	Apr 27	105.8 1578 485 28.8	37.2	Placed in elliptical orbit to detect high energy gamma rays
Nu l	(4 stages)				from cosmic sources and map their distribution in the sky.
Little Joe 5B	Little Joe	Apr 28	SUBORBITAL PLIGHT	1315.0	Suborbital flight test to demonstrate ability of escape and
(S)	(L/V #5B) (S)			sequence systems to function properly at max q. (WFF)
Mercury (S)	Mercury-	May 5	SUBORBITAL FLIGHT	1315.0	Manned suborbital flight with Alan B. Shepard, Jr. Pilot
(Freedom 7)	Redstone-3		LANDED MAY 5, 1961		and spacecraft recovered after 15 minute 22 second flight.
·					

MISSION/	LAUNCH	LAUNCH				RAMETERS (km)		RÉMARKS
Intl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)		(All Launches from ESMC, unless otherwise noted)
Explorer (S-45a)	Juno II (U)	May 24		DID N	OT ACHIEVE	ORBIT	33.6	Investigate the shape of the ionosphere. Second stage
(U)								ignition system malfunctioned.
Meteoroid Sat A	Scout (U)	Jun 30		DID N	OT ACHIEVE	CRBIT	84.8	Evaluate launch vehicle; investigate micrometeoroid impact
Explorer (S-55) (and penetration. Third stage failed to ignite. (WFF)
Tiros III (S)	Thor-	Jul 12	100.1	801	730	47.9	129.3	Development of meteorological satellite system. Provided
Rhol.	Delta (S)							excellent quality photographs and infrared data.
l								Photographed many tropical storms during 1961 hurricane
l								season and credited with discovering Hurricane Esther.
Liberty Bell 7	Mercury-	Jul 21			BITAL FLIGH		1470.0	Manned suborbital flight with Virgil I. Grissom. After
(S)	Redstone-4			LANDE	D JUL 21, 1	1961		landing, spacecraft was lost but pilot was rescued from
·	(S)							surface of water. Mission Duration 15 minutes 37 seconds.
Explorer 12 (S-3)		Aug 16		DOWN :	SEP 1963		37.6	First of a series to investigate solar winds,
(S)	Delta (S)							interplanetary magnetic fields, and energetic particles.
Upsilon l								Identified the Van Allen Belts as a magnetosphere.
Ranger I (U)	At las-	Aug 23		DOWN .	AUG 30, 190	51	306.2	Flight test of lunar spacecraft carrying experiments to
Phi l	Agena (U)					1		investigate cosmic rays, magnetic fields, and energetic
1								particles. Agena failed to restart, resulting in low
								Earth orbit
Explorer 13 (U)	Scout (U)	Aug 25		DOWN .	AUG 28, 190	51	84.8	Evaluate launch vehicle; investigate micrometeoroid impact
Chi 1								and penetration. Initial orbit lower than planned, (WFF)
Mercury (MA-4)	At las (S)	Sep 13		DOWN :	SEP 13, 196	51	1224.7	Orbital test of Mercury capsule to test systems and ability
(S)								to return capsule to predetermined recovery area after one
A-Alpha 1	2							orbit. All capsule, tracking, and recovery objectives met.
Probe A (P-21)	Scout (S)	Oct 19		SUBCR	SITAL PLIG	ar .		Vehicle test/scientific Geoprobe. Reached altitude of
(S)								4,261 miles; provided electron density measurements. (WFF)
Saturn Test	Saturn I	Oct 27		SUBORI	SITAL PLIGH	fT .		Suborbital launch vehicle development test of propulsion
(SA-1) (S)	(S)							system of the S-1 booster; verification of aerodynamic and
								structural design of entire vehicle.
Mercury (MS-1)	AF 609A	Nov 1		DID N	OT ACHIEVE	CRBIT	97.1	Orbital test of Mercury Tracking Network. First stage
(U)	Blue Scout	(0)						exploded 26 seconds after liftoff; other three stages
								destroyed by range safety officer 44 seconds after launch.
Ranger II (U)	At las	Nov 18		DOMN I	NOV 20, 196	51	306.2	Flight test spacecraft systems designed for future lunar
A-Theta T	Agena (U)							and interplanetary missions. Inoperative roll gyro
· ·								prevented Agena restart resulting in a low Earth orbit.

MISSION/	LAUNCH	LAUNCH	PERIOD CURRENT CRBITAL PARAMETERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.) Apogee Perigee Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted).
Mercury (MA-5)	At las (S)	Nov 29	DOWN NOV 29, 1961	1315.4	Final flight test of all Mercury systems prior to manned
(S)					orbital flight; chimpanzee Enos on board. Spacecraft and
A-Iota l					chimpanzee recovered after two orbits.
1962					1962
	Thor (S)	Jan 15	SUBORBITAL FLIGHT	256.0	Suborbital Communications Test. Canister ejection and opening successful, but 135-foot sphere ruptured.
Ranger III (U)	At las-	Jan 26	HELIOCENIRIC ORBIT	329.8	Rough land instrumented capsule on Moon, Booster
Alpha 1	Agena (U)				malfunction resulted in spacecraft missing Moon by 22,862
-	_				miles and going into solar orbit. TV pictures unusable.
Tiros IV (S)	Thor-	Feb 8	100.1 824 700 48.3	129.3	Continued research and development of meteorological
Beta 1	Delta (S)				satellite system. U.S. Weather Bureau initiated
					international radio facsimile transmission of cloud maps
					based on data received.
Mercury (MA-6)	Atlas (S)	Feb 20	LANDED FEB 20, 1962	1354.9	First U.S. manned orbital flight. John H. Glenn, Jr. made
(Friendship 7) (S			137 3-7 4773		three orbits of Earth. Capsule and pilot recovered after
Gamma 1					21 minutes in the water. Mission Duration 4 hours
					55 minutes 23 seconds.
Reentry I (U)	Scout (S)	Mar 1	SUBORBITAL FLIGHT		Launch vehicle development test/Reentry test. Desired
-4 - 1-1					speed not achieved. (WFF)
060-I (S)	Thor-	Mar 7	DOWN OCT 8, 1981	207.7	Carried 13 instruments to study Sun-Earth relationships.
Zeta 1	Delta (S)		20121 002 07 1701	20.11	Transmitted almost 1,000 hours of information on solar
I	(0)				phenomena, including measurements on 75 solar flares.
Probe B (P-21a)	Scout (S)	Mar 29	SUBORBITAL FLIGHT		Suborbital vehicle test/scientific geoprobe. Reached an
(S)					altitude of 3.910 miles: provided electron density
1,					measurements. (WFF)
Ranger 4 (U)	At las-	Apr 23	IMPACTED MOON ON APR 26, 1962	331.1	Second attempt to rough land instrumented capsule on Moon.
Mu 1	Agena (S)	upr 23	THE MICHELY PROCESS OF MERK 20, 1902	331.1	Failure of central computer and sequencer system rendered
-					experiments useless. Impacted on far side of Moon after
					flight of 64 hours.
Saturn Test	Saturn I	Apr 25	SUBCRBITAL FLIGHT	86167.0	Suborbital launch vehicle test; carried 95 tons of ballast
(SA-2) (S)	(S)	בא זוליי	SUBURGITAL FLIGHT	00107.0	water in upper stages which was released at an altitude of
1 4, (3)	(5)				
1					65 miles to observe effect on upper region of the
i					atmosphere (Project High Water).

	_							· ·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·-
MISSION/	LAUNCH	LAUNCH	PERIOD		ORBITAL PARA		WEIGHT	
Intl Desig	VEHICLE	DATE	(Mins.)			Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Ariel I (S)	Thor-	Apr 26		DOWN	MAY 24, 1976		59.9	Carried six British experiments to study ionosphere, solar
Omicron 1	Delta (S)							radiation, and cosmic rays. First International Satellite.
ı								Coonerative with UK.
Centaur, Test 1	At las-	May 8		SUBOR	BITAL FLIGHT	r		Launch vehicle development test. Centaur exploded before
(AC-1) (U)	Centaur (U)							separation.
Aurora 7	Atlas (S)	May 24		LANDE	D MAY 24, 19	962	1349.5	Orbital Manned Flight with M. Scott Carpenter. Reentered
(MA-7) (S)								under manual control after three orbits. Mission Duration
Tau 1 5								4 hours 56 minutes 5 seconds.
Tiros V (S)	Thor-	Jun 19	99.8	916	583	58.1	129.3	Continued research and development of meteorological
A-Alpha 1	pelta (S)							satellite system. Extended observations to higher
· ·								latitudes. Observed ice breakup in northern latitudes and
								storms originating in these areas.
Telstar 1 (S)	Thor-	Jul 10	157.8	5651	938	44.8	77.1	First privately built satellite to conduct communication
A-Epsilon	pelta (S)							experiments. First telephone and television experiments
'								transmitted. Reimbursable.
Echo (AVT-2) (S)	Thor (S)	Jul 18		SUBOR	BITAL FLIGHT		256.0	Suborbital communications test. Inflation successful;
								radar indicated sphere surface not as smooth as planned.
Mariner I (P-37)	At las-	Jul 22		DID N	OT ACHIEVE C	RBIT	202.8	Venus Flyby. Vehicle destroyed by range safety officer
(U)	Agena (U)							about 290 seconds after launch when it veered off course.
Mariner II (P-38)	At las-	Aug 27		HELIC	COVIRIC ORBI	T	202.8	Second Venus flyby. First successful interplanetary probe.
(S)	Agena (S)	-						Passed Venus on Dec 14 at 21,648 miles, 109 days after
A-Rho 1	•							launch. Provided data on solar wind, cosmic dust density,
								and particle and magnetic field variations.
Reentry II (U)	Scout (U)	Aug 31		SUBOR	BITAL FLIGHT			Reentry test at 28,000 fps: late third stage ignition;
1		-				-		desired speed not achieved. (WFF)
Tiros VI (S)	Thor-	Sep 18	98.1	679	653	58.3	127.5	Provide coverage of 1962 hurricane season. Returned high
A-Psi l	Delta (S)				***	5515	12	quality cloud cover photographs.
Alouette-I (S)	Thor-	Sep 29	105.3	1025	989	80.5	145.2	Designed and built by Canada to measure variations in
B-Alpha 1	Agena B (S)			-7-0				ionosphere electron density distribution. Returned
1								excellent data to 13 Canadian, British, and U.S. stations.
1								(Cooperative with Canada)
Explorer 14	Thor-	Oct 2		DOMN	JUL 1, 1966		40.4	Monitor trapped corpuscular radiation, solar particles,
(S-3a)(S)	Delta (S)			33.11	, 1,00		40.4	cosmic radiation, and solar winds. Placed into a highly
B-Gamma 1	5 (0)							elliptical orbit; excellent data received.
								erriperest orate; excertenc odea received.
	_							

MISSION/	LAUNCH	LAUNCH		URRENT O	RBITAL PARAM		_ WEIGHT	
Intl Desig	VEHICLE	DATE	(Mins.) A	pogee		Incl (deg)		(All Launches from ESMC, unless otherwise noted)
Sigma 7(MA-8) (S) B-Delta 1	Atlas (S)	Oct 3		LANDED	ocr 3, 1962		1360.8	Manned Orbital Flight with Walter M. Schirra, Jr. Made six orbits of the Earth. Mission Duration 9 hrs 13 min 11 sec.
Ranger V (U)	At las-	Oct 18		HELIOC	ENIRIC ORBIT		342.5	Rough land instrumented capsule on Moon. Malfunction
B-Eta l	Agena (S)							caused power supply loss after 8 hours 44 minutes. Passed within 450 miles of the Moon.
Explorer 15	Thor-	Oct 27	CURR	ENT ELEM	ENTS NOT MAI	NTAINED	44.5	Study location, composition, and decay rate of artificial
(S-3b) (S)	Delta (S)							radiation belt created by high altitude nuclear explosion
B-Lambda 1								over the Pacific Ocean. Despin device failed; considerable useful data transmitted.
Saturn (SA-3)	Saturn I	Nov 16		CHECOD	ITAL FLIGHT		86167.0	Suborbital launch vehicle development flight. Second
(S)	(5)	1404 10		SUBURD	TIME FEIGHT		00107.0	"Project High Water" using 95 tons of water released at an
								altitude of 90 n.mi.
Relay I (S)	Thor-	Dec 13	185.1	7440	1318	47.5	78.0	Test intercontinental microwave communication by low-
B-Upsilon l	Delta (S)							altitude active repeater satellite. Initial power failure
í								overcome. Over 500 communication tests and demonstrations
<u> </u>			_					conducted.
Explorer 16	Scout (S)	Dec 16	104.2	1166	747	52.0	100.7	Measure micrometeoroid puncture hazard to structural skin
(S-55b) (S)								samples. First statistical sample; flux level found to lie
B-Chi l								between estimated extremes. (WFF)
1963								1963
Syncom I (U)	Thor-	Feb 14	CURR	ENT ELEM	ENTS NOT MAI	NTAINED	39.0	First test of communication satellite in geosynchronous
1963 004A	Delta (S)							orbit. Initial communication tests successful; all
			_					contact lost 20 seconds after command to fire apogee motor.
Saturn Test	Saturn I	Mar 28		SUBORB	ITAL FLIGHT			Suborbital launch vehicle development test. Programmed
(SA-4) (S)	(S)							in-flight cutoff of one of eight engines successfully
								demonstrated propellant utilization system function.
Explorer 17	Thor-	Apr 3		DOWN N	OV 24, 1966		183.7	Measure density, composition, pressure and temperature of
(S-6) (S)	Delta (S)							Earth's atmosphere. Discovered belt of neutral helium
1963 009A								around Earth.
Telstar II (S)	Thor-Delta	May 7	225.3	10807	968	42.8	79.4	Conduct wideband communication experiments. Color and 1963
013A	(S)	-						black and white television successfully transmitted to
								Great Britain and France. Reimbursable.
Mercury (Faith 7)	Atlas (S)	May 15		LANDED	MAY 16, 196	3	1360.8	Orbital Manned flight with L. Gordon Cooper, Jr. Various
(S)		-						tests and experiments performed. Capsule reentered after
1963 015A								22 orbits. Mission Duration 34 hrs 19 min 49 sec.
			_					

MISS (ON/	LAUNCH	LAUNCH	PERIOD	CURRENT (ORBITAL PARAM	ETERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)			Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
RFD-1 (S)	Scout (S)	May 22			BITAL FLIGHT		217.6	Suborbital reentry flight test; carried ADC Reactor mockup. Reimbursable.
Tiros VII (S)	Thor-Delta	Jun 19	95.8	560	557	58.2	134.7	Continued meteorological satellite development. Furnished
1963 024A	(S)							over 30,000 useful cloud cover photographs, including pictures of Hurricane Ginny in early stages in mid-October.
CRL (USAF) (S) 1963 026A	Scout (S)	Jun 28	-	DOWN	DEC 14, 1983		99.8	Cambridge Research Lab geophysics experiment test. (Reimbursable)
Reentry III (U)	Scout (U)	Jul 20		SUBOR	BITAL FLIGHT	-		Suborbital reentry flight demonstration test of an ablation material at reentry speeds. Vehicle failed. (WFF)
Syncom II (S) 1963 031A	Thor-Delta		cu	RENT ELE	MENTS NOT MAI	NTAINED	39.0	Geosynchronous communication satellite test. Voice, teletype, facsimile, and data transmission tests conducted.
Little Joe II Test (S)	Little Joe II #1 (S)			SUBOR	BITAL PLIGHT			Suborbital Apollo launch vehicle test. Booster qualification test with dummy payload. (White Sands)
Explorer 18 (S) (IMP-A) 1963 046A	Thor-Delta (DSV-3C) (S	i)		DOWN 1	DEC 30, 1965			First in a series of Interplanetary Monitoring Platforms to observe interplanetary space over extended period of solar cycle. Discovered region of high-energy radiation beyond Van Allen belts; reported stationary shock wave created by interaction of the solar wind and geomagnetic field.
Centaur Test II (AC-2) (S) 1963 047A	Atlas- Centaur (S)	Nov 27	105.8	1585	473	30.4	4620.8	Launch vehicle development test. Instrumented with 2,000 pounds of sensors, equipment, and telemetry; performance and structural integrity test.
Explorer 19 (AD-A) (S) 1963 053A	Scout 24 (S)	Dec 19			MAY 10, 1981		7.7	Sphere, 12 feet in diameter, was optically tracked after tracking beacon failed, to obtain long-term atmospheric density data and study density changes. (WSMC)
Tiros VIII (S) 1963 054A	Delta 22 (DSV-3B) (S	Dec 21	99.9	719	687	58.5	120.2	Continued meteorological satellite development; initial flight testing of Automatic Picture Transmission (APT) camera system which made it possible to obtain local cloud cover pictures using inexpensive ground stations.
1964								1964
Relay II (S) 1964 003A	Delta 23 (DSV-3B) (S	Jan 21	194.7	7511	1990	46.4	85.3	Modified communication satellite with a capability of TV or 300 one-way voice transmissions or 12 two-way narrowband communication. Completed more than 230 demonstrations and tests; also obtained over 600 hours of radiation data.

MISSION/	LAUNCH	LAUNCH	PERIOD CURRENT ORBITAL PARAMETERS (km) WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.) Apogee Perigee Incl (deg.	(kg)	(All Launches from ESMC, unless otherwise noted)
Echo II (S)	Thor-	Jan 25	DOWN JUN 7, 1969	348.4	Rigidized sphere, 135 feet in diameter, to conduct passive
1964 004A	Agena (S)				communication experiments (radio, teletype, and facsimile
				•	tests). Good experiment results obtained; data exchanged
					with USSR. (WSMC)
Saturn I (SA-5)	Saturn I	Jan 29	DOWN APR 30, 1966	17,554.2	Launch vehicle development test. Fifth flight of Saturn
(S)	(S)				first Block II Saturn, first live flight of the LOX/LH,
1964 005A					fueled second stage (S-IV). 1,146 measurements taken. 2
Ranger VI (U)	At las-	Jan 30	IMPACTED MOON ON FEB 2, 1964	364.7	Photograph lunar surface before hard impact. No video
1964 007A	Agena (S)				signals received. Impacted on west side of Sea of
					Tranquility, within 20 miles of target, after 65.6 hour
					flight.
Beacon Explorer A		Mar 19	DID NOT ACHIEVE ORBIT	54.7	Provide data on ionosphere and conduct laser and Doppler
(S-66) (U)	(U)				shift geodetic tracking experiments. Vehicle third stage
					malfunctioned.
Ariel II (UK) (S)		Mar 27	DOWN NOV 18, 1967	74.8	Carried three British experiments to measure galactic radio
1964 015A	(S)				noise. Cooperative with UK. (WFF)
Gemini I (S)	Titan II	Apr 8	89.2 328.2 160.9 32.6	3175.2	Qualification of Gemini spacecraft configuration and Gemini
1964 018A	(S)				launch vehicle combination in launch environment through
		·			orbital insertion phase.
Fire I (S)	Atlas (S)	Apr 14	SUBORBITAL FLIGHT	1995.8	Reentry Test to study the heating environment encountered
					by a body entering Earth's atmosphere at high speed.
Apollo Abort	Little Joe	May 13	SUBORBITAL FLIGHT		Vehicle development test to demonstrate Apollo spacecraft
A-001 (S)	(S)	·			atmospheric abort system capabilities. (White Sands)
Saturn I (SA-6)	Saturn I	May 28	88.5 225.2 199.5 31.8	17644.9	Vehicle development test. First flight of unmanned model
(S)	(S)				of the Apollo spacecraft, 106 measurements obtained.
1964 025A					
Centaur Test III		Jun 30	SUBORBITAL FLIGHT		Launch vehicle development test; performance and guidance
AC-3 (S)	Centaur (S)				evaluation.
SERT I (S)	Scout (S)	Jul 20	SUBORBITAL FLIGHT		Test ion engine performance in space. Confirmed that high
					prevalence ion beams could be neutralized in space. (WFF)
Ranger VII (S)	At las-	Jul 28	IMPACTED MOON ON JUL 31, 1964	364.7	Photograph lunar surface before hard impact. Transmitted
1964 041A	Agena (S)				4,316 high quality photographs showing amazing detail
1					before impacting in Sea of Clouds; flight time 68 hours
I					35 minutes 55 seconds.

MISSION/	LAUNCH	LAUNCH	PERIOD CURRENT CRBITAL PARAMETERS (km)	WEIGHT	
Intl Desig	VEHICLE	DATE	(Mins.) Apagee Perigee Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Reentry IV (S)	Scout (S)	Aug 18	SUBCRBITAL FLIGHT		Reentry Test; Demonstrated the ability of the Apollo spacecraft to withstand reentry conditions at 27,950 fps.
Syncom III (S) 1964 047A	Delta 25 (S)	Aug 19	CURRENT ELEMENTS NOT MAINTAINED	65.8	Experimental geosynchronous communications satellite. Provided live TV coverage of the Olympic games in Tokyo and conducted various communications tests.
Explorer 20 (S) 1964 051A	Scout 123 (S)	Aug 25	103.7 1007 858 79.9	44.5	Ionosphere Explorer to obtain radio soundings of upper ionosphere as part of the Topside Sounder program.
Nimbus I (S) 1964 052A	Thor- Agena 386	Aug 28 (S)	DOWN MAY 16, 1974	376.5	Improved meteorological satellite; Earth oriented to provide complete global cloud cover images. Returned more than 27,000 excellent photos; APT system supplied daytime photos to low-cost ground stations.
030 I (U) 1964 054A	At las- Agena (S)	Sep 4	CURRENT ELEMENTS NOT MAINTAINED	487.2	Standardized spacecraft capable of conducting related experiments. Carried 20 instruments to investigate geophysical and solar phenomena. Boom deployment anomaly obscured horizon scanner's view of Earth. Varying quality data received from all experiments.
Saturn I (SA-7) (S) 1964 057A	Saturn I (S)	Sep 18	DOWN SEP 22, 1964		Demonstrate Launch Vehicle/spacecraft compatibility and test launch escape system. Telemetry obtained from 131 separate and continuous measurements.
Explorer 21 (U) 1964 060A	Delta 26 (U)	Oct 4	DOWN JAN 30, 1966		Interplanetary Monitoring Platform to obtain magnetic fields, radiation, and solar wind data. Pailed to reach planned apogee, but provided good data.
RFD-2 (S)	Scout (S)	Oct 9	SUBCRBITAL FLIGHT	217.6	Reentry flight carried AEC Reactor Mockup. Reimbursable.
Explorer 22 (S) 1964 064A	Scout 123 (S)	Oct 10	104.5 1060 877 79.7	52.6	Beacon Explorer; to provide data on variations in the ionosphere's structure and relate ionospheric behavior to solar radiation. Low-cost ground stations throughout the world received uncoded radio signals. Laser tracking accomplished on October 11. (WSMC)
Mariner III (U) 1964 073A.	Atlas- Agena (U)	Nov 5	HELIOCENTRIC ORBIT	260.8	Mars flyby. Fiberglass shroud failed to jettison properly, solar panels failed to extend, Sun and Canopus not acquired. Transmissions ceased 9 hours after launch.
Explorer 23 (S-55C) (S) 1964 074A	Scout S-123 (S)	Nov 6	DOWN JUN 29, 1983	133.8	Provided data on meteoroid penetration and resistance of various materials to penetration. (WFF)

MISSION/	LAUNCH	LAUNCH	PERIOD CURRENT CRBITA	AL PARAMETERS (km)	/ WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.) Apogee Per			(All Launches from ESMC, unless otherwise noted)
Explorer 24 (S)	Scout 135	Nov 21	DOWN OCT 18		8.6	First dual payload (Air Density/Injun): two satellites
1964 076A	(S)	NOV 21	LUMIN CCI I	, 1700	0.0	
Explorer 25 (S)	(3)		115.2 2401 5	524 81.3	34.0	provided detailed information on complex radiation—air density relationships in the upper atmosphere. (WSMC)
1964 076B			115.2 2401	524 81.3	34.0	density relationships in the upper atmosphere. (WSMC)
Mariner IV (S)	Atlas	Nov 28	HELIOCENTR	C ORBIT	260.8	Second of two 1964 Mars flyby launches. Encounter occurred
1964 077A-	Agena (S)					on Jul 14, 1965, with closest approach at 6,118 miles of
	_					the planet. Transmitted 22 pictures.
Apollo Abort	Little Joe	Dec 8	SUBORBITAL	FLIGHT	42593.0	First test of Apollo emergency detection system at abort
A-002 (S)	(S)					altitude. (White Sands)
Centaur (AC-4)(S)	A-Centaur	Dec 11	DOWN DEC 12	, 1964	2993.0	Vehicle development flight carried mass model of Surveyor
1964 082A	(S)					spacecraft; propulsion and stage separation test.
San Marco 1 (S)	Scout (S)	Dec 15	DOWN SEP 13	1965	115,2	Flight test of satellite to furnish data on air density and
1964 084A						ionosphere characteristics. Launch vehicle provided by
						NASA; launched by Italian Crew. (WFF)
Explorer 26 (S)	Delta 27	Dec 21	CURRENT ELEMENTS	NOT MAINTAINED	45.8	Energetic Particles Explorer: carried five experiments to
1964 086A	(S)					provide data on high-energy particles.
1965						1965
Gemini II (S)	Titan II	Jan 19	SUBORBITAL	FLIGHT	3133.9	Demonstrate structural integrity of reentry module heat
	(S)					protection during maximum heating rate reentry and
						demonstrate variable lift on reentry module.
Tiros IX (S)	Delta 28	Jan 22	119.0 2568	02 96.4	138.3	First "Cartwheel" configuration for Weather Bureau's
1965 004A	(S)					Operational system. Provided increased coverage of global
						cloud cover with pictures of excellent quality.
060 B-2 (S)	Delta (S)	Feb 3	DOWN AUG 9	1989	244.9	Second in a series to measure frequency and energy of solar
1965 007A						c radiation in ultraviolet, X-ray and gamma-
				0100		ray regions of spectrum.
Pegasus I (S)	Saturn I	Feb 16	DOWN SEP 17	1978	1451.5	Obtained scientific and engineering data on magnitude and
1965 009A	(SA-9) (S)	100 10	DOME COL 17	, 13/0	143113	direction of meteoroids in near-Earth orbit.
Ranger VIII (S)	Atlas-	Feb 17	IMPACTED MOON ON	PER 20, 1965	364.7	Photograph lunar surface before hard impact, Transmitted
1965 010A	Agena (S)		2.11.22.120 1201 01		20117	7.137 high quality photographs before impacting in Sea of
						Tranquility; flight time 64.54 hours.
Centaur Test	A-Centaur	Mar 2	SUBORBITAL	PI TOUT	2548.0	Vehicle development test: Atlas stage failed 4 seconds
(AC-5) (U)	(U)	· icic Z	SUBURBITAL	i man	4340.0	after liftoff.
(30-5) (0)	(0)					arter mittorr.

				· · · · · · · · · · · · · · · · · · ·		
MISSION/	LAUNCH	LAUNCH		ORBITAL PARAMETERS		REMARKS
Intl Desig	VEHICLE	DATE	(Mins.) Apogee			(All Launches from ESMC, unless otherwise noted)
Ranger IX (S)	At las	Mar 21	TMPACTED MO	ON ON MAR 24, 1965	364.7	Photograph lunar surface before hard impact. Transmitted
1965 023A	Agena (S)					5,814 excellent quality pictures; about 200 pictures
l						relayed live via commercial TV. Flight time 64.52 hours.
Gemini III (S)	Titan II	Mar 23	LANDE	D MAR 23, 1965	3236.9	First manned orbital flight of the Gemini program, with
1965 024A	(S)					astronauts Virgil I. Grissom and John W. Young. Manually
						controlled reentry after three orbits. Mission Duration
7-4-1-4 1 (D 1)	2.31					4 hours 53 minutes.
Intelsat 1 (F-1)	Delta 30	Apr 6	CURRENT ELE	MENTS NOT MAINTAIN	ED 38.5	First operational satellite for Comsat Corp., to provide
(S) 1965 028A	(S)					commercial trans-Atlantic communications. Reimbursable.
Explorer 27 (S)	0		107.8 1317	931 41.	.2 60.8	Beacon Explorer; obtained data on Earth's gravitational
1965 032A	Scout 136 (S)	Apr 29	107.8 1317	931 41.	.2 60.8	field. Also carried laser tracking experiments.
Apollo Abort	Little Joe	Mar. 10	CIRCO	BITAL FLIGHT		Demonstration of abort capability of Apollo spacecraft.
A-003 (U)	II (U)	may 19	SUBUR	DITAL LPIGUI		Launch escape vehicle at high altitude not accomplished due
n-003 (0)	11 (0)					to malfunction of Little Joe II Booster. (White Sands)
Fire II (S)	At las	May 22	SIRON	BITAL FLIGHT	2005.8	Second Reentry Test to study heating environment
1110 11 (5)	(S)	(LL) 22	SOLUT	DITAL LEIGHT	200310	encountered by a body entering Earth's atmosphere at high
	,					speed.
Pegasus II (S)	Saturn I	May 25	DOWN	NOV 3, 1979	1451.5	Micrometeoroid detection experiment confirmed lower
1965 039A	(SA-8) (S)	-				meteoroid density than expected.
Explorer 28 (S)	Delta 31	May 29	DOWN .	JUL 4, 1968	59.0	Third Interplanetary Monitoring Platform, carrying eight
1965 042A	(S)					scientific instruments, to measure magnetic fields, cosmic
						rays, and solar wind beyond Earth's magnetosphere.
Gemini IV (S)	Titan II	Jun 3	LANDE	D JUN 7, 1965	3537.6	Second manned Gemini flight with James A. McDivitt and
1965 043A	(S)					Edward H. White. During flight, White donned pressure suit
						and performed EVA using ZIP (Zero-G Integral Propulsion)
						Unit. EVA duration 22 minutes. Mission Duration 97 hours
						56 minutes 11 seconds.
Tiros X (S) 1965 051A	Delta 32	Jul 1	100.3 817	728 98	.6 127.0	First U.S. Weather Bureau-funded Tiros; obtained maximum
	(S)					coverage of 1965 hurricane and typhoon season.
Pegasus III (S) 1965 060A	Saturn I	Jul 30	DOWN	AUG 4, 1969	1451.5	Final micrometeoroid detection experiment. Results of
1362 060V	(SA-10) (S)					Pegasus program indicated flux of small particles was less
l						than expected, flux of large particles more than expected,
<u> </u>						and flux of medium-sized particles about as predicted.

MISSION/	LAUNCH	LAUNCH	PERIOD			RAMETERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)		Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Scout Test (S)	Scout	Aug 10	122.2	2418	1136	69.2	20.0	Vehicle development test. Carried U.S. Army Secor geodetic
Secor (S)	S-131R (S)							satellite. Reimbursable.
1965 063A								
Centaur Test	A-Centaur	Aug 11		BARYC	ENTRIC ORB	IT	952.6	Vehicle development test. Carried Surveyor dynamic model.
(AC-6) (S)	(S)							Direct-ascent test for guidance evaluation.
1965 064A								- · · · · · · · · · · · · · · · · · · ·
Gemini V (S)	Titan II	Aug 21		LANDE	D AUG 29,	1965	3175.2	Manned orbital flight with L. Gordon Cooper and Charles
1965 068A	(S)							Conrad, Jr. Ejected rendezvous evaluation POD (REP) for
REP				DOWN	AUG 27, 1	965		simulated rendezvous maneuvers; participated in
1965 068C								communications and other on-board experiments. Mission
								Duration 190 hours 56 minutes 14 seconds.
060-C (U)	Delta (U)	Aug 25		DID N	OT ACHIEVE	CRBIT	281.2	Third in a series to maintain continuity of observations
1								during solar activity cycle. Vehicle third stage ignited
i .								prematurely.
000 II (U)	Thor-Agena	Oct 14		DOWN	SEP 17, 19	81	507.1	Carried 20 experiments to investigate near-Earth space
1965 081A	(S)				•			phenomena on an interdisciplinary basis. Failure of
ł	•							primary launch vehicle guidance resulted in higher than
1								planned orbit. 19 experiments returned useful data. (WSMC)
Gemini VI (U)	At las-Agena	Oct 25		DID N	OT ACHIEVE	CRBIT		Agena target vehicle. Simultaneous countdown of Gemini
1	(U)							spacecraft and Atlas/Agena Target Vehicle. Telemetry lost
li .								375 seconds after launch of target vehicle; Gemini launch
								terminated at T-42 minutes.
Explorer 29 (S)	Delta (S)	Nov 6	120.3	2273	1114	59.4	174.6	GEOS-A, part of U.S. Geodetic Satellite Program to provide
1965 089A						• • • • • • • • • • • • • • • • • • • •	27.100	new geodetic data about the Earth.
Explorer 30 (S)	Scout 138	Nov 18	100.4	881	676	59.7	56.7	Monitor solar X-rays and ultraviolet emissions during final
1965 093A	(S)							portion of IOSY. Data acquired by NRL and foreign stations
	,							in 13 countries. Cooperative with NRL (WFF)
Explorer 31 (S)	Thor-Agena	Nov 29	120.5	2905	502	79.8	98.9	Make related studies of ionospheric composition and
1965 098B	(S)				*			temperature variations. Provided excellent data from
Alouette II (S)			119.3	2801	500	79.8	146.5	regions of the ionosphere never before investigated.
1965 098A								Cooperative with Canada. (WSMC)
Gemini VII (S)	Titan II	Dec 4		LANDE	D DEC 18,	1965	3628.8	Fourth manned mission with Frank Borman and James A.
1965 100A	(S)					-		Lovell, Jr. Astronauts flew part of mission without
I	,							pressure suits. Mission Duration 330 hrs 35 min 31 sec.
								Proposes sales

MISSION/ Intl Desig	LAUNCH VEHICLE	LAUNCH	PERIOD (Mins.)		ORBITAL PARA	METERS (km)		REMARKS (All Launches from ESMC, unless otherwise noted)
French 1A (S) 1965 101A	Scout 139 (S)	Dec 6	99,2	728	716	75.9	71.7	Study VLF wave propagation in the ionosphere and magnetosphere and measure electron densities. Cooperative with France. (MSMC)
Gemini VI-A (S) 1965 104A	Titan II (S)	Dec 15		LANDE	D DEC 16, 19	65	3175.2	Fifth manned mission with Walter M. Schirra, Jr. and Thomas P. Stafford. First rendezvous in space accomplished with Gemini VII spacecraft. Mission Duration 25 hours 51 minutes 24 seconds.
Pioneer VI (S) 1965 105A	Delta 35 (S)	Dec 16		HELIO	CENTRIC ORBI	r	63.5	Operated in solar orbit to provide data on solar wind, interplanetary magnetic field, Solar physics, and high-energy charged particles and magnetic fields.
1966								1966
Apollo Abort A-004 (S)	Little Joe (II #5) (S)			SUBOR	BITAL FLIGHT		4989.0	Apollo development flight to demonstrate launch escape vehicle performance. Last urmanned ballistic flight. (White Sands)
ESSA I (S) 1966 008A	Delta 36 (S)	Feb 3	99,9	819	688	97.9	138.3	Sun-synchronous orbit permitted satellite to view weather nech area of the globe each day, photographing a given area. Pirst Advanced Vidicon Camera System provided valuable information about weather patterns and conditions. Reimbursable.
Reentry V (S)	Scout (S)	Feb 9		SUBOR	BITAL FLIGHT		95.0	Test to investigate heating environment of body reentering Earth's atmosphere at 27,000 fps. (WFF)
Apolio Saturn (AS-201) (S)	Saturn IB (S)	Feb 26		SUBOR	BITAL FLIGHT		20820.1	Launch Vehicle development flight; carried unmanned Apollo spacecraft.
ESSA II (S) 1966 016A	Delta 37 (S)	Feb 28	113,4	1413	1352	101.0	131.5	Provided direct readout of cloud cover photos to local users. Along with ESSA I, completed initial global weather satellite system. Reimbursable. (WSMC)
Gemini VIII (U) 1966 020A	Titan II (S)	Mar 16		LANDE	D MAR 17, 19	66	3788.0	Agena Target Vehicle launched from Complex 14 and manned Gemini launched from Complex 19. Astronauts Neil A.
GATV (S) 1966 019A	A-Agena (S)	Mar 16		DOMN :	SEP 15, 1966			Armstrong and David R. Scott accomplished rendezvous and docking. Attitude and maneuver thruster malfunction caused docked spacecraft to tumble. Astronauts separated vehicles and terminated mission early: EVA not accomplished. First Pacific Ocean Landing. Mission Duration 10 hours 41 minutes 26 seconds.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT C	RBITAL PARA	METERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Centaur Test	A-Centaur	Apr 8		DOWN M	AY 5, 1966		784.7	Launch vehicle development flight; carried Surveyor model.
(AC-8) (U)	(U)							Second Centaur engine firing unsuccessful.
1966 030A								
OAO I (U)	A-Agena	Apr 8	100.8	799	788	35.0	1769.0	Carried four experiments to study UV, X-ray and gamma-ray
1966 031A	(S)							regions. Primary battery malfunctioned.
Nimbus II (S)	Thor-Agena	May 14	108.0	1175	1092	100.4	413.7	Provided global weather photography on 24-hour basis for
1966 040A	(S)	_						meteorological research and operational use. (WSMC)
Gemini IX (U)	A-Agena	May 17		DID NC	T ACHIEVE C	RBIT	3252.0	Target vehicle for Gemini IX; vehicle failure caused by a
	(U)							short in the servo control circuit.
Explorer 32 (S)	Delta 38	May 25		DOWN F	EB 22, 1985	i .	224.5	Atmosphere Explorer; carried 8 experiments to measure
1966 044A	(S)	-						temperatures, composition, density and pressures in upper
								atmosphere.
Surveyor I (S)	A-Centaur	May 30		LANDED ON	MOON JUN 2,	1966	995.2	Achieved soft lunar landing in Ocean of Storms. Performed
1966 045A	(AC-10) (S)) _						engineering tests and transmitted photography. Landing
								pads penetrated lunar surface to maximum depth of 1 inch.
Gemini IXA (U)	Titan II	Jun 3		LANDED	JUN 6, 196	6	3750.3	Seventh manned mission with Thomas P. Stafford and Eugene
1966 047A	(S)							A. Cernan. Target vehicle shroud failed to separate,
GATV (U)	At las	Jun 1		DOWN J	UN 11. 1966	i		docking not achieved. EVA successful, but evaluation of
1966 046A	(S)				-			AMU not achieved. Mission Duration 72 hours 21 minutes.
OGO III (S)	A-Agena	Jun 7	a	RRENT ELEM	ENTS NOT MA	INTAINED	514.8	Carried 21 experiments to obtain correlated data on
1966 049A	(S)							geophysical and solar phenomena in Earth's atmosphere.
								First 3-axis stabilization in highly elliptical orbit.
OV-3 (S)	Scout (S)	Jun 9	143.0	4711	647	40.8	173.0	Radiation Research Satellite. USAF Reimbursable. (WFF)
1966 052A	• • •							, , ,
Pageos I (S)	Thor-Agena	Jun 23	177.6	5443	2735	84.4	56.7	Sphere, 100 feet in diameter, to determine location of
1966 056A	(S)							continents, land masses, and other geographic points by
								world-wide triangulation network of stations. (WSMC)
Explorer 33 (S)	Delta (S)	Jul 1	α	RRENT ELEM	ENTS NOT MA	INTAINED	93.4	Interplanetary Monitoring Platform to study, at lunar
1966 058A	- 1-7		-					distance, Earth's magnetosphere and magnetic tail. Planned
								anchored lunar orbit not achieved; useful data obtained
								from Earth orbit.
Apollo Saturn	Saturn IB	Jul 5		DOWN J	UL 5. 1966		26535.4	Launch vehicle development flight; evaluate S-IVB stage
AS-203 (S)	(S)			50 0	, 2000			vent and restart capability.
1966 059A								Tone and cooner opposition.
						*		
							_	

MISSION/	LAUNCH	LAUNCH	PERIOD CURRENT CRBITAL PARAMETERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.) Apogee Perigee Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Gemini X (S) 1966 '066A	Titan II (S)	Jul 18		3762.6	Manned mission with John W. Young and Michael Collins. Performed first docked vehicle maneuvers; standup EVA of 8
GATV (S) 1966 065A	A-Agena (S)	Jul 18	DOWN DEC 29, 1966		minutes; umbilical EVA of 27 minutes. Mission duration 70 hours 46 minutes 39 seconds.
Lunar Orbiter I (S) 1966 073A	A-Agena (S)	Aug 10	DOWN OCT 29, 1966	385.6	Photograph landing sites for Apollo and Surveyor from luna orbit. Photographed over 2 million square miles of Moon's surface; took first two photos of Earth from distance of
Pioneer VII (S) 1966 075A	Delta 40 (S)	Aug 17	HELIOCENTRIC ORBIT	63.5	the Moon. Demonstrated maneuverability in lunar orbit. Second in a series of interplanetary probes to provide dation solar wind, magnetic fields, and cosmic rays.
Apollo Saturn AS-202 (S)	Saturn IB (S)	Aug 25	SUBORBITAL FLIGHT 2	25809.7	Apollo Launch vehicle and spacecraft development flight to test Command Module heat shield and obtain launch vehicle and spacecraft data.
Gemini XI (S) 1966 081A	Titan II (S)	Sep 12		3798.4	Manned mission with Charles Conrad, Jr. and Richard F. Gordon, Jr. Rendezvous and docking achieved. Umbilical
GATV (S) 1966 080A	A-Agena (S)	Sep 12	DOWN DEC 30, 1966		and standup EVA performed and well as tethered spacecraft experiment. Mission Duration 71 hrs 17 min 8 sec.
Surveyor II (U) 1966 084A	A-Centaur (AC-7) (S)	Sep 20	IMPACTED MOON ON SEP 23, 1966	1000.2	Second soft lunar landing planned. One vernier engine did not fire for midcourse correction, sending spacecraft into tumbling mode. Spacecraft crashed southeast of crater Copernicus after 62.8 hour flight.
ESSA III (S) 087A	Delta 41 (S)	Oct 2	114.5 1484 1383 101.1	147.4	Replaced ESSA I in Tiros Operational Satellite (TOS) 1966 system. Sophisticated cameras and sensors provided valuable information about world's weather patterns and conditions. Reimbursable (MSMC)
Centaur Test (AC-9) (S) 1966 09SA	A-Centaur (S)	Oct 26	DOWN NOV 6, 1966	952.6	Launch vehicle development flight; Surveyor model injected into simulated lunar transfer orbit. Demonstrated two-burn parking orbit operational capability.
Intelsat II F-1 (U) 1966 096A	Delta 42 (S)	Oct 26	717.7 37023 3326 17.0	87.1	Consat commercial communications satellite. Apogee motor malfunction resulted in elliptical orbit. Reimbursable.
Lunar Orbiter II (S) 1966 100A	A-Agena (S)	Nov 6	DOWN OCT 11, 1967	385.6	Photographed lunar landing Sites from lunar orbit; provided new data on lunar gravitational field; photographed Ranger VIII landing point and surface debris tossed out at impact

MISSION/ Intl Desig	LAUNCH VEHICLE	LAUNCH	PERIOD CURRENT CRBITAL PARAMETERS (km) (Mins.) Apogee Perigee Incl (deg)	WEIGHT	REMARKS (All Launches from ESMC, unless otherwise noted)
Gemini XII (S)	Titan II	Nov 11	LANDED NOV 15, 1966	3762.1	Last manned Gemini flight with James A. Lovell, Jr. and
1966 104A	(S)	11	24 D.D (60 15) 1500	3/02.1	Edwin E. Aldrin, Jr. Rendezvous and docking achieved. Two
GATV (S)	A-Agena	Nov 11	DOWN DEC 23, 1966		EVA's performed. Mission duration 94 hours 35 minutes
1966 103A	(S)	10V 11	DOWN DEC 23, 1900		31 seconds.
ATS I (S)	A-AGENA	Dec 7	1250.5 35251 28888 14.0		
		Dec 7	1230.3 33231 28888 14.0	703.1	Perform various communication, meteorology, and control
1966 110A	(S)				technology experiments and carry out scientific
					measurements of orbital environment. Experiments results
					outstanding. Spin-scan cloud camera photographed changing
					weather patterns; air-to-ground and air-to-air
I					communications demonstrated for first time.
Biosatellite I	Delta (S)	Dec 14	DOWN FEB 15, 1967	426.4	Carried biological specimens to determine effects of space
(U)					environment on life processes. Reentry vehicle separated
1966 114A					but retro rocket failed, leaving capsule in orbit. No
					useful scientific data obtained.
1967					1967
Intelsat II F-2	Delta 44	Jan 11	CURRENT ELEMENTS NOT MAINTAINED	87.1	Comsat commercial communication satellite. Reached
(S)	(S)			• . • .	intended location on February 4. Reimbursable,
1967 001A					
ESSA IV (S)	Delta 45	Jan 26	113.4 1437 1324 102.0	131.5	Replaced ESSA II in TOS system. Provided daily coverage of
1967 006A	(S)				local weather systems to APT receivers. Shutter
12207 00000	,				malfunction rendered one camera inoperative. Reimbursable.
					(WSMC)
Lunar Orbiter III	A-Accesa	Feb 5	DOWN OCT 9, 1967	385.6	Photographed lunar landing sites from lunar orbit; also
(S)	(S)	160 3	towar OC1 9, 1907	383.0	
1967 008A	(3)				returned 600,000 sq.mi. of front and 250,000 sq.mi. of back
1967 008A					side lunar photography; provided gravitational field and
			1959		lunar environment data.
OSO III (S)	Delta 46	Mar 8	DOWN APR 4, 1982	284.4	Carried 9 experiments to study structure, dynamics and
1967 020A	(S)				chemical composition of outer solar atmosphere through
					X-ray, visible, and UV radiation measurements.
Intelsat II F-3	Delta 47	Mar 22	CURRENT ELEMENTS NOT MAINTAINED	87.1	Comsat commercial communication satellite. Completed
(S)	(S)				Intelsat II system. Reimbursable.
1967 026A					
1					
1					;
I					

LAUNCH	LAUNCH	PERIOD CURRENT	ORBITAL PARAME	TERS (km)	WEIGHT	REMARKS
VEHICLE	DATE	(Mins.) Apogee	Perigee 1	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
A-Agena	Apr 6	DOWN :	SEP 2, 1969		324.3	Test gravity gradient control system; microwave
(U)						communications, meteorological cameras, and 8 scientific
						experiments. Second stage failed to restart resulting in
						elliptical orbit. Limited data obtained.
		LANDED ON	MOON APR 20,	1967	1035.6	Vernier engines failed to cut off as planned; spacecraft
(AC-12) (S)						bounced twice before landing. Surface sampler used for
						pressing, digging, trenching, scooping, and depositing
						surface material in view of camera. Returned over 6,300
						photos including pictures of Earth during lunar eclipse.
	Apr 20	113.5 1419	1352	101.8	147.4	Replaced ESSA III in TOS System. Furnished daily global
						coverage of weather systems. Reimbursable. (WSMC)
	Apr 26	DOWN	OCT 14, 1967		129.3	First satellite launch attempt from mobile sea-based
(S)						platform in the Indian Ocean; launched conducted by Italian
						crew. Spacecraft provided continuous equatorial air
						density measurements. Cooperative with Italy.
	May 4	DOWN	OCT 6, 1967		385.6	Lunar orbit achieved. Photographed 99% of Moon's front
(5)						side and additional back side areas.
Coort	Marri E	150.57	556 1 1040		100 2	First UK-built satellite to extend atmospheric and
	may 5	DOWN	DEC 14, 1970		102.5	ionospheric investigations. Cooperative with UK. (WSMC)
	May 24	DOM:	43 4 3 1060		72.0	Fifth in Interplanetary Monitoring Platform series to study
	ray 24	DOMN I	MAI 3, 1909		/3.9	Sun-Earth relationships. Elliptical orbit achieved.
(3)						Useful data returned. (WSMC)
Cocut (II)	May 20	DZD II	OT ACUTORE OUR	370	90.1	Carried 7 experiments to study solar and cosmic radiation.
SCOUL (U)	racy 25	DIO M	OI WOUTENE OKE	511	03.1	Third stage vehicle failure. Cooperative with ESRO. (WSMC)
A-Agena	Jun 14	HPI TO	CONTRIC ORBIT		244 9	Venus flyby. Returned data on planet's atmosphere,
	Jun 21		carbite dibit			radiation, and magnetic field environment.
	Jul 14	TMPACTED MO	ON ON THE 17.	1967	1037.4	Lunar soft landing mission. All systems normal until 2
		I II ACTID A	a. a. o	1707	103714	seconds before retro rocket burnout (2-1/2 minutes before
,,						touchdown) when signal was abruptly lost.
Delta (S)	Jul 19	SELEN	OCENTRIC ORBIT	<u>,</u>	104.4	Interplanetary Monitoring Platform to study solar wind and
,		0000		-		interplanetary fields at lunar distances. Lunar orbit
						achieved. Results indicated no shock front precedes Moon,
						no magnetic field, no radiation belts or evidence of lunar
						ionosphere.
	VEHICLE A-Agena (U) A-Centaur (AC-12) (S) Delta 48 (S) Scout S-153 (S) Scout S-0153 CS) Scout S-04 (S) A-Agena (S) Scout (U) A-Agena (S) A-Centaur (AC-11) (S)	VEHICLE DATE A-Agena (U) A-Centaur (AC-12) (S) Delta 48 Apr 20 (S) Scout S-153 Apr 26 (S) A-Agena May 4 (S) Delta 49 May 5 (S) Delta 49 May 24 (S) Scout (U) May 29 A-Agena Jun 14 (S) A-Centaur (AC-11) (S)	VBHICLE DATE (Mins.) Apogee A-Agena (UU) Apr 6 DOWN (UI) A-Centaur (AC-12) (S) Apr 17 LANDED ON Delta 48 Apr 20 113.5 1419 (S) Scout S-153 Apr 26 DOWN (S) DOWN (S) A-Agena (S) May 4 DOWN (S) DOWN (S) Scout (U) May 5 (S) DOWN (S) DOWN (S) Scout (U) May 24 DOWN (S) DOWN (S) A-Agena (S) Jun 14 HELIO (S) A-Centaur (AC-11) (S) Jul 14 IMPACFED MO	VBHICLE DATE (Mins.) Apogee Perigee A-Agena (U) Apr 6 DOWN SEP 2, 1969 A-Centaur (AC-12) (S) Apr 17 LANDED ON MOON APR 20, (AC-12) (S) Delta 48 Apr 20 113.5 1419 1352 Scout S-153 Apr 26 DOWN OCT 14, 1967 Scout (S) DOWN OCT 6, 1967 1967 Scout (S) DOWN DEC 14, 1970 1970 Scout (S) DOWN MAY 3, 1969 100 NOT ACHIEVE ORI A-Agena (S) Jun 14 HELIOCENTRIC ORBIT (S) A-Centaur (AC-11) (S) Jul 14 IMPACTED MOON ON JUL 17,	VBHICLE DATE (Mins.) Apogee Perigee Incl (deg) A-Agena (U) Apr 6 DOWN SEP 2, 1969 Incl (deg) A-Centaur (AC-12) (S) Apr 17 LANDED ON MOON APR 20, 1967 Delta 48 Apr 20 113.5 1419 1352 101.8 (S) Scout S-153 Apr 26 DOWN OCT 14, 1967 (S) Scout (S) DOWN OCT 6, 1967 (S) Scout (S) DOWN DEC 14, 1970 (S) Delta 49 May 24 DOWN MAY 3, 1969 Scout (U) May 29 DIO NOT ACHIEVE ORBIT A-Agena (S) Jun 14 HELIOCENTRIC ORBIT (CRBIT (CAC-11) (S)	VBHICLE DATE (Mins.) Apoge Perigee Incl (deg) (kg) A-Agena (U) Apr 6 DOWN SEP 2, 1969 324.3 A-Centaur (AC-12) (S) Apr 17 LANDED ON MOON AFR 20, 1967 1035.6 Delta 48 Apr 20 113.5 1419 1352 101.8 147.4 (S) Scout S-153 Apr 26 DOWN OCT 14, 1967 129.3 (S) Scout (S) DOWN OCT 6, 1967 385.6 Scout (S) DOWN DEC 14, 1970 102.5 Scout (S) DOWN MAY 3, 1969 73.9 Scout (U) May 29 DIO NOT ACHIEVE ORBIT 89.1 A-Agena (S) Jun 14 HELIOCENDRIC ORBIT 244.9 (S) A-Centaur (AC-11) (S) IMPACTED MOON ON JUL 17, 1967 1037.4

MISSION/	LAUNCH	LAUNCH	PERIOD CURRENT ORBITAL PARAMETERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.) Apogee Perigee Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
000 IV (S)	Thor-Agena	Jul 28	DOWN AUG 16, 1972	551.6	Study relationship between Sun and Earth's environment.
1967 073A	(S)				Near-polar orbit achieved, 3-axis stabilized. (WSMC)
Lunar Orbiter V	A-Agena	Aug 1	DOWN JAN 31, 1968	385.6	Fifth and final mission to photograph potential landing
(S)	(S)				sites from lunar orbit. Increased lunar photographic
1967 075A					coverage to better than 99%.
Biosatellite II	Delta (S)	Sep 7	DOWN SEP 9, 1967	425.4	Carried 13 experiments to conduct biological experiments in
(S)					low Earth orbit. Reentry initiated 17 orbits early because
1967 083A					of communications difficulties and storm in recovery area.
					Air recovery successful.
Surveyor V (S)	A-Centaur		LANDED ON MOON SEP 11, 1967	1006.1	Lunar soft landing accomplished; returned TV photos of
1967 084A	(AC-13) (S)				lunar surface; and data on chemical characteristics of
					lunar soil.
Intelsat II (F-4)		Sep 28	CURRENT ELEMENTS NOT MAINTAINED	87.1	Comsat commercial communications satellite to provide
(S)	(S)				24-hour transoceanic service. Reimbursable.
1967 094A					
060-IV (S)	Delta 53	Oct 18	DOWN JAN 15, 1982	276.7	Continuation of OSO program to better understand the Sun's
1967 100A	(S)				structure and determine solar influence upon Earth.
					Obtained first pictures made of Sun in extreme ultraviolet.
RAM C-1 (S)	Scout (S)	Oct 19	SUBORBITAL FLIGHT	116.6	Reentry test to investigate communications problems on
					reentry. (WFF)
ATS III (S)	A-Agena	Nov 5	1436.1 35842 35733 12.1	714.0	Further development of experiments and concepts in useful
1967 111A	, (S)				applications of space technology to communications,
					meteorology, navigation, and Earth resources management.
Surveyor VI (S)	A-Centaur	Nov 7	LANDED ON MOON NOV 10, 1967	1008.3	Lunar soft landing achieved; pictures and soil analysis
1967 112A	(AC-14) (S)		•		data transmitted. Vernier engines restarted, lifting
					spacecraft 10 feet from surface and landing 8 feet from
					original site, performing first rocket-powered takeoff
					from lunar surface.
Apollo 4 (S)	Saturn V	Nov 9	DOWN NOV 9, 1967	45506.0	Launch vehicle/spacecraft development flight. First launch
1967 113A	(S)				of Saturn V; carried unmanned Apollo Command/Service .
TOTAL 117 (01)	D-16- 54	N=:- 3A	114.0 1402 1402	100 7	Module.
ESSA VI (S)	Delta 54	Nov 10	114.8 1483 1407 102.1	129.7	Replaced ESSA II and ESSA IV in the TOS system; used in
1967 114A	(S)				central analysis of global weather. Reimbursable. (WSMC)
I					·
	_				

Intl Desig VEHICLE DATE (Mins.) Apoges Periges Incl (deg) (kg) (All Launches from ESMC, unless otherwise noted) Ploanest VITI (S) Delta (S) Delta (S) Dec 13 HELIOCENTRIC CREST 65.8 Third in series of interplanetary probes to provide data color wind, magnetic fields, and cosmic rays. Carried solar wind, magnetic fields, and cosmic rays. Carried 1967 1238 1968 1968 1968 1968 1968 1968 1969 1969									
PROMENT VIII (S) Delta (S) Dec 13 HELIOCENTRIC GRBIT 65.8 Third in series of interplanetary probes to provide data of solar wind, magnetic fields, and cosmic rays. Carried 1967 1238 1968 1967 1238 1968 Surveyor VII (S) A-Centaur 1968 001A (AC-15) (S) LANDED ON MON JAN 9, 1968 1040.1 Lunar soft landing achieved; provided pictures of lunar terrain, portions of spacecraft, experiment operations, stars, planets, crescent Earth as it charged phases, and ficst observation of artificial light from Earth. Explorer 36 (S) Delta (S) Jan 11 112.2 1572 1079 105.8 Repollo 5 (S) Saturn TB Jan 22 DOWN JAN 24, 1968 Apollo 5 (S) Saturn TB Jan 22 DOWN JAN 24, 1968 Apollo 5 (S) A-Agena Mar 4 CURRENT ELDMENTS NOT MAINTAINED Supporer 37 (S) Scout (S) Mar 5	MISSION/								
solar wind, magnetic fields, and cosmic rays. Carried TTSR-1 (S) 1967 123B 1968 1968 1968 1969 1969				(Mins.)				g) (kg)	
DOWN ARR 28, 1968 DOWN JAN 9, 1968 DOWN JAN 19, 1968 DOWN JAN 24, 1968 DOWN		Delta (S)	Dec 13		HETTOCI	ENTRIC ORBIT		65.8	Third in series of interplanetary probes to provide data of
1968 Surveyor VII (S) A-Centaur Jan 7 LANDED ON MOON JAN 9, 1968 Surveyor VII (S) A-Centaur (AC-15) (S) Surveyor VII (S) A-Centaur (AC-15) (S) Landed ON MOON JAN 9, 1968 Surveyor VII (S) A-Centaur (AC-15) (S) Landed ON MOON JAN 9, 1968 Linar soft landing achieved; provided pictures of lunar terrain, portions of spacecraft, experiment operations, stars, planets, crescent Earth as it changed phases, and first observation of artificial light from Earth. Explorer 36 (S) Delta (S) Jan II 112.2 1572 1079 105.8 Linar soft landing achieved; provided pictures of lunar terrain, portions of spacecraft, experiment operations, stars, planets, crescent Earth as it changed phases, and first observation of artificial light from Earth. Explorer 36 (S) Delta (S) Jan II 112.2 1572 1079 105.8 Linar soft landing achieved; provided pictures of lunar terrain, portions of spacecraft, experiment operations, stars, planets, crescent Earth as it changed phases, and first observation of artificial light from Earth. Explorer 36 (S) Delta (S) Jan II 112.2 1572 1079 105.8 Linar soft landing achieved; provided pictures of lunar terrain, portions of spacecraft, experiment operations, stars, planets, crescent Earth as it changed phases, and first observation of artificial light from Earth. Explorer 36 (S) Delta (S) Jan II 112.2 1572 1079 105.8 Linar soft landing achieved; provided pictures of lunar terrain, portions of spacecraft terrain operations, and phases, crescent Earth as it changed phases, and first observation of artificial light from Earth. Explorer 37 (S) Saturn IB Jan 22 DOWN JAN 24, 1968 42,500.0 First flight test of Lunar Module; verified ascent and escent and escent start and strength of and variations in gravitational field; part of National Ceocher and Earth's start and strength of Rail Planet and Saturn IB Jan 22 DOWN JAN 24, 1968 42,500.0 First flight test of Lunar Module; verified ascent and Earth's start and strength of Rail Planet And Saturn IB Lanet Planet II Lanet Planet II Lanet Planet II Lanet Planet II La									solar wind, magnetic fields, and cosmic rays. Carried
1968 Surveyor VII (S) A-Centaur Jan 7 LANDED ON MOON JAN 9, 1968 Linear soft landing achieved; provided pictures of lunar terrain, portions of spacecraft, experiment operations, stars, planets, crescent Earth as it changed phases, and first observation of artificial light from Earth. Explorer 36 (S) Delta (S) Jan II 112.2 1572 1079 105.8 212.3 GEOS spacecraft to provide precise information about size and shape of Earth and strength of and variations in gravitational field; part of National Geodetic Program. Apollo 5 (S) Saturn IB Jan 22 DOWN JAN 24, 1968 42,506.0 First flight test of Lunar Module; verified ascent and descent stages, propulsion systems and restart operations. Apollo 5 (S) A-Agena Mar 4 CURRENT ELOMENTS NOT MAINTAINED 611.0 Frovided measurements of energy characteristics in Earth's radiation belts; first evidence of electric fields in bow shock. Explorer 37 (S) Scout (S) Mar 5 95.4 638 439 59.4 89.8 Solar Explorer to provided data on selected solar X-ray are ultraviolat emissions. NRL/NASA Cooperative. (MFF) 1968 015A (U) 1968 025A (U) 1000 N AFR 4, 1968 42856.0 Facecraft development flight. Launch vehicle engines malfunctioned; spacecraft systems performe measurements at 20,000 FES. 1016 (WFF) 102 Scout (S) May 17 DOWN MAY 8, 1971 91. Carried 7 experiment to obtain heat transfer measurements at 20,000 FES. 102 Second (U) 103 Carried 7 experiment to obtain heat transfer measurements at 20,000 FES. 103 Carried 7 experiment to obtain heat transfer measurements at 20,000 FES. 104 Carried 7 experiment to obtain heat transfer measurements at 20,000 FES. 105 Experimental meteorological satellite; also carried Second (U) 105 Carried 7 experiments to study solar and cosmic radiation in lower van Allen belt. Cooperative with ESRO. (MSMC) described signal sent by range safety officer. (MSMC) stagnal sent by range safety officer. (MSMC) signals sort by range safety officer.					DOWN A	PR 28, 1968		20.0	TTS-1, first NASA piggyback payload.
Surveyor VII (S) A-Centaur Jan 7 LANDED ON MOON JAN 9, 1968 1040.1 Lunar soft landing achieved; provided prictures of lunar terrain, portions of spacecraft, experiment operations, starts, planets, crescent Earth as it changed phases, and first observation of artificial light from Earth. September 36 (S) Delta (S) Jan II 112.2 1572 1079 105.8 212.3 EOSS spacecraft to provide precise information about size and shape of Earth and strength of and variations in gravitational field; part of National Geodetic Program. Apollo 5 (S) Saturn IB Jan 22 DOWN JAN 24, 1968 42,506.0 First flight test of Lunar Module; verified ascent and descent stages, propulsion systems and restart operations. Apollo 5 (S) A-Agena Mar 4 CURRENT ELPMENTS NOT MAINTAINED 611.0 Provided measurements of energy characteristics in Earth's radiation belts; first evidence of electric fleids in bow shock. Apollo 6 (U) Saturn V Apr 4 DOWN APR 4, 1968 42896.0 Solar Explorer to provided data on selected solar X-ray are ultraviolet emissions. NRL/NASA Cooperative. (MFF) 1968 012A (U) Socut (S) Apr 27 SUBCRETTAL FLIGHT 272.0 Turbulent heating experiment to obtain heat transfer measurements at 20,000 FPS. SENO IIB (S) Scout (S) May 17 DOWN MAY 8, 1971 89.1 Carcled 7 experiments to obtain heat transfer measurements at 20,000 FPS. WEFP 1968 014A (III) May 18 DID NOT ACHIEVE ONBIT 571.5 Experimental meteorological satellite; also carried Second destruct signal sent by range safety officer. (MSMC) (MSMC) (S) Scout (S) Delta 57 Jul 4 224.2 5865 5828 120.8 25.4 Radio Astronomy Explorer to monitor low-frequency radio signals or cignalating in our own solar system and Earth's	1967 123B								
terrain, portions of spacecraft, experiment operations, stars, planets, crescent Earth as it changed phases, and first observation of artificial light from Earth. 1958 002A Delta (S) Jan II 112.2 1572 1079 105.8 212.3 GBDS spacecraft to provide precise information about size and shape of Earth and strength of and variations in gravitational field; part of National Geodetic Program. (MSNC) Apollo 5 (S) Saturn IB Jan 22 DOWN JAN 24, 1968 42,506.0 First flight test of Lunar Module; verified ascent and descent stages, propulsion systems and restart operations. (S) A-Agena Mar 4 CURRENT ELDMENTS NOT MAINTAINED 611.0 Frovided measurements of energy characteristics in Earth's radiation belts; first evidence of electric fields in bow shock. Supplorer 37 (S) Scout (S) Mar 5 95.4 638 439 59.4 89.8 Solar Explorer to provided data on selected solar X-ray are ultraviolate emissions. NRL/NNSA Cooperative. (MFF) 4098 012A Apollo 6 (U) Saturn V Apr 4 DOWN APR 4, 1968 42856.0 Launch vehicle and spacecraft development flight. Launch vehicle engines malfunctioned; spacecraft systems performe near malfunctioned; spacecraft systems performe near malfunctioned; spacecraft systems performe near malfunctioned at transfer measurements at 20,000 FPS. SENO ILE (S) Scout (S) May 17 DOWN MAY 8, 1971 89.1 Carried 7 experiment to obtain heat transfer measurements at 20,000 FPS. Were 10 (U) 100 Scout (S) May 18 DID NOT ACHIEVE ORBIT 571.5 Experimental meteorological satellite; also carried Secondary payload. Booster malfunctioned; weather and Earth's signal, sorting at sent by range safety officer. (MSMC) Supploker 38 (S) Delta 57 Jul 4 224.2 5865 5828 120.8 275.4 Radio Astronomy Explorer to monitor low-frequency radio signals sorting and the proper and Earth's signals sorting at the proper of an account of the proper of the proper of the proper stages and Earth's signals sorting at the proper of an account of the proper of	1968								1968
terrain, portions of spacecraft, experiment operations, stars, planets, crescent Earth as it changed phases, and first observation of artificial light from Earth. Sepiorer 36 (S) Delta (S) Jan II 112.2 1572 1079 105.8 212.3 GEOS spacecraft to provide precise information about size and shape of Earth and strength of and variations in gravitational field; part of National Geodetic Program. Apollo 5 (S) Saturn TB Jan 22 DOWN JAN 24, 1968 42,506.0 First flight test of Lunar Module; verified ascent and descent stages, propulsion systems and restart operations. Apollo 5 (S) A-Agena Mar 4 CURRENT ELOMENTS NOT MAINTAINED 611.0 Frovided measurements of energy characteristics in Earth's radiation belts; first evidence of electric fields in bow Sepiorer 37 (S) Scout (S) Mar 5 95.4 638 439 59.4 89.8 Solar Explorer to provided data on selected solar X-ray are ultraviolate ensisions. NRL/NASA Cooperative. (MFF) 409010 6 (U) Saturn V Apr 4 DOWN APR 4, 1968 42856.0 Launch vehicle and spacecraft development flight. Launch vehicle engines malfunctioned; spacecraft systems performs normally. Mission judged unsuccessful. SERO IIB (S) Scout (S) Apr 27 SUBCREITAL FLIGHT 272.0 Turbulent heating experiment to obtain heat transfer measurements at 20,000 FPS. (WFF) 40968 041A. SERO IIB (S) Scout (S) May 17 DOWN MAY 8, 1971 89.1 Carried 7 experiments to study solar and cosmic radiation in lower van Allen belt. Cooperative with ESRO. (MSMC) 40968 041A 100 (DD) secondary payload. Booster malfunctioned; destruct signal sent by range safety officer. (MSMC) 40968 055A (S)	Surveyor VII (S)	A-Centaur	Jan 7		LANDED ON N	MOON JAN 9,	1968	1040.1	Lunar soft landing achieved; provided pictures of lunar
first observation of artificial light from Earth. Seplorer 36 (S) Delta (S) Jan 11 112.2 1572 1079 105.8 212.3 GEOS spacecraft to provide precise information about size and shape of Earth and strength of and variations in gravitational field; part of National Geodetic Program. Seplorer 37 (S) Saturn TB Jan 22 DOWN JAN 24, 1968 42,506.0 First flight test of Lunar Module; verified ascent and descent stages, propulsion systems and restarct operations. SEQUENCE 37 (S) A-Agena Mar 4 CURRENT ELDMENTS NOT MAINTAINED 611.0 Provided measurements of energy characteristics in Earth's radiation belts; first evidence of electric fleids in bow shock. SEQUENCE 37 (S) Scout (S) Mar 5 95.4 638 439 59.4 89.8 Solar Explorer to provided data on selected solar X-ray and shope of Earth and strength of any verified ascent and descent stages, propulsion systems of energy characteristics in Earth's radiation belts; first evidence of electric fleids in bow shock. SEQUENCE 37 (S) Scout (S) Mar 5 95.4 638 439 59.4 89.8 Solar Explorer to provided data on selected solar X-ray and ultraviolet emissions. NEL/NASA Cooperative. (MFF) apollo 6 (U) Saturn V Apr 4 DOWN APR 4, 1968 42856.0 Launch vehicle emissions. NEL/NASA Cooperative. (MFF) which is the secondary of the secondary spacecraft development flight. Launch vehicle emissions in the secondary experiment to obtain heat transfer measurements at 20,000 FPS. WEFF) Scout (S) Apr 27 SUBORBITAL FLIGHT 272.0 Turbulent heating experiment to obtain heat transfer measurements at 20,000 FPS. (WFF) 1000 FPS.	1968 001A	(AC-15) (S)	ı			•			
first observation of artificial light from Earth. Seplorer 36 (S) Delta (S) Jan 11 112.2 1572 1079 105.8 212.3 GEOS spacecraft to provide precise information about size and shape of Earth and strength of and variations in gravitational field; part of National Geodetic Program. Seplorer 37 (S) Saturn TB Jan 22 DOWN JAN 24, 1968 42,506.0 First flight test of Lunar Module; verified ascent and descent stages, propulsion systems and restarct operations. SEQUENCE 37 (S) A-Agena Mar 4 CURRENT ELDMENTS NOT MAINTAINED 611.0 Provided measurements of energy characteristics in Earth's radiation belts; first evidence of electric fleids in bow shock. SEQUENCE 37 (S) Scout (S) Mar 5 95.4 638 439 59.4 89.8 Solar Explorer to provided data on selected solar X-ray and shope of Earth and strength of any verified ascent and descent stages, propulsion systems of energy characteristics in Earth's radiation belts; first evidence of electric fleids in bow shock. SEQUENCE 37 (S) Scout (S) Mar 5 95.4 638 439 59.4 89.8 Solar Explorer to provided data on selected solar X-ray and ultraviolet emissions. NEL/NASA Cooperative. (MFF) apollo 6 (U) Saturn V Apr 4 DOWN APR 4, 1968 42856.0 Launch vehicle emissions. NEL/NASA Cooperative. (MFF) which is the secondary of the secondary spacecraft development flight. Launch vehicle emissions in the secondary experiment to obtain heat transfer measurements at 20,000 FPS. WEFF) Scout (S) Apr 27 SUBORBITAL FLIGHT 272.0 Turbulent heating experiment to obtain heat transfer measurements at 20,000 FPS. (WFF) 1000 FPS.									
Deplorer 36 (S) Delta (S) Jan 11 112.2 1572 1079 105.8 212.3 GBOS spacecraft to provide precise information about size and shape of Earth and strength of and variations in gravitational field; part of National Geodetic Program. (NEWC) Apollo 5 (S) Saturn IB Jan 22 DDWN JAN 24, 1968 42,506.0 First flight test of Lunar Module; verified ascent and descent stages, propulsion systems and restart operations. (NEWC) 1968 0107A (S) A-Agena Mar 4 CURRENT ELDMENTS NOT MAINTAINED 611.0 Frovided measurements of energy characteristics in Earth's radiation belts; first evidence of electric fields in bow shock. Supporer 37 (S) Scout (S) Mar 5 95.4 638 439 59.4 89.8 Solar Explorer to provided data on selected solar X-ray are ultraviolat emissions. NRL/NASA Cooperative. (NEF) 1968 0125A (U) 1968 0125A (U) Subcretation belts; first evidence of electric fields in bow shock. Launch vehicle and spacecraft development flight. Launch vehicle engines malfunctioned; spacecraft systems performs normally. Mission judged unsuccessful. 1988 018A (S) 218A (S) 2	•								
and shape of Earth and strength of and variations in gravitational field; part of National Geodetic Program. Apollo 5 (S) Apollo 6 (S) Apollo 7 (S) Apollo 7 (S) Apollo 7 (S) Apollo 8 (S) Apollo 8 (S) Apol	Explorer 36 (S)	Delta (S)	Jan 11	112.2	1572	1079	105.8	212.3	GEOS spacecraft to provide precise information about size
gravitational field; part of National Geodetic Program. (NSMC) (NSMC) First flight test of Lunar Module; verified ascent and descent stages, propulsion systems and restart operations. (NSMC) First flight test of Lunar Module; verified ascent and descent stages, propulsion systems and restart operations. A-Agena Mar 4 CURRENT ELDMENTS NOT MAINTAINED 611.0 Frovided measurements of energy characteristics in Earth's radiation belts; first evidence of electric fields in bow shock. Supporer 37 (S) Scout (S) Mar 5 95.4 638 439 59.4 89.8 Solar Explorer to provided data on selected solar X-ray are ultraviolate emissions. NRL/NASA Cooperative. (MFF) 42010 6 (U) Saturn V Apr 4 DOWN APR 4, 1968 42856.0 Launch vehicle and spacecraft development flight. Launch vehicle engines malfunctioned; spacecraft systems performe near malfunctioned; spacecraft systems performed near malfu	1968 002A	,-,							
Apollo 5 (S) Saturn TB Jen 22 DOWN JAN 24, 1968 42,506.0 First flight test of Lunar Module; verified ascent and descent stages, propulsion systems and restart operations. OSO V (S) A-Agena Mar 4 CURRENT ELDMENIS NOT MAINTAINED 611.0 Provided measurements of energy characteristics in Earth's redulation belts; first evidence of electric fields in bow shock. Explorer 37 (S) Scout (S) Mar 5 95.4 638 439 59.4 89.8 Solar Explorer to provided data on selected solar X-ray are ultraviolet emissions. NRL/NASA Cooperative. (MFF) 1968 017A ultraviolet emissions. NRL/NASA Cooperative (MFF) 1968 025A (U) Lower 1									
Apollo 5 (S) Saturn 7B Jan 22 DOWN JAN 24, 1968 42,506.0 First flight test of Lunar Module; verified escent and descent stages, propulsion systems and restart operations. Apgres 1968 014A (S) Frovided measurements of energy characteristics in Earth's radiation belts; first evidence of electric fleids in bow shock. Explorer 37 (S) Scout (S) Mar 5 95.4 638 439 59.4 89.8 Solar Explorer to provided data on selected solar X-ray are ultraviolate emissions. NRL/NASA Cooperative. (MFF) 40010 6 (U) Saturn V Apr 4 DOWN ARR 4, 1968 42856.0 Launch vehicle emissions. NRL/NASA Cooperative. (MFF) 40010 6 (U) Socut (S) Apr 27 SUBCRETAL FLIGHT 272.0 Turbulent heating experiment to obtain heat transfer measurements at 20,000 FPS. (WFF) 40080 014A 40010 Mar 8, 1971 89.1 Carried 7 experiments to study solar and cosmic radiation in lower van Allen belt. Cooperative with ESRO. (MSMC) 4000 Mar 8 (U) 1000 Secondary payload. Booster malfunctioned; Spacecraft was the SRO. (MSMC) 4000 Mar 18 (U) 1000 Secondary payload. Booster malfunctioned; Spacecraft was the SRO. (MSMC) 4000 Mar 10 (U) 20.4 Radio Secondary payload. Booster malfunctioned; Spacecraft (MSMC) 4000 Mar 10 (D) Secondary payload. Booster malfunctioned; Spacecraft (MSMC) 4000 Mar 10 (D) Secondary payload. Booster malfunctioned; Spacecraft (MSMC) 4000 Mar 10 (D) Secondary payload. Booster malfunctioned; MSMC) 4000 Mar 10 (D) Secondary payload. Booster malfunctioned; MSMC) 4000 Mar 10 (D) Secondary payload. Booster malfunctioned; MSMC) 4000 Mar 10 (D) Secondary payload and Secondar									
1968 007A (S) CURRENT ELOMENTS NOT MAINTAINED CONTRIBUTE STORT	Apollo 5 (S)	Saturn TB	Jan 22		DOWN .TA	N 24. 1968		42 506 0	
A-Agena Mar 4 CURRENT ELDMENTS NOT MAINTAINED Control of the provided measurements of energy characteristics in Earth's radiation belts; first evidence of electric fields in bow shock.	1968 007A		 -		0.5411	,		42,300.0	
radiation belts; first evidence of electric fields in bow shock. Spiorer 37 (S) Scout (S) Mar 5 95.4 638 439 59.4 89.8 Solar Explorer to provided data on selected solar X-ray ar ultraviolat emissions. NRL/NASA Cooperative. (MFP) 1968 0125A (UU) Saturn V Apr 4 DOWN ARR 4, 1968 42856.0 Launch vehicle and spacecraft development flight. Launch vehicle engines malfunctioned; spacecraft systems performs normally. Mission judged unsuccessful. SCOUT (S) Apr 27 SUBCRETAL FLIGHT 272.0 Turbulent heating experiment to obtain heat transfer measurements at 20,000 PFS. (WFF) SCRO IIB (S) Scout (S) May 17 DOWN MAY 8, 1971 89.1 Carried 7 experiments to study solar and cosmic radiation in lower Van Allen belt. Cooperative with PSRO. (WSMC) Weecor 10 (U) (U) 20.4 10 (DOD) secondary payload. Booster malfunctioned; spacecraft seets of destruct signal sent by range safety officer. (WSMC) Explorer 38 (S) Delta 57 Jul 4 224.2 5865 5828 120.8 275.4 Radio Astronomy Explorer to monitor low-frequency radio signals sort spain are the Virginal sent by range safety officer.	000 V (S)	A-Agena	Mar 4		URRENT ELEME	NTS NOT MAI	NTAINED	611.0	
Sepiorer 37 (S) Scout (S) Mar 5 95.4 638 439 59.4 89.8 Solar Explorer to provided data on selected solar X-ray are ultraviolet emissions. NRL/NASA Cooperative. (WFF) apollo 6 (U) Saturn V Apr 4 DOWN APR 4, 1968 42856. Launch vehicle and spacecraft development flight. Launch vehicle endines malfunctioned; spacecraft systems perform normally. Mission judged unsuccessful. **Tribulent heating experiment to obtain heat transfer measurements at 20,000 FFS. (WFF) **SERO IIB (S) Scout (S) May 17 DOWN MAY 8, 1971 89.1 Carried 7 experiments to study solar and cosmic radiation in lower Van Allen belt. Cooperative with ESRO. (MSMC) **Horbis B (U) Thor-Agena May 18 DID NOT ACHIEVE CHBIT 571.5 Experimental meteorological satellite; also carried Secor second (U) (U) 20.4 10 (DDD) secondary payload. Booseter malfunctioned; destruct signal sent by range safety officer. (MSMC) **SERO IIB (S) Scout (S) May 17 DID NOT ACHIEVE CHBIT 571.5 Experimental meteorological satellite; also carried Secor destruct signal sent by range safety officer. (MSMC) **SERO IIB (S) Scout (S) May 17 DID NOT ACHIEVE CHBIT 571.5 Experimental meteorological satellite; also carried Secor destruct signal sent by range safety officer. (MSMC) **SERO IIB (S) Scout (S) May 17 DID NOT ACHIEVE CHBIT 571.5 Experimental meteorological satellite; also carried Secor destruct signal sent by range safety officer. (MSMC) **SERO IIB (S) Scout (S) May 17 DID NOT ACHIEVE CHBIT 571.5 Experimental meteorological satellite; also carried Secor destruct signal sent by range safety officer. (MSMC) **SERO IIB (S) Scout (S) May 17 DID NOT ACHIEVE CHBIT 571.5 Radio Astronomy Explorer to monitor low-frequency radio serons of the service signal sent by range safety of the service servi	1968 014A	(S)	-					*****	
Explorer 37 (S) Scout (S) Mar 5 95.4 638 439 59.4 89.8 Solar Explorer to provided data on selected solar X-ray are 1988 017N woll of (U) Saturn V Apr 4 DOWN AFR 4, 1968 42856.0 Launch vehicle and spacecraft development flight. Launch vehicle engines malfunctioned; spacecraft systems performs normally. Mission judged unsuccessful. Reentry VI (S) Scout (S) Apr 27 SUBCRETAL FLIGHT 272.0 Turbulent heating experiment to obtain heat transfer measurements at 20,000 PES. (WFF) 1988 041A 100 PES. (WFF) 1988 041A 100 PES. (WFF) 1998 041A 100 PES. (WFF) 100 NOT ACHIEVE CRBIT 571.5 Experimental meteorological satellite; also carried Second (U) (U) 20.0 Becondary payload. Booster malfunctioned; chapter 38 (S) Delta 57 Jul 4 224.2 5865 5828 120.8 275.4 Radio Astronomy Explorer to monitor low-frequency radio signals sortigating nour own solar systems and Earth's									
1958 017A Ultraviolet emissions. NRL/NASA Cooperative. (NFF) 1958 025A (U) DOWN AFR 4, 1968 42856. Launch vehicle end spacecraft development flight. Launch vehicle engines malfunctioned; spacecraft systems performs normally. Mission judged unsuccessful. 1968 025A (U) Scout (S) Apr 27 SUBCRETTAL FLIGHT 272.0 Turbulent heating experiment to obtain heat transfer measurements at 20,000 FPS. (NFF) 1968 041A Scout (S) May 17 DOWN MAY 8, 1971 89.1 Carried 7 experiments to study solar and cosmic radiation in lower Van Allen belt. Cooperative with ESRO. (NSMC) 1968 041A DID NOT ACHIEVE CHBIT 571.5 Experimental meteorological satellite; also carried Secon secon 10 (U) (U) 20.4 (10 (DD) secondary payload. Booster malfunctioned; destruct signal sent by range safety officer. (NSMC) 1968 055A (S) Secon Sec	Explorer 37 (S)	Scout (S)	Mar 5	95.4	638	439	59.4	89.8	
Apollo 6 (U) Saturn V Apr 4 DOWN APR 4, 1968 42856.0 Launch Vehicle and spacecraft development flight. Launch vehicle and spacecraft veh	1968 017A							****	
vehicle engines malfunctioned; spacecraft systems performs normally. Mission judged unsuccessful. teentry VI (S) Scout (S) Apr 27 SUBCRBITAL FLIGHT 272.0 Turbulent heating experiment to obtain heat transfer measurements at 20,000 FPS. (WFF) SSRO IIB (S) Scout (S) May 17 DOWN MAY 8, 1971 89.1 Carried 7 experiments to study solar and cosmic radiation in lower Van Allen belt. Cooperative with ESRO. (MSMC) Himbus B (U) Thor-Agena May 18 DID NOT ACHIEVE CHBIT 571.5 Experimental memberological satellite; also carried Secon secon 10 (U) (U) 20.4 10 (DOD) secondary payload. Booster malfunctioned; destruct signal sent by range safety officer. (WSMC) Explorer 38 (S) Delta 57 Jul 4 224.2 5865 5828 120.8 275.4 Radio Astronomy Explorer to monitor system and Earth's	Apollo 6 (U)	Saturn V	Apr. 4		DOWN A	R 4, 1968		42856.0	Launch vehicle and spacecraft development flight. Launch
mommally, Mission judged unsuccessful. Normally	1968 025A	(U)	•						
Secord (S) Apr 27 SUBCRETTAL FLIGHT 272,0 Turbulent heating experiment to obtain heat transfer measurements at 20,000 PFS. (MFF)									
measurements at 20,000 PPS. (WFF) SERO IIB (S) Scout (S) May 17 DOWN MAY 8, 1971 89.1 Carried 7 experiments to study solar and cosmic radiation in lower van Allen belt. Cooperative with ESRO. (MSMC) Himbus B (U) Thor-Agena May 18 DID NOT ACHIEVE CHBIT 571.5 Experimental meteorological satellite; also carried Secon secon 10 (U) (U) 20.4 10 (DOD) secondary payload. Booster malfunctioned; destruct signal sent by range safety officer. (WSMC) Explorer 38 (S) Delta 57 Jul 4 224.2 5865 5828 120.8 275.4 Radio Astronomy Explorer to monitor low-frequency radio signals originating in our own solar system and Earth's	Reentry VI (S)	Scout (S)	Apr 27		SUBORBI	TAL FLIGHT		272.0	
SSRO IIB (S) Scott (S) May 17 DOWN MAY 8, 1971 89.1 Carried 7 experiments to study solar and cosmic radiation in lower Van Allen belt. Cooperative with ESRO. (MSMC) 1988 041A 1 Nover Van Allen belt. Cooperative with ESRO. (MSMC) Experimental meteorological satellite; also carried Second 10 (U) 20.4 10 (DDD) secondary payload. Booster malfunctioned; Caplorer 38 (S) Delta 57 Jul 4 224.2 5865 5828 120.8 275.4 Radio Astronomy Explorer to monitor low-frequency radio signals or cignal sent by range safety officer. (MSMC) 1988 055A (S) 10 (S)		•-•							
1968 041A In lower Van Allen belt. Cooperative with ESRO. (MSMC)	ESRO IIB (S)	Scout (S)	May 17		DOWN MA	Y R. 1971		89.1	
Manus B (U) Thor-Agena May 18 DID NOT ACHIEVE ORBIT 571.5 Experimental meteovological satellite; also carried Secon second (U) (U) 20.4 10 (DDD) secondary payload. Booster malfunctioned; destruct signal sent by range safety officer. (WSMC) explorer 38 (S) Delta 57 Jul 4 224.2 5865 5828 120.8 275.4 Radio Astronomy Explorer to monitor low-frequency radio signals originating in our own solar system and Earth's						,		9311	
Secor 10 (U) (U) 20.4 10 (DDD) secondary payload. Booster malfunctioned; destruct signal sent by range safety officer. (WSMC) Explorer 38 (S) Delta 57 Jul 4 224.2 5865 5828 120.8 275.4 Radio Astronomy Explorer no monitor frequency radio signals originating in our own solar system and Earth's	Nimbus B (U)	Thor-Agena	May 18		DID NO	ACHIEVE OR	arr	571.5	
destruct signal sent by range safety officer. (WSMC) Explorer 38 (S) Delta 57 Jul 4 224.2 5865 5828 120.8 275.4 Radio Astronomy Explorer to monitor Low-frequency radio signals originating in our own solar system and Earth's	Secor 10 (U)								
Explorer 38 (S) Delta 57 Jul 4 224.2 5865 5828 120.8 275.4 Radio Astronomy Explorer to monitor low-frequency radio signals originating in our own solar system and Earth's		,						20.4	
1968 055A (S) signals originating in our own solar system and Earth's	Explorer 38 (S)	Delta 57	Jul 4	224.2	5865	5828	120 B	275 A	
	1968 055A		•					-/3.4	
magnetisphere dus rautation certs.									
·									magnetia priest and radiation parts.
						•			

MISSION/	LAUNCH	LAUNCH	PERIOD		ORBITAL PARA			
Intl Desig	VEHICLE	DATE	(Mins.)	Apogee		Incl (dec		(All Launches from ESMC, unless otherwise noted)
Explorer 39 (S) 1968 Q66A	Scout (S)	Aug 8		DOWN	JUN 22, 1981		9.3	Dual payload (Air Density/Injun) to continue the detailed scientific study of density and radiation characteristics
Explorer 40 (S) 1968 Q66B			118.0	2506	678	80.7	69.4	of Earth's upper atmosphere. (WSMC)
ATS IV (U)	A-Centaur	Aug 10		DOWN	OCT 17, 1968		390.1	Evaluate gravity-gradient stabilization, simultaneous
1968 Q68A	(D)	,		-				transmission of voice, TV, telegraph, and digital data.
1								Centaur failed to reignite for second burn; spacecraft
-								remained in parking orbit attached to Centaur.
ESSA VII (5) 1968 069A	Delta 58 (S)	Aug 16	114.9	1471	1429	101.5	147.4	Replace ESSA V as the primary stored data satellite in the TOS system. Reimbursable. (WSMC)
RAM CII (S)	Scout (S)	Aug 22		SUBOR	BITAL FLIGHT		122.0	Measure electron and ion concentrations during reentry. (WFF)
Intelsat III F-1 (U)	Delta (U)	Sep 18		DID N	OT ACHIEVE C	RBIT	286.7	Comsat commercial communications satellite. Vehicle failure. Reimbursable.
ESRO IA (S)	Scout (S)	Oct 3		DOWN	JUN 26, 1970		85.8	Carried 8 experiments to measure energies and pitch angles
1968 084A								of particles impinging on polar ionosphere during magnetic storms and quiet periods. Cooperative with ESRO. (WSMC)
Apollo 7 (S)	Saturn IB	Oct 11		LANDE	D OCT 22, 19	68	51,655.0	First manned flight of Apollo spacecraft with Walter M.
1968 089A	(S)				,			Schirra, Jr., Donn F. Eisele, and Walter Cunningham.
İ								Performed Earth orbit operations. Mission Duration
1								260 hours 9 minutes 3 seconds.
Pioneer IX (S)	Delta (S)	Nov 8		HELIC	CENTRIC CRBI	T	66.7	Deep space probe to collect scientific data on the
1968 100A								electromagnetic and plasma properties of interplanetary
TEIR 2 (S)				DOWN	SEP 19, 1979	Y		space. Carried TETR 2 as secondary payload.
1968 100B	- 1:- (=1						300.0	
HEOS A (S) 1968 109A	Delta (S)	Dec 5		DOWN	OCT 28, 1975	•	108.8	Study interplanetary magnetic fields and solar cosmic ray particles. ESRO Reimbursable.
OAO II (S)	A-Centaur	Dec 7	100.1	768	759	35.0	2016,7	Perform astronomy investigations of celestial objects in
1968 110A	(AC-16) (S)							the ultraviolet region of the electromagnetic spectrum.
ESSA VIII (S)	Delta 62	Dec 15	114.6	1461	1411	101.5	136.1	Meteorological satellite for ESSA. Reimbursable. (WFF)
1968 114A	(S)							
Intelsat III F-2		Dec 18	C	URRENT ELF	MENTS NOT MA	INTAINED	286.7	Initial increment of first global commercial communications
(S)	(S)							satellite system for Comsat. Reimbursable.
1968 116A								

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	RBITAL P.	ARAMETERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)	Apagee	Perigee	Incl (deg	(kg)	(All Launches from ESMC, unless otherwise noted)
Apollo 8 (S)	Saturn V	Dec 21		LANDE	DEC 27,	1968	51655.0	First manned Saturn V flight with Frank Borman, James A.
1968 118A	(S)							Lovell, Jr. and William A. Anders. First manned lunar
								orbit mission; provided close-up look at Moon during 10
								lunar orbits. Mission Duration 147 hrs 0 min 42 sec.
1969								1969
060 V (S)	Delta (S)	Jan 22		DOWN	APR 2, 19	84	288.5	Continuation of OSO program to study Sun's X-rays, gamma
1969 006A								ravs, and radio emissions.
ISIS-A (S)	Delta 65	Jan 30	127.9	3489	574	88.4	235.9	Satellite built by Canada carried 10 experiments to study
1969 009A	(S)							the ionosphere. Cooperative with Canada. (WSMC)
Intelsat III F-3	Delta 66	Feb 5		URRENT ELE	IENIS NOT	MAINTAINED	286.7	Second increment of Comsat's operational commercial
(S)	(S)							communication satellite system. Reimbursable.
1969 011A								7
Mariner VI (S)	A-Centaur	Feb 25		HELIO	ENTRIC O	RBIT	411.8	Mars flyby; provided high resolution photos of Martian
1969 014A	(AC~20) (S)							surface. Closest approach was 2,120 miles on July 31
ESSA IX (S)	Delta 67	Feb 26	115.2	1503	1423	101.6	157.4	Ninth and last in the TOS series of meteorological
1969 016A	(S)							satellites. Reimbursable.
Apollo 9 (S)	Saturn V	Mar 3		LANDE	MAR 13.	1969	51655.0	Earth orbital flight with James A. McDivitt, David R.
1969 018A	(S)							Scott. and Russell Schweickart. First flight of lunar
								module. Performed rendezvous, docking, and EVA. Mission
								Duration 241 hours 1 minute 54 seconds.
Mariner VII (S)	A-Centaur	Mar 27		HELIO	ENTRIC O	RBIT	411.8	Mars flyby; provided high resolution photos of Martian
1969 03QA	(AC-19) (S)							surface. Closest approach was 2,190 miles on August 5.
Nimbus III (S)	Thor-Agena	Apr 14	107.3	1130	1069	99.9	575.6	Provided night and day global meteorological measurements
1969 037A	(S)	•						from space. Secor (DOD) provided geodetic position
Secor 13 (S)			107.2	1127	1067	99.9	20.4	determination measurements.
(WSMC)								
1969 037B								
Apollo 10 (S)	Saturn V	May 18		LANDE	MAY 26,	1969	51655.0	Manned lunar orbital flight with Thomas P. Stafford, John
1969 043A	(S)						5	W. Young, and Eugene A. Cernan to test all aspects of an
								actual manned lunar landing except the landing. Mission
1								Duration 192 hours 3 minutes.
Intelsat III F-4	Delta (S)	May 21	C	RRENT ELE	ENTS NOT	MAINTAINED	143.8	Third increment of Comsat's operational commercial
(S)	,0,		_				143.0	communication satellite system. Reimbursable.
1969 045A								CHEMITY COLOR OF GITTER SACRE VANIENT SOUTH
1,00,04-1								i

MISSION/	LAUNCH	LAUNCH	PERIOD CURRENT CRBITAL PARAMETERS (km)		REMARKS
Intl Desig	VEHICLE	DATE	(Mins.) Apogee Perigee Incl (deg.		(All Launches from ESMC, unless otherwise noted)
000 V (s)	Thor-Agena	Jun 5	DOWN OCT 12, 1979	631.8	Last in the OGO series to provide measurements of energy
1969 051A	(S)				characteristics in Earth's radiation belts; first evidence
					of electric fields in bow shock. (WSMC)
Explorer 41 (S)	Delta 69	Jun 21	DOWN DEC 23, 1972	78.7	Seventh Interplanetary Monitoring Platform to continue the
1969 053A	(S)		•		study of the environment within and beyond the Earth's
					magnetosphere. (WSMC)
Bicsatellite III	Delta (S)	Jun 28	DOWN JUL 7, 1969	696.3	Conduct Intensive experiments to evaluate the effects of
(U)					weightlessness with a pigtail monkey onboard. Spacecraft
1969 056A -					deorbited after 9 days because monkey's metabolic condition
			•		was deteriorating rapidly. Monkey expired 8 hours after
					recovery presumably from a massive heart attack brought on
					by dehydration. Mission judged unsuccessful.
Apollo II (S)	Saturn V	Jul 16	LANDED JUL 24, 1969	51655.0	First manned lunar landing and return to Earth with Neil A.
1969 059A	(S)				Armstrong, Michael Collins, and Edwin A. Aldrin. Landed in
					the Sea of Tranquility on July 20, deployed TV camera and
					EASEP experiments, performed EVA, returned lunar soil
					samples. Mission Duration 195 hours 18 minutes 35 seconds.
Intelsat III F-5	Delta (U)	Jul 26	DOWN OCT 14, 1988	146.1	Fourth increment of Comsat's operational commercial
(U)					communication satellite system. Third-stage malfunctioned;
1969 064A					satellite did not achieve desired orbit. Reimbursable.
080 VI (S)	Delta (S)	Aug 9	DOWN MAR 7, 1981	173.7	Continuing study of Sun's X-rays, gamma rays, and radio
1969 068A					emissions. Carried PAC experiment to stabilize spent
PAC (S)			DOWN APR 28, 1977	117.9	Delta stage.
1969 068B			·		<u> </u>
ATS V (U)	A-Centaur	Aug 12	1464.5 38298 34383 9.5	432.7	Evaluate gravity-gradient stabilization for geosynchronous
1969 069A	(AC-18) (S)) -			satellites. Anomaly after apogee motor firing resulted in
					counterclockwise spin; gravity-gradient booms could not be
					deployed. Nine of 13 experiments returned useful data.
Pioneer E (U)	Delta (U)	Aug 27	DID NOT ACHIEVE ORBIT	67.1	Deep space probe to study magnetic disturbances in
(TETR C) (U)		-		18.1	interplanetary space. Vehicle malfunctioned; destroyed 8
					min 3 sec into powered flight by range safety officer.
ESRO IB (S)	Scout (S)	Oct 1	DOWN NOV 23, 1969	85.8	Fourth European-designed and built satellite to study
1969 083A					ionospheric and auroral phenomena over the northern polar
1					regions. Reimbursable. (WSMC)
ł	_			_	

		_						
MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PA	ARAMETERS (km)	WEIGHT	
Intl Desig	VEHICLE	DATE	(Mins.)	Apoqee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
ORS-A (S)	Scout (S)	Nov 7	115.1	2538	379	102.8	72.1	Study inner Van Allen belt and auroral zones of the
1969 097A		_						Northern Hemisphere. Cooperative with Germany. (WSMC)
Apollo 12 (S)	Saturn V	Nov 14		LAND	D NOV 24,	1969	51655.0	Second Manned lunar landing and return with Charles Conrad,
1969 099A	(5)							Jr., Richard F. Gordon, and Alan F. Bean. Landed in the
								Ocean of Storms on Nov 19; deployed TV camera and ALSEP
1								experiments; two EVA's performed; collected core sample and
								lunar materials; photographed and retrieved parts from
ì								Surveyor III spacecraft. Mission duration 244 hours
			_					36 minutes 25 seconds.
Skynet A (S)	Delta	Nov 21		ELEM	NTS NOT A	/AILABLE	242.7	Communication satellite for the United Kingdom.
1969 101A	(S)		_					Reimbursable.
1970								1970
Intelsat III F-6	Delta (S)	Jan 14		CURRENT E	LEMENTS NO	MAINTAINED	155.1	Part of Comsat's operational commercial communication
(S)								satellite system. Reimbursable.
1970 003A								
TTOS I (S)	Delta	Jan 23	115.0	1477	1432	101.5	306.2	Second generation meteorological satellite to provide
1970 008A	(S)							daytime and nighttime cloud cover observations in both
Oscar 5 (S)			115.0	1475	1432	101.5	9.1	direct and stored modes. Oscar (Australia), carried piggy-
1970 008B								back, used by radio amateurs throughout the world. WSMC)
SERT II (U)	Thor-Agena	Feb 3	106.0	.1046	1038	99.3	503.5	Ion engine test. Fell short of mission duration objective
1970 009A	(S)			<u> </u>				by less than 1 month. (WSMC)
NATOSAT I (S)	Delta 77	Mar 20	1436.2	36491	35086	9.4	242.7	Communications satellite for NATO. Reimbursable
1970 021A	(S)							
Nimbus D (S)	Thor-Agena	Apr 8	107.1	1097	1086	99.7	619.6	Stabilized, Earth-oriented platform to test advanced
1970 025A	(S)							systems for collecting meteorological and geological data.
TOPO 1 (S)			106.9	1085	1082	99.5	21.8	TOPO, carried as piggyback, for triangulation exercises.
1970 025B								(WSMC)
Apollo 13 (U)	Saturn V	Apr 11		LANDE	D APR 17,	1970	51655.0	Third manned lunar landing attempt with James A. Lovell,
1970 029A	(S)							Jr., John L. Swigert, Jr., and Fred W. Haise, Jr. Pressure
								lost in SM oxygen system; mission aborted; LM used for life
I								support. Mission Duration 142 hours 54 minutes 41 seconds.
	Oelta (S)	Apr 22	С	urrent ell	ments not	MAINTAINED	290.3	Part of Comsat's operational commercial communication
(S)	(S)							satellite system. Reimbursable.
1970 032A								
			_					

MISSION/	LAUNCH	LAUNCH	PERIOD		ORBITAL PAR	AMETERS (km)		REMARKS
Intl Desig	AEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)		(All Launches from ESMC, unless otherwise noted)
Intelsat III F-8	Delta (S)	Jul 23	T408.2	36650	33823	12.2	290.3	Part of Comsat's operational commercial communication
(U)								satellite system. Malfunctioned during apogee motor
1970 O55A								firing; failed to achieve desired orbit. Reimbursable.
Skynet 2 (U)	Delta (S)	Aug 19	α	RRENT ELE	MENTS NOT M	MAINTAINED	242.7	Communication satellite for the United Kingdom. Telemetary
1970 Q62A								terminated following apogee motor failure. Reimbursable.
RAM CIII (S)	Scout (S)	Sep 30			BITAL FLIGH		134.0	Reentry test of radio blackout.
OFO I (S)	Scout (S)	Nov 9		DOMN	MAY 9, 1971		132.9	Orbiting Frog Otolith (OFO) in which frogs were used to
1970 094A								study effects of weightlessness on the inner ear, which
RMS (S)				DOWN	FEB 7, 1971		21.0	controls balance. Radiation Meteoroid Spacecraft (RMS)
1970 094B								provided data on radiation belts. (WFF)
OAO B (U)	A-Centaur	Nov 30		DID N	OT ACHIEVE	ORBIT	2122.8	Perform stellar observations in the UV region. Centaur
	(U)							nose fairing failed to separate; orbit not achieved.
ITOS A (S)	Delta 81	Dec 11	114.8	1471	1421	101.5	306.2	To augment NOAA's satellite world-wide weather observation
1970 106A	(S)							capabilities. Reiπbursable. (WSMC)
Explorer 42 (S)	Scout 175C	Dec 12		DOWN	APR 5, 1979)	142.0	Small Astronomy Satellite to catalog celestial X-ray
1970 107A	(S)							sources within and outside the Milky Way. First X-ray
								satellite. (San Marco)
1971								1971
Intelsat IV F-2	A-Centaur	Jan 25		ELEMENT	S NOT AVAIL	ABLE	1387.1	Fourth generation satellite to provide increased capacity
(S)	(S)							for Comsat's global commercial communications network.
1971 006A								Reimbursable.
Apollo 14 (S)	Saturn V	Jan 31		LANDE	D FEB 9, 19	71	51655.0	Third Manned lunar landing with Alan B. Shepard, Jr.,
1971 008A	(S)							Stuart A. Roosa, and Edgar D. Mitchell. Landed in the Fra
P&F (S)	SM			IMPACTED	MOON FEB 4,	1971		Mauro area on Feb 5; performed EVA, deployed lunar
1971 008B								experiments, returned lunar samples. P&F Subsatellite
								spring-launched from SM in lunar orbit. Mission duration
L								216 hours 1 minute 57 seconds.
NATOSAT 2 (S)	Delta 82	Feb 2	1435.8	41063	30496	8.7	242.7	Second communications satellite for NATO. Reimbursable
1971 009A	(S)							
Explorer 43 (S)	Delta 83	Mar 13		DOWN	OCT 2, 1974		288.0	Second generation Interplanetary Monitoring Platform to
1971 019A	(S)				•			extend man's knowledge of solar-lunar relationships.
ISIS B (S)	Delta (S)	Mar 31	113.5	1423	1354	88.2	264.0	Study electron production and loss, and large scale
1971 024A								transport of ionization in ionosphere. Cooperative with
								Canada. (WSMC)
I								•

MISSION/	LAUNCH	LAUNCH	PERIOD		ORBITAL PARAM			REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
San Marco C (S)	Scout 173C	Apr 24		DOWN	NOV 29, 1971		163.3	Study atmospheric dray, density, neutral composition, and
1971 036A	(S)	_						temperature. Cooperative with Italy. (San Marco)
Mariner H (U)	A-Centaur	May 8		DID	NOT ACHIEVE OR	BIT	997.9	Mariner Mars '71 Orbiter mission to map the Martian
	(AC-24) (U)							surface. Centaur stage malfunctioned shortly after launch.
Mariner I (S)	A-Centaur	May 30		AREXX	CENTRIC CRBIT		997.9	Second Mariner Mars '71 Orbiter mission to map the Martian
1971-051A	(AC-23) (S)	_						surface. Achieved orbit around Mars on Nov 13, 1971.
								Transmitted 6.876 pictures.
PART (S)	Scout (S)	Jun 20		SUBOR	BITAL FLIGHT		62.1	Test to determine structure and composition of an
								atmosphere from a probe entering at high speed. (WFP)
Explorer 44 (S)	Scout (S)	Jul 8		DOWN	DEC 15, 1979		115.0	Solar radiation spacecraft to monitor Sun's X-ray and
1971 058A								ultraviolet emissions. Cooperative with NRL. (WFF)
Apollo 15 (S)	Saturn V	Jul 26		LANDE	ED AUG 7, 1971		51655.0	Fourth manned lunar landing with David R. Scott, Alfred M.
1971 063A	(S)							Worden, and James B. Irwin. Landed at Hadley Rille on July
P&F Subsat (S)	SM	Aug 4		SELE	NOCENTRIC ORBI	T	36.3	30; performed EVA with Lunar Roving Vehicle; deployed
1971 063D		_						experiments. Mission Duration 295 hrs 11 min 53 sec.
CAS/EOLE (S)	Scout (5)	Aug 16	100.2	870	662	50.1	85.0	Obtain data on winds, temperatures, and pressures using
1971 071A		-						instrumented balloons launched from Argentina and a
								satellite. Cooperative with France. (WFF)
BIC (S)	Scout 166C	Sep 20		SUBOF	RBITAL FLIGHT		31.7	Barium Ion Cloud Project to study Earth's magnetic field.
	(S)	•						Cooperative with Germany. (WFF)
060 H (S)	Delta (S)	Sep 29		DOWN	JUL 9, 1974		635.0	Observe active physical processes on the Sun and how it
1971 083A		-						influences the Earth and its space environment.
TEIR4 (S)				DOWN	SEP 21, 1978		20.4	• • • • • • • • • • • • • • • • • • • •
1971 093B								
ITOS B (U)	Delta 86	Oct 21		DOWN	JUL 21, 1972		31.7	To augment NOAA's satellite world-wide weather observation
1971 091A	(U)							capabilities. Second stage failed. Reimbursable. (WSMC)
Explorer 45 (5)	Scout (S)	Nov 15	322.8	18149	272	3.2	50.0	Small Scientific Satellite to study magnetic storms and
1971 096A								acceleration of charged particles within the inner
								magnetosphere. (San Marco)
UK-4 (S)	Scout (S)	Dec 11		DOWN	DEC 12, 1978		102.4	Study interactions between plasma and charged particle
1971 109A								streams in the atmosphere. Cooperative with UK. (WSMC)
Intelsat IV F-3	A-Centaur	Dec 20	1454.6	36645	35649	3.9	1387.1	Fourth generation satellite to provide increased capacity
(S)	(5)							for Comsat's global commercial communications network.
1971 116A								Reimbursable.
J								11 to design to the party of th

MISSION/ Intl Desig	LAUNCH VEHICLE	LAUNCH	PERIOD	ADOGEE	CRBITAL PARA		WEIGHT	
1972	VEHICLE	LAIR	(wites.	// vbodee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Intelsat IV F-4	A-Centaur	Jan 22	1420 0	35851	35797	5.3	1387.1	
(S)	(S)	Jan 22	1436.0	33631	33/9/	5.3	1387.1	Fourth generation satellite to provide increased capacity
1972 003A	(5)							for Comsat's global commercial communications network.
HEOS A-2 (S)	- Tr /al					<u>_</u>		Reimbursable.
1972 005A	Delta (S)	Jan 31		DOWN	AUG 2, 1974		117.0	Carried 7 experiments provided by various European
19/2 UUSA								organizations to investigate particles and micrometeorite
								in space. Reimbursable. (WSMC
Pioneer 10 (S)	A-Centaur	Mar 2	SO	DLAR SYSTEM	ESCAPE TRAJ	ECTORY	258.0	Jupiter Flyby. First spacecraft to flyby Jupiter and
1972 012A	(S)							return scientific data.
TD-1 (S)	Delta (S)	Mar 11		DOWN .	JAN 9, 1980		470.8	Western European satellite to obtain data on high-energy
1972 014A								emissions from stellar and galactic sources. ESRO
							_	Reimbursable. (WSMC
Apollo 16 (S)	Saturn V	Apr 16		LANDE	D APR 27, 19	72	51655.0	Fifth manned lunar landing mission with John W. Young, Ke
1972 031A	(S)							Mattingly, and Charles M. Duke. Landed at Descartes on A
P&F Subsat (S)	SM	Apr 16		IMPACTED	MOON MAY 29,	1972	36.3	20. Deployed camera and experiments; performed EVA with
1972 031D		•						lunar roving vehicle. Deployed P&F Subsatellite in lunar
								orbit. Mission Duration 265 hours 51 minutes 59 seconds.
Intelsat IV F-5	A-Centaur	Jun 13	1438.3	35852	35807	6.3	1387.1	Fourth generation satellite to provide increased capacity
(S)	(S)							for Comsat's global commercial communications network.
1972 041A								Reimbursable.
ERTS-A (S)	Delta	Jul 23	103.1	909	899	99.1	941.0	Demonstrate remote sensing technology of Earth's surface
1972 058A	(S)				***		,,,,,	a global scale and on a repetitive basis. (WSMC
Explorer 46 (S)	Scout (S)	Aug 13		DOWN 1	NOV 2, 1979		206.4	Meteoroid Technology Satellite to measure meteoroid
1972 061A	(5,	y			4, 4,,,,		20017	penetration rates and velocity. (WFF
OAO 3 (S)	A-Centaur	Aug 21	99.4	735	726	35.0	2200.0	Study interstellar absorption of common elements in the
1972 065A	(S)			,		33.0		interstellar gas, and investigate ultraviolet radiation
	(2)							emitted from young hot stars.
Transit (S)	Scout (S)	Sep 2	100.2	816	721	90.0	94.0	Navigation Satellite for U.S. Navy. Reimbursable. (WSMC
1972 069A	30000 (3)	Sep 2	100.2	010	/21	30.0	94.0	Navigation Satellite for U.S. Navy. Remoundable. (Work
Explorer 47 (S)	Delta 90	Sep 22	 ,	TROPET PIC	MENTS NOT MA	TATTA TATED	375.9	Interplanetary Monitoring Platform; an automated space
1972 073A	(S)	Sep #2	,	JUNEAU ELLE	WENTS MOT WW	TAINTINED	3/3.9	
IJIE UIJA	(3)							physics lab to study interplanetary radiation, solar wind
								and energetic particles.

								
MISSION/	LAUNCH	LAUNCH	PER IOD		ORBITAL PARA			REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)		(All Launches from ESMC, unless otherwise noted)
ITOS D (S) 1972 082A	Delta 91 (S)	Oct 15	114.9	1453	1447	101.7	345.0	To augment NOAA's satellite world-wide weather observation capabilities. Oscar, amateur radio satellite, carried as
OSCAR (S) 1972 0828		Oct 15	114.9	1453	1446	101.7	15.9	piggyback. Reimbursable. (WSMC)
Telesat A (ANIK) (S) 1972 090A	Delta 92 (S)	Nov 9	1457.5	36257	36150	4.6	544.3	First of a series of domestic communications satellites for Canada. Reimbursable.
Explorer 48 (S) 1972 091A	Scout 170C (S)				AUG 20, 1980		186.0	Small Astronomy Satellite; carried gamma ray telescope in bulbous done to study gamma rays. Launched by Italian cre from San Marco.
ESRO IV (S) 1972 092A	Scout (S)	Nov 21		DOWN	APR 15, 1974	1	114.0	Carried five experiments to investigate the ionosphere, near magnetosphere, auroral, and solar particles. Reimbursable. (NSMC)
Apollo 17 (S) (AS-512/CSM- 114/LM-12) 1972 096A	Saturn V (S)	Dec 7		LANDE	D DEC 19, 19	772		Sixth and last manned lunar landing mission with Eugene A. Cernan, Ronald E. Evans, and Harrison H. (Jack) Schmitt. Landed at Taurus-Littrow on Dec II. Deployed camera and experiments; performed EVA with lunar roving vehicle. Returned lunar samples. Mission duration 301 hours 51 minutes 59 seconds.
Nimbus E (S) 1972 097A	Delta (S)	Dec 11	107.1	1100	1087	99.6	716.8	Stabilized, Earth-oriented platform to test advanced systems for collecting meteorological and geological data. (WSMC)
AEROS (German A-2) (S) 1972 100A 1973	Scout (S)	Dec 16		DOWN	AUG 22, 1973		125.7	Study state and behavior of upper atmosphere and ionosphere. Cooperative with Germany. (WSMC)
								1973
Pioneer G (S) 1973 019A	A-Centaur (S)	Apr 5			ESCAPE TRAJ		259.0	Investigate interplanetary medium beyond the orbit of Mars the Asteroid Belt, and the near-Jupiter environment.
Telesat B (ANIK-2) (S) 1973 023A	Delta 94 (S)	Apr 20	1443.0	35973	35870	5.1	544.3	Second domestic communications satellite for Canada. Reimbursable.
Skylab Workshop (S) 1973 027A	Saturn V (S)	May 14		DOMN	JUL 11, 1979		71500.0	Unmanned launch of first U.S. Space Station. Workshop incurred damage during launch. Repaired during follow-on manned missions.

MISSION/	LAUNCH	LAUNCH				RAMETERS (km		REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)		Perigee	Incl (dec		(All Launches from ESMC, unless otherwise noted)
Skylab 2	Saturn IB	May 25		LANDED	JUN 22,	1973	29750.0	First manned visit to Skylab workshop with Charles (Pete)
206/CSM-116 (S)	(S)							Conrad, Jr., Joseph P. Kerwin, and Paul J. Weitz. Deployed
1973 032A								parasol-like thermal blanket to protect hull and reduce
ľ								temperatures within workshop; freed solar wing that was
ļ .								jammed with debris. Mission duration 672 hours 49 minutes
								49 seconds.
explorer 49 (S)	Delta 95	Jun 10		SELENO	CENTRIC OF	RBIT	328.0	Radio Astronomy Explorer to measure low frequency radio
1973 039A	(S)							noise from galactic and extragalactic sources and from the
								Sun, Earth and Jupiter.
ITOS E (U)	Delta (U)	Jul 16		DID NO	T ACHIEVE	CRBIT	333.8	To augment NOAA's satellite world-wide weather observation
								capabilities. Vehicle second stage malfunctioned.
								Reimbursable. (WSMC)
Skylab 3	Saturn IB	Jul 28		LANDED	SEP 25, 1	1973	29750.0	Second manned visit to Skylab Workshop with Alan L. Bean,
207/CSM-117 (S)	(S)							Owen K. Garriot, and Jack R. Lousma. Performed systems and
1973 050A								operational tests, conducted experiments, deployed thermal
l								shield. Mission Duration 1427 hours 9 minutes 4 seconds.
Intelsat IV F-7	A-Centaur		1466.3	38057	34693	5.7	1387.1	Fourth generation satellite to provide increased capacity
(S)	(AC-31) (S)							for Comsat's global commercial communications network.
1973 058A								Reimbursable.
Explorer 50 (S)	Delta 98	Oct 25		ELEMEN.	IS NOT AVA	ILABLE	397.2	Last Interplanetary Monitoring Platform to investigate
1973 078A	(S)							Earth's radiation environment.
Transit (S)	Scout (S)	Oct 30	105.3	1133	887	89.9	95.0	Navigation satellite for the U.S. Navy. Reimbursable.
1973 081A								(WSMC)
Mariner 10	A-Centaur			HELIOC	ENTRIC ORE	BIT	504.0	Venus and Mercury flyby mission; first dual planet mission.
(Mariner/Venus/	(AC-34) (S)							Photographed Earth and the Moon on its flight to Venus;
Mercury) (S)								Venus encounter (at 5,800 km) on Feb 5; Mercury encounter
1973 085A								(at 704 km) on Mar 29, 1974; second Mercury encounter (at
ł								48,069 km) on Sep 21, 1974; third Mercury encounter (at 327
								km) on Mar 16, 1975. Engineering tests conducted before
								attitude control gas was depleted and transmitter commanded
								off on Mar 24, 1975.
TTOS F (S)	Delta 98	Nov 6	116.1	1508	1499	101.9	345.0	To augment NOAA's satellite world-wide weather observation
1973 086A	(S)							capabilities. Reimbursable. (WSMC)
ł .								
L								

MISSION/	LAUNCH	LAUNC			CRBITAL PARAM			REMARKS
Intl Desig	VEHICLE	DATE	(M		Perigee			(All Launches from ESMC, unless otherwise noted)
Skylab 4 (S)	Saturn IB	Nov 1	6	LANDE	D FEB 8, 1974		29,750.0	Third manned visit to Skylab Workshop with Gerald P. Carr,
1973 090A	(S)							Edward G. Gibson, and William R. Pogue. Performed inflight
1								experiments; obtained medical data on crew; performed four
1								EVA's. Mission duration 2017 hours 15 minutes 32 seconds.
Explorer 51 (S)	Delta (S)	Dec 1	6	DOWN	DEC 12, 1978		663.0	Atmosphere Explorer; carried 14 instruments to study energy
1973 101A					,			transfer, atomic and molecular processes, and chemical
1								reactions in the atmosphere. (WSMC)
1974								1974
Skynet II-A (U)	Delta (U)	Jan 1	Q	TYTUN	JAN 25, 1974		435.5	Communication satellite for the United Kingdom. Short
1974 002A	20100 (0)	oan i	U		0/21 23/ 13/4		400.0	circuit in electronics package caused vehicle failure.
13/4 0025								Reimbursable.
Centaur Proof	Titan III E	C-L 1	,	DTO 11	OT ACHIEVE OR	0.57		Launch vehicle development test of the Titan IIIE/Centaur
Flight (U)	Centaur (U)		1	מזמ א	OI ACHIEVE CR	CDII		
Lifting (0)	Centaur (0)							(TC-1); carried simulated Viking spacecraft and Sphinx.
l .								Liquid oxygen boost pump failed to operate during Centaur
								starts. Destruct command sent 748 seconds after liftoff.
San Marco C-2	Scout	Feb 1	8	DOWN	MAY 4, 1976		170.0	Measure variations of equatorial neutral atmosphere
(S)	S-190C (S)							density, composition, and temperature. Cooperative with
1974 009A								Italy. (San Marco)
UX-X4 (S)	Scout (S)	Mar 8	10	0.6 890	688	97.9	91.6	Three-axis stabilized spacecraft to demonstrate technology
1974 013A								involved in design and manufacture of this type platform
ŀ								for use on small spacecraft. Reimbursable. (WSMC)
Westar A (S)	Delta 101	Apr 1	3 144	1.6 35942	35846	4.1	571.5	Domestic communications satellite for Western Union.
1974 022A	(S)							Reimbursable.
SMS A (S)	Delta 102	May I	7	ELEMEN	TS NOT AVAILA	BIE	628.0	Geostationary environmental satellite to provide Earth
1974 033A	(S)							imaging in visible and IR spectrum. First weather observer
	(5)							to operate in fixed geosynchronous orbit about the Equator.
								Cooperative with NOAA.
ATS F (S)	Titan III C	Mar. 3	0 141	2.0 35433	35195	8.8	1403.0	Applications Technology Satellite capable of providing good
1974 039A	Centaur (S)	may 1	0 141	4.0 33433	33133	0.0	1403.0	quality TV signals to small, inexpensive ground receivers.
12/7 0394	Centaut (5)							
50 (0)	· (a)							Carried over 20 technology and science experiments.
Explorer 52 (S)	Scout (S)	Jun 3	i	DOWN	APR 28, 1978		26.6	"Hawkeye" spacecraft to investigate the interaction of the
1974 040A								solar wind with the Earth's magnetic field. (WSMC)
AFROS B (S)	Scout (S)	Jul 1	6	DOWN	SEP 25, 1975		125.7	German-built satellite to study the state and behavior of
1974 055A								upper atmosphere and ionosphere. Reimbursable. (WSMC)
		_						

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PAR	AMETERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)		Perigee	Incl (deg)	(kg)	(All Launches from EMC, unless otherwise noted)
ANS A (S)	Scout 189C	Aug 30		DOWN	JUN 14, 197	7	129.8	Study the sky in ultraviolet and X-ray from above the
1974 070A	(S)							atmosphere. Cooperative with the Netherlands. (WSMC)
Westar B (S)	Delta (S)	Oct 10	1442.0	35917	35886	4.4	571.5	Domestic communications satellite for Western Union.
1974 075A								Reimbursable.
UK-5 (S)	Scout 187C	Oct 15		DOWN	MAR 14, 198	0	130.3	Measure spectrum, polarization and pulsar features of
1974 077A	(S)							non-solar X-ray sources. Cooperative with UK. (San Marco)
TTOS-G (5)	Delta 104	Nov 15	114.9	1456	1443	101.6	345.0	ITOS-G - To augment NOAA's satellite world-wide weather
1974 089A	(S)							observation capabilities. Reimbursable. Intasat - Conduct
INTASAT (S)			114.8	1457	1439	101.6	20.4	worldwide observations of ionospheric total electron
1974 0898								counts. Cooperative with Spain. Oscar - provide
OSCAR (S)			114.8	1457	1438	101.6	28.6	communications for amateur radio enthusiasts around the
1974 089C								world. (WSMC)
Intelsat IV F-8	A-Centaur	Nov 21	1443.1	35946	35901	3.6	1387.1	Fourth generation satellite to provide increased capacity
(S)	(AC-32) (S)	1						for Comsat's global commercial communications network.
1974 093A								Reimbursable.
Skynet II-B (S)	Delta (S)	Nov 22	1434.5	35773	35736	7,7	435.0	Communication satellite for the United Kingdom.
1974 094A								Reimbursable.
Helios A (S)	Titan III	Dec 10		HELI	OCENTRIC ORB	IT	370.0	Study the Sun from an orbit near the center of the solar
1974 097A	Centaur (S)	l .						system. Cooperative with West Germany.
Symphonie A (S)	Delta 106	Dec 18	1435.0	36658	34871	3.6	402.0	Joint French-German communications satellite to serve North
1974 101A	(S)							and South America, Europe, Africa and the Middle East.
								Reimbursable.
1975								1975
Landsat 2 (S)	Delta (S)	Jan 22	103.1	913	901	98.8	953.0	Second Earth Resources Technology Satellite to locate, map,
1975 004A								and measure Earth resources parameters from space and
								demonstrate the applicability of this approach to the
1								management of the worlds resources. (WSMC)
SMS-B (S)	Delta 108	Feb 6		ELEM	ENTS NOT AVAI	ILABLE	628.0	Together with SMS-A, provide cloud-cover pictures every 30
1975 011A	(S)							minutes to weathermen at NOAA. Cooperative with NOAA.
Intelsat IV F-6	A-Centaur	Feb 20		DID	NOT ACHIEVE (RBIT	1387.1	Fourth generation satellite to provide increased capacity
(U)	(AC-33) (U)							for Comsat's global commercial communications network.
								Launch Vehicle malfunctioned. Reimbursable.
GEOS C (\$)	Delta (S)	Apr 9	101.7	857	816	115.0	340.0	Oceanographic and geodetic satellite to measure ocean
1975 027A							2.344	topography, sea state, and other features. (WSMC)
				_				and desired and and and and and and and and and an

MISSION/	LAUNCH	LAUNCH	PERIOD		ORBITAL PARA	METERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.		Perigee	Incl (deg)		(All Launches from ESMC, unless otherwise noted)
Explorer 53 (S)	Scout	May 7		DOWN	APR 9, 1979		196.7	Small Astronomy Satellite to study X-ray sources within and
1975 037A	S194C (S)							beyond the Milky Way galaxy. (San Marco)
Telesat C (S)	Delta 109	May 7	1439.6	35867	35842	3.8	544.3	Third domestic communications satellite for Canada.
1975 038A	(S)							Reimbursable.
Intelsat IV F-1	A-Centaur	May 22	1450.8	36120	36028	3.6	1387.1	Fourth generation satellite to provide increased capacity
(S)	(AC-35) (S)							for COMSAT's commercial communications network. Last of
1975 042A								the IV series. Reimbursable.
Nimbus F (S)	Delta (5)	Jun 12	107.4	1111	1100	99.6	827.0	Stabilized, Earth-oriented platform to test advanced
1975 052A								systems for collecting meteorological and geological data.
								(WSMC)
OSO I (S)	Delta (S)	Jun 21		DOWN	JUL 9, 1986		1088.4	Observe active physical processes on the Sun and how it
1975 057A								influences the Earth and its space environment.
Apol lo Soyuz	Saturn IB	Jul 15		DOWN	JUL 24, 1975		14,856.0	Manned Apollo spacecraft with Thomas P. Stafford, Vance D.
Test Project (S)	(S)							Brand and Donald K. Slayton rendezvoused and docked with
1975 066A								Soyuz 19 spacecraft with Aleksey Leonov and Valeriy Kubasov
								on July 17, 1975. Mission Duration 217 hrs 28 min 23 sec.
COS B (S)	Delta 113	Aug 8		CURRENT ELE	MENTS NOT MA	INTAINED	277.5	Cosmic ray satellite to study extraterrestrial gamma
1975 072A	(S)							radiation. ESA Reimbursable. (WEMC)
Viking A (S)	Titan III	Ашд 20		AFROC	ENTRIC CREIT		2324.7	Mars Orbiter and Lander mission to conduct systematic
1975 075A	Centaur (S)	_						investigation of Mars. U.S. first attempt to soft land a
LANDER (S)				LANDED ON	MARS JUL 20,	1976	571.5	spacecraft on another planet achieved on July 20, 1976.
1975 075C								First analysis of surface material on another planet.
Symphonie B (S)	Delta 114	Aug 29	1440.5	35879	35864	8,1	402.0	Second joint French-German communications satellite to
1975 077A	(S)	•						serve North and South America, Europe, Africa and the
l								Middle East. Reimbursable.
Viking B (S)	Titan III	Sep 9		AEROC	EMIRIC ORBIT		2324.7	Second Mars Orbiter and Lander mission to conduct
1975 083A	Centaur (S)	-						systematic investigation of Mars. Soft landed on Mars on
Lander				TANDED ON	MARS SEP 3.	1976	571.5	Sep 3, 1976. Returned excellent scientific data.
1975 083A								
Intelsat IVA F-1	A-Centaur	Sep 25	1441.1	35896	35870	3.6	1515.0	Improved satellite with double the capacity of previous
(S)	(AC-36) (S)	-						Intelsats for Comsat's global commercial communications
1975 091A								network. Reimbursable.
Explorer 54 (S)	Delta 115	Oct 6		DOWN	MAR 12, 1976		675.0	Atmosphere Explorer to investigate the chemical processes
1975 096A	(S)				,			and energy transfer mechanisms which control Earth's
I								atmosphere. (WSMC)
		_						

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PAR	AMETERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)	(ka)	(All Launches from ESMC, unless otherwise noted)
Transit (S)	Scout	Oct 12	96.8	677	529	90.4	161.9	Second in a series of improved navigation satellite for
1975_099A	S-195C (S)							U.S. Navy. Reimbursable. (WSMC)
SMS-C/GOES A (S)	Delta 116	Oct 16	1435.6	35780	35771	7.6	628.0	First operational satellite in NOAA's geosynchronous
1975 100A	(S)							weather satellite system. Reimbursable.
Explorer 55 (S)	Delta (S)	Nov 20		DOWN	JUN 10, 198	1	719.6	Atmosphere Explorer to investigate the chemical processes
1975 107A								and energy transfer mechanisms which control Earth's
								atmosphere.
Dual Air Density		Dec 5		DID	NOT ACHIEVE	ORBIT		Measure global density of upper atmosphere and lower
Explorer (U)	S-196C (U)						35.3	exosphere. Malfunction during third stage burn resulted in
1								loss of vehicle control; destroyed by range safety officer
l								at 341 seconds. (WSMC)
RCA A (S)	Delta 118	Dec 13	1445.9	36074	35880	3.7	867.7	First RCA domestic communications satellite. Reimbursable.
1975_117A	(S)		·	:				
1976								1976
Helios B (S)				HELIC	CENTRIC ORB	IT	374.7	Carried 11 scientific instruments to study the Sun.
1976_003A	Centaur (S)							Cooperative with Germany.
CTS (S)	Delta (S)	Jan 17	1436.3	35859	35732	8.2	347.0	Experimental high-powered communication satellite for
1976 004A								communication in remote areas. Cooperative with Canada.
Intelsat IVA F-2			1444.6	35965	35941	3.8	1515.0	Second improved satellite with double the capacity of
(S)	(AC-37) (S))						previous Intelsats for Comsat's global commercial
1976 010A								communications network. Reimbursable.
Marisat A (S)	Delta 120	Feb 19	1436.2	35800	35776	6.5	655.4	Comsat Maritime Satellite to provide rapid, high-quality
1976 017A	(S)							communications between ships at sea and home offices.
								Reimbursable.
RCAβ(S)	Delta 121	Mar 26	1406.1	36536	35973	3.2	867.7	Second RCA domestic communications satellite.
1976_029A	(5)							Reimbursable.
NATO IIIA (S)	Delta 122	Apr 22	1436.0	35788	35783	6.1	670.0	Third-generation communications satellite for NATO.
1976 035A	(S)							Reimbursable
LAGEOS (S)	Delta (S)	May 4	225.4	5945	5837	109.9	411.0	Solid, spherical passive satellite to provide a reference
1976 039A								point for laser ranging experiments. (WSMC)
Comstar IA (S)	A-Centaur	May 13	1442.6	35925	35902	3.6	1490.1	First domestic communications satellite for Comsat.
1976 042A	(AC-38) (S)							Reimbursable.
Air Force P76-5	Scout	May 22	105.5	1049	985	99.6	72.6	Evaluate propagation effects of disturbed plasmas on radar
(S)	S-179C (S)	-						and communications systems. Reimbursable. (WSMC)
1976 047A								

MISSION/	LAUNCH	LAUNCH	PERIOD	CIPPENT	ODDITAL DAD	AMETERS (km)	Lucroum	REMARKS
Intl Desig	VENICLE	DATE	(Mins.)				WEIGHT	
Marisat B (S)	Delta 124	Jun 9	1436.1	35799	Perigee 35776	Incl (deg)	(kg) 655.47	(All Launches from ESMC, unless otherwise noted)
1976 053A	(S)	Jun 9	1436.1	35/99	35776	5.4	655.47	
1970 UJJA	(5)							high-quality communications between ships at sea and home
<u> </u>		Jun 18						offices. Reimbursable.
Gravity Probe A	Scout	Jun 18		SUBOR	BITAL FLIGH	Т	102.5	Scientific probe to test Einstein's Theory of Relativity.
(S)	s-193C (S)							(WPP)
Palapa A (S)	Delta 125	Jul 8	1435.9	36028	35537	2.3	573.8	Communication Satellite for Indonesia. Reimbursable.
1976 066A	(S)							
Comstar B (S)	A-Centaur	Jul 22		GEOSY	NCHRONOUS O	RBIT	1490.1	Second domestic communications satellite for Comsat.
1976 073A	(AC-40) (S)							Reimbursable.
ITOS H (S)	Delta 126	Jul 29	116.2	1519	1503	101.8	345.0	Second generation satellite for NOAA's world-wide weather
1976 077A	(S)							observation. Reimbursable. (WSMC)
TIP III (S)	Scout	Sep 1		DOWN	MAY 30, 198	1	166.0	Improved Transit Navigation Satellite for the U.S. Navy.
1976 089A	S-197C (S)							Reimbursable. (WSMC)
Marisat C (S)	Delta 127	Oct 14	1436.2	35797	35780	6.9	655.4	Third Comsat Maritime Satellite to provide rapid,
1976 101A	(S)							high-quality communications between ships at sea and home
								offices. Reimbursable.
1977								1977
NATO IIIB (S)	Delta 128	Jan 27	1436.0	35790	35779	5.7	670.0	Third-generation communications satellite for NATO.
1977 005A	(S)							Reimbursable.
Palapa B (S)	Delta 129	Mar 10		GEOSY	NCHRONOUS O	RBIT	573.8	Second Communication Satellite for Indonesia.
1977 018A	(S)							Reimbursable.
GEOS/ESA (U)	Delta 130	Apr 20	734.1	38475	2682	26.6	571.5	ESA scientific satellite; carried seven experiments to
1977 029A	(U)	_						investigate Earth's magnetosphere. Malfunction during
								second stage/third stage spinup placed GEOS in unusable
								orbit. Reimbursable.
Intelsat IVA F-4	A-Centaur	May 26	1436.2	35802	35774	2.5	1515.0	Improved satellite with double the capacity of previous
(S)	(AC-39) (S)	_						Intelsats for Comsat's global commercial communications
1977 041A								network. Reimbursable.
GOES/NOAA (S)	Delta (S)	Jun 16	1436.3	35824	35754	5.8	635.0	Visible/infrared spin-scan radiometer provided day and
1977 048A						3.0	5556	night global weather pictures for NOAA. Reimbursable.
GMS (S)	Delta 132	Jul 14	1436.2	35796	35779	6.0	669.5	Operational weather satellite; Japan's contribution to
1977 065A	(S).	• •			55775	3.0	003.3	Global Atmosphere Research Program (GARP). Reimbursable.
HEAD A (S)	A-Centaur	Aug 12		DOM:	MAR 15, 197	0	2551.9	High Energy Astronomy Observatory to study and map X-rays
1977 075A	(S)	nuy 12		DOMIN	mma 13, 197	,	2331.9	and gamma rays.
ISTO OF SAN	101							ano gamma rays.

MISSION/	LAUNCH	LAUNCH	1 nmree	. ~~~~		ALLEMAN ALLEN	WEIGHT	1 REMARKS
Intl Desig	VEHICLE	DATE	PERIOD			Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
	T-IIIE			Apogee				
Voyager 2 (S) 1977 076A	Centaur (S)	Aug 20	SO	LAR SYSTEM	ESCAPE TRA	ADECICKY	2086.5	Investigate the Jupiter and Saturn planetary systems and
19// U/6A	Centaur (5)							the interplanetary medium between Earth and Saturn.
								Jupiter flyby occurred on July 9, 1979; Saturn flyby
								occurred on Aug 25, 1981; Uranus flyby occurred on
								Jan 24, 1986; Neptune flyby planned for Aug 24, 1989.
SIRIO (S)	Delta 133	Aug 25	1435.6	35793	35759	1.9	398.0	Italian scientific satellite to study propagation
1977 080A	(S)							characteristics of radio waves transmitted at super high
								frequencies during adverse weather. Reimbursable.
Voyager 1 (S)	T-IIIE	Sep 5		HELIO	CENTRIC ORE	BIT	2086.5	Investigate the Jupiter and Saturn planetary systems and
1977 084A	Centaur (5)							the interplanetary medium between Earth and Saturn.
								Jupiter flyby occurred on Mar 5, 1979; Saturn flyby
								occurred on Nov 12, 1980; departed Saturn at a high angle
								to the ecliptic plane to observe large cloud-covered moon
ł								Titan. Will not be involved in any more planetary
!								encounters.
ESA/OTS (U)	Delta 134	Sep 13		DID N	OT ACHIEVE	CRBIT	865.0	ESA experimental communications satellite. Vehicle
	(U)	-						exploded at 54 seconds after liftoff. Reimbursable.
Intelsat IVA F-5	A-Centaur	Sep 29		DID N	OT ACHIEVE	CRBIT	1515.0	Improved satellite with double the capacity of previous
(U)	(AC-43) (U)	-						Intelsats for Comsat's global commercial communications
								network. Launch vehicle failed. Reimbursable.
ISEE A/B	Delta 135	Oct 22			-			Dual payload International Sun Earth Explorer to study
1977 102A (S)	(S)			D	OWN SEP 26.	. 1987	329.0	interaction of interplanetary medium with Earth's immediate
1977 102B (S)				D	OWN SEP 26	1987	157.7	environment. Cooperative with ESA.
Transat (S)	Scout	Oct 27	106.9	1101	1060	89.9	93.9	Improved Transit navigation satellite for the U.S. Navy.
1977 106A	S-200C (S)							Reimbursable. (WSMC)
Meteosat (S)	Delta 136	Nov 22	1437.2	35875	35741	7.0	695.3	ESA Meteorological satellite; Europe's contribution to the
1977 108A	(S)							Global Atmospheric Research Program (GARP). Reimbursable.
CS/Japan (S)	Delta 137	Dec 14	1455.9	36185	36159	5.3	677.0	Experimental communication satellite for Japan.
1977 118A	(S)							Reimbursable.
1978								1978
Intelsat IVA F-3	A-Centaur	Jan 6	1436.2	35792	35783	1.9	1515.0	Provide increased telecommunications capacity for
(S)	(AC-46) (S)							Intelsat's global network. Reimbursable.
1978 002A								
1								
l .								

MISSION/	LAUNCH	LAUNCH	PERIOD	CLRR ENT	ORBITAL PAR	RAMETERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	_(Mins.)	Apogee	Perigee	Incl (deg)	(kg) -	(All Launches from ESMC, unless otherwise noted)
IUE-A (S)	Delta (S)	Jan 26	1436.1	43036	28536	30.9	698.5	International Ultraviolet Explorer to obtain high
1978 012A								resolution data of stars and planets in the ultraviolet
								region of the spectrum. Cooperative with ESA.
FLISATCOM-A (S)	A-Centaur	Feb 9	1436.5	35807	35774	6.1	1863.3	Provide communications capability for USAF and USN for
1978 016A	(AC-44) (S)							fleet relay and fleet broadcast. Reimbursable.
Landsat-C (S)	Delta (S)	Mar 5	103.1	917	897	98.8	900.0	Third Earth Resources Technology Satellite to study Earth's
1978 026A								natural resources; measure water, agricultural fields, and
OSCAR-8 (S)			103.0	908	896	98.9	27.3	mineral deposits. Carried Lewis Research Center Plasma
1978 026B								Interaction Experiment (PIX-I) and AMSAT Oscar Amateur
PIX-I (S)			α	JRRENT ELE	MENTS NOT M	MINTAINED	34.0	Radio communications relay satellite.
1978 026C								
Intelsat IVA F-6	A-Centaur	Mar 31	1437.6	35860	35769	1.7	1515.0	Provide increased telecommunications capacity for / ,
(AC-48) (S)								Intelsat's global network. Reimbursable.
1978 035A								
BSE/Japan (S)	Delta 140	Apr 7	1433.7	37702	33775	4.5	665.0	Japan's Broadc. sting Satellite/Exper' for conducting
1978 039A	(S)							TV broadcast exp. iments. Reimbr. able.
HOMM/AEM-A (S)	Scout (S)	Apr 26		DOWN	DEC 22, 198	31	134.3	Heat Capacity Mapp. 7 Mission to test the feasibility of
1978 041A								measuring variations 'n the Earth's temperatures. (WSMC)
OTS-B (S)	Delta 141	May 11	1436.1	35802	35722	4.1	865.0	Orbital Test Satellite w conduct communications
1978 044A	(S)							experiments for ESA. Reimbursable.
Pioneer Venus-A	A-Centaur	May 20		ELEM	AVA 100 STVS	ATLABLE	582.0	One of two Pioneer flights to Venus in 1978; was placed
(Orbiter) (S)	(S)							in orbit around Venus for remote sensing and direct
1978 051A								measurements of the planet and its surrounding environment.
COES-C/NOAA (S)	Delta 142	Jun 16	1436.0	35795	35775	4.7	635.0	Part of NOAA's global network of geostationary
1978 062A	(S)							environmental satellites to provide Earth imaging, monitor
								the space environment, and relay meteorological data to
L								users. Reimbursable.
Seasat-A (S)	At las-F	Jun 26	100.4	779	775	108.0	2300.0	Demonstrate techniques for global monitoring of oceano-
1978 064A	(S)							graphic phenomena and features. After 106 days of
l								returning data, contact was lost with the satellite when a
L								short circuit drained all power from batteries. (WSMC)
Comstar C (S)		Jun 29	1451.7	36168	36012	1.7	1516.0	Third domestic communications satellite for Comsat.
1978 068A	(AC-41) (S)							Reimbursable.
1								
1								

NASA Major Launch Record

	HICLE	DATE			BITAL PARAME		WEIGHT	REMARKS
			(Mins.)	Apogee 1	Perigee I	ncl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
1978 071A (C)		Jul 14	1449.1	36066	36016	6.9	575.0	Positioned on magnetic field lines to study magnetosphere
1310 01111 (3))							and correlate data with ground station, balloon, and
								sounding rocket measurements. Reimbursable.
	Centaur	Aug 8		PROBES LAND	DED DEC 9, 1	978	904.0	Second Pioneer flight to Venus in 1978 to determine nature
	C-51) (S)	-			-			and composition of the atmosphere of Venus. All four
1978 078A								probes and the bus transmitted scientific data. The large
								probe, north probe, and night probe went dead upon impact,
								but the day probe continued to transmit for 68 minutes
1								after impact.
ISEE-C (S) Del	lta 144	Aug 12		HELIOCEN	RIC ORBIT		479.0	Monitored characteristics of solar phenomena about 1 hour
1978 079A (S))	-						before ISEE-A and B to gain knowledge of how the Sun
								controls the Earth's near space environment. Cooperative
								with ESA.
Tiros-N (S) At	las-F	Oct: 13	101.8	851	836	99.0	1405.0	Third generation polar orbiting environmental spacecraft to
1978 096A (S)	.)							provide improved meteorological and environmental data.
								Operated by NOAA. (WSMC)
Nimbus-G (S) Del	Ita (S)	Oct 24	104.0	970	925	99.4	987.0	Carried advanced sensors and technology to conduct
1978 098A								experiments in pollution monitoring, oceanography, and
CAMEO			104.0	970	925	99.4		meteorology. ESA received and processed data direct.
1978 098B								After separation from Nimbus-G, Delta vehicle released
								lithium over Northern Scandinavia and barium over Northern
								Alaska as part of Project CAMEO (Chemically Active Material
l .								Ejected in Orbit). (WSMC)
HEAO-B (S) A-C	Centaur 1	Vov 13		DOWN MAR	25, 1982		3152.0	Second High Energy Astronomical Observatory; carried large
1978 103A (S))				,			X-ray telescope to study the high energy universe, pulsars,
1	•							neutron stars, black holes, quasars, radio galaxies, and
								supernovas.
NATO IIIC (\$) Del	lta 146	Nov 18	1436.1	35792	35782	3.2	706.0	Third-generation communications satellite for NATO.
1978 106A (S)								Reimbursable
Telesat D (S) De		Dec 15	1442.9	36022	35818	1.3	887.2	Fourth domestic communications satellite for Canada.
1978 116A (S))					_		Reimbursable.
1979								1979
SCATHA (S) Del	lta 148 .	Jan 30	1415.7	42425	28348	5.5	658.6	Spacecraft Charging at High Altitudes (SCATHA) carried 12
1979 007A (S)								experiments to investigate electrical static discharges
I ""	•							that affect satellites. USAF Reimbursable.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT (RBITAL PARA	METERS (km)	WEIGHT	R EMARKS
Intl Desig	VEHICLE	DATE	(Mins.)		Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
SAGE/AEM-2 (S) 1979 013A	Scout (S)	Feb 18		_	RIL 11, 198		127.0	Stratospheric Aerosol and Gas Experiment Applications Explorer Mission, to map vertical profiles of ozone, aerosol, nitrogen dioxide, and Rayleight molecular extinction around the globe. (WFF)
PLTSATCOM B (S) 1979 038A	A-Centaur (AC-47) (S)	May 4	1436.1	35837	35736	4.7	1876.1	Provide communications capability for USAF and USN for fleet relay and fleet broadcast. Reimbursable.
UK-6 (S) 1979 047A	Scout S-198C (S)	Jun 2	95.6	564	526	55.0	154.5	Measure ultra-heavy cosmic ray particles and study low- energy cosmic X-rays. UK Reimbursable. (WFF)
NOAA-6 (S) 1979 057A	Atlas-F (S)	Jun 27	101.0	813	797	98.5	1405.0	To provide continuous coverage of the Earth and provide high-accuracy worldwide meteorological data. NOAA (WSMC)
WESTAR C (S) 1979 072A	Delta 149 (S)	Aug 9	1436.2	35793	35782	0.0	571.5	Domestic communications satellite for Western Union. Reimbursable.
HEAO 3 (S) 1979 082A	A-Centaur (AC-53) (S)	Sep 20		DOWN D	C 7, 1981		2898.5	High Energy Astronomy Observatory carried two cosmic ray experiments and one gamma ray spectrometer to obtain data on cosmic rays observed across the far reaches of space.
MAGSAT/AEM-3 (S) 1979 094A	Scout (5)	Oct 30		JC MWOO	IN 11, 1980		183.0	Magnetic Field Satellite, Applications Explorer Mission to map the magnetic field of the Earth. (WSMC)
RCA-C (U) 1979 101A	Delta 150 (S)	Dec 6	789.0	35495	8314	10.5	895.4	Third RCA domestic communications satellite. Contact lost shortly after apogee motor firing. Reimbursable.
1980								1980
FLTSATCOM C (S) 1980 004A	A-Centaur (AC-49) (S)	Jan 17	1436.1	35804	35767	4.3	1864.7	Provide communications capability for USAF and USN for fleet relay and fleet broadcast. Reimbursable.
SMM-A (S) 1980 014A	(S)	Feb 14			c 2, 1989		2315.0	Solar Maximum Mission carried seven instruments to study solar activity during the maximum of solar flares and telated phenomena.
NOAA-7 (U) 1980 043A	Atlas-F (U)	May 29		DOWN I	AY 3, 1981		1405.0	A companion to TTROS N to provide continuous coverage of the Earth and provide high-accuracy worldwide meteorological data. Launch vehicle malfunctioned; faile to place satellite into proper orbit. NOAA Reimbursable. (MSMC)
(S)	Delta 152	Sep 9	1436.2	35795	35780	4.1	832.0	Part of NOAA's global network of geostationary 1980 074A environmental satellites to provide Earth imaging, monitor the space environment, and relay meteorological data. Reimbursable.

							_	
MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PAR	AMETERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
FLTSATCOM D (S) 1980 087A	A-Centaur (AC-52) (S)			35811	35765	4.0	1863.8	Provide communications capability for USAF and USN for fleet relay and fleet broadcast, Reimbursable.
SBS-A (S) 1980 091A	Delta 153 (S)	Nov 15	1436.1	35797	35777	0.7	1057.0	Satellite Business Systems (SBS) to provide fully switched private networks to businesses, government agencies, and other organizations with large, varied communications requirements. Reimbursable.
INTELSAT V-A F-2 (S) 1980 098A	A-Centaur (AC-54) (S)	Dec 6	1436.2	35810	35765	0.0	1928.2	Advanced series of spacecraft to provide increased telecommunications capacity for Intelsat's global network. Reimbursable.
1981								1981
COMSTAR D (S) 1981 018A	A-Centaur (AC-42) (S)		1436.2	35794	35784	1.9	1484.0	Fourth domestic communications satellite for Comsat. Reimbursable.
STS-1 (S) 1981 034A	Shuttle (S) (Columbia)	Apr 12		LANDED AT	DFRF APR 1	4, 1981		First Manned orbital test flight of the Space Transportation System with John W. Young and Robert L. Crippen to verify the combined performance of the Shuttle vehicle. Mission duration 54 hours 20 minutes 32 seconds.
NOVA-1 (5) 1981 044A	Scout S-192C (S)	May 15		ELEME	NTS NOT AVA	ILABLE	166.9	Improved Transit satellite for the Navy's operational navigation system. Reimbursable. (WSMC)
GOES E (S) 1981 049A	Delta 154 (S)	May 22	1436.1	35792	35782	1.2	837.0	Part of NOAA's Geostationary Operational Environmental Satellite system to provide near continual, high resolution visual and infrared imaging over large areas. Reimbursable.
Intelsat V-B F-1 (S) 1981 050A	(AC-56) (S)	May 23	1436.2	35809	35768	0.0	1928.2	Advanced series of spacecraft to provide increased telecommunications capacity for Intelsat's global network. Reimbursable.
NOAA-C (S) 1981 059A	Atlas-F (S)		101.8	855	835	99.1	1405.0	To provide continuous coverage of the Earth and provide high-accuracy worldwide meteorological data. NOAA Reimbursable. (WSMC)
Dynamics Explorer A and B	Delta (S)	Aug 3						Dual spacecraft to study the Earth's electromagnetic fields. (WSMC)
1981 070A (S) 1981 070B (S)			410.4	23339 DOWN	495 FEB 19, 198	89.4 3	424.0 420.0	
FLTSATCOM E (U) 1981 073A	A-Centaur (AC-59) (S)	Aug 6	1460.0	36284	36222	4.6	1863.8	Provide communications capability for USAF and USN for fleet relay and fleet broadcast. Reimbursable.

MISSION/	LAUNCH	LAUNCE	PERIO	CURRENT	ORBITAL PAR	AMETERS (km)	WEIGHT	I REMARKS
Intl Desig	VEHICLE	DATE	(Mins.) Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
SBS-8 (S) 1981 096A	Delta 156 (S)	Sep 24	1436.1	35789	35785	0.0	1057.0	Satellite Business Systems (SBS) to provide fully switched private networks to businesses, government agencies, and other organizations with large, varied communications requirements. Reimbursable.
SME (S) 1981 100A	Delta (S)	Oct 6	94.7	504	502	97.7	437.0	Solar Mesosphere Explorer, an atmospheric-research satellite to study reactions between sunlight, ozone, and
UcSAT 1 (S) 1981_100B			94.0	470	469	97.6	52.0	other chemicals in the atmosphere. Carried UoSat-Oscar 9 (UK) Amateur Radio Satellite as secondary payload.
STS 2 (S) 1981 111A	Shuttle (S) (Columbia)				DERF NOV 14	, 1981		Second Manned orbital test flight of the Space Transportation System with Joe H. Engle and Richard H. Truly to verify the combined performance of the Shuttle vehicle. OSTA-1 payload demonstrated capability to conduct scientific research in the attached mode. Mission duration 54 hours 13 minutes 13 seconds.
RCA-D (S) 1981_114A	Delta 158 (S)		1436.2	35791	35785	0.1	1081.8	Fourth RCA domestic communications satellite. Reimbursable.
Intelsat V F-3 (S) 1981 119A	A-Centaur (AC-55) (S)		1436.3	35809	35771	0.0	1928.2	Advanced series of spacecraft to provide increased telecommunications capacity for Intelsat's global network. Reimburgable.
1982 RCA C' (S)	Delta 159	Jan 16	1436.3	35795	35784	0.1	1081.8	1982 RCA domestic communications satellite. Reimbursable.
1982_004A	(S)					0.1	1001.0	ACA GORBETT COMMUNICATIONS SACOTITIES. ACIMENTAGE
Westar IV (S) 1982 014A	Delta 160 (S)	_	1436.2	35796	35778	0.1	1072.0	Second generation domestic communications satellite for Western Union. Reimbursable.
(S) 1982_017A	(AC-58) (S)	Mar 4		35808	35767	0.0	1928.2	Advanced series of spacecraft to provide increased telecommunications capacity for Intelsat's global network. Reimbursable.
STS 3 (S) 1982 022A	Shuttle (S) (Columbia)					MAR 30, 1982		Third Manned orbital test flight of the Space Transportation System with Jack R. Lousma and C. Gordon Fullerton to verify the combined performance of the Shuttle vehicle. CSS-1 scientific experiments conducted from the cargo bay. Mission duration 192 hours 4 minutes 45 seconds.
Insat 1-A (U) 1982 031A	Delta 161 (S)	Apr 10	1434.2	35936	35562	0.1	1152.1	Multipurpose telecommunications/meteorology spacecraft for India. Reimbursable.

MISSION/	LAUNCH I	LAUNCH	l nonzon			naummana (I)	1	I DOWNERS
Intl Desig	VEHICLE	DATE	PERIOD			RAMETERS (km)	WEIGHT	
Westar V (S)	Delta 162	Jun 8	(Mins.		Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
1982 058A	(S)	Jun 6	1436.2	35796	35778	0.1	1105.0	Western Union domestic communications satellite.
STS 4 (S)	Shuttle (S)	7 27		*******	DFRF JUL 4	7000		Reimbursable.
1982 065A	(Columbia)	Jun 27		LANDED AT	DERF JUL 4	, 1982		Fourth and last manned orbital test flight of the Space
1902 063A	(Columbia)						•	Transportation System with Thomas K. (Ken) Mattingly II and
								Henry W. Hartsfield to verify the combined performance of
								the Shuttle vehicle. Carried first operational Getaway
								Special canister for Utah State University and payload DOD
Landsat D (S)	Delta 163	Jul 16						82-1. Mission duration 169 hours 4 minutes 45 seconds.
1982 072A		Jul 16	98.8	702	698	98.3	1942.0	Earth Resources Technology Satellite to provide continuing
1982 U/ZA	(S)							Earth remote sensing data. Instruments included a
m. 1 o 700	- 1. 12.							multispectral scanner and thematic mapper. (WSMC)
Telesat G (S)	Delta 164	Aug 25	1436.0	35796	35776	0.0	1238.3	Commercial communications satellite for Canada.
1982 082A	(S)							Reimbursable.
Intelsat V-E F-5		Sep 28	1436.1	35805	35769	0.1	1928.2	Advanced series of spacecraft to provide increased
(S)	(AC-60) (S)							telecommunications capacity for Intelsat's global network.
1982 0,97A								Carried Maritime Communications Services (MCS) package for
								INMARSAT. Reimbursable.
RCA-E (S)		Oct 27	1436.2	35791	35784	0.0	1116.3	RCA domestic communications satellite. Reimbursable.
1982 105A	(S)					···		
STS 5 (S)	Shuttle (S)	NOA 11		LANDED AT	DFRF NOV I	6, 1982		First operational flight of STS with Vance Brand, Robert
1982 110A	(Columbia)							Overmyer, Joseph Allen and William Lenoir. Two satellites
SBS-C (S)		Nov 11	1436.1	35788	35786	0.0	3344.8	deployed: SBS-C (Commercial Reimbursable) and Telesat-C
1982 110B								(Canada Reimbursable). Demonstrated ability to conduct
Telesat-E (S)		Nov 12	1436.1	35794	3577 9	0.0	4443.4	routine space operations. Mission duration 122 hours
1982 110C 1983								14 minutes 26 seconds.
	D. 11 - 100							1983
IRAS (S)	Delta 166	Jan 25	102.9	905	887	99.1	1075.9	Infrared Astronomical Satellite to make the first all-sky
1983 004A	(S)							survey for objects that emit infrared radiation and to
PIX II (S)			102.4	886	855	100.1		provide a catalog of infrared sources and infrared sky
1983 004B								maps. Lewis Research Center Plasma Interaction Experiment
								(PIX), to investigate interactions between high voltage
								systems and space environment, activated by Delta after
								IRAS separation. Cooperative with the Netherlands.
l .								
			_					

		_						
MISSION/	LAUNCH	LAUNCH	PERIOD		ORBITAL PAR	RAMETERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)		Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
NOAA-8 (S)	At las-E (S)	Mar 28	101.2	825.5	805	98.6	1712.0	Advanced Tiros-N spacecraft to provide continuous coverage
1983 022A								of the Earth and provide high-accuracy worldwide
								meteorological data. NOAA Reimbursable. (WSMC)
STS 6 (S).	Shuttle (S)	Apr 4		LANDED AT	DFRF APR 9	, 1983		Second operational flight of the STS with Paul Weitz, Karol
1983 026A	(Challenger) _						Bobko, Donald Peterson, and Story Musgrave. Deployed
TDRS-A (S)		Apr 4	1436.3	35804	35776	2.3	17014.0	Tracking and Data Relay Satellite (TDRS) to provide
1983 026B		-						improved tracking and data acquisition services to
								spacecraft in low Earth orbit; performed EVA. Mission
L								duration 120 hours 23 minutes 42 seconds.
RCA F (S)	Delta 167	Apr 11	1436.1	35790	35781	0.1	1116.3	RCA domestic communications satellite. Reimbursable.
1983 030A	(S)	-						
COES 6 (S)	Delta (S)	Apr 28	1436.4	35891	35776	0.1	838.0	Part of NOAA's Geostationary Operational Environmental
1983 041A		_						Satellite system to provide near continual, high resolution
								visual and infrared imaging over large areas.
L								Reimbursable.
Intelsat V-P F-6	A-Centaur	May 19	1436.2	35810	35765	0.0	1928.2	Advanced series of spacecraft to provide increased
(S)	(AC-61) (S)							telecommunications capacity for Intelsat's global network.
1983 047A								Carried Maritime Communications Services (MCS) package for
L								INMARSAT. Reimbursable.
EXOSAT (S)	Delta 169	May 26		DOWN N	AY 6, 1986		500.0	ESA X-ray satellite to provide continuous observations of
1983 051A	(S)							X-ray sources. Reimbursable. (WSMC)
STS 7 (S)	Shuttle (S)			LANDED AT	DFRF JUN 24	, 1983		Third operational flight of STS with Robert L. Crippen,
1983 059A	(Challenger							Prederick H. Hauck, John M. Fabian, Sally K. Ride (first
Telesat-P (S)		Jun 18	1436.0	35791	35782	0.0	4443.4	woman astronaut), and Norman E. Thagard. Deployed two
1983 059B								communications satellites. Telesat (Canada-Reimbursable)
Palapa-B-1 (S)		Jun 18	1436.1	35788	35783	0.0	4521.5	and Palapa (Indonesia - Reimbursable). Carried out
1983 059C								experiments including launching and recovering SPAS 01
SPAS-01 (S)		Jun 18		RETRIEV	ÆD JUN 24,	1983		(FRG). Mission duration 146 hours 23 minutes 59 seconds.
1983 059P								
AF P83-1 (S)	Scout	Jun 27	100.9	834	765	82.0	112.6	Air Force HILAT satellite to evaluate propagation effects
1983 063A	S-205 (S)							of disturbed plasmas on radar and communication systems.
L								Reimbursable. (WSMC)
Galaxy 1 (S)	Delta 170	Jun 28	1436.2	35797	35782	0.0	519.0	Hughes Communications, Inc. communications satellite.
1983 065A	(S)							Reimbursable.
1								

~								
MISSION/	LAUNCH	LAUNCH	PER IOD			AMETERS (km)	WEIGHT	
Intl Desig	VEHICLE	DATE		Apagee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Telstar 3A (S)	Delta 171	Jul 28	1436.1	35796	35778	0.0	635.0	AT&T communications satellite. Reimbursable.
1983 077A	(S)							
STS 8 (S)	Shuttle (S)	Aug 30		LANDED AT	DFRF SEP 5,	1983		Fourth operational flight of STS with Richard H.
1983 089A	(Challenger							Truly, Daniel C. Brandenstein, Dale A. Gardner, Guion S.
INSAT-B (S)	-	Aug 31	1436.2	35819	35755	0.1	3391.0	Bluford (first black astronaut), and William E. Thornton.
1983 089B								First night launch and landing. Deployed satellite, INSAT
								(India-Reimbursable), performed tests and experiments.
								Mission duration 145 hours 8 minutes 43 seconds.
RCA G (S)	Delta 172	Sep 8	1436.2	35797	35778	0.0	1121.3	RCA domestic communications satellite. Reimbursable.
1983 094A	(S)	-						
Galaxy 2 (S)	Delta 173	Sep 22	1436.2	35799	35782	0.0	579.0	Hughes Communications Satellite. Reimbursable.
1983 098A	(S)							
STS-9 (S)	Shuttle (S)	Nov 28	-	LANDED AT	DERF DEC 8,	1983		Fifth operational flight of STS with John W. Young,
Spacelab-1	(Columbia)							Brewster W. Shaw, Jr., Owen K. Garriott, Robert A. R.
1983 116A								Parker, Byron K. Lichtenberg, and Ulf Merbold (ESA).
								Spacelab-1, a multidiscipline science payload, carried in
								Shuttle Cargo Bay. Cooperative with ESA. Mission Duration
								247 hours 47 minutes 24 seconds.
1984								1984
STS 41-B (S)	Shuttle (S)	Feb 3		LANDED AT	KSC FEB 11,	1984		Fourth Challenger flight with Vance D. Brand, Robert L.
1984 011A	(Challenger)						Gibson, Bruce McCandless, Ronald E. McNair and Robert L.
WESTAR 6 (U)		Feb 3		DOWN N	OV 16, 1984	(51-A)	3309.0	Stewart. Deployed WESTAR (Western Union-Reimbursable), and
1984 011B								Palapa B-2 (Indonesia-Reimbursable). Both PAM's failed;
IRT (S)		Feb 3		DOWN F	EB 11, 1984		234.0	both satellites retrieved on 51-A mission. Rendezvous
1984 011C								tests performed with IRT, using deflated target. Evaluated
Palapa B-2 (U)		Feb 6		DOWN N	OV 16, 1984	(51-A)	3419.0	Manned Maneuvering Unit (MMU) and Manipulator Foot
1984 011D								Restraint (MFR). First STS landing at KSC. Mission
								duration 191 hours 15 minutes 55 seconds.
LANDSAT 5 (S)	Delta 174	Mar 1	98.8	702	697	98.2	1947.0	Earth resources technology satellite to provide continuing
1984 021A	(S)							Earth remote sensing data. Instruments included a
UOSAT (S)			98.4	691	674	98.1	52.0	multispectral scanner and thematic mapper. UoSAT sponsored
1984 0218								by AMSAT. NOAA Reimbursable. (WSMC)
i								
}								

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARA	METERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.) Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
STS 41-C (S)	Shuttle (S)	Apr 6		LANDED AT	DFRF APR 13,	1984		Fifth Challenger flight with Robert L. Crippen, Frances R.
1984 034A	(Challenger	:)						Scobee, Terry J. Hart, George D. Nelson and James D. Van
LDEF (S)		Apr 6	94.0	470	467	28.5	9670.0	Hoften. LDEF deployed; SMM retrieved and repaired in Cargo
1984 034B		-						Bay, redeployed Apr 12. Mission duration 167 hrs 41 min.
Intelsat V-G F-9	A-Centaur	Jun 9		DOWN	OCT 24, 1984		1928.2	Advanced series of spacecraft to provide increased
(U)	(AC-62) (U)	,			•			telecommunications capacity for Intelsat's global network.
1984 057A								Carried Maritime Communications Services (MCS) package for
l								INMARSAT. Vehicle failed to place satellite in useful
								orbit. Reimbursable.
AMPTE	Delta (S)	Aug 16						Three active magnetospheric particle tracer explorers:
CCE (S)			939.4	49817	974	3.8	242.0	Charge Composition Explorer (CCE) provided by The U.S.; Ion
1984 088A								Release Module (IRM) provided by The Federal Republic of
IRM (S)			2653.4	113818	402	27.0	605.0	Germany (FGR); and United Kingdom; Subsatellite (UKS)
1984 088B								provided by The United Kingdom: to study the transfer
UKS (S)								of mass from the solar wind to the magnetosphere.
1984 088C			2659.6	113417	1002	26.9	77.0	International Cooperative.
STS 41-D (S)	Shuttle (S)	Aug 30		LANDED AT	EAFB SEP 5.	1984		First Discovery flight with Henry W. Hartsfield, Michael L.
1984 093A	(Discovery)							Coats, Richard M. Mullane, Steven A. Hawley, Judith A.
SBS-4 (S)		Aug 31	1436.1	35793	35781	0.0	3344.0	Resnik, and Charles D. Walker, Deployed SBS (Commercial-
1984 093B		•						Reimbursable), LEASAT (Commercial-Reimbursable) and Telstar
Syncom TV-2 (S)		Aug 31	1436.0	35788	35782	0.7	6889.0	(AT&T-Reimbursable), carried out experiments including
1984 093C		_						OAST-1 solar array structural testing. Mission duration
Telstar 3-C (S)		Sep 1	1436.1	35791	35782	0.0	3402.0	144 hours 56 minutes 4 seconds.
1984 093D								1
Galaxy C (S)	Delta 176	Sep 21	1436.2	35792	35783	0.0	519.0	Hughes Communication, Inc., Communications Satellite.
1984 101A	(S)							Reimbursable.
STS 41-G (S)	Shuttle (S)	Oct 5		LANDED AT	KSC OCT 13,	1984		Sixth Challenger flight with Robert L. Crippen, Jon A.
1984 108A	(Challenger	:)						McBride, Kathryn D. Sullivan, Sally K. Ride, David C.
ERBS (S)		Oct 5	96.8	607	599	57.0	2449.0	Leestma, Paul D. Scully-Power, and Marc Garneau (Canada).
1984 108B								Deployed ERBS to provide global measurements of the Sun's
l								radiation reflected and absorbed by Earth; performed
i								scientific experiments using OSTA-3 and other instruments.
								Mission duration 197 hours 23 minutes 37 seconds.
NOVA III (S)	Scout	Oct 11	108,9	1200	1149	90.0	173.7	Improved Transit Navigation Satellite for U.S. Navy.
1984 110A	S-208C (S)							Reimbursable. (WSMC)

MISSION/	LAUNCH	LAUNCH	PERIOD			AMETERS (km)	WEIGHT	
Intl Desig	VEHICLE	DATE	(Mins.)		Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
STS 51-A (S)	Shuttle (S)			LANDED AT	KSC NOV 16,	1984		Second Discovery flight with Frederick H. Hauck, David M.
1984 113A	(Discovery)							Walker, Joseph P. Allen, Anna L. Fisher, Dale A. Gardner.
Telesat-H (S)		Nov 9	1436.1	35795	35788	0.0	3420.0	Deployed Telesat (Canada-Reimbursable) and Syncom
1984 113B								IV-1 (Hughes-Reimbursable). Retrieved and returned Palapa
Syncom IV-1 (S)		Nov 10	1436.0	35890	35679	0.9	6889.0	B-2 and Westar 6 (Launched on 41-B). Mission duration
1984 113C								191 hours 44 minutes 56 seconds.
NATO III-D (S)	Delta 177	Nov 13	1436.1	35788	35783	3.2	761.0	Fourth in a series of communication satellites for NATO.
1984 115A	(S)							Reimbursable.
NOAA-9 (S)	Atlas-E (S)	Dec 12	102.2	863	839	99.1	1712.0	Advanced TIROS-N spacecraft to provide continuous coverage
1984 123A								of the Earth and provide high-accuracy worldwide
								meteorological data. NOAA. Reimbursable. (WSMC)
1985								1985
STS 51-C (S)	Shuttle (S)	Jan 24		LANDED A	T KSC JAN 27	, 1984		Third Discovery flight with Thomas K. Mattingly, Loren J.
1985 010A	(Discovery)							Shriver, Ellison S. Onizuka, James F. Buchli, and Gary E.
DOD (S)	-			ELEM	ENTS NOT AVA	ILABLE		Payton, Unannounced payload for DOD, (Reimbursable).
1985 010B								Mission duration 73 hours 33 minutes 27 seconds.
Intelsat V-A P-IO	A-Centaur	Mar 22	1436.1	35807	35768	0.0	1996.7	First in a series of improved Commercial Communication
(S)	(AC-36) (S)							Satellites for Intelsat. Reimbursable.
1985 025A								
STS 51-D (S)	Shuttle (S)	Apr 12		LANDED A	T KSC APR 19	, 1985	-	Fourth Discovery flight with Karol J. Bobko, Donald F.
1985 028A	(Discovery)	_						Williams, M. Rhea Seddon, S. David Griggs, Jeffrey A.
Telesat-I(S)		Apr 13	1436.0	35796	35777	0.3	3350.0	Hoffman, Charles D. Walker, and E.J. "Jake" Garn (U.S.
1985 028B		•				***		Senator). Deployed Syncom (Hughes-Reimbursable) and
Syncom IV-3 (S)		Apr 12	1436.2	35809	35768	1.4	6889.0	Telesat (Canada-Reimbursable). Syncom Sequencer failed to
1985 028C								start, despite attempts by crew; remained inoperable until
1								restarted by crew of 51-I. Mission duration 167 hrs 54 min.
STS 51-B (S)	Shuttle (S)	Apr 29		LANDED A	T DERF MAY 6	. 1985		Sixth Challenger flight with Robert F. Overmyer, Frederick
Space Lab-3	(Challenger					,		D. Gregory, Don Lind, Norman E. Thagard, William E.
1985 034A		•						Thornton, Lodewijk Vanderberg, and Taylor Wang. Spacelab-3
NUSAT (S)				DOM	N DEC 15. 19	86	47.6	mission to conduct applications, science, and technology
1985 034B				2011	15, 15			experiments. Deployed Northern Utah Satellite (NUSAT).
1303 0012								Global Low Orbiting Message Relay Satellite (GLOMR) failed
1								to deploy and was returned. Mission duration 168 hours
1								8 minutes 47 seconds.
Į.								o minimes at socoras.

MISSION/ Intl Desig	LAUNCH VEHICLE	LAUNCH DATE	PERIOD		ORBITAL PAR	AMETERS (km)	WEIGHT (kg)	REMARKS (All Launches from ESMC, unless otherwise noted)
STS 51-G (S) 1985 048A	Shuttle (S) (Discovery)	Jun 17		LANDED A	T EAFB JUN	24, 1985		Fifth Discovery flight with Daniel C. Brandenstein, John O. Creighton, Shannon W. Lucid, John M. Fabian, Steven R.
MOR <i>ELOS</i> -A (S) 1985 048B	•	Jun 17	1436.2	35793	35782	0.0	3443.0	Nagel, Patrick Baudry (Prance), and Prince Sultan Salman Al-Saud (Saudi Arabia). Deployed MCRELOS (Mexico -
ARABSAT-A (S) 1985 048C		Jun 18	1436.2	35807	35768	0.0	3499.0	Reimbursable), ARABSAT (ASCO-Reimbursable) and TELSTAR (AT&T-Reimbursable). Deployed and retrieved SPARTAN 1.
TELSTAR 3-D (S) 1985 048D		Jun 19	1436.1	35804	35770	0.0	3437.0	Mission duration 169 hours 39 minutes.
SPARTAN 1 (S) 1985 048E		Jun 20		RETRI	EVED JUN 24	, 1985	2051.0	
Intelsat VA F-11 (S) 1985 055A	A-Centaur (AC-64) (S)	Jun 29	1436.1	35802	35772	0.0	1996.7	Second in a series of improved Commercial Communications Satellites for Intelsat. Reimbursable.
STS 51-F (S) Spacelab-2 1985 063A PDP (S) 1985 063B	Shuttle (S) (Challenger				EAFB AUG 6	•		Seventh Challenger flight with Charles G. Fullerton, Roy D. Bridges, Jr., Karl G. Heinze, Anthony W. England, F. Story Musgrave, Loren W. Acton, and John-David F. Bartow. Conducted experiments in Spacelab-2. Deployed Plasma Diagnostic Package (PDP) which was retrieved 6 hours later. Mission duration 190 hours 45 minutes 26 seconds.
Navy SCOS-I 1985 066A (S) 1985 066B (S)	Scout S-209C (S)	Aug 2	107.9 107.9	1257 1258	1002 1002	89.9 89.9	64.2 64.2	Two Navigation Satellites for U.S. Navy. Reimbursable. (WSMC)
STS 51-1 (S) 1985 076A	Shuttle (S) (Discovery)	Aug 27		LANDED AT	EAFB SEP 3	, 1985		Sixth Discovery flight with Joe H. Engle, Richard O. Covey, James D. VanHoften, William F. Fisher, John M. Lounge.
Aussat-1 (S) 1985 076B	_	Aug 27	1436.2	35794	35781	0.0	3445.5	Deployed Aussat (Australia-Reimbursable), ASC (American Satellite CoReimbursable), and Syncom IV-4 (Hughes -
ASC (S) 1985 076C		Aug 27	1436.1	35796	35777	0.1	3406.1	Reimbursable). After reaching Geosynchronous Orbit, Syncom IV-4 ceased functioning. Repaired Syncom IV-3
Syncom IV-4 (U) 1985 076D		Aug 29	1436.1	36493	35079	1.4	6894.7	(Launched by 51-D). Mission duration 170 hours 27 minutes 42 seconds.
Intelsat VA F-12 (S) 1985 087A	A-Centaur (AC-65) (S)	Sep 28	1436.1	35802	35772	0.0	1996.7	Third in a series of improved commercial Communications Satellites for Intelsat. Reimbursable.

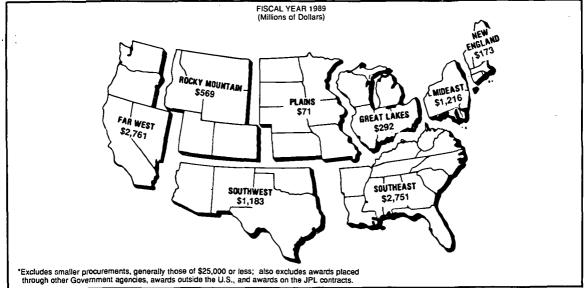
MISSION/	LAUNCH	LAUNCH	PERIOD		ORBITAL PAR	RAMETERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)	Apogee	Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
STS 51-J (S)	Shuttle (S)	Oct 3		LANDED AT	EAFB OCT	7, 1985		First Atlantis flight with Karol J. Bobko, Ronald J. Grabe,
(DOD)	(Atlantis)							Robert A. Stewart, David C. Hilmers, and William A. Pailes.
1985 092A								OOD mission. Mission duration 97 hrs 14 min 38 sec.
STS 61-A (S)	Shuttle (S)	Oct 30		LANDED AT	EAFB NOV	6, 1985		Eighth Challenger flight with Henry W. Hartsfield, Steven
Spacelab D-1	(Challenger)				,		R. Nagel, Bonnie J. Dunbar, James F. Buchli, Guion S.
1985 104A	,	,						Bluford, Ernst Messerschmid (Germany), Reinhard Furrer
GLOMR (S)				DOMN	DEC 26. 198	86	267.6	
1985 104B				DOM	20, 10,	••	207.0	to conduct scientific experiments. Deployed GLOMR.
1303 2025								Carried Materials Experiment Assembly (MEA) for on-orbit
1								processing of materials science experiment specimens.
STS 61-B (S)	01-11-103	- AC			Diam' and			Mission duration 168 hours 44 minutes 51 seconds.
	Shuttle (S)	NOV 26		LANDED AT	EAFB DEC	3, 1985		Second Atlantis Flight with Brewster H. Shaw, Bryan D.
1985 109A	(Atlantis)							O'Conner, Mary L. Cleave, Sherwood C. Spring, Jerry L.
MORELOS-B (S)		Nov 27	1436.1	35794	35780	1.1	4539.6	Ross, Rudolfo Neri Vela (MCRELOS), Charles D. Walker
1985 109B								(MDAC). Deployed MCRELOS (Mexico-Reimbursable), Aussat
Aussat-2 (S)		Nov 27	1436.2	35794	35780	0.0	4569.1	(Australia-Reimbursable), and Satcom (RCA-Reimbursable).
1985 109C								Demonstrated construction in space by manually assembling
Satcom (S)		Nov 28	1436.2	35796	35781	0.0	7225.3	EASE and ACCESS Experiments. Deployed Station Keeping
1985 109D								Target (OEX) to conduct advanced Station Keeping Tests.
OEX Target								Mission duration 165 hours 4 minutes 49 seconds.
1985 109E			DOW	N MAR 2, 1	987			
AF-16	Scout	Dec 12						Air Force instrumented test vehicle. (Dual Payload)
1985 114A (S)	S-207C (S)		94.6	691	311	37.1		Reimbursable. (WFF)
1985 114B (S)				N AUG 9, 1		• • • • • • • • • • • • • • • • • • • •		((ominor posses)
1986				,,,,,	-			1986
STS 61-C (S)	Shuttle (S)	Tan 12		TANDED AT	EAFB JAN	8. 1986		Seventh Columbia flight with Robert L. Gibson, Charles F.
1986 003A	(Columbia)			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		.0, 1500		Bolden, Jr., Franklin R. Chang-Diaz, George D. Nelson,
SATCOM (S)		Ten 12	1436.2	35795	35780	0.0	7225.3	Steven A. Hawley, Robert J. Cenker (RCA), and C. William
1986 003B		Jan 12	1430.2	33733	33700	0.0	1223.3	Nelson (Congressman). Deployed SATCOM (RCA-Reimbursable).
1500 0030								
1								Evaluated material science lab payload carrier and
l								processing facilities. Carried HHG-1 to accommodate GAS
l .								payloads. Mission duration 146 hours 3 minutes 51 seconds.
1								
1								

MISSION/	LAUNCH	LAUNCH	DOI REQ			RAMETERS (km)	WEIGHT	
Intl Desig	VEHICLE	DATE	(Mins.)		Perigee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
STS 51-L (U)	Shuttle (U)			DID N	OT ACHIEVE	ORBIT		Ninth Challenger flight with Francis R. Scobee, Michael J.
TORȘ-B (U)	(Challenger)					2103.3	Smith, Judith A. Resnik, Ellison S. Onizuka, Ronald E.
								McNair, Gregory Jarvis (Hughes) S. Christa McAuliffe
ł								(Teacher). Approximately 73 seconds into flight, the
								Shuttle exploded.
GOES-G (U)	Delta (U)	May 5		DID N	OT ACHIEVE	ORBIT	840.0	Provide systematic worldwide weather coverage for NOAA.
l								Vehicle failed. Reimbursable.
DOD (U)	Delta (U)	Sep 5		DOWN	SEP 28, 19	86		Carried DOD experiment. Reimbursable
1986_069A								
NOAA-G (S)	At las-E (S)	Sep 17	101.2	823	804	98.7	1712.00	Operational environmental satellite for NOAA. Included
1986 073A								ERBE instrument to complement data being acquired by ERBS
l								launched in 1984. Carried search and rescue instruments
								provided by Canada and France. Reimbursable. (WSMC)
AF P87-11 (S)	Scout (S)	Nov 13	104.9	1018	957	89.5		Scientific satellite to study atmospheric effects on
Polar Bear	S~199							electromagnetic propagation. USAF Reimbursable. (WSMC)
1986 088A								
FLISATCOM (F-7)	A-Centaur	Dec 4	1436.2	35875	35703	4.3	1128.5	Provide communications between aircraft ships, and ground
(S)	(AC-66) (S)							stations for DOD. Reimbursable.
1986 096A								
1987								1987
GOES-H (S)	Delta 179	Feb 26	1436.3	35796	35783	0.1	840.0	Operational environmental satellite to provide systematic
1987 022A	(S)							worldwide weather coverage. NOAA Reimbursable.
PALAPA B2-P	Delta 180	Mar 20	1436.2	35788	35788	0.0	652.0	Provide communication coverage over Indonesia and the
1987 029A								Asian countries. Reimbursable.
FLTSATCOM (F-6)	A-Centaur	Mar 26		DID N	OT ACHIEVE	ORBIT	1038.7	Part of worldwide communications system between aircraft,
(U)	67 (U)							ships, and ground stations for DOD. Telemetry lost shortly
								after launch; destruct signal sent at 70.7 seconds into
								flight. An electrical transient, caused by lighting strike
J								on launch vehicle, most probable cause of loss.
								Reimbursable.
S006-2	Scout (S)	Sep 16						Two transit navigation satellites in a stacked configura-
1987 08QA (S)	S204C		107.2	1175	1017	90.3	64.5	tion for the U.S. Navy. Reimbursable. (WSMC)
1987 080B (S)			107.2	1181	1014	90.3	64.5	
[

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT (DRBITAL PAR	AMETERS (km)	WEIGHT	REMARKS
Intl Desig	VEHICLE	DATE	(Mins.)	Apoqee	Perioee	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
1988								1988
DOD (SDI) (S) 1988 008A	Delta 181 (S)	Feb 8	90.1	333	223	28.6		Strategic Defense Initiative Organization (SDIO) Payload. Reimbursable.
San Marco D/L(S) 1988 026A	Scout (S) S-206C	Mar 25	93.4	615	263	3.0	273	Explore the relationship between solar activity and meteorological phenomena. Cooperative with Italy. (San Marco)
9008-3 1988 033A (S) 1988 033B(S)	Scout (S) S-211C	Apr 25					129.6	Two Transit navigation satellites in a stacked configura- tion for the U.S. Navy. Reimbursable (WSMC)
Nova II 1988 052A	Scout (S) S-213C	Jun 16					170.5	Improved Transit Navigation Satellite for the U.S. Navy. Reimbursable. (WSMC
SOOS-4 1988 074A (S) 1988 074B (S)	Scout (S) S-214C	Aug 25					128.2	Two Transit navigation satellites in a stacked configura- tion for the U.S. Navy. Reimbursable (WSMC)
NOAA-H (S) 1988 089A	Atlas-E (S)						1712.0	Operational environmental satellite for NOAA. Carried Search and Rescue instruments provided by Canada and France. Reimbursable. (USMC)
STS-26 (S) 1988 091A	Shuttle (S) (Discovery)			LANDED AT	EAFB OCT	3, 1988		Sixth Discovery flight with Frederick H. Hauck, Richard O. Covey, John M. Lounge, David C. Hilmers, and George D.
TDRS-3 (S) 1988 0918		Sep 29	1434.8	35803	35719	0.1	2224.9	Nelson. Deployed TDRS-3. Performed experiment activities for commercial and scientific middeck experiments. Mission Duration 97 hours.
STS-27 1988 106A DOD 1988 106B	Shuttle (S) (Atlantis)	Dec 2		LANDED AT	EAPB DEC	6, 1988		Third Atlantis flight with Robert L. Gibson, Guy S. Gardner, Richard M. Mullane, Jerry L. Ross and William M. Shepherd. DOD Mission. Mission Duration 105 hrs 6 min.
1989								1989
STS-29 1989 021A TDRS-D 1989 021B	Shuttle (S) (Discovery)		1436.1	JANDED AT	35768	0.0	2224	Eighth Discovery flight with Michael L. Coats, John E. Blaha, James Bagian, James F. Buchli, Robert Springer. Deployed a new Tracking and Data Relay Satellite. Performed commercial and scientific experiments. Mission Duration 119 hrs and 39 min.

NASA Major Launch Record

	· , ·						
MISSION/ Intl Desig	LAUNCH LAUNCH VEHICLE DATE	PERIOD (Mins.)	CURRENT C	RBITAL PARAM	ETERS (km)	WEIGHT (kg)	REMARKS (All Launches from ESMC, unless otherwise noted)
STS-30	Shuttle (S) May 4			T EAFB MAY 8		1	Fourth Atlantis flight with David M. Walker, Ronald J.
1989_033A	(Atlantis)						Grabe, Mary L. Cleve, Mark C. Lee, Noman E. Thagard.
Magellan			TRANS-	VENUS TRAJEC	TORY		Deployed the "Magellan" spacecraft on a mission toward
1989 033B							Venus. Performed commercial and scientific middeck
							experiments. Mission Duration 96 hrs 57 min.
STS-28	Shuttle (S) Aug 8		LANDED A	T EAFB AUG	3 1989		Ninth Columbia flight with Brewster H. Shaw, Richard N.
1989 061A	(Columbia)				,		Richards, David C. Leetsma, James C. Adamson, Mark N.
DOD .	,00200						Brown. DOD Mission. Mission Duration 12 hrs 37 min 53 sec
FLTSATCOM	Altas/ Sep 25	1736.2	35299	35776	4.8	1863	Navy Communications Satellit to provide communications
1989 077A	Centaur (S)		00233	33	4,0	1003	between aircraft, ships and ground stations for DOD.
STS-34	Shuttle (5) Oct 18		TANDED A	T EAFB OCT	23 1989		Fifth Atlantis flight with Donald E. Williams, Michael J.
1989 084A	(Atlantis)		D TIDED !	I LAID OCI A	.5, 1505		Michael J. McCulley, Ellen Baker, Shannon N. Lucid,
Galileo	(ACIAIICIS)		ET EMEN	TS NOT AVAIL	ADID		Franklin Chang-Diaz. Deployed the Galileo spacecraft on
1989 084B			GLONISA	13 NOT AVAIL	Ande		a mission toward Jupiter. Performed experiment activities
							for commercial and scientific middeck experiments.
**							Mission Duration 119 hrs 39 min
COBE .	Delta 2 (5) Nov 18	102.8	895	886	99.0	2206	
1989 089A	Derica 2 (5) NOV 10	102.0	653	600	99.0	2200	Cosmic Background Explorer Spacecraft primary mission
1303 003A							objectives include: 1) obtain definitive measurements of
							the spectrum and angular structure of the primeval cosmic
							background radiation and 2) search for cosmologically
							significant far infrared background radiation such as
							might come from the earliest stars and galaxies. The
							COBE mission will provide the most comprehensive observa-
							tions to date of the radiative content of the universe.
STS-33.	Shuttle (5) Nov 23		LANDED .	AT EAFB NOV	28, 1989		Ninth Discovery flight with Frederick Gregory, John E.
1989 090A	(Discovery)						Blake, Manley L. Carter, Franklin S. Musgrave and
DOD Payload			ELEME	nts not avai	LABLE		Kathryn C. Thorton. DOD dedicated mission. Mission
1989 090B	-						duration 112 hours and 6 minutes 46 seconds.
•							


Section C

Procurement, Funding And Manpower

NASA Contract Awards By State

(FY 1989)			EDUCATIONAL		-		EDUCATIONAL
STATE	TOTAL	BUSINESS	& NONPROFIT	STATE	TOTAL	BUSINESS	& NONPROFIT
JIME	(Thousands)	(Thousands)	(Thousands)		(Thousands)	(Thousands)	(Thousands)
TOTAL	\$9,026,144	\$8,386,980	\$639,164	TOTAL			
Alabama	698,959	681,125	17,834	Nevada	818	460	358
Alaska	3,484	101	3,383	New Hampshire	9,009	3,760	5,249
Arizona	29,008	10,477	18,531	New Jersey	126,355	122,365	3,990
Arkansas	190	15	175	New Mexico	48,292	39,066	9,226
California	2,727,664	2,594,135	133,529	New York	63,381	41,445	21,936
Colorado	137,546	120,975	16,571	North Carolina	12,318	1,620	10,698
Connecticut	81,080	79,191	1,889	North Dakota	111		111
Delaware	2,421	1,361	1,060	Ohio	182,877	158,746	24,131
District of Columbia	70,758	45,735	25,023	Oklahoma	4,503	196	4,307
Florida	1,232,891	1,226,551	6,340	Onegon	6,139	2,808	3,331
Georgia	22,546	17,190	5,356	Pennsylvania	199,492	184,752	14,740
Hawaii	6,337	242	6,095	Rhode Island	2,105	655	1,450
Idaho	1,692		1,692	South Carolina	2,120	1,327	793
Illinois	23,989	12.091	11,898	South Dakota	554	128	426
Indiana	19,210	13,955	5,255	Tennessee	29,523	24,421	5,102
Iowa	13,960	661	13,299	Texas	1,101,607	1,024,001	77,606
Kansas	24,669	23,278	1,391	Utah	428,591	427,062	1,529
Kentucky	1,668	966	702	Vermont	477	477	_
Louisiana	307,612	305,439	2,173	Virginia	357,901	327,574	30,327
Maine	777	61	716	Washington	26,884	22,311	4,573
Maryland	753,116	699,927	53,189	West Virginia	413	149	264
Massachusetts	79,392	21,493	57,899	Wisconsin	45,050	34,767	10,283
Michigan	20,693	6,338	14,355	Wyoming	188		188
Minnesota	7,107	4,393	2,714				
Mississippi	85,353	82,516	2,837				
Missouri	24,107	20,430	3,677	NOTE: Excludes smalle	er produrements, ger	nerally those of	less than
Montana	490	218	272	\$25,000; also	excludes awards place	ed through othe	r Government
Nebraska	717	26	691		is outside the U.S.		

U.S. Geographical Distribution of NASA Prime Contract Awards*

Procurement Activity

TOTAL PROCUREMENT BY INSTALLATION (FY 1989)

INSTALLATION	AWARDS (Millions)	PERCENT
Marshall Space Flight Center	2,649.4	24.4
Johnson Space Center	2,304.0	21.2
Goddard Space Flight Center	1,606.7	14.8
Kennedy Space Center	1,179.5	10.8
NASA Resident Office/JPL	1,063.3	9.8
Lewis Research Center	542.5	5.0
Headquarters	690.0	5.5
Ames Research Center	450.6	4.1
Langley Research Center	384.0	3.5
Stennis Space Center	96.4	0.9
TOTAL	\$10,876.4	100.0

AWARDS TO BUSINESS FIRMS BY TYPE OF EFFORT (FY 1989)

CATEGORY	NUMBER OF CONTRACTS	TOTAL (Millions)
Research and Development	1,712	3,355.9
Aeronautics and Space Technology Space Science and Applications Space Flight Space Operations Space Station Commercial Programs Other RAD	713 399 116 68 24 43 35 314	648.1 463.4 1,407.9 330.9 202.9 8.9 17.5 276.3
Services	1,365	3,078.2
Supplies and Equipment	1,904	1,952.9
TOTAL	4,981	\$8,387,0*

*Excludes smaller procurements, generally those of less than \$25,000.

Distribution Of NASA Procurements

_												
(In Millions of Do	ollars) FY 61	FY 62	FY 63	PY 64	FY 65	PY 66	FY 67	PY 68	FY 69	FY 70	FY 71	FY 72
Total Business	423.3	1,030.1	2,261.7	3,521.1	4,141.4	4,087.7	3,864.1	3,446.7	3,022.3	2,759.2	2,279.5	2,143.3
(Small Business)		(123.6)	(191.3)		(286.3)	(255.9)	(216.9)	(189.6)	(162.8)	(161.2)	(178.1)	(160.9)
Educational	24.5	50.2	86.9	112.9	139.5	150.0	132.9	131.5	131.3	134.3	133.9	118.8
Nonprofit			15.3	29.1	25.3	27.7	39.6	33.6	32.3	33.0	29.3	28.0
JPL	86.0	148.5	230.2	226.2	247.2	230.3	222.2	207.2	156.3	179.8	173.3	210.8
Government	221.7	321.8	628.5	692.6	622.8	512.5	366.9	287.0	279.0	265.8	212.5	207.8
Outside U.S.	(*)	(*)	7.9	12.0	11.2	23.4	25.2	26.7	30.8	33.5	29.7	29.1
Total	200 0	1,550.6	2 220 5	4,593.9	5 107 A	5,031.6	4,650.9	4,132.7	3,652.0	3,405.6	2,858.2	2,737.8
local	/55.5	1,550.0	3,230.3	4,393.9	3,107.4	3,031.0	4,030.5	4,132.7	3,632.0	3,403.0	2,030.2	2,737.0
	FY 73	FY 74	FY 75	FY 76	FY 7T	FY 77	FY 78	FY 79	FY 80	FY 81	FY 82	FY 83
Total Business	2,063.8	2,118.6	2,255.0	2 526 1	663.2	2,838.1	2,953.8	3,416.4	3,868.3	4,272.8	4,805.6	.5,586.0
(Small Business)	(155.3)		(216.0)		(68.4)	(255.0)	(281.5)	(325.4)	(384.6)	(409.4)	(430.1)	(482.3)
Educational	111.7	97.8	111.4	123.0	27.7	125.5	137.2	147.2	177.0	192.5	187.0	211.3
Nonprofit	26.4	39.3	33.0	32.0	7.6	32.0	42.8	50.8	82.2	155.1	108.8	102.5
JPL	202.3	215.2	234.5	263.7	63.6	289.0	283.8	338.6	397.2	410.8	426.3	454.9
Government	235.2	208.6	198.3	222.4	63.9	223.2	216.0	221.4	271.8	321.9	308.1	394.2
Outside U.S.		34.1	34.2	27.4	3.8	24.5	26.0	37.4	46.1	55.2	47.9	47.9
Octside 0.5.	34.0	34.1	34.2	27.9	3.8	24.5	20.0	37.4	40.1	33.2	47.5	47.3
Total	2,673.4	2,713.6	2,866.4	3,204.6	829.8	3,532.3	3,659.6	4,211.8	4,842.6	5,408.3	5,883.7	6,796.8
	FY 84	FY 85	FY 86	FY 87	FY 88	FY 89						
Total Business	5,967.4	6.652.9	6.356.0	6,540.5	7.274.9	8,567.6						
(Small Business)	(556.2)		(671.3)		(801.4)	(857.3)						
Educational	222.6	256.9	276.6	315.4	370.3	464.2						
Nonprofit	98.6	103.1	119.0	119.1	129.5	180.0						
JPL	533.1	724.6	891.3	1,005.6	979.9	1,058.1						
Government	494.3	525.1	489.7	594.9	734.6	543.2						
Outside U.S.	38.1	35.4	47.1	34.3	55.9	63.3						
Total	7,354,1	8,298.0	8,179,7	8,609.8		10.876.4						
	.,	-,-,-,-		.,	-,	,	_	*Ir	cluded in	Covernment		

Principal Contractors (Business Firms)

ONE HUNDRED CONTRACTORS (BUSINESS FIRMS) LISTED ACCORDING TO TOTAL AWARDS RECEIVED FISCAL YEAR 1989

(S=Small Business/D=Disadvantaged Business)

			,		agea sasiness,		
	CONTRACTOR & PRINCIPAL	AWAR	ns	1	CONTRACTOR & PRINCIPAL	AWAR	DS
	PLACE OF CONTRACT PERFORMANCE	(THOUSANDS)			PLACE OF CONTRACT PERFORMANCE	(THOUSANDS)	PERCENT
)			
	TAL AWARDS TO BUSINESS FIRMS	<u>\$8,567.576</u>	100.00	16.	BENDIX FIELD ENGINEERING CORP Columbia, MD	\$156,021	1.82
	ROCKWELL INTERNATIONAL CORP Downey, CA	1,691,857	19.75	17.	LOCKHEED MISSILES & SPACE CO Sunnyvale, CA	145,071	1.69
	LOCKHEED SPACE OPERATIONS CO Kennedy Space Center, FL	552,297	6.45	.18.	UNITED TECHNOLOGIES CORP West Palm Beach, FL	133,105	1.55
Э.	MCDONNELL DOUGLAS CORP Huntington Beach, CA	506,009	5.91	19.	INTERNATIONAL BUSINESS MACHINES Houston, TX	101,718	1.19
4.	THIOKOL CORP Brigham City, UT	419,712	4.90	20.	GRUMMAN AEROSPACE CORP Reston, VA	80,192	.94
5.	MARTIN MARIETTA CORP New Orleans, LA	354,973	4.14	21.	SVERDRUP TECHNOLOGY INC Middleburgh Heights, OH	65,479	.76
6.	GENERAL ELECTRIC CO King of Prussia, PA	299,894	3.50	22.	PAN AMERICAN WORLD SERVICES INC Stennis Space Center, MS	60,074	.70
7.	ROCKWELL SPACE OPERATIONS INC Houston, TX	286,755	3.35	23.	TELEDYNE INDUSTRIES INC Marshall Space Flight, AL	52,407	.61
8.	BOEING CO Marshall Space Flight, AL	235,805	2.75	24.	CONTEL CORP Gaithersburg, MD	51,007	.60
9.	LOCKHEED ENGRG & SCIENCE CO Houston, TX	216,514	2.53	25.	CRAY RESEARCH INC Chippewa Falls, WI	48,226	.56
10.	FORD AEROSPACE CORP Palo Alto, CA	196,254	2.29	26.	BOEING TECHNICAL OPERATIONS INC Houston, TX	41,358	.4B
11.	U S B I BOOSTER PRODUCTION CO Huntsville, AL	196,037	2.29	27.	PLANNING RESEARCH CORP Hampton, VA	39,323	.46
12.	T R W INC Redondo Beach, CA	193,362	2.26	28.	FAIRCHILD INDUSTRIES INC Germantown, MD	37,528	-44
13.	COMPUTER SCIENCES CORP Greenbelt, MD	191,937	2.24	29.	AEROJET GENERAL CORP Sacramento, CA	37,469	.44
14.	E G & G FLORIDA INC Kennedy Space Center, FL	186,833	2.18	30.	N S I TECHNOLOGY SERVICES CORP Moffett Field, CA	35,564	.42
15.	BOEING COMPUTER SUPPORT SERVICES Marshall Space Flight, AL	158,394	1.85	31.		S) 34,800	.41

Principal Contractors (Business Firms)

	CONTRACTOR & PRINCIPAL		AWAR	DS		CONTRACTOR & PRINCIPAL		AWAR	
	PLACE OF CONTRACT PERFORMANCE	.03	THOUSANDS)	PERCENT	1	PLACE OF CONTRACT PERFORMANCE		(THOUSANDS)	PERCENT
32.	UNISYS CORP		34,048	.40	49.	CORTEZ III SERVICE CORP	(S) (D)	16,531	.19
33.	Greenbelt, MD ATLIS FEDERAL SERVICES INC Moffett Field, CA		31,471	.37	50.	Cleveland, OH CAE LINK CORP Houston, TX		15,595	. 18
34.	PERKIN ELMER CORP Danbury, CT		31,388	. 37	51.	Houston, TX ANALEX CORP Cleveland, OH	(\$)	15,319	. 18
35.	GENERAL DYNAMICS CORP San Diego, CA		30,821	.36	52.	COMMUNICATIONS SATELLITE CORP		14,869	.17
34.	Marshall Space Blishe as	(D)	30,283	. 35	53.		(8)	14,854	. 17
37,	RAYTHEON SERVICE CO Greenbelt, MD		30,098	. 35	54.		(8)	14,681	.17
	BIONETICS CORP Marshall Space Flight, AL	(S)	29,914	.35	55.	SYSTOLIC SYSTEMS INC Moffett Field, CA	(D)	14,555	.17
39.	S T SYSTEMS CORP Greenbelt, MD	(S) (D)	29,606	.35	56.	SCIENCE APPLICATION INT'L CORP		14,530	. 17
40.	L T V AEROSPACE & DEFENSE CO Dallas, TX		25,400	.30		MICRO CRAFT INC Tullahoma, TN	(S)	13,950	.16
41.	GRUMMAN DATA SYSTEMS CORP Marshall Space Flight, AL		22,566	.26	58.		(S)	13,717	.16
42.	BALL CORP Boulder, CO		21,188	.25	59.	DIGITAL EQUIPMENT CORP Greenbelt, MD		13,271	.15
43.	KRUG INTERNATIONAL CORP Houston, TX		20,747	.24	60.	HONEYWELL FEDERAL SYSTEMS INC Kennedy Space Center, FL		12,117	.14
44.	WYLE LABORATORIES Hampton, VA		18,848	.22	61.	CALSPAN CORP Moffett Field, CA		11,871	.14
	AIR PRODUCTS & CHEMICALS INC Allentown, PA		18,814	.22	- 62.	COMPUTER SCIENCES PAN AM SERVICE Slidell, LA	ES	11,423	.13
46.	NORTHROP WORLDWIDE AIRCRAFT Houston, TX		17,676	.21	63.	CLEVELAND ELECTRIC ILLUMINATING Cleveland, OH		11,361	.13
	LOCKHEED CORP		17,089	. 20	64.	VIRGINIA ELECTRIC & POWER CO Hampton, VA		10,982	.13
48.	ENGINEERING & ECONOMICS RES Beltsville, MD	(S) (D)	17,079	.30	65.	COLEJON MECHANICAL CORP Cleveland, OH	(S) (D)	10,626	.12
					[

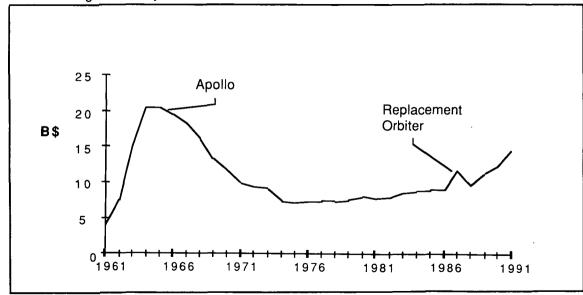
Principal Contractors (Business Firms)

	CONTRACTOR & PRINCIPAL					CONTRACTOR & PRINCIPAL		AWA	RDS
l	PLACE OF CONTRACT PERFORMANCE		AWAR (THOUSANDS)		}	PLACE OF CONTRACT PERFORMANCE	7	THOUSANDS)	PERCENT
	GULFSTREAM AEROSPACE CORP Savannah, GA		10,482	.12	84.	OGDEN LOGISTICS SERVICES Greenbelt, MD		7,563	.09
67.	OMNIPLAN CORP Houston, TX	(S) (D)	10,413	.12	85.	ANALYTICAL SERVICES & MAT INC Tabb, VA	(S) (D)	7,528	.09
68.	ADVANCED TECHNOLOGY INC Marshall Space Flight, AL		10,372	.12	86.	AMERICAN TELEPHONE & TELEGRAPH Greenbelt, MD		7,289	.09
69.	WARNER R E & ASSOCIATES Lorain, OH	(S)	9,640	.11	87.	KELSEY SEYBOLD CLINIC Houston, TX		7,279	.08
70.	STELLACOM INC Houston, TX	(S)	9,620	.11	88.	PIONEER CONTRACT SERVICES INC Houston, TX	(S)	7,196	.08
71.	ELECTRONIC DATA SYSTEMS CORP Bethesda, MD		9,551	.11	89.	GENERAL SOFTWARE CORP Landover, MD	(S) (D)	7,130	.08
72.	JOHNSON ENGINEERING CORP Houston, TX	(S)	9,536	.11	90.	HARROP CONSTRUCTION CO INC Houston, TX	(S)	7,091	.08
73.	S Y R E JV Moffett Field, CA		9,477	.11	91.	SWALES & ASSOCIATES INC Greenbelt, MD	(S)	6,997	.08
74.	VITRO CORP Washington, DC		8,704	.10	92.	GENERAL MOTORS CORP Indianapolis, IN		6,866	.08
75.	HUGHES AÍRCRÁFT CO Torrance, CA		8,682	.10	93.	I T T CORP Fort Wayne, IN		6,838	.08
76.	ALLIED SIGNAL INC Phoenix, AZ		8,522	.10	94.	CONTROL DATA CORP Greenbelt, MD		6,725	.08
77.	BOOZ ALLEN & HAMILTON INC Bethesda, MD		8,227	.10	95.	DYNAMIC ENGINEERING INC Newport News, VA	(S)	6,604	.08
78.	A R C PROFESSIONAL SERVICES INC Hampton, VA		8,119	.09	96.	D K ASSOCIATES INC Cleveland, OH	(S)	6,359	.07
79.	B D M INTÉRNATIONAL INC Columbia, MD		7,955	.09	97.	POTOMAC ELECTRIC POWER CO Greenbelt, MD		6,240	.07
80.	ENGINEERING DESIGN GROUP INC Edwards, CA		7,853	.09	98.	AMDAHL CORP Sunnyvale, CA		6,231	.07
81.		(S)	7,774	.09	99.	W & J CONSTRUCTION CORP Kennedy Space Center, FL		5,971	.07
82.	OSTERLAND G R CO Cleveland, OH	(S)	\$7,682	.09	100.	DATAMAX COMPUTER SYSTEMS INC Edwards, CA	(S)	5,756	. 07
83.	R M S TECHNOLOGIES INC Greenbelt, MD	(S) (D)	7,667	. 09		OTHER* Includes other awards over \$25,0	00 and s		9.67
					<u> </u>	procurements of \$25,000 or less.			

Educational And Nonprofit Institutions

ONE HUNDRED EDUCATIONAL AND NONPROFIT INSTITUTIONS
LISTED ACCORDING TO TOTAL AWARDS RECEIVED*
FISCAL YEAR 1989
(NewDondrofit Institution)

				(N=Nonprofit	Instit	ution)		
	INSTITUTION & PRINCIPAL PLACE OF PERFORMANCE		AWAF			INSTITUTION & PRINCIPAL PLACE OF PERFORMANCE	AWAR (THOUSANDS)	
'	TOTAL AWARDS TO EDUCATIONAL A NONPROFIT INSTITUTIONS		\$644.218	100.00	16.	UNIV CALIFORNIA SAN DIEGO LA JOLLA, CA	12,058	1.87
:	. STANFORD UNIV Stanford, CA		41,785	6.49	17.	UNIV MICHIGAN ANN ARBOR Ann Arbor, MI	12,030	1.87
- 4	. ASSN UNIV RESEARCH & ASTRON Baltimore, MD	(N)	27,318	4.24	18.	UNIV ALABAMA HUNTSVILLE Huntsville, AL	11,427	1.77
	. UNIV CALIFORNIA BERKELEY Berkeley, CA		24,560	3.81	19.	UNIV WISCONSIN MADISON Madison, WI	9,441	1.47
١ ٠	. UNIVERSITIES SPACE RESEARCH Houston, TX	(N)	23,404	3.63	20.	PENNSYLVANIA STATE UNIV UP University Park, PA	8,166	1.27
	. MITRE CORP Houston, TX	(N)	20,345	3.16	21.	CALIFORNIA INSTITUTE TECHNOLOGY Pasadena, CA	7,757	1.20
•	. MASS INSTITUTE TECHNOLOGY Cambridge, MA		19,425	3.02	22.	CASE WESTERN RESERVE UNIV	6,775	1.05
7	. NEW MEXICO STATE UNIV LAS CRUC Palestine, TX	ES	19,348	3.00	23.	Cleveland, OH UNIV TEXAS AUSTIN Austin, TX	6,612	1.03
8	. SOUTHWEST RESEARCH INSTITUTE San Antonio, TX	(N)	18,289	2.84	24.	UNIV CHICAGO Chicago, IL	6,445	1.00
9	. UNIV ARIZONA TUCSON, AZ		16,209	2.52	25.		6,141	.95
10	. SMITHSONIAN INSTITUTION Cambridge, MA	(и)	15,890	2.47	26.	UNIV HAWAII Honolulu, HI	6,095	.95
. 11	. NATIONAL ACADEMY SCIENCES Washington, DC	(N)	13,698	2.13	27.	OLD DOMINION UNIV Norfolk, VA	5,613	.87
12	. CHARLES STARK DRAPER LAB INC Cambridge, MA	(N)	13,465	2.09	28.	OHIO STATE UNIV Columbus, OH	5,391	.84
13	. UNIV COLORADO BOULDER Boulder, CO		13,283	2.06	29.	CORNELL UNIV Ithaca, NY	5,301	.82
14	. UNIV MARYLAND COLLEGE PARK College Park, MD		12,995	2.02	30.	UNIV SOUTHERN CALIFORNIA- Los Angeles, CA	5,288	.82
15	. UNIV IOWA IOWA City, IA		12,427	1.93	31.	UNIV HOUSTON CLEAR LAKE Houston, TX	5,192	.81
					I			


Educational And Nonprofit Institutions

Place of Performance (THOUSANDS) Percent Place of Performance (THOUSANDS)		INSTITUTION & PRINCIPAL			RDS	1	INSTITUTION & PRINCIPAL		AWAS	
Durham, NH						ł	PLACE OF PERFORMANCE		(THOUSANDS)	PERCENT
Durham, NH						1				
Durham, NH String	32.			4,896	.76	50.			3.314	.51
Baltimore, MD 34. TEXAS & & W UNIV EI Paso, TX RANVARD UNIV 35. HARVARD UNIV 36. BATTELLE MEMORIAL INSTITUTE (N) 4,107									5,521	.51
34. TEXAS & M UNIV	33.			4,484	.70	51.			3,249	.50
El Paso, TX 35 MARVARD UNIV Cambridge, MA 36 MATTELLE MEMORIAL INSTITUTE (N) 4,107 .64 37 VIGINIA POLYTECHNIC INSTITUTE Blacksburg, VA 38 UNIV WASHINGTON 39 COLUMBIA UNIV New York, NY 40 SAN JOSE STATE UNIV MOSTELLE FIELD, NUIV MOSTELLE FIELD, NUIV MOSTELLE MA 39 MORTH CAROLINA STATE UNIV MOSTEL SEQUENCY MOSTELLE MA 40 SAN JOSE STATE UNIV MOSTEL SEQUENCY MOSTEL SE	34.						Houston, TX			
35. RARVARD UNIV				4,44/	. 69	52.			3,189	.50
Cambridge, MA 36. RATTELLE MEMORIAL INSTITUTE (N) 4,107 .64 (N) 4,107 .6	35.			4 400			west Larayette, IN			
36. BATTELLE MEMORIAL INSTITUTE (N) 4,107 .64 COLUMBUS, OH 37. VIRGINIA POLYTECHNIC INSTITUTE 4,058 .63 Blacksburg, VA 38. UNIV WASHINGTON 5.55. AEROSPACE CORP. (N) 2,786 Blacksburg, VA 39. COLUMBIA UNIV 2,783 COLUMBIA UNIV 3,944 .61 SAN JOSE STATE UNIV 3,944 .61 New York, NY 40. SAN JOSE STATE UNIV 3,812 .59 MOISTET Field, CA 41. RESEARCH TRIANGLE INSTITUTE (N) 3,710 .58 Reasearch Triangle Park, NC 42. CARNEGIE MELLON UNIV 3,697 .57 PILLSBURGH, PA 43. NORTH CARCULANA STATE UNIV \$3,647 .57 Raleigh, NG Raleigh, NG WORTH CARCULANA STATE UNIV \$3,647 .57 RALEIGH, NG WITH LINDIS URBANA 3,608 .56 44. UNIV ILLINOIS URBANA 3,608 .56 45. ABERICAN INSTITUTE (N) 2,262 Urbana, IL Urbana, IL HAMPTON CITY (N) 3,580 .56 46. SE T I INSTITUTE (N) 2,211 HAMPTON CITY (N) 3,481 .54 46. PRINCETON UNIV 3,481 .54 47. OKLAHOMA STATE UNIV 3,465 .54 46. WILLIAMS STATE UNIV 3,465 .54 47. OKLAHOMA STATE UNIV 3,465 .54 48. WASHINGTON UNIV ST LOUIS 2,879 COLUMBIA NOTIVE ST LOUIS 2,879 COLUMBIA NOTIVE ST LOUIS 2,879 COLUMBIA NOTIVE ST LOUIS 2,879 COLUMBIA STATE UNIV 2,786 EL SE T I LOUIS, MO CLEVELAND STATE UNIV 3,780 CLEVELAND STATE UNIV 2,783 CLEVELAND STATE UNIV 3,780 CLEVELAND STATE UNIV 3,465 .54 55. AEROSPACE CORP. (N) 2,786 EL SEQUIMO, CA CLEVELAND STATE UNIV 2,783 CLEVELAND STATE UNIV 2,783 CLEVELAND STATE UNIV 3,287 CLEVELAND STATE UNIV 3,465 .54 56. CLEVELAND STATE UNIV 3,287 CLEVELAND STATE UNIV 3,287 CLEVELAND STATE UNIV 3,287 CLEVELAND STATE UNIV 3,287 CLEVELAND STATE UNIV 3,287 CLEVELAND STATE UNIV 3,287 CLEVELAND STATE UNIV 3,287 CLEVELAND STATE UNIV 3,287 CLEVELAND STATE UNIV 3,287 CLEVELAND STATE UNIV 3,287 CLEVELAND STATE UNIV 3,287 CLEVELAND STATE UNIV 3,287 CLEVELAND STATE UNIV 3,287 CLEVELAND STATE UNIV 3,481 CLEVELAND STATE UNIV 3,287 CLEVELAND STATE UNIV 3,287 CLEVELAND STATE UNIV 3,287 CLEVELAND STATE UNIV 3,287 CLEVELAND STATE UNIV 3,287 CLEVELAND STATE UNIV 3,287 CLEVELAND STATE UNIV 3,287 CLEVELAND STATE UNIV 3,287 CLEVELAND STATE UNIV 3,287 CLEVELAND STATE UNIV 3,287 CLEVELAND STATE UNIV 3,287 CLEVELAND STATE UN				4,400	.00	33.	Washingson by		2,897	.45
Columbus OH St. Louis, MO	36.	BATTELLE MEMORIAL INSTITUTE	(N)	4.107	. 64	54.	WASHINGTON UNIV ST LOUIS		2 970	.45
37. VIRGINIA POLYTECHNIC INSTITUTE 4,058 .63 .		Columbus, OH	. ,	•		1	St. Louis, MO		2,0/9	.45
Biacksburg.va Seattle, wa	37.			4,058	.63	55.		(N)	2 786	.43
Seattle, WA Seattle, WA							El Segundo, CA	17	2,	
Section Sect	38.			4,043	.63	56.			2,783	.43
New York, NY 101 103 1	20		•			1	Cleveland, OH		-•	
40. SAN JOSE STATE UNIV 3,812 .59 58. UNIV MINESOTA MINDEL ST PAUL 2,674 Mindespolis, MN Mandespolis, MN Mandespolis, MN Mandespolis, MN Mandespolis, MN Mandespolis, MN Mandespolis, MN Mindespolis, MN Mindespolis, MN Mandespolis, MN	35.			3,944	.61	57.			2,696	.42
Moffett Field, CA	40.			2 012		۱ ۔ .	Troy, NY			
41. RESEARCH TRIANGLE INSTITUTE				3,612	. 59] 38.	Minneapolis MY		2,674	.42
Reasearch Triangle Park, NC 2,663 Nashville, TN 2,661	41.		(N)	3.710	50	59.				
42. CARNEGIE MELLON UNIV 3,697 .57 60. AMERICAN INSTIT AERON & ASTRO (N) 2,661		Reasearch Triangle Park, NC	,	-,0		1			2,063	.41
New York, NY New	42.			3,697	.57	60.		(N)	2 661	.41
Raleigh, NC 44. UNIV ILLINOIS URBANA 3,608 .56 62. ELORET INSTITUTE (N) 2,262 Urbana, IL 45. HAMPTON CITY (N) 3,580 .56 63. AUGURN UNIV AUGURN Hampton, VA 46. PRINCETON UNIV 3,481 .54 64. S E T I INSTITUTE (N) \$2,211 Princeton, NJ 47. OKLAHOMA STAFE UNIV 3,465 .54 65. UNIV TEXAS DALLAS 2.110		Pittsburgh, PA		•			New York, NY	()	2,001	. 4.1
Raleigh, NC 44. UNIV ILLINOIS URBANA 3,608 .56 62. ELORET INSTITUTE (N) 2,262 Urbana, IL 45. HAMPTON CITY (N) 3,580 .56 63. AUBURN UNIV AUBURN Hampton, VA 46. PRINCETON UNIV 3,481 .54 64. S E T I INSTITUTE (N) \$2,211 Princeton, NJ Princeton, NJ 47. OKLAHOMA STAFE UNIV 3,465 .54 65. UNIV TEXAS DALLAS 2.110	43.			\$3,647	.57	61.	UNIV ALABAMA BIRMINGHAM		2.659	.41.
Urbana, IL				•		1	Birmingham, AL		-,	
45. HAMPTON CITY (N) 3,580 .56 63. AUBURN UNIV AUBURN 2,211 Hampton, VA AUBURN UNIV AUBURN 2,211 46. PRINCETON UNIV 3,481 .54 64. S E T I INSTITUTE (N) \$2,112 Princeton, NJ Moffett Field, CA 65. UNIV TEXAS DALLAS 2,110	44.			3,608	.56	62.		(N)	2,262	. 35
Hampton, VA					_	I	Moffett Field, CA			
46. PRINCÉTON UNIV 3,481 .54 64. S E T I INSTITUTE (N) \$2,112 Princeton, NJ	45.		(N)	3,580	.56	63.			2,211	. 34
Princeton, NJ Moffett Field, CA 47. QKLAHOMA STATE UNIV 3,465 .54 65. UNIV TEXAS DALLAS 2.110	46			2 401						
47. QKLAHOMA STATE UNIV 3,465 .54 65. UNIV TEXAS DALLAS 2.110	40.			3,481	. 54	04.	Moffett Pield Ch	(N)	\$2,112	.33
	47.			3 465	54	65.	UNIV TEXAS DALLAS			
■ Dillivater, Un (Richardson TY		Stillwater, OK		2,703					2,110	.33
48. GEORGIA INSTITUTE TECHNOLOGY 3,418 .53 66. OREGON STATE UNIV 2.078	48.			3,418	.53	66.	OREGON STATE UNIV		2 078	.32
		Atlanta, GA			-				2,070	. 32
49. UNIV ALASKA FAIRBANKS 3,383 .53 67. S R I INTERNATIONAL CORP (N) 1.972	49.			3,383	.53	67.	S R I INTERNATIONAL CORP	(N)	1.972	.31
Fairbanks, AK Menlo Park, CA		Fairbanks, AK				1	Menlo Park, CA	,	-,	

Educational And Nonprofit Institutions

ĺ	INSTITUTION & PRINCIPAL	AWAR		T	INSTITUTION & PRINCIPAL		AWA	ARDS
	PLACE OF PERFORMANCE	(THOUSANDS)	PERCENT	1	PLACE OF PERFORMANCE		(THOUSANDS)	PERCENT
68.	UNIV CINCINNATI Cincinnati, OH	1,954	.30	86.	UNIV MASS AMHERST Amherst, MA		1,303	.20
69.	ARIZONA STATE UNIV Tempe, AZ	1,812	.28	87.	UNIV CALIFORNIA SAN FRANCISCO Moffett Field, CA		1,283	-20
70.	UNIV NEW MEXICO Albuquerque, NM	1,740	.27	88.	RICE UNIV Houston, TX		1,282	.20
l	UNIV IDAHO Moscow, ID	1,692	.26	89.	UNIV MIAMI Coral Gables, FL		1,262	.20
l	NORTH CAROLINA A & T STATE UNIV Greensboro, NC	1,679	.26	90.	UNIV AKRON Akron, OH		1,237	.19
i .	ENVIRONMENTAL RES INSTIT MICH (N) Ann Arbor, MI	1,635	.25	91.	UNIV PITTSBURGH Pittsburgh, PA		1,217	.19
ı	STATE UNIV NEW YORK ALBANY Albany, NY	1,634	.25	1	ALABAMA A É M UNIV Normal, AL		1,205	. 19
1	BOSTON UNIV Boston, MA	1,552	. 24	93.	UNIV CALIFORNIA SANTA BARBARA Santa Barbara, CA		1,162	-18
ı	UNIV CALIFORNIA DAVIS Davis, CA	1,499	.23	94.	HAMPTON UNIV Hampton, VA		1,148	-18
J	FOOTHILL COLLEGE Moffett Field, CA	1,439	.22	1	U T CALSPAN CTR AEROSPACE RES Tullahoma, TN	(N)	1,101	.17
l	COLORADO STATE UNIV Fort Collins, CO	1,430	.22		INSTITUTE TECHNOLOGY DEVELOP Jackson, MS	(N)	1,100	.17
i	UNIV FLORIDA Gainesville, FL	1,414	.22	97.	MCAT INSTITUTE Moffett Field, CA	(N)	1,091	.17
	NORTHWESTERN UNIV EVANSTON Evanston, IL	1,394	.22	1	INDIANAPOLIS CENTER ADV RES Indianapolis, IN	(N)	1,056	-16
	CLARKSON UNIV Potsdam, NY	1,393	.22	99.	PUBLIC SERV SATELLITE CONSORT Washington, DC	(N)	1,051	.16
	BROWN UNIV Providence, RI	1,388	.22	100.	UNIV TOLEDO Toledo, OH		1,028	.16
	FLORIDA STATE UNIV Tallahassee, FL	1,352	.21		OTHER**		69,483	10.79
1	COLLEGE WILLIAM & MARY Williamsburg, VA	1,329	.21		ludes JPL.		,	-
85.	UNIV CALIFORNIA IRVINE Irvine, CA	1,325	.21	**Inc	ludes other awards over \$25,000 \$25,000 or less.	and s	maller procu	irements

NASA's Budget Authority in 1990 Dollars

Financial Summary

(In Millions of Dolla	rs)				OUTLAYS			AS OF 30 SEP 8
FISCAL YEAR	TOTAL APPROPRIATIONS	TOTAL DIRECT OBLIGATIONS	TOTAL	RESEARCH & DEVELOPMENT	SPACE FLIGHT, CONTROL & DATA COMMUNICATIONS	CONSTRUCTION OF FACILITIES	RESEARCH & PROGRAM MANAGEMENT	TRUST FUNDS
1959	330.90	298.70	145.50	34.00	••	24.80	86.70	
1960	523.90	486.90	401.00	255.70		54.30	91.00	
1961	966.70	908.30	744.30	487.70		98.20	159.10	
1962	1,825.30	1,691.70	1,257.00	935.60		114.30	207.10	
1963	3,674.10	3,448.80	2,552.40	2,308.40	••	225.30	18.70	
1964	5,100.00	4,864.80	4,171.00	3,317.40		437.70	415.90	
1965	5,250.00	5,500.70	5,092.90	3,984.50	••	530.90	577.50	••
1966	5,175.00	5,350.50	5,933.00	4,741.10	••	572.50	619.40	••
1967	4,968.00	5,011.70	5,425.70	4,487.20	••	288.60	649.90	
1968	4,588.90	4,520.40	4,723.70	3,946.10	••	126.10	651.58	••
1969	3,995.30	4,045.20	4,251.70	3,530.20	••	65.30	656.20	
1970	3,749.20	3,858.90	3,753.10	2,991.60	••	54.30	707.20	
1971	3,312.60	3,324.00	3,381.90	2,630.40	••	43.70	707.80	
1972	3,310.10	3.228.60	3,422.90	2,623.20		50.30	749.40	
1973	3,407,60	3,154.00	3,315.20	2,541,40		44.70	729.10	
1974	3,039.70	3,122.40	3,256.20	2,421.60		75.10	759.50	
1975	3,231,20	3,265.90	3.266.50	2,420.40		85.30	760.80	••
1976	3,551.80	3,604.80	3,669.00	2,748.80		120.90	799.30	
TQ	932.20	918.80	951.40	730.70		25.80	194.90	
1977	3,819.10	3,858.10	3,945,30	2,980.70	••	105.00	859.60	
1978	4,063.70	4,000.30	3,983,10	2,988.70	•-	124.20	870.20	
1979	4,561.20	4,557,50	4.196.50	3,138.80		132.70	925.00	••
1980	5,243.40	5,098.10	4,851.60	3,701.40		140.30	1,009.90	••
1981	5,522.70	5,606,20	5,421.20	4,223.00		146.80	1,051.40	
1982	6,020.00	5,946.70	6,035.40	4,796.40		109.00	1,130.00	••
1983	6,837.70	6,723.90	6,663.90	5,316.20		108.10	1,239.60	
1984	7,228.10	7,135.20	7.047.60	2,791.80	2.914.60	108.00	1,232.40	
1985	7,546.70	7,638.40	7,317.70	2,118.20	3,707.00	170.00	1,322.50	
1986	7,764.20	7,463.00	7,403.50	2,614.80	3,267.40	188.90	1,332.40	
1987	10,796.00	8,603.70	7,591.40	2,435.20	3,597.30	149.00	1,408.90	
1988	9,116.60	9,914.70	9,091.60	2,915.80	4,362.20	165.90	1,647.70	
1989	11,008.90	11,315.80	11,051.50	3,922.40	5,030.20	190.10	1,908.30	0.50

Research And Development Funding By Program

(In Millions of Dollars)											As	s of 30 Se	ep 89
	FY 1989	PY 1988	FY 1987	FY 1986	FY 1985	FY 1984	FY 1983	FY 1982	FY 1981	PY 1980	FY 1979	FY 1978	FY 1977 & Prior
SPACE STATION	884.6	387.3	414.5	197.8	153.6			_		_	_		
SPACE FLIGHT													
Space Shuttle			_		_		1,696.2	2,098.1	1,994.7	1,870.3	1,637.6	1,348.8	4,599.9
Space Transp Cap Dev	660.4	585.8	522.3	390.0	387.8	446.1	1,771.5	902.2	676.2	446.6	299.7	263.8	3,946.3
STS Oper Capability Dev	()	()	()	()	()	()	(278.8)	(201.5)	(223.5)	(112.9)	(89.9)	(65.4)	(65.4)
Spacelab	(87.6)	(66.5)	(72.0)	(77.3)	(55.6)	(111.0)	(—)	()	()	(—)	()	(—)	()
Upper Stages	(131.6)	(142.2)	(152.0)	(113.6)	(135.8)	(157.7)	()	()	()	()	()	()	()
Payload Oper & Support Eqt	(53.1)	(74.1)	(34.1)	(54.2)	(54.5)	(59.6)	()	()	()	()	(—)	()	()
Eng & Tech Base (ETB)/DTMS	(160.6)	(133.9)	(133.4)	(105.5)	(105.6)	(93.1)	(70.2)	(182.9)	(183.5)	(172.6)	(177.2)	(171.9)	
Advanced Programs	(47.7)	(46.4)	(37.7)	(19.4)	(20.5)	(21.4)	(12.6)	(9.7)	(8.8)	(13.0)	(7.0)	(10.0)	(188.8)
Advanced Launch Systems	(80.4)	(64.3)	()	()	(-)	()	()	()	()	()	(—)	()	()
Tethered Satellite Program	(26.4)	(12.1)	(10.6)	(15.0)	(15.8)	(3.3)	()	(—)	()	()	(—)	(-)	()
Orbital Maneuvering Veh (OMV)	(73.0)	(46.3)	(82.5)	(5.0)	()	()	()	()	()	(—)	()	(—)	(—)
STS Operations	()	()	(—)	(—)	()	()	(1,409.9)	(508.1)	(260.4)	(148.1)	(25.6)	(16.5)	()
Skylab	()	()	()	()	()	()	()	()	()	()	()	()	(2,427.1)
Apollo Soyuz Test Project	()	()	(—)	()	()	()	()	()	· (—)	()	(—)	()	(214.2)
Expendable Launch Vehicles	_			_	-		82.9	31.1	54.4	67.4	73.6	136.5	2,276.8
Completed Programs	_	-	_		-	_		_	_		_		2,020.5
Apollo	()	()	()	()	()	()	()	(—)	()	()	(—)	() (:	20,444.0)
Gemini	(—)	()	(—)	()	()	()	()	()	(—)	()	()	()	(1,280.7)
Others	()	()	()	()	(-)	()	()	()	()	_()	_ (-)	()	(295.8)
TOTAL OSF	660.4	585.8	522.3	390.0	387.8	446.1	3,550.6	3,031.4	2,725.3	2,384.3	2,010.9	1,749.1	32,843.5
COMMERCIAL PROGRAMS													
Technology Utilization	16.3	18.8	15.5	10.4	9.4	9.0	9.0	8.0	8.8	12.0	9.1	9.1	75.3
Commercial Use of Space	27.8	29.3	23.6	16.0	_		_	_		_		_	_
TOTAL OCP	44.1	48.1	39.1	26.4	9.4	9.0	9.0	8.0	8.8	12.0	9.1	9.1	75.3

Research And Development Funding By Program

(In Millions of Dollars) As of 30 Sep 89

	FY 1989	FY 1988	FY 1987	FY 1986	PY 1985	FY 1984	FY 1983	FY 1982	FY 1981	FY 1980	FY 1979	FY 1978	FY 1977 & Prior
AERONAUTICS AND SPACE TECHNOL	OGY												
Current Programs													
Space Research & Technology	273.9	217.1	164.5	148.1	141.0	130.3	121.2	106.9	107.8	111.8	98.3	88.7	431.6
Aeronautical Research & Tech.	384.6	320.2	360.5	324.3	328.3	296.7	274.5	261.1	268.8	308.3	264.1	228.0	1,022.0
Tranatmosphric Res. & Tech.	68.5	51.9	44.4	_	_	_	_	_		_	_	_	_
Energy Tech. Applications	_		_	_	_			_	1.9	3.0	5.0	7.5	20.8
Prior Programs													
Apollo Applications Expr.			_	_					_	_	_		1.0
Chemical & Solar Power	_		_	_	_					_	_	_	62.3
Basic Research	_	_		_		_							193.6
Space Vehicle Systems	_	_	_		_	_		_					332.3
Electronic Systems				_		_	_	_	_	_	_		272.0
Ruman Factor Systems	_		_									151.3	
Space Power & Elec. Prop. Svs	_						_	_			_		385.4
Nuclear Rockets	_	-											512.9
Chemical Propulsion	_					_	_	_			_	_	365.4
Aeronautical Vehicles			_		_					_	_	_	451.2
Nuclear Power & Propulsion		_	_	_				_	_	_	_	_	44.1
Mission Analysis	_				_	_	_	_			_		16.0
TOTAL CAST	727.0	589.2	569.4	472.7	469.3	427.0	395.7	368.0	378.5	423.1	367.4	324.2	4,261.9
SPACE TRACKING & DATA SYSTEMS													
Tracking and Data Acquisition	18.6	17.7	16.9	15.3	14.7	14.1	496.3	401.3	339.8	332.1	299.9	276.3	3,852.9
SAFETY, RELIABILITY, MAINTAINABILITY & QUALITY ASSURANCE													
Standards & Practices	22.1	13.9	11.9	7.5	4.8	4.6	3.0	3.0	2.1	3.8	9.0	9.0	24.2

Research And Development Funding By Program

(In Millions of Dollars)											As of	30 Sep 89	
	FY 1989	FY 1988	FY 1987	FY 1986	FY 1985	PY 1984	FY 1983	FY 1982	FY 1981	FY 1980	FY 1979	FY 1978	FY 197 & Prio
SPACE SCIENCE AND APPLICATION	NS												
Current Programs													
Physics & Astronomy	715.3	596.2	528.5	554.6	654.7	558.6	480.8	318.2	320.0	335.6	281.8		2,191
Planetary Exploration	405.9	323.5	362.2	349.1	286.5	216.1	180.0	205.0	174.1	219.4	181.9	146.7	3,550
Lbife Sciences	78.1	72.2	70.2	65.0	61.9	57.6	55.6	39.5	42.2	43.8	40.1	33.3	145
Space Aplications	578.2	557.4	550.6	478.4	367.6	309.5	311.4	325.0	325.7	328.5	271.9	232.1	2,093
Prior Programs													
Manned Space Science			_	_	_	_	_		_	_	_	-	46
Launch Vehicle Development	_		_	_		_		_			_	_	614
Bioscience				_	_	_	_	_	_		_	-	257
Space Flight Operations							_	_	_	_	_	4.0	58
Payload, Plan & Prog Integ		()	<u>()</u>	()	(—)	(—)	()	()	()	()	(-)	(4.0)	
TOTAL, OSSA	1,777.5	1,549.3	1,511.5	1,447.1	1,370.7	1,141.8	1,027.8	887.7	862.0	927.3	775.7	639.2	8,958
UNIVERSITY AFFAIRS		_	_	_	_							-	229
OPERATING ACCOUNT	103.3	63.6	68.1	59.6	55.0	23.6	33.1	23.6	17.8	5.5	5.2	4.7	_ 229
TOTAL, PROGRAM	4,237.6	3,254.9	3,153.7	2,616.4	2,465.3	2,066.2	5,515.5	4,723.0	4,334.3	4,088.1	3,477.2	3,011.6	
Approp Trans & Adjustment	-45.9	+19.3	-26.0	+19.0	-2.7	-54.3	+27.3	+17.9	+2.0	+3.0		+1.4	+301
Appropriation	4,191.7	3,274.2	3,127.7	2,635.4	2,462.6	2,011.9	5,542.8	4,740.9	4,336.3	4,091.1	3,477.2	3,013.0	50,632
Lapsed Unoblig Bal Incl		(1.1)	(4.4)	(.3)	(.2)	(.3)	(.2)	(.3)	(.6)	(.1)	(.3)	(.3)

NOTE: Unobligated Balances Lapsed at the end of the second year of accountability.

Research And Development Funding By Location

(In Millions of Dollars)												As of 30	Sep 89
	PY 1989	FY 1988	PY 1987	FY 1986	FY 1985	PY 1984	FY 1983	PY 1982	FY 1981	PY 1980	PY 1979	FY 1978	FY 1977 & Prior
Headquarters	402.8	332.8	258.2	175.8	150.3	141.8	218.4	152.6	136.0	132.5	115.3		2,254.5
Ames Research Center	293.4	261.7	291.1	241.5	223.5	196.8	180.6	162.9	141.0	147.5	140.4		1,183.3
Oryden Flight Research Facili	ty	-	-	-	_			11.9	18.4	16.6	13.1	18.6	242.0
Electronics Research Center		_	_	_	_	_	_	_	_	_	_	_	82.5
Goddard Space Flight Center	718.4	510.9	48R.8	522.6	447.1	361.6	816.3	744.0	567.6	552.0	516.8	492.9	6,400.3
Jet Propulsion Laboratory	579.4	490.3	466.8	451.9	347.8	253.7	308.2	316.4	262.8	320.5	236.8	201.4	3,018.4
Johnson Space Center	563.8	334.8	331.0	249.5	235.2	174.9	1,593.0	1,557.2	1,524.5	1,398.3	1,161.8	970.7	15,424.0
Kennedy Space Center	112.9	90.5	57.3	71.1	49.0	55.7	529.3	420.5	365.4	300.6	234.9	170.0	2,503.5
Langley Research Center	242.7	199.0	221.1	175.2	177.7	140.4	131.9	130.5	143.3	168.2	138.2	157.1	2,323.5
ewis Research Center	386.8	257.3	286.8	257.1	325.1	292.8	269.9	178.4	163.3	170.4	148.5	133.6	2,868.
tarshall Space Flight Center	835.9	760.9	730.1	465.3	503.2	443.5	1.702.1	1.238.5	1,005.9	888.2	785.2	630.9	13,292.
ASA Pasadena Office				_	_	_	_	-	-	_	_		4.
Stennis Space Center	17.3	16.7	22.5	10.2	11.1	9.7	8.6	10.1	8.9	9.3	9.2	10.0	21.
Pacific Launch Operations			_			-	_	_			_	_	•
Space Nuclear Systems Office				_	_				_		_	_	436.
Station 17	-5.1		_	-3.8	-4.7	-4.7	-242.8	-200.0	-14.0	~31.7	-38.8		_
Wallops Flight Facility		_	_		_	_		11.2	15.7	15.8	15.9	156.3	_
Western Support Office		_			_	_			_		_		119.
Undistributed	89.3	_				_	-	-		_	_		-
TOTAL PROGRAM	4,237.6	3,254.9	3,153.7	2,616.4	2.465.3	2.066.2	5.515.5	4.723.0	4.334.3	4.088.1	3,477.2	3.011.6	50.331.2
Approp Trans & Adjust	-45.9	+19.3	-26.0	+19.0	-2.7	-54.3	+27.3	+17.9	+2.0	+3.0		+1.4	+301.0
		3,274.2			2,462.6						3,477.2		
Lapsed Unoblig Bal Incl		(1.1)	(4.4)	(.3)	(.2)	(.3)	(.2)	(.3)	(.6)	(.1)	(.3)	(.3)	1

Space Flight, Control And Data Communications Funding By Program

(In Millions of Dollars)							As of 30	Sep
	FY 1989	FY 1988	FY 1987	FY 1986	FY 1985	PY 1984		
SPACE FLIGHT								
Shuttle Prod & Oper Cap	1,123.0	1,092.4	3,501.4	1,354.7	1,478.1	1,637.2		
Space Transportation Ons	2,377.3	1,825.5	1,636.9	1,633.2	1,308.6	1,431.7		
TOTAL OSF	3,500.3	2,917.9	5,138.3	2,987.9	2,786.7	3,068.9		
SPACE TRACKING & DATA SYSTEMS	1040.5	969.3	764.7	658.2	792.2	673.9		:
OPERATING ACCOUNT	13.8	8.7	17.5	15.6	15.3	9.0		
TOTAL PROGRAM	4,554.6	3,895.9			2 504 2	3.753.0		
Approp Trans & Adjust	-190.4	+12.4	5,920.5 ~105.5	3,661.7 +19.1	3,594.2 +7.6	3,751.8 +39.8		
Appropriation -	4,364.2	*5,815.0	3,680.8	3,601.8	3,791.6	739.0		
Lapsed Unoblig Bal Incl		(.4)	(.3)	(.2)	(.5)			

NOTE: Unobligated Balances Lapsed at the end of the second year of accountability.

Space Flight, Control And Data Communications Funding By Location

(In Millions of Dollars)
As of 30 Sep 89

	FY 1989	FY 1988	PY 1987	PY 1986	FY 1985	PY 1984
Headquarters	153.5	364.4	332.7	204.5	259,5	227.6
Ames Research Center	16.7	15,4	16.	15.6	10,3	
Goddard Space Flight Center	492.6	467.1	415.9	432.2	431.0	
Jet Propulsion Laboratory	122.1	132.1	128.0	117.4	111.9	97.3
Johnson Space Center	1,013.9	909,7	1.960.4	1.083.7	1,308.0	1,360.5
Kennedy Space Center	803.4	720,2	656.0	493.4	490,5	
Langley Research Center	14.3	,1	.3	.4	.6	.2
Lewis Research Center	9.4	3,7	5,0	4.3	2,0	
Marshall Space Flight Center	1.526.6	1,263,9	1.653.5	1.655.4	1,437.0	1,379.0
Stennis Space Center	21.5	19,3	16.1	12.3	1.1	
Station 17	-12.4		_	-277.6	-480.6	-247.7
Undistributed	393.0	90,3	736.3		<u> </u>	
TOTAL PROGRAM	4,554.6	3,895.9	5,920.5	3,661,7	3,594.2	3,751,8
Approp Transfer & Adjust	-190.4	+12.4	-105.5	+19.1	+7.6	+39.8
Appropriation	4,364.2	3,908.3	5,815.0	3,680.8	3,601.8	3,791.6
Lapsed Unoblig Bal Incl		(.4)	(.3)	(.3)	(.2)	(.5)

NOTE: Unobligated Balances Lapsed at the end of the second year of accountability.

Construction Of Facilities Funding

n Millions of Dollars)																AS OF	30 SEP
	FY 89	FY 88	FY 87	FY 86	FY 85	FY 84	FY 83	FY 82	FY 81	FY 80	FY 79	FY 78	FY 77	76/TQ	FY 75	FY 74	. FY
mes Research Center		16.00	16.60	7.80	14.20	14.70			13.60	2.90	9.10		4.40	2.60	3.70		3.
ryden Flight Research Fac.		10.50	••	••	••	••	3.50	••	••	• • •	••	0.40	0.80	••	••	••	
oddard Space Flight Center	3.10	8.60	8.00	3.60	2.10	••	2.60	••	••	••	5.60	4.50	••	••	1.90	1.30	. (
t Propulsion Laboratory	••		12.00	9.20	12.80	5.50		1.80	2.80	••	4.60	3.10	••	••	9.20	1.30	. (
ennedy Space Center	••		••	••	••			1.10	0.60	4.80	••	1.70	2.60	••	••	••-	
ngley Research Center	0.90		11.30	4.70	13.80	10.70	13.60	2.90	22.00	7.10	5.30	1.60	6.10	1.60	3.20	4.00	
wis Research Center	••	17.60	••	••	••	12.90	4.80	1.20	8.70	5.70	5,80	0.80	2.70	• •	3.70		1
nnson Space Center	7.80		7.80		••	••	••	3.00	••'	• • •	••	2.00	2.20	••	0.70	••	
ranali Space Flight Ctr.	12.50				1.60	••	••	••	4.00	6.30	••	••		••	3.80	•.•	
nnis Space Center				• • •	••	••		• • •	••	••	••	0.60		••	• • •		
tioes Flight Facility			••	••	••	••	2,10	••	••	1.10	••	••	••	••	1.10	0.90	
nous Locations		6.40	19.30	17.40	14.00	••		9.80	32.00	1.70	••	1.10		••	7.70	3.70	
silty Planning & Design	22.00	16,00	17.00	11.80	12.00	9.20	8.20	10.00	9.70	13.90	10.60	11.70	12.60	12.50	10.80	13.50	
ge Aero Fac				••	••					45.70	56.10	37.00	31.00	••	••		
or Construction	9.00	8.00	6.80	5.90	4.90	4.60	3.70	2.30	3.90	3.50	4.20	6.00	2.90	6.20	4.60	4.60	
Dali	22.90	24,40	21.80	19.50	17.90	17.30	13.70	12.80	14.80	12.00	••	• • •	••	••	••	• • •	
vir Compl & Rest. Program	26.00	23,90		••									••	••	••	• •	
hab & Mods '	30.90	31.00	30.10	24.30	21.40	21.40	18.90	17.60	17.30	19.70	14,10	18.90	17.80	23.00	14.80	14.80	
ace Station Facilities			12.70		••				••		• • •		••	••	••	.,	
uttie Facilities	58.40	17.20	7.10	36.50	38.10	48.70	28.10	32.80	9.90	27.90	30.90	64.70	30.30	46.60	76.50	56.50	
uttle Payload Facility	••			3.90	6.70	13.10	1.70		1.50	4.30	••	7.30	4.40	••	••	.,	
atlocated Plans & Design						• •	3.50	••	••		••		••	••	••		
n. Facils Revitalization	52.50		••	••		••				••	••			••	• • •		
vanced Launch System Fac.	15.00					••			••	••			••		••		
ust Fund	15.00	••	••	••	••	••	••	••	••		••	••	••	••		• • •	
TAL PROGRAM	276.00	179.60	170.50	144.60	159.50	158.10	104.40	95,30	140.80	156.60	146.30	161.40	117.80	92.50	141.70	100.60	
prop Trans & Adjust	14.10	·1.30	298.80	-11.30	-9.50	-2.60	-6.90	-25.80	-25.80	-0.50	1.20	-0.50	0.30	0.40	-1.50	0.50	
prop & Availability	290.10	178.30	469.30	133.30	150.00	155.50	97.50	95.80	115.00	156.10	147.50	160.90	118.10	92.90	140.20	101.10	

Construction Of Facilities Funding

					•										
(in Millions of Dollars)											-			_	AS OF 30 SEP 89
	FY 72	FY 71	FY 70	FY 69	FY 68	FY 67	FY 66	FY 65	FY 64	FY 63	FY 62	FY 61	FY 60	FY 59	
Arnes Research Center	6.50	1.10	0.30	0.40	4.20		2.80	5.80	11.30	14.30	6.30	0,60	6.10	3.80	
Dryden Flight Research Facility		• •	0.90	•••				••	2.50	1.80	•••	••	1.80	•••	
Electronics Research Center		••	•••			7.40	5.20	10.40	1.60						
Goddard Space Flight Center	0.70	1.40	0.70		0.60	0.70	2.40	2.30	17.70	21.30	11.50	9.40	14.00	3.90	
Jet Proputsion Laboratory		1.90	• • • • • • • • • • • • • • • • • • • •		110	0.30	0.90	3.60	3.00	11.40	3.60	8.60	7.70	•••	
Johnson Space Center		1.10		0.90	0.60	11.80	4.00	17.30	33.90	24.50			••		
Kennedy Space Center	15.60	0.30	10.50	7.40	20.40	34,60	7.20	87,80	273.40	332.80	115.60	27.80	4.00		
Langley Research Center		0.60	5.60		•••	6.40	8.40	3.30	9.70	9.80	6.90	12.30	4.50	10.80	
Lowis Research Center	0.80	0.70	0.30		2.10	16.20	0.90	0.80	20.40	45.50	1,10	9.60	6.60	8.00	
Marshall Space Flight Center		1.30			0.90		1.80	12.00	28.20	40.50	30,70	26.10	•••	•••	
Michoud Assembly Facility		• • •		0.40	0.50	0.50	0.30	6.20	7.30	28.50	••	••			
Stennis Space Center		-,	1.40			••	••	58.40	102.90	77.10					
Nuclear Flocket Dev Station		• •						••	4.10	11.50					
Pacific Launch Operations								0.30	••		0.60	0.40	1.10		
Wallops Flight Facility	••	••	0.50	0.50	0.70	0.20	1.00	1.70	0.50	4.10	11.30	2.00	•••	15.10	
Various Locations	0.70	22.50	26,40	20.80	3.50	6.50	15.10	28.30	211.50	129.90	159.00	28.00	52,40	5.10	
Fedility Planning & Design	3.40	5.40	3.50	1.00	5.40	5.40	5.00	8.80	10.40	12.90	9.80	••	•••	••	
Rehab & Mods *	7.80	(17.50)	•••		•••	•••	••	••				••			
Shuttle Facilities	18.50	• •		••				••							
Other	••		••	••	••	••	••	••	••	••	••	••	••	••	
TOTAL PROGRAM	54.00	35.30	50.10	31.40	42.00	90.00	55.00	247.00	738.40	765.90	356,40	124,80	98.20	47.70	
Approp Trans & Adjust	-1.30	-11.30	3.10	-9.60	-6.10	-7.10	5.00	15.90	-58.40	10.30	-40.40	-2.00	-13.60	0.30	
Appropr & Availability	52.70	25.00	53.20	21.80	35.90	82.90	60.00	262.90	680.00	776.20	316.00	122.80	84.60	48.00	
"Included in Various Locations Pri	or to FY 1977	ž													

Research And Program Management Funding

(In Millions of Dollars)																AS OF 30	0 SEP 89
	FY 89	FY 88	FY 87	FY 86	FY 85	FY 84	FY 83	FY 82	FY 81	FY 80	FY 79	FY 78	FY 77	76/TQ	FY 75	FY 74	FY 7
1/														***		** **	
Headquarters	255.20	205.60	142.50	124.00	122.20	114.00	111.90	115.90	96.40	. 88.70	84.60	83.40	78.40	93.50	68.90	63.00	61.2
Ames Research Center	178.30	165.30	134.00	123.50	122.30	114.90	107.20	76.60	72.20	67.40	62.80	57.70	53.10	63.90	48.60	48.40	42.4
Dryden Flight Research Fac.			••			••	• • •	24.40	22.60	20.20	18.90	18.20	17.20	19.70	13.20	12.20	11.7
Goddard Space Flight Center	255.90	244.00	216.10	200.50	198.30	191.40	183.90	169.10	142.50	133.70	127.80	123.50	114.30	136.60	104.80	97.30	95.7
Kennedy Space Center	269.90	243.40	200.00	192.20	185.10	176.40	164.90	156.00	150.20	135.50	126.40	116.30	110.10	128.00	95,90	94:40	92.4
Langley Research Center	188.70	178.50	153.70	145.00	147.60	139.20	132.70	126.60	120.80	113.80	106.60	100.70	94.70	115.70	88,60	83.30	78.6
Lewis Research Center	196.40	181.90	151.70	143.10	137,40	128.50	118.80	106.40	99.90	94.80	87.50	84.70	83.30	102.40	80.30	79.60	81.2
Johnson Space Center	302.70	283.30	228.00	206.90	216.10	201.90	195.20	230.50	176.30	164.70	153.00	145.20	139.10	165.20	121,30	117.60 -	
Marshall Space Flight Center	256.00	239.90	213.10	195.00	199.70	190.90	184.30	172.10	165.30	156.60	149.00	143,60	140.20	170.00	129.10	137.50	· 137.2
	23.50	20.60	12.40	11.20	10.70	6.30	6.60	5.50	4.90	2.80	1.30	0.10	0.70	0.50	1.60	•••	٠.
Stennis Space Center	23.50	20.00	12.40	-0.10	-7.60	-7.60	-8.10				••		••	••		••	
Station 17				-0.10	-,,00		0.70							••		1.10	
Space Nuclear Sys Office		••				•••			20.00	17.80	15.90	15.10	13.30	17.00	12,40	11.60	10.8
Wallops Flight Facility	•••	••	••			• • • • • • • • • • • • • • • • • • • •				.,,,,,						٠.	
TOTAL PROGRAM	1,926.60	1,763.00	1,451.50	1,341.30	1,331.80	1,255.90	1,197.40	1,183.10	1,071.10	996.00	933.80	889.50	844.40	1,012.50	764.70	744.00	
					0.50	0.20		0.20	0.30	0.20	0.30	0.30	0.30	0.60	0.20	0.60	7.6
Lapsed Unoblig (3a)		•••	1.00	0.20	0.50		••		0.30	V.20	0.50	0.50	0.00	•	-4.90	****	
Approp Trans & Adjust	-71.60	-266.90	-27.50	20.50	••	••			••	••	•••	**	-				
Appropriation	1,998.20	1,495.70	1,425.00	1,362.00	1,332.30	1,256.10	1,197.40	1,183.30	1,071.40	996.20	934.10	889.80	844.60	1,013.10	760.00	744.60	729.4

1/ Includes NASA Pasadena Office

Research And Program Management Funding

(in Millions of Dollars)		_									_				AS OF 30 SEP 89
	FY 72	FY 71	FY 70	FY 69	FY 68	FY 67	FY 68	FY 65	FY 64	FY 63	FY 62	FY 61	FY 60	FY 59	
1/															
Headquarters	61.60	64.90	63.20	60,80	57.10	57.40	54.40	69.30	56.10	51.30	26.00	13.90	8.50	5.70	
Ames Research Center	42.20	40.60	37.60	34.00	33.80	33.80	33.20	31.80	26.90	25,60	22.90	19.90	17.80	16.30	
2/															
Electronics Research Center		••	19.10	17.20	15.40	12.20	6.40	3.20	0.50	••	••	••	••	••	
Dryden Flight Research Center	11,70	11.10	10.30	9.70	9.50	9.50	9.40	10.50	9.40	7.50	7.20	5.10	4.30	3.30	
Goddard Space Filight	96.50	93.10	86.40	73.20	68.30	71.10	64.40	83.30	61.90	52.80	39.10	20.40	15.50	1.80	
Kennedy Space Center	92.60	98.30	97.60	95.80	93.10	92.70	82.00	40.80	26.80	18,80	6.40	••	••		
Langley Research Center	80.20	75.30	69.80	63.00	62.20	64.30	63.50	59.00	52.10	51,80	46.60	39.10	33.00	31.40	
Lewis Research Center	82.50	78.00	73.90	67.90	66.20	66.30	66.40	69.30	58.50	53.40	45.20	35.80	31.20	27.80	
Johnson Space Center	113.00	111.10	106.60	98.90	95.70	95.70	86.50	88.70	64.70	\$1.00	24.10	9.20	••	••	
Marshall Space Flight Center	138,90	145.10	125.70	116.30	126.20	128.70	128.40	138.70	124.30	112,60	89.20	68.60	5.10	••	
Pacific Launch Operations	••	••			••	••	0.60	0.90	0.90	0.60	0.10	••	••		
Space Nuclear Systems Office	2.20	2.40	2,30	2.10	2.00	2.00	1.80	1.70	1.50	1.00	0.30	••	••	••	
Western Support Office		••	••		1.00	3.20	4.90	5.00	4.40	3.40	1.40	5.70	0.50	••	
Watiops Flight Facility	10.90	10.30	9.70	9.10	8.80	9.70	9.30	11.10	8.80	8,90	7.10	5.00	2.70	1.30	
		3/													
TOTAL PROGRAM	732.30	730.20	702.20	648.00	639.30	646.60	611.20	623.30	496.80	438.70	315.60	222.70	118.60	87.60	
*	0.30	0.20	0.40	0.10	0.10	0.90	0.60			••		••	• • •	••	
Approp Trans & Adjust	2.10	-7.70	-12.60	-44.90	-11.40	-7.50	-27.80	0.20	-2.80	••	••		••	••	
Appropriation	734.70	722.70	690.00	603.20	628.00	640.00	584.00	623.50	494.00	438,70	315.60	222.70	118.60	87.60	

1/Includes NASA Pasadena Office 2/ERC was closed on June 30, 1970

3/includes \$10 million for basic institutional and other requirements for agencies resident at MTF/Sildeti

Pacific Launch Operations (PLO)

Space Nuclear Systems Office (SNSO)

Western Support Office (WSO)

Personnel Summary

Onboard At End Of Fiscal Year

As of 30 September 1989

	FY 89	PY 88	FY 87	FY 86	PY 85	FY 84	FY 83	FY 82	FY 81	FY 80	FY 79	FY 78	FY 77	FY 76	FY 75	FY 74	FY 73
NASA HO	1,867	1,829	1,648	1,468	1,553	1,526	1,636	1,614	1,638	1,658	1,534	1,606	1,619	1,708	1,673	1,734	1,747
nasa HO arci	2,217	2,169	2,161	2,153	2,159	2,145	2,138	2,164	1,652	1,713	1,713	1,691	1,645	1,724	1,754	1,776	1,740
DFRF ₂ /			_				_	_	491	499	498	514	546	566	544	531	509 ·
GSFC ² /	3,860	3,727	3,746	3,785	3,738	3,647	3,794	3,746	3,431	3,535	3,562	3,641	3,666	3,808	3,871	3,936	3,852
KSC	2,504	2,330	2,278	2,120	2,165	2,131	2,180	2,199	2,224	2,291	2,264	2,234	2,270	2,404	2,377	2,408	2,516
LRC	3,003	2,966	2,979	2,932	2,949	2,952	3,032	2,916	3,028	3,094	3,125	3,167	3,207	3,407	3,472	3,504	3,389
LRC	2,832	2.716	2,716	2,642	2,782	2,702	2,751	2,667	2.782	2.901	2.907	2.964	3.061	3.168	3,181	3,172	3,368
JSC	3,704	3,498	3,463	3,362	3,449	3,352	3,411	3,445	3,498	3,616	3.563	3.617	3.640	3,796	3.877	3,886	3.896
MSFC	3,703	3,429	3.478	3.361	3.386	3,286	3,464	3,440	3.479	3,646	3.677	3.808	4.014	4.336	4.337	4.574	5,287
NASA Pasadena Office		-												-,	35	.39	39
JSSC	203	159	147	137	135	129	128	119	113	111	108	108	94	72	76		
WFP	_=_					_=.	<u> </u>		400	406	409	429	426	437	441	447	434
TOTAL	23,893	22,823	22,646	21,960	22,316	21,870	22,534	22,310	22,736	23,470	23,360	23,779	24,188	25,426	25,638	26,007	26,777

^{*} Includes Temporary Personnel
Excludes Employees in the Youth Programs

^{1/} Includes DFRF After PY 81

^{2/} Includes WFF After FY 81

Personnel Summary

Onboard At	End Of	Fiscal	Year*
------------	--------	--------	-------

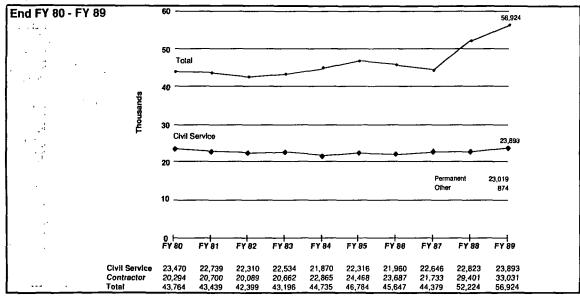
<u> </u>	PY 72	PY 71	PY 70	PY 69	PY 68	FY 67	FY 66	FY 65	PY 64	FY 63	FY 62	PY 61	PY 60	PY 59
NASA Headquarters	1,755	1,895	2,187	2,293	2,310	2,373	2,336	2,135	2,158	2,001	1,477	735	587	429
Ames Research Center	1,844	1,968	2,033	2,117	2,197	2,264	2,310	2,270	2,204	2,116	1,658	1,471	1,421	1,464
Dryden Plight Research Pacility	539	579	583	601	622	642	662	669	619_	, 616	, 538	447	408	· 340
Electronics Research Center			592	951	950	791	555	250	338	∕ 25 <u>ª</u>	/	-	-	
Goddard Space Plight Center	4,178	4,459	4.487	4,295	4.073	3,997	3,958	3,774	3,675	3,487	2,755	1,599	1,255	398
Kennedy Space Center	2,568	2.704	2,895	3.058	3,044	2,867	2,669	2,464	1,625	1,181	339		_	_
Langley Research Center	3,592	3,830	3,970	4,087	4,219	4,405	4,485	4,371	4,330	4,220	3,894	3,338	3,203	3,624
Lewis Research Center	3,866	4,083	4,240	4.399	4,583	4,956	5,047	4,897	4,859	4,697	3,800	2,773	2,722	2,809
Johnson Space Center	3.935	4,298	4.539	4.751	4.956	5,064	4,889	4,413	4,277	3,345	1,786	794	in GSFC	
Marshall Space Plight Center	5,555	6.060	6.325	6,639	6,935	7,602	7,740	7,719	7,679	7,332	6,843	5,948	370	
NASA Pasadena Office	40	44	72	80	79	91	85	19		·	·	·		
Pacific Launch Operations						_	c/	21	722	17				
Space Nuclear Systems Office	45	89	103	104	108	113	115	116	112	96	39	4	_	
Wallops Plight Pacility	465	497	522	554	565	576	563	554	530	493	421	302	229	171
Western Support Office						119	294	<u>377</u>	376	308	136	60	37	
TOTAL.	28,382	30,506	32,548	33,929	34,641	35,860	35,708	34,049	32,499	29,934	23,686	17,471	10,232	9,235

Includes Temporary Personnel

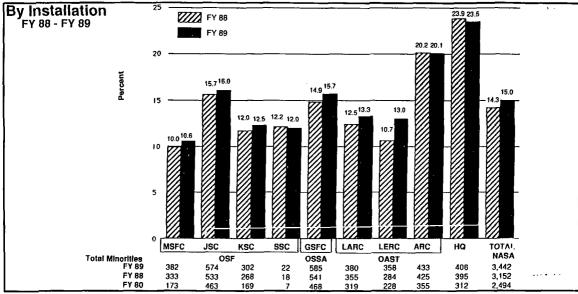
a/ Pigures for North Eastern Office

b/ Prior Years Pigures Included in WSO

c/ Effective in 1966, PLOO Activity Was Merged Under KSC

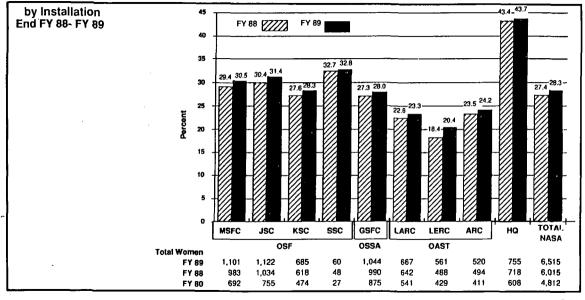

[.] d/ Effective in 1968, WSO was Disestablished and Elements Merged with NaPO

Employment Summary


						_							
9/30/89		OAST			OSSA	OSF]			
Permanent, Other and Total Paid Employees*		ARC	LARC	LERC	GSFC	KSC	JSC	MSFC	ssc	HQ	Total NASA	JPI.	
F	Permanent Employees	2,151	2,864	2,749	3,735	2,423	3,578	3,609	183	1,727	23,019		
l -	Other than Permanent Employees	66	139	83	125	81	126	94	20	140	874		
	Total	2,217	3,003	2,832	3,860	2,504	3,704	3,703	203	1,867	23,893	5,752	
Permanent Emplo	Permanent Employee Occupational Breakdown		LARC	LERC	GSFC	KSC	JSC	MSFC	ssc	HQ	Total NASA	JPL"	
S	6 & E	1,164	1,363	1,509	2,014	1,434	2,340	2,351	98	502	12,775	3,564	
P	Prof'l Admin.	307	287	270	750	392	576	597	52	854	4,085	826	
CI	Clerical	223	284	258	435	328	452	481	31	360	2,852	602	
Te	ech. Support	138	917	234	458	266	201	180	2	5	2,401	374	
W	Vage System	319	13	478	78	3	9	0	0	6	906	386	
То	otal	2,151	2,864	2,749	3,735	2,423	3,578	3.609	183	1,727	23,019		
Support Service Contractor Workforce (FY 89 Man-Year Equivalents) **		ARC	LARC	LERC	GSFC	кѕс	JSC	MSFC	ssc	HQ	Total NASA		
To	otal	1,954	1,792	1,544	3,802	10,643	9,796	1,474	1,207	819	33,031		
* Does Not Include Non-Ceiling Employees													

١,

Total NASA Workforce



Minorities As Percent Of Permanent Employees

Women As Percent Of Permanent Employees

...

