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PROCEDURE OUTLINE

The purpose of this investigation is to develop an analytical method to study the

vibration characteristics of piezoelectrically forced quartz plates. The procedure

is schematically shown in Figure I, and can be summarized as follows. The three

dimensional governing equations of piezoelectricity, the constitutive equations and

the strain-displacement relationships are used in deriving the final equations. For

this purpose, a state vector consisting of stresses and displacements are chosen and

the above equations are manipulated to obtain the projection of the derivative of

the state vector with respect to the thickness coordinate on to the state vector

itself. The solution to the state vector at any plane is then easily obtained in a

closed form in terms of the state vector quantities at a reference plane. To

simplify the analysis, simple thickness mode and plane strain approximations are

used.
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The governing equations of piezoelectricity consisting of the equations of motion

and the charge equations of electrostatics are given by Equations (I) and (2). The

quantities oij, u i and D i are the components of stress, mechanical and electrical

displacements. The constitutive equations are presented in Equations (3) and (4),

where Cijkl is the elastic stiffness, and ekl , eijk, E i and Sij are respectively the

components of mechanical strain, piezoelectric strain constants, electric field and

dielectric permitivity. The relationship between mechanical strain and displacement,

and the relationship between electric field and electric potential are given in

Equations (5) and (6) respectively.

EQUATIONS OF MOTION

oij,j -- p ui,tt (i)

CHARGE EQUATION OF ELECTROSTATICS

Di, i = 0 (2)

CONSTITUTIVE EQUATIONS

aij = Cijkl ekl - eki j Ek

Di = eijk _jk + Sij Ej

(3)

(4)

_iJ = 0.5 (uj, i + ui,j)

Ei = -4,i

(5)

(6)
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The plane xl-x3 is taken to be the plane of the plate, and the x2-direction is

considered as the thickness coordinate. The simple thickness mode approximation, in

which the various quantities are just functions of the thickness coordinate, is used

in the analysis. Also, the system is considered to be under plane strain conditions.

Invoking the above assumptions, and using the contracted notation given by Equation

(7), the surviving system of equations are presented in Equations (8) through (I0).

Differentiating the last of the equations (i0), using the third of Equation (8) and

integrating the resulting equation twice, the expression for _ is obtained

(Equation ii), where A and B are constants of integration. A constant field does not

produce any electric field, hence the constant B in Equation (ii) is neglected.

Substituting Equation (ii) in Equation (I0), the expressions for the non zero stress

components are obtained, and are given in Equations 12 and 13.

CONTRACTED NOTATION

ii, 22, 33, 23 OR 32, 31 OR 13, 12 OR 21

i, 2, 3,_4, 5, 6

(7)

INVOKING SIMPLE THICKNESS MODE AND PLANE STRAIN ASSUMPTIONS

a6,x2 - p Ul,tt

a2,x2 - p u2,tt (8)

D2,x2 - 0

_2 " U2,x2

_6 - 1/2 Ul,x2

E2 - "¢,x2

(9)

a 2 - 1/2 C26 Ul,x2 + C22 U2,x2 + e22 ¢,x2

_6 - C66 Ul,x2 + C62 U2,x2 + e26 ¢,x2

D 2 - 1/2 e26 Ul,x2 + e22 U2,x2 $22 ¢,x2

(I0)

_ I 1/2 e26 u I +e22u 2 }/S22 + Ax2 + B (ii)

a 2 - a26 Ul,x2 + a22 U2,x2 + e22A

o 6 - a66 Ul,x2 + a62 U2,x2 + e26A

(12)

(13)

Figure 3
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A state vector {V} defined by Equation (14) is chosen. The derivatives of the state

vector with respect to x2 is obtained from Equations (8) through (13) and the

resulting expressions are given in Equations (17) through (20). The elements of the

matrices BI, B2 and B3 are made up of the material constants and derivatives with

respect to x2 and time (t).

STATE VECTOR

{V} E [ {Vl }T {V2 }T ]T

{VI} - [ Ul a2 ]T ," (V2} = [ a6 u2 ]T

(14)

{Vl},x 2 = [ BI ] {V2} A {bI}
(15)

{V2},x 2 = [ B2 ] (VI} A {b2)
(16)

{V},x2 - [ B 3 ] {V} A {b3}
(17)

BI =
I/a66 -(a62/a66) a/ax2

0 p 82/at 2

bl=

e26/a66

0

18)

B2 =

p a2/8t 2 0

-(a26/a22) a/ax 2 I/a22

b2=

0

e22/a22

(19)

a62 = C62 +e26e22/S22

a26 = 1/2 {C26 + e22e26/S22 }

a66 = 1/2 {¢66 + e262/$22 )}

; a22 = C22 + e222/$22

(20)

Figure 4
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A solution to the differential equation given in Equation (ii) can be easily

obtained and is given in Equation (21), where {V0} is the state vector evaluated at

x2=0. The analyst has the flexibility of choosing any plane as the appropriate

reference plane. The exponential term in Equation (21) can be expressed in an

infinite series, and the powers of the matrix B3 can conveniently grouped as shown

in Equation (23).

V = e B3 x2 {V0) + B3 "I A b3

{V0} = {V}x2= 0
(21)

e B3x2 {V0} = [ I + B3 x2 + (B3 x2)2/2!+(B3 x2)3/3!+ .... ] {VO} (22)

[Po] [o io]B32 = B33 =

0 Q B2P 0

p2 O 0 BIQ 2

0]

(23)

[ P ] = [BI] [B2]

[ Q ] = [B2] [BI]

Figure 5
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Using the expressions given in Equation (23), the infinite series expansion for the

exponential term can be conveniently grouped as shown in Equation (24). The elements

present in Equation (24) can be recognized as a convergent series. The resultant

expression is given by Equation (25). Substituting this expression in Equation (21),

the final equation for the state vector at any reference plane in terms of the state

vector at a reference plane is obtained (Equation 26).

eB3x2 {V0} =
I + [ ] x2 + x22/2! +

B2 0 0 Q

0 BIQ p2 0

[ ] x23/3' + [ ] x24/4' +
B2P 0 0 Q2

0

B2P BIQ2 ]0 ] x25/5! + ....
(V0} (24)

cosh (x2/P)

B2JP sinh (x2/e)

BI JQ sinh (x2JQ)

cosh (x2/Q)

{V0} (25)

= JR] (V0)

(V} = [R] (VO} + A [B3] "I {b3} (26)

Figure 6
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Symbols and Abbreviations

Constants of integration

Constant coefficients

Elastic stiffness

Components of electric displacement

Components of piezoelectric strain constant

Components of electric field

Components of dielectric permittivity

Components of mechanical displacement

Components of strain

Electric potential

Mass density

Stress components
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