UNDERSTANDING TRANSITION AND TURBULENCE THROUGH DIRECT SIMULATIONS

P. R. Spalart \& J. J. Kim
A. R. C., C. F. D. Branch, Turbulence Physics Section

Direct simulations consist in solving the full Navier-Stokes equations, without any turbulence model, and describing all the detailed features of the flow. Usually the flows are three-dimensional and time-dependent and contain both coarse and fine structures, which makes the numerical task very challenging in terms of both the algorithm and the computational effort. Most of the work until now has involved spectral methods, which are highly accurate but not very flexible in terms of geometry or complex equations. For that reason, future work will also rely on high-order finite-difference or other methods.

Direct simulations complement experimental work, and both contribute to the theory and the empirical knowledge of turbulence. Once such a simulation has been shown to be accurate the flow field is completely known, in three dimensions and time, including the pressure, the vorticity and any other quantity. On the other hand, most simulations to date solved the incompressible equations in rather simple geometries, and direct simulations will always be limited to moderate Reynolds numbers. Extensive simulations have been conducted in homogeneous turbulence, channel flows, boundary layers, and mixing layers. Much effort is devoted to addressing flows with compressibility and chemical reactions, and to new geometries such as a backward-facing step.
UNDERSTANDING TRANSITION AND TURBULENCE
THROUGH DIRECT SIMULATIONS
A. R. C., C. F. D. Branch, Turbulence Physics Section

- Lyapunov exponents of a turbulent channel flow.
- Growth of compressible mixing layers.
Secondary instability in channel flow

- We find that spanwise nonuniformities $\left(k_{x}=0, k_{z} \neq 0\right)$ accumulate
energy much larger than the initial disturbances (by a factor $R e)$
and transfer some to the "K" modes before the Herbert secondary
instability.

[^0]
Stability and relaminarization of the swept attachment-line flow

- Turbulence has been found to propagate from the fuselage along
the attachment line and render Laminar Flow Control impossible.
This is "leading-edge contamination" (Gregory, 1960).
- Direct simulations are conducted in this region. Curvature, com-
pressibility, and spanwise variations are neglected.
- Previous linear-stability results (Görtler \& Hämmerlin, 1955,
Hall, Malik \& Poll, 1984) are confirmed and generalized.
- The unswept flow is found to be linearly and nonlinearly stable. - The instability and relaminarization boundaries are computed in (K, \bar{R}) space, where K is the suction parameter and \bar{R} the Reynolds number based strain rate and sweep velocity component. Suction has much less effect on relaminarization than on linear stability.

Pressure terms in a Reynolds-stress turbulence model
- The complete budgets of the Reynolds-stress tensor and the
dissipation tensor have been extracted from a direct simulation
turbulent channel flow.

- The published estimates for the terms that are difficult to measure
experimentally (pressure, dissipation) were often very inaccurate, es-
pecially near a wall.
- As a result, the widespread $k-\epsilon$ and Reynolds-stress models incur
large errors near walls.
Pressure-strain term

Coherent structures in shear flows
- Streaks have long been observed near the wall in boundary layers
($y^{+}<20$), and horseshoes away from the wall. These observations
were confirmed by simulation results.
- Why the difference?
- Near the wall, the nondimensional shear rate $S^{*} \equiv S q^{2} / \epsilon$ takes
values much larger than in the homogeneous flows that had been
studied (q^{2} : turbulent energy; ϵ : dissipation rate).
- When S^{*} is given such values in a homogeneous shear flow, streaks
appear, indicating that the presence of a wall is not essential to form
them.

Velocity contours in a homogeneous shear flow

The dimension of strange attractors in turbulent shear flows

- Using numerical simulation of low Reynolds number turbulent
channel flow we have confirmed the existence of a strange attrac-
tor by measuring its Lyapunov exponent spectrum and calculating
its dimension.
- At a Reynolds number $R_{\tau}\left(\equiv \delta u_{\tau} / \nu\right)$ of 80 the dimension of the
attractor is $\simeq 360$. This is the $\underline{\text { first }}$ measurement of the intrinsic
complexity of a fully developed turbulent flow.
- This result shows that shear flow turbulence cannot be considered
to result from the interaction of a "few" degrees of freedom.
Direct simulation of compressible (free shear) flows
- Goal: study compressibility effects on turbulent flows, in particular
on their structure, global evolution, and aerodynamic noise.
- Tool: D. N. S. using high-order compact finite differences (close
to spectral resolution). Compressible ideal-gas Navier-Stokes equa-
tions. No artificial viscosity or filtering.
- Example: Spatially evolving mixing layers. 2 D , forced at inflow
witth 1% amplitude. $R \equiv \rho_{1}\left(U_{1}-U_{2}\right) \delta_{\omega} / \mu_{1} \approx 200-400$.
- Experiments have shown that: a) compressibility reduces the growth
rate; b) it scales with the convective Mach number
$M_{c} \equiv\left(U_{1}-U_{2}\right) /\left(a_{1}+a_{2}\right)\left(\gamma_{1}=\gamma_{2}\right)$.
- Simulations have: a) reproduced this effect; b) validated M_{c};
c) provided a physical explanation.

[^0]: имор耳еәлq әd \mathcal{K}_{7} « H,
 This explains the difficulties in observing the
 in experiments.

