COMPUTATIONS OF THREE-DIMENSIONAL STEADY AND UNSTEADY VISCOUS INCOMPRESSIBLE FLOWS

Dochan Kwak, Stuart E. Rogers
NASA Ames Research Center
Seokkwan Yoon, Moshe Rosenfeld, and Leon Chang
MCAT Institute

The INS3D family of computational fluid dynamics computer codes is presented. These codes are used to as tools in developing and assessing algorithms for solving the incompressible NavierStokes equations for steady-state and unsteady flow problems. This work involves applying the codes to real-world problems involving complex three-dimensional geometries. The algorithms utilized include the method of pseudocompressibility and a fractional step method. Several approaches are used with the method of pseudocompressibility including both central and upwind differencing, several types of artificial dissipation schemes, approximate factorization, and an implicit line-relaxation scheme. These codes have been validated using a wide range of problems including flow over a backward-facing step, driven cavity flow, flow through various type of ducts, and steady and unsteady flow over a circular cylinder. Many diverse flow applications have been solved using these codes including parts of the Space Shuttle Main Engine, problems in naval hydrodynamics, low-speed aerodynamics, and biomedical fluid flows. The presentation details several of these including the flow through a Space Shuttle Main Engine inducer, vortex shedding behind a circular cylinder, and flow through an artificial heart.
OUTLINE
\odot Objective and Approach
© Summary of Flow Codes
• INS3D Family of codes

- CENS3D
\odot Applications and Results
• Space Shuttle Main Engine (SSME) components
- Artificial Heart Flow
\odot Summary and Future Work
\odot Movie
• Circular cylinder vortex shedding
- Artificial heart flow
HDVOYddV GNV HAILOGRGO

\odot

\odot
SUMMARY OF INS3D
© Governing equations
- Incompressible Navier-Stokes equations in generalized 3-D co-
ordinates for steady-state solutions
- Pseudocompressibility approach
© Numerical scheme
- Finite difference, central differencing plus artificial dissipation
- Approximate Factorization
- Single or multiple zones
© Turbulence Models
• Algebraic models
- k - ϵ model
\odot Applications
- Numerous SSME related simulations
- Status
• Distributed to numerous users across the nation
- Available through COSMIC
EXTENSIONS TO INS3D
\odot INS3D family of research codes used to study various approaches to
solving the INS equations in generalized 3-D coordinates
Pseudocompressibility Approach

EXTENSIONS TO INS3D, continued

SUMMARY OF CENS3D CODE
\odot Governing Equations
- Compressible Euler and Navier-Stokes equations and species
transport equations in generalized 3-D coordinates
\odot Numerical Methods
- Fully-coupled and implicit thermal-chemical nonequilibrium
finite-rate-chemistry
- Finite volume / flux-limited TVD, optional high-order flux dif-
- ference split upwind scheme
- LU-SGS implicit scheme
\odot Applications
- SSME preburner, main combustor and nozzle
\odot Status
• Research code
VALIDATION CASES

SUMMARY OF APPLICATIONS

ARTIFICIAL HEART
- Develop moving boundary capability
- Apply time accurate flow solvers to Penn State Artificial Heart
- Develop simple non-Newtonian fluid model
- Current artificial devices have problems stemming from fluid dy-
namic phenomena
- High shear stress damages the red blood cells and arterial walls
- Stagnation and secondary flow regions lead to clotting
- Desire short residence time in artificial environment
- Large pressure losses cause heart to work harder
\odot Apply CFD technology to analyzing blood flow through artificial
\odot Apply CFD technology to analyzing blood flow through artificial
hearts and to suggest improved design
© Current artificial devices have problems stemming from fluid dy-
namic phenomena
- High shear stress damages the red blood cells and arterial walls
- Stagnation and secondary flow regions lead to clotting
- Desire short residence time in artificial environment
- Large pressure losses cause heart to work harder
\odot Apply CFD technology to analyzing blood flow through artificial
© Current artificial devices have problems stemming from fluid dy-
namic phenomena
- High shear stress damages the red blood cells and arterial walls
- Stagnation and secondary flow regions lead to clotting
- Desire short residence time in artificial environment
- Large pressure losses cause heart to work harder
\odot Apply CFD technology to analyzing blood flow through artificial

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

CONCLUDING REMARKS
\odot Incompressible and low speed flow simulation codes have been de-
veloped (INS3D-xx, CENS3D).
\odot Results of computer simulations have made significant impact on
analysis and redesign of the SSME power head.
\odot These codes are being extended to analyze other important real
world problems.
\odot Future work includes further enhancement of these codes and im-
provement in physical modeling.

