NUMERICAL SIMULATION OF ROTORCRAFT*

W. J. McCroskey
U. S. Army Aeroflightdynamics Directorate-A VSCOM and
NASA Ames Research Center, Moffett Field, California

The objective of this research is to develop and validate accurate, useroriented viscous CFD codes (with inviscid options) for three-dimensional, unsteady aerodynamic flows about arbitrary rotorcraft configurations. This effort draws heavily from the supercomputer capabilities of the National Aerodynamic Simulation project, and it will provide significantly better design and analysis tools to the rotorcraft industry. Better vehicles can be designed at lower cost, with less expensive testing, and with less risk.

Unsteady, three-dimensional Euler and Navier-Stokes codes are being developed, adapted, and extended to rotor-body combinations. Flow solvers are being coupled with zonal grid topologies, including rotating and nonrotating blocks. Special grid clustering and wave-fitting techniques have been developed to capture low-level radiating acoustic waves.

Significant progress has been made in computing the propagation of acoustic waves due to the interaction of a concentrated vortex and a helicopter airfoil. In this study, the need for higher-order schemes was firmly established in relatively inexpensive two-dimensional calculations. In three dimensions, the number of grid points required to capture the low-level acoustic waves becomes very large, so that large supercomputer memory becomes essential.

Good agreement was obtained between the numerical results obtained with a thin-layer Navier-Stokes code and experimental data from a model rotor. In addition, several nonrotating configurations that are sometimes proposed to simulate rotor blade tips in conventional wind tunnels were examined, and the complex flow around the radical tip shape of the world's fastest helicopter is under investigation. These studies demonstrate the flexibility and power of CFD to gain physical insight, study novel ideas, and examine various possibilities that might be difficult or impossible to set up in physical experiments.

As a prelude to studies of rotor-body aerodynamic interactions, a preliminary grid topology and moving-interface strategy has been developed. A new Euler / Navier-Stokes code using these techniques computes the vortical wake directly, rather than modeling it, as in most previous rotorcraft studies. Several hover cases were run for conventional and advancedgeometry blades. Numerical schemes using multi-zones and/or adaptive grids appear to be necessary to simulate the complex vortical flows in rotor wakes.

Although major improvements both in supercomputers and in codes will be required, the present trends and rate of progress indicate that practical computations of rotor-body combinations will be feasible in the mid-1990's.

[^0]NUMERICAL SIMULATION OF ROTORCRAFT

- PRESENT DESIGN AND ANALYSIS TOOLS FOR ROTORCRAFT ARE INADEQUATE
- TRIAL-AND-ERROR TESTING IS EXPENSIVE AND TIME-CONSUMING
- FOREIGN COMPETITION IS GROWING RAPIDLY
- CFD TECHNOLOGY FOR ROTORCRAFT LAGS FIXED-WING DEVELOPMENTS BY YEARS,
BUT FUTURE SUPERCOMPUTERS WILL PERMIT REALISTIC ROTORCRAFT APPLICATIONS

 ROTORCRAFT CONFIGURATIONS

- DEVELOP AND VALIDATE EULER AND NAVIER-
 APPROACH:
 SUPERCOMPUTERS

BACKGROUND:

NUMERICAL SIMULATION OF ROTORCRAFT

ARMY/NASA ROTORCRAFT CFD PROGRAMS

AND WAKE MODELS

- INDIVIDUAL COMPONENTS

1. TRANSONIC AIRFOIL CHARACTERISTICS
2. BLADE-VORTEX INTERACTIONS

3. 3-D ACOUSTIC PROPAGATION

- COUPLED FINITE-DIFFERENCE CODES
- ISOLATED ROTOR (NAVIER STOKES)
- ROTOR-BODY COMBINATIONS

 V oilAirf of Wa
Acoustic
H.

Computations \& Graphics
BERP ROTOR
$\alpha=20^{\circ}, \operatorname{Re}=1.5 \times 10^{6}, M=0.2$

THE BRITISH EXPERIMENTAL ROTOR PROGRAM BLADE

$$
M=0.2, \alpha=13^{\circ}, \operatorname{Re}=1.5 \times 10^{6} \text {, NONROTATING }
$$

$\stackrel{\circ}{8}$

EULER HOVERING ROTOR CALCULATIONS
WITH AND WITHOUT COMPUTED VORTEX WAKE

441

What Can We Do ?

RC222
SUPERCODE

SUMMARY AND CONCLUSIONS

[^0]: *This research is performed by the Rotorcraft CFD Group, consisting of James Baeder, Ryan Border, Earl Duque, G.R. Srinivasan, and Sharon Stanaway, whose contributions are gratefully acknowledged.

