CALCULATION OF THE ROTOR INDUCED DOWNLOAD ON AIRFOILS

C. S. Lee
Sterling Federal Systems, Inc. NASA Ames Research Center

Abstract

Interactions between the rotors and wing of a rotary wing aircraft in hover have a significant detrimental effect on its payload performance. The reduction of payload results from the wake of lifting rotors impinging on the wing, which is at -90 degrees angle of attack in hover. This vertical drag, often referred as download, can be as large as 15% of the total rotor thrust in hover.

The rotor wake is a three-dimensional, unsteady flow with concentrated tip vortices. With the rotor tip vortices impinging on the upper surface of the wing, the flow over the wing is not only three-dimensional and unsteady, but also separated from the leading and trailing edges.

A simplified two-dimensional model was developed to demonstrate the stability of the methodology. The flow model combines a panel method to represent the rotor and the wing, and a vortex method to track the wing wake. A parametric study of the download on a 20% thick elliptical airfoil below a rotor disk of uniform inflow was performed. Comparisons with experimental data are made where the data are available. This approach is now being extended to three-dimensional flows. Preliminary results on a wing at - 90 degrees angle of attack in free stream is presented.

TWO-DIMENSIONAL ANALYSIS FORMULATION
> - DOUBLET PANELS ON ROTOR, VORTICITY PANELS ON AIRFOIL,
AND POINT VORTICES IN WAKE

> AND POINT VORTICES IN WAKE N
> - UNSTEADY CALCULATION
--- IMPULSIVELY STARTED
--- TIME STEPPING FOR FO
> --- TIME STEPPING FOR FOLLOWING SOLUTIONS

- BOUNDARY CONDITION --- KNOWN NORMAL VELOCITY DISTRIBUTION ON ACTUATOR DISK
--- CONSTANT STREAM FUNCTION ALONG AIRFOIL
-- ZERO TOTAL VORTICITY IN FLOW FIELD

TWO-DIMENSIONAL ANALYSIS FORMULATION

[^0]
NACA 64A223 AIRFOIL (XV-15 WING) IN FREE STREAM

SURFACE PRESSURE DISTRIBUTION
AIRFOIL/ROTOR INTERACTION : EFFECT OF ROTOR/AIRFOIL SPACING ELLIPTICAL AIRFOIL

OF ROTOR HEIGHT ABOVE GROUND
AIRFOIL
AIRFOIL/ROTOR INTERACTION : EFFECT
ELLIPTICAL

THREE-DIMENSIONAL ANALYSIS FORMULATION

DOUBLET PANELS IN WAKE

- UNSTEADY CALCULATION
--- TIME STEPPING FOR FOLLOWING SOLUTIONS
- WAKE CORE SIZE GROWS WITH AGE
$\mathrm{r}_{0} \sim \sqrt{\mathrm{t}}$
- BOUNDARY CONDITIONS
--- VELOCITY POTENTIAL JUMP ACROSS BODY PANEL = $\Phi / 2$
WAKE STRENGTH, $\mu_{w}=\mu_{u}-\mu_{L}$

VIEW FROM WING TIP

VIEW FROM BENEATH

- WAKE MODEL

[^0]: - KUTTA CONDITION

 PRESSURE DIFFERENCE ACROSS
 SLIPSTREAM : $\Gamma_{r}=\gamma_{r} V_{r} \Delta t$

 --- AIRFOIL WAKE STRENGTH
 RELATED TO STRENGTH OF
 BOUND VORTICITY AT
 SEPARATION POINT : $\Gamma_{a}=\gamma_{s} V_{s} \Delta t$

 - total pressure variation

